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HI Â: Hadamard Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 2695

Version 2.11



NOTATION lxxxvi

SRM A1/2: Square Root of a Matrix . . . . . . . . . . . . . . . . . . . . . . 2800

Version 2.11



Diagrams

DTSLS Decision Tree for Solving Linear Systems . . . . . . . . . . . . . . . . 181

CSRST Column Space and Row Space Techniques . . . . . . . . . . . . . . . . 929

DLTA Definition of Linear Transformation, Additive . . . . . . . . . . . . . . 1552

DLTM Definition of Linear Transformation, Multiplicative . . . . . . . . . . . 1553

GLT General Linear Transformation . . . . . . . . . . . . . . . . . . . . . . 1564

lxxxvii



DIAGRAMS lxxxviii

NILT Non-Injective Linear Transformation . . . . . . . . . . . . . . . . . . . 1634
ILT Injective Linear Transformation . . . . . . . . . . . . . . . . . . . . . . 1639
FTMR Fundamental Theorem of Matrix Representations . . . . . . . . . . . . 1868
FTMRA Fundamental Theorem of Matrix Representations (Alternate) . . . . . 1869
MRCLT Matrix Representation and Composition of Linear Transformations . . 1890

Version 2.11



Examples

Section WILA

TMP Trail Mix Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Section SSLE

STNE Solving two (nonlinear) equations . . . . . . . . . . . . . . . . . . . . 23

lxxxix



EXAMPLES xc

NSE Notation for a system of equations . . . . . . . . . . . . . . . . . . . . 26
TTS Three typical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
US Three equations, one solution . . . . . . . . . . . . . . . . . . . . . . . 40
IS Three equations, infinitely many solutions . . . . . . . . . . . . . . . . 43

Section RREF
AM A matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
NSLE Notation for systems of linear equations . . . . . . . . . . . . . . . . . 80
AMAA Augmented matrix for Archetype A . . . . . . . . . . . . . . . . . . . 82
TREM Two row-equivalent matrices . . . . . . . . . . . . . . . . . . . . . . . 85
USR Three equations, one solution, reprised . . . . . . . . . . . . . . . . . . 88
RREF A matrix in reduced row-echelon form . . . . . . . . . . . . . . . . . . 92
NRREF A matrix not in reduced row-echelon form . . . . . . . . . . . . . . . . 93
SAB Solutions for Archetype B . . . . . . . . . . . . . . . . . . . . . . . . . 113
SAA Solutions for Archetype A . . . . . . . . . . . . . . . . . . . . . . . . . 116
SAE Solutions for Archetype E . . . . . . . . . . . . . . . . . . . . . . . . . 119

Version 2.11



EXAMPLES xci

Section TSS
RREFN Reduced row-echelon form notation . . . . . . . . . . . . . . . . . . . 162
ISSI Describing infinite solution sets, Archetype I . . . . . . . . . . . . . . 164
FDV Free and dependent variables . . . . . . . . . . . . . . . . . . . . . . . 169
CFV Counting free variables . . . . . . . . . . . . . . . . . . . . . . . . . . 178
OSGMD One solution gives many, Archetype D . . . . . . . . . . . . . . . . . . 183

Section HSE
AHSAC Archetype C as a homogeneous system . . . . . . . . . . . . . . . . . . 207
HUSAB Homogeneous, unique solution, Archetype B . . . . . . . . . . . . . . . 209
HISAA Homogeneous, infinite solutions, Archetype A . . . . . . . . . . . . . . 210
HISAD Homogeneous, infinite solutions, Archetype D . . . . . . . . . . . . . . 212
NSEAI Null space elements of Archetype I . . . . . . . . . . . . . . . . . . . . 217
CNS1 Computing a null space, #1 . . . . . . . . . . . . . . . . . . . . . . . . 218
CNS2 Computing a null space, #2 . . . . . . . . . . . . . . . . . . . . . . . . 220

Version 2.11



EXAMPLES xcii

Section NM
S A singular matrix, Archetype A . . . . . . . . . . . . . . . . . . . . . 247
NM A nonsingular matrix, Archetype B . . . . . . . . . . . . . . . . . . . 247
IM An identity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
SRR Singular matrix, row-reduced . . . . . . . . . . . . . . . . . . . . . . . 251
NSR Nonsingular matrix, row-reduced . . . . . . . . . . . . . . . . . . . . . 252
NSS Null space of a singular matrix . . . . . . . . . . . . . . . . . . . . . . 253
NSNM Null space of a nonsingular matrix . . . . . . . . . . . . . . . . . . . . 254

Section VO
VESE Vector equality for a system of equations . . . . . . . . . . . . . . . . 287
VA Addition of two vectors in C4 . . . . . . . . . . . . . . . . . . . . . . . 290
CVSM Scalar multiplication in C5 . . . . . . . . . . . . . . . . . . . . . . . . 293

Section LC

Version 2.11



EXAMPLES xciii

TLC Two linear combinations in C6 . . . . . . . . . . . . . . . . . . . . . . 317
ABLC Archetype B as a linear combination . . . . . . . . . . . . . . . . . . . 321
AALC Archetype A as a linear combination . . . . . . . . . . . . . . . . . . . 323
VFSAD Vector form of solutions for Archetype D . . . . . . . . . . . . . . . . 332
VFS Vector form of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 338
VFSAI Vector form of solutions for Archetype I . . . . . . . . . . . . . . . . . 357
VFSAL Vector form of solutions for Archetype L . . . . . . . . . . . . . . . . . 362
PSHS Particular solutions, homogeneous solutions, Archetype D . . . . . . . 371

Section SS
ABS A basic span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
SCAA Span of the columns of Archetype A . . . . . . . . . . . . . . . . . . . 398
SCAB Span of the columns of Archetype B . . . . . . . . . . . . . . . . . . . 403
SSNS Spanning set of a null space . . . . . . . . . . . . . . . . . . . . . . . . 411
NSDS Null space directly as a span . . . . . . . . . . . . . . . . . . . . . . . 415
SCAD Span of the columns of Archetype D . . . . . . . . . . . . . . . . . . . 419

Version 2.11



EXAMPLES xciv

Section LI
LDS Linearly dependent set in C5 . . . . . . . . . . . . . . . . . . . . . . . 459
LIS Linearly independent set in C5 . . . . . . . . . . . . . . . . . . . . . . 462
LIHS Linearly independent, homogeneous system . . . . . . . . . . . . . . . 466
LDHS Linearly dependent, homogeneous system . . . . . . . . . . . . . . . . 468
LDRN Linearly dependent, r < n . . . . . . . . . . . . . . . . . . . . . . . . . 472
LLDS Large linearly dependent set in C4 . . . . . . . . . . . . . . . . . . . . 473
LDCAA Linearly dependent columns in Archetype A . . . . . . . . . . . . . . . 476
LICAB Linearly independent columns in Archetype B . . . . . . . . . . . . . . 477
LINSB Linear independence of null space basis . . . . . . . . . . . . . . . . . 481
NSLIL Null space spanned by linearly independent set, Archetype L . . . . . 487

Section LDS
RSC5 Reducing a span in C5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
COV Casting out vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Version 2.11



EXAMPLES xcv

RSC4 Reducing a span in C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
RES Reworking elements of a span . . . . . . . . . . . . . . . . . . . . . . . 546

Section O
CSIP Computing some inner products . . . . . . . . . . . . . . . . . . . . . 570
CNSV Computing the norm of some vectors . . . . . . . . . . . . . . . . . . . 579
TOV Two orthogonal vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 584
SUVOS Standard Unit Vectors are an Orthogonal Set . . . . . . . . . . . . . . 587
AOS An orthogonal set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
GSTV Gram-Schmidt of three vectors . . . . . . . . . . . . . . . . . . . . . . 598
ONTV Orthonormal set, three vectors . . . . . . . . . . . . . . . . . . . . . . 600
ONFV Orthonormal set, four vectors . . . . . . . . . . . . . . . . . . . . . . . 601

Section MO
MA Addition of two matrices in M23 . . . . . . . . . . . . . . . . . . . . . 614
MSM Scalar multiplication in M32 . . . . . . . . . . . . . . . . . . . . . . . . 616

Version 2.11



EXAMPLES xcvi

TM Transpose of a 3× 4 matrix . . . . . . . . . . . . . . . . . . . . . . . . 623
SYM A symmetric 5× 5 matrix . . . . . . . . . . . . . . . . . . . . . . . . . 624
CCM Complex conjugate of a matrix . . . . . . . . . . . . . . . . . . . . . . 631

Section MM
MTV A matrix times a vector . . . . . . . . . . . . . . . . . . . . . . . . . . 662
MNSLE Matrix notation for systems of linear equations . . . . . . . . . . . . . 664
MBC Money’s best cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
PTM Product of two matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 673
MMNC Matrix multiplication is not commutative . . . . . . . . . . . . . . . . 674
PTMEE Product of two matrices, entry-by-entry . . . . . . . . . . . . . . . . . 678

Section MISLE
SABMI Solutions to Archetype B with a matrix inverse . . . . . . . . . . . . . 723
MWIAA A matrix without an inverse, Archetype A . . . . . . . . . . . . . . . . 728
MI Matrix inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Version 2.11



EXAMPLES xcvii

CMI Computing a matrix inverse . . . . . . . . . . . . . . . . . . . . . . . . 737
CMIAB Computing a matrix inverse, Archetype B . . . . . . . . . . . . . . . . 744

Section MINM
UM3 Unitary matrix of size 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 785
UPM Unitary permutation matrix . . . . . . . . . . . . . . . . . . . . . . . 786
OSMC Orthonormal set from matrix columns . . . . . . . . . . . . . . . . . . 790

Section CRS
CSMCS Column space of a matrix and consistent systems . . . . . . . . . . . . 809
MCSM Membership in the column space of a matrix . . . . . . . . . . . . . . 814
CSTW Column space, two ways . . . . . . . . . . . . . . . . . . . . . . . . . . 819
CSOCD Column space, original columns, Archetype D . . . . . . . . . . . . . . 824
CSAA Column space of Archetype A . . . . . . . . . . . . . . . . . . . . . . 827
CSAB Column space of Archetype B . . . . . . . . . . . . . . . . . . . . . . . 829
RSAI Row space of Archetype I . . . . . . . . . . . . . . . . . . . . . . . . . 834

Version 2.11



EXAMPLES xcviii

RSREM Row spaces of two row-equivalent matrices . . . . . . . . . . . . . . . 842
IAS Improving a span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
CSROI Column space from row operations, Archetype I . . . . . . . . . . . . 849

Section FS
LNS Left null space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
CSANS Column space as null space . . . . . . . . . . . . . . . . . . . . . . . . 885
SEEF Submatrices of extended echelon form . . . . . . . . . . . . . . . . . . 895
FS1 Four subsets, #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
FS2 Four subsets, #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918
FSAG Four subsets, Archetype G . . . . . . . . . . . . . . . . . . . . . . . . 923

Section VS
VSCV The vector space Cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
VSM The vector space of matrices, Mmn . . . . . . . . . . . . . . . . . . . . 961
VSP The vector space of polynomials, Pn . . . . . . . . . . . . . . . . . . . 963

Version 2.11



EXAMPLES xcix

VSIS The vector space of infinite sequences . . . . . . . . . . . . . . . . . . 966
VSF The vector space of functions . . . . . . . . . . . . . . . . . . . . . . . 967
VSS The singleton vector space . . . . . . . . . . . . . . . . . . . . . . . . 968
CVS The crazy vector space . . . . . . . . . . . . . . . . . . . . . . . . . . 970
PCVS Properties for the Crazy Vector Space . . . . . . . . . . . . . . . . . . 984

Section S
SC3 A subspace of C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003
SP4 A subspace of P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
NSC2Z A non-subspace in C2, zero vector . . . . . . . . . . . . . . . . . . . . 1013
NSC2A A non-subspace in C2, additive closure . . . . . . . . . . . . . . . . . . 1014
NSC2S A non-subspace in C2, scalar multiplication closure . . . . . . . . . . . 1015
RSNS Recasting a subspace as a null space . . . . . . . . . . . . . . . . . . . 1018
LCM A linear combination of matrices . . . . . . . . . . . . . . . . . . . . . 1021
SSP Span of a set of polynomials . . . . . . . . . . . . . . . . . . . . . . . 1026
SM32 A subspace of M32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030

Version 2.11



EXAMPLES c

Section LISS
LIP4 Linear independence in P4 . . . . . . . . . . . . . . . . . . . . . . . . . 1062
LIM32 Linear independence in M32 . . . . . . . . . . . . . . . . . . . . . . . . 1066
LIC Linearly independent set in the crazy vector space . . . . . . . . . . . 1073
SSP4 Spanning set in P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
SSM22 Spanning set in M22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
SSC Spanning set in the crazy vector space . . . . . . . . . . . . . . . . . . 1084
AVR A vector representation . . . . . . . . . . . . . . . . . . . . . . . . . . 1088

