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Preface

This textbook is designed to teach the university mathematics student the basics of linear
algebra and the techniques of formal mathematics. There are no prerequisites other than
ordinary algebra, but it is probably best used by a student who has the “mathematical
maturity” of a sophomore or junior. The text has two goals: to teach the fundamental
concepts and techniques of matrix algebra and abstract vector spaces, and to teach the
techniques associated with understanding the definitions and theorems forming a coherent
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area of mathematics. So there is an emphasis on worked examples of nontrivial size and on
proving theorems carefully.

This book is copyrighted. This means that governments have granted the author a
monopoly — the exclusive right to control the making of copies and derivative works for
many years (too many years in some cases). It also gives others limited rights, generally
referred to as “fair use,” such as the right to quote sections in a review without seeking
permission. However, the author licenses this book to anyone under the terms of the GNU
Free Documentation License (GFDL), which gives you more rights than most copyrights (see
Appendix GFDL [2646]). Loosely speaking, you may make as many copies as you like at
no cost, and you may distribute these unmodified copies if you please. You may modify the
book for your own use. The catch is that if you make modifications and you distribute the
modified version, or make use of portions in excess of fair use in another work, then you must
also license the new work with the GFDL. So the book has lots of inherent freedom, and no
one is allowed to distribute a derivative work that restricts these freedoms. (See the license
itself in the appendix for the exact details of the additional rights you have been given.)

Notice that initially most people are struck by the notion that this book is free (the
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French would say gratuit, at no cost). And it is. However, it is more important that the
book has freedom (the French would say liberté, liberty). It will never go “out of print” nor
will there ever be trivial updates designed only to frustrate the used book market. Those
considering teaching a course with this book can examine it thoroughly in advance. Adding
new exercises or new sections has been purposely made very easy, and the hope is that others
will contribute these modifications back for incorporation into the book, for the benefit of
all.

Depending on how you received your copy, you may want to check for the latest version
(and other news) at http://linear.ups.edu/.

Topics The first half of this text (through Chapter M [618]) is basically a course in matrix
algebra, though the foundation of some more advanced ideas is also being formed in these
early sections. Vectors are presented exclusively as column vectors (since we also have the
typographic freedom to avoid writing a column vector inline as the transpose of a row vector),
and linear combinations are presented very early. Spans, null spaces, column spaces and row
spaces are also presented early, simply as sets, saving most of their vector space properties
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for later, so they are familiar objects before being scrutinized carefully.

You cannot do everything early, so in particular matrix multiplication comes later than
usual. However, with a definition built on linear combinations of column vectors, it should
seem more natural than the more frequent definition using dot products of rows with columns.
And this delay emphasizes that linear algebra is built upon vector addition and scalar mul-
tiplication. Of course, matrix inverses must wait for matrix multiplication, but this does not
prevent nonsingular matrices from occurring sooner. Vector space properties are hinted at
when vector and matrix operations are first defined, but the notion of a vector space is saved
for a more axiomatic treatment later (Chapter VS [963]). Once bases and dimension have
been explored in the context of vector spaces, linear transformations and their matrix rep-
resentation follow. The goal of the book is to go as far as Jordan canonical form in the Core
(Part C [2]), with less central topics collected in the Topics (Part T [2667]). A third part
contains contributed applications (Part A [2825]), with notation and theorems integrated
with the earlier two parts.

Linear algebra is an ideal subject for the novice mathematics student to learn how to
develop a topic precisely, with all the rigor mathematics requires. Unfortunately, much of this
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rigor seems to have escaped the standard calculus curriculum, so for many university students
this is their first exposure to careful definitions and theorems, and the expectation that they
fully understand them, to say nothing of the expectation that they become proficient in
formulating their own proofs. We have tried to make this text as helpful as possible with
this transition. Every definition is stated carefully, set apart from the text. Likewise, every
theorem is carefully stated, and almost every one has a complete proof. Theorems usually
have just one conclusion, so they can be referenced precisely later. Definitions and theorems
are cataloged in order of their appearance in the front of the book (Definitions [ix], Theorems
[x]), and alphabetical order in the index at the back. Along the way, there are discussions
of some more important ideas relating to formulating proofs (Proof Techniques [??]), which
is part advice and part logic.

Origin and History This book is the result of the confluence of several related events
and trends.

e At the University of Puget Sound we teach a one-semester, post-calculus linear algebra
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course to students majoring in mathematics, computer science, physics, chemistry and
economics. Between January 1986 and June 2002, I taught this course seventeen times.
For the Spring 2003 semester, I elected to convert my course notes to an electronic
form so that it would be easier to incorporate the inevitable and nearly-constant revi-
sions. Central to my new notes was a collection of stock examples that would be used
repeatedly to illustrate new concepts. (These would become the Archetypes, Appendix
A [2389].) It was only a short leap to then decide to distribute copies of these notes
and examples to the students in the two sections of this course. As the semester wore
on, the notes began to look less like notes and more like a textbook.

I used the notes again in the Fall 2003 semester for a single section of the course.
Simultaneously, the textbook I was using came out in a fifth edition. A new chapter was
added toward the start of the book, and a few additional exercises were added in other
chapters. This demanded the annoyance of reworking my notes and list of suggested
exercises to conform with the changed numbering of the chapters and exercises. I had
an almost identical experience with the third course I was teaching that semester. I

Version 2.30



PREFACE cxx

also learned that in the next academic year I would be teaching a course where my
textbook of choice had gone out of print. I felt there had to be a better alternative to
having the organization of my courses buffeted by the economics of traditional textbook
publishing.

I had used TEX and the Internet for many years, so there was little to stand in the
way of typesetting, distributing and “marketing” a free book. With recreational and
professional interests in software development, I had long been fascinated by the open-
source software movement, as exemplified by the success of GNU and Linux, though
public-domain TEX might also deserve mention. Obviously, this book is an attempt to
carry over that model of creative endeavor to textbook publishing.

As a sabbatical project during the Spring 2004 semester, I embarked on the current
project of creating a freely-distributable linear algebra textbook. (Notice the implied
financial support of the University of Puget Sound to this project.) Most of the material
was written from scratch since changes in notation and approach made much of my notes
of little use. By August 2004 I had written half the material necessary for our Math
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232 course. The remaining half was written during the Fall 2004 semester as I taught
another two sections of Math 232.

e While in early 2005 the book was complete enough to build a course around and Version
1.0 was released. Work has continued since, filling out the narrative, exercises and
supplements.

However, much of my motivation for writing this book is captured by the sentiments ex-
pressed by H.M. Cundy and A.P. Rollet in their Preface to the First Edition of Mathematical
Models (1952), especially the final sentence,

This book was born in the classroom, and arose from the spontaneous interest of
a Mathematical Sixth in the construction of simple models. A desire to show that
even in mathematics one could have fun led to an exhibition of the results and
attracted considerable attention throughout the school. Since then the Sherborne
collection has grown, ideas have come from many sources, and widespread interest
has been shown. It seems therefore desirable to give permanent form to the lessons
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of experience so that others can benefit by them and be encouraged to undertake
similar work.

How To Use This Book Chapters, Theorems, etc. are not numbered in this book, but
are instead referenced by acronyms. This means that Theorem XYZ will always be Theo-
rem XYZ, no matter if new sections are added, or if an individual decides to remove certain
other sections. Within sections, the subsections are acronyms that begin with the acronym
of the section. So Subsection XYZ.AB is the subsection AB in Section XYZ. Acronyms are
unique within their type, so for example there is just one Definition B [1131], but there is
also a Section B [1130]. At first, all the letters flying around may be confusing, but with
time, you will begin to recognize the more important ones on sight. Furthermore, there are
lists of theorems, examples, etc. in the front of the book, and an index that contains every
acronym. If you are reading this in an electronic version (PDF or XML), you will see that all
of the cross-references are hyperlinks, allowing you to click to a definition or example, and
then use the back button to return. In printed versions, you must rely on the page numbers.
However, note that page numbers are not permanent! Different editions, different margins,
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or different sized paper will affect what content is on each page. And in time, the addition
of new material will affect the page numbering.

Chapter divisions are not critical to the organization of the book, as Sections are the main
organizational unit. Sections are designed to be the subject of a single lecture or classroom
session, though there is frequently more material than can be discussed and illustrated in
a fifty-minute session. Consequently, the instructor will need to be selective about which
topics to illustrate with other examples and which topics to leave to the student’s reading.
Many of the examples are meant to be large, such as using five or six variables in a system
of equations, so the instructor may just want to “walk” a class through these examples. The
book has been written with the idea that some may work through it independently, so the
hope is that students can learn some of the more mechanical ideas on their own.

The highest level division of the book is the three Parts: Core, Topics, Applications
(Part C [2], Part T [2667], Part A [2825]). The Core is meant to carefully describe the basic
ideas required of a first exposure to linear algebra. In the final sections of the Core, one
should ask the question: which previous Sections could be removed without destroying the
logical development of the subject? Hopefully, the answer is “none.” The goal of the book
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is to finish the Core with a very general representation of a linear transformation (Jordan
canonical form, Section JCF [2205]). Of course, there will not be universal agreement on
what should, or should not, constitute the Core, but the main idea is to limit it to about
forty sections. Topics (Part T [2667]) is meant to contain those subjects that are important
in linear algebra, and which would make profitable detours from the Core for those interested
in pursuing them. Applications (Part A [2825]) should illustrate the power and widespread
applicability of linear algebra to as many fields as possible. The Archetypes (Appendix A
[2389]) cover many of the computational aspects of systems of linear equations, matrices
and linear transformations. The student should consult them often, and this is encouraged
by exercises that simply suggest the right properties to examine at the right time. But
what is more important, this a repository that contains enough variety to provide abundant
examples of key theorems, while also providing counterexamples to hypotheses or converses
of theorems. The summary table at the start of this appendix should be especially useful.

I require my students to read each Section prior to the day’s discussion on that section.
For some students this is a novel idea, but at the end of the semester a few always report
on the benefits, both for this course and other courses where they have adopted the habit.
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To make good on this requirement, each section contains three Reading Questions. These
sometimes only require parroting back a key definition or theorem, or they require perform-
ing a small example of a key computation, or they ask for musings on key ideas or new
relationships between old ideas. Answers are emailed to me the evening before the lecture.
Given the flavor and purpose of these questions, including solutions seems foolish.

Every chapter of Part C [2] ends with “Annotated Acronyms”, a short list of critical
theorems or definitions from that chapter. There are a variety of reasons for any one of these
to have been chosen, and reading the short paragraphs after some of these might provide
insight into the possibilities. An end-of-chapter review might usefully incorporate a close
reading of these lists.

Formulating interesting and effective exercises is as difficult, or more so, than building a
narrative. But it is the place where a student really learns the material. As such, for the
student’s benefit, complete solutions should be given. As the list of exercises expands, the
amount with solutions should similarly expand. Exercises and their solutions are referenced
with a section name, followed by a dot, then a letter (C,M, or T) and a number. The
letter ‘C’ indicates a problem that is mostly computational in nature, while the letter ‘T’
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indicates a problem that is more theoretical in nature. A problem with a letter ‘M’ is
somewhere in between (middle, mid-level, median, middling), probably a mix of computation
and applications of theorems. So Solution MO.T13 [667] is a solution to an exercise in Section
MO [619] that is theoretical in nature. The number ‘13’ has no intrinsic meaning,.

More on Freedom This book is freely-distributable under the terms of the GFDL, along
with the underlying TEX code from which the book is built. This arrangement provides
many benefits unavailable with traditional texts.

e No cost, or low cost, to students. With no physical vessel (i.e. paper, binding), no
transportation costs (Internet bandwidth being a negligible cost) and no marketing
costs (evaluation and desk copies are free to all), anyone with an Internet connection
can obtain it, and a teacher could make available paper copies in sufficient quantities
for a class. The cost to print a copy is not insignificant, but is just a fraction of the cost
of a traditional textbook when printing is handled by a print-on-demand service over
the Internet. Students will not feel the need to sell back their book (nor should there
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be much of a market for used copies), and in future years can even pick up a newer
edition freely.

Electronic versions of the book contain extensive hyperlinks. Specifically, most logical
steps in proofs and examples include links back to the previous definitions or theorems
that support that step. With whatever viewer you might be using (web browser, PDF
reader) the “back” button can then return you to the middle of the proof you were
studying. So even if you are reading a physical copy of this book, you can benefit from
also working with an electronic version.

A traditional book, which the publisher is unwilling to distribute in an easily-copied
electronic form, cannot offer this very intuitive and flexible approach to learning math-
ematics.

The book will not go out of print. No matter what, a teacher can maintain their own
copy and use the book for as many years as they desire. Further, the naming schemes
for chapters, sections, theorems, etc. is designed so that the addition of new material
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will not break any course syllabi or assignment list.

e With many eyes reading the book and with frequent postings of updates, the reliability
should become very high. Please report any errors you find that persist into the latest
version.

e For those with a working installation of the popular typesetting program TEX, the book
has been designed so that it can be customized. Page layouts, presence of exercises,
solutions, sections or chapters can all be easily controlled. Furthermore, many vari-
ants of mathematical notation are achieved via TEX macros. So by changing a single
macro, one’s favorite notation can be reflected throughout the text. For example, every
transpose of a matrix is coded in the source as \transpose{A}, which when printed will
yield A’. However by changing the definition of \transpose{ }, any desired alternative
notation (superscript t, superscript T, superscript prime) will then appear throughout
the text instead.

e The book has also been designed to make it easy for others to contribute material.
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Would you like to see a section on symmetric bilinear forms? Consider writing one and
contributing it to one of the Topics chapters. Should there be more exercises about the
null space of a matrix? Send me some. Historical Notes? Contact me, and we will see
about adding those in also.

e You have no legal obligation to pay for this book. It has been licensed with no ex-
pectation that you pay for it. You do not even have a moral obligation to pay for the
book. Thomas Jefferson (1743 — 1826), the author of the United States Declaration of
Independence, wrote,

If nature has made any one thing less susceptible than all others of exclusive
property, it is the action of the thinking power called an idea, which an individ-
ual may exclusively possess as long as he keeps it to himself; but the moment
it is divulged, it forces itself into the possession of every one, and the receiver
cannot dispossess himself of it. Its peculiar character, too, is that no one pos-
sesses the less, because every other possesses the whole of it. He who receives
an idea from me, receives instruction himself without lessening mine; as he
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who lights his taper at mine, receives light without darkening me. That ideas
should freely spread from one to another over the globe, for the moral and mu-
tual instruction of man, and improvement of his condition, seems to have been
peculiarly and benevolently designed by nature, when she made them, like fire,
expansible over all space, without lessening their density in any point, and like
the air in which we breathe, move, and have our physical being, incapable of
confinement or exclusive appropriation.

Letter to Isaac McPherson
August 13, 1813

However, if you feel a royalty is due the author, or if you would like to encourage the
author, or if you wish to show others that this approach to textbook publishing can also
bring financial compensation, then donations are gratefully received. Moreover, non-
financial forms of help can often be even more valuable. A simple note of encouragement,
submitting a report of an error, or contributing some exercises or perhaps an entire
section for the Topics or Applications are all important ways you can acknowledge the
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freedoms accorded to this work by the copyright holder and other contributors.

Conclusion Foremost, I hope that students find their time spent with this book profitable.
I hope that instructors find it flexible enough to fit the needs of their course. And I hope
that everyone will send me their comments and suggestions, and also consider the myriad
ways they can help (as listed on the book’s website at http://linear.ups.edu).

Robert A. Beezer
Tacoma, Washington
July 2008
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Chapter SLE
Systems of Linear Equations

We will motivate our study of linear algebra by studying solutions to systems of linear
equations. While the focus of this chapter is on the practical matter of how to find, and
describe, these solutions, we will also be setting ourselves up for more theoretical ideas that

2



Section WILA What is Linear Algebra? 3

will appear later.

Section WILA
What is Linear Algebra?

|
Subsection LA
“Linear” + ‘“Algebra”

The subject of linear algebra can be partially explained by the meaning of the two terms
comprising the title. “Linear” is a term you will appreciate better at the end of this course,
and indeed, attaining this appreciation could be taken as one of the primary goals of this
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course. However for now, you can understand it to mean anything that is “straight” or
“flat.” For example in the xy-plane you might be accustomed to describing straight lines
(is there any other kind?) as the set of solutions to an equation of the form y = ma + b,
where the slope m and the y-intercept b are constants that together describe the line. In
multivariate calculus, you may have discussed planes. Living in three dimensions, with
coordinates described by triples (z, y, z), they can be described as the set of solutions to
equations of the form axz+by+cz = d, where a, b, ¢, d are constants that together determine
the plane. While we might describe planes as “flat,” lines in three dimensions might be
described as “straight.” From a multivariate calculus course you will recall that lines are
sets of points described by equations such as © = 3t — 4, y = =Tt + 2, z = 9¢, where ¢ is a
parameter that can take on any value.

Another view of this notion of “flatness” is to recognize that the sets of points just
described are solutions to equations of a relatively simple form. These equations involve
addition and multiplication only. We will have a need for subtraction, and occasionally we
will divide, but mostly you can describe “linear” equations as involving only addition and
multiplication. Here are some examples of typical equations we will see in the next few
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sections:
20+ 3y — 4z =13 4x14+dx9 — 23+ x4+ 25 =0 9a — 2b+Tc+2d = —7
What we will not see are equations like:
xy + byz = 13 Ty + 15 /24 — 237475 =0 tan(ab) + log(c — d) = =7

The exception will be that we will on occasion need to take a square root.

You have probably heard the word “algebra” frequently in your mathematical preparation
for this course. Most likely, you have spent a good ten to fifteen years learning the algebra
of the real numbers, along with some introduction to the very similar algebra of complex
numbers (see Section CNO [2329]). However, there are many new algebras to learn and
use, and likely linear algebra will be your second algebra. Like learning a second language,
the necessary adjustments can be challenging at times, but the rewards are many. And
it will make learning your third and fourth algebras even easier. Perhaps you have heard
of “groups” and “rings” (or maybe you have studied them already), which are excellent
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examples of other algebras with very interesting properties and applications. In any event,
prepare yourself to learn a new algebra and realize that some of the old rules you used for
the real numbers may no longer apply to this new algebra you will be learning!

The brief discussion above about lines and planes suggests that linear algebra has an
inherently geometric nature, and this is true. Examples in two and three dimensions can be
used to provide valuable insight into important concepts of this course. However, much of
the power of linear algebra will be the ability to work with “flat” or “straight” objects in
higher dimensions, without concerning ourselves with visualizing the situation. While much
of our intuition will come from examples in two and three dimensions, we will maintain an
algebraic approach to the subject, with the geometry being secondary. Others may wish to
switch this emphasis around, and that can lead to a very fruitful and beneficial course, but
here and now we are laying our bias bare.
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Subsection AA
An Application

We conclude this section with a rather involved example that will highlight some of the power
and techniques of linear algebra. Work through all of the details with pencil and paper, until
you believe all the assertions made. However, in this introductory example, do not concern
yourself with how some of the results are obtained or how you might be expected to solve a
similar problem. We will come back to this example later and expose some of the techniques
used and properties exploited. For now, use your background in mathematics to convince
yourself that everything said here really is correct.

Example TMP

Trail Mix Packaging

Suppose you are the production manager at a food-packaging plant and one of your product
lines is trail mix, a healthy snack popular with hikers and backpackers, containing raisins,
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peanuts and hard-shelled chocolate pieces. By adjusting the mix of these three ingredients,
you are able to sell three varieties of this item. The fancy version is sold in half-kilogram
packages at outdoor supply stores and has more chocolate and fewer raisins, thus command-
ing a higher price. The standard version is sold in one kilogram packages in grocery stores
and gas station mini-markets. Since the standard version has roughly equal amounts of each
ingredient, it is not as expensive as the fancy version. Finally, a bulk version is sold in bins
at grocery stores for consumers to load into plastic bags in amounts of their choosing. To
appeal to the shoppers that like bulk items for their economy and healthfulness, this mix
has many more raisins (at the expense of chocolate) and therefore sells for less.

Your production facilities have limited storage space and early each morning you are able
to receive and store 380 kilograms of raisins, 500 kilograms of peanuts and 620 kilograms
of chocolate pieces. As production manager, one of your most important duties is to decide
how much of each version of trail mix to make every day. Clearly, you can have up to
1500 kilograms of raw ingredients available each day, so to be the most productive you will
likely produce 1500 kilograms of trail mix each day. Also, you would prefer not to have any
ingredients leftover each day, so that your final product is as fresh as possible and so that
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you can receive the maximum delivery the next morning. But how should these ingredients
be allocated to the mixing of the bulk, standard and fancy versions?

First, we need a little more information about the mixes. Workers mix the ingredients
in 15 kilogram batches, and each row of the table below gives a recipe for a 15 kilogram
batch. There is some additional information on the costs of the ingredients and the price
the manufacturer can charge for the different versions of the trail mix.

Raisins Peanuts Chocolate | Cost | Sale Price
(kg/batch) | (kg/batch) | (kg/batch) | ($/kg) | ($/kg)
Bulk 7 6 2 3.69 4.99
Standard 6 4 5 3.86 5.50
Fancy 2 ) 8 4.45 6.50
Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

As production manager, it is important to realize that you only have three decisions to make
— the amount of bulk mix to make, the amount of standard mix to make and the amount
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of fancy mix to make. Everything else is beyond your control or is handled by another
department within the company. Principally, you are also limited by the amount of raw
ingredients you can store each day. Let us denote the amount of each mix to produce each
day, measured in kilograms, by the variable quantities b, s and f. Your production schedule
can be described as values of b, s and f that do several things. First, we cannot make
negative quantities of each mix, so

b>0 s>0 F>0

Second, if we want to consume all of our ingredients each day, the storage capacities lead to
three (linear) equations, one for each ingredient,

7 6 2 ..

1—5b + BS + 1—5f = 380 (raisins)

6 4 5

—15b + —153 + —15f = 500 (peanuts)
2 5 8

= il —f =62 hocol
15b+153+15f 620 (chocolate)
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It happens that this system of three equations has just one solution. In other words, as
production manager, your job is easy, since there is but one way to use up all of your raw
ingredients making trail mix. This single solution is

b = 300 kg s =300 kg £ =900 ke.

We do not yet have the tools to explain why this solution is the only one, but it should be
simple for you to verify that this is indeed a solution. (Go ahead, we will wait.) Determining
solutions such as this, and establishing that they are unique, will be the main motivation for
our initial study of linear algebra.

So we have solved the problem of making sure that we make the best use of our limited
storage space, and each day use up all of the raw ingredients that are shipped to us. Addi-
tionally, as production manager, you must report weekly to the CEO of the company, and
you know he will be more interested in the profit derived from your decisions than in the
actual production levels. So you compute,

300(4.99 — 3.69) + 300(5.50 — 3.86) + 900(6.50 — 4.45) = 2727.00
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for a daily profit of $2,727 from this production schedule. The computation of the daily
profit is also beyond our control, though it is definitely of interest, and it too looks like a
“linear” computation.

As often happens, things do not stay the same for long, and now the marketing depart-
ment has suggested that your company’s trail mix products standardize on every mix being
one-third peanuts. Adjusting the peanut portion of each recipe by also adjusting the choco-
late portion leads to revised recipes, and slightly different costs for the bulk and standard
mixes, as given in the following table.

Raisins Peanuts | Chocolate | Cost | Sale Price
(kg/batch) | (kg/batch) | (kg/batch) | ($/kg) | ($/kg)
Bulk 7 5 3 3.70 4.99
Standard 6 5 4 3.85 5.50
Fancy 2 ) 8 4.45 6.50
Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80
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In a similar fashion as before, we desire values of b, s and f so that

b>0 5> 0 F>0
and

7 6 2 ..

1—5b + ES + 1—5f = 380 (raisins)

5 5 5

1—5b + 1_53 + Ef - 500 (peaDUtS>

3 4 8

il = —f =62 hocol

15b~|— 153—1— 15f 620 (chocolate)

It now happens that this system of equations has infinitely many solutions, as we will now
demonstrate. Let f remain a variable quantity. Then if we make f kilograms of the fancy
mix, we will make 4f — 3300 kilograms of the bulk mix and —5f + 4800 kilograms of the
standard mix. Let us now verify that, for any choice of f, the values of b = 4f — 3300 and
s = —5f +4800 will yield a production schedule that exhausts all of the day’s supply of raw
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ingredients (right now, do not be concerned about how you might derive expressions like
these for b and s). Grab your pencil and paper and play along.

7 6 5700

4f — 4 = ki
75 (47 = 3300) + 1= (=5 + 4800) + - f 0f + =z~ =380
5 5 7500
Z(4f — 4 — — =
o= (47 = 3300) + 2 (=5 +4800) + 5 f 0f + =5 =500
3 1 9300
= (4f — 4 = T 62
= (4f = 3300) + (=5 +4800) + f 0f + =7 =620

Convince yourself that these expressions for b and s allow us to vary f and obtain an
infinite number of possibilities for solutions to the three equations that describe our storage
capacities. As a practical matter, there really are not an infinite number of solutions, since
we are unlikely to want to end the day with a fractional number of bags of fancy mix, so our
allowable values of f should probably be integers. More importantly, we need to remember
that we cannot make negative amounts of each mix! Where does this lead us? Positive
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quantities of the bulk mix requires that
b>0 = 4f-3300>0 = f>825
Similarly for the standard mix,
s>0 = —=5f+4800>0 = f <960
So, as production manager, you really have to choose a value of f from the finite set
{825, 826, ..., 960}

leaving you with 136 choices, each of which will exhaust the day’s supply of raw ingredients.
Pause now and think about which you would choose.

Recalling your weekly meeting with the CEO suggests that you might want to choose a
production schedule that yields the biggest possible profit for the company. So you compute
an expression for the profit based on your as yet undetermined decision for the value of f,

(4f — 3300)(4.99 — 3.70) + (=5f + 4800)(5.50 — 3.85) + (f)(6.50 — 4.45) = —1.04f -+ 3663
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Since f has a negative coeflicient it would appear that mixing fancy mix is detrimental to
your profit and should be avoided. So you will make the decision to set daily fancy mix
production at f = 825. This has the effect of setting b = 4(825) — 3300 = 0 and we
stop producing bulk mix entirely. So the remainder of your daily production is standard
mix at the level of s = —5(825) 4+ 4800 = 675 kilograms and the resulting daily profit is
(—1.04)(825) + 3663 = 2805. It is a pleasant surprise that daily profit has risen to $2,805,
but this is not the most important part of the story. What is important here is that there are
a large number of ways to produce trail mix that use all of the day’s worth of raw ingredients
and you were able to easily choose the one that netted the largest profit. Notice too how all
of the above computations look “linear.”

In the food industry, things do not stay the same for long, and now the sales department
says that increased competition has led to the decision to stay competitive and charge just
$5.25 for a kilogram of the standard mix, rather than the previous $5.50 per kilogram. This
decision has no effect on the possibilities for the production schedule, but will affect the
decision based on profit considerations. So you revisit just the profit computation, suitably
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adjusted for the new selling price of standard mix,
(4f —3300)(4.99 — 3.70) + (—5f + 4800)(5.25 — 3.85) + (f)(6.50 — 4.45) = 0.21 f 4 2463

Now it would appear that fancy mix is beneficial to the company’s profit since the value of
f has a positive coefficient. So you take the decision to make as much fancy mix as possible,
setting f = 960. This leads to s = —5(960) + 4800 = 0 and the increased competition has
driven you out of the standard mix market all together. The remainder of production is
therefore bulk mix at a daily level of b = 4(960) — 3300 = 540 kilograms and the resulting
daily profit is 0.21(960) + 2463 = 2664.60. A daily profit of $2,664.60 is less than it used to
be, but as production manager, you have made the best of a difficult situation and shown
the sales department that the best course is to pull out of the highly competitive standard
mix market completely. X

This example is taken from a field of mathematics variously known by names such as
operations research, systems science, or management science. More specifically, this is a
perfect example of problems that are solved by the techniques of “linear programming.”
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There is a lot going on under the hood in this example. The heart of the matter is the
solution to systems of linear equations, which is the topic of the next few sections, and a
recurrent theme throughout this course. We will return to this example on several occasions
to reveal some of the reasons for its behavior.

Subsection READ
Reading Questions

1. Ts the equation x? + xy + tan(y®) = 0 linear or not? Why or why not?
2. Find all solutions to the system of two linear equations 2z + 3y = —8, x — y = 6.
3. Describe how the production manager might explain the importance of the procedures

described in the trail mix application (Subsection WILA.AA [7]).
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Subsection EXC
Exercises

C10 In Example TMP [7] the first table lists the cost (per kilogram) to manufacture each
of the three varieties of trail mix (bulk, standard, fancy). For example, it costs $3.69 to
make one kilogram of the bulk variety. Re-compute each of these three costs and notice that
the computations are linear in character.

Contributed by Robert Beezer

M70 In Example TMP [7] two different prices were considered for marketing standard mix
with the revised recipes (one-third peanuts in each recipe). Selling standard mix at $5.50
resulted in selling the minimum amount of the fancy mix and no bulk mix. At $5.25 it was
best for profits to sell the maximum amount of fancy mix and then sell no standard mix.
Determine a selling price for standard mix that allows for maximum profits while still selling
some of each type of mix.
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Contributed by Robert Beezer — Solution [21]

Version 2.30



Subsection WILA.SOL Solutions 21

Subsection SOL
Solutions

M70 Contributed by Robert Beezer — Statement [19]

If the price of standard mix is set at $5.292, then the profit function has a zero coefficient on
the variable quantity f. So, we can set f to be any integer quantity in {825, 826, ..., 960}.
All but the extreme values (f = 825, f = 960) will result in production levels where some
of every mix is manufactured. No matter what value of f is chosen, the resulting profit will

be the same, at $2,664.60.
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Section SSLE
Solving Systems of Linear Equations

We will motivate our study of linear algebra by considering the problem of solving several
linear equations simultaneously. The word “solve” tends to get abused somewhat, as in
“solve this problem.” When talking about equations we understand a more precise meaning;:
find all of the values of some variable quantities that make an equation, or several equations,
true.
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Subsection SLE
Systems of Linear Equations

Example STNE
Solving two (nonlinear) equations
Suppose we desire the simultaneous solutions of the two equations,

:L,2_|_y2:1
—x+\/§y:0

You can easily check by substitution that x = %g, Yy = % and r = —*/75, Yy = —% are both

solutions. We need to also convince ourselves that these are the only solutions. To see this,
plot each equation on the xy-plane, which means to plot (x, y) pairs that make an individual
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equation true. In this case we get a circle centered at the origin with radius 1 and a straight
line through the origin with slope Lg The intersections of these two curves are our desired
simultaneous solutions, and so we believe from our plot that the two solutions we know
already are indeed the only ones. We like to write solutions as sets, so in this case we write

the set of solutions as
) (=% -)}
X

In order to discuss systems of linear equations carefully, we need a precise definition.
And before we do that, we will introduce our periodic discussions about “Proof Techniques.”
Linear algebra is an excellent setting for learning how to read, understand and formulate
proofs. But this is a difficult step in your development as a mathematician, so we have
included a series of short essays containing advice and explanations to help you along. These
can be found back in Section PT [2352] of Appendix P [2327], and we will reference them
as they become appropriate. Be sure to head back to the appendix to read this as they are

s-{(4

N =
N |
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introduced. With a definition next, now is the time for the first of our proof techniques.
Head back to Section PT [2352] of Appendix P [2327] and study Technique D [2353]. We'll
be right here when you get back. See you in a bit.