Section B
BP Bases for Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
BM A basis for the vector space of matrices . . . . . . . . . . . . . . . . . 1125
BSP4 A basis for a subspace of P4 . . . . . . . . . . . . . . . . . . . . . . . . 1126
BSM22 A basis for a subspace of M22 . . . . . . . . . . . . . . . . . . . . . . . 1128
BC Basis for the crazy vector space . . . . . . . . . . . . . . . . . . . . . . 1130

Version 2.11



EXAMPLES ci

RSB Row space basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132
RS Reducing a span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
CABAK Columns as Basis, Archetype K . . . . . . . . . . . . . . . . . . . . . . 1139
CROB4 Coordinatization relative to an orthonormal basis, C4 . . . . . . . . . 1146
CROB3 Coordinatization relative to an orthonormal basis, C3 . . . . . . . . . 1149

Section D
LDP4 Linearly dependent set in P4 . . . . . . . . . . . . . . . . . . . . . . . 1187
DSM22 Dimension of a subspace of M22 . . . . . . . . . . . . . . . . . . . . . 1191
DSP4 Dimension of a subspace of P4 . . . . . . . . . . . . . . . . . . . . . . 1194
DC Dimension of the crazy vector space . . . . . . . . . . . . . . . . . . . 1195
VSPUD Vector space of polynomials with unbounded degree . . . . . . . . . . 1195
RNM Rank and nullity of a matrix . . . . . . . . . . . . . . . . . . . . . . . 1198
RNSM Rank and nullity of a square matrix . . . . . . . . . . . . . . . . . . . 1202

Section PD

Version 2.11



EXAMPLES cii

BPR Bases for Pn, reprised . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231
BDM22 Basis by dimension in M22 . . . . . . . . . . . . . . . . . . . . . . . . 1232
SVP4 Sets of vectors in P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235
RRTI Rank, rank of transpose, Archetype I . . . . . . . . . . . . . . . . . . 1240
SDS Simple direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247

Section DM
EMRO Elementary matrices and row operations . . . . . . . . . . . . . . . . . 1279
SS Some submatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
D33M Determinant of a 3× 3 matrix . . . . . . . . . . . . . . . . . . . . . . 1292
TCSD Two computations, same determinant . . . . . . . . . . . . . . . . . . 1303
DUTM Determinant of an upper triangular matrix . . . . . . . . . . . . . . . 1305

Section PDM
DRO Determinant by row operations . . . . . . . . . . . . . . . . . . . . . . 1335
ZNDAB Zero and nonzero determinant, Archetypes A and B . . . . . . . . . . 1350

Version 2.11



EXAMPLES ciii

Section EE
SEE Some eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . 1366
PM Polynomial of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 1371
CAEHW Computing an eigenvalue the hard way . . . . . . . . . . . . . . . . . 1381
CPMS3 Characteristic polynomial of a matrix, size 3 . . . . . . . . . . . . . . 1388
EMS3 Eigenvalues of a matrix, size 3 . . . . . . . . . . . . . . . . . . . . . . 1391
ESMS3 Eigenspaces of a matrix, size 3 . . . . . . . . . . . . . . . . . . . . . . 1396
EMMS4 Eigenvalue multiplicities, matrix of size 4 . . . . . . . . . . . . . . . . 1400
ESMS4 Eigenvalues, symmetric matrix of size 4 . . . . . . . . . . . . . . . . . 1402
HMEM5 High multiplicity eigenvalues, matrix of size 5 . . . . . . . . . . . . . . 1405
CEMS6 Complex eigenvalues, matrix of size 6 . . . . . . . . . . . . . . . . . . 1408
DEMS5 Distinct eigenvalues, matrix of size 5 . . . . . . . . . . . . . . . . . . . 1415

Section PEE
BDE Building desired eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 1455

Version 2.11



EXAMPLES civ

Section SD
SMS5 Similar matrices of size 5 . . . . . . . . . . . . . . . . . . . . . . . . . 1486
SMS3 Similar matrices of size 3 . . . . . . . . . . . . . . . . . . . . . . . . . 1487
EENS Equal eigenvalues, not similar . . . . . . . . . . . . . . . . . . . . . . . 1494
DAB Diagonalization of Archetype B . . . . . . . . . . . . . . . . . . . . . . 1497
DMS3 Diagonalizing a matrix of size 3 . . . . . . . . . . . . . . . . . . . . . . 1503
NDMS4 A non-diagonalizable matrix of size 4 . . . . . . . . . . . . . . . . . . 1511
DEHD Distinct eigenvalues, hence diagonalizable . . . . . . . . . . . . . . . . 1513
HPDM High power of a diagonalizable matrix . . . . . . . . . . . . . . . . . . 1516
FSCF Fibonacci sequence, closed form . . . . . . . . . . . . . . . . . . . . . 1521

Section LT
ALT A linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 1553
NLT Not a linear transformation . . . . . . . . . . . . . . . . . . . . . . . . 1557
LTPM Linear transformation, polynomials to matrices . . . . . . . . . . . . . 1558

Version 2.11



EXAMPLES cv

LTPP Linear transformation, polynomials to polynomials . . . . . . . . . . . 1561
LTM Linear transformation from a matrix . . . . . . . . . . . . . . . . . . . 1567
MFLT Matrix from a linear transformation . . . . . . . . . . . . . . . . . . . 1572
MOLT Matrix of a linear transformation . . . . . . . . . . . . . . . . . . . . . 1577
LTDB1 Linear transformation defined on a basis . . . . . . . . . . . . . . . . . 1586
LTDB2 Linear transformation defined on a basis . . . . . . . . . . . . . . . . . 1588
LTDB3 Linear transformation defined on a basis . . . . . . . . . . . . . . . . . 1590
SPIAS Sample pre-images, Archetype S . . . . . . . . . . . . . . . . . . . . . 1593
STLT Sum of two linear transformations . . . . . . . . . . . . . . . . . . . . 1601
SMLT Scalar multiple of a linear transformation . . . . . . . . . . . . . . . . 1604
CTLT Composition of two linear transformations . . . . . . . . . . . . . . . . 1608

Section ILT
NIAQ Not injective, Archetype Q . . . . . . . . . . . . . . . . . . . . . . . . 1632
IAR Injective, Archetype R . . . . . . . . . . . . . . . . . . . . . . . . . . . 1635
IAV Injective, Archetype V . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640

Version 2.11



EXAMPLES cvi

NKAO Nontrivial kernel, Archetype O . . . . . . . . . . . . . . . . . . . . . . 1644
TKAP Trivial kernel, Archetype P . . . . . . . . . . . . . . . . . . . . . . . . 1648
NIAQR Not injective, Archetype Q, revisited . . . . . . . . . . . . . . . . . . . 1655
NIAO Not injective, Archetype O . . . . . . . . . . . . . . . . . . . . . . . . 1656
IAP Injective, Archetype P . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657
NIDAU Not injective by dimension, Archetype U . . . . . . . . . . . . . . . . 1663

Section SLT
NSAQ Not surjective, Archetype Q . . . . . . . . . . . . . . . . . . . . . . . . 1688
SAR Surjective, Archetype R . . . . . . . . . . . . . . . . . . . . . . . . . . 1692
SAV Surjective, Archetype V . . . . . . . . . . . . . . . . . . . . . . . . . . 1696
RAO Range, Archetype O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1701
FRAN Full range, Archetype N . . . . . . . . . . . . . . . . . . . . . . . . . . 1707
NSAQR Not surjective, Archetype Q, revisited . . . . . . . . . . . . . . . . . . 1711
NSAO Not surjective, Archetype O . . . . . . . . . . . . . . . . . . . . . . . . 1714
SAN Surjective, Archetype N . . . . . . . . . . . . . . . . . . . . . . . . . . 1714

Version 2.11



EXAMPLES cvii

BRLT A basis for the range of a linear transformation . . . . . . . . . . . . . 1718
NSDAT Not surjective by dimension, Archetype T . . . . . . . . . . . . . . . . 1723

Section IVLT
AIVLT An invertible linear transformation . . . . . . . . . . . . . . . . . . . . 1751
ANILT A non-invertible linear transformation . . . . . . . . . . . . . . . . . . 1754
CIVLT Computing the Inverse of a Linear Transformations . . . . . . . . . . . 1765
IVSAV Isomorphic vector spaces, Archetype V . . . . . . . . . . . . . . . . . . 1774

Section VR
VRC4 Vector representation in C4 . . . . . . . . . . . . . . . . . . . . . . . . 1823
VRP2 Vector representations in P2 . . . . . . . . . . . . . . . . . . . . . . . . 1828
TIVS Two isomorphic vector spaces . . . . . . . . . . . . . . . . . . . . . . . 1837
CVSR Crazy vector space revealed . . . . . . . . . . . . . . . . . . . . . . . . 1837
ASC A subspace characterized . . . . . . . . . . . . . . . . . . . . . . . . . 1837
MIVS Multiple isomorphic vector spaces . . . . . . . . . . . . . . . . . . . . 1839

Version 2.11



EXAMPLES cviii

CP2 Coordinatizing in P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1843
CM32 Coordinatization in M32 . . . . . . . . . . . . . . . . . . . . . . . . . . 1845

Section MR
OLTTR One linear transformation, three representations . . . . . . . . . . . . 1856
ALTMM A linear transformation as matrix multiplication . . . . . . . . . . . . 1869
MPMR Matrix product of matrix representations . . . . . . . . . . . . . . . . 1881
KVMR Kernel via matrix representation . . . . . . . . . . . . . . . . . . . . . 1895
RVMR Range via matrix representation . . . . . . . . . . . . . . . . . . . . . 1903
ILTVR Inverse of a linear transformation via a representation . . . . . . . . . 1911

Section CB
ELTBM Eigenvectors of linear transformation between matrices . . . . . . . . . 1957
ELTBP Eigenvectors of linear transformation between polynomials . . . . . . . 1958
CBP Change of basis with polynomials . . . . . . . . . . . . . . . . . . . . 1964
CBCV Change of basis with column vectors . . . . . . . . . . . . . . . . . . . 1974

Version 2.11



EXAMPLES cix

MRCM Matrix representations and change-of-basis matrices . . . . . . . . . . 1980
MRBE Matrix representation with basis of eigenvectors . . . . . . . . . . . . . 1988
ELTT Eigenvectors of a linear transformation, twice . . . . . . . . . . . . . . 2000
CELT Complex eigenvectors of a linear transformation . . . . . . . . . . . . . 2016

Section OD
ANM A normal matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2060

Section NLT
NM64 Nilpotent matrix, size 6, index 4 . . . . . . . . . . . . . . . . . . . . . 2074
NM62 Nilpotent matrix, size 6, index 2 . . . . . . . . . . . . . . . . . . . . . 2077
JB4 Jordan block, size 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2080
NJB5 Nilpotent Jordan block, size 5 . . . . . . . . . . . . . . . . . . . . . . . 2081
NM83 Nilpotent matrix, size 8, index 3 . . . . . . . . . . . . . . . . . . . . . 2085
KPNLT Kernels of powers of a nilpotent linear transformation . . . . . . . . . 2099
CFNLT Canonical form for a nilpotent linear transformation . . . . . . . . . . 2119

Version 2.11



EXAMPLES cx

Section IS
TIS Two invariant subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 2131
EIS Eigenspaces as invariant subspaces . . . . . . . . . . . . . . . . . . . . 2136
ISJB Invariant subspaces and Jordan blocks . . . . . . . . . . . . . . . . . . 2139
GE4 Generalized eigenspaces, dimension 4 domain . . . . . . . . . . . . . . 2148
GE6 Generalized eigenspaces, dimension 6 domain . . . . . . . . . . . . . . 2151
LTRGE Linear transformation restriction on generalized eigenspace . . . . . . 2158
ISMR4 Invariant subspaces, matrix representation, dimension 4 domain . . . . 2167
ISMR6 Invariant subspaces, matrix representation, dimension 6 domain . . . . 2170
GENR6 Generalized eigenspaces and nilpotent restrictions, dimension 6 domain 2177

Section JCF
JCF10 Jordan canonical form, size 10 . . . . . . . . . . . . . . . . . . . . . . 2216

Section CNO

Version 2.11



EXAMPLES cxi

ACN Arithmetic of complex numbers . . . . . . . . . . . . . . . . . . . . . . 2314
CSCN Conjugate of some complex numbers . . . . . . . . . . . . . . . . . . . 2319
MSCN Modulus of some complex numbers . . . . . . . . . . . . . . . . . . . . 2323

Section SET
SETM Set membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2325
SSET Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2326
CS Cardinality and Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2330
SU Set union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2332
SI Set intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2332
SC Set complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2334

Section PT
Section F
IM11 Integers mod 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2657
VSIM5 Vector space over integers mod 5 . . . . . . . . . . . . . . . . . . . . . 2658

Version 2.11



EXAMPLES cxii

SM2Z7 Symmetric matrices of size 2 over Z7 . . . . . . . . . . . . . . . . . . . 2660

FF8 Finite field of size 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2661

Section T
Section HP

HP Hadamard Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2692

Section VM

VM4 Vandermonde matrix of size 4 . . . . . . . . . . . . . . . . . . . . . . . 2711

Section PSM
Section ROD

ROD2 Rank one decomposition, size 2 . . . . . . . . . . . . . . . . . . . . . . 2740

ROD4 Rank one decomposition, size 4 . . . . . . . . . . . . . . . . . . . . . . 2742

Section TD

Version 2.11



EXAMPLES cxiii

TD4 Triangular decomposition, size 4 . . . . . . . . . . . . . . . . . . . . . 2754
TDSSE Triangular decomposition solves a system of equations . . . . . . . . . 2758
TDEE6 Triangular decomposition, entry by entry, size 6 . . . . . . . . . . . . . 2767

Section SVD
Section SR
Section POD
Section CF
PTFP Polynomial through five points . . . . . . . . . . . . . . . . . . . . . . 2810

Section SAS
SS6W Sharing a secret 6 ways . . . . . . . . . . . . . . . . . . . . . . . . . . 2825

Version 2.11



Preface

This textbook is designed to teach the university mathematics student the basics of linear
algebra and the techniques of formal mathematics. There are no prerequisites other than
ordinary algebra, but it is probably best used by a student who has the “mathematical
maturity” of a sophomore or junior. The text has two goals: to teach the fundamental
concepts and techniques of matrix algebra and abstract vector spaces, and to teach the
techniques associated with understanding the definitions and theorems forming a coherent
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PREFACE cxv

area of mathematics. So there is an emphasis on worked examples of nontrivial size and on
proving theorems carefully.

This book is copyrighted. This means that governments have granted the author a
monopoly — the exclusive right to control the making of copies and derivative works for
many years (too many years in some cases). It also gives others limited rights, generally
referred to as “fair use,” such as the right to quote sections in a review without seeking
permission. However, the author licenses this book to anyone under the terms of the GNU
Free Documentation License (GFDL), which gives you more rights than most copyrights (see
Appendix GFDL [2629]). Loosely speaking, you may make as many copies as you like at
no cost, and you may distribute these unmodified copies if you please. You may modify the
book for your own use. The catch is that if you make modifications and you distribute the
modified version, or make use of portions in excess of fair use in another work, then you must
also license the new work with the GFDL. So the book has lots of inherent freedom, and no
one is allowed to distribute a derivative work that restricts these freedoms. (See the license
itself in the appendix for the exact details of the additional rights you have been given.)

Notice that initially most people are struck by the notion that this book is free (the
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French would say gratuit, at no cost). And it is. However, it is more important that the
book has freedom (the French would say liberté, liberty). It will never go “out of print” nor
will there ever be trivial updates designed only to frustrate the used book market. Those
considering teaching a course with this book can examine it thoroughly in advance. Adding
new exercises or new sections has been purposely made very easy, and the hope is that others
will contribute these modifications back for incorporation into the book, for the benefit of
all.

Depending on how you received your copy, you may want to check for the latest version
(and other news) at http://linear.ups.edu/.

Topics The first half of this text (through Chapter M [611]) is basically a course in matrix
algebra, though the foundation of some more advanced ideas is also being formed in these
early sections. Vectors are presented exclusively as column vectors (since we also have the
typographic freedom to avoid writing a column vector inline as the transpose of a row vector),
and linear combinations are presented very early. Spans, null spaces, column spaces and row
spaces are also presented early, simply as sets, saving most of their vector space properties
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for later, so they are familiar objects before being scrutinized carefully.

You cannot do everything early, so in particular matrix multiplication comes later than
usual. However, with a definition built on linear combinations of column vectors, it should
seem more natural than the more frequent definition using dot products of rows with columns.
And this delay emphasizes that linear algebra is built upon vector addition and scalar mul-
tiplication. Of course, matrix inverses must wait for matrix multiplication, but this does not
prevent nonsingular matrices from occurring sooner. Vector space properties are hinted at
when vector and matrix operations are first defined, but the notion of a vector space is saved
for a more axiomatic treatment later (Chapter VS [954]). Once bases and dimension have
been explored in the context of vector spaces, linear transformations and their matrix rep-
resentation follow. The goal of the book is to go as far as Jordan canonical form in the Core
(Part C [2]), with less central topics collected in the Topics (Part T [2650]). A third part
contains contributed applications (Part A [2808]), with notation and theorems integrated
with the earlier two parts.

Linear algebra is an ideal subject for the novice mathematics student to learn how to
develop a topic precisely, with all the rigor mathematics requires. Unfortunately, much of this
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rigor seems to have escaped the standard calculus curriculum, so for many university students
this is their first exposure to careful definitions and theorems, and the expectation that they
fully understand them, to say nothing of the expectation that they become proficient in
formulating their own proofs. We have tried to make this text as helpful as possible with
this transition. Every definition is stated carefully, set apart from the text. Likewise, every
theorem is carefully stated, and almost every one has a complete proof. Theorems usually
have just one conclusion, so they can be referenced precisely later. Definitions and theorems
are cataloged in order of their appearance in the front of the book (Definitions [ix], Theorems
[x]), and alphabetical order in the index at the back. Along the way, there are discussions
of some more important ideas relating to formulating proofs (Proof Techniques [??]), which
is part advice and part logic.

Origin and History This book is the result of the confluence of several related events
and trends.

• At the University of Puget Sound we teach a one-semester, post-calculus linear algebra
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course to students majoring in mathematics, computer science, physics, chemistry and
economics. Between January 1986 and June 2002, I taught this course seventeen times.
For the Spring 2003 semester, I elected to convert my course notes to an electronic
form so that it would be easier to incorporate the inevitable and nearly-constant revi-
sions. Central to my new notes was a collection of stock examples that would be used
repeatedly to illustrate new concepts. (These would become the Archetypes, Appendix
A [2372].) It was only a short leap to then decide to distribute copies of these notes
and examples to the students in the two sections of this course. As the semester wore
on, the notes began to look less like notes and more like a textbook.

• I used the notes again in the Fall 2003 semester for a single section of the course.
Simultaneously, the textbook I was using came out in a fifth edition. A new chapter was
added toward the start of the book, and a few additional exercises were added in other
chapters. This demanded the annoyance of reworking my notes and list of suggested
exercises to conform with the changed numbering of the chapters and exercises. I had
an almost identical experience with the third course I was teaching that semester. I
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also learned that in the next academic year I would be teaching a course where my
textbook of choice had gone out of print. I felt there had to be a better alternative to
having the organization of my courses buffeted by the economics of traditional textbook
publishing.

• I had used TEX and the Internet for many years, so there was little to stand in the
way of typesetting, distributing and “marketing” a free book. With recreational and
professional interests in software development, I had long been fascinated by the open-
source software movement, as exemplified by the success of GNU and Linux, though
public-domain TEX might also deserve mention. Obviously, this book is an attempt to
carry over that model of creative endeavor to textbook publishing.

• As a sabbatical project during the Spring 2004 semester, I embarked on the current
project of creating a freely-distributable linear algebra textbook. (Notice the implied
financial support of the University of Puget Sound to this project.) Most of the material
was written from scratch since changes in notation and approach made much of my notes
of little use. By August 2004 I had written half the material necessary for our Math
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232 course. The remaining half was written during the Fall 2004 semester as I taught
another two sections of Math 232.

• While in early 2005 the book was complete enough to build a course around and Version
1.0 was released. Work has continued since, filling out the narrative, exercises and
supplements.

However, much of my motivation for writing this book is captured by the sentiments ex-
pressed by H.M. Cundy and A.P. Rollet in their Preface to the First Edition of Mathematical
Models (1952), especially the final sentence,

This book was born in the classroom, and arose from the spontaneous interest of
a Mathematical Sixth in the construction of simple models. A desire to show that
even in mathematics one could have fun led to an exhibition of the results and
attracted considerable attention throughout the school. Since then the Sherborne
collection has grown, ideas have come from many sources, and widespread interest
has been shown. It seems therefore desirable to give permanent form to the lessons
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of experience so that others can benefit by them and be encouraged to undertake
similar work.

How To Use This Book Chapters, Theorems, etc. are not numbered in this book, but
are instead referenced by acronyms. This means that Theorem XYZ will always be Theo-
rem XYZ, no matter if new sections are added, or if an individual decides to remove certain
other sections. Within sections, the subsections are acronyms that begin with the acronym
of the section. So Subsection XYZ.AB is the subsection AB in Section XYZ. Acronyms are
unique within their type, so for example there is just one Definition B [1121], but there is
also a Section B [1120]. At first, all the letters flying around may be confusing, but with
time, you will begin to recognize the more important ones on sight. Furthermore, there are
lists of theorems, examples, etc. in the front of the book, and an index that contains every
acronym. If you are reading this in an electronic version (PDF or XML), you will see that all
of the cross-references are hyperlinks, allowing you to click to a definition or example, and
then use the back button to return. In printed versions, you must rely on the page numbers.
However, note that page numbers are not permanent! Different editions, different margins,
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or different sized paper will affect what content is on each page. And in time, the addition
of new material will affect the page numbering.

Chapter divisions are not critical to the organization of the book, as Sections are the main
organizational unit. Sections are designed to be the subject of a single lecture or classroom
session, though there is frequently more material than can be discussed and illustrated in
a fifty-minute session. Consequently, the instructor will need to be selective about which
topics to illustrate with other examples and which topics to leave to the student’s reading.
Many of the examples are meant to be large, such as using five or six variables in a system
of equations, so the instructor may just want to “walk” a class through these examples. The
book has been written with the idea that some may work through it independently, so the
hope is that students can learn some of the more mechanical ideas on their own.

The highest level division of the book is the three Parts: Core, Topics, Applications
(Part C [2], Part T [2650], Part A [2808]). The Core is meant to carefully describe the basic
ideas required of a first exposure to linear algebra. In the final sections of the Core, one
should ask the question: which previous Sections could be removed without destroying the
logical development of the subject? Hopefully, the answer is “none.” The goal of the book
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is to finish the Core with a very general representation of a linear transformation (Jordan
canonical form, Section JCF [2189]). Of course, there will not be universal agreement on
what should, or should not, constitute the Core, but the main idea is to limit it to about
forty sections. Topics (Part T [2650]) is meant to contain those subjects that are important
in linear algebra, and which would make profitable detours from the Core for those interested
in pursuing them. Applications (Part A [2808]) should illustrate the power and widespread
applicability of linear algebra to as many fields as possible. The Archetypes (Appendix A
[2372]) cover many of the computational aspects of systems of linear equations, matrices
and linear transformations. The student should consult them often, and this is encouraged
by exercises that simply suggest the right properties to examine at the right time. But
what is more important, this a repository that contains enough variety to provide abundant
examples of key theorems, while also providing counterexamples to hypotheses or converses
of theorems. The summary table at the start of this appendix should be especially useful.

I require my students to read each Section prior to the day’s discussion on that section.
For some students this is a novel idea, but at the end of the semester a few always report
on the benefits, both for this course and other courses where they have adopted the habit.
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To make good on this requirement, each section contains three Reading Questions. These
sometimes only require parroting back a key definition or theorem, or they require perform-
ing a small example of a key computation, or they ask for musings on key ideas or new
relationships between old ideas. Answers are emailed to me the evening before the lecture.
Given the flavor and purpose of these questions, including solutions seems foolish.

Every chapter of Part C [2] ends with “Annotated Acronyms”, a short list of critical
theorems or definitions from that chapter. There are a variety of reasons for any one of these
to have been chosen, and reading the short paragraphs after some of these might provide
insight into the possibilities. An end-of-chapter review might usefully incorporate a close
reading of these lists.

Formulating interesting and effective exercises is as difficult, or more so, than building a
narrative. But it is the place where a student really learns the material. As such, for the
student’s benefit, complete solutions should be given. As the list of exercises expands, the
amount with solutions should similarly expand. Exercises and their solutions are referenced
with a section name, followed by a dot, then a letter (C,M, or T) and a number. The
letter ‘C’ indicates a problem that is mostly computational in nature, while the letter ‘T’
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indicates a problem that is more theoretical in nature. A problem with a letter ‘M’ is
somewhere in between (middle, mid-level, median, middling), probably a mix of computation
and applications of theorems. So Solution MO.T13 [658] is a solution to an exercise in Section
MO [612] that is theoretical in nature. The number ‘13’ has no intrinsic meaning.

More on Freedom This book is freely-distributable under the terms of the GFDL, along
with the underlying TEX code from which the book is built. This arrangement provides
many benefits unavailable with traditional texts.