Definition SLE

System of Linear Equations

A system of linear equations is a collection of m equations in the variable quantities
1, To, T3, ...,T, of the form,

a1121 + a12T9 + a1373 + -+ ATy = bl
a921T1 + A929T9 + 9373 + -+ aA9nTy — bg

az1xy + azox2 -+ a33x3 + -+ a3y — b3

Am1T1 + Am2aTe + Ap3Ts + - - + Gy = by,
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where the values of a;;, b; and z; are from the set of complex numbers, C. A

Don’t let the mention of the complex numbers, C, rattle you. We will stick with real
numbers exclusively for many more sections, and it will sometimes seem like we only work
with integers! However, we want to leave the possibility of complex numbers open, and there
will be occasions in subsequent sections where they are necessary. You can review the basic
properties of complex numbers in Section CNO [2329], but these facts will not be critical
until we reach Section O [572].

Now we make the notion of a solution to a linear system precise.

Definition SSLE

Solution of a System of Linear Equations

A solution of a system of linear equations in n variables, x1, xs, 3, ..., T, (such as the
system given in Definition SLE [25], is an ordered list of n complex numbers, s1, sa, S3, ..., Sp
such that if we substitute s; for x1, s9 for xs, s3 for z3, ..., s, for x,, then for every equation
of the system the left side will equal the right side, i.e. each equation is true simultaneously.
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A

More typically, we will write a solution in a form like x1 = 12, 2o = —7, 3 = 2 to mean
that s; = 12, s = —7, s3 = 2 in the notation of Definition SSLE [26]. To discuss all of the
possible solutions to a system of linear equations, we now define the set of all solutions. (So
Section SET [2340] is now applicable, and you may want to go and familiarize yourself with
what is there.)

Definition SSSLE

Solution Set of a System of Linear Equations

The solution set of a linear system of equations is the set which contains every solution to
the system, and nothing more. A

Be aware that a solution set can be infinite, or there can be no solutions, in which case we
write the solution set as the empty set, ) = {} (Definition ES [2342]). Here is an example to
illustrate using the notation introduced in Definition SLE [25] and the notion of a solution
(Definition SSLE [26]).

Example NSE
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Notation for a system of equations
Given the system of linear equations,

T1+2x0+ x4=7
$1+[L‘2+$3—ZL‘4:3
3561+.T2+5$3—7$L’4:1

we have n = 4 variables and m = 3 equations. Also,

app =1 a1y = 2 a3 =0 ayy =1 by =

CL2121 (122:1 a23:1 CL24:—1 b2:3

(I31:3 CL32:1 a33:5 a34:—7 bgzl
Additionally, convince yourself that z; = —2, z9 = 4, 3 = 2, ¥4, = 1 is one solution

(Definition SSLE [26]), but it is not the only one! For example, another solution is 1 = —12,
ro = 11, 3 = 1, x4, = —3, and there are more to be found. So the solution set contains at
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least two elements. X

We will often shorten the term “system of linear equations” to “system of equations”
leaving the linear aspect implied. After all, this is a book about linear algebra.

Subsection PSS
Possibilities for Solution Sets

The next example illustrates the possibilities for the solution set of a system of linear equa-
tions. We will not be too formal here, and the necessary theorems to back up our claims will
come in subsequent sections. So read for feeling and come back later to revisit this example.

Example TTS
Three typical systems
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Consider the system of two equations with two variables,

21‘1 +3(L’2 =3

£L'1-$’2:4

If we plot the solutions to each of these equations separately on the x;z9-plane, we get two

lines, one with negative slope, the other with positive slope. They have exactly one point in

common, (x1, x2) = (3, —1), which is the solution z; = 3, o = —1. From the geometry, we

believe that this is the only solution to the system of equations, and so we say it is unique.
Now adjust the system with a different second equation,

2[L’1 —|—3ZL‘2 =3
41’1 +6l’2 =6

A plot of the solutions to these equations individually results in two lines, one on top of the
other! There are infinitely many pairs of points that make both equations true. We will
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learn shortly how to describe this infinite solution set precisely (see Example SAA [116],
Theorem VFSLS [352]). Notice now how the second equation is just a multiple of the first.
One more minor adjustment provides a third system of linear equations,

2$1 + 35(72 =3
4z + 625 = 10

A plot now reveals two lines with identical slopes, i.e. parallel lines. They have no points in
common, and so the system has a solution set that is empty, S = 0. X

This example exhibits all of the typical behaviors of a system of equations. A subsequent
theorem will tell us that every system of linear equations has a solution set that is empty,
contains a single solution or contains infinitely many solutions (Theorem PSSLS [180]). Ex-
ample STNE [23] yielded exactly two solutions, but this does not contradict the forthcoming
theorem. The equations in Example STNE [23] are not linear because they do not match
the form of Definition SLE [25], and so we cannot apply Theorem PSSLS [180] in this case.
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Subsection ESEO
Equivalent Systems and Equation Operations

With all this talk about finding solution sets for systems of linear equations, you might be
ready to begin learning how to find these solution sets yourself. We begin with our first
definition that takes a common word and gives it a very precise meaning in the context of
systems of linear equations.

Definition ESYS
Equivalent Systems
Two systems of linear equations are equivalent if their solution sets are equal. A

Notice here that the two systems of equations could look very different (i.e. not be equal),
but still have equal solution sets, and we would then call the systems equivalent. Two linear
equations in two variables might be plotted as two lines that intersect in a single point. A
different system, with three equations in two variables might have a plot that is three lines,
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all intersecting at a common point, with this common point identical to the intersection point
for the first system. By our definition, we could then say these two very different looking
systems of equations are equivalent, since they have identical solution sets. It is really like
a weaker form of equality, where we allow the systems to be different in some respects, but
we use the term equivalent to highlight the situation when their solution sets are equal.

With this definition, we can begin to describe our strategy for solving linear systems.
Given a system of linear equations that looks difficult to solve, we would like to have an
equivalent system that is easy to solve. Since the systems will have equal solution sets, we
can solve the “easy” system and get the solution set to the “difficult” system. Here come
the tools for making this strategy viable.

Definition EO

Equation Operations

Given a system of linear equations, the following three operations will transform the system
into a different one, and each operation is known as an equation operation.

1. Swap the locations of two equations in the list of equations.
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2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a second
equation, on both sides of the equality. Leave the first equation the same after this
operation, but replace the second equation by the new one.

A

These descriptions might seem a bit vague, but the proof or the examples that follow
should make it clear what is meant by each. We will shortly prove a key theorem about
equation operations and solutions to linear systems of equations. We are about to give a
rather involved proof, so a discussion about just what a theorem really is would be timely.
Head back and read Technique T [2355]. In the theorem we are about to prove, the
conclusion is that two systems are equivalent. By Definition ESYS [32] this translates to
requiring that solution sets be equal for the two systems. So we are being asked to show that
two sets are equal. How do we do this? Well, there is a very standard technique, and we
will use it repeatedly through the course. If you have not done so already, head to Section
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SET [2340] and familiarize yourself with sets, their operations, and especially the notion of
set equality, Definition SE [2343] and the nearby discussion about its use.

Theorem EOPSS

Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of Definition EO [33] to a system of linear
equations (Definition SLE [25]), then the original system and the transformed system are
equivalent. ([l

Proof We take each equation operation in turn and show that the solution sets of the two

systems are equal, using the definition of set equality (Definition SE [2343]).

1. It will not be our habit in proofs to resort to saying statements are “obvious,” but
in this case, it should be. There is nothing about the order in which we write linear
equations that affects their solutions, so the solution set will be equal if the systems
only differ by a rearrangement of the order of the equations.

2. Suppose a # 0 is a number. Let’s choose to multiply the terms of equation ¢ by « to
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build the new system of equations,

a1 + 199 + a13T3 + -+ ATy — b1
A21T1 + Q2279 + A23T3 + *** + ATy = b2

a3171 + 32Te + a33T3 + - - - + A3, T, = by

Qa;1T1 + aaiors + aazxs + - - -+ Qi T, = ab;

Am1T1 + Um2Te + Ap3T3 + - -+ + G Ty = by,

Let S denote the solutions to the system in the statement of the theorem, and let T’
denote the solutions to the transformed system.

(a) Show S C T'. Suppose (z1, T2, X3, ...,2T,) = (51, B2, B3, ..., Bn) € S is a solution
to the original system. Ignoring the i-th equation for a moment, we know it makes
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all the other equations of the transformed system true. We also know that
airfr + afa + aizfs + -+ + ainfn = b
which we can multiply by a to get

aan By + aappfs + aapfBs + - + aapf = ab;
This says that the i-th equation of the transformed system is also true, so we have
established that (51, 52, B3, ..., [5.) € T, and therefore S C T.

Now show 7" C S. Suppose (z1, T2, T3, ..., &,) = (b1, P2, B3, ..., 0n) € T is a
solution to the transformed system. Ignoring the i-th equation for a moment, we
know it makes all the other equations of the original system true. We also know
that

aapn By + aapfy + aaisfs + - - 4+ aap B, = ab;
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which we can multiply by é, since v # 0, to get

a;151 + aipfla + aizfBs + -+ ain By = b;

This says that the i-th equation of the original system is also true, so we have
established that (81, B2, B3, ...,0n) € S, and therefore T' C S. Locate the key
point where we required that a # 0, and consider what would happen if a = 0.

3. Suppose « is a number. Let’s choose to multiply the terms of equation ¢ by o and add
them to equation j in order to build the new system of equations,

1121 + a19%2 + - -+ + a1, = by
a91T1 -+ A99T9 + -t AonTy = b2

a31 + a32T9 + -+ asnly = bg
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(O{ail —|— ajl)xl —|— (Oéaig + CL]‘Q)JZQ + s —|— (Of(lm —|— ajn)xn = abz- + bj

Am1T1 + AmaTa + - -+ + Qpn Ty, = bm

Let S denote the solutions to the system in the statement of the theorem, and let T’
denote the solutions to the transformed system.

(a) Show S C T'. Suppose (z1, T2, X3, ..., 2T,) = (81, B2, B3, ..., Bs) € S is a solution
to the original system. Ignoring the j-th equation for a moment, we know this
solution makes all the other equations of the transformed system true. Using the
fact that the solution makes the i-th and j-th equations of the original system true,

we find

(Oé(lil + Cljl)ﬁl + (Oéaig + CLjQ)ﬁQ + -+ (Oéam + ajn)ﬁn
= (aan B + aapfs + - - + aainfBn) + (a1 b1 + ajofa + - - - + anfn)
= a(anfr + apbs + - + ainbn) + (@j1 01 + ajofa + - - - + ajnfn)
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= Q&bi + bj.

This says that the j-th equation of the transformed system is also true, so we have
established that (51, 52, B3, ...,B,) € T, and therefore S C T.

(b) Now show T' C S. Suppose (z1, 2, x3, ..., T,) = (b1, B2y, B3, ..., 0n) € T is a
solution to the transformed system. Ignoring the j-th equation for a moment, we
know it makes all the other equations of the original system true. We then find

a181 + ajpfBy + -+ anfn
= a1+ ajpfa + -+ @S + b — ab;
= a1 B + ajfo + -+ ajuBn + (i fi + aapfe + - - + aapBy) — ab;
= aj1 81 + aan b + ajofr + aapBs + - -+ ajn by + a8, — ab;
= (aaﬂ -+ ajl)ﬁl + (Oéaig + an)BQ + -+ (OéCLm + ajn)ﬁn — Oébi
= ozbi + bj — ozbi
= b;
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This says that the j-th equation of the original system is also true, so we have

established that (51, B2, B3, ..., 0n) € S, and therefore ' C S.

Why didn’t we need to require that a # 0 for this row operation? In other words, how
does the third statement of the theorem read when o = 07 Does our proof require some
extra care when o« = 07 Compare your answers with the similar situation for the second
row operation. (See Exercise SSLE.T20 [60].)

Theorem EOPSS [35] is the necessary tool to complete our strategy for solving systems
of equations. We will use equation operations to move from one system to another, all the
while keeping the solution set the same. With the right sequence of operations, we will arrive
at a simpler equation to solve. The next two examples illustrate this idea, while saving some
of the details for later.

Example US
Three equations, one solution
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We solve the following system by a sequence of equation operations.

$1+2$2+2.’L’3I4
1’1+3£B2—|—3ZL‘3:5
2$1+6]I2+5(L’3:6

a = —1 times equation 1, add to equation 2:

Z‘1+2I2+2(L’3:4
O$1+1$2+12L’321
2[L’1—|—6{L'2+5£L‘3:6

a = —2 times equation 1, add to equation 3:

1’1—|—2£L'2—|—2£L‘3:4
0$1+1I2+1l’3:1
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0[1)1 + 2£L‘2 + 11’3 = -2
a = —2 times equation 2, add to equation 3:

$1+2.Z’2+2£I§‘3:4
0[L‘1+1[L‘2+1l‘3 = ]_
Ol‘l +0$2 - 1$3 =—4

a = —1 times equation 3:

$1+2$2+2$3:4
0$1+11’2+1l’3:1
O0xq + 020 + 123 =4

which can be written more clearly as

$1+2I2+21’3:4

Version 2.30



Subsection SSLE.ESEO Equivalent Systems and Equation Operations 44

ZEQ—f-.Z'g:]_

.36324

This is now a very easy system of equations to solve. The third equation requires that
r3 = 4 to be true. Making this substitution into equation 2 we arrive at o = —3, and
finally, substituting these values of x5 and z3 into the first equation, we find that z; = 2.
Note too that this is the only solution to this final system of equations, since we were forced to
choose these values to make the equations true. Since we performed equation operations on
each system to obtain the next one in the list, all of the systems listed here are all equivalent
to each other by Theorem EOPSS [35]. Thus (zy, xq, x3) = (2, —3,4) is the unique solution
to the original system of equations (and all of the other intermediate systems of equations
listed as we transformed one into another). X

Example IS
Three equations, infinitely many solutions
The following system of equations made an appearance earlier in this section (Example NSE
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[28]), where we listed one of its solutions. Now, we will try to find all of the solutions to this
system. Don’t concern yourself too much about why we choose this particular sequence of
equation operations, just believe that the work we do is all correct.

x1+2x2+0x3+$4:7
$1+$2+$3—ZE4:3
3&31+2E2+5$3—7$4:1

a = —1 times equation 1, add to equation 2:

SL’1+2$2+0!E3+(E4:7
01‘1—232+l'3—2$4:—4
3{L‘1+CL’2+51’3—7ZE4:1

a = —3 times equation 1, add to equation 3:

x1+2x2+0x3+x4:7
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01’1 —IL‘2+173—2[E4 =4
0.T1 — 5372 + 5&33 — 10!174 = —-20

a = —) times equation 2, add to equation 3:

I1+21’2+OCL’3+ZE4:7
01’1-1’2+$3—2$4:—4
01’1+0$2+0$3+0$4:0

a = —1 times equation 2:

T1+ 20+ 0x3+24=7
0$1+ZL’2—I‘3+2I4:4
0I1+0(L’2+0I’3+01‘4:0
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a = —2 times equation 2, add to equation 1:

1+ 0x9 4+ 223 — 324 = —1
0$1+I2—ZE3+2[E4:4
0.’L’1+0.T2+OI3+0334:0

which can be written more clearly as

1+ 21’3 - 3I4 =-1
To — T3+ 2.T4 =4
0=0
What does the equation 0 = 0 mean? We can choose any values for x1, xo, x3, x4 and this
equation will be true, so we only need to consider further the first two equations, since the

third is true no matter what. We can analyze the second equation without consideration of
the variable ;. It would appear that there is considerable latitude in how we can choose
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To, x3, ¥4 and make this equation true. Let’s choose x3 and x4 to be anything we please, say
3 =a and x4 = b.

Now we can take these arbitrary values for x3 and x4, substitute them in equation 1, to
obtain

1 +2a—3b=-1
:1:1:—1—2a—|—36

Similarly, equation 2 becomes
To — a -+ 2b=14
To=4+a—2b

So our arbitrary choices of values for z3 and z4 (a and b) translate into specific values of x;
and 5. The lone solution given in Example NSE [28] was obtained by choosing a = 2 and
b= 1. Now we can easily and quickly find many more (infinitely more). Suppose we choose
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a =5 and b = —2, then we compute
21 = —1—2(5) +3(=2) = —17
Zy=4+5—2(=2) =13
and you can verify that (z1, za, 23, ©4) = (=17, 13, 5, —2) makes all three equations true.
The entire solution set is written as
S={(-1-2a+3b,4+a—2b,a,b)lac C,beC}

It would be instructive to finish off your study of this example by taking the general form
of the solutions given in this set and substituting them into each of the three equations and
verify that they are true in each case (Exercise SSLE.M40 [58]). X

In the next section we will describe how to use equation operations to systematically
solve any system of linear equations. But first, read one of our more important pieces of
advice about speaking and writing mathematics. See Technique L [2357].

Before attacking the exercises in this section, it will be helpful to read some advice on
getting started on the construction of a proof. See Technique GS [2361].
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Subsection READ
Reading Questions

1. How many solutions does the system of equations 3x + 2y = 4, 6x + 4y = 8 have?
Explain your answer.

2. How many solutions does the system of equations 3x + 2y = 4, 6z + 4y = —2 have?
Explain your answer.

3. What do we mean when we say mathematics is a language?
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Subsection EXC
Exercises

C10 Find a solution to the system in Example IS [44] where 23 = 6 and x4, = 2. Find two
other solutions to the system. Find a solution where 1 = —17 and x5 = 14. How many
possible answers are there to each of these questions?

Contributed by Robert Beezer

C20 Each archetype (Appendix A [2389]) that is a system of equations begins by listing
some specific solutions. Verify the specific solutions listed in the following archetypes by
evaluating the system of equations with the solutions listed.

Archetype A [2395]

Archetype B [2409]

Archetype C [2424]

Archetype D [2436]
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Archetype E [2448]

Archetype F [2460]

Archetype G [2477]
Archetype H [2489]

Archetype I [2502]

Archetype J [2515]
Contributed by Robert Beezer

C30 Find all solutions to the linear system:

r+y=>5
20 —y =3

Contributed by Chris Black  Solution [61]
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C31 Find all solutions to the linear system:

3r+2y=1
T—y=2
dor + 2y =2

Contributed by Chris Black

C32 Find all solutions to the linear system:

r+2y =38
T—y=2
r+y=4

Contributed by Chris Black
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C33 Find all solutions to the linear system:

r+y—z=-1
r—y—z=—1
z=2

Contributed by Chris Black

C34 Find all solutions to the linear system:

rTH+y—z2=-5
rT—y—z2=-—3

r+y—2z=0

Contributed by Chris Black
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C50 A three-digit number has two properties. The tens-digit and the ones-digit add up to
5. If the number is written with the digits in the reverse order, and then subtracted from
the original number, the result is 792. Use a system of equations to find all of the three-digit
numbers with these properties.

Contributed by Robert Beezer — Solution [61]

C51 Find all of the six-digit numbers in which the first digit is one less than the second,
the third digit is half the second, the fourth digit is three times the third and the last two
digits form a number that equals the sum of the fourth and fifth. The sum of all the digits
is 24. (From The MENSA Puzzle Calendar for January 9, 2006.)

Contributed by Robert Beezer — Solution [63]

C52 Driving along, Terry notices that the last four digits on his car’s odometer are palin-
dromic. A mile later, the last five digits are palindromic. After driving another mile, the
middle four digits are palindromic. One more mile, and all six are palindromic. What was
the odometer reading when Terry first looked at it? Form a linear system of equations that
expresses the requirements of this puzzle. (Car Talk Puzzler, National Public Radio, Week
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of January 21, 2008) (A car odometer displays six digits and a sequence is a palindrome if
it reads the same left-to-right as right-to-left.)
Contributed by Robert Beezer — Solution [65]

M10 Each sentence below has at least two meanings. Identify the source of the double
meaning, and rewrite the sentence (at least twice) to clearly convey each meaning.

1. They are baking potatoes.
2. He bought many ripe pears and apricots.
3. She likes his sculpture.

4. I decided on the bus.

Contributed by Robert Beezer  Solution [65]
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M11 Discuss the difference in meaning of each of the following three almost identical
sentences, which all have the same grammatical structure. (These are due to Keith Devlin.)

1. She saw him in the park with a dog.
2. She saw him in the park with a fountain.

3. She saw him in the park with a telescope.

Contributed by Robert Beezer — Solution [66]

M12 The following sentence, due to Noam Chomsky, has a correct grammatical structure,
but is meaningless. Critique its faults. “Colorless green ideas sleep furiously.” (Chomsky,
Noam. Syntactic Structures, The Hague/Paris: Mouton, 1957. p. 15.)

Contributed by Robert Beezer — Solution [67]

M13 Read the following sentence and form a mental picture of the situation.
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The baby cried and the mother picked it up.

What assumptions did you make about the situation?
Contributed by Robert Beezer — Solution [67]

M30 This problem appears in a middle-school mathematics textbook: Together Dan and
Diane have $20. Together Diane and Donna have $15. How much do the three of them have
in total? (Transition Mathematics, Second Edition, Scott Foresman Addison Wesley, 1998.
Problem 5-1.19.)

Contributed by David Beezer — Solution [67]

M40 Solutions to the system in Example IS [44] are given as
(21, X9, x3, 4) = (=1 — 2a + 3b, 4 +a — 2b, a, b)

Evaluate the three equations of the original system with these expressions in a and b and
verify that each equation is true, no matter what values are chosen for a and b.
Contributed by Robert Beezer
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M70 We have seen in this section that systems of linear equations have limited possibil-
ities for solution sets, and we will shortly prove Theorem PSSLS [180] that describes these
possibilities exactly. This exercise will show that if we relax the requirement that our equa-
tions be linear, then the possibilities expand greatly. Consider a system of two equations in
the two variables x and gy, where the departure from linearity involves simply squaring the
variables.

z? — y2 =1

x2 4 y2 — 4
After solving this system of non-linear equations, replace the second equation in turn by
4+ 2r+1y? =3, 22 +y* =1, 2% —dr +y?> = =3, —2® + *> = 1 and solve each resulting
system of two equations in two variables. (This exercise includes suggestions from Don

Kreher.)
Contributed by Robert Beezer — Solution [68]

T10 Technique D [2353] asks you to formulate a definition of what it means for a whole
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number to be odd. What is your definition? (Don’t say “the opposite of even.”) Is 6 odd?
Is 11 odd? Justify your answers by using your definition.
Contributed by Robert Beezer — Solution [69]

T20 Explain why the second equation operation in Definition EO [33] requires that the
scalar be nonzero, while in the third equation operation this restriction on the scalar is not
present.

Contributed by Robert Beezer — Solution [69]
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Subsection SOL
Solutions

C30 Contributed by Chris Black  Statement [52]
Solving each equation for y, we have the equivalent system

y=5—=x

Yy =2r— 3.
Setting these expressions for y equal, we have the equation 5 — x = 2x — 3, which quickly
leads to z = g. Substituting for x in the first equation, we have y =5 —x =5 — % = %

7
3

C50 Contributed by Robert Beezer — Statement [55]

Let a be the hundreds digit, b the tens digit, and ¢ the ones digit. Then the first condition

Thus, the solution is z = §, y =
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says that b4+ ¢ = 5. The original number is 100a 4+ 10b + ¢, while the reversed number is
100c + 10b + a. So the second condition is

792 = (100a + 10b + ¢) — (100¢ + 10b 4 a) = 99a — 99¢
So we arrive at the system of equations

b+c=5
99a — 99¢ = 792

Using equation operations, we arrive at the equivalent system

a—c=2~8
b+c=5

We can vary ¢ and obtain infinitely many solutions. However, ¢ must be a digit, restricting
us to ten values (0 — 9). Furthermore, if ¢ > 1, then the first equation forces a > 9, an
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impossibility. Setting ¢ = 0, yields 850 as a solution, and setting ¢ = 1 yields 941 as another
solution.

C51 Contributed by Robert Beezer  Statement [55]
Let abedef denote any such six-digit number and convert each requirement in the problem
statement into an equation.

a=0b-1
1

c==b
2

d = 3c

W0xe+f=d+e
2d=a+b+c+d+e+ f

In a more standard form this becomes
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—b+2c=0
—3c+d=0
—d+9%+f=0

a+b+c+d+e+ f=24

Using equation operations (or the techniques of the upcoming Section RREF [71]), this
system can be converted to the equivalent system
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11
el
e+75f

Clearly, choosing f = 0 will yield the solution abcde = 563910. Furthermore, to have the
variables result in single-digit numbers, none of the other choices for f (1, 2,...,9) will
yield a solution.

C52  Contributed by Robert Beezer — Statement [55]
198888 is one solution, and David Braithwaite found 199999 as another.

M10 Contributed by Robert Beezer  Statement [56]

1. Does “baking” describe the potato or what is happening to the potato?
Those are potatoes that are used for baking.
The potatoes are being baked.

2. Are the apricots ripe, or just the pears? Parentheses could indicate just what the
adjective “ripe” is meant to modify. Were there many apricots as well, or just many
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pears?
He bought many pears and many ripe apricots.
He bought apricots and many ripe pears.

3. Is “sculpture” a single physical object, or the sculptor’s style expressed over many pieces
and many years?
She likes his sculpture of the girl.
She likes his sculptural style.

4. Was a decision made while in the bus, or was the outcome of a decision to choose the
bus. Would the sentence “I decided on the car,” have a similar double meaning?
I made my decision while on the bus.
I decided to ride the bus.

M11 Contributed by Robert Beezer  Statement [57]
We know the dog belongs to the man, and the fountain belongs to the park. It is not clear
if the telescope belongs to the man, the woman, or the park.
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M12 Contributed by Robert Beezer — Statement [57]

In adjacent pairs the words are contradictory or inappropriate. Something cannot be both
green and colorless, ideas do not have color, ideas do not sleep, and it is hard to sleep
furiously.

M13 Contributed by Robert Beezer — Statement [57]

Did you assume that the baby and mother are human?

Did you assume that the baby is the child of the mother?

Did you assume that the mother picked up the baby as an attempt to stop the crying?

M30 Contributed by Robert Beezer — Statement [58]
If z, y and 2 represent the money held by Dan, Diane and Donna, then y = 15 — 2 and
x=20—y=20— (15— 2) =5+ z. We can let z take on any value from 0 to 15 without
any of the three amounts being negative, since presumably middle-schoolers are too young
to assume debt.

Then the total capital held by the threeis z +y+ 2= (5+2) + (15 — 2) + 2 = 20 + =.
So their combined holdings can range anywhere from $20 (Donna is broke) to $35 (Donna
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is flush).
We will have more to say about this situation in Section TSS [160], and specifically
Theorem CMVEI [182].

M70 Contributed by Robert Beezer — Statement [59]

The equation 22 — y> = 1 has a solution set by itself that has the shape of a hyperbola
when plotted. Four of the five different second equations have solution sets that are circles
when plotted individually (the last is another hyperbola). Where the hyperbola and circles
intersect are the solutions to the system of two equations. As the size and location of the
circles vary, the number of intersections varies from four to one (in the order given). Teh last
equation is a hyperbola that “opens” in the other direction. Sketching the relevant equations
would be instructive, as was discussed in Example STNE [23].

The exact solution sets are (according to the choice of the second equation),

ores {59 (V) (-42) (4549

Version 2.30



Subsection SSLE.SOL Solutions 69

P42+ =3: {(1,0), (—2,V/3), (—2,—\/§)}

24P =1:  {(1,0), (-=1,0)}
2 —dr+y*=-3: {(1,0)}
—t =1 {}

T10 Contributed by Robert Beezer — Statement [59]
We can say that an integer is odd if when it is divided by 2 there is a remainder of 1. So 6
is not odd since 6 = 3 x 2 + 0, while 11 is odd since 11 =5 x 2 + 1.

T20 Contributed by Robert Beezer — Statement [60]

Definition EO [33] is engineered to make Theorem EOPSS [35] true. If we were to allow a
zero scalar to multiply an equation then that equation would be transformed to the equation
0 = 0, which is true for any possible values of the variables. Any restrictions on the solution
set imposed by the original equation would be lost.

However, in the third operation, it is allowed to choose a zero scalar, multiply an equation
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by this scalar and add the transformed equation to a second equation (leaving the first
unchanged). The result? Nothing. The second equation is the same as it was before. So the
theorem is true in this case, the two systems are equivalent. But in practice, this would be
a silly thing to actually ever do! We still allow it though, in order to keep our theorem as
general as possible.

Notice the location in the proof of Theorem EOPSS [35] where the expression é appears
— this explains the prohibition on o = 0 in the second equation operation.
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Section RREF
Reduced Row-Echelon Form

After solving a few systems of equations, you will recognize that it doesn’t matter so much
what we call our variables, as opposed to what numbers act as their coefficients. A system
in the variables x1, x5, x3 would behave the same if we changed the names of the variables
to a, b, ¢ and kept all the constants the same and in the same places. In this section, we
will isolate the key bits of information about a system of equations into something called a
matrix, and then use this matrix to systematically solve the equations. Along the way we
will obtain one of our most important and useful computational tools.
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Subsection MVNSE
Matrix and Vector Notation for Systems of Equations

Definition M

Matrix

An m x n matrix is a rectangular layout of numbers from C having m rows and n columns.
We will use upper-case Latin letters from the start of the alphabet (A, B, C,...) to denote
matrices and squared-off brackets to delimit the layout. Many use large parentheses instead
of brackets — the distinction is not important. Rows of a matrix will be referenced starting
at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting
from the left (i.e. column 1 is at the left). For a matrix A, the notation [A];; will refer to
the complex number in row ¢ and column j of A.
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(This definition contains Notation M.)
(This definition contains Notation MC.) A

Be careful with this notation for individual entries, since it is easy to think that [A],;
refers to the whole matrix. It does not. It is just a number, but is a convenient way to talk
about the individual entries simultaneously. This notation will get a heavy workout once we
get to Chapter M [618].

Example AM
A matrix
-1 2 5 3
B=]11 0 -6 1
-4 2 2 =2
is a matrix with m = 3 rows and n = 4 columns. We can say that [B],; = —6 while
[Bls, = —2. X

Some mathematical software is very particular about which types of numbers (integers,
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rationals, reals, complexes) you wish to work with. See:  Computation R.SAGE [2313]
A calculator or computer language can be a convenient way to perform calculations with
matrices. But first you have to enter the matrix. See:  Computation ME.MMA [2287]
Computation ME.TI86 [2304] Computation ME.TI83 [2309] Computation ME.SAGE
[2315] When we do equation operations on system of equations, the names of the variables
really aren’t very important. xy, xo, x3, or a, b, ¢, or x, y, z, it really doesn’t matter. In this
subsection we will describe some notation that will make it easier to describe linear systems,
solve the systems and describe the solution sets. Here is a list of definitions, laden with
notation.

Definition CV

Column Vector

A column vector of size m is an ordered list of m numbers, which is written in order
vertically, starting at the top and proceeding to the bottom. At times, we will refer to a
column vector as simply a vector. Column vectors will be written in bold, usually with
lower case Latin letter from the end of the alphabet such as u, v, w, x, y, z. Some books
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like to write vectors with arrows, such as «@. Writing by hand, some like to put arrows on
top of the symbol, or a tilde underneath the symbol, as in u. To refer to the entry or

component that is number ¢ in the list that is the vector v we write [v],.
(This definition contains Notation CV.)
(This definition contains Notation CVC.) A

Be careful with this notation. While the symbols [v], might look somewhat substantial,
as an object this represents just one component of a vector, which is just a single complex
number.