• No cost, or low cost, to students. With no physical vessel (i.e. paper, binding), no
transportation costs (Internet bandwidth being a negligible cost) and no marketing
costs (evaluation and desk copies are free to all), anyone with an Internet connection
can obtain it, and a teacher could make available paper copies in sufficient quantities
for a class. The cost to print a copy is not insignificant, but is just a fraction of the cost
of a traditional textbook when printing is handled by a print-on-demand service over
the Internet. Students will not feel the need to sell back their book (nor should there
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be much of a market for used copies), and in future years can even pick up a newer
edition freely.

• Electronic versions of the book contain extensive hyperlinks. Specifically, most logical
steps in proofs and examples include links back to the previous definitions or theorems
that support that step. With whatever viewer you might be using (web browser, PDF
reader) the “back” button can then return you to the middle of the proof you were
studying. So even if you are reading a physical copy of this book, you can benefit from
also working with an electronic version.

A traditional book, which the publisher is unwilling to distribute in an easily-copied
electronic form, cannot offer this very intuitive and flexible approach to learning math-
ematics.

• The book will not go out of print. No matter what, a teacher can maintain their own
copy and use the book for as many years as they desire. Further, the naming schemes
for chapters, sections, theorems, etc. is designed so that the addition of new material
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will not break any course syllabi or assignment list.

• With many eyes reading the book and with frequent postings of updates, the reliability
should become very high. Please report any errors you find that persist into the latest
version.

• For those with a working installation of the popular typesetting program TEX, the book
has been designed so that it can be customized. Page layouts, presence of exercises,
solutions, sections or chapters can all be easily controlled. Furthermore, many vari-
ants of mathematical notation are achieved via TEX macros. So by changing a single
macro, one’s favorite notation can be reflected throughout the text. For example, every
transpose of a matrix is coded in the source as \transpose{A}, which when printed will
yield At. However by changing the definition of \transpose{ }, any desired alternative
notation (superscript t, superscript T, superscript prime) will then appear throughout
the text instead.

• The book has also been designed to make it easy for others to contribute material.
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Would you like to see a section on symmetric bilinear forms? Consider writing one and
contributing it to one of the Topics chapters. Should there be more exercises about the
null space of a matrix? Send me some. Historical Notes? Contact me, and we will see
about adding those in also.

• You have no legal obligation to pay for this book. It has been licensed with no ex-
pectation that you pay for it. You do not even have a moral obligation to pay for the
book. Thomas Jefferson (1743 – 1826), the author of the United States Declaration of
Independence, wrote,

If nature has made any one thing less susceptible than all others of exclusive
property, it is the action of the thinking power called an idea, which an individ-
ual may exclusively possess as long as he keeps it to himself; but the moment
it is divulged, it forces itself into the possession of every one, and the receiver
cannot dispossess himself of it. Its peculiar character, too, is that no one pos-
sesses the less, because every other possesses the whole of it. He who receives
an idea from me, receives instruction himself without lessening mine; as he
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who lights his taper at mine, receives light without darkening me. That ideas
should freely spread from one to another over the globe, for the moral and mu-
tual instruction of man, and improvement of his condition, seems to have been
peculiarly and benevolently designed by nature, when she made them, like fire,
expansible over all space, without lessening their density in any point, and like
the air in which we breathe, move, and have our physical being, incapable of
confinement or exclusive appropriation.

Letter to Isaac McPherson
August 13, 1813

However, if you feel a royalty is due the author, or if you would like to encourage the
author, or if you wish to show others that this approach to textbook publishing can also
bring financial compensation, then donations are gratefully received. Moreover, non-
financial forms of help can often be even more valuable. A simple note of encouragement,
submitting a report of an error, or contributing some exercises or perhaps an entire
section for the Topics or Applications are all important ways you can acknowledge the
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freedoms accorded to this work by the copyright holder and other contributors.

Conclusion Foremost, I hope that students find their time spent with this book profitable.
I hope that instructors find it flexible enough to fit the needs of their course. And I hope
that everyone will send me their comments and suggestions, and also consider the myriad
ways they can help (as listed on the book’s website at http://linear.ups.edu).

Robert A. Beezer
Tacoma, Washington

July 2008
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Chapter SLE
Systems of Linear Equations

We will motivate our study of linear algebra by studying solutions to systems of linear
equations. While the focus of this chapter is on the practical matter of how to find, and
describe, these solutions, we will also be setting ourselves up for more theoretical ideas that

2



Section WILA What is Linear Algebra? 3

will appear later.

Section WILA

What is Linear Algebra?

Subsection LA
“Linear” + “Algebra”

The subject of linear algebra can be partially explained by the meaning of the two terms
comprising the title. “Linear” is a term you will appreciate better at the end of this course,
and indeed, attaining this appreciation could be taken as one of the primary goals of this
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Subsection WILA.LA “Linear” + “Algebra” 4

course. However for now, you can understand it to mean anything that is “straight” or
“flat.” For example in the xy-plane you might be accustomed to describing straight lines
(is there any other kind?) as the set of solutions to an equation of the form y = mx + b,
where the slope m and the y-intercept b are constants that together describe the line. In
multivariate calculus, you may have discussed planes. Living in three dimensions, with
coordinates described by triples (x, y, z), they can be described as the set of solutions to
equations of the form ax+by+cz = d, where a, b, c, d are constants that together determine
the plane. While we might describe planes as “flat,” lines in three dimensions might be
described as “straight.” From a multivariate calculus course you will recall that lines are
sets of points described by equations such as x = 3t − 4, y = −7t + 2, z = 9t, where t is a
parameter that can take on any value.

Another view of this notion of “flatness” is to recognize that the sets of points just
described are solutions to equations of a relatively simple form. These equations involve
addition and multiplication only. We will have a need for subtraction, and occasionally we
will divide, but mostly you can describe “linear” equations as involving only addition and
multiplication. Here are some examples of typical equations we will see in the next few
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sections:

2x+ 3y − 4z = 13 4x1 + 5x2 − x3 + x4 + x5 = 0 9a− 2b+ 7c+ 2d = −7

What we will not see are equations like:

xy + 5yz = 13 x1 + x3
2/x4 − x3x4x

2
5 = 0 tan(ab) + log(c− d) = −7

The exception will be that we will on occasion need to take a square root.
You have probably heard the word “algebra” frequently in your mathematical preparation

for this course. Most likely, you have spent a good ten to fifteen years learning the algebra
of the real numbers, along with some introduction to the very similar algebra of complex
numbers (see Section CNO [2313]). However, there are many new algebras to learn and
use, and likely linear algebra will be your second algebra. Like learning a second language,
the necessary adjustments can be challenging at times, but the rewards are many. And
it will make learning your third and fourth algebras even easier. Perhaps you have heard
of “groups” and “rings” (or maybe you have studied them already), which are excellent
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Subsection WILA.LA “Linear” + “Algebra” 6

examples of other algebras with very interesting properties and applications. In any event,
prepare yourself to learn a new algebra and realize that some of the old rules you used for
the real numbers may no longer apply to this new algebra you will be learning!

The brief discussion above about lines and planes suggests that linear algebra has an
inherently geometric nature, and this is true. Examples in two and three dimensions can be
used to provide valuable insight into important concepts of this course. However, much of
the power of linear algebra will be the ability to work with “flat” or “straight” objects in
higher dimensions, without concerning ourselves with visualizing the situation. While much
of our intuition will come from examples in two and three dimensions, we will maintain an
algebraic approach to the subject, with the geometry being secondary. Others may wish to
switch this emphasis around, and that can lead to a very fruitful and beneficial course, but
here and now we are laying our bias bare.
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Subsection WILA.AA An Application 7

Subsection AA
An Application

We conclude this section with a rather involved example that will highlight some of the power
and techniques of linear algebra. Work through all of the details with pencil and paper, until
you believe all the assertions made. However, in this introductory example, do not concern
yourself with how some of the results are obtained or how you might be expected to solve a
similar problem. We will come back to this example later and expose some of the techniques
used and properties exploited. For now, use your background in mathematics to convince
yourself that everything said here really is correct.

Example TMP
Trail Mix Packaging
Suppose you are the production manager at a food-packaging plant and one of your product
lines is trail mix, a healthy snack popular with hikers and backpackers, containing raisins,
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Subsection WILA.AA An Application 8

peanuts and hard-shelled chocolate pieces. By adjusting the mix of these three ingredients,
you are able to sell three varieties of this item. The fancy version is sold in half-kilogram
packages at outdoor supply stores and has more chocolate and fewer raisins, thus command-
ing a higher price. The standard version is sold in one kilogram packages in grocery stores
and gas station mini-markets. Since the standard version has roughly equal amounts of each
ingredient, it is not as expensive as the fancy version. Finally, a bulk version is sold in bins
at grocery stores for consumers to load into plastic bags in amounts of their choosing. To
appeal to the shoppers that like bulk items for their economy and healthfulness, this mix
has many more raisins (at the expense of chocolate) and therefore sells for less.

Your production facilities have limited storage space and early each morning you are able
to receive and store 380 kilograms of raisins, 500 kilograms of peanuts and 620 kilograms
of chocolate pieces. As production manager, one of your most important duties is to decide
how much of each version of trail mix to make every day. Clearly, you can have up to
1500 kilograms of raw ingredients available each day, so to be the most productive you will
likely produce 1500 kilograms of trail mix each day. Also, you would prefer not to have any
ingredients leftover each day, so that your final product is as fresh as possible and so that

Version 2.11



Subsection WILA.AA An Application 9

you can receive the maximum delivery the next morning. But how should these ingredients
be allocated to the mixing of the bulk, standard and fancy versions?

First, we need a little more information about the mixes. Workers mix the ingredients
in 15 kilogram batches, and each row of the table below gives a recipe for a 15 kilogram
batch. There is some additional information on the costs of the ingredients and the price
the manufacturer can charge for the different versions of the trail mix.

Raisins Peanuts Chocolate Cost Sale Price
(kg/batch) (kg/batch) (kg/batch) ($/kg) ($/kg)

Bulk 7 6 2 3.69 4.99
Standard 6 4 5 3.86 5.50
Fancy 2 5 8 4.45 6.50

Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

As production manager, it is important to realize that you only have three decisions to make
— the amount of bulk mix to make, the amount of standard mix to make and the amount
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Subsection WILA.AA An Application 10

of fancy mix to make. Everything else is beyond your control or is handled by another
department within the company. Principally, you are also limited by the amount of raw
ingredients you can store each day. Let us denote the amount of each mix to produce each
day, measured in kilograms, by the variable quantities b, s and f . Your production schedule
can be described as values of b, s and f that do several things. First, we cannot make
negative quantities of each mix, so

b ≥ 0 s ≥ 0 f ≥ 0

Second, if we want to consume all of our ingredients each day, the storage capacities lead to
three (linear) equations, one for each ingredient,

7

15
b+

6

15
s+

2

15
f = 380 (raisins)

6

15
b+

4

15
s+

5

15
f = 500 (peanuts)

2

15
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5

15
s+

8

15
f = 620 (chocolate)
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It happens that this system of three equations has just one solution. In other words, as
production manager, your job is easy, since there is but one way to use up all of your raw
ingredients making trail mix. This single solution is

b = 300 kg s = 300 kg f = 900 kg.

We do not yet have the tools to explain why this solution is the only one, but it should be
simple for you to verify that this is indeed a solution. (Go ahead, we will wait.) Determining
solutions such as this, and establishing that they are unique, will be the main motivation for
our initial study of linear algebra.

So we have solved the problem of making sure that we make the best use of our limited
storage space, and each day use up all of the raw ingredients that are shipped to us. Addi-
tionally, as production manager, you must report weekly to the CEO of the company, and
you know he will be more interested in the profit derived from your decisions than in the
actual production levels. So you compute,

300(4.99− 3.69) + 300(5.50− 3.86) + 900(6.50− 4.45) = 2727.00
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for a daily profit of $2,727 from this production schedule. The computation of the daily
profit is also beyond our control, though it is definitely of interest, and it too looks like a
“linear” computation.

As often happens, things do not stay the same for long, and now the marketing depart-
ment has suggested that your company’s trail mix products standardize on every mix being
one-third peanuts. Adjusting the peanut portion of each recipe by also adjusting the choco-
late portion leads to revised recipes, and slightly different costs for the bulk and standard
mixes, as given in the following table.

Raisins Peanuts Chocolate Cost Sale Price
(kg/batch) (kg/batch) (kg/batch) ($/kg) ($/kg)

Bulk 7 5 3 3.70 4.99
Standard 6 5 4 3.85 5.50
Fancy 2 5 8 4.45 6.50

Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80
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In a similar fashion as before, we desire values of b, s and f so that

b ≥ 0 s ≥ 0 f ≥ 0

and

7
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15
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It now happens that this system of equations has infinitely many solutions, as we will now
demonstrate. Let f remain a variable quantity. Then if we make f kilograms of the fancy
mix, we will make 4f − 3300 kilograms of the bulk mix and −5f + 4800 kilograms of the
standard mix. Let us now verify that, for any choice of f , the values of b = 4f − 3300 and
s = −5f + 4800 will yield a production schedule that exhausts all of the day’s supply of raw
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ingredients (right now, do not be concerned about how you might derive expressions like
these for b and s). Grab your pencil and paper and play along.

7

15
(4f − 3300) +

6

15
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15
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Convince yourself that these expressions for b and s allow us to vary f and obtain an
infinite number of possibilities for solutions to the three equations that describe our storage
capacities. As a practical matter, there really are not an infinite number of solutions, since
we are unlikely to want to end the day with a fractional number of bags of fancy mix, so our
allowable values of f should probably be integers. More importantly, we need to remember
that we cannot make negative amounts of each mix! Where does this lead us? Positive
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quantities of the bulk mix requires that

b ≥ 0 ⇒ 4f − 3300 ≥ 0 ⇒ f ≥ 825

Similarly for the standard mix,

s ≥ 0 ⇒ −5f + 4800 ≥ 0 ⇒ f ≤ 960

So, as production manager, you really have to choose a value of f from the finite set

{825, 826, . . . , 960}
leaving you with 136 choices, each of which will exhaust the day’s supply of raw ingredients.
Pause now and think about which you would choose.

Recalling your weekly meeting with the CEO suggests that you might want to choose a
production schedule that yields the biggest possible profit for the company. So you compute
an expression for the profit based on your as yet undetermined decision for the value of f ,

(4f − 3300)(4.99− 3.70) + (−5f + 4800)(5.50− 3.85) + (f)(6.50− 4.45) = −1.04f + 3663
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Since f has a negative coefficient it would appear that mixing fancy mix is detrimental to
your profit and should be avoided. So you will make the decision to set daily fancy mix
production at f = 825. This has the effect of setting b = 4(825) − 3300 = 0 and we
stop producing bulk mix entirely. So the remainder of your daily production is standard
mix at the level of s = −5(825) + 4800 = 675 kilograms and the resulting daily profit is
(−1.04)(825) + 3663 = 2805. It is a pleasant surprise that daily profit has risen to $2,805,
but this is not the most important part of the story. What is important here is that there are
a large number of ways to produce trail mix that use all of the day’s worth of raw ingredients
and you were able to easily choose the one that netted the largest profit. Notice too how all
of the above computations look “linear.”

In the food industry, things do not stay the same for long, and now the sales department
says that increased competition has led to the decision to stay competitive and charge just
$5.25 for a kilogram of the standard mix, rather than the previous $5.50 per kilogram. This
decision has no effect on the possibilities for the production schedule, but will affect the
decision based on profit considerations. So you revisit just the profit computation, suitably
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Subsection WILA.AA An Application 17

adjusted for the new selling price of standard mix,

(4f − 3300)(4.99− 3.70) + (−5f + 4800)(5.25− 3.85) + (f)(6.50− 4.45) = 0.21f + 2463

Now it would appear that fancy mix is beneficial to the company’s profit since the value of
f has a positive coefficient. So you take the decision to make as much fancy mix as possible,
setting f = 960. This leads to s = −5(960) + 4800 = 0 and the increased competition has
driven you out of the standard mix market all together. The remainder of production is
therefore bulk mix at a daily level of b = 4(960) − 3300 = 540 kilograms and the resulting
daily profit is 0.21(960) + 2463 = 2664.60. A daily profit of $2,664.60 is less than it used to
be, but as production manager, you have made the best of a difficult situation and shown
the sales department that the best course is to pull out of the highly competitive standard
mix market completely. �

This example is taken from a field of mathematics variously known by names such as
operations research, systems science, or management science. More specifically, this is a
perfect example of problems that are solved by the techniques of “linear programming.”
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Subsection WILA.READ Reading Questions 18

There is a lot going on under the hood in this example. The heart of the matter is the
solution to systems of linear equations, which is the topic of the next few sections, and a
recurrent theme throughout this course. We will return to this example on several occasions
to reveal some of the reasons for its behavior.

Subsection READ
Reading Questions

1. Is the equation x2 + xy + tan(y3) = 0 linear or not? Why or why not?

2. Find all solutions to the system of two linear equations 2x+ 3y = −8, x− y = 6.

3. Describe how the production manager might explain the importance of the procedures
described in the trail mix application (Subsection WILA.AA [7]).
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Subsection EXC
Exercises

C10 In Example TMP [7] the first table lists the cost (per kilogram) to manufacture each
of the three varieties of trail mix (bulk, standard, fancy). For example, it costs $3.69 to
make one kilogram of the bulk variety. Re-compute each of these three costs and notice that
the computations are linear in character.
Contributed by Robert Beezer

M70 In Example TMP [7] two different prices were considered for marketing standard mix
with the revised recipes (one-third peanuts in each recipe). Selling standard mix at $5.50
resulted in selling the minimum amount of the fancy mix and no bulk mix. At $5.25 it was
best for profits to sell the maximum amount of fancy mix and then sell no standard mix.
Determine a selling price for standard mix that allows for maximum profits while still selling
some of each type of mix.
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Contributed by Robert Beezer Solution [21]
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Subsection SOL
Solutions

M70 Contributed by Robert Beezer Statement [19]
If the price of standard mix is set at $5.292, then the profit function has a zero coefficient on
the variable quantity f . So, we can set f to be any integer quantity in {825, 826, . . . , 960}.
All but the extreme values (f = 825, f = 960) will result in production levels where some
of every mix is manufactured. No matter what value of f is chosen, the resulting profit will
be the same, at $2,664.60.
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Section SSLE

Solving Systems of Linear Equations

We will motivate our study of linear algebra by considering the problem of solving several
linear equations simultaneously. The word “solve” tends to get abused somewhat, as in
“solve this problem.” When talking about equations we understand a more precise meaning:
find all of the values of some variable quantities that make an equation, or several equations,
true.
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Subsection SLE
Systems of Linear Equations

Example STNE
Solving two (nonlinear) equations
Suppose we desire the simultaneous solutions of the two equations,

x2 + y2 = 1

−x+
√

3y = 0

You can easily check by substitution that x =
√

3
2
, y = 1

2
and x = −

√
3

2
, y = −1

2
are both

solutions. We need to also convince ourselves that these are the only solutions. To see this,
plot each equation on the xy-plane, which means to plot (x, y) pairs that make an individual
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equation true. In this case we get a circle centered at the origin with radius 1 and a straight
line through the origin with slope 1√

3
. The intersections of these two curves are our desired

simultaneous solutions, and so we believe from our plot that the two solutions we know
already are indeed the only ones. We like to write solutions as sets, so in this case we write
the set of solutions as

S = {(
√

3
2
, 1

2
), (−

√
3

2
, −1

2
)}

�

In order to discuss systems of linear equations carefully, we need a precise definition.
And before we do that, we will introduce our periodic discussions about “Proof Techniques.”
Linear algebra is an excellent setting for learning how to read, understand and formulate
proofs. But this is a difficult step in your development as a mathematician, so we have
included a series of short essays containing advice and explanations to help you along. These
can be found back in Section PT [2336] of Appendix P [2311], and we will reference them
as they become appropriate. Be sure to head back to the appendix to read this as they are
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introduced. With a definition next, now is the time for the first of our proof techniques.
Head back to Section PT [2336] of Appendix P [2311] and study Technique D [2337]. We’ll
be right here when you get back. See you in a bit.

Definition SLE
System of Linear Equations
A system of linear equations is a collection of m equations in the variable quantities
x1, x2, x3, . . . , xn of the form,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm
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where the values of aij, bi and xj are from the set of complex numbers, C. 4
Don’t let the mention of the complex numbers, C, rattle you. We will stick with real

numbers exclusively for many more sections, and it will sometimes seem like we only work
with integers! However, we want to leave the possibility of complex numbers open, and there
will be occasions in subsequent sections where they are necessary. You can review the basic
properties of complex numbers in Section CNO [2313], but these facts will not be critical
until we reach Section O [565]. For now, here is an example to illustrate using the notation
introduced in Definition SLE [25].

Example NSE
Notation for a system of equations
Given the system of linear equations,

x1 + 2x2 + x4 = 7

x1 + x2 + x3 − x4 = 3

3x1 + x2 + 5x3 − 7x4 = 1

Version 2.11



Subsection SSLE.SLE Systems of Linear Equations 27

we have n = 4 variables and m = 3 equations. Also,

a11 = 1 a12 = 2 a13 = 0 a14 = 1 b1 = 7

a21 = 1 a22 = 1 a23 = 1 a24 = −1 b2 = 3

a31 = 3 a32 = 1 a33 = 5 a34 = −7 b3 = 1

Additionally, convince yourself that x1 = −2, x2 = 4, x3 = 2, x4 = 1 is one solution (but it
is not the only one!). �

We will often shorten the term “system of linear equations” to “system of equations”
leaving the linear aspect implied. After all, this is a book about linear algebra.

Version 2.11



Subsection SSLE.PSS Possibilities for Solution Sets 28

Subsection PSS
Possibilities for Solution Sets

The next example illustrates the possibilities for the solution set of a system of linear equa-
tions. We will not be too formal here, and the necessary theorems to back up our claims will
come in subsequent sections. So read for feeling and come back later to revisit this example.

Example TTS
Three typical systems
Consider the system of two equations with two variables,

2x1 + 3x2 = 3

x1 − x2 = 4

If we plot the solutions to each of these equations separately on the x1x2-plane, we get two
lines, one with negative slope, the other with positive slope. They have exactly one point in
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common, (x1, x2) = (3, −1), which is the solution x1 = 3, x2 = −1. From the geometry, we
believe that this is the only solution to the system of equations, and so we say it is unique.

Now adjust the system with a different second equation,

2x1 + 3x2 = 3

4x1 + 6x2 = 6

A plot of the solutions to these equations individually results in two lines, one on top of the
other! There are infinitely many pairs of points that make both equations true. We will
learn shortly how to describe this infinite solution set precisely (see Example SAA [116],
Theorem VFSLS [350]). Notice now how the second equation is just a multiple of the first.

One more minor adjustment provides a third system of linear equations,

2x1 + 3x2 = 3

4x1 + 6x2 = 10
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A plot now reveals two lines with identical slopes, i.e. parallel lines. They have no points in
common, and so the system has a solution set that is empty, S = ∅. �

This example exhibits all of the typical behaviors of a system of equations. A subsequent
theorem will tell us that every system of linear equations has a solution set that is empty,
contains a single solution or contains infinitely many solutions (Theorem PSSLS [180]). Ex-
ample STNE [23] yielded exactly two solutions, but this does not contradict the forthcoming
theorem. The equations in Example STNE [23] are not linear because they do not match
the form of Definition SLE [25], and so we cannot apply Theorem PSSLS [180] in this case.
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Subsection ESEO
Equivalent Systems and Equation Operations

With all this talk about finding solution sets for systems of linear equations, you might be
ready to begin learning how to find these solution sets yourself. We begin with our first
definition that takes a common word and gives it a very precise meaning in the context of
systems of linear equations.

Definition ESYS
Equivalent Systems
Two systems of linear equations are equivalent if their solution sets are equal. 4

Notice here that the two systems of equations could look very different (i.e. not be equal),
but still have equal solution sets, and we would then call the systems equivalent. Two linear
equations in two variables might be plotted as two lines that intersect in a single point. A
different system, with three equations in two variables might have a plot that is three lines,
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all intersecting at a common point, with this common point identical to the intersection point
for the first system. By our definition, we could then say these two very different looking
systems of equations are equivalent, since they have identical solution sets. It is really like
a weaker form of equality, where we allow the systems to be different in some respects, but
we use the term equivalent to highlight the situation when their solution sets are equal.

With this definition, we can begin to describe our strategy for solving linear systems.
Given a system of linear equations that looks difficult to solve, we would like to have an
equivalent system that is easy to solve. Since the systems will have equal solution sets, we
can solve the “easy” system and get the solution set to the “difficult” system. Here come
the tools for making this strategy viable.

Definition EO
Equation Operations
Given a system of linear equations, the following three operations will transform the system
into a different one, and each operation is known as an equation operation.

1. Swap the locations of two equations in the list of equations.

Version 2.11



Subsection SSLE.ESEO Equivalent Systems and Equation Operations 33

2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a second
equation, on both sides of the equality. Leave the first equation the same after this
operation, but replace the second equation by the new one.