Definition ZCV
Zero Column Vector
The zero vector of size m is the column vector of size m where each entry is the number
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Z€eT0,

or defined much more compactly, [0], =0 for 1 <i <m.
(This definition contains Notation ZCV.) A

Definition CM
Coefficient Matrix
For a system of linear equations,
1121 + 1222 + 1323 + - + a1 T, = by

a921T1 + A929T9 + 9373 + -+ aA9n Ty — b2
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a3171 + a2 + ag3Ts + - - + as, T, = b3

A1T1 + QpaTs + Q33 +

the coeflicient matrix is the m X n matrix

11

21
A= |a3

Am1

Definition VOC
Vector of Constants

Q12
22
32

Am?2

a13
23
a33

am3

"'+amnxn:bm

Q1n
Q2n
a3,

amn
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For a system of linear equations,

a11T1 -+ a12T9 —+ a13%3 + -+ ATy = bl
2171 + G22%2 + Ap3T3 + -+ - + A2, Ty, = by

a31T1 + 3279 + 3373 + -+ a3nly = b3

Am1T1 + Q2T + Gp3T3 + -+ - + Qpp Ty = bm

the vector of constants is the column vector of size m

b
by
b= |03

b
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Definition SOLV
Solution Vector
For a system of linear equations,

a1121 + a12T9 + a1373 + -
2171 + A22%2 + A3T3 + -+

a311 + azeT2 + agzrs + - -

A1 L1 + Qoo + A3y + - -

+ A1pTp =

+ A2nTn

+ a3, Ty =

+ Amnn

A
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the solution vector is the column vector of size n

X1
€2

X = |3

T

A

The solution vector may do double-duty on occasion. It might refer to a list of variable
quantities at one point, and subsequently refer to values of those variables that actually form
a particular solution to that system.

Definition MRLS
Matrix Representation of a Linear System
If A is the coefficient matrix of a system of linear equations and b is the vector of constants,
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then we will write LS(A, b) as a shorthand expression for the system of linear equations,
which we will refer to as the matrix representation of the linear system.
(This definition contains Notation MRLS.) A

Example NSLE
Notation for systems of linear equations
The system of linear equations

2$1+4$2—3I3+51’4+$5 =9
3r1 + o + Ty — 325 =0
—21'1 + 71’2 - 5[E3 -+ 2ZE4 + 21‘5 = -3

has coeflicient matrix
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and vector of constants

and so will be referenced as LS(A, b). X

Definition AM

Augmented Matrix

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector
of constants b. Then the augmented matrix of the system of equations is the m x (n+ 1)
matrix whose first n columns are the columns of A and whose last column (number n + 1)
is the column vector b. This matrix will be written as [A| b].

(This definition contains Notation AM.) A

The augmented matrix represents all the important information in the system of equa-
tions, since the names of the variables have been ignored, and the only connection with the
variables is the location of their coefficients in the matrix. It is important to realize that
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the augmented matrix is just that, a matrix, and not a system of equations. In particular,
the augmented matrix does not have any “solutions,” though it will be useful for finding
solutions to the system of equations that it is associated with. (Think about your objects,
and review Technique L [2357].) However, notice that an augmented matrix always belongs
to some system of equations, and vice versa, so it is tempting to try and blur the distinction
between the two. Here’s a quick example.

Example AMAA
Augmented matrix for Archetype A
Archetype A [2395] is the following system of 3 equations in 3 variables.

$1—l’2+2x3:1
201 + 29 + 23 =8

ZL’1—|—JI2:5
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Here is its augmented matrix.

1 -1 2 1
2 1 1 8
1 1 05
X
Subsection RO
Row Operations

An augmented matrix for a system of equations will save us the tedium of continually writing
down the names of the variables as we solve the system. It will also release us from any
dependence on the actual names of the variables. We have seen how certain operations
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we can perform on equations (Definition EO [33]) will preserve their solutions (Theorem
EOPSS [35]). The next two definitions and the following theorem carry over these ideas to
augmented matrices.

Definition RO

Row Operations

The following three operations will transform an m x n matrix into a different matrix of the
same size, and each is known as a row operation.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the entries
in the same columns of a second row. Leave the first row the same after this operation,
but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:
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1. R; <» Rj: Swap the location of rows ¢ and j.
2. aR;: Multiply row ¢ by the nonzero scalar a.
3. aR; + R;: Multiply row ¢ by the scalar o and add to row j.

(This definition contains Notation RO.) A

Definition REM
Row-Equivalent Matrices
Two matrices, A and B, are row-equivalent if one can be obtained from the other by a

sequence of row operations. A

Example TREM
Two row-equivalent matrices
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The matrices

2 -1 3 4 1 1 0 6
A=1|5 2 -2 3 B=13 0 -2 -9
1 1 0 6 2 -1 3 4
are row-equivalent as can be seen from
2 -1 3 4 1 1 0 6 1 1 0 6
5 2 -9 3| M i5 o g g| 2EtR s o 9 g
1 1 0 6 2 -1 3 4 2 -1 3 4
We can also say that any pair of these three matrices are row-equivalent. X

Notice that each of the three row operations is reversible (Exercise RREF.T10 [136]),
so we do not have to be careful about the distinction between “A is row-equivalent to
B” and “B is row-equivalent to A.” (Exercise RREF.T11 [136]) The preceding definitions
are designed to make the following theorem possible. It says that row-equivalent matrices
represent systems of linear equations that have identical solution sets.
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Theorem REMES

Row-Equivalent Matrices represent Equivalent Systems

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear
equations that they represent are equivalent systems. 0

Proof If we perform a single row operation on an augmented matrix, it will have the same
effect as if we did the analogous equation operation on the corresponding system of equations.
By exactly the same methods as we used in the proof of Theorem EOPSS [35] we can see
that each of these row operations will preserve the set of solutions for the corresponding
system of equations. [ |

So at this point, our strategy is to begin with a system of equations, represent it by an
augmented matrix, perform row operations (which will preserve solutions for the correspond-
ing systems) to get a “simpler” augmented matrix, convert back to a “simpler” system of
equations and then solve that system, knowing that its solutions are those of the original
system. Here’s a rehash of Example US [41] as an exercise in using our new tools.

Example USR
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Three equations, one solution, reprised
We solve the following system using augmented matrices and row operations. This is the
same system of equations solved in Example US [41] using equation operations.

T1+ 229+ 223 =4

1+ 3x9+ 323 =5

211 + 6x9 + 523 = 6

Form the augmented matrix,

1 2 2 4
A=11 3 3 5
2 6 5 6
and apply row operations,
1 2 2 4 1 2 2 4
“urfeo o 11 1| 2B g 11 1
2 6 5 6 0 2 1 =2
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12 2 4 122 4
eths g 1 1| 2 0o 101 1
00 —1 —4 001 4
So the matrix
122 4
B=10 111
001 4

is row equivalent to A and by Theorem REMES [88] the system of equations below has the
same solution set as the original system of equations.

$1+2$2+2$3:4
To+x3=1
T3 = 4
Solving this “simpler” system is straightforward and is identical to the process in Example

US [41]. X
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Subsection RREF
Reduced Row-Echelon Form

The preceding example amply illustrates the definitions and theorems we have seen so far.
But it still leaves two questions unanswered. Exactly what is this “simpler” form for a
matrix, and just how do we get it? Here’s the answer to the first question, a definition of
reduced row-echelon form.

Definition RREF
Reduced Row-Echelon Form
A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. If there is a row where every entry is zero, then this row lies below any other row that
contains a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.
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3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row ¢, column j and
the other located in row s, column ¢. If s > ¢, then t > j.

A row of only zero entries will be called a zero row and the leftmost nonzero entry of a
nonzero row will be called a leading 1. The number of nonzero rows will be denoted by r.
A column containing a leading 1 will be called a pivot column. The set of column

indices for all of the pivot columns will be denoted by D = {di, d, ds, ..., d,} where
di < dy < d3 < --- < d,, while the columns that are not pivot columns will be denoted as
F={fi, fo fa, - os fur} where fi < fo < f3 < < fry

(This definition contains Notation RREFA.) A

The principal feature of reduced row-echelon form is the pattern of leading 1’s guaranteed
by conditions (2) and (4), reminiscent of a flight of geese, or steps in a staircase, or water
cascading down a mountain stream.

There are a number of new terms and notation introduced in this definition, which should
make you suspect that this is an important definition. Given all there is to digest here, we
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will mostly save the use of D and F until Section TSS [160]. However, one important point
to make here is that all of these terms and notation apply to a matrix. Sometimes we
will employ these terms and sets for an augmented matrix, and other times it might be a
coefficient matrix. So always give some thought to exactly which type of matrix you are
analyzing.

Example RREF
A matrix in reduced row-echelon form
The matrix C is in reduced row-echelon form.

1 =306 00 -5 9
0o 0o 060010 3 -7
c=1(0 0 0001 7 3
0 0 00O0O0 O O
0O 0 00 0O O O

This matrix has two zero rows and three leading 1’s. So r = 3. Columns 1, 5, and 6 are

Version 2.30



Subsection RREF.RREF Reduced Row-Echelon Form 94

pivot columns, so D = {1, 5, 6} and then F' = {2, 3, 4, 7, 8}. X

Example NRREF

A matrix not in reduced row-echelon form

The matrix E is not in reduced row-echelon form, as it fails each of the four requirements
once.

10 30607 5 9
00 0 5010 3 -7
L_|00 00000 0 0
01 0 0000 —4 2
00 0 0001 7 3
00 0 0000 0 0]

X

Our next theorem has a “constructive” proof. Learn about the meaning of this term in
Technique C [2363].
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Theorem REMEF
Row-Equivalent Matrix in Echelon Form
Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.

2. B is in reduced row-echelon form.

O

Proof Suppose that A has m rows and n columns. We will describe a process for converting
A into B via row operations. This procedure is known as Gauss—Jordan elimination.
Tracing through this procedure will be easier if you recognize that ¢ refers to a row that
is being converted, j refers to a column that is being converted, and r keeps track of the
number of nonzero rows. Here we go.

1. Set j =0and r = 0.

2. Increase j by 1. If 7 now equals n + 1, then stop.
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® N @

9.

. Examine the entries of A in column j located in rows r + 1 through m.

If all of these entries are zero, then go to Step 2.

Choose a row from rows r + 1 through m with a nonzero entry in column j.
Let ¢ denote the index for this row.

Increase r by 1.
Use the first row operation to swap rows ¢ and r.
Use the second row operation to convert the entry in row r and column 5 to a 1.

Use the third row operation with row r to convert every other entry of column j to
ZETO.

Go to Step 2.

The result of this procedure is that the matrix A is converted to a matrix in reduced row-
echelon form, which we will refer to as B. We need to now prove this claim by showing
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that the converted matrix has the requisite properties of Definition RREF [91]. First, the
matrix is only converted through row operations (Step 6, Step 7, Step 8), so A and B are
row-equivalent (Definition REM [86]).

It is a bit more work to be certain that B is in reduced row-echelon form. We claim
that as we begin Step 2, the first j columns of the matrix are in reduced row-echelon form
with r nonzero rows. Certainly this is true at the start when 7 = 0, since the matrix has no
columns and so vacuously meets the conditions of Definition RREF [91] with » = 0 nonzero
rOWS.

In Step 2 we increase 5 by 1 and begin to work with the next column. There are two
possible outcomes for Step 3. Suppose that every entry of column j in rows r 4+ 1 through
m is zero. Then with no changes we recognize that the first j columns of the matrix has its
first r rows still in reduced-row echelon form, with the final m — r rows still all zero.

Suppose instead that the entry in row ¢ of column j is nonzero. Notice that since r+1 <
1 < m, we know the first j — 1 entries of this row are all zero. Now, in Step 5 we increase
r by 1, and then embark on building a new nonzero row. In Step 6 we swap row r and row
7. In the first j columns, the first » — 1 rows remain in reduced row-echelon form after the
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swap. In Step 7 we multiply row r by a nonzero scalar, creating a 1 in the entry in column
7 of row 7, and not changing any other rows. This new leading 1 is the first nonzero entry in
its row, and is located to the right of all the leading 1’s in the preceding r — 1 rows. With
Step 8 we insure that every entry in the column with this new leading 1 is now zero, as
required for reduced row-echelon form. Also, rows r + 1 through m are now all zeros in the
first 7 columns, so we now only have one new nonzero row, consistent with our increase of r
by one. Furthermore, since the first 7 — 1 entries of row r are zero, the employment of the
third row operation does not destroy any of the necessary features of rows 1 through » — 1
and rows r + 1 through m, in columns 1 through j — 1.

So at this stage, the first j columns of the matrix are in reduced row-echelon form. When
Step 2 finally increases j to n + 1, then the procedure is completed and the full n columns
of the matrix are in reduced row-echelon form, with the value of r correctly recording the
number of nonzero rows. u

The procedure given in the proof of Theorem REMEF [95] can be more precisely described
using a pseudo-code version of a computer program, as follows:
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input m, n and A
r <0
for j <~ 1ton
t—1r+1
while ¢ <m and [A];; =0
11+ 1
if § £ m+ 1
r<r+1
swap rows ¢ and r of A (row op 1)
scale entry in row r, column j of A to a leading 1 (row op 2)
for k< 1tom, k#r
zero out entry in row k, column j of A (row op 3 using row r)
output r and A

Notice that as a practical matter the “and” used in the conditional statement of the while
statement should be of the “short-circuit” variety so that the array access that follows is not
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out-of-bounds.

So now we can put it all together. Begin with a system of linear equations (Definition
SLE [25]), and represent the system by its augmented matrix (Definition AM [82]). Use
row operations (Definition RO [85]) to convert this matrix into reduced row-echelon form
(Definition RREF [91]), using the procedure outlined in the proof of Theorem REMEF [95].
Theorem REMEF [95] also tells us we can always accomplish this, and that the result is
row-equivalent (Definition REM [86]) to the original augmented matrix. Since the matrix in
reduced-row echelon form has the same solution set, we can analyze the row-reduced version
instead of the original matrix, viewing it as the augmented matrix of a different system
of equations. The beauty of augmented matrices in reduced row-echelon form is that the
solution sets to their corresponding systems can be easily determined, as we will see in the
next few examples and in the next section.

We will see through the course that almost every interesting property of a matrix can
be discerned by looking at a row-equivalent matrix in reduced row-echelon form. For this
reason it is important to know that the matrix B guaranteed to exist by Theorem REMEF
[95] is also unique.
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Two proof techniques are applicable to the proof. First, head out and read two proof
techniques: Technique CD [2370] and Technique U [2373].

Theorem RREFU

Reduced Row-Echelon Form is Unique

Suppose that A is an m x n matrix and that B and C are m x n matrices that are row-
equivalent to A and in reduced row-echelon form. Then B = C. O

Proof We need to begin with no assumptions about any relationships between B and C,
other than they are both in reduced row-echelon form, and they are both row-equivalent to

A.

If B and C are both row-equivalent to A, then they are row-equivalent to each other.
Repeated row operations on a matrix combine the rows with each other using operations
that are linear, and are identical in each column. A key observation for this proof is that
each individual row of B is linearly related to the rows of C. This relationship is different
for each row of B, but once we fix a row, the relationship is the same across columns. More
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precisely, there are scalars d;,, 1 < i,k < m such that forany 1 <i<m, 1 <j <mn,

You should read this as saying that an entry of row i of B (in column j) is a linear function
of the entries of all the rows of C' that are also in column j, and the scalars (d;;) depend
on which row of B we are considering (the ¢ subscript on d;), but are the same for every
column (no dependence on j in d;;). This idea may be complicated now, but will feel more
familiar once we discuss “linear combinations” (Definition LCCV [318]) and moreso when we
discuss “row spaces” (Definition RSM [842]). For now, spend some time carefully working
Exercise RREF.M40 [135], which is designed to illustrate the origins of this expression. This
completes our exploitation of the row-equivalence of B and C'.

We now repeatedly exploit the fact that B and C are in reduced row-echelon form.
Recall that a pivot column is all zeros, except a single one. More carefully, if R is a matrix
in reduced row-echelon form, and d is the index of a pivot column, then [R], , = 1 precisely
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when k = ¢ and is otherwise zero. Notice also that any entry of R that is both below the
entry in row ¢ and to the left of column d, is also zero (with below and left understood to
include equality). In other words, look at examples of matrices in reduced row-echelon form
and choose a leading 1 (with a box around it). The rest of the column is also zeros, and the
lower left “quadrant” of the matrix that begins here is totally zeros.

Assuming no relationship about the form of B and C|, let B have r nonzero rows and
denote the pivot columns as D = {di, ds, d3, ..., d.}. For C let 7" denote the number
of nonzero rows and denote the pivot columns as D' = {d'y, d's, d's, ..., d',v} (Notation
RREFA [92]). There are four steps in the proof, and the first three are about showing that
B and C have the same number of pivot columns, in the same places. In other words, the
“primed” symbols are a necessary fiction.

First Step. Suppose that d; < d}. Then

1 = [Bl,,, Definition RREF [91]
= Z 61k‘ [C}k‘dl
k=1
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Z 51k(0) d1 < d/l
ke

1

0

The entries of C' are all zero since they are left and below of the leading 1 in row 1 and
column d} of C'. This is a contradiction, so we know that d; > d}. By an entirely similar
argument, reversing the roles of B and C, we could conclude that d; < d}. Together this
means that d; = d.

Second Step. Suppose that we have determined that dy = d, do = d}, ds = dj, ...,
dp = d;,. Let’s now show that d,,; = d,,,,. Working towards a contradiction, suppose that
dpy1 < djpy - For 1 <0 <p,

0=[B] Definition RREF [91]

p+1,de

= Z Op+1.k [C]kdg
k=1
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I
NE

p1k [C] kd,
k=1
Opt1,e [ gd/ + Z Opt1k [ kd; Property CACN [2333]
i
= Opr1e(1) + Y 0pr14(0) Definition RREF [91]
(=2,
= Op+1,8
Now,
1= [B]erLde Definition RREF [91]

= Z 6p+11k [C]k‘derl
k=1
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p m
= 001k [Cloa, + O i1k [Clig,,, Property AACN [2333]
k=1 k=p+1

- Z(O) [C]kdp+1 + Z Op+1.k [C]kdml

k=1 k=p+1

= Z Op+1.k [C]del

k=p+1

m
= > 5r1i(0) dpir < dy
k=p+1
=0
This contradiction shows that d,y; > d,;,. By an entirely similar argument, we could
conclude that d,; < d),,,, and therefore d, 1 = d,,, ;.
Third Step. Now we establish that » = r’. Suppose that " < r. By the arguments above,
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we know that dl:d/l’dQZd/% d3:dg’ "'adr’:d;"" FOI‘]-§€§T/<T7

0=[B]

rdy

= Z 51"]9 [C]kdg
k=1

k=r'+1
= Z 5rk [C]kdg + Z 5rk<0)
k=1 k=r'+1

Definition RREF [91]

Property AACN [2333]

Property AACN [2333]
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= Ork [C]kdg
k=1
= 0y [C]We + Z Ork [C’]kd2 Property CACN [2333]
=
= 0e(1) + > 6:1(0) Definition RREF [91]
k=1
k0

= Opy

Now examine the entries of row r of B,

m

[B]rj = Z 5rk [O]kg

k=1
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= Ork [C]k] + Z Orik [C]kj Property CACN [2333]
k=1 k=r'+1

= 5u[Cly+ Y 6x(0) Definition RREF [91]
k=1 k=r'+1

= Ork [C] kj
k=1

=> (0 [C],,
k=1

=0

So row r is a totally zero row, contradicting that this should be the bottommost nonzero
row of B. So r’ > r. By an entirely similar argument, reversing the roles of B and C', we
would conclude that ' < r and therefore » = 7/. Thus, combining the first three steps we
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can say that D = D’. In other words, B and C have the same pivot columns, in the same
locations.

Fourth Step. In this final step, we will not argue by contradiction. Our intent is to
determine the values of the ¢;;. Notice that we can use the values of the d; interchangeably
for B and C'. Here we go,

1= [Bl, Definition RREF [91]
- Z Oik [C]kdl
k=1
=0 [Clig, + > 0 [Cliy, Property CACN [2333]
=
= 0i(1) + Y 6 (0) Definition RREF [91]
k
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= 0i;
and for ¢ #£ i
O - [B]idg
= Z Oik [C]kdg
k=1
= 0y [C]Zd[ + Z 0 [O]kdg
(=3
= 0ie(1) + ) 0i(0)

k=1
kAL

— Oy

Definition RREF [91]

Property CACN [2333]

Definition RREF [91]

Finally, having determined the values of the ¢;;, we can show that B = C. For 1 <1i <m,
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1<j<n,
[B]z] - Z 51k [C]k’]
k=1
= 0y [C]ij + Z Oik [C’]kj Property CACN [2333]
(=
= (1) [C],; + Y _(0)[C],
k=1
ki
= [C]ij
So B and C' have equal values in every entry, and so are the same matrix. |

We will now run through some examples of using these definitions and theorems to solve
some systems of equations. From now on, when we have a matrix in reduced row-echelon
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form, we will mark the leading 1’s with a small box. In your work, you can box ’em, circle
‘em or write ’em in a different color — just identify ’em somehow. This device will prove
very useful later and is a very good habit to start developing right now.

Example SAB
Solutions for Archetype B
Let’s find the solutions to the following system of equations,

—7SL'1 — 61’2 — 121’3 =-33
Ba1 + bay + Taxg = 24
Ty + 4133 =35

First, form the augmented matrix,

-7 —6 —12 =33
5 5 7 24
1 0 4 3
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and work to reduced row-echelon form, first with j =1,

Ry (—)Rg
—

TR1+R3

Now, with j = 2,

(1 0 4 5

5 5 7 24 | Z2Matfe,
-7 —6 —-12 -33

(1] o 4 5

0 5 —13 -1

0 -6 16 2

0 4

_ _ 6R2+R3

0 1 =5 F| —=10
0 —6 16 2 0

1
0
-7

OHO

0
)
—6

W

O1Il\301|,L
w

4
—13
—12

|
c;tl»uc;‘lH ot

—-33
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And finally, with 7 = 3,

ny 0 %3 5] srn, 1] 0 4 5
Bl [ e 2 0 [ o5
|0 0 1 2 0O 0 1 2
1] o 0o -3
—4R3+R1 O 0 5
[0 0 2
This is now the augmented matrix of a very simple system of equations, namely z; = —3,

T9 = b, x3 = 2, which has an obvious solution. Furthermore, we can see that this is the only
solution to this system, so we have determined the entire solution set,

S = )
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You might compare this example with the procedure we used in Example US [41]. X

Archetypes A and B are meant to contrast each other in many respects. So let’s solve
Archetype A now.

Example SAA
Solutions for Archetype A
Let’s find the solutions to the following system of equations,

ZL’1—ZIJ2—|—2£L‘3:1
21’1+ZL’2+1’3:8

x1+x2:5

First, form the augmented matrix,

— N
—
O =N
Ut 00
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and work to reduced row-echelon form, first with j =1,

—2R1+R>
—_—

Now, with j = 2,

—2R2+R3
=T,

1 -1 2 1
0 3 —3 ¢| Xt 1
1 1 0 5 0

T prav
0 2 -2 4 0
1] o 1 3
0 [1] -1 2
0 0 0 0

-1 2 1
3 =3 6
2 =24
0o 1 3
1 -1 2
2 =2 4

The system of equations represented by this augmented matrix needs to be considered a bit
differently than that for Archetype B. First, the last row of the matrix is the equation 0 = 0,
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which is always true, so it imposes no restrictions on our possible solutions and therefore we
can safely ignore it as we analyze the other two equations. These equations are,

$1+$3:3

:1:2—.7:3:2.

While this system is fairly easy to solve, it also appears to have a multitude of solutions. For
example, choose z3 = 1 and see that then x; = 2 and 25 = 3 will together form a solution.
Or choose x3 = 0, and then discover that ;1 = 3 and x5 = 2 lead to a solution. Try it
yourself: pick any value of x5 you please, and figure out what x; and x5 should be to make
the first and second equations (respectively) true. We'll wait while you do that. Because
of this behavior, we say that x3 is a “free” or “independent” variable. But why do we vary
x3 and not some other variable? For now, notice that the third column of the augmented
matrix does not have any leading 1’s in its column. With this idea, we can rearrange the
two equations, solving each for the variable that corresponds to the leading 1 in that row.

1’1:3—1’3
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To = 2 + T3
To write the set of solution vectors in set notation, we have

3—1'3
S = 2+ x5 .2336@
T3

We’ll learn more in the next section about systems with infinitely many solutions and how
to express their solution sets. Right now, you might look back at Example IS [44]. X

Example SAE
Solutions for Archetype E
Let’s find the solutions to the following system of equations,

201 + 19+ Tz — Toy = 2
—3131 —|—4.T2 — 5ZE3 — 6134 =3
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120

$1+$2+4ZE3—5ZL‘4 =2
First, form the augmented matrix,
2 1 7 =7 2

-3 4 -5 -6 3
1 1 4 =5 2

and work to reduced row-echelon form, first with j =1,

1 1 4 -5 2 114 -5 2

Fofs | 304 5 —6 3| 2 g 77 21 9

2 1 7 -7 2 21 7 -7 2
_2R1+R314—52
2oy 7 7 21 9
0 -1 -1 3 -2
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Now, with j = 2,

1] 1 4 -5 2 1 4 -5 2
Lol -1 -1 03 -2 = o 11 -3 2
0 7 7 —21 9 0 77 —21 9
1] 03 -2 0 0 —2 0]
et g 11 -3 2| T 1 -3 2
0 77 =21 9 0 0 0 —5]

And finally, with j = 4,

e [ 03 =2 -2 0
— 200 [1] 1 -3 2o 2B 1o 111 -3 0
0 0 0 0 0 0 [1]

Let’s analyze the equations in the system represented by this augmented matrix. The third
equation will read 0 = 1. This is patently false, all the time. No choice of values for our

—_ o O
@) —
(@] (@)

w
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variables will ever make it true. We're done. Since we cannot even make the last equation
true, we have no hope of making all of the equations simultaneously true. So this system
has no solutions, and its solution set is the empty set, ) = { } (Definition ES [2342]).
Notice that we could have reached this conclusion sooner. After performing the row
operation —7Ry + R3, we can see that the third equation reads 0 = —5, a false statement.
Since the system represented by this matrix has no solutions, none of the systems represented
has any solutions. However, for this example, we have chosen to bring the matrix fully to
reduced row-echelon form for the practice. X

These three examples (Example SAB [113], Example SAA [116], Example SAE [119])
illustrate the full range of possibilities for a system of linear equations — no solutions, one
solution, or infinitely many solutions. In the next section we’ll examine these three scenarios
more closely.

Definition RR
Row-Reducing
To row-reduce the matrix A means to apply row operations to A and arrive at a row-
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equivalent matrix B in reduced row-echelon form. A

So the term row-reduce is used as a verb. Theorem REMEF [95] tells us that this
process will always be successful and Theorem RREFU [101] tells us that the result will
be unambiguous. Typically, the analysis of A will proceed by analyzing B and applying
theorems whose hypotheses include the row-equivalence of A and B.

After some practice by hand, you will want to use your favorite computing device to do the
computations required to bring a matrix to reduced row-echelon form (Exercise RREF.C30
[133]). See:  Computation RR.MMA [2288]  Computation RR.TI86 [2306] Computa-
tion RR.TI83 [2310] Computation RR.SAGE [2317]
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Subsection READ
Reading Questions

1. Is the matrix below in reduced row-echelon form? Why or why not?

1 8
0 0
0 1

o O Ot
o = O
S NN D

2. Use row operations to convert the matrix below to reduced row-echelon form and report
the final matrix.
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3. Find all the solutions to the system below by using an augmented matrix and row oper-
ations. Report your final matrix in reduced row-echelon form and the set of solutions.

2$1+3SB2—£E3:O
T+ 219 + 13 =3
$1+3l’2+3$3:7
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Subsection EXC
Exercises

C05 Each archetype below is a system of equations. Form the augmented matrix of the
system of equations, convert the matrix to reduced row-echelon form by using equation
operations and then describe the solution set of the original system of equations.
Archetype A [2395]

Archetype B [2409]

Archetype C [2424]

Archetype D [2436]

Archetype E [2448]
Archetype F [2460]
Archetype G [2477]
Archetype H [2489]
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Archetype 1 [2502]
Archetype J [2515]
Contributed by Robert Beezer

For problems C10-C19, find all solutions to the system of linear equations. Use your
favorite computing device to row-reduce the augmented matrices for the systems, and write
the solutions as a set, using correct set notation.

C10

201 — 3x0 + 13+ Txy = 14
221 + 8x9 — 43 + Sy = —1
1+ 3xy — 323 =4
—5x1 + 2x9 + 323 + 44 = —19

Contributed by Robert Beezer — Solution [139]
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C11

Contributed by Robert Beezer
C12

Contributed by Robert Beezer

2331 + 4562 + 5373 + 71’4 =

3I1+4JI2—I3+2$4:6
$1—2$2+3$3+l’4:2
101’2 — 10.%’3 — Xy = 1

Solution [140]

—26

T1+ 200+ 13 — w4 = —4

—2$1 — 4.7)2 + 3+ 111’4 =-10

Solution [141]
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C13

xr, + 2%2 + 8I3 - 71’4 =-2
3r1 + 225 4+ 1223 — S24 = 6
—T1 + X9 + X3 — 51‘4 =-10

Contributed by Robert Beezer — Solution [142]
C14

2x1+x2+7x3—2x4:4
31‘1 —21’2+11£L‘4: 13
$1+l‘2+5$3—3l’4:1

Contributed by Robert Beezer — Solution [143]
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C15

2.’E1+3ZL’2—CL’3—9£L’4 = —16
l’1+2£€2+l’3:0
—x1 + 2x9 + 3x3 + 44 = 8

Contributed by Robert Beezer — Solution [144]
C16

221 + 3x9 + 1923 — 4y = 2
xr, + 21’2 -+ 121’3 - 31’4 =1
-1 + 21’2 + 8$3 - 5LL’4 =1

Contributed by Robert Beezer — Solution [146]
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C17

—x1+ dxy = —8
—2x1 + dxo + b3+ 224 =9
—3r1 — 2o+ 3x3+14=3
Tx1 4+ 6x9 + dxs + x4 = 30

Contributed by Robert Beezer — Solution [147]
C18

r1+ 209 —4da3 — x4 = 32
1‘1+3x2—7x3—x5:33
131—|—2$3—21L'4—|—3£L‘5:22
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Contributed by Robert Beezer — Solution [148]

C19
2‘%‘1 + 29 = 6
—X1 — Tg = -2
31’1 + 41’2 =4
31’1 + 5I2 =2

Contributed by Robert Beezer — Solution [149]

For problems C30-C33, row-reduce the matrix without the aid of a calculator, indicating
the row operations you are using at each step using the notation of Definition RO [85].
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C30
2 1 5 10
1 -3 -1 -2
4 =2 6 12

Contributed by Robert Beezer — Solution [150]

C31
1 2 -4
-3 -1 -3
-2 1 =7

Contributed by Robert Beezer — Solution [151]
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C32

1 1 1
-4 -3 =2
3 2 1

Contributed by Robert Beezer — Solution [152]

C33

1 2 -1 -1
2 4 -1 4
-1 -2 3 5

Contributed by Robert Beezer — Solution [153]
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M40 Consider the two 3 x 4 matrices below

1 3 -2 2 12 1 2
B=|-1 -2 -1 -1 cC=|(1 1 4 0
-1 -5 8 =3 -1 -1 —4 1

(a) Row-reduce each matrix and determine that the reduced row-echelon forms of B
and C' are identical. From this argue that B and C' are row-equivalent.

(b) In the proof of Theorem RREFU [101], we begin by arguing that entries of row-
equivalent matrices are related by way of certain scalars and sums. In this example, we
would write that entries of B from row ¢ that are in column j are linearly related to the
entries of C' in column j from all three rows

[B]ij = i1 [C]U + i [0]2]' + 033 [C]Sj 1<j<4

For each 1 <7 < 3 find the corresponding three scalars in this relationship. So your answer
will be nine scalars, determined three at a time.
Contributed by Robert Beezer — Solution [154]
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M45 You keep a number of lizards, mice and peacocks as pets. There are a total of 108
legs and 30 tails in your menagerie. You have twice as many mice as lizards. How many of
each creature do you have?

Contributed by Chris Black — Solution [156]

M50 A parking lot has 66 vehicles (cars, trucks, motorcycles and bicycles) in it. There
are four times as many cars as trucks. The total number of tires (4 per car or truck, 2 per
motorcycle or bicycle) is 252. How many cars are there? How many bicycles?

Contributed by Robert Beezer — Solution [157]

T10 Prove that each of the three row operations (Definition RO [85]) is reversible. More
precisely, if the matrix B is obtained from A by application of a single row operation, show
that there is a single row operation that will transform B back into A.

Contributed by Robert Beezer — Solution [158]

T11 Suppose that A, B and C' are m X n matrices. Use the definition of row-equivalence
(Definition REM [86]) to prove the following three facts.

Version 2.30



Subsection RREF.EXC Exercises 137

1. A is row-equivalent to A.
2. If A is row-equivalent to B, then B is row-equivalent to A.

3. If A is row-equivalent to B, and B is row-equivalent to C', then A is row-equivalent to
C.

A relationship that satisfies these three properties is known as an equivalence relation,
an important idea in the study of various algebras. This is a formal way of saying that
a relationship behaves like equality, without requiring the relationship to be as strict as
equality itself. We'll see it again in Theorem SER [1501].

Contributed by Robert Beezer

T12 Suppose that B is an m x n matrix in reduced row-echelon form. Build a new, likely
smaller, k£ x ¢ matrix C as follows. Keep any collection of k adjacent rows, k < m. From
these rows, keep columns 1 through ¢, ¢ < n. Prove that C' is in reduced row-echelon form.
Contributed by Robert Beezer
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T13 Generalize Exercise RREF.T12 [137] by just keeping any k rows, and not requiring
the rows to be adjacent. Prove that any such matrix C' is in reduced row-echelon form.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer — Statement [127]
The augmented matrix row-reduces to
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This augmented matrix represents the linear system z; = 1, xo = =3, 23 = —4, 4 = 1,
which clearly has only one possible solution. We can write this solution set then as

1
-3
—4

1

S:

C11 Contributed by Robert Beezer — Statement [128]
The augmented matrix row-reduces to

0 1 4/5 0
0 -1 —1/10 0
0 0 0 0

Row 3 represents the equation 0 = 1, which is patently false, so the original system has no
solutions. We can express the solution set as the empty set, ) = {}.
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C12 Contributed by Robert Beezer — Statement [128]
The augmented matrix row-reduces to

1] 2 0 —4 2
0 01 3 -6
000 0 0

In the spirit of Example SAA [116], we can express the infinitely many solutions of this
system compactly with set notation. The key is to express certain variables in terms of
others. More specifically, each pivot column number is the index of a variable that can be
written in terms of the variables whose indices are non-pivot columns. Or saying the same
thing: for each ¢ in D, we can find an expression for z; in terms of the variables without
their index in D. Here D = {1, 3}, so

I1:2—21L‘2+4£L'4

T3 = —6 - 3.T4
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As a set, we write the solutions precisely as

2 — 2:132 + 4374
o)
—6 — 324

Xy

Ty, ¢y € C

C13 Contributed by Robert Beezer — Statement [129]
The augmented matrix of the system of equations is

1 2 8 =7 =2
3 2 12 -5 6
-11 1 -5 —-10

which row-reduces to
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Row 3 represents the equation 0 = 1, which is patently false, so the original system has no
solutions. We can express the solution set as the empty set, ) = {}.

Statement [129]
The augmented matrix of the system of equations is

C14 Contributed by Robert Beezer

2
3
1

which row-reduces to

0
0

1
-2
1

OHO

7
0
)

2
3
0

-2 4
11 13
-3 1
1 3
-4 =2
0 0

In the spirit of Example SAA [116], we can express the infinitely many solutions of this
system compactly with set notation. The key is to express certain variables in terms of
others. More specifically, each pivot column number is the index of a variable that can be
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written in terms of the variables whose indices are non-pivot columns. Or saying the same
thing: for each ¢ in D, we can find an expression for z; in terms of the variables without their
index in D. Here D = {1, 2}, so rearranging the equations represented by the two nonzero
rows to gain expressions for the variables x; and x yields the solution set,

3—2x3 — 14
—2 — 3563 —f- 4ZE4
T3
Ty

S = LU3,274€(C

C15 Contributed by Robert Beezer — Statement [130]
The augmented matrix of the system of equations is

2 3 -1 -9 -16
1 2 1 O 0
-1 2 3 4 8
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which row-reduces to

1] o o 2 3
0 [1] 0o -3 =5
o o [1] 4 7

In the spirit of Example SAA [116], we can express the infinitely many solutions of this
system compactly with set notation. The key is to express certain variables in terms of
others. More specifically, each pivot column number is the index of a variable that can be
written in terms of the variables whose indices are non-pivot columns. Or saying the same
thing: for each ¢ in D, we can find an expression for z; in terms of the variables without
their index in D. Here D = {1, 2, 3}, so rearranging the equations represented by the three
nonzero rows to gain expressions for the variables xq, x9 and x3 yields the solution set,

3 — 214

-5+ 31‘4

7—day ||
Ty

S = e C
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C16 Contributed by Robert Beezer — Statement [130]
The augmented matrix of the system of equations is

2 319 -4
1 2 12 -3
-1 2 8 =51

=N

which row-reduces to

1] o 2 1 0
0 [1] 5 =2 0
0 0 0 0 [1]

Row 3 represents the equation 0 = 1, which is patently false, so the original system has no
solutions. We can express the solution set as the empty set, () = {}.

C17 Contributed by Robert Beezer — Statement [131]
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We row-reduce the augmented matrix of the system of equations,

-1 5 0 0 -8 0 0 0 3
-2 5 5 2 9| mrer, |0 0 0 -1
-3 -1 31 3 0 0 0 2
7 6 5 1 30 0 0 0 5
This augmented matrix represents the linear system x; = 3, 9 = —1, x3 = 2, x4 = 5, which

clearly has only one possible solution. We can write this solution set then as

C18 Contributed by Robert Beezer — Statement [131]
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We row-reduce the augmented matrix of the system of equations,

1 2 -4 -1 0 32 1l 0 2 0 5 6
13 -7 0 -1 332510 [1] -3 0 -2 9
10 2 -2 3 22 0o 0 o0 [1] 1 -8

In the spirit of Example SAA [116], we can express the infinitely many solutions of this
system compactly with set notation. The key is to express certain variables in terms of
others. More specifically, each pivot column number is the index of a variable that can be
written in terms of the variables whose indices are non-pivot columns. Or saying the same
thing: for each ¢ in D, we can find an expression for x; in terms of the variables without
their index in D. Here D = {1, 2, 4}, so

r1+2x3+5r5 =6 — 17 =06—2x3— dxs
To—3r3—2x5=9 — x9=9+ 33+ 225

.T4+l’5:—8 — .734:—8—1’5
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As a set, we write the solutions precisely as

6 — 2.1]3 - 5[)’25
9+ 33 + 225
S = X3 T3, Ty € C
—8 — Ty
Ts

C19 Contributed by Robert Beezer — Statement [132]
We form the augmented matrix of the system,

2 1 6
-1 -1 -2
3 4 4

3 5 2
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which row-reduces to

(1] 0o 4
0 [1] -2
0 0 0
0 0 0

This augmented matrix represents the linear system z; = 4, x5 = —2, 0 = 0, 0 = 0, which
clearly has only one possible solution. We can write this solution set then as

= {4))

C30 Contributed by Robert Beezer  Statement [133]

2 1 5 10 1 -3 —1 -2
1 —3 —1 —2f B2t 1 5 10
4 -2 6 12 4 -2 6 12
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1 -3 —1 -2 1 -3 —1 -2

RN R R AR /) RN s S R /1

4 —2 6 12] 0 10 10 20

o [U-3 -1 =2 1 0 2 4

T2000 01 01 2| g 11 2

0 10 10 20] 0 10 10 20
omrn, [ 024
*—2+3>012
0 0 00

C31 Contributed by Robert Beezer  Statement [133]

1 2 —4 1 2 —4
3 —] 3|ty 5 15

-2 1 =7 -2 1 -7
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12 —47 ., 1 2 —4
utfs g5 15 2% 10 1 —3
0 5 —15] 05 —15
(10 2] 1] o 2
ety g g | 2R ) (1] -3
0 5 —15] 0 0 0

C32 Contributed by Robert Beezer — Statement [134]
Following the algorithm of Theorem REMEF [95], and working to create pivot columns from
left to right, we have

1 1 1 111 11
—4 -3 —g| MRty g of PR G g
3 2 1 321 0 —1 —2
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1] 0o -1 1] 0o -1
—1R2+R, 0 1 9 1R2+R3 0 9
0 —1 -2 0O 0 O

C33 Contributed by Robert Beezer — Statement [134]
Following the algorithm of Theorem REMEF [95], and working to create pivot columns from
left to right, we have

1 2 -1 -1 1 2 -1 -1
9 4 -1 4|2l 0 1 6
-1 -2 3 5 -1 -2 3 5
1] 2 -1 -1 (1] 2 0 5

Hths 10 0 1 6 | XL TG 001 6
0 0 2 4 0 0 2 4
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, (120 57 .. [2 05

2ty 0 [1] 6| —> |0 0 [1] 6
0 0 0 -8 00 0 1
(1] 2 0 5 1] 2 0 o0

—6R3+Rso O 0 O —5R3+R; O O 0
0 0 0 1 0 0 0 [1]

M40 Contributed by Robert Beezer — Statement [135]
(a) Let R be the common reduced row-echelon form of B and C. A sequence of row
operations converts B to R and a second sequence of row operations converts C' to R. If
we ‘reverse” the second sequence’s order, and reverse each individual row operation (see
Exercise RREF.T10 [136]) then we can begin with B, convert to R with the first sequence,
and then convert to C' with the reversed sequence. Satisfying Definition REM [86] we can
say B and C' are row-equivalent matrices.

(b) We will work this carefully for the first row of B and just give the solution for the
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next two rows. For row 1 of B take ¢ = 1 and we have
[B]lj = 0n [C]lj + 012 [C]Qj + 013 [C]Sj 1<j<4

If we substitute the four values for j we arrive at four linear equations in the three unknowns
5117 5127 6137

=1 [Bly=0l[C];; +12[Cly +013[Cly;, = 1=10u(1) +dia(1) + d13(—1)
(=2 [Bly=0[Clys+012[Clyy +013[Cly, = 3=1011(2) + d1a(1) + d13(—1)
G =3) [Bliz=0ul[Cli3+0012[Clyy +013[Clyy =  —2=1011(1) + d12(4) + d13(—4)
(U =4) [Bliy=0u(Clyy+012(Cly +03[Cly = 2=01(2) +612(0) + d13(1)

We form the augmented matrix of this system and row-reduce to find the solutions,

11 -1 1
21 ~1 3| meer, |0
1 4 —4 -2 0
2.0 1 2 0

0 2
0 -3

(1] -2

0
0 0 0

Ho
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So the unique solution is d;; = 2, §12 = —3, d13 = —2. Entirely similar work will lead you to
g1 = —1 092 =1 093 =1

and
031 = —4 032 = 8 033 =5

M45  Contributed by Chris Black  Statement [136]
Let [, m, p denote the number of lizards, mice and peacocks. Then the statements from the
problem yield the equations:

4l 4+ 4m + 2p = 108
l+m+p=30
20—m =20
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We form the augmented matrix for this system and row-reduce

4 4 2 108 1] o 0 8
11 1 30| 25 1o [1] o 16
2 -1.0 0 0 0 [1] 6

From the row-reduced matrix, we see that we have an equivalent system [ = 8, m = 16, and
p = 6, which means that you have 8 lizards, 16 mice and 6 peacocks.

M50 Contributed by Robert Beezer — Statement [136]
Let ¢, t, m, b denote the number of cars, trucks, motorcycles, and bicycles. Then the state-
ments from the problem yield the equations:

c+t+m-+b=066
c—4t =0
4e + 4t + 2m + 2b = 252
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We form the augmented matrix for this system and row-reduce

1 1 11 66 1] 0 0 0 48
1 =400 0|25 10 [1] 0o 0 12
4 4 2 2 252 0 0 [1] 1 6

The first row of the matrix represents the equation ¢ = 48, so there are 48 cars. The second
row of the matrix represents the equation t = 12, so there are 12 trucks. The third row of
the matrix represents the equation m + b = 6 so there are anywhere from 0 to 6 bicycles.
We can also say that b is a free variable, but the context of the problem limits it to 7 integer
values since you cannot have a negative number of motorcycles.

T10 Contributed by Robert Beezer — Statement [136]

If we can reverse each row operation individually, then we can reverse a sequence of row
operations. The operations that reverse each operation are listed below, using our shorthand
notation. Notice how requiring the scalar o to be non-zero makes the second operation
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reversible.
R, & Rj R, & Rj
Ri7 0 _R’L
aR;, o # >
OéRi + Rj — CKRZ' -+ Rj
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Section TSS
Types of Solution Sets

We will now be more careful about analyzing the reduced row-echelon form derived from
the augmented matrix of a system of linear equations. In particular, we will see how to
systematically handle the situation when we have infinitely many solutions to a system,
and we will prove that every system of linear equations has either zero, one or infinitely
many solutions. With these tools, we will be able to solve any system by a well-described
method.
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Subsection CS
Consistent Systems

The computer scientist Donald Knuth said, “Science is what we understand well enough to
explain to a computer. Art is everything else.” In this section we’ll remove solving systems
of equations from the realm of art, and into the realm of science. We begin with a definition.

Definition CS

Consistent System

A system of linear equations is consistent if it has at least one solution. Otherwise, the
system is called inconsistent. A

We will want to first recognize when a system is inconsistent or consistent, and in the
case of consistent systems we will be able to further refine the types of solutions possible.
We will do this by analyzing the reduced row-echelon form of a matrix, using the value of r,
and the sets of column indices, D and F, first defined back in Definition RREF [91].
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Use of the notation for the elements of D and F' can be a bit confusing, since we have
subscripted variables that are in turn equal to integers used to index the matrix. However,
many questions about matrices and systems of equations can be answered once we know 7,
D and F'. The choice of the letters D and F refer to our upcoming definition of dependent
and free variables (Definition IDV [169]). An example will help us begin to get comfortable
with this aspect of reduced row-echelon form.

Example RREFN
Reduced row-echelon form notation
For the 5 x 9 matrix

15 0 0 28 0 5 —1
0 0f[1] 0 470 2 0
B=10 0 0 [1] 39 0 3 —6
00 0 0 0071 4 2
000 00000 0

Version 2.30



Subsection TSS.CS Consistent Systems 163

in reduced row-echelon form we have

r=4
dlzl d2:3 d3:4 d4:7
fi=2 fa=5 f3=26 fi=28 fs5=9

Notice that the sets

D= {dh d27 d37 d4} = {17 37 47 7} F= {fh f27 fS» f4a fS} = {27 57 6’ 87 9}

have nothing in common and together account for all of the columns of B (we say it is a
partition of the set of column indices). X

The number r is the single most important piece of information we can get from the
reduced row-echelon form of a matrix. It is defined as the number of nonzero rows, but since
each nonzero row has a leading 1, it is also the number of leading 1’s present. For each
leading 1, we have a pivot column, so r is also the number of pivot columns. Repeating
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ourselves, r is the number of nonzero rows, the number of leading 1’s and the number of
pivot columns. Across different situations, each of these interpretations of the meaning of r
will be useful.

Before proving some theorems about the possibilities for solution sets to systems of
equations, let’s analyze one particular system with an infinite solution set very carefully as
an example. We’ll use this technique frequently, and shortly we’ll refine it slightly.

Archetypes I and J are both fairly large for doing computations by hand (though not im-
possibly large). Their properties are very similar, so we will frequently analyze the situation
in Archetype I, and leave you the joy of analyzing Archetype J yourself. So work through
Archetype I with the text, by hand and/or with a computer, and then tackle Archetype J
yourself (and check your results with those listed). Notice too that the archetypes describing
systems of equations each lists the values of r, D and F'. Here we go. ..

Example ISSI
Describing infinite solution sets, Archetype I
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Archetype T [2502] is the system of m = 4 equations in n = 7 variables.

1 +4x9 — x4+ T2 — 927, = 3

211 + 8x9 — x3 4+ 314 + 925 — 1326 + 727 =9
203 — 3x4 — 4x5 + 1206 — 8x7 =1

—x1 — 429 + 223 + 42y + 85 — 3lag + 3727, =4

This system has a 4 x 8 augmented matrix that is row-equivalent to the following matrix
(check this!), and which is in reduced row-echelon form (the existence of this matrix is
guaranteed by Theorem REMEF [95] and its uniqueness is guaranteed by Theorem RREFU
[101)),

1] 4 0 02 1 -3 4
0 0f1] 01 -3 5 2
00 0 [1]2 -6 6 1
000 00 O0 0 O
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So we find that » = 3 and

D= {db dg, d3} - {17 37 4} F= {f17 f27 f37 f4a f5} = {27 57 67 77 8}

Let ¢ denote one of the r = 3 non-zero rows, and then we see that we can solve the cor-
responding equation represented by this row for the variable x,; and write it as a linear
function of the variables zy,, xy,, s, 2y, (notice that f; = 8 does not reference a variable).
We'll do this now, but you can already see how the subscripts upon subscripts takes some
getting used to.

(1=1) rg, = x1 =4 — dxe — 205 — 16 + 327
(222) :vdz,:x3:2—x5+3x6—5x7
(1=23) Tgy = T4 = 1 — 225 + 626 — 627

Each element of the set F' = {fi, fa, f3, fa, f5} = {2, 5, 6, 7, 8} is the index of a variable,
except for f5 = 8. We refer to xy = 22, vy, = 75, x5, = x6 and zy, = x7 as “free”
(or “independent”) variables since they are allowed to assume any possible combination of

Version 2.30



Subsection TSS.CS Consistent Systems 167

values that we can imagine and we can continue on to build a solution to the system by
solving individual equations for the values of the other (“dependent”) variables.

Each element of the set D = {dj, dy, d3} = {1, 3, 4} is the index of a variable. We
refer to the variables x4, = 21, x4, = 73 and x4, = x4 as “dependent” variables since they
depend on the independent variables. More precisely, for each possible choice of values for
the independent variables we get exactly one set of values for the dependent variables that
combine to form a solution of the system.

To express the solutions as a set, we write

( _4—4513'2 — 2335 —513'6—|—3.I'7_

T2
2—JZ5+3$6—5[E7
1 —2x5+ 6z — 627 Zo, T, Tg, 7 € C

Ts

Te

T
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The condition that xs, x5, x4, 7 € C is how we specify that the variables xs, x5, x4, 7 are
“free” to assume any possible values.

This systematic approach to solving a system of equations will allow us to create a precise
description of the solution set for any consistent system once we have found the reduced row-
echelon form of the augmented matrix. It will work just as well when the set of free variables
is empty and we get just a single solution. And we could program a computer to do it! Now
have a whack at Archetype J (Exercise TSS.T10 [195]), mimicking the discussion in this
example. We'll still be here when you get back. X

Using the reduced row-echelon form of the augmented matrix of a system of equations
to determine the nature of the solution set of the system is a very key idea. So let’s look at
one more example like the last one. But first a definition, and then the example. We mix
our metaphors a bit when we call variables free versus dependent. Maybe we should call
dependent variables “enslaved”?

Definition IDV
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Independent and Dependent Variables

Suppose A is the augmented matrix of a consistent system of linear equations and B is a
row-equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B
that contains the leading 1 for some row (i.e. column j is a pivot column). Then the variable
x; is dependent. A variable that is not dependent is called independent or free. A

If you studied this definition carefully, you might wonder what to do if the system has n
variables and column n + 1 is a pivot column? We will see shortly, by Theorem RCLS [172],
that this never happens for a consistent system.

Example FDV
Free and dependent variables
Consider the system of five equations in five variables,

T —To—2x3+ x4+ 115 =13
$1—l‘2+$3+l‘4+5$5:16
21’1 —2$2+$4+10[L’5 =21
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21‘1 — 212 — T3+ 31‘4 + 2OZE5 =38
2;61 —2.1’2+$C3+.T4+8375 = 22

whose augmented matrix row-reduces to

1] -1 0 0 3 6
0 0 [1] 0 -2 1
0 0 0 [1] 4 9
00 0 0 0 0
00 0 0 0 0

There are leading 1’s in columns 1, 3 and 4, so D = {1, 3, 4}. From this we know that the
variables 1, 3 and x4 will be dependent variables, and each of the » = 3 nonzero rows of
the row-reduced matrix will yield an expression for one of these three variables. The set
F is all the remaining column indices, F' = {2, 5, 6}. That 6 € F refers to the column
originating from the vector of constants, but the remaining indices in F' will correspond to
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free variables, so x5 and w5 (the remaining variables) are our free variables. The resulting
three equations that describe our solution set are then,

(g, = x1) 1 =6+ 19 — 315
(de = ZE3) 3 =14 2z5
('rds = f,l?4) Ty = 9 — 4.’1}5

Make sure you understand where these three equations came from, and notice how the
location of the leading 1’s determined the variables on the left-hand side of each equation.
We can compactly describe the solution set as,

6+I2 —35(]5
Hop)
S = 1+ 2z5 To, x5 € C
9 — 4xs
Ts
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Notice how we express the freedom for x5 and x5: x9, x5 € C. X

Sets are an important part of algebra, and we've seen a few already. Being comfortable
with sets is important for understanding and writing proofs. If you haven’t already, pay a
visit now to Section SET [2340].

We can now use the values of m, n, r, and the independent and dependent variables to
categorize the solution sets for linear systems through a sequence of theorems. Through the
following sequence of proofs, you will want to consult three proof techniques. See Technique
E [2364].  See Technique N [2366].  See Technique CP [2368].

First we have an important theorem that explores the distinction between consistent and
inconsistent linear systems.

Theorem RCLS

Recognizing Consistency of a Linear System

Suppose A is the augmented matrix of a system of linear equations with n variables. Suppose
also that B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows.
Then the system of equations is inconsistent if and only if the leading 1 of row r is located
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in column n + 1 of B. O

Proof (<) The first half of the proof begins with the assumption that the leading 1 of row
r is located in column n+1 of B. Then row r of B begins with n consecutive zeros, finishing
with the leading 1. This is a representation of the equation 0 = 1, which is false. Since this
equation is false for any collection of values we might choose for the variables, there are no
solutions for the system of equations, and it is inconsistent.

(=) For the second half of the proof, we wish to show that if we assume the system is
inconsistent, then the final leading 1 is located in the last column. But instead of proving this
directly, we’ll form the logically equivalent statement that is the contrapositive, and prove
that instead (see Technique CP [2368]). Turning the implication around, and negating each
portion, we arrive at the logically equivalent statement: If the leading 1 of row r is not in
column n + 1, then the system of equations is consistent.

If the leading 1 for row r is located somewhere in columns 1 through n, then every
preceding row’s leading 1 is also located in columns 1 through n. In other words, since the
last leading 1 is not in the last column, no leading 1 for any row is in the last column, due
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to the echelon layout of the leading 1’s (Definition RREF [91]). We will now construct a
solution to the system by setting each dependent variable to the entry of the final column
for the row with the corresponding leading 1, and setting each free variable to zero. That
sentence is pretty vague, so let’s be more precise. Using our notation for the sets D and F
from the reduced row-echelon form (Notation RREFA [92]):

:[B]i,n+17 1<i<r ry, =0, 1<i<n-—r

These values for the variables make the equations represented by the first r rows of B all true
(convince yourself of this). Rows numbered greater than r (if any) are all zero rows, hence
represent the equation 0 = 0 and are also all true. We have now identified one solution to
the system represented by B, and hence a solution to the system represented by A (Theorem
REMES [88]). So we can say the system is consistent (Definition CS [161]). ]

The beauty of this theorem being an equivalence is that we can unequivocally test to
see if a system is consistent or inconsistent by looking at just a single entry of the reduced
row-echelon form matrix. We could program a computer to do it!
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Notice that for a consistent system the row-reduced augmented matrix has n +1 € F,
so the largest element of F' does not refer to a variable. Also, for an inconsistent system,
n+1 € D, and it then does not make much sense to discuss whether or not variables are free
or dependent since there is no solution. Take a look back at Definition IDV [169] and see
why we did not need to consider the possibility of referencing x,,,1 as a dependent variable.

With the characterization of Theorem RCLS [172], we can explore the relationships be-
tween r and n in light of the consistency of a system of equations. First, a situation where
we can quickly conclude the inconsistency of a system.

Theorem ISRN

Inconsistent Systems, » and n

Suppose A is the augmented matrix of a system of linear equations in n variables. Suppose
also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not
completely zeros. If r = n + 1, then the system of equations is inconsistent. 0

Proof Ifr=mn+1, then D = {1, 2,3, ..., n,n+ 1} and every column of B contains a
leading 1 and is a pivot column. In particular, the entry of column n 4 1 for row r =n + 1
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is a leading 1. Theorem RCLS [172] then says that the system is inconsistent. [
Do not confuse Theorem ISRN [175] with its converse! Go check out Technique CV [2369]
right now.

Next, if a system is consistent, we can distinguish between a unique solution and infinitely
many solutions, and furthermore, we recognize that these are the only two possibilities.

Theorem CSRN

Consistent Systems, » and n

Suppose A is the augmented matrix of a consistent system of linear equations with n vari-
ables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not zero rows. Then r < n. If r = n, then the system has a unique solution,
and if r < n, then the system has infinitely many solutions. O

Proof This theorem contains three implications that we must establish. Notice first that
B has n+1 columns, so there can be at most n+1 pivot columns, i.e. r <n+1. lf r =n+1,
then Theorem ISRN [175] tells us that the system is inconsistent, contrary to our hypothesis.
We are left with r < n.
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When r = n, we find n — r = 0 free variables (i.e. F = {n + 1}) and any solution must
equal the unique solution given by the first n entries of column n + 1 of B.

When r < n, we have n — r > 0 free variables, corresponding to columns of B without a
leading 1, excepting the final column, which also does not contain a leading 1 by Theorem
RCLS [172]. By varying the values of the free variables suitably, we can demonstrate infinitely
many solutions. u

Subsection FV
Free Variables

The next theorem simply states a conclusion from the final paragraph of the previous proof,
allowing us to state explicitly the number of free variables for a consistent system.

Theorem FVCS
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Free Variables for Consistent Systems

Suppose A is the augmented matrix of a consistent system of linear equations with n vari-
ables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not completely zeros. Then the solution set can be described with n — r free
variables. 0

Proof See the proof of Theorem CSRN [176]. |

Example CFV

Counting free variables

For each archetype that is a system of equations, the values of n and r are listed. Many
also contain a few sample solutions. We can use this information profitably, as illustrated
by four examples.

1. Archetype A [2395] has n = 3 and r = 2. It can be seen to be consistent by the sample
solutions given. Its solution set then has n —r = 1 free variables, and therefore will be
infinite.
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2. Archetype B [2409] has n = 3 and » = 3. It can be seen to be consistent by the
single sample solution given. Its solution set can then be described with n —r = 0 free
variables, and therefore will have just the single solution.

3. Archetype H [2489] has n = 2 and r = 3. In this case, 7 = n + 1, so Theorem ISRN
[175] says the system is inconsistent. We should not try to apply Theorem FVCS [17§]
to count free variables, since the theorem only applies to consistent systems. (What
would happen if you did?)

4. Archetype E [2448] has n = 4 and r = 3. However, by looking at the reduced row-
echelon form of the augmented matrix, we find a leading 1 in row 3, column 5. By
Theorem RCLS [172] we recognize the system as inconsistent. (Why doesn’t this ex-
ample contradict Theorem ISRN [175]7)

X

We have accomplished a lot so far, but our main goal has been the following theorem,
which is now very simple to prove. The proof is so simple that we ought to call it a corollary,
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but the result is important enough that it deserves to be called a theorem. (See Technique
LC [2386].) Notice that this theorem was presaged first by Example TTS [29] and further
foreshadowed by other examples.

Theorem PSSLS

Possible Solution Sets for Linear Systems

A system of linear equations has no solutions, a unique solution or infinitely many solutions.
O

Proof By its definition, a system is either inconsistent or consistent (Definition CS [161]).
The first case describes systems with no solutions. For consistent systems, we have the
remaining two possibilities as guaranteed by, and described in, Theorem CSRN [176]. [

Here is a diagram that consolidates several of our theorems from this section, and which
is of practical use when you analyze systems of equations.
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Theorem RCLS

no leading 1 in a leading 1 in
column n + 1 column n +1

Consistent Inconsistent

v

Theorem FVCS

Infinite solutions  Unique solution

Diagram DTSLS. Decision Tree for Solving Linear Systems

We have one more theorem to round out our set of tools for determining solution sets to
systems of linear equations.

Theorem CMVEI
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Consistent, More Variables than Equations, Infinite solutions
Suppose a consistent system of linear equations has m equations in n variables. If n > m,
then the system has infinitely many solutions. O

Proof Suppose that the augmented matrix of the system of equations is row-equivalent
to B, a matrix in reduced row-echelon form with r nonzero rows. Because B has m rows in
total, the number that are nonzero rows is less. In other words, » < m. Follow this with the
hypothesis that n > m and we find that the system has a solution set described by at least
one free variable because

n—r>n—m>0.

A consistent system with free variables will have an infinite number of solutions, as given by

Theorem CSRN [176]. |

Notice that to use this theorem we need only know that the system is consistent, together
with the values of m and n. We do not necessarily have to compute a row-equivalent reduced
row-echelon form matrix, even though we discussed such a matrix in the proof. This is the
substance of the following example.

Version 2.30



Subsection TSS.FV  Free Variables 183

Example OSGMD
One solution gives many, Archetype D
Archetype D is the system of m = 3 equations in n = 4 variables,

2.2131+5172+7£L‘3—7£L’4 =38
—31‘1 +4ZL‘2 - 55(73 — 6ZL'4 =—12
I1+$2+4ZE3—5$4:4

and the solution z; = 0, zo = 1, x3 = 2, x4 = 1 can be checked easily by substitution.
Having been handed this solution, we know the system is consistent. This, together with
n > m, allows us to apply Theorem CMVEI [182] and conclude that the system has infinitely
many solutions. X

These theorems give us the procedures and implications that allow us to completely
solve any system of linear equations. The main computational tool is using row operations
to convert an augmented matrix into reduced row-echelon form. Here’s a broad outline of
how we would instruct a computer to solve a system of linear equations.
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. Represent a system of linear equations by an augmented matrix (an array is the appro-
priate data structure in most computer languages).