4
These descriptions might seem a bit vague, but the proof or the examples that follow

should make it clear what is meant by each. We will shortly prove a key theorem about
equation operations and solutions to linear systems of equations. We are about to give a
rather involved proof, so a discussion about just what a theorem really is would be timely.
Head back and read Technique T [2339]. In the theorem we are about to prove, the
conclusion is that two systems are equivalent. By Definition ESYS [31] this translates to
requiring that solution sets be equal for the two systems. So we are being asked to show that
two sets are equal. How do we do this? Well, there is a very standard technique, and we
will use it repeatedly through the course. If you have not done so already, head to Section
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SET [2324] and familiarize yourself with sets, their operations, and especially the notion of
set equality, Definition SE [2327] and the nearby discussion about its use.

Theorem EOPSS
Equation Operations Preserve Solution Sets
If we apply one of the three equation operations of Definition EO [32] to a system of linear
equations (Definition SLE [25]), then the original system and the transformed system are
equivalent. �

Proof We take each equation operation in turn and show that the solution sets of the two
systems are equal, using the definition of set equality (Definition SE [2327]).

1. It will not be our habit in proofs to resort to saying statements are “obvious,” but
in this case, it should be. There is nothing about the order in which we write linear
equations that affects their solutions, so the solution set will be equal if the systems
only differ by a rearrangement of the order of the equations.

2. Suppose α 6= 0 is a number. Let’s choose to multiply the terms of equation i by α to
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build the new system of equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

αai1x1 + αai2x2 + αai3x3 + · · ·+ αainxn = αbi
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

Let S denote the solutions to the system in the statement of the theorem, and let T
denote the solutions to the transformed system.

(a) Show S ⊆ T . Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ S is a solution
to the original system. Ignoring the i-th equation for a moment, we know it makes

Version 2.11



Subsection SSLE.ESEO Equivalent Systems and Equation Operations 36

all the other equations of the transformed system true. We also know that

ai1β1 + ai2β2 + ai3β3 + · · ·+ ainβn = bi

which we can multiply by α to get

αai1β1 + αai2β2 + αai3β3 + · · ·+ αainβn = αbi

This says that the i-th equation of the transformed system is also true, so we have
established that (β1, β2, β3, . . . , βn) ∈ T , and therefore S ⊆ T .

(b) Now show T ⊆ S. Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ T is a
solution to the transformed system. Ignoring the i-th equation for a moment, we
know it makes all the other equations of the original system true. We also know
that

αai1β1 + αai2β2 + αai3β3 + · · ·+ αainβn = αbi
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which we can multiply by 1
α

, since α 6= 0, to get

ai1β1 + ai2β2 + ai3β3 + · · ·+ ainβn = bi

This says that the i-th equation of the original system is also true, so we have
established that (β1, β2, β3, . . . , βn) ∈ S, and therefore T ⊆ S. Locate the key
point where we required that α 6= 0, and consider what would happen if α = 0.

3. Suppose α is a number. Let’s choose to multiply the terms of equation i by α and add
them to equation j in order to build the new system of equations,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

a31x1 + a32x2 + · · ·+ a3nxn = b3
...
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(αai1 + aj1)x1 + (αai2 + aj2)x2 + · · ·+ (αain + ajn)xn = αbi + bj
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Let S denote the solutions to the system in the statement of the theorem, and let T
denote the solutions to the transformed system.

(a) Show S ⊆ T . Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ S is a solution
to the original system. Ignoring the j-th equation for a moment, we know this
solution makes all the other equations of the transformed system true. Using the
fact that the solution makes the i-th and j-th equations of the original system true,
we find

(αai1 + aj1)β1 + (αai2 + aj2)β2 + · · ·+ (αain + ajn)βn

= (αai1β1 + αai2β2 + · · ·+ αainβn) + (aj1β1 + aj2β2 + · · ·+ ajnβn)

= α(ai1β1 + ai2β2 + · · ·+ ainβn) + (aj1β1 + aj2β2 + · · ·+ ajnβn)
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= αbi + bj.

This says that the j-th equation of the transformed system is also true, so we have
established that (β1, β2, β3, . . . , βn) ∈ T , and therefore S ⊆ T .

(b) Now show T ⊆ S. Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ T is a
solution to the transformed system. Ignoring the j-th equation for a moment, we
know it makes all the other equations of the original system true. We then find

aj1β1 + aj2β2 + · · ·+ ajnβn

= aj1β1 + aj2β2 + · · ·+ ajnβn + αbi − αbi
= aj1β1 + aj2β2 + · · ·+ ajnβn + (αai1β1 + αai2β2 + · · ·+ αainβn)− αbi
= aj1β1 + αai1β1 + aj2β2 + αai2β2 + · · ·+ ajnβn + αainβn − αbi
= (αai1 + aj1)β1 + (αai2 + aj2)β2 + · · ·+ (αain + ajn)βn − αbi
= αbi + bj − αbi
= bj
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This says that the j-th equation of the original system is also true, so we have
established that (β1, β2, β3, . . . , βn) ∈ S, and therefore T ⊆ S.

Why didn’t we need to require that α 6= 0 for this row operation? In other words, how
does the third statement of the theorem read when α = 0? Does our proof require some
extra care when α = 0? Compare your answers with the similar situation for the second
row operation. (See Exercise SSLE.T20 [59].)

�

Theorem EOPSS [34] is the necessary tool to complete our strategy for solving systems
of equations. We will use equation operations to move from one system to another, all the
while keeping the solution set the same. With the right sequence of operations, we will arrive
at a simpler equation to solve. The next two examples illustrate this idea, while saving some
of the details for later.

Example US
Three equations, one solution
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We solve the following system by a sequence of equation operations.

x1 + 2x2 + 2x3 = 4

x1 + 3x2 + 3x3 = 5

2x1 + 6x2 + 5x3 = 6

α = −1 times equation 1, add to equation 2:

x1 + 2x2 + 2x3 = 4

0x1 + 1x2 + 1x3 = 1

2x1 + 6x2 + 5x3 = 6

α = −2 times equation 1, add to equation 3:

x1 + 2x2 + 2x3 = 4

0x1 + 1x2 + 1x3 = 1
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0x1 + 2x2 + 1x3 = −2

α = −2 times equation 2, add to equation 3:

x1 + 2x2 + 2x3 = 4

0x1 + 1x2 + 1x3 = 1

0x1 + 0x2 − 1x3 = −4

α = −1 times equation 3:

x1 + 2x2 + 2x3 = 4

0x1 + 1x2 + 1x3 = 1

0x1 + 0x2 + 1x3 = 4

which can be written more clearly as

x1 + 2x2 + 2x3 = 4
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x2 + x3 = 1

x3 = 4

This is now a very easy system of equations to solve. The third equation requires that
x3 = 4 to be true. Making this substitution into equation 2 we arrive at x2 = −3, and
finally, substituting these values of x2 and x3 into the first equation, we find that x1 = 2.
Note too that this is the only solution to this final system of equations, since we were forced to
choose these values to make the equations true. Since we performed equation operations on
each system to obtain the next one in the list, all of the systems listed here are all equivalent
to each other by Theorem EOPSS [34]. Thus (x1, x2, x3) = (2,−3, 4) is the unique solution
to the original system of equations (and all of the other intermediate systems of equations
listed as we transformed one into another). �

Example IS
Three equations, infinitely many solutions
The following system of equations made an appearance earlier in this section (Example NSE
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[26]), where we listed one of its solutions. Now, we will try to find all of the solutions to this
system. Don’t concern yourself too much about why we choose this particular sequence of
equation operations, just believe that the work we do is all correct.

x1 + 2x2 + 0x3 + x4 = 7

x1 + x2 + x3 − x4 = 3

3x1 + x2 + 5x3 − 7x4 = 1

α = −1 times equation 1, add to equation 2:

x1 + 2x2 + 0x3 + x4 = 7

0x1 − x2 + x3 − 2x4 = −4

3x1 + x2 + 5x3 − 7x4 = 1

α = −3 times equation 1, add to equation 3:

x1 + 2x2 + 0x3 + x4 = 7
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0x1 − x2 + x3 − 2x4 = −4

0x1 − 5x2 + 5x3 − 10x4 = −20

α = −5 times equation 2, add to equation 3:

x1 + 2x2 + 0x3 + x4 = 7

0x1 − x2 + x3 − 2x4 = −4

0x1 + 0x2 + 0x3 + 0x4 = 0

α = −1 times equation 2:

x1 + 2x2 + 0x3 + x4 = 7

0x1 + x2 − x3 + 2x4 = 4

0x1 + 0x2 + 0x3 + 0x4 = 0
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α = −2 times equation 2, add to equation 1:

x1 + 0x2 + 2x3 − 3x4 = −1

0x1 + x2 − x3 + 2x4 = 4

0x1 + 0x2 + 0x3 + 0x4 = 0

which can be written more clearly as

x1 + 2x3 − 3x4 = −1

x2 − x3 + 2x4 = 4

0 = 0

What does the equation 0 = 0 mean? We can choose any values for x1, x2, x3, x4 and this
equation will be true, so we only need to consider further the first two equations, since the
third is true no matter what. We can analyze the second equation without consideration of
the variable x1. It would appear that there is considerable latitude in how we can choose
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x2, x3, x4 and make this equation true. Let’s choose x3 and x4 to be anything we please, say
x3 = a and x4 = b.

Now we can take these arbitrary values for x3 and x4, substitute them in equation 1, to
obtain

x1 + 2a− 3b = −1

x1 = −1− 2a+ 3b

Similarly, equation 2 becomes

x2 − a+ 2b = 4

x2 = 4 + a− 2b

So our arbitrary choices of values for x3 and x4 (a and b) translate into specific values of x1

and x2. The lone solution given in Example NSE [26] was obtained by choosing a = 2 and
b = 1. Now we can easily and quickly find many more (infinitely more). Suppose we choose
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a = 5 and b = −2, then we compute

x1 = −1− 2(5) + 3(−2) = −17

x2 = 4 + 5− 2(−2) = 13

and you can verify that (x1, x2, x3, x4) = (−17, 13, 5, −2) makes all three equations true.
The entire solution set is written as

S = {(−1− 2a+ 3b, 4 + a− 2b, a, b) | a ∈ C, b ∈ C}
It would be instructive to finish off your study of this example by taking the general form
of the solutions given in this set and substituting them into each of the three equations and
verify that they are true in each case (Exercise SSLE.M40 [57]). �

In the next section we will describe how to use equation operations to systematically
solve any system of linear equations. But first, read one of our more important pieces of
advice about speaking and writing mathematics. See Technique L [2341].

Before attacking the exercises in this section, it will be helpful to read some advice on
getting started on the construction of a proof. See Technique GS [2345].

Version 2.11



Subsection SSLE.READ Reading Questions 49

Subsection READ
Reading Questions

1. How many solutions does the system of equations 3x + 2y = 4, 6x + 4y = 8 have?
Explain your answer.

2. How many solutions does the system of equations 3x + 2y = 4, 6x + 4y = −2 have?
Explain your answer.

3. What do we mean when we say mathematics is a language?
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Subsection EXC
Exercises

C10 Find a solution to the system in Example IS [43] where x3 = 6 and x4 = 2. Find two
other solutions to the system. Find a solution where x1 = −17 and x2 = 14. How many
possible answers are there to each of these questions?
Contributed by Robert Beezer

C20 Each archetype (Appendix A [2372]) that is a system of equations begins by listing
some specific solutions. Verify the specific solutions listed in the following archetypes by
evaluating the system of equations with the solutions listed.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]
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Archetype E [2431]
Archetype F [2443]
Archetype G [2460]
Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
Contributed by Robert Beezer

C30 Find all solutions to the linear system:

x+ y = 5

2x− y = 3

Contributed by Chris Black Solution [60]
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C31 Find all solutions to the linear system:

3x+ 2y = 1

x− y = 2

4x+ 2y = 2

Contributed by Chris Black

C32 Find all solutions to the linear system:

x+ 2y = 8

x− y = 2

x+ y = 4

Contributed by Chris Black
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C33 Find all solutions to the linear system:

x+ y − z = −1

x− y − z = −1

z = 2

Contributed by Chris Black

C34 Find all solutions to the linear system:

x+ y − z = −5

x− y − z = −3

x+ y − z = 0

Contributed by Chris Black
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C50 A three-digit number has two properties. The tens-digit and the ones-digit add up to
5. If the number is written with the digits in the reverse order, and then subtracted from
the original number, the result is 792. Use a system of equations to find all of the three-digit
numbers with these properties.
Contributed by Robert Beezer Solution [60]

C51 Find all of the six-digit numbers in which the first digit is one less than the second,
the third digit is half the second, the fourth digit is three times the third and the last two
digits form a number that equals the sum of the fourth and fifth. The sum of all the digits
is 24. (From The MENSA Puzzle Calendar for January 9, 2006.)
Contributed by Robert Beezer Solution [62]

C52 Driving along, Terry notices that the last four digits on his car’s odometer are palin-
dromic. A mile later, the last five digits are palindromic. After driving another mile, the
middle four digits are palindromic. One more mile, and all six are palindromic. What was
the odometer reading when Terry first looked at it? Form a linear system of equations that
expresses the requirements of this puzzle. (Car Talk Puzzler, National Public Radio, Week
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of January 21, 2008) (A car odometer displays six digits and a sequence is a palindrome if
it reads the same left-to-right as right-to-left.)
Contributed by Robert Beezer Solution [64]

M10 Each sentence below has at least two meanings. Identify the source of the double
meaning, and rewrite the sentence (at least twice) to clearly convey each meaning.