. Convert the matrix to a row-equivalent matrix in reduced row-echelon form using the
procedure from the proof of Theorem REMEF [95].

. Determine r and locate the leading 1 of row r. If it is in column n + 1, output the
statement that the system is inconsistent and halt.

. With the leading 1 of row r not in column n + 1, there are two possibilities:
(a) r = n and the solution is unique. It can be read off directly from the entries in

rows 1 through n of column n + 1.

(b) r < n and there are infinitely many solutions. If only a single solution is needed,
set all the free variables to zero and read off the dependent variable values from
column n + 1, as in the second half of the proof of Theorem RCLS [172]. If the

entire solution set is required, figure out some nice compact way to describe it, since
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your finite computer is not big enough to hold all the solutions (we’ll have such a
way soon).

The above makes it all sound a bit simpler than it really is. In practice, row operations
employ division (usually to get a leading entry of a row to convert to a leading 1) and that
will introduce round-off errors. Entries that should be zero sometimes end up being very,
very small nonzero entries, or small entries lead to overflow errors when used as divisors. A
variety of strategies can be employed to minimize these sorts of errors, and this is one of the
main topics in the important subject known as numerical linear algebra.

Solving a linear system is such a fundamental problem in so many areas of mathematics,
and its applications, that any computational device worth using for linear algebra will have
a built-in routine to do just that. See:  Computation LS.MMA [2289]  Computation
LS.SAGE [2320] In this section we've gained a foolproof procedure for solving any system
of linear equations, no matter how many equations or variables. We also have a handful
of theorems that allow us to determine partial information about a solution set without
actually constructing the whole set itself. Donald Knuth would be proud.
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Subsection READ
Reading Questions

1. How do we recognize when a system of linear equations is inconsistent?

2. Suppose we have converted the augmented matrix of a system of equations into reduced
row-echelon form. How do we then identify the dependent and independent (free)
variables?

3. What are the possible solution sets for a system of linear equations?
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Subsection EXC
Exercises

C10 In the spirit of Example ISSI [164], describe the infinite solution set for Archetype J
[2515].
Contributed by Robert Beezer

For Exercises C21-C28, find the solution set of the given system of linear equations.
Identify the values of n and r, and compare your answers to the results of the theorems of
this section.

C21

.%'1+4.T2+3£E3—£L’4:5
T — Ty + T3+ 214 =6

4ZE1+I2+6$3+5I4:9
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Contributed by Chris Black
C22

Contributed by Chris Black
C23

Solution [197]

x1—2x2+x3—x4:3
201 —4xe + 23+ 24 =2

x1—2x2—2x3+3x4:1

Solution [198]

T, —2T9 + 23 — T4 =3
£B1+$2+5B3—£L’4:1

T +J]3—$4:2
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Contributed by Chris Black
C24

Contributed by Chris Black
C25

Solution [199]

T — 209+ 23 — Ty = 2
£B1+$2—|—ZL‘3—$4:2

T +l’3—$4:2

Solution [199]

1+ 22,4+ 3x3=1
21‘1—112+£L'3:2
3$1+$2+$3:4
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Contributed by Chris Black
C26

Contributed by Chris Black
Cc27

$2+2$3:6

Solution [200]

Ty + 215+ 33 =1
201 — X9+ 13 = 2
3r1 + 19+ 23 =4

9x9 +2x3 =1

Solution [201]

£1+2I‘2+3!E3:0
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Contributed by Chris Black
C28

Contributed by Chris Black

2$1—$2+JI3:2
.711—8372—7373:1

x2+$3:0

Solution [202]

$1+2$2+3$3:1
2%1—?1724‘373:2
T —8xg — Txs =1

.%‘2+l'3:0

Solution [202]
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M45 Prove that Archetype J [2515] has infinitely many solutions without row-reducing the
augmented matrix.
Contributed by Robert Beezer — Solution [203]

M46 Consider Archetype J [2515], and specifically the row-reduced version of the aug-
mented matrix of the system of equations, denoted as B here, and the values of r, D and F’
immediately following. Determine the values of the entries

[Blig, [Blsa, [Blig, [Blsg, [Bloy [Blys [Blas [Blyy Bl [Blsy,

(See Exercise TSS.M70 [194] for a generalization.)
Contributed by Manley Perkel

For Exercises M51-M57 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.
Mb51 A consistent system of 8 equations in 6 variables.
Contributed by Robert Beezer — Solution [204]
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M52 A consistent system of 6 equations in 8 variables.

Contributed by Robert Beezer — Solution [204]

M53 A system of 5 equations in 9 variables.
Contributed by Robert Beezer — Solution [204]

M54 A system with 12 equations in 35 variables.
Contributed by Robert Beezer — Solution [205]

M56 A system with 6 equations in 12 variables.
Contributed by Robert Beezer — Solution [205]

M57 A system with 8 equations and 6 variables. The reduced row-echelon form of the

augmented matrix of the system has 7 pivot columns.
Contributed by Robert Beezer — Solution [205]

M60 Without doing any computations, and without examining any solutions, say as much
as possible about the form of the solution set for each archetype that is a system of equations.
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Archetype A [2395]
Archetype B [2409]
Archetype C [2424]
Archetype D [2436]
Archetype E [2448]
Archetype F [2460]
Archetype G [2477]
Archetype H [2489]
Archetype I [2502]
Archetype J [2515]

Contributed by Robert Beezer

M70 Suppose that B is a matrix in reduced row-echelon form that is equivalent to the
augmented matrix of a system of equations with m equations in n variables. Let r, D and
F be as defined in Notation RREFA [92]. What can you conclude, in general, about the

Version 2.30



Subsection TSS.EXC Exercises 195

following entries?

[Blia, [Blsa, [Bligy [Blsa, [Blay [Blas [Blas [Blyy [Bly, [Blyy,

If you cannot conclude anything about an entry, then say so. (See Exercise TSS.M46 [192]
for inspiration.)
Contributed by Manley Perkel

T10 An inconsistent system may have r > n. If we try (incorrectly!) to apply Theorem
FVCS [178] to such a system, how many free variables would we discover?
Contributed by Robert Beezer — Solution [205]

T20 Suppose that B is a matrix in reduced row-echelon form that is equivalent to the
augmented matrix of a system of equations with m equations in n variables. Let r, D and F
be as defined in Notation RREFA [92]. Prove that dj > k for all 1 < k < r. Then suppose
that r > 2 and 1 < k < £ < r and determine what can you conclude, in general, about the
following entries.

Blia,  Bleag, [Bloa,  Blox  Bloe  Blow  [Blay,  [Blyy,
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If you cannot conclude anything about an entry, then say so. (See Exercise TSS.M46 [192]
and Exercise TSS.M70 [194].)
Contributed by Manley Perkel

T40 Suppose that the coefficient matrix of a consistent system of linear equations has two
columns that are identical. Prove that the system has infinitely many solutions.
Contributed by Robert Beezer — Solution [206]

T41 Consider the system of linear equations LS(A, b), and suppose that every element
of the vector of constants b is a common multiple of the corresponding element of a certain
column of A. More precisely, there is a complex number «, and a column index j, such that
[b]; = a[A];; for all i. Prove that the system is consistent.

Contributed by Robert Beezer — Solution [206]
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Subsection SOL
Solutions

C21 Contributed by Chris Black — Statement [187]
The augmented matrix for the given linear system and its row-reduced form are:

1 4 3 —-15 1] o 7/5 7/5 0
1 -1 1 2 6/ =5 1o [1] 2/5 =3/5 0
41 6 5 9 0 0 0 0

For this system, we have n = 4 and r = 3. However, with a leading 1 in the last column we
see that the original system has no solution by Theorem RCLS [172].

C22 Contributed by Chris Black  Statement [188]
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The augmented matrix for the given linear system and its row-reduced form are:

1 -2 1 -1 3 1] =2 0 0 3
2 —4 1 1 2/ & 40 o [1] 0o -2
1 -2 -2 3 1 0 0 0 [1] -2

Thus, we see we have an equivalent system for any scalar zs:

T = 3+2(L’2
I’3:—2
1'4:—2.

For this system, n = 4 and r = 3. Since it is a consistent system by Theorem RCLS [172],

Theorem CSRN [176] guarantees an infinite number of solutions.

C23 Contributed by Chris Black  Statement [188§]
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The augmented matrix for the given linear system and its row-reduced form are:
1 —2 1 -1 3 1] 0 1 -1 0
11 1 -1 1| 25 1y 0 0 0
1 0 1 -1 2 0 0 0 0

For this system, we have n = 4 and r = 3. However, with a leading 1 in the last column we
see that the original system has no solution by Theorem RCLS [172].

C24 Contributed by Chris Black  Statement [189]
The augmented matrix for the given linear system and its row-reduced form are:

1—21—12RREF01—12
1 1 1 -1 2 =510 0 0 0

1 0 1 -1 2 0 0 0 0 0
Thus, we see that an equivalent system is

$1:2—Z‘3+JI4
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To = 07
2—13+ 14
. ) 0 .
and the solution set is . x3,x4 € C ». For this system, n = 4 and r = 2.
3
Ty

Since it is a consistent system by Theorem RCLS [172], Theorem CSRN [176] guarantees an
infinite number of solutions.

C25 Contributed by Chris Black — Statement [189)
The augmented matrix for the given linear system and its row-reduced form are:

1 2 31 1] o 0 o0
2 -1 1 2| reer, [0 [1] 0 0
3.1 14 0 0 [1] o
0 1 26 ()00
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Since n = 3 and r = 4 = n + 1, Theorem ISRN [175] guarantees that the system is inconsis-
tent. Thus, we see that the given system has no solution.

C26 Contributed by Chris Black  Statement [190]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 31 0 0 4/3
2 =1 1 2| mrer_ |0 0 1/3
3 1 1 4 “1o 0 -1/3
0 5 21 00 0 0

Since r = n = 3 and the system is consistent by Theorem RCLS [172], Theorem CSRN [176]
guarantees a unique solution, which is

T :4/3
T = 1/3
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C27 Contributed by Chris Black  Statement [190]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 3 0 0 1 0
2 —1 1 2| RREF 0 1 0
1 -8 —7 1 0O 0 0
0 1 1 0 O 0 0 0

For this system, we have n = 3 and r = 3. However, with a leading 1 in the last column we
see that the original system has no solution by Theorem RCLS [172].

C28 Contributed by Chris Black  Statement [191]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 3 1 1] 0o 11
2 -1 1 2| Rrer 010
1 -8 -7 1 “lo 0 00
0 1 1 0 0 0 00
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For this system, n = 3 and r = 2. Since it is a consistent system by Theorem RCLS [172],
Theorem CSRN [176] guarantees an infinite number of solutions. An equivalent system is

ZL’1=1—£E3

Ty = —Ts,
where z3 is any scalar. So we can express the solution set as

1— T3
—XI3 T3 € C
T3

M45 Contributed by Robert Beezer — Statement [192]

Demonstrate that the system is consistent by verifying any one of the four sample solutions
provided. Then because n =9 > 6 = m, Theorem CMVEI [182] gives us the conclusion that
the system has infinitely many solutions.
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Notice that we only know the system will have at least 9 — 6 = 3 free variables, but very
well could have more. We do not know know that r = 6, only that r < 6.

M51  Contributed by Robert Beezer — Statement [192]
Consistent means there is at least one solution (Definition CS [161]). It will have either a
unique solution or infinitely many solutions (Theorem PSSLS [180]).

M52  Contributed by Robert Beezer — Statement [193]

With 6 rows in the augmented matrix, the row-reduced version will have » < 6. Since the
system is consistent, apply Theorem CSRN [176] to see that n — r > 2 implies infinitely
many solutions.

M53  Contributed by Robert Beezer — Statement [193]

The system could be inconsistent. If it is consistent, then because it has more variables than
equations Theorem CMVEI [182] implies that there would be infinitely many solutions. So,
of all the possibilities in Theorem PSSLS [180], only the case of a unique solution can be
ruled out.

Version 2.30



Subsection TSS.SOL  Solutions 205

M54 Contributed by Robert Beezer — Statement [193]
The system could be inconsistent. If it is consistent, then Theorem CMVEI [182] tells us
the solution set will be infinite. So we can be certain that there is not a unique solution.

M56  Contributed by Robert Beezer — Statement [193]

The system could be inconsistent. If it is consistent, and since 12 > 6, then Theorem CMVEI
[182] says we will have infinitely many solutions. So there are two possibilities. Theorem
PSSLS [180] allows to state equivalently that a unique solution is an impossibility.

M57  Contributed by Robert Beezer — Statement [193]

7 pivot columns implies that there are » = 7 nonzero rows (so row 8 is all zeros in the reduced
row-echelon form). Then n+1=6+1 =7 = r and Theorem ISRN [175] allows to conclude
that the system is inconsistent.

T10 Contributed by Robert Beezer — Statement [195]
Theorem FVCS [178] will indicate a negative number of free variables, but we can say
even more. If r > n, then the only possibility is that » = n 4+ 1, and then we compute
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n—r=n—(n+1)=—1 free variables.

T40 Contributed by Robert Beezer — Statement [196]

Since the system is consistent, we know there is either a unique solution, or infinitely many
solutions (Theorem PSSLS [180]). If we perform row operations (Definition RO [85]) on the
augmented matrix of the system, the two equal columns of the coefficient matrix will suffer
the same fate, and remain equal in the final reduced row-echelon form. Suppose both of these
columns are pivot columns (Definition RREF [91]). Then there is single row containing the
two leading 1’s of the two pivot columns, a violation of reduced row-echelon form (Definition
RREF [91]). So at least one of these columns is not a pivot column, and the column index
indicates a free variable in the description of the solution set (Definition IDV [169]). With a
free variable, we arrive at an infinite solution set (Theorem FVCS [178]).

T41 Contributed by Robert Beezer — Statement [196]
The condition about the multiple of the column of constants will allow you to show that the
following values form a solution of the system LS(A, b),

1:1:0 ZEQZO Ij_lzo €T, = l’j+120 In_lzo l’n:O
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With one solution of the system known, we can say the system is consistent (Definition CS
[161]).

A more involved proof can be built using Theorem RCLS [172]. Begin by proving that
each of the three row operations (Definition RO [85]) will convert the augmented matrix
of the system into another matrix where column j is « times the entry of the same row in
the last column. In other words, the “column multiple property” is preserved under row
operations. These proofs will get successively more involved as you work through the three
operations.

Now construct a proof by contradiction (Technique CD [2370]), by supposing that the
system 1is inconsistent. Then the last column of the reduced row-echelon form of the aug-
mented matrix is a pivot column (Theorem RCLS [172]). Then column j must have a zero
in the same row as the leading 1 of the final column. But the “column multiple property”
implies that there is an « in column j in the same row as the leading 1. So a = 0. By
hypothesis, then the vector of constants is the zero vector. However, if we began with a final
column of zeros, row operations would never have created a leading 1 in the final column.
This contradicts the final column being a pivot column, and therefore the system cannot be
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inconsistent.
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Section HSE
Homogeneous Systems of Equations

In this section we specialize to systems of linear equations where every equation has a zero
as its constant term. Along the way, we will begin to express more and more ideas in the
language of matrices and begin a move away from writing out whole systems of equations.
The ideas initiated in this section will carry through the remainder of the course.
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Subsection SHS
Solutions of Homogeneous Systems

As usual, we begin with a definition.

Definition HS

Homogeneous System

A system of linear equations, LS(A, b) is homogeneous if the vector of constants is the
zero vector, in other words, b = 0. A

Example AHSAC

Archetype C as a homogeneous system

For each archetype that is a system of equations, we have formulated a similar, yet different,
homogeneous system of equations by replacing each equation’s constant term with a zero.
To wit, for Archetype C [2424], we can convert the original system of equations into the
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homogeneous system,

201 — 319+ 23— 624 =0
4$1+$2+2$3+9$4:O
31‘1+ZL‘2+I‘3+8I‘4:0

Can you quickly find a solution to this system without row-reducing the augmented matrix?
X

As you might have discovered by studying Example AHSAC [209], setting each variable
to zero will always be a solution of a homogeneous system. This is the substance of the
following theorem.

Theorem HSC
Homogeneous Systems are Consistent

Suppose that a system of linear equations is homogeneous. Then the system is consistent.
O
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Proof Set each variable of the system to zero. When substituting these values into each
equation, the left-hand side evaluates to zero, no matter what the coefficients are. Since a
homogeneous system has zero on the right-hand side of each equation as the constant term,

each equation is true. With one demonstrated solution, we can call the system consistent.
|

Since this solution is so obvious, we now define it as the trivial solution.

Definition TSHSE

Trivial Solution to Homogeneous Systems of Equations

Suppose a homogeneous system of linear equations has n variables. The solution x; = 0,

29 =0,..., x, =0 (i.e. x = 0) is called the trivial solution. JAN
Here are three typical examples, which we will reference throughout this section. Work

through the row operations as we bring each to reduced row-echelon form. Also notice what

is similar in each example, and what differs.

Example HUSAB
Homogeneous, unique solution, Archetype B
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Archetype B can be converted to the homogeneous system,

—111'1 + 21’2 - 141’3 =0
231’1 — 61’2 + 331’3 =0
14x; — 229 + 1723 =0

whose augmented matrix row-reduces to

1] 0o 0 o0
0 [1] 0 o
0 0 [1] 0

By Theorem HSC [210], the system is consistent, and so the computation n —r =3 -3 =0
means the solution set contains just a single solution. Then, this lone solution must be the
trivial solution. X

Example HISAA
Homogeneous, infinite solutions, Archetype A
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Archetype A [2395] can be converted to the homogeneous system,
Ty — X9+ 22x3=0
201+ 19+ 23=0
T+ To =0

whose augmented matrix row-reduces to

1] o 1 0
0 [1] -1 0

0 0 0 0

By Theorem HSC [210], the system is consistent, and so the computation n —r =3 -2 =1
means the solution set contains one free variable by Theorem FVCS [178], and hence has
infinitely many solutions. We can describe this solution set using the free variable xj,

T —3
S = T2 1 = —T3, g = T3 T3 T3 € C
L3 T3
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Geometrically, these are points in three dimensions that lie on a line through the origin. X

Example HISAD

Homogeneous, infinite solutions, Archetype D

Archetype D [2436] (and identically, Archetype E [2448]) can be converted to the homoge-
neous system,

2ZL‘1+$2+7I3—75L‘4:0
—3I1+4$2—5$3—61’4:0
Ty + o + 43 — bxy =0

whose augmented matrix row-reduces to

1] 0 3 -2 0
0 [1] 1 =3 0
0

0 0 0 O
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By Theorem HSC [210], the system is consistent, and so the computation n —r =4 —2 =2
means the solution set contains two free variables by Theorem FVCS [178], and hence has
infinitely many solutions. We can describe this solution set using the free variables x3 and
Ty,

/T

Iy
T2
S = Ty = —3$3 + 2I4 To = —T3 + 3I4

XT3 ’

\ _x4

i
—3x3 + 214
—x3 + 314

= 3 x3, 14 € C
Zs3
\ L .ZU4
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X

After working through these examples, you might perform the same computations for
the slightly larger example, Archetype J [2515].

Notice that when we do row operations on the augmented matrix of a homogeneous
system of linear equations the last column of the matrix is all zeros. Any one of the three
allowable row operations will convert zeros to zeros and thus, the final column of the matrix
in reduced row-echelon form will also be all zeros. So in this case, we may be as likely to
reference only the coefficient matrix and presume that we remember that the final column
begins with zeros, and after any number of row operations is still zero.

Example HISAD [214] suggests the following theorem.

Theorem HMVEI

Homogeneous, More Variables than Equations, Infinite solutions

Suppose that a homogeneous system of linear equations has m equations and n variables
with n > m. Then the system has infinitely many solutions. O

Proof We are assuming the system is homogeneous, so Theorem HSC [210] says it is
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consistent. Then the hypothesis that n > m, together with Theorem CMVEI [182], gives
infinitely many solutions. |

Example HUSAB [211] and Example HISAA [212] are concerned with homogeneous sys-
tems where n = m and expose a fundamental distinction between the two examples. One
has a unique solution, while the other has infinitely many. These are exactly the only two
possibilities for a homogeneous system and illustrate that each is possible (unlike the case
when n > m where Theorem HMVEI [216] tells us that there is only one possibility for a
homogeneous system).
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Subsection NSM
Null Space of a Matrix

The set of solutions to a homogeneous system (which by Theorem HSC [210] is never empty)
is of enough interest to warrant its own name. However, we define it as a property of the
coefficient matrix, not as a property of some system of equations.

Definition NSM

Null Space of a Matrix

The null space of a matrix A, denoted N'(A), is the set of all the vectors that are solutions
to the homogeneous system LS(A, 0).

(This definition contains Notation NSM.) A

In the Archetypes (Appendix A [2389]) each example that is a system of equations also
has a corresponding homogeneous system of equations listed, and several sample solutions
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are given. These solutions will be elements of the null space of the coefficient matrix. We’ll
look at one example.

Example NSEAI

Null space elements of Archetype I

The write-up for Archetype I [2502] lists several solutions of the corresponding homogeneous
system. Here are two, written as solution vectors. We can say that they are in the null space
of the coefficient matrix for the system of equations in Archetype I [2502].

3 —4
0 1
-5 -3
x=|—6 y=|-2
0 1
0 1
_1_ - 1_
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However, the vector

N
I
NO OO OO

is not in the null space, since it is not a solution to the homogeneous system. For example,
it fails to even make the first equation true. X

Here are two (prototypical) examples of the computation of the null space of a matrix.

Example CNS1
Computing a null space, #1
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Let’s compute the null space of

2 -1 7 -3 =8
A=1|1 0 2 4 9
2 2 -2 -1 B8

which we write as N/(A). Translating Definition NSM [218], we simply desire to solve the
homogeneous system LS(A, 0). So we row-reduce the augmented matrix to obtain

1] o 2 0 10
0 [1] -3 0 4 0
0 0 0 [1] 20

The variables (of the homogeneous system) z3 and x5 are free (since columns 1, 2 and 4 are
pivot columns), so we arrange the equations represented by the matrix in reduced row-echelon
form to

T = —2133 — XI5
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Tog = 3£L‘3 - 41’5

Ty = —22U5

So we can write the infinite solution set as sets using column vectors,

—2x3 — 5
3x3 — 4xs
N(A) = X3 X3, Ty € C
—21’5
Ts

Example CNS2
Computing a null space, #2
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Let’s compute the null space of

Ot
~J O =~ D
I N =

which we write as A(C). Translating Definition NSM [218], we simply desire to solve the
homogeneous system L£LS(C, 0). So we row-reduce the augmented matrix to obtain

1] 0 0
(1] o
0
0

o O O
o O O O

o[-]

There are no free variables in the homogeneous system represented by the row-reduced
matrix, so there is only the trivial solution, the zero vector, 0. So we can write the (trivial)
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solution set as

0
N(C)={0} =40
0
X
Subsection READ
Reading Questions

1. What is always true of the solution set for a homogeneous system of equations?

2. Suppose a homogeneous system of equations has 13 variables and 8 equations. How
many solutions will it have? Why?
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3. Describe in words (not symbols) the null space of a matrix.
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Subsection EXC
Exercises

C10 Each Archetype (Appendix A [2389]) that is a system of equations has a corresponding
homogeneous system with the same coefficient matrix. Compute the set of solutions for each.
Notice that these solution sets are the null spaces of the coefficient matrices.

Archetype A [2395]

Archetype B [2409]

Archetype C [2424]

Archetype D [2436]/Archetype E [2448]

Archetype F [2460)

Archetype G [2477]/ Archetype H [2489)

Archetype I [2502]

and Archetype J [2515]
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Contributed by Robert Beezer

C20 Archetype K [2532] and Archetype L [2544] are simply 5 x 5 matrices (i.e. they are
not systems of equations). Compute the null space of each matrix.
Contributed by Robert Beezer

For Exercises C21-C23, solve the given homogeneous linear system. Compare your results
to the results of the corresponding exercise in Section TSS [160].
C21

ZE1+4ZE2+3$3—1’4:O
Ty — X9+ a3+ 224 =0
4I1+£L’2+6I’3+5l’4:0

Contributed by Chris Black  Solution [235]
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C22

Contributed by Chris Black
Cc23

Contributed by Chris Black

x1—2x2+x3—x4:0
21’1—433'24—1'34‘1'4:0

1’1—21‘2—21’3+3I’4:0

Solution [236]

T — 29+ 23— 24 =0
I1+I2+l’3—$4:0

Ty +$3—I4:0

Solution [237]
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For Exercises C25-C27, solve the given homogeneous linear system. Compare your results
to the results of the corresponding exercise in Section TSS [160].

C25

Contributed by Chris Black
C26

1+ 229+ 323 =10
201 — x93+ 23 =0
3r1 +29+23=0

Tog+ 223 =0

Solution [238]

$1+2$2+3ZE3:0

2I1—$2+JI3:O
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Contributed by Chris Black
C27

Contributed by Chris Black

3$1+IL‘2+$3:O
5ZE2+2(E3:O

Solution [239]

ZE1+2:L’2+35L’3:0
25(]1—I2+$3:0
5(71—81'2—7.1'3:0

ZL'2+1’3:0

Solution [240]
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C30 Compute the null space of the matrix A, N'(A).

2 4 1 3 8
-1 -2 -1 -1 1
2 4 0 -3 4
2 4 -1 -7 4

A:

Contributed by Robert Beezer — Solution [240]
C31 Find the null space of the matrix B, N'(B).

-6 4 =36 6
B=12 -1 10 -1
-3 2 =18 3

Contributed by Robert Beezer — Solution [242]
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M45 Without doing any computations, and without examining any solutions, say as much
as possible about the form of the solution set for corresponding homogeneous system of
equations of each archetype that is a system of equations.

Archetype A [2395]

Archetype B [2409]

Archetype C [2424]

Archetype D [2436]/Archetype E [2448]

Archetype F [2460]

Archetype G [2477]/Archetype H [2489]

Archetype I [2502]

Archetype J [2515]

Contributed by Robert Beezer

For Exercises M50-M52 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.
M50 A homogeneous system of 8 equations in 8 variables.
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Contributed by Robert Beezer — Solution [243]

M51 A homogeneous system of 8 equations in 9 variables.
Contributed by Robert Beezer — Solution [244]

M52 A homogeneous system of 8 equations in 7 variables.
Contributed by Robert Beezer — Solution [244]

T10 Prove or disprove: A system of linear equations is homogeneous if and only if the
system has the zero vector as a solution.
Contributed by Martin Jackson — Solution [244]

T12 Give an alternate proof of Theorem HSC [210] that uses Theorem RCLS [172].
Contributed by Ivan Kessler

T20 Consider the homogeneous system of linear equations £S(A, 0), and suppose that
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Uy
U2
u= |Uus

Unp

is one solution to the system of equations. Prove that v =

solution to LS(A, 0).
Contributed by Robert Beezer — Solution [245]

4U1
4U2
4U3

4u,,

is also a
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Subsection SOL
Solutions

C21 Contributed by Chris Black  Statement [227]
The augmented matrix for the given linear system and its row-reduced form are:

L4 3 10 0 7/5 7/5 0
1 -1 1 2 0l —=1]0 [1] 2/5 =3/5 0
41 6 5 0 o0 0 0 0

Thus, we see that the system is consistent (as predicted by Theorem HSC [210]) and has an
infinite number of solutions (as predicted by Theorem HMVEI [216]). With suitable choices
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of x5 and x4, each solution can be written as

Ty — g,
—51‘3 + 51’4
T3
Ty

C22 Contributed by Chris Black — Statement [228]
The augmented matrix for the given linear system and its row-reduced form are:

1 -2 1 -1 0 1] -2 0 0 0
2 —4 1 1 ol X5 1o o [1] 0 0
1 -2 =2 3 0 0 0 o0 [1] 0

Thus, we see that the system is consistent (as predicted by Theorem HSC [210]) and has
an infinite number of solutions (as predicted by Theorem HMVEI [216]). With a suitable
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choice of x4, each solution can be written as

21‘2

o)
0
0

C23 Contributed by Chris Black  Statement [228]
The augmented matrix for the given linear system and its row-reduced form are:

1 -2 1 -1 0 1] o 1 -1 0
111 -1 0 = |0 [1]o 0 0
1 0 1 -10 00 0 0 0

Thus, we see that the system is consistent (as predicted by Theorem HSC [210]) and has an
infinite number of solutions (as predicted by Theorem HMVEI [216]). With suitable choices
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of x5 and x4, each solution can be written as

—T3 + T4
0
T3
Ty

C25 Contributed by Chris Black — Statement [229]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 30 1] o 0 o0

2 —1 1 0| rerer | O 0 O
31 10 0 0 0
0 1 20 0O 0 0 0

An homogeneous system is always consistent (Theorem HSC [210]) and with n = r = 3 an
application of Theorem FVCS [178] yields zero free variables. Thus the only solution to the
given system is the trivial solution, x = 0.
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C26 Contributed by Chris Black — Statement [229]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 30 1000
2 ~1 1 0| mrer (010 0
3 1 10 0010
0 5 20 0000

An homogeneous system is always consistent (Theorem HSC [210]) and with n = r = 3 an
application of Theorem FVCS [178] yields zero free variables. Thus the only solution to the
given system is the trivial solution, x = 0.

C27 Contributed by Chris Black  Statement [230]
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The augmented matrix for the given linear system and its row-reduced form are:

1 2 3 0 1] 0 10
2 -1 1 0| rrer, |0 [1] 1 0
1 -8 =70 0 0 00
0 1 1 0 0 0 00

An homogeneous system is always consistent (Theorem HSC [210]) and with n = 3, r = 2
an application of Theorem FVCS [178] yields one free variable. With a suitable choice of z3
each solution can be written in the form

xs3

C30 Contributed by Robert Beezer — Statement [231]
Definition NSM [218] tells us that the null space of A is the solution set to the homogeneous
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system LS(A, 0). The augmented matrix of this system is

2 4 1 3 80
-1 -2 -1 -1 1 0
2 4 0 =340
2 4 -1 =740

To solve the system, we row-reduce the augmented matrix and obtain,

112 0 0 5 0
0 0[1] 0 -8 0
00 0 [1] 2 0
000 0 0 0

This matrix represents a system with equations having three dependent variables (z;, x3,
and z4) and two independent variables (2 and x5). These equations rearrange to

T = —21’2 - 51]5 T3 = 8(135 Ty = —21’5
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So we can write the solution set (which is the requested null space) as
—21’2 — 51’5
N(A) = 85 To, x5 € C

—21'5
Ts

C31 Contributed by Robert Beezer — Statement [231]

We form the augmented matrix of the homogeneous system L£S(B, 0) and row-reduce the
matrix,

—6 4 -36 6 0 1] 0 2 10
RREF

2 -1 10 -1 0 —=10 [1] =6 3 0

-3 2 -18 3 0 00 0 00

We knew ahead of time that this system would be consistent (Theorem HSC [210]), but we
can now see there are n —r = 4 — 2 = 2 free variables, namely z3 and x4 (Theorem FVCS
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[178]). Based on this analysis, we can rearrange the equations associated with each nonzero
row of the reduced row-echelon form into an expression for the lone dependent variable as
a function of the free variables. We arrive at the solution set to the homogeneous system,
which is the null space of the matrix by Definition NSM [218],

—21‘3 — T4
6.2133 — 3.234
T3
Ty

N(B): I37ZE4EC

M50  Contributed by Robert Beezer — Statement [232]

Since the system is homogeneous, we know it has the trivial solution (Theorem HSC [210]).
We cannot say anymore based on the information provided, except to say that there is either
a unique solution or infinitely many solutions (Theorem PSSLS [180]). See Archetype A
[2395] and Archetype B [2409] to understand the possibilities.