1. They are baking potatoes.

2. He bought many ripe pears and apricots.

3. She likes his sculpture.

4. I decided on the bus.

Contributed by Robert Beezer Solution [64]

Version 2.11



Subsection SSLE.EXC Exercises 56

M11 Discuss the difference in meaning of each of the following three almost identical
sentences, which all have the same grammatical structure. (These are due to Keith Devlin.)

1. She saw him in the park with a dog.

2. She saw him in the park with a fountain.

3. She saw him in the park with a telescope.

Contributed by Robert Beezer Solution [65]

M12 The following sentence, due to Noam Chomsky, has a correct grammatical structure,
but is meaningless. Critique its faults. “Colorless green ideas sleep furiously.” (Chomsky,
Noam. Syntactic Structures, The Hague/Paris: Mouton, 1957. p. 15.)
Contributed by Robert Beezer Solution [66]

M13 Read the following sentence and form a mental picture of the situation.
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The baby cried and the mother picked it up.

What assumptions did you make about the situation?
Contributed by Robert Beezer Solution [66]

M30 This problem appears in a middle-school mathematics textbook: Together Dan and
Diane have $20. Together Diane and Donna have $15. How much do the three of them have
in total? (Transition Mathematics, Second Edition, Scott Foresman Addison Wesley, 1998.
Problem 5–1.19.)
Contributed by David Beezer Solution [66]

M40 Solutions to the system in Example IS [43] are given as

(x1, x2, x3, x4) = (−1− 2a+ 3b, 4 + a− 2b, a, b)

Evaluate the three equations of the original system with these expressions in a and b and
verify that each equation is true, no matter what values are chosen for a and b.
Contributed by Robert Beezer
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M70 We have seen in this section that systems of linear equations have limited possibil-
ities for solution sets, and we will shortly prove Theorem PSSLS [180] that describes these
possibilities exactly. This exercise will show that if we relax the requirement that our equa-
tions be linear, then the possibilities expand greatly. Consider a system of two equations in
the two variables x and y, where the departure from linearity involves simply squaring the
variables.

x2 − y2 = 1

x2 + y2 = 4

After solving this system of non-linear equations, replace the second equation in turn by
x2 + 2x+ y2 = 3, x2 + y2 = 1, x2−x+ y2 = 0, 4x2 + 4y2 = 1 and solve each resulting system
of two equations in two variables.
Contributed by Robert Beezer Solution [67]

T10 Technique D [2337] asks you to formulate a definition of what it means for a whole
number to be odd. What is your definition? (Don’t say “the opposite of even.”) Is 6 odd?
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Is 11 odd? Justify your answers by using your definition.
Contributed by Robert Beezer Solution [68]

T20 Explain why the second equation operation in Definition EO [32] requires that the
scalar be nonzero, while in the third equation operation this restriction on the scalar is not
present.
Contributed by Robert Beezer Solution [68]
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Subsection SOL
Solutions

C30 Contributed by Chris Black Statement [51]
Solving each equation for y, we have the equivalent system

y = 5− x
y = 2x− 3.

Setting these expressions for y equal, we have the equation 5 − x = 2x − 3, which quickly
leads to x = 8

3
. Substituting for x in the first equation, we have y = 5 − x = 5 − 8

3
= 7

3
.

Thus, the solution is x = 8
3
, y = 7

3
.

C50 Contributed by Robert Beezer Statement [54]
Let a be the hundreds digit, b the tens digit, and c the ones digit. Then the first condition
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says that b + c = 5. The original number is 100a + 10b + c, while the reversed number is
100c+ 10b+ a. So the second condition is

792 = (100a+ 10b+ c)− (100c+ 10b+ a) = 99a− 99c

So we arrive at the system of equations

b+ c = 5

99a− 99c = 792

Using equation operations, we arrive at the equivalent system

a− c = 8

b+ c = 5

We can vary c and obtain infinitely many solutions. However, c must be a digit, restricting
us to ten values (0 – 9). Furthermore, if c > 1, then the first equation forces a > 9, an
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impossibility. Setting c = 0, yields 850 as a solution, and setting c = 1 yields 941 as another
solution.

C51 Contributed by Robert Beezer Statement [54]
Let abcdef denote any such six-digit number and convert each requirement in the problem
statement into an equation.

a = b− 1

c =
1

2
b

d = 3c

10 ∗ e+ f = d+ e

24 = a+ b+ c+ d+ e+ f

In a more standard form this becomes

a− b = −1

Version 2.11



Subsection SSLE.SOL Solutions 63

−b+ 2c = 0

−3c+ d = 0

−d+ 9e+ f = 0

a+ b+ c+ d+ e+ f = 24

Using equation operations (or the techniques of the upcoming Section RREF [70]), this
system can be converted to the equivalent system

a+
16

75
f = 5

b+
16

75
f = 6

c+
8

75
f = 3

d+
8

25
f = 9
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e+
11

75
f = 1

Clearly, choosing f = 0 will yield the solution abcde = 563910. Furthermore, to have the
variables result in single-digit numbers, none of the other choices for f (1, 2, . . . , 9) will
yield a solution.

C52 Contributed by Robert Beezer Statement [54]
198888 is one solution, and David Braithwaite found 199999 as another.

M10 Contributed by Robert Beezer Statement [55]

1. Is “baking” a verb or an adjective?
Potatoes are being baked.
Those are baking potatoes.

2. Are the apricots ripe, or just the pears? Parentheses could indicate just what the
adjective “ripe” is meant to modify. Were there many apricots as well, or just many
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pears?
He bought many pears and many ripe apricots.
He bought apricots and many ripe pears.

3. Is “sculpture” a single physical object, or the sculptor’s style expressed over many pieces
and many years?
She likes his sculpture of the girl.
She likes his sculptural style.

4. Was a decision made while in the bus, or was the outcome of a decision to choose the
bus. Would the sentence “I decided on the car,” have a similar double meaning?
I made my decision while on the bus.
I decided to ride the bus.

M11 Contributed by Robert Beezer Statement [56]
We know the dog belongs to the man, and the fountain belongs to the park. It is not clear
if the telescope belongs to the man, the woman, or the park.
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M12 Contributed by Robert Beezer Statement [56]
In adjacent pairs the words are contradictory or inappropriate. Something cannot be both
green and colorless, ideas do not have color, ideas do not sleep, and it is hard to sleep
furiously.

M13 Contributed by Robert Beezer Statement [56]
Did you assume that the baby and mother are human?
Did you assume that the baby is the child of the mother?
Did you assume that the mother picked up the baby as an attempt to stop the crying?

M30 Contributed by Robert Beezer Statement [57]
If x, y and z represent the money held by Dan, Diane and Donna, then y = 15 − z and
x = 20 − y = 20 − (15 − z) = 5 + z. We can let z take on any value from 0 to 15 without
any of the three amounts being negative, since presumably middle-schoolers are too young
to assume debt.

Then the total capital held by the three is x + y + z = (5 + z) + (15− z) + z = 20 + z.
So their combined holdings can range anywhere from $20 (Donna is broke) to $35 (Donna
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is flush).
We will have more to say about this situation in Section TSS [160], and specifically

Theorem CMVEI [182].

M70 Contributed by Robert Beezer Statement [58]
The equation x2− y2 = 1 has a solution set by itself that has the shape of a hyperbola when
plotted. The five different second equations have solution sets that are circles when plotted
individually. Where the hyperbola and circle intersect are the solutions to the system of two
equations. As the size and location of the circle varies, the number of intersections varies
from four to none (in the order given). Sketching the relevant equations would be instructive,
as was discussed in Example STNE [23].

The exact solution sets are (according to the choice of the second equation),

x2 + y2 = 4 :

{(√
5

2
,

√
3

2

)
,

(
−
√

5

2
,

√
3

2

)
,

(√
5

2
,−
√

3

2

)
,

(
−
√

5

2
,−
√

3

2

)}
x2 + 2x+ y2 = 3 :

{
(1, 0), (−2,

√
3), (−2,−

√
3)
}
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x2 + y2 = 1 : {(1, 0), (−1, 0)}
x2 − x+ y2 = 0 : {(1, 0)}

4x2 + 4y2 = 1 : {}

T10 Contributed by Robert Beezer Statement [58]
We can say that an integer is odd if when it is divided by 2 there is a remainder of 1. So 6
is not odd since 6 = 3× 2 + 0, while 11 is odd since 11 = 5× 2 + 1.

T20 Contributed by Robert Beezer Statement [59]
Definition EO [32] is engineered to make Theorem EOPSS [34] true. If we were to allow a
zero scalar to multiply an equation then that equation would be transformed to the equation
0 = 0, which is true for any possible values of the variables. Any restrictions on the solution
set imposed by the original equation would be lost.

However, in the third operation, it is allowed to choose a zero scalar, multiply an equation
by this scalar and add the transformed equation to a second equation (leaving the first
unchanged). The result? Nothing. The second equation is the same as it was before. So the
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theorem is true in this case, the two systems are equivalent. But in practice, this would be
a silly thing to actually ever do! We still allow it though, in order to keep our theorem as
general as possible.

Notice the location in the proof of Theorem EOPSS [34] where the expression 1
α

appears
— this explains the prohibition on α = 0 in the second equation operation.
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Section RREF

Reduced Row-Echelon Form

After solving a few systems of equations, you will recognize that it doesn’t matter so much
what we call our variables, as opposed to what numbers act as their coefficients. A system
in the variables x1, x2, x3 would behave the same if we changed the names of the variables
to a, b, c and kept all the constants the same and in the same places. In this section, we
will isolate the key bits of information about a system of equations into something called a
matrix, and then use this matrix to systematically solve the equations. Along the way we
will obtain one of our most important and useful computational tools.
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Subsection MVNSE
Matrix and Vector Notation for Systems of Equations

Definition M
Matrix
An m×n matrix is a rectangular layout of numbers from C having m rows and n columns.
We will use upper-case Latin letters from the start of the alphabet (A, B, C, . . . ) to denote
matrices and squared-off brackets to delimit the layout. Many use large parentheses instead
of brackets — the distinction is not important. Rows of a matrix will be referenced starting
at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting
from the left (i.e. column 1 is at the left). For a matrix A, the notation [A]ij will refer to
the complex number in row i and column j of A.
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(This definition contains Notation M.)
(This definition contains Notation MC.) 4

Be careful with this notation for individual entries, since it is easy to think that [A]ij
refers to the whole matrix. It does not. It is just a number, but is a convenient way to talk
about the individual entries simultaneously. This notation will get a heavy workout once we
get to Chapter M [611].

Example AM
A matrix

B =

−1 2 5 3
1 0 −6 1
−4 2 2 −2


is a matrix with m = 3 rows and n = 4 columns. We can say that [B]2,3 = −6 while
[B]3,4 = −2. �

Some mathematical software is very particular about which types of numbers (integers,
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rationals, reals, complexes) you wish to work with. See: Computation R.SAGE [2297]
A calculator or computer language can be a convenient way to perform calculations with
matrices. But first you have to enter the matrix. See: Computation ME.MMA [2271]
Computation ME.TI86 [2288] Computation ME.TI83 [2293] Computation ME.SAGE
[2299] When we do equation operations on system of equations, the names of the variables
really aren’t very important. x1, x2, x3, or a, b, c, or x, y, z, it really doesn’t matter. In this
subsection we will describe some notation that will make it easier to describe linear systems,
solve the systems and describe the solution sets. Here is a list of definitions, laden with
notation.

Definition CV
Column Vector
A column vector of size m is an ordered list of m numbers, which is written in order
vertically, starting at the top and proceeding to the bottom. At times, we will refer to a
column vector as simply a vector. Column vectors will be written in bold, usually with
lower case Latin letter from the end of the alphabet such as u, v, w, x, y, z. Some books
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like to write vectors with arrows, such as ~u. Writing by hand, some like to put arrows on
top of the symbol, or a tilde underneath the symbol, as in u

∼
. To refer to the entry or

component that is number i in the list that is the vector v we write [v]i.

(This definition contains Notation CV.)

(This definition contains Notation CVC.) 4

Be careful with this notation. While the symbols [v]i might look somewhat substantial,
as an object this represents just one component of a vector, which is just a single complex
number.