M51  Contributed by Robert Beezer — Statement [233]
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Since there are more variables than equations, Theorem HMVEI [216] applies and tells us
that the solution set is infinite. From the proof of Theorem HSC [210] we know that the
zero vector is one solution.

M52  Contributed by Robert Beezer — Statement [233]

By Theorem HSC [210], we know the system is consistent because the zero vector is always
a solution of a homogeneous system. There is no more that we can say, since both a unique
solution and infinitely many solutions are possibilities.

T10 Contributed by Robert Beezer — Statement [233]
This is a true statement. A proof is:

(=) Suppose we have a homogeneous system LS(A, 0). Then by substituting the scalar
zero for each variable, we arrive at true statements for each equation. So the zero vector is
a solution. This is the content of Theorem HSC [210].

(<) Suppose now that we have a generic (i.e. not necessarily homogeneous) system of
equations, £LS(A, b) that has the zero vector as a solution. Upon substituting this solution
into the system, we discover that each component of b must also be zero. So b = 0.
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T20 Contributed by Robert Beezer — Statement [233]
Suppose that a single equation from this system (the i-th one) has the form,

a;1 X1 + A;oX2 + Ai3T3 + - -+ + QinTy — 0

Evaluate the left-hand side of this equation with the components of the proposed solution
vector v,

;1 (471,1) + ;2 (4U2) + a3 (471,3) 4+ -+ Qin (4Un)

= danu; + 4apuy + daizus + - - - + dagu, Commutativity

=4 (a;u1 + ajpus + ajzus + - -+ + apy) Distributivity

= 4(0) u solution to LS(A, 0)
=0

So v makes each equation true, and so is a solution to the system.

Notice that this result is not true if we change £S(A, 0) from a homogeneous system
to a non-homogeneous system. Can you create an example of a (non-homogeneous) system
with a solution u such that v is not a solution?
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Section NM
Nonsingular Matrices

In this section we specialize and consider matrices with equal numbers of rows and columns,
which when considered as coefficient matrices lead to systems with equal numbers of equa-
tions and variables. We will see in the second half of the course (Chapter D [1284], Chapter E
[1373] Chapter LT [1559], Chapter R [1833]) that these matrices are especially important.
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Subsection NM
Nonsingular Matrices

Our theorems will now establish connections between systems of equations (homogeneous
or otherwise), augmented matrices representing those systems, coefficient matrices, constant
vectors, the reduced row-echelon form of matrices (augmented and coefficient) and solution
sets. Be very careful in your reading, writing and speaking about systems of equations,
matrices and sets of vectors. A system of equations is not a matrix, a matrix is not a
solution set, and a solution set is not a system of equations. Now would be a great time to
review the discussion about speaking and writing mathematics in Technique L [2357].

Definition SQM

Square Matrix

A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has
size n. To emphasize the situation when a matrix is not square, we will call it rectangular.
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A
We can now present one of the central definitions of linear algebra.

Definition NM

Nonsingular Matrix

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous
linear system of equations L£S(A, 0) is {0}, i.e. the system has only the trivial solution.
Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix. A

We can investigate whether any square matrix is nonsingular or not, no matter if the
matrix is derived somehow from a system of equations or if it is simply a matrix. The def-
inition says that to perform this investigation we must construct a very specific system of
equations (homogeneous, with the matrix as the coefficient matrix) and look at its solution
set. We will have theorems in this section that connect nonsingular matrices with systems
of equations, creating more opportunities for confusion. Convince yourself now of two obser-
vations, (1) we can decide nonsingularity for any square matrix, and (2) the determination
of nonsingularity involves the solution set for a certain homogeneous system of equations.
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Notice that it makes no sense to call a system of equations nonsingular (the term does
not apply to a system of equations), nor does it make any sense to call a 5 X 7 matrix singular
(the matrix is not square).

Example S

A singular matrix, Archetype A

Example HISAA [212] shows that the coefficient matrix derived from Archetype A [2395],
specifically the 3 x 3 matrix,

1 -1 2
A=12 1 1
1 1 0
is a singular matrix since there are nontrivial solutions to the homogeneous system £LS(A, 0).

X

Example NM
A nonsingular matrix, Archetype B
Example HUSAB [211] shows that the coefficient matrix derived from Archetype B [2409],

Version 2.30



Subsection NM.NM Nonsingular Matrices 251

specifically the 3 x 3 matrix,

-7 —6 —12
B=1]5 5 7
1 0 4

is a nonsingular matrix since the homogeneous system, £LS(B, 0), has only the trivial solu-
tion. X

Notice that we will not discuss Example HISAD [214] as being a singular or nonsingular
coefficient matrix since the matrix is not square.

The next theorem combines with our main computational technique (row-reducing a
matrix) to make it easy to recognize a nonsingular matrix. But first a definition.

Definition IM
Identity Matrix
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The m x m identity matrix, [,,, is defined by

Ll =4t T i<ij<m
’ 0 i#j

(This definition contains Notation IM.) A

Example IM
An identity matrix
The 4 x 4 identity matrix is

Iy

o O O =
O = O O
_ o O O

OO = O

X

Notice that an identity matrix is square, and in reduced row-echelon form. So in particu-
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lar, if we were to arrive at the identity matrix while bringing a matrix to reduced row-echelon
form, then it would have all of the diagonal entries circled as leading 1’s.

Theorem NMRRI

Nonsingular Matrices Row Reduce to the Identity matrix

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon
form. Then A is nonsingular if and only if B is the identity matrix. 0

Proof (<) Suppose B is the identity matrix. When the augmented matrix [A | 0] is row-
reduced, the result is [B| 0] = [I,, | 0]. The number of nonzero rows is equal to the number
of variables in the linear system of equations LS(A, 0), so n = r and Theorem FVCS [17§]
gives n—r = 0 free variables. Thus, the homogeneous system LS (A, 0) has just one solution,
which must be the trivial solution. This is exactly the definition of a nonsingular matrix.
(=) If A is nonsingular, then the homogeneous system L£S(A, 0) has a unique solution,
and has no free variables in the description of the solution set. The homogeneous system is
consistent (Theorem HSC [210]) so Theorem FVCS [178] applies and tells us there are n —r
free variables. Thus, n —r = 0, and so n = r. So B has n pivot columns among its total
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of n columns. This is enough to force B to be the n x n identity matrix I,, (see Exercise
NM.T12 [268]). |

Notice that since this theorem is an equivalence it will always allow us to determine if a
matrix is either nonsingular or singular. Here are two examples of this, continuing our study
of Archetype A and Archetype B.

Example SRR
Singular matrix, row-reduced
The coefficient matrix for Archetype A [2395] is

s
I
— N
—_
O = N
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which when row-reduced becomes the row-equivalent matrix

1] 0 1
B=|0 [1] -1

0 0 0

Since this matrix is not the 3 x 3 identity matrix, Theorem NMRRI [252] tells us that A is
a singular matrix. X

Example NSR
Nonsingular matrix, row-reduced
The coefficient matrix for Archetype B [2409] is

-7 —6 —12
A= |5 5 7
1 0 4
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which when row-reduced becomes the row-equivalent matrix

1] 0o o
B=10 [1] 0
0 0 [1]

Since this matrix is the 3 x 3 identity matrix, Theorem NMRRI [252] tells us that A is a
nonsingular matrix. X

Subsection NSNM
Null Space of a Nonsingular Matrix

Nonsingular matrices and their null spaces are intimately related, as the next two examples
illustrate.
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Example NSS
Null space of a singular matrix
Given the coefficient matrix from Archetype A [2395],

1 -1 2
A=12 1 1
1 1 0

the null space is the set of solutions to the homogeneous system of equations LS(A, 0) has
a solution set and null space constructed in Example HISAA [212] as

N(A) = T3 r3€C

xs

Example NSNM
Null space of a nonsingular matrix
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Given the coefficient matrix from Archetype B [2409],

-7 —6 —12
A= |5 5 7
1 0 4

the homogeneous system L£LS(A, 0) has a solution set constructed in Example HUSAB [211]
that contains only the trivial solution, so the null space has only a single element,

These two examples illustrate the next theorem, which is another equivalence.

Theorem NMTNS
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Nonsingular Matrices have Trivial Null Spaces

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A,
N (A), contains only the zero vector, i.e. N(A) = {0}. O

Proof The null space of a square matriz, A, is equal to the set of solutions to the homo-
geneous system, LS(A, 0). A matriz is nonsingular if and only if the set of solutions to the
homogeneous system, LS(A, 0), has only a trivial solution. These two observations may be
chained together to construct the two proofs necessary for each half of this theorem. |

The next theorem pulls a lot of big ideas together. Theorem NMUS [258] tells us that
we can learn much about solutions to a system of linear equations with a square coefficient
matrix by just examining a similar homogeneous system.

Theorem NMUS

Nonsingular Matrices and Unique Solutions

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system
LS (A, b) has a unique solution for every choice of the constant vector b. O

Proof (<) The hypothesis for this half of the proof is that the system L£S(A, b) has a
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unique solution for every choice of the constant vector b. We will make a very specific choice
for b: b = 0. Then we know that the system L£S(A, 0) has a unique solution. But this
is precisely the definition of what it means for A to be nonsingular (Definition NM [248]).
That almost seems too easy! Notice that we have not used the full power of our hypothesis,
but there is nothing that says we must use a hypothesis to its fullest.

(=) We assume that A is nonsingular of size n x n, so we know there is a sequence
of row operations that will convert A into the identity matrix I,, (Theorem NMRRI [252]).
Form the augmented matrix A’ = [A| b] and apply this same sequence of row operations
to A’. The result will be the matrix B’ = [I,,| c|], which is in reduced row-echelon form
with 7 = n. Then the augmented matrix B’ represents the (extremely simple) system of
equations z; = [c];, 1 <7 < n. The vector c is clearly a solution, so the system is consistent
(Definition CS [161]). With a consistent system, we use Theorem FVCS [178] to count free
variables. We find that there are n —r = n —n = 0 free variables, and so we therefore know
that the solution is unique. (This half of the proof was suggested by Asa Scherer.)

Version 2.30



Subsection NM.NSNM Null Space of a Nonsingular Matrix 261

This theorem helps to explain part of our interest in nonsingular matrices. If a matrix
is nonsingular, then no matter what vector of constants we pair it with, using the matrix as
the coefficient matrix will always yield a linear system of equations with a solution, and the
solution is unique. To determine if a matrix has this property (non-singularity) it is enough
to just solve one linear system, the homogeneous system with the matrix as coefficient matrix
and the zero vector as the vector of constants (or any other vector of constants, see Exercise

MM.T10 [717]).

Formulating the negation of the second part of this theorem is a good exercise. A singular
matrix has the property that for some value of the vector b, the system LS(A, b) does not
have a unique solution (which means that it has no solution or infinitely many solutions). We
will be able to say more about this case later (see the discussion following Theorem PSPHS
[370]). Square matrices that are nonsingular have a long list of interesting properties, which
we will start to catalog in the following, recurring, theorem. Of course, singular matrices
will then have all of the opposite properties. The following theorem is a list of equivalences.
We want to understand just what is involved with understanding and proving a theorem
that says several conditions are equivalent. So have a look at Technique ME [2374] before
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studying the first in this series of theorems.

Theorem NME1
Nonsingular Matrix Equivalences, Round 1
Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N'(A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

U

Proof That A is nonsingular is equivalent to each of the subsequent statements by, in
turn, Theorem NMRRI [252], Theorem NMTNS [258] and Theorem NMUS [258]. So the
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statement of this theorem is just a convenient way to organize all these results. [

Finally, you may have wondered why we refer to a matrix as nonsingular when it creates
systems of equations with single solutions (Theorem NMUS [258])! I've wondered the same
thing. We’'ll have an opportunity to address this when we get to Theorem SMZD [1358].
Can you wait that long?

Subsection READ
Reading Questions

1. What is the definition of a nonsingular matrix?
2. What is the easiest way to recognize a nonsingular matrix?

3. Suppose we have a system of equations and its coefficient matrix is nonsingular. What
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can you say about the solution set for this system?
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Subsection EXC
Exercises

In Exercises C30-C33 determine if the matrix is nonsingular or singular. Give reasons for

your answer.
C30

N 3 W Do
|
W

Contributed by Robert Beezer — Solution [270]
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C31
2 31 4
1 1 10
-1 2 3 5
1 21 3
Contributed by Robert Beezer — Solution [271]
C32
9 3 2 4
5 —6 1 3
4 1 3 -5

Contributed by Robert Beezer — Solution [271]
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C33
-1 2 0 3
1 -3 =2 4
-2 0 4 3
-3 1 =2 3

Contributed by Robert Beezer — Solution [271]

C40 Each of the archetypes below is a system of equations with a square coefficient ma-
trix, or is itself a square matrix. Determine if these matrices are nonsingular, or singular.
Comment on the null space of each matrix.

Archetype A [2395]

Archetype B [2409]

Archetype F [2460)

Archetype K [2532]

Archetype L [2544]

Contributed by Robert Beezer
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C50 Find the null space of the matrix £ below.

2 1 -1 -9
2 2 -6 -6
E= 1 2 -8 0
-1 2 —12 12

Contributed by Robert Beezer — Solution [272]

M30 Let A be the coefficient matrix of the system of equations below. Is A nonsingular
or singular? Explain what you could infer about the solution set for the system based only
on what you have learned about A being singular or nonsingular.

—T1 + 5z = —8
—2x1 + bx9 + b3+ 224 =9
=31 — a9+ 3x3+24=3
Tx1 4+ 6x9 + dxs + x4 = 30

Version 2.30



Subsection NM.EXC Exercises 269

Contributed by Robert Beezer — Solution [274]

For Exercises M51-M52 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.
M51 6 equations in 6 variables, singular coefficient matrix.
Contributed by Robert Beezer — Solution [274]

M52 A system with a nonsingular coefficient matrix, not homogeneous.
Contributed by Robert Beezer — Solution [275]

T10 Suppose that A is a singular matrix, and B is a matrix in reduced row-echelon form
that is row-equivalent to A. Prove that the last row of B is a zero row.
Contributed by Robert Beezer — Solution [275]

T12 Suppose that A is a square matrix. Using the definition of reduced row-echelon form
(Definition RREF [91]) carefully, give a proof of the following equivalence: Every column of
A is a pivot column if and only if A is the identity matrix (Definition IM [250]).
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Contributed by Robert Beezer

T30 Suppose that A is a nonsingular matrix and A is row-equivalent to the matrix B.
Prove that B is nonsingular.
Contributed by Robert Beezer — Solution [275]

T90 Provide an alternative for the second half of the proof of Theorem NMUS [258],
without appealing to properties of the reduced row-echelon form of the coefficient matrix. In
other words, prove that if A is nonsingular, then £LS(A, b) has a unique solution for every
choice of the constant vector b. Construct this proof without using Theorem REMEF [95]
or Theorem RREFU [101].

Contributed by Robert Beezer — Solution [276]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer — Statement [264]
The matrix row-reduces to

which is the 4 x 4 identity matrix. By Theorem NMRRI [252] the original matrix must be
nonsingular.

C31 Contributed by Robert Beezer  Statement [265]
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Row-reducing the matrix yields,

Since this is not the 4 x 4 identity matrix, Theorem NMRRI [252] tells us the matrix is
singular.

C32 Contributed by Robert Beezer — Statement [265]
The matrix is not square, so neither term is applicable. See Definition NM [248], which is
stated for just square matrices.

C33 Contributed by Robert Beezer  Statement [266]
Theorem NMRRI [252] tells us we can answer this question by simply row-reducing the
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matrix. Doing this we obtain,

1] 0 0 o0
0 [1] 0o o0
0 0 [1] 0
0 0 0 [1]

Since the reduced row-echelon form of the matrix is the 4 x 4 identity matrix I, we know
that B is nonsingular.

C50 Contributed by Robert Beezer  Statement [267]
We form the augmented matrix of the homogeneous system LS(F, 0) and row-reduce the
matrix,

2 1 -1 -9 0 1] o 2 -6 0
2 2 -6 —6 0| reer, |0 [1] =5 3 0
1 2 -8 0 0 “lo 0 0 0 0
-1 2 —12 12 0 0 0 0 0 0
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We knew ahead of time that this system would be consistent (Theorem HSC [210]), but we
can now see there are n —r = 4 — 2 = 2 free variables, namely x3 and x4 since F' = {3,4,5}
(Theorem FVCS [178]). Based on this analysis, we can rearrange the equations associated
with each nonzero row of the reduced row-echelon form into an expression for the lone
dependent variable as a function of the free variables. We arrive at the solution set to this
homogeneous system, which is the null space of the matrix by Definition NSM [218],

—2$3+6£C4
N(B) =4 | 23y e
Xy

M30 Contributed by Robert Beezer — Statement [267]
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We row-reduce the coefficient matrix of the system of equations,

~1 5 00 1] o 0 o
—2 5 5 2| RREF 000
-3 -1 3 1 0 0 [1] 0
7 6 5 1 000

Since the row-reduced version of the coefficient matrix is the 4 x 4 identity matrix, I, (Def-
inition IM [250] byTheorem NMRRI [252], we know the coefficient matrix is nonsingular.
According to Theorem NMUS [258] we know that the system is guaranteed to have a unique
solution, based only on the extra information that the coefficient matrix is nonsingular.

M51  Contributed by Robert Beezer — Statement [268]

Theorem NMRRI [252] tells us that the coefficient matrix will not row-reduce to the identity
matrix. So if we were to row-reduce the augmented matrix of this system of equations, we
would not get a unique solution. So by Theorem PSSLS [180] the remaining possibilities are
no solutions, or infinitely many.
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M52  Contributed by Robert Beezer — Statement [268]

Any system with a nonsingular coefficient matrix will have a unique solution by Theorem
NMUS [258]. If the system is not homogeneous, the solution cannot be the zero vector
(Exercise HSE.T'10 [233]).

T10 Contributed by Robert Beezer — Statement [268]

Let n denote the size of the square matrix A. By Theorem NMRRI [252] the hypothesis
that A is singular implies that B is not the identity matrix I,,. If B has n pivot columns,
then it would have to be I,,, so B must have fewer than n pivot columns. But the number
of nonzero rows in B (r) is equal to the number of pivot columns as well. So the n rows of
B have fewer than n nonzero rows, and B must contain at least one zero row. By Definition
RREF [91], this row must be at the bottom of B.

T30 Contributed by Robert Beezer — Statement [269]

Since A and B are row-equivalent matrices, consideration of the three row operations (Def-
inition RO [85]) will show that the augmented matrices, [A| 0] and [B| 0], are also row-
equivalent matrices. This says that the two homogeneous systems, LS(A, 0) and LS(B, 0)
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are equivalent systems. LS(A, 0) has only the zero vector as a solution (Definition NM
[248]), thus LS(B, 0) has only the zero vector as a solution. Finally, by Definition NM
[248], we see that B is nonsingular.

Form a similar theorem replacing “nonsingular” by “singular” in both the hypothesis and
the conclusion. Prove this new theorem with an approach just like the one above, and/or
employ the result about nonsingular matrices in a proof by contradiction.

T90 Contributed by Robert Beezer  Statement [269]

We assume A is nonsingular, and try to solve the system LS(A, b) without making any
assumptions about b. To do this we will begin by constructing a new homogeneous linear
system of equations that looks very much like the original. Suppose A has size n (why must
it be square?) and write the original system as,

a1 + ajoxoe + a13x3 + et apr, = bl
a921%1 + A922T9 + a93%3 + -+ Aonly = bg

as31T1 + 3219 + a33T3 + -t a3nTy = b3
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(*)
Ap1T1 + QpaTa + Ap3®s + - + AppTy = by,

Form the new, homogeneous system in n equations with n + 1 variables, by adding a new
variable y, whose coefficients are the negatives of the constant terms,

a1171 + a12%2 + a13x3 + - - + a1y, — b1y =0
2171 + A22%2 + A23%3 + - -+ + ATy — by =0
a31%1 + azeTo + azzxs + - - + azp Ty, — b3y =0
()

Ap1T1 + Ap2To + Ap3T3 + + - + GppTy — bny =0

Since this is a homogeneous system with more variables than equations (m = n + 1 > n),
Theorem HMVEI [216] says that the system has infinitely many solutions. We will choose
one of these solutions, any one of these solutions, so long as it is not the trivial solution.
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Write this solution as
r1 = C To = Cy I3 = C3 Tp = Cp Y = Cp+1

We know that at least one value of the ¢; is nonzero, but we will now show that in particular
Cni1 7 0. We do this using a proof by contradiction (Technique CD [2370]). So suppose the
¢; form a solution as described, and in addition that c,,; = 0. Then we can write the i-th
equation of system (xx) as,

aiic1 + GiaCy + a3z + - - + ey — b;(0) = 0

which becomes

a;1C1 + ai9Co + a;3C3 + -+ AinCn = 0

Since this is true for each i, we have that r1 = ¢, 19 = ¢, x3 = ¢3,..., T, = ¢, IS a
solution to the homogeneous system LS(A, 0) formed with a nonsingular coefficient matrix.
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This means that the only possible solution is the trivial solution, so ¢; = 0, ¢ = 0, ¢c3 =
0, ..., ¢, =0. So, assuming simply that c,,; = 0, we conclude that all of the ¢; are zero.
But this contradicts our choice of the ¢; as not being the trivial solution to the system (k).

So ¢pyq # 0.
We now propose and verify a solution to the original system (x). Set

C1 Ca C3 Cn
To = T3 = c. Tpn =
Cn+1 Cn+1 Cn+1 Cn+1

r1 —

Notice how it was necessary that we know that ¢, # 0 for this step to succeed. Now,
evaluate the i-th equation of system (x) with this proposed solution, and recognize in the
third line that ¢; through ¢,., appear as if they were substituted into the left-hand side of
the i-th equation of system (xx),
€1 C2

C3 Cn
+ a2 + a3 to Qi
Cn+1 Cn+1 Cn+1 Cn+1

Qi1

(CL“Cl + a;9C9 + a;3C3 + -+ amcn)

Cn+1
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1
= - (@irc1 + aigco + aizcs + -+ - + @iy — bicpir) + b
n+1
T
Cn+1 ‘

Since this equation is true for every i, we have found a solution to system (k). To finish, we
still need to establish that this solution is unique.

With one solution in hand, we will entertain the possibility of a second solution. So
assume system (x) has two solutions,

a:lzdl £C2:d2 $3Zd3 l’n:dn

1 = €1 Lo = €9 I3 = €3 Tp = €Ep
Then,

(aﬂ(dl — 61) + aig(dg — 62) + (li3(d3 — 63) + -+ (lm<dn — en))
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= (apdi + Giods + aizds + - - - + aindy,) — (ane1 + ainea + ajzes + - - + ainey)
= b~ b,
=0

This is the i-th equation of the homogeneous system LS(A, 0) evaluated with z; = d; — e;,
1 < j < n. Since A is nonsingular, we must conclude that this solution is the trivial solution,
and so 0 =d; —e;, 1 <j <n. That is, d; = e; for all 7 and the two solutions are identical,
meaning any solution to (%) is unique.

Ci

Notice that the proposed solution (z; = - ) appeared in this proof with no motivation
whatsoever. This is just fine in a proof. A proof should convince you that a theorem is true.
It is your job to read the proof and be convinced of every assertion. Questions like “Where
did that come from?” or “How would I think of that?” have no bearing on the wvalidity of
the proof.
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Annotated Acronyms SLE
Systems of Linear Equations

At the conclusion of each chapter you will find a section like this, reviewing selected def-
initions and theorems. There are many reasons for why a definition or theorem might be
placed here. It might represent a key concept, it might be used frequently for computations,
provide the critical step in many proofs, or it may deserve special comment.

These lists are not meant to be exhaustive, but should still be useful as part of reviewing
each chapter. We will mention a few of these that you might eventually recognize on sight
as being worth memorization. By that we mean that you can associate the acronym with
a rough statement of the theorem — not that the exact details of the theorem need to be
memorized. And it is certainly not our intent that everything on these lists is important
enough to memorize.

Theorem RCLS [172]
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We will repeatedly appeal to this theorem to determine if a system of linear equations, does,
or doesn’t, have a solution. This one we will see often enough that it is worth memorizing.

Theorem HMVEI [216]

This theorem is the theoretical basis of several of our most important theorems. So keep an
eye out for it, and its descendants, as you study other proofs. For example, Theorem HMVEI
[216] is critical to the proof of Theorem SSLD [1188], Theorem SSLD [1188] is critical to the
proof of Theorem G [1238], Theorem G [1238] is critical to the proofs of the pair of similar
theorems, Theorem ILTD [1674] and Theorem SLTD [1735], while finally Theorem ILTD
[1674] and Theorem SLTD [1735] are critical to the proof of an important result, Theorem
IVSED [1790]. This chain of implications might not make much sense on a first reading, but
come back later to see how some very important theorems build on the seemingly simple
result that is Theorem HMVEI [216]. Using the “find” feature in whatever software you use
to read the electronic version of the text can be a fun way to explore these relationships.

Theorem NMRRI [252]
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This theorem gives us one of simplest ways, computationally, to recognize if a matrix is
nonsingular, or singular. We will see this one often, in computational exercises especially.

Theorem NMUS [258]

Nonsingular matrices will be an important topic going forward (witness the NMEx series of
theorems). This is our first result along these lines, a useful theorem for other proofs, and
also illustrates a more general concept from Chapter LT [1559].
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Chapter V
Vectors

We have worked extensively in the last chapter with matrices, and some with vectors. In
this chapter we will develop the properties of vectors, while preparing to study vector spaces
(Chapter VS [963]). Initially we will depart from our study of systems of linear equations,
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but in Section LC [317] we will forge a connection between linear combinations and systems
of linear equations in Theorem SLSLC [329]. This connection will allow us to understand sys-
tems of linear equations at a higher level, while consequently discussing them less frequently.

Section VO
Vector Operations

In this section we define some new operations involving vectors, and collect some basic
properties of these operations. Begin by recalling our definition of a column vector as an
ordered list of complex numbers, written vertically (Definition CV [74]). The collection of
all possible vectors of a fixed size is a commonly used set, so we start with its definition.
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Definition VSCV

Vector Space of Column Vectors

The vector space C™ is the set of all column vectors (Definition CV [74]) of size m with
entries from the set of complex numbers, C.

(This definition contains Notation VSCV.) A

When a set similar to this is defined using only column vectors where all the entries are
from the real numbers, it is written as R™ and is known as Euclidean m-space.

The term “vector” is used in a variety of different ways. We have defined it as an
ordered list written vertically. It could simply be an ordered list of numbers, and written
as (2, 3, —1, 6). Or it could be interpreted as a point in m dimensions, such as (3, 4, —2)
representing a point in three dimensions relative to z, y and z axes. With an interpretation
as a point, we can construct an arrow from the origin to the point which is consistent with
the notion that a vector has direction and magnitude.

All of these ideas can be shown to be related and equivalent, so keep that in mind as you
connect the ideas of this course with ideas from other disciplines. For now, we’ll stick with
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the idea that a vector is a just a list of numbers, in some particular order.

Subsection VEASM
Vector Equality, Addition, Scalar Multiplication

We start our study of this set by first defining what it means for two vectors to be the same.

Definition CVE
Column Vector Equality
Suppose that u, v € C™. Then u and v are equal, written u = v if

], = [v]; 1<i<m
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(This definition contains Notation CVE.) A

Now this may seem like a silly (or even stupid) thing to say so carefully. Of course two
vectors are equal if they are equal for each corresponding entry! Well, this is not as silly as
it appears. We will see a few occasions later where the obvious definition is not the right
one. And besides, in doing mathematics we need to be very careful about making all the
necessary definitions and making them unambiguous. And we’ve done that here.

)

Notice now that the symbol ‘=" is now doing triple-duty. We know from our earlier
education what it means for two numbers (real or complex) to be equal, and we take this
for granted. In Definition SE [2343] we defined what it meant for two sets to be equal. Now
we have defined what it means for two vectors to be equal, and that definition builds on
our definition for when two numbers are equal when we use the condition u; = v; for all
1 <4 < m. So think carefully about your objects when you see an equal sign and think
about just which notion of equality you have encountered. This will be especially important
when you are asked to construct proofs whose conclusion states that two objects are equal.

OK, let’s do an example of vector equality that begins to hint at the utility of this
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definition.

Example VESE
Vector equality for a system of equations
Consider the system of linear equations in Archetype B [2409],

—Tx1 — 629 — 12253 = —33
51’1 + 5272 + 7133 =24
x|+ 45[)3 =5

Note the use of three equals signs — each indicates an equality of numbers (the linear
expressions are numbers when we evaluate them with fixed values of the variable quantities).
Now write the vector equality,

—71‘1 — 6$2 — 125[3 —33
5x1 + bxo + Tx3 = | 24
1 + 43 5
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By Definition CVE [288], this single equality (of two column vectors) translates into three
simultaneous equalities of numbers that form the system of equations. So with this new
notion of vector equality we can become less reliant on referring to systems of simultaneous
equations. There’s more to vector equality than just this, but this is a good example for
starters and we will develop it further. X

We will now define two operations on the set C™. By this we mean well-defined procedures
that somehow convert vectors into other vectors. Here are two of the most basic definitions
of the entire course.

Definition CVA

Column Vector Addition

Suppose that u, v € C™. The sum of u and v is the vector u + v defined by
[u+v|, = [ul, 1<i<m

7

+[v]

7
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(This definition contains Notation CVA.) A

So vector addition takes two vectors of the same size and combines them (in a natural
way!) to create a new vector of the same size. Notice that this definition is required, even
if we agree that this is the obvious, right, natural or correct way to do it. Notice too that
the symbol ‘4’ is being recycled. We all know how to add numbers, but now we have the
same symbol extended to double-duty and we use it to indicate how to add two new objects,
vectors. And this definition of our new meaning is built on our previous meaning of addition
via the expressions u; + v;. Think about your objects, especially when doing proofs. Vector
addition is easy, here’s an example from C*.

Example VA
Addition of two vectors in C*
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If
2 -1
|3 o |5
~ |4 )
) 7
then
9 —1 24 (—1) 1
-3 50 | -3+5 | |2
UWEV=d T 2 T a2 | T 6
2 -7 2+ (-7) -5

X

Our second operation takes two objects of different types, specifically a number and a
vector, and combines them to create another vector. In this context we call a number a
scalar in order to emphasize that it is not a vector.
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Definition CVSM
Column Vector Scalar Multiplication

Suppose u € C™ and « € C, then the scalar multiple of u by « is the vector au defined
by

1<i:<m

(This definition contains Notation CVSM.) A

Notice that we are doing a kind of multiplication here, but we are defining a new type,
perhaps in what appears to be a natural way. We use juxtaposition (smashing two symbols
together side-by-side) to denote this operation rather than using a symbol like we did with
vector addition. So this can be another source of confusion. When two symbols are next to
each other, are we doing regular old multiplication, the kind we’ve done for years, or are we
doing scalar vector multiplication, the operation we just defined? Think about your objects
— if the first object is a scalar, and the second is a vector, then it must be that we are doing
our new operation, and the result of this operation will be another vector.
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Notice how consistency in notation can be an aid here. If we write scalars as lower case
Greek letters from the start of the alphabet (such as «, 3, ...) and write vectors in bold
Latin letters from the end of the alphabet (u, v, ...), then we have some hints about what
type of objects we are working with. This can be a blessing and a curse, since when we go
read another book about linear algebra, or read an application in another discipline (physics,
economics, ... ) the types of notation employed may be very different and hence unfamiliar.

Again, computationally, vector scalar multiplication is very easy.

Example CVSM
Scalar multiplication in C°
If
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and a = 6, then

3 6(3) 18
1 6(1) 6
au=6|-2| = [6(-2)| = |—12
4 6(4) 24
-1 6(—1) —6

Vector addition and scalar multiplication are the most natural and basic operations to
perform on vectors, so it should be easy to have your computational device form a lin-
ear combination. See:  Computation VLC.MMA [2291]  Computation VLC.TI86 [2307]
Computation VLC.TI83 [2311] Computation VLC.SAGE [2322]
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Subsection VSP
Vector Space Properties

With definitions of vector addition and scalar multiplication we can state, and prove, several
properties of each operation, and some properties that involve their interplay. We now collect
ten of them here for later reference.

Theorem VSPCV

Vector Space Properties of Column Vectors

Suppose that C™ is the set of column vectors of size m (Definition VSCV [287]) with addition
and scalar multiplication as defined in Definition CVA [291] and Definition CVSM [293].
Then

¢ ACC Additive Closure, Column Vectors
Ifu, veCm” thenu+veCm
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e SCC Scalar Closure, Column Vectors
If « € C and u € C™, then au € C™.

CC Commutativity, Column Vectors
I[fu veC” thenu+v=v+u.

AAC Additive Associativity, Column Vectors
Ifu, v, weC” thenu+ (v+w)=(u+v)+w.

e ZC Zero Vector, Column Vectors
There is a vector, 0, called the zero vector, such that u+ 0 = u for all u € C™.

e AIC Additive Inverses, Column Vectors
If u € C™, then there exists a vector —u € C™ so that u+ (—u) = 0.

e SMAC Scalar Multiplication Associativity, Column Vectors
If a, p € C and u € C™, then a(fu) = (af)u.
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e DVAC Distributivity across Vector Addition, Column Vectors
If o € C and u, v e C™, then a(u+v) =au+ av.

e DSAC Distributivity across Scalar Addition, Column Vectors
If a, p € C and u € C™, then (o + f)u = au + fu.

¢ OC One, Column Vectors
If u e C™, then 1u = u.

O

Proof While some of these properties seem very obvious, they all require proof. How-
ever, the proofs are not very interesting, and border on tedious. We’ll prove one version
of distributivity very carefully, and you can test your proof-building skills on some of the
others. We need to establish an equality, so we will do so by beginning with one side of the
equality, apply various definitions and theorems (listed to the right of each step) to massage
the expression from the left into the expression on the right. Here we go with a proof of
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Property DSAC [298]. For 1 < i <m,

(o + p)u], = (o + ) [u], Definition CVSM [293]
= alul, + S [u]; Distributivity in C
= [au], + [Bu], Definition CVSM [293]
= [au + Pu, Definition CVA [291]

Since the individual components of the vectors (o + f)u and au + fu are equal for all i,
1 <i < m, Definition CVE [288] tells us the vectors are equal. [ |

Many of the conclusions of our theorems can be characterized as “identities,” especially
when we are establishing basic properties of operations such as those in this section. Most
of the properties listed in Theorem VSPCV [297] are examples. So some advice about the

style we use for proving identities is appropriate right now. Have a look at Technique PI
[2375].
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Be careful with the notion of the vector —u. This is a vector that we add to u so that the
result is the particular vector 0. This is basically a property of vector addition. It happens
that we can compute —u using the other operation, scalar multiplication. We can prove this
directly by writing that

[—u]; = —[u]; = (=1) [u]; = [(=1)u];

We will see later how to derive this property as a consequence of several of the ten properties
listed in Theorem VSPCV [297].

Similarly, we will often write something you would immediately recognize as “vector
subtraction.” This could be placed on a firm theoretical foundation — as you can do yourself
with Exercise VO.T30 [308].

A final note. Property AAC [297] implies that we do not have to be careful about how
we “parenthesize” the addition of vectors. In other words, there is nothing to be gained by
writing (u + v) 4+ (w + (x +y)) rather than u+ v +w + x +y, since we get the same result
no matter which order we choose to perform the four additions. So we won’t be careful
about using parentheses this way.
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Subsection READ
Reading Questions

1. Where have you seen vectors used before in other courses? How were they different?
2. In words, when are two vectors equal?

3. Perform the following computation with vector operations

1
215 +(=3) |6
0 5
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Subsection EXC
Exercises

C10 Compute

2 1 -1
-3 2 3
414 +(=2)|-5[+|0
1 2 1
0 4 2

Contributed by Robert Beezer — Solution [310]
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C11 Solve the given vector equation for z, or explain why no solution exists:

1 2 11
31 2| +41|0] =16
-1 T 17

Contributed by Chris Black  Solution [310]

C12 Solve the given vector equation for «, or explain why no solution exists:

1 3 -1
al2|+4]14] =10
-1 2 4

Contributed by Chris Black  Solution [311]
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C13 Solve the given vector equation for «, or explain why no solution exists:

3 6 0
al 2|+ |1 =1]-3
-2 2 6

Contributed by Chris Black  Solution [312]

C14 Find « and [ that solve the vector equation.

o]+ )= b

Contributed by Chris Black  Solution [313]

C15 Find « and [ that solve the vector equation.

[l = i
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Contributed by Chris Black  Solution [313]

T5 Fill in each blank with an appropriate vector space property to provide justification for
the proof of the following proposition:

Proposition 1. For any vectors u, v, w € C™, if u+ v =u + w, then v =w.

Proof: Let u, v, w € C™, and suppose u+v =u + w.

1. Then —u+ (u+v)=—u+ (u+w), Additive Property of Equality
2. so(—u+u)+v=(—u+u) +w
3. Thus, we have 0 +v =0+ w,

4. and it follows that v = w.

Thus, for any vectors u, v, w € C", if u+ v=u+w, then v=w. [
Contributed by Chris Black  Solution [315]

T6 Fill in each blank with an appropriate vector space property to provide justification for
the proof of the following proposition:
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Proposition 2. For any vector u € C™, Ou = 0.

Proof: Let u e C™.

Since 0 + 0 = 0, we have Ou = (0 + 0)u. Substitution
We then have Ou = Ou + Ou.
It follows that Ou + [—(0u)] = (Ou + Ou) + [—(0u)], Additive Property of Equality
so Ou + [—(0u)] = Ou + (Ou + [—(0u))),
so that 0 = Ou + O,

and thus 0 = Ou.

Thus, for any vector u € C”, Qu=0. [
Contributed by Chris Black  Solution [315]

SERSA N

T7 Fill in each blank with an appropriate vector space property to provide justification for
the proof of the following proposition:

Proposition 3. For any scalar ¢, c0 = 0.

Proof: Let ¢ be an arbitrary scalar.
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Then ¢0 = ¢ (0+ 0),
so c0=c0+cO0.
We then have ¢0 + (—c0) = (c0+ ¢0) + (—c0), Additive Property of Equality
so that c0+ (—c0) = c0+ (c0+ (—c0)).
It follows that 0 = c0 + 0,

and finally we have 0 = ¢O0.

SERA

Thus, for any scalar ¢, cO0=0. [
Contributed by Chris Black  Solution [316]

T13 Prove Property CC [297] of Theorem VSPCV [297]. Write your proof in the style of
the proof of Property DSAC [298] given in this section.
Contributed by Robert Beezer — Solution [316]

T17 Prove Property SMAC [298] of Theorem VSPCV [297]. Write your proof in the style
of the proof of Property DSAC [298] given in this section.
Contributed by Robert Beezer
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T18 Prove Property DVAC [298] of Theorem VSPCV [297]. Write your proof in the style
of the proof of Property DSAC [298] given in this section.
Contributed by Robert Beezer

T30 Suppose u and v are two vectors in C™. Define a new operation, called “subtraction,”
as the new vector denoted u — v and defined by

u—v],=[u], - [v]; 1<i<m

Prove that we can express the subtraction of two vectors in terms of our two basic operations.
More precisely, prove that u — v = u+ (—1)v. So in a sense, subtraction is not something
new and different, but is just a convenience. Mimic the style of similar proofs in this section.
Contributed by Robert Beezer

T31 Review the definition of vector subtraction in Exercise VO.T30 [308]. Prove, by using
counterexamples, that vector subtraction is not commutative and not associative.
Contributed by Robert Beezer
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T32 Review the definition of vector subtraction in Exercise VO.T30 [308]. Prove that
vector subtraction obeys a distributive property. Specifically, prove that a(u — v) = au —
av.

Can you give two different proofs? Base one on the definition given in Exercise VO.T30
[308] and base the other on the equivalent formulation proved in Exercise VO.T30 [308].
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer — Statement [302]
b}
—13
26
1
—6

C11 Contributed by Chris Black — Statement [303]
Performing the indicated operations (Definition CVA [291], Definition CVSM [293]), we
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obtain the vector equations

11 1 2 11
6| =3|2]|+4(0] = 6
17 -1 T —3+4x

Since the entries of the vectors must be equal by Definition CVE [288], we have —3+4x = 17,
which leads to z = 5.

C12 Contributed by Chris Black — Statement [303]
Performing the indicated operations (Definition CVA [291], Definition CVSM [293]), we
obtain the vector equations

6} 12 a+12 —1
200 | + [16| = |20 +16] = | O
-« 8 —a+ 8 4

Thus, if a solution « exists, by Definition CVE [288] then o must satisfy the three equations:
a+12=-1
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20+16 =0
—a+8=4
which leads to a = —13, @ = —8 and a = 4. Since « cannot simultaneously have three

different values, there is no solution to the original vector equation.

C13 Contributed by Chris Black — Statement [304]
Performing the indicated operations (Definition CVA [291], Definition CVSM [293]), we
obtain the vector equations

3a 6 3a+ 6 0
20 | + |11l = | 2a+1 | = [-3
—2« 2 —2a+ 2 6

Thus, if a solution « exists, by Definition CVE [288] then o must satisfy the three equations:

3aa+6=0
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204+ 1= -3
—2a+4+2=06
which leads to 3a = —6, 2 = —4 and —2a = 4. And thus, the solution to the given vector
equation is a = —2.

C14 Contributed by Chris Black — Statement [304]
Performing the indicated operations (Definition CVA [291], Definition CVSM [293]), we
obtain the vector equations

3| |1 o |a+0] |«

ol =l o BB -
Since the entries of the vectors must be equal by Definition CVE [288], we have o = 3 and
8= 2.

C15 Contributed by Chris Black — Statement [304]
Performing the indicated operations (Definition CVA [291], Definition CVSM [293]), we
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obtain the vector equations

5 |2 1| |2a+p

b =+ of = 255
Since the entries of the vectors must be equal by Definition CVE [288], we obtain the system
of equations

20+ =5
a+ 36 =0.

which we can solve by row-reducing the augmented matrix of the system,

2 1 5| RREF 0 3
R

Thus, the only solution is @ = 3, § = —1.
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T5 Contributed by Chris Black  Statement [305]

1. (Additive Property of Equality)

2. Additive Associativity Property AAC [297]
3. Additive Inverses Property AIC [298]
4.  Zero Vector Property ZC [297]

T6 Contributed by Chris Black  Statement [305]

1. (Substitution)

2. Distributive across Scalar Addition Property DSAC [298]
3. (Additive Property of Equality)

4. Additive Associativity Property AAC [297]
5. Additive Inverses Property AIC [298]
6. Zero Vector Property ZC [297]

T7 Contributed by Chris Black  Statement [306]
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1. Zero Vector Property ZC [297]

2. Distributive across Vector Addition Property DVAC [298]
3. (Additive Property of Equality)

4. Additive Associativity Property AAC [297]
5. Additive Inverses Property AIC [298]
6. Zero Vector Property ZC [297]

T13 Contributed by Robert Beezer  Statement [307]
For all 1 <17 < m,

u+v|, = [u], +[v], Definition CVA [291]
= [v], + [u], Commutativity in C
=[v+u], Definition CVA [291]

With equality of each component of the vectors u+v and v+ u being equal Definition CVE
[288] tells us the two vectors are equal.
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Section LC

Linear Combinations
| m | | |

In Section VO [286] we defined vector addition and scalar multiplication. These two oper-
ations combine nicely to give us a construction known as a linear combination, a construct
that we will work with throughout this course.
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Subsection LC
Linear Combinations

Definition LCCV

Linear Combination of Column Vectors

Given n vectors uy, us, us, ..., u, from C™ and n scalars aq, asg, as, ..., «,, their linear
combination is the vector

ajuy + aous + agug + - -+ U,

A

So this definition takes an equal number of scalars and vectors, combines them using our
two new operations (scalar multiplication and vector addition) and creates a single brand-
new vector, of the same size as the original vectors. When a definition or theorem employs
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a linear combination, think about the nature of the objects that go into its creation (lists of
scalars and vectors), and the type of object that results (a single vector). Computationally,
a linear combination is pretty easy.

Example TLC
Two linear combinations in C°
Suppose that

Oélz]_ 062:—4 a3:2 064:—1
and
[ 2] [ 6 ] [—5] [ 3]
4 3 2 2
-3 0 1 -5

u; = Uy = usz — uy =

O N =
—
cl)J

wW — =
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then their linear combination is

2 6 -5 3
4 3 2 2
-3 0 1 —5
ajuy + agug + agug + auug = (1) 1 + (—4) _9 +(2) 1 +(=1) 7
2 1 —3 1
EN | 4 | | 0 ] | 3 ]
[ 2] —241 [-10] [-3] [-35
4 12 4 -2 —6
-3 0 2 50 | 4
Sl s | T 2| Tl T 4
2 —4 —6 —1 —9
9] [-16] o] [-3] [-10

A different linear combination, of the same set of vectors, can be formed with different
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scalars. Take

pr=3 B2 =0

and form the linear combination

frug + Soug + fsus + faug = (3)

=~ DN

NoXN RN

OO OO oo

Bs=—1
- F 3]
2
-5
1
- e 3 -
—22
20
B 1
o 1
—10
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Notice how we could keep our set of vectors fixed, and use different sets of scalars to construct
different vectors. You might build a few new linear combinations of u;, us, us, uy right now.
We'll be right here when you get back. What vectors were you able to create? Do you think
you could create the vector
- 13
15
5
—17
2
25

with a “suitable” choice of four scalars? Do you think you could create any possible vector
from C° by choosing the proper scalars? These last two questions are very fundamental, and
time spent considering them now will prove beneficial later. X

Our next two examples are key ones, and a discussion about decompositions is timely.
Have a look at Technique DC [2377] before studying the next two examples.
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Example ABLC

Archetype B as a linear combination

In this example we will rewrite Archetype B [2409] in the language of vectors, vector equality
and linear combinations. In Example VESE [289] we wrote the system of m = 3 equations
as the vector equality

—Tx1 — 629 — 1225 —-33
Bx1 + dxg + Tx3 =1 24
x|+ 41’3 5

Now we will bust up the linear expressions on the left, first using vector addition,

—7331 —6.’132 —1233'3 —33
Sy | + | Bag | + | Tas | = | 24
1 0xo 4, 5

Now we can rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector,
where the scalar is one of the unknown variables, converting the left-hand side into a linear
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combination
-7 —6 —12 —-33
Ty | D | Fxe | D | +a3| 7T | =] 24
1 0 4 5

We can now interpret the problem of solving the system of equations as determining values
for the scalar multiples that make the vector equation true. In the analysis of Archetype B
[2409], we were able to determine that it had only one solution. A quick way to see this is to
row-reduce the coefficient matrix to the 3 x 3 identity matrix and apply Theorem NMRRI
[252] to determine that the coefficient matrix is nonsingular. Then Theorem NMUS [258]
tells us that the system of equations has a unique solution. This solution is

I1:—3 IQZE) l‘3:2

So, in the context of this example, we can express the fact that these values of the variables
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are a solution by writing the linear combination,

—7 —6 ~12 —33
(=35 |+ |5 |+@| 7 |=]|2
1 0 4 5

Furthermore, these are the only three scalars that will accomplish this equality, since they
come from a unique solution.

Notice how the three vectors in this example are the columns of the coefficient matrix of
the system of equations. This is our first hint of the important interplay between the vectors
that form the columns of a matrix, and the matrix itself. X

With any discussion of Archetype A [2395] or Archetype B [2409] we should be sure to
contrast with the other.

Example AALC
Archetype A as a linear combination
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As a vector equality, Archetype A [2395] can be written as

$1—£L’2—|—2l’3 1
2$1+332—|—.CE3 = |8
T+ X2 5

Now bust up the linear expressions on the left, first using vector addition,

I —XT9 2I3 1
2.2131 + i) + | x3 = |8
I T2 OCCg 5)

Rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector, where the scalar
is one of the unknown variables, converting the left-hand side into a linear combination

1 -1 2 1
T 2 + T 1 + T3 1{ = 1|8
1 1 0 5
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Row-reducing the augmented matrix for Archetype A [2395] leads to the conclusion that the
system is consistent and has free variables, hence infinitely many solutions. So for example,
the two solutions

r = To = 3 T3 =
=3 To = 2 T3 =
can be used together to say that,
1 —1 [2 1 1 -1 2]
)2l +@) |1 [+ 1] =1{8]=@)[2|+2)|1|+(0) |1
1 1 0 5 1 1 0

Ignore the middle of this equation, and move all the terms to the left-hand side,

1] ~1 2] 1 ~1 2 0
Q2+ 1|+ 1|+ [2] +(=2) | 1] +(-0 |1 0
1] 1 0] 1 1 0 0
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Regrouping gives

1 —1 2 0
(- 2| +(1) | 1]|+(1)]|1]=1|0
1 1 0 0

Notice that these three vectors are the columns of the coefficient matrix for the system of
equations in Archetype A [2395]. This equality says there is a linear combination of those
columns that equals the vector of all zeros. Give it some thought, but this says that

[Elz—]_ ZL‘2:1 [)33:1

is a nontrivial solution to the homogeneous system of equations with the coefficient matrix
for the original system in Archetype A [2395]. In particular, this demonstrates that this
coefficient matrix is singular. X

There’s a lot going on in the last two examples. Come back to them in a while and make
some connections with the intervening material. For now, we will summarize and explain
some of this behavior with a theorem.
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Theorem SLSLC

Solutions to Linear Systems are Linear Combinations

Denote the columns of the m x n matrix A as the vectors A, Ay, As, ..., A,. Then x
is a solution to the linear system of equations £LS(A, b) if and only if b equals the linear
combination of the columns of A formed with the entries of x,

x|, A1+ [x], Ao + [x[; Az + -+ [x], A, =D

n

O

Proof The proof of this theorem is as much about a change in notation as it is about
making logical deductions. Write the system of equations LS(A, b) as

1171 + a12%2 + 1323 + - + AT, = by
a91T1 -+ 999 —+ 9313 + -+ Aonly = b2

as31T1 + a32T9 + 3373 + -+ a3nly = b3
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Am1T1 + Q2T + Gp3T3 + -+ - + Qpp Ty = bm

Notice then that the entry of the coefficient matrix A in row ¢ and column j has two names:
ai;j as the coefficient of x; in equation i of the system and [A;]. as the i-th entry of the
column vector in column j of the coefficient matrix A. Likewise, entry i of b has two names:
b; from the linear system and [b], as an entry of a vector. Our theorem is an equivalence
(Technique E [2364]) so we need to prove both “directions.”

(<) Suppose we have the vector equality between b and the linear combination of the
columns of A. Then for 1 <7 <m,

b; = [b], Notation CVC [75]
= [[x]; Ar + x|, Ag + [x]; Ag + - - + [x], Ay, Hypothesis
= [[x]; Au], + [[x], Ag]; + [[x]5 As], + - - + [[x],, An],  Definition CVA [291]
= [x]; [A4]; + [x]5 [Aa]; + [x]5 [As], + - - + [x],, [As) Definition CVSM [293]
= [x]; an + [x]y ain + [x]y ais + - + [x],, ain Notation CVC [75]

= an [x]; + a2 [x]y + iz [X]5 + - -+ ain [X],, Property CMCN [2333]
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This says that the entries of x form a solution to equation i of LS(A, b) for all 1 <i <m,
in other words, x is a solution to LS(A, b).

(=) Suppose now that x is a solution to the linear system L£S(A, b). Then for all
1<1<m,

(b, = b; Notation CVC [75]
= a1 (X)) + a [X], + a3 [X]; + - 4 an [X], Hypothesis
= [x]; air + [x]|y iz + [X]5 a3+ - - + [X],, @ Property CMCN [2333]
= [x]y [Aa]; + [y [Ao]; + [x]3 [As]; - - 4 [x],, [An];  Notation CVC [75]
= [[x]; A4], + [[x], Ao], + [[x]5 As], +--- + [[x], As],  Definition CVSM [293]
=

[
[X] A1+[ ] A2+[ ] A3++[X]nAn]

)

Definition CVA [291]

Since the components of b and the linear combination of the columns of A agree for all
1 <i < m, Definition CVE [288] tells us that the vectors are equal. [ |

In other words, this theorem tells us that solutions to systems of equations are linear
combinations of the n column vectors of the coefficient matrix (A ;) which yield the constant
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vector b. Or said another way, a solution to a system of equations £LS(A, b) is an answer
to the question “How can I form the vector b as a linear combination of the columns of
A?” Look through the archetypes that are systems of equations and examine a few of the
advertised solutions. In each case use the solution to form a linear combination of the
columns of the coefficient matrix and verify that the result equals the constant vector (see
Exercise LC.C21 [380]).
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Subsection VFSS
Vector Form of Solution Sets

We have written solutions to systems of equations as column vectors. For example Archetype

B [2409] has the solution x; = —3, x5 = 5, x3 = 2 which we now write as
I -3
X= |x2] = 5
I3 2

Now, we will use column vectors and linear combinations to express all of the solutions to a
linear system of equations in a compact and understandable way. First, here’s two examples
that will motivate our next theorem. This is a valuable technique, almost the equal of
row-reducing a matrix, so be sure you get comfortable with it over the course of this section.

Example VFSAD
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Vector form of solutions for Archetype D
Archetype D [2436] is a linear system of 3 equations in 4 variables. Row-reducing the
augmented matrix yields

1] 0 3 —2 4
0 [1] 1 =3 0
0 0 0 0 0

and we see r = 2 nonzero rows. Also, D = {1, 2} so the dependent variables are then x; and
xo. F'=1{3, 4, 5} so the two free variables are z3 and x,. We will express a generic solution
for the system by two slightly different methods, though both arrive at the same conclusion.

First, we will decompose (Technique DC [2377]) a solution vector. Rearranging each
equation represented in the row-reduced form of the augmented matrix by solving for the
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dependent variable in each row yields the vector equality,

T 4 — 3x3+ 214
To| —x3 + 3$4
T3 N xT3

T4 Ty

Now we will use the definitions of column vector addition and scalar multiplication to express
this vector as a linear combination,

4 —31'3 21’4

N I e N Definition CVA [291]
0 I3 0
0 0 T4
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4 -3 2
0 —1 3 .

= |l Fos| |t Definition CVSM [293]
0 0 1

We will develop the same linear combination a bit quicker, using three steps. While the
method above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of n —r
vectors, using the free variables as the scalars.

Xz
Xz
X = | = + x3 + x4

T

=W N =

Step 2. Use 0’s and 1’s to ensure equality for the entries of the the vectors with indices in F
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(corresponding to the free variables).

I

T2
X:$3:O+x31+$40

Ty 0 0 1

Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Convert
this equation into entries of the vectors that ensure equality for each dependent variable, one
at a time.

T 4 -3 2
r1 =4 — 313+ 214 = X = i; = 0 + 23 1 + x4 0
Ty 0 0 1
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1 4 -3 2
T 0 -1 3
To =0 — lwg + 324 = X = CU:QJ, =0 + 23 1 + 1y 0
Ty 0 0 1

This final form of a typical solution is especially pleasing and useful. For example, we can
build solutions quickly by choosing values for our free variables, and then compute a linear
combination. Such as

T1 4 -3 2 —12
_ __ 2 -1 o 3] 1T
T3=2,T4=—9 = X = 25 = 1o + (2) 1 + ( 5) ol = 9
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or,

0 -1 3 |8
m=11,=3 = x= 2=+ O +® [ = |1
zq] |0 0 113

You'll find the second solution listed in the write-up for Archetype D [2436], and you might
check the first solution by substituting it back into the original equations.

While this form is useful for quickly creating solutions, its even better because it tells us
exactly what every solution looks like. We know the solution set is infinite, which is pretty

-3 2

. . . -1 . 3
big, but now we can say that a solution is some multiple of 1 plus a multiple of 0
0 1
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4

0 . . . :
plus the fixed vector ol Period. So it only takes us three vectors to describe the entire

0
infinite solution set, provided we also agree on how to combine the three vectors into a linear
combination. X

This is such an important and fundamental technique, we’ll do another example.

Example VFS

Vector form of solutions

Consider a linear system of m = 5 equations in n = 7 variables, having the augmented
matrix A.

2 1 -1 -2 21 5 21
1 1 -3 1 11 2 =5
A=1]1 2 -8 5 1 1 -6 -—-15
3 3 -9 3 6 5 2 =24
-2 -1 1 2 11 -9 =30
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Row-reducing we obtain the matrix

0O 2 -3 0 0 9 15
0 -5 4 0 0 -8 —10
B=|0 0 0 0 0 —6 11
00 0 0 0 7 21
0O 0 0 0 0 0 0 O

and we see r = 4 nonzero rows. Also, D = {1, 2, 5, 6} so the dependent variables are then
x1, 9, x5, and xg. F' = {3, 4, 7, 8} so the n —r = 3 free variables are x3, x4 and z7. We will
express a generic solution for the system by two different methods: both a decomposition
and a construction.

First, we will decompose (Technique DC [2377]) a solution vector. Rearranging each
equation represented in the row-reduced form of the augmented matrix by solving for the
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dependent variable in each row yields the vector equality,

1 [ 15 — 225 + 324 — 977 |
T —10 + 523 — 424 + 8x7
T3 T3

Tyg| = Ty

Ts 11 + 627

Te —21 — Txy

[ L7 ] L L7 _
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Now we will use the definitions of column vector addition and scalar multiplication to de-

compose this generic solution vector as a linear combination,

—10

11
—21

F 15 ]

—21}3
5]33

S
w

o O OO

3374

—9513’7
8$7

6277
—71‘7
L7

Definition CVA [291]

Version 2.30



Subsection LC.VFSS Vector Form of Solution Sets 346

(15 ] —2 3 -9
~10 5 —4 8
0 1 0 0
— 1 0 |42 |0 | +as| 1 |+ar]|0 Definition CVSM [293]
11 0 0 6
—21 0 0 —7
0 [0 K 1]

We will now develop the same linear combination a bit quicker, using three steps. While the
method above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of n —r
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vectors, using the free variables as the scalars.

X1
X2
€3

Ts
Te
Xrr

+ZE3

+ x4

+ZE7

Step 2. Use 0’s and 1’s to ensure equality for the entries of the the vectors with indices in F’
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(corresponding to the free variables).

X
o)
T3 0 1 0 0
X = |Ty4| = O +fL‘3 0 +ZL‘4 1 +l’7 0
Ts
Te
T 0 0 0 1

Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Convert
this equation into entries of the vectors that ensure equality for each dependent variable, one

Version 2.30



Subsection LC.VFSS Vector Form of Solution Sets 349

at a time.

Ir =

X2

15 — 223 4+ 3z4 — 927

—10 + a3 — 4xy + 87

= X =

= X =

T
Z2
Z3
Ty
Ts
Te

i

x1
Z2
Z3
Ty
Ts
Tg
x7

5]

"‘1'3

+£IZ'3

S = Ot

+I4

‘|’Q?4

3 -9

0 0

11 + XT7 0

m 3 g7
—4 8
0 0
1| 4+x;]0
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T
Tg
Z3
$5:11+6.CE7 = X = |4
Ty
Tg
_x7_

T
o)
I3
376:_21_7377 = X = |4
Ty
Tg

X

F 15T
—10
0
0
11

+ 3

+ZL‘3

+ x4

+Qf4

This final form of a typical solution is especially pleasing and useful. For example, we can
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build solutions quickly by choosing values for our free variables, and then compute a linear
combination. For example

r3=2,04=—4, 7 =3 =
(2] [ 15 ] [—2] [ 3] [—9] [ 28]
T —10 5 —4 8 40
T3 0 1 0 0 2

x=|zg|l =0 [+2)|O0|[+(-4H) |1 |[+B)|0]|=]|—4
x5 11 0 0 6 29
Tg —21 0 0 -7 —42
| 7| | 0 | 0 | | 0 ] | 1] | 3

or perhaps,

r3=0,x4=2,07=1 =
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) [ 15 ] -2 3 -9 2
To —10 5 —4 8 15
T3 0 1 0 0 5
x= |z =] 0 |+0G)|0|+@|1]|+@)]0]|=]2
T 11 0 0 6 17
Tg —21 0 0 —7 —28
|27 | | 0] | 0 | 0 1 1]

or even,

r3=0,24=0,27=0 =
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] [157 —2 3 —9] [15]
2 10 5 —4 8 —10
3 0 1 0 0 0
x=|zg|=| 0 |+@|0|+@|1|+@©@]|0]|=]0
5 11 0 0 6 11
6 —21 0 0 —7 —21
] |0 ] |0 |0 1] [0 ]

So we can compactly express all of the solutions to this linear system with just 4 fixed
vectors, provided we agree how to combine them in a linear combinations to create solution
vectors.

Suppose you were told that the vector w below was a solution to this system of equations.
Could you turn the problem around and write w as a linear combination of the four vectors
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c, uy, Uy, uz? (See Exercise LC.M11 [385].)
(100 ] [ 15 ] [—2 3] [—9]
—75 —10 5 —4 8
7 0 1 0 0
W = 9 c= 0 u =10 u = (1 u3=1,0
—37 11 0 0 6
35 —21 0 0 -7
i -8 i i 0 i i 0 0 i i 1 i
X

Did you think a few weeks ago that you could so quickly and easily list all the solutions
to a linear system of 5 equations in 7 variables?

We'll now formalize the last two (important) examples as a theorem.

Theorem VFSLS

Vector Form of Solutions to Linear Systems

Suppose that [A| b] is the augmented matrix for a consistent linear system LS(A, b) of m
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equations in n variables. Let B be a row-equivalent m X (n + 1) matrix in reduced row-
echelon form. Suppose that B has r nonzero rows, columns without leading 1’s with indices

F =A{fi, fo, f3, -+, fu—r, n+ 1}, and columns with leading 1’s (pivot columns) having
indices D = {ds, da, ds, ..., d.}. Define vectors c, u;, 1 < j <n —r of size n by

0 ifie F

[C]i = e .
[Blypyr i€ D, i=d;
1 le S F, 1= fj
], =40 ificF i#tf .
—~ (B, ifieD,i=d,

Then the set of solutions to the system of equations LS(A, b) is
S={c+aju; +asus +azuz+ -+ a, W, .| a, ay, az, ..., a,_, € C}
O
Proof First, LS(A, b) is equivalent to the linear system of equations that has the matrix
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B as its augmented matrix (Theorem REMES [88]), so we need only show that S is the
solution set for the system with B as its augmented matrix. The conclusion of this theorem
is that the solution set is equal to the set S, so we will apply Definition SE [2343].

We begin by showing that every element of S is indeed a solution to the system. Let
a1, g, a3, ..., a,—, be one choice of the scalars used to describe elements of S. So an
arbitrary element of S, which we will consider as a proposed solution is

X=Cc+ou; +aus +azuz+ -+ ap_pUpy_p

When r +1 < ¢ < m, row ¢ of the matrix B is a zero row, so the equation represented
by that row is always true, no matter which solution vector we propose. So concentrate on
rows representing equations 1 < ¢ < r. We evaluate equation ¢ of the system represented
by B with the proposed solution vector x and refer to the value of the left-hand side of the
equation as [,

Be = [Blyy x|y + [Bly [xly + [Blyg [x]5 + - - + [Bly, [X]

n

Version 2.30



Subsection LC.VFSS Vector Form of Solution Sets 357

Since [B],, =0 for all 1 <4 <r, except that [B],, =1, we see that 3, simplifies to

Be = x|, + [Blyy, (XIy, + [Blyg, [XI g, + [Blyg, Xl gy + -+ [Blyy, X,

Notice that for 1 <i<n —r

[X]fi = [C]fi + o [ul]fi + [u2]fi + a3 [US]fi + -+ [ui]fi + - Qpyy [un—r]fi
=04 a1(0) + a2(0) + a3(0) + - - + a;(1) + - - - + @, —(0)

So [, simplifies further, and we expand the first term

Be = [X]dg + [B]éfl Qg + [B]zfQ Qg + [B]efg az+ -+ [B]Kfn_,« Qn—r
= [c+ au; + aguy + azug + - an Uy ]y,
[B]Zfl Qq + [B]zfQ Qg + [B]zfg Qg+ - [B]an_r Op—r
= [c]g, + a1 [w]y, +as [wo]y, + asfus]y, + - + anr [Un]y, +
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[Blyy, an + [Blyy, a2 + [Blyy, a3+ -+ + Bl oy

= [B]Z,n+1 +ai(— [B]E,fl) + ag(— [B]e,fQ) + ag(— [B]e,f3) + o (- [B]Nn_T)ﬂL
[Blys, a1+ [Blyp, a2 + [Blyy as + -+ [Blyy, | tnr

= [B]

fn+1

So ¢ began as the left-hand side of equation ¢ of the system represented by B and we now
know it equals [B] ¢my1s the constant term for equation £ of this system. So the arbitrarily
chosen vector from S makes every equation of the system true, and therefore is a solution
to the system. So all the elements of S are solutions to the system.

For the second half of the proof, assume that x is a solution vector for the system having
B as its augmented matrix. For convenience and clarity, denote the entries of x by x;, in
other words, z; = [x],. We desire to show that this solution vector is also an element of the
set S. Begin with the observation that a solution vector’s entries makes equation ¢ of the
system true for all 1 < ¢ < m,

[B]m T+ [B]m Ty + [3]4,3 T3+ -0+ [B]e,n Ln = [B]Z,n—i—l
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When ¢ < r, the pivot columns of B have zero entries in row ¢ with the exception of column
dy, which will contain a 1. So for 1 < /¢ < r, equation ¢ simplifies to

Lzq, + [B]K,fl T+ [B]z,fz Tp + [B]e,fg e [B]e,fn,r zs, . = [B]

—r ln+1
This allows us to write,
[X]de - xdl
= [B]e,n_H - [B]e,fl Tp — [B]g,fQ Ty — [B]e,fg, L [B]e,fn,r Ly -

= [c]dz + xfl [ul]dg + fo [u2:|dg —I— :Ef3 [ug}de + e + :L‘fnf'r [un_r]dg

= [ctopm+apu +apus o Ty, U],
This tells us that the entries of the solution vector x corresponding to dependent variables
(indices in D), are equal to those of a vector in the set S. We still need to check the other

entries of the solution vector x corresponding to the free variables (indices in F') to see if
they are equal to the entries of the same vector in the set S. To this end, suppose ¢ € F' and
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t = f;. Then

[X]i =Ti= Ty
=0+ OIfl + Ol‘fQ + OIfB +--F Oxfj_l + 1$fj + OIfj+1 +--- 4+ OIfnir
= [C]z Ty [ul]i + 2y, [u2]i + Xy, [u3]i +e oy [uj]i Tt Ty, [unfr]i

= [c +xpu 00+ + xfn_Tun,r}

%

So entries of x and c+xpu; +xp,up + -+ x4, W, are equal and therefore by Definition

CVE [288] they are equal vectors. Since xy,, xy,, Tf,, ..., Ty, , are scalars, this shows us
that x qualifies for membership in S. So the set S contains all of the solutions to the system.
[

Note that both halves of the proof of Theorem VFSLS [352] indicate that a; = [x]}..
In other words, the arbitrary scalars, «;, in the description of the set S actually have more
meaning — they are the values of the free variables [x],, 1 <4 <n —r. So we will often
exploit this observation in our descriptions of solution sets.
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Theorem VFSLS [352] formalizes what happened in the three steps of Example VFSAD
[334]. The theorem will be useful in proving other theorems, and it it is useful since it
tells us an exact procedure for simply describing an infinite solution set. We could program
a computer to implement it, once we have the augmented matrix row-reduced and have
checked that the system is consistent. By Knuth’s definition, this completes our conversion
of linear equation solving from art into science. Notice that it even applies (but is overkill) in
the case of a unique solution. However, as a practical matter, I prefer the three-step process
of Example VFSAD [334] when I need to describe an infinite solution set. So let’s practice
some more, but with a bigger example.

Example VFSAI
Vector form of solutions for Archetype I
Archetype T [2502] is a linear system of m = 4 equations in n = 7 variables. Row-reducing
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the augmented matrix yields

1] 4 0 02 1 -3 4
0 01l 01 -3 5 2
00 0 [1]2 -6 6 1
000 00 O0 0 O

and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 3, 4} so the r
dependent variables are x4, 3, 4. The columns without leading 1’s are F' = {2, 5, 6, 7, 8},
so the n — r = 4 free variables are x5, x5, xg, T7.

Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear combination
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of n —r = 4 vectors (u, uy, uz, uy), using the free variables as the scalars.

T
T2
I3
X = |Ty4| = +ZE2 +l’5 +ZE6 +l’7
Ts
Te
Ty

Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corresponding entry
of the the vectors. Take note of the pattern of 0’s and 1’s at this stage, because this is the
best look you’ll have at it. We'll state an important theorem in the next section and the
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proof will essentially rely on this observation.

Ty
T2
T3
X = |24
Ts
Te
T

0

0
0
0

+ X2

1

0
0
0

+ 5

0

+ xg

O =

+ x7

0
0
1

Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Convert
this equation into entries of the vectors that ensure equality for each dependent variable, one

at a time.

1 =4 — 4x9 — 225 — lwg + 327

=
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T3 =24 029 — x5+ 326 — D27 =

I
T2
Zs3
Ty
Ts
Te
T7

T
T2
T3
Ty
Ts
Zg

X

0

0

4
0
2

o

+ T2

+ Zo

0

0

—4
1
0

e

+ Zg

+ZE6

O =

+ x7

+l’7
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4 =14 0x9 — 225 + 626 — 627 =

1 4 —4 -2 -1 3

T 0 1 0 0 0

T3 2 0 —1 3 -5
Xx=|zy| = 1| 4+22| O | 4+25|-2| +26| 6 | +27|—6

T 0 0 1 0 0

Tg 0 0 0 1 0

| 7 | 0] | 0] | 0] | 0] [ 1]

We can now use this final expression to quickly build solutions to the system. You might try
to recreate each of the solutions listed in the write-up for Archetype I [2502]. (Hint: look at
the values of the free variables in each solution, and notice that the vector ¢ has 0’s in these
locations.)

Even better, we have a description of the infinite solution set, based on just 5 vectors,
which we combine in linear combinations to produce solutions.
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Whenever we discuss Archetype T [2502] you know that’s your cue to go work through
Archetype J [2515] by yourself. Remember to take note of the 0/1 pattern at the conclusion
of Step 2. Have fun — we won’t go anywhere while you're away. X

This technique is so important, that we’ll do one more example. However, an important
distinction will be that this system is homogeneous.

Example VFSAL
Vector form of solutions for Archetype L
Archetype L [2544] is presented simply as the 5 x 5 matrix

-2 -1 =2 —4 4

-6 -5 —4 —4 6

L=1|10 7 7 10 —-13

-7 =5 -6 -9 10

-4 -3 -4 -6 6
We'll interpret it here as the coefficient matrix of a homogeneous system and reference this
matrix as L. So we are solving the homogeneous system L£S(L, 0) having m = 5 equations
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in n = 5 variables. If we built the augmented matrix, we would add a sixth column to L
containing all zeros. As we did row operations, this sixth column would remain all zeros. So
instead we will row-reduce the coefficient matrix, and mentally remember the missing sixth
column of zeros. This row-reduced matrix is

1] o o 1 -2
0 [1] 0 —2 2
0 0 [1] 2 -1
0 0 0 0 0
00 0 0 0

and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 2, 3} so the
r dependent variables are xy, x9, 3. The columns without leading 1’s are F' = {4, 5}, so
the n — r = 2 free variables are x4, x5. Notice that if we had included the all-zero vector
of constants to form the augmented matrix for the system, then the index 6 would have
appeared in the set F', and subsequently would have been ignored when listing the free
variables.
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Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear combination
of n —r = 2 vectors (u, uy), using the free variables as the scalars.

T
T

N =

€T =
T
T

ot W

Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corresponding entry
of the the vectors. Take note of the pattern of 0’s and 1’s at this stage, even if it is not as
illuminating as in other examples.

xy
T2
3| =
Ty 0 1 0
Ts 0 0 1
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Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Don’t
forget about the “missing” sixth column being full of zeros. Convert this equation into
entries of the vectors that ensure equality for each dependent variable, one at a time.

| 0 -1 2
T2
1 =0— 1oy + 275 = X = |x3| = + x4 + x5
Ty 0 1 0
_1'5_ _0_ | 0 ] _1
21 ] [0] [—1] 2
To 0 2 —2
To = 04 224 — 225 = X= |r3| = + x4 + x5
Ty 0 1 0
| L5 | _0_ | 0 ] L 1
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T 0 —1 2
T2 0 2 —2
3 =0—2x4 + lz; = X= |z3| = |0 +z4 | -2 +25| 1
Ty 0 1 0
Ts 0 0 1

The vector ¢ will always have 0’s in the entries corresponding to free variables. However,
since we are solving a homogeneous system, the row-reduced augmented matrix has zeros in
column n + 1 = 6, and hence all the entries of ¢ are zero. So we can write

1 -1 2 -1 2
To 2 —2 2 -2
X=|x3| =04+z4 | 2| F+z5| 1| =24 | -2| +25]| 1
Ty 1 0 1 0

It will always happen that the solutions to a homogeneous system has ¢ = 0 (even in the
case of a unique solution?). So our expression for the solutions is a bit more pleasing. In
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this example it says that the solutions are all possible linear combinations of the two vectors

—1 2
2 -2
u; = |—2| and up = | 1 |, with no mention of any fixed vector entering into the linear
1 0
0 1
combination.

This observation will motivate our next section and the main definition of that section,
and after that we will conclude the section by formalizing this situation. X
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Subsection PSHS
Particular Solutions, Homogeneous Solutions

The next theorem tells us that in order to find all of the solutions to a linear system of
equations, it is sufficient to find just one solution, and then find all of the solutions to the
corresponding homogeneous system. This explains part of our interest in the null space, the
set of all solutions to a homogeneous system.

Theorem PSPHS

Particular Solution Plus Homogeneous Solutions

Suppose that w is one solution to the linear system of equations LS(A, b). Then y is a
solution to LS(A, b) if and only if y = w + z for some vector z € N (A). d

Proof Let A;, Ay, A3z, ..., A, be the columns of the coefficient matrix A.
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(<) Suppose y =w +z and z € N(A). Then

b=[w], A +[w],As + [W; Az + -+ [W]_ A, Theorem SLSLC [329]
=Wl A1 + WAy + [W; Ag + -+ W], A, +0 Property ZC [297]
=Wl Ay + Wy Ay + [W]; Ag + - + [W]n A, Theorem SLSLC [329]

+lz]; Ay + [z, Ao + [2]; As + - + 2], Ay
= ([w], + [2],) A1 + ([w], + [2],) Ao + - - + (W], + [z],) A, Theorem VSPCV [297]
=[w+z], A+ [wW+z], Ay + W+ z]3 As;+---+[w+z], A, Definition CVA [291]
=i Aty As+ [yl As+ -+ [y], Ax Definition of y

Applying Theorem SLSLC [329] we see that the vector y is a solution to LS(A, b).
(=) Suppose y is a solution to LS(A, b). Then

0=b—b
= [y, A1+ [yl Ao + [yl As + - + [y], A, Theorem SLSLC [329)]
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- ([Wh A+ [W]Q Ay + [W]g Az + -+ [wl, Ay)

n

= (vl = W) A1+ (Iy]y = [wly) Ao + -+ (Iy], = [W],) An Theorem VSPCV [297]
=y-wAi+y—-wlLAs+[y—w|;As+ -+ [y —w]|, A, Definition CVA [291]

By Theorem SLSLC [329] we see that the vector y — w is a solution to the homogeneous
system LS(A, 0) and by Definition NSM [218], y — w € N (A). In other words, y — w = z
for some vector z € N'(A). Rewritten, this is y = w + z, as desired. |

After proving Theorem NMUS [258] we commented (insufficiently) on the negation of one
half of the theorem. Nonsingular coefficient matrices lead to unique solutions for every choice
of the vector of constants. What does this say about singular matrices? A singular matrix
A has a nontrivial null space (Theorem NMTNS [258]). For a given vector of constants, b,
the system LS(A, b) could be inconsistent, meaning there are no solutions. But if there is
at least one solution (w), then Theorem PSPHS [370] tells us there will be infinitely many
solutions because of the role of the infinite null space for a singular matrix. So a system of
equations with a singular coefficient matrix never has a unique solution. Either there are
no solutions, or infinitely many solutions, depending on the choice of the vector of constants
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(b).

Example PSHS

Particular solutions, homogeneous solutions, Archetype D

Archetype D [2436] is a consistent system of equations with a nontrivial null space. Let A
denote the coefficient matrix of this system. The write-up for this system begins with three
solutions,

Y1 = Y2 = y3 =

— N = O
OO O
w — 00

We will choose to have y; play the role of w in the statement of Theorem PSPHS [370],
any one of the three vectors listed here (or others) could have been chosen. To illustrate
the theorem, we should be able to write each of these three solutions as the vector w plus a
solution to the corresponding homogeneous system of equations. Since 0 is always a solution

Version 2.30



Subsection LC.PSHS Particular Solutions, Homogeneous Solutions 377

to a homogeneous system we can easily write
yi =w=w+0.

The vectors ys and y3 will require a bit more effort. Solutions to the homogeneous system
LS(A, 0) are exactly the elements of the null space of the coefficient matrix, which by an
application of Theorem VFSLS [352] is

-3 2
—1 3
N(A) =< x3 AREn x3, 14 € C
0 1
Then
4 0 4 0 -3 2
0 1 -1 1 -1 3
2= lgl = la| T|oa| = o T2 | | FED ] [ =W+ 2
0 1 —1 1 0 1
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where
4 -3 2
-1 -1 3
Zy = —9| — <_2) 1 + <_1) 0
-1 0 1

is obviously a solution of the homogeneous system since it is written as a linear combination
of the vectors describing the null space of the coefficient matrix (or as a check, you could
just evaluate the equations in the homogeneous system with z,).

Again
7 0 7 0 -3 2
8 1 7 1 —1 3
Ys= 1yl = [l Tl = o] FLED] | F2 o] [TV 2
3 1 2 1 0 1
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where
7 -3 2
7 -1 3
2 0 1

is obviously a solution of the homogeneous system since it is written as a linear combination
of the vectors describing the null space of the coefficient matrix (or as a check, you could

just evaluate the equations in the homogeneous system with z,).
Here’s another view of this theorem, in the context of this example.

solutions of the original system of equations, say

Grab two new

11 —4
0 2
Ya=1_34 Ys = | 4
—1 2

Version 2.30



Subsection LC.PSHS Particular Solutions, Homogeneous Solutions 380

and form their difference,

11 —4 15
N R -
-3 4 7
-1 2 -3

It is no accident that u is a solution to the homogeneous system (check this!). In other words,
the difference between any two solutions to a linear system of equations is an element of the
null space of the coefficient matrix. This is an equivalent way to state Theorem PSPHS

[370]. (See Exercise MM.T50 [719]). X

The ideas of this subsection will appear again in Chapter LT [1559] when we discuss
pre-images of linear transformations (Definition PI [1603]).
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Subsection READ
Reading Questions

1. Earlier, a reading question asked you to solve the system of equations
2$1+3J}2—ZL‘3:O
T+ 2372 +x3 = 3
$1+3$2+3$3:7

Use a linear combination to rewrite this system of equations as a vector equality.

2. Find a linear combination of the vectors

1 21 -1
s=<¢|31|,lo],]|3
1| [4| |-5
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1
that equals the vector [—9].
11

3. The matrix below is the augmented matrix of a system of equations, row-reduced to
reduced row-echelon form. Write the vector form of the solutions to the system.
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Subsection EXC
Exercises

C21 Consider each archetype that is a system of equations. For individual solutions listed
(both for the original system and the corresponding homogeneous system) express the vector
of constants as a linear combination of the columns of the coefficient matrix, as guaranteed
by Theorem SLSLC [329]. Verify this equality by computing the linear combination. For
systems with no solutions, recognize that it is then impossible to write the vector of constants
as a linear combination of the columns of the coefficient matrix. Note too, for homogeneous
systems, that the solutions give rise to linear combinations that equal the zero vector.
Archetype A [2395]

Archetype B [2409]

Archetype C [2424]

Archetype D [2436]
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Archetype E [2448]
Archetype F [2460]
Archetype G [2477]
Archetype H [2489]
Archetype I [2502]
Archetype J [2515]

Contributed by Robert Beezer — Solution [386]

C22 Consider each archetype that is a system of equations. Write elements of the solution
set in vector form, as guaranteed by Theorem VFSLS [352].

Archetype A [2395]

Archetype B [2409]

Archetype C [2424]

Archetype D [2436]

Archetype E [2448]
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Archetype F [2460]
Archetype G [2477]
Archetype H [2489)
Archetype I [2502]
Archetype J [2515]

Contributed by Robert Beezer — Solution [386]

C40 Find the vector form of the solutions to the system of equations below.

201 —4x9 4+ 3x3+ 25 =06
r1 — 229 — 2x3 + 1424 — 425 = 15
Ty — 229 + 3+ 2x4 + x5 = —1
—2x1 +4x9 — 1204 + x5 = —7

Contributed by Robert Beezer — Solution [387]
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C41 Find the vector form of the solutions to the system of equations below.

—2x1 — 1oy — 8x3 + 84 + 45 — 92 — 17 — 1oy — 1829 = 3
3x1 — 229 4+ bxg + 224 — 225 — Sx6 + 127 + 208 + 1529 = 10
41 — 229 + 8x3 + 25 — 1426 — 2208 + 229 = 36
—1x1 4+ 229 + 1oy — 624 + T2 — 127 — 329 = —8
3x1 + 229 + 1323 — 1424 — 1oy + dxg — lag + 1229 = 15
—2x1 + 219 — 223 — 4dxy + las + 626 — 207 — 225 — 1Dxg = —7

Contributed by Robert Beezer — Solution [388]
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M10 Example TLC [319] asks if the vector

F 13 ]

15
5
—17
2
25

can be written as a linear combination of the four vectors

u; =

Uy =

usz —

uy =

N W

Qo = =

Version 2.30



Subsection LC.EXC Exercises 388

Can it? Can any vector in C® be written as a linear combination of the four vectors
up, Uz, us, l,l4?
Contributed by Robert Beezer — Solution [389]

M11 At the end of Example VFS [340], the vector w is claimed to be a solution to the
linear system under discussion. Verify that w really is a solution. Then determine the four

scalars that express w as a linear combination of ¢, u;, us, us.
Contributed by Robert Beezer — Solution [390]
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer  Statement [380]
Solutions for Archetype A [2395] and Archetype B [2409] are described carefully in Example
AALC [325] and Example ABLC [323].

C22 Contributed by Robert Beezer  Statement [381]

Solutions for Archetype D [2436] and Archetype I [2502] are described carefully in Example
VFSAD [334] and Example VFSAI [359]. The technique described in these examples is
probably more useful than carefully deciphering the notation of Theorem VFSLS [352]. The
solution for each archetype is contained in its description. So now you can check-off the box
for that item.

C40 Contributed by Robert Beezer — Statement [382]
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Row-reduce the augmented matrix representing this system, to find

1] -2 0 6 0 1
0 0 [1] -4 0 3
o 0 0 0 [1] -5
0 0 0 0 0 0

The system is consistent (no leading one in column 6, Theorem RCLS [172]). x5 and x4
are the free variables. Now apply Theorem VFSLS [352] directly, or follow the three-step
process of Example VFS [340], Example VFSAD [334], Example VFSAI [359], or Example
VFSAL [364] to obtain

Ty 1 2 —6
i) 0 1 0
3| = 3 + x5 |0 + 24 4
Ty 0 0 1
Ts -5 0 0
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C41 Contributed by Robert Beezer — Statement [383]
Row-reduce the augmented matrix representing this system, to find

(1] 0 3 -2 0 -1 0 0 3 6
0 [1]2 40 3 0 0 2 -1
o 00 0 [1] 2 0 0 -1 3
0 00 0 0 0 [1] 0 4 o0
000 0 0 0 0 [1] 2 -2
0000 0 0 0 0 0 0

The system is consistent (no leading one in column 10, Theorem RCLS [172]). F =
{3, 4, 6,9, 10}, so the free variables are x3, x4, v and z9. Now apply Theorem VFSLS
[352] directly, or follow the three-step process of Example VFS [340], Example VFSAD
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[334], Example VFSAT [359], or Example VFSAL [364] to obtain the solution set

([ 6] [—3] [2] [ 1] [—3] )
-1 —2 4 -3 —2
0 1 0 0 0
0 0 1 0 0
S = 3| +a23| 0| +x4 |0 +26| 2| 429 1 T3, T4, T, Tg € C
0 0 0 1 0
0 0 0 0 —4
—2 0 0 0 —2
L[ 0] 0 | 0] 0 | 1] )

M10 Contributed by Robert Beezer — Statement [384]

No, it is not possible to create w as a linear combination of the four vectors uy, us, us, uy.
By creating the desired linear combination with unknowns as scalars, Theorem SLSLC [329]
provides a system of equations that has no solution. This one computation is enough to
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show us that it is not possible to create all the vectors of C° through linear combinations of
the four vectors uy, usy, usz, uy.

M11 Contributed by Robert Beezer — Statement [385]
The coefficient of ¢ is 1. The coefficients of uy, uy, uz lie in the third, fourth and seventh
entries of w. Can you see why? (Hint: F' = {3, 4, 7, 8}, so the free variables are x3, x, and

ZE7.)
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Section SS
Spanning Sets

In this section we will describe a compact way to indicate the elements of an infinite set of
vectors, making use of linear combinations. This will give us a convenient way to describe
the elements of a set of solutions to a linear system, or the elements of the null space of a
matrix, or many other sets of vectors.
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Subsection SSV
Span of a Set of Vectors

In Example VFSAL [364] we saw the solution set of a homogeneous system described as all
possible linear combinations of two particular vectors. This happens to be a useful way to
construct or describe infinite sets of vectors, so we encapsulate this idea in a definition.

Definition SSCV

Span of a Set of Column Vectors

Given a set of vectors S = {uy, uy, ug, ..., u,}, their span, (5), is the set of all possible
linear combinations of uy, ug, us, ..., u,. Symbolically,

(S) ={au; + awus + agus +-- -+ ayu,|a; € C, 1 <i < p}

i=1

Version 2.30



Subsection SS.SSV  Span of a Set of Vectors 396

(This definition contains Notation SSV.) A

The span is just a set of vectors, though in all but one situation it is an infinite set.
(Just when is it not infinite?) So we start with a finite collection of vectors S (p of them to
be precise), and use this finite set to describe an infinite set of vectors, (S). Confusing the
finite set S with the infinite set (S) is one of the most pervasive problems in understanding
introductory linear algebra. We will see this construction repeatedly, so let’s work through
some examples to get comfortable with it. The most obvious question about a set is if a
particular item of the correct type is in the set, or not.

Example ABS
A basic span
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Consider the set of 5 vectors, S, from C*

1 2 7 1 -1
1 1 3 1 0
5= 37121757 [-1["19
1 -1 -5 2 0

and consider the infinite set of vectors (S) formed from all possible linear combinations of
the elements of S. Here are four vectors we definitely know are elements of (S), since we
will construct them in accordance with Definition SSCV [392],

1 2 7 1 -1 —4
1 1 3 1 0 2
1 -1 -5 2 0 10
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1 2 7 1 —1 —26
1 1 3 1 0 —6
x = (5) 5 + (—6) 5 + (—3) 5 + (4) 1 +(2) o | =1 o
1) -1 -5 2 0 34
1 2 7 1 -1 7
1 1 3 1 0 4
Y= g +O | 5 |+ | [ +FO || +D | g | =147
1 -1 -5 2 0 —4
1 2 7 1 -1 0
1 1 3 1 0 0
z = (0) 5 +(0) 5 +(0) 5 + (0) 4 + (0) o | = 1o
1 -1 -5 2 0 0

The purpose of a set is to collect objects with some common property, and to exclude objects
without that property. So the most fundamental question about a set is if a given object is
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an element of the set or not. Let’s learn more about (S) by investigating which vectors are
elements of the set, and which are not.

—15
First,isu = Ig6 an element of (S)? We are asking if there are scalars aq, as, as, ay, as
5
such that

1 2 7 1 -1 —15
1 n 1 n 3 N 1 + 0| u— —6

G| T2 o [ TW 5 | TM | T g [ THT 19
1 -1 -5 2 0 5

Applying Theorem SLSLC [329] we recognize the search for these scalars as a solution to a
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linear system of equations with augmented matrix

1 2 7 1 -1 -15
11 3 1 0 -6
3 2 5 -1 9 19
1 -1 -5 2 0 5

which row-reduces to
0 -1 0 3 10

0 [1] 4 0o -1 -9
0 0 o0 [1] -2 -7

o 0 0 0 0 O

At this point, we see that the system is consistent (Theorem RCLS [172]), so we know there
1s a solution for the five scalars aq, as, ag, a4, as. This is enough evidence for us to say that
u € (S). If we wished further evidence, we could compute an actual solution, say

041:2 052:1 Oé3:—2 054:—3 a5:2
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This particular solution allows us to write

1 2 7 1 —1 —15
1 1 3 1 0 —6
1 —1 -5 2 0 5
making it even more obvious that u € (S).
3
Lets do it again. Is v = ; an element of (S)? We are asking if there are scalars
-1
a1, Qig, (i3, (i, (5 such that
1 2 7 1 -1 3
1 n 1 n 3 n 1 n o] . |1
(03] 3 Q9 9 Q3 5 Qg _1 (071 9 =V = 9
1 -1 -5 2 0 -1
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Applying Theorem SLSLC [329] we recognize the search for these scalars as a solution to a
linear system of equations with augmented matrix

12 7 1 -1 3
11 3 1 0 1
3 2 5 -1 9 2
1 -1 -5 2 0 -1

which row-reduces to

At this point, we see that the system is inconsistent by Theorem RCLS [172], so we know
there is not a solution for the five scalars ay, as, as, ay, as. This is enough evidence for us
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to say that v ¢ (S). End of story. X

Example SCAA
Span of the columns of Archetype A
Begin with the finite set of three vectors of size 3

1 —1 2
S = {ula Uy, 113} - 2 ) 1 ) 1
1 1 0

and consider the infinite set (S). The vectors of S could have been chosen to be anything, but
for reasons that will become clear later, we have chosen the three columns of the coefficient
matrix in Archetype A [2395]. First, as an example, note that
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is in (S), since it is a linear combination of uy, ug, uz. We write this succinctly as v € (5).
There is nothing magical about the scalars a; = 5, ag = —3, az = 7, they could have been
chosen to be anything. So repeat this part of the example yourself, using different values of
a1, g, az. What happens if you choose all three scalars to be zero?
So we know how to quickly construct sample elements of the set (S). A slightly different
question arises when you are handed a vector of the correct size and asked if it is an element
1
of (S). For example, is w = |8 in (S)? More succinctly, w € (S)?
5

To answer this question, we will look for scalars aq, as, ag so that
a1 + olg + (gl = W

By Theorem SLSLC [329] solutions to this vector equation are solutions to the system of
equations

041—0é2+2a3:1
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2()61+042+053:8

(11+C¥2:5

Building the augmented matrix for this linear system, and row-reducing, gives

1] o 1 3
0 [1] -1 2

0 0 0 0

This system has infinitely many solutions (there’s a free variable in x3), but all we need is
one solution vector. The solution,

041:2 062:3 Oégzl

tells us that
(2w + (B)ug + (Hug =w
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so we are convinced that w really is in (S). Notice that there are an infinite number of
ways to answer this question affirmatively. We could choose a different solution, this time
choosing the free variable to be zero,

Oé1:3 CYQZQ 043:0

shows us that

(B)u; + (2Qua + (0)uz =w
Verifying the arithmetic in this second solution will make it obvious that w is in this span.
And of course, we now realize that there are an infinite number of ways to realize w as

2
element of (S). Let’s ask the same type of question again, but this time with y = 4], i.e.
3
isy € (5)?
So we’ll look for scalars aq, as, ag so that

U] + pUug + aguy =y
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By Theorem SLSLC [329] solutions to this vector equation are the solutions to the system
of equations

&1—&2+2Q3:2
200 +as +az =4

041+062:3

Building the augmented matrix for this linear system, and row-reducing, gives

oo

This system is inconsistent (there’s a leading 1 in the last column, Theorem RCLS [172]), s
there are no scalars aq, as, ag that will create a linear combination of uy, us, us that equals

y. More precisely, y & (S).
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There are three things to observe in this example. (1) It is easy to construct vectors in
(S). (2) It is possible that some vectors are in (S) (e.g. w), while others are not (e.g. y). (3)
Deciding if a given vector is in (S) leads to solving a linear system of equations and asking
if the system is consistent.

With a computer program in hand to solve systems of linear equations, could you create
a program to decide if a vector was, or wasn’t, in the span of a given set of vectors? Is this
art or science?

This example was built on vectors from the columns of the coefficient matrix of Archetype
A [2395]. Study the determination that v € (S) and see if you can connect it with some of
the other properties of Archetype A [2395]. X

Having analyzed Archetype A [2395] in Example SCAA [400], we will of course subject
Archetype B [2409] to a similar investigation.

Example SCAB
Span of the columns of Archetype B
Begin with the finite set of three vectors of size 3 that are the columns of the coefficient
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matrix in Archetype B [2409],

=7 —6 —12
R = {Vl, Vo, V3} = ) y 5} s 7
1 0 4

and consider the infinite set (R). First, as an example, note that

—7 —6 ~12 —2
x=@) |5 |+@|[5[|+(=3)]| 7 |=