Definition ZCV
Zero Column Vector
The zero vector of size m is the column vector of size m where each entry is the number
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zero,

0 =


0
0
0
...
0


or defined much more compactly, [0]i = 0 for 1 ≤ i ≤ m.
(This definition contains Notation ZCV.) 4
Definition CM
Coefficient Matrix
For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2
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a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the coefficient matrix is the m× n matrix

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...
am1 am2 am3 . . . amn


4

Definition VOC
Vector of Constants
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For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the vector of constants is the column vector of size m

b =


b1
b2
b3
...
bm
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4

Definition SOLV
Solution Vector
For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm
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the solution vector is the column vector of size n

x =


x1

x2

x3
...
xn


4

The solution vector may do double-duty on occasion. It might refer to a list of variable
quantities at one point, and subsequently refer to values of those variables that actually form
a particular solution to that system.

Definition MRLS
Matrix Representation of a Linear System
If A is the coefficient matrix of a system of linear equations and b is the vector of constants,
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then we will write LS(A, b) as a shorthand expression for the system of linear equations,
which we will refer to as the matrix representation of the linear system.

(This definition contains Notation MRLS.) 4

Example NSLE
Notation for systems of linear equations
The system of linear equations

2x1 + 4x2 − 3x3 + 5x4 + x5 = 9

3x1 + x2 + x4 − 3x5 = 0

−2x1 + 7x2 − 5x3 + 2x4 + 2x5 = −3

has coefficient matrix

A =

 2 4 −3 5 1
3 1 0 1 −3
−2 7 −5 2 2


Version 2.11



Subsection RREF.MVNSE Matrix and Vector Notation for Systems of Equations 81

and vector of constants

b =

 9
0
−3


and so will be referenced as LS(A, b). �

Definition AM
Augmented Matrix
Suppose we have a system of m equations in n variables, with coefficient matrix A and vector
of constants b. Then the augmented matrix of the system of equations is the m× (n+ 1)
matrix whose first n columns are the columns of A and whose last column (number n + 1)
is the column vector b. This matrix will be written as [A | b].
(This definition contains Notation AM.) 4

The augmented matrix represents all the important information in the system of equa-
tions, since the names of the variables have been ignored, and the only connection with the
variables is the location of their coefficients in the matrix. It is important to realize that
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the augmented matrix is just that, a matrix, and not a system of equations. In particular,
the augmented matrix does not have any “solutions,” though it will be useful for finding
solutions to the system of equations that it is associated with. (Think about your objects,
and review Technique L [2341].) However, notice that an augmented matrix always belongs
to some system of equations, and vice versa, so it is tempting to try and blur the distinction
between the two. Here’s a quick example.

Example AMAA
Augmented matrix for Archetype A
Archetype A [2378] is the following system of 3 equations in 3 variables.

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5
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Here is its augmented matrix. 1 −1 2 1
2 1 1 8
1 1 0 5


�

Subsection RO
Row Operations

An augmented matrix for a system of equations will save us the tedium of continually writing
down the names of the variables as we solve the system. It will also release us from any
dependence on the actual names of the variables. We have seen how certain operations
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we can perform on equations (Definition EO [32]) will preserve their solutions (Theorem
EOPSS [34]). The next two definitions and the following theorem carry over these ideas to
augmented matrices.

Definition RO
Row Operations
The following three operations will transform an m×n matrix into a different matrix of the
same size, and each is known as a row operation.

1. Swap the locations of two rows.

2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the entries
in the same columns of a second row. Leave the first row the same after this operation,
but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:
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1. Ri ↔ Rj: Swap the location of rows i and j.

2. αRi: Multiply row i by the nonzero scalar α.

3. αRi +Rj: Multiply row i by the scalar α and add to row j.

(This definition contains Notation RO.) 4

Definition REM
Row-Equivalent Matrices
Two matrices, A and B, are row-equivalent if one can be obtained from the other by a
sequence of row operations. 4

Example TREM
Two row-equivalent matrices
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The matrices

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent as can be seen from2 −1 3 4

5 2 −2 3
1 1 0 6

 R1↔R3−−−−→
1 1 0 6

5 2 −2 3
2 −1 3 4


−2R1+R2−−−−−→

1 1 0 6
3 0 −2 −9
2 −1 3 4


We can also say that any pair of these three matrices are row-equivalent. �

Notice that each of the three row operations is reversible (Exercise RREF.T10 [136]),
so we do not have to be careful about the distinction between “A is row-equivalent to
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B” and “B is row-equivalent to A.” (Exercise RREF.T11 [136]) The preceding definitions
are designed to make the following theorem possible. It says that row-equivalent matrices
represent systems of linear equations that have identical solution sets.

Theorem REMES
Row-Equivalent Matrices represent Equivalent Systems
Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear
equations that they represent are equivalent systems. �

Proof If we perform a single row operation on an augmented matrix, it will have the same
effect as if we did the analogous equation operation on the corresponding system of equations.
By exactly the same methods as we used in the proof of Theorem EOPSS [34] we can see
that each of these row operations will preserve the set of solutions for the corresponding
system of equations. �

So at this point, our strategy is to begin with a system of equations, represent it by an
augmented matrix, perform row operations (which will preserve solutions for the correspond-
ing systems) to get a “simpler” augmented matrix, convert back to a “simpler” system of
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equations and then solve that system, knowing that its solutions are those of the original
system. Here’s a rehash of Example US [40] as an exercise in using our new tools.

Example USR
Three equations, one solution, reprised
We solve the following system using augmented matrices and row operations. This is the
same system of equations solved in Example US [40] using equation operations.

x1 + 2x2 + 2x3 = 4

x1 + 3x2 + 3x3 = 5

2x1 + 6x2 + 5x3 = 6

Form the augmented matrix,

A =

1 2 2 4
1 3 3 5
2 6 5 6
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and apply row operations,

−1R1+R2−−−−−→
1 2 2 4

0 1 1 1
2 6 5 6

 −2R1+R3−−−−−→
1 2 2 4

0 1 1 1
0 2 1 −2


−2R2+R3−−−−−→

1 2 2 4
0 1 1 1
0 0 −1 −4

 −1R3−−−→
1 2 2 4

0 1 1 1
0 0 1 4


So the matrix

B =

1 2 2 4
0 1 1 1
0 0 1 4


is row equivalent to A and by Theorem REMES [87] the system of equations below has the
same solution set as the original system of equations.

x1 + 2x2 + 2x3 = 4
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x2 + x3 = 1

x3 = 4

Solving this “simpler” system is straightforward and is identical to the process in Example
US [40]. �

Subsection RREF
Reduced Row-Echelon Form

The preceding example amply illustrates the definitions and theorems we have seen so far.
But it still leaves two questions unanswered. Exactly what is this “simpler” form for a
matrix, and just how do we get it? Here’s the answer to the first question, a definition of
reduced row-echelon form.
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Definition RREF
Reduced Row-Echelon Form
A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero lies below any row that contains a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.

3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row i, column j and
the other located in row s, column t. If s > i, then t > j.

A row of only zero entries will be called a zero row and the leftmost nonzero entry of a
nonzero row will be called a leading 1. The number of nonzero rows will be denoted by r.

A column containing a leading 1 will be called a pivot column. The set of column
indices for all of the pivot columns will be denoted by D = {d1, d2, d3, . . . , dr} where
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d1 < d2 < d3 < · · · < dr, while the columns that are not pivot columns will be denoted as
F = {f1, f2, f3, . . . , fn−r} where f1 < f2 < f3 < · · · < fn−r.

(This definition contains Notation RREFA.) 4

The principal feature of reduced row-echelon form is the pattern of leading 1’s guaranteed
by conditions (2) and (4), reminiscent of a flight of geese, or steps in a staircase, or water
cascading down a mountain stream.

There are a number of new terms and notation introduced in this definition, which should
make you suspect that this is an important definition. Given all there is to digest here, we
will save the use of D and F until Section TSS [160]. However, one important point to make
here is that all of these terms and notation apply to a matrix. Sometimes we will employ
these terms and sets for an augmented matrix, and other times it might be a coefficient
matrix. So always give some thought to exactly which type of matrix you are analyzing.

Example RREF
A matrix in reduced row-echelon form
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The matrix C is in reduced row-echelon form.

C =


1 −3 0 6 0 0 −5 9
0 0 0 0 1 0 3 −7
0 0 0 0 0 1 7 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


This matrix has two zero rows and three leading 1’s. r = 3. Columns 1, 5, and 6 are pivot
columns. �

Example NRREF
A matrix not in reduced row-echelon form
The matrix E is not in reduced row-echelon form, as it fails each of the four requirements

Version 2.11



Subsection RREF.RREF Reduced Row-Echelon Form 94

once.

E =


1 0 −3 0 6 0 7 −5 9
0 0 0 5 0 1 0 3 −7
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −4 2
0 0 0 0 0 0 1 7 3
0 0 0 0 0 0 0 0 0


�

Our next theorem has a “constructive” proof. Learn about the meaning of this term in
Technique C [2347].

Theorem REMEF
Row-Equivalent Matrix in Echelon Form
Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.
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2. B is in reduced row-echelon form.

�

Proof Suppose that A has m rows and n columns. We will describe a process for converting
A into B via row operations. This procedure is known as Gauss–Jordan elimination.
Tracing through this procedure will be easier if you recognize that i refers to a row that
is being converted, j refers to a column that is being converted, and r keeps track of the
number of nonzero rows. Here we go.

1. Set j = 0 and r = 0.

2. Increase j by 1. If j now equals n+ 1, then stop.

3. Examine the entries of A in column j located in rows r + 1 through m.
If all of these entries are zero, then go to Step 2.

4. Choose a row from rows r + 1 through m with a nonzero entry in column j.
Let i denote the index for this row.
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5. Increase r by 1.

6. Use the first row operation to swap rows i and r.

7. Use the second row operation to convert the entry in row r and column j to a 1.

8. Use the third row operation with row r to convert every other entry of column j to
zero.

9. Go to Step 2.

The result of this procedure is that the matrix A is converted to a matrix in reduced row-
echelon form, which we will refer to as B. We need to now prove this claim by showing
that the converted matrix has the requisite properties of Definition RREF [91]. First, the
matrix is only converted through row operations (Step 6, Step 7, Step 8), so A and B are
row-equivalent (Definition REM [85]).

It is a bit more work to be certain that B is in reduced row-echelon form. We claim
that as we begin Step 2, the first j columns of the matrix are in reduced row-echelon form
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with r nonzero rows. Certainly this is true at the start when j = 0, since the matrix has no
columns and so vacuously meets the conditions of Definition RREF [91] with r = 0 nonzero
rows.

In Step 2 we increase j by 1 and begin to work with the next column. There are two
possible outcomes for Step 3. Suppose that every entry of column j in rows r + 1 through
m is zero. Then with no changes we recognize that the first j columns of the matrix has its
first r rows still in reduced-row echelon form, with the final m− r rows still all zero.

Suppose instead that the entry in row i of column j is nonzero. Notice that since r+ 1 ≤
i ≤ m, we know the first j − 1 entries of this row are all zero. Now, in Step 5 we increase
r by 1, and then embark on building a new nonzero row. In Step 6 we swap row r and row
i. In the first j columns, the first r − 1 rows remain in reduced row-echelon form after the
swap. In Step 7 we multiply row r by a nonzero scalar, creating a 1 in the entry in column
j of row i, and not changing any other rows. This new leading 1 is the first nonzero entry in
its row, and is located to the right of all the leading 1’s in the preceding r − 1 rows. With
Step 8 we insure that every entry in the column with this new leading 1 is now zero, as
required for reduced row-echelon form. Also, rows r + 1 through m are now all zeros in the

Version 2.11



Subsection RREF.RREF Reduced Row-Echelon Form 98

first j columns, so we now only have one new nonzero row, consistent with our increase of r
by one. Furthermore, since the first j − 1 entries of row r are zero, the employment of the
third row operation does not destroy any of the necessary features of rows 1 through r − 1
and rows r + 1 through m, in columns 1 through j − 1.

So at this stage, the first j columns of the matrix are in reduced row-echelon form. When
Step 2 finally increases j to n + 1, then the procedure is completed and the full n columns
of the matrix are in reduced row-echelon form, with the value of r correctly recording the
number of nonzero rows. �

The procedure given in the proof of Theorem REMEF [94] can be more precisely described
using a pseudo-code version of a computer program, as follows:

input m, n and A
r ← 0
for j ← 1 to n

i← r + 1
while i ≤ m and [A]ij = 0
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i← i+ 1
if i 6= m+ 1

r ← r + 1
swap rows i and r of A (row op 1)
scale entry in row r, column j of A to a leading 1 (row op 2)
for k ← 1 to m, k 6= r

zero out entry in row k, column j of A (row op 3 using row r)
output r and A

Notice that as a practical matter the “and” used in the conditional statement of the while
statement should be of the “short-circuit” variety so that the array access that follows is not
out-of-bounds.

So now we can put it all together. Begin with a system of linear equations (Definition
SLE [25]), and represent the system by its augmented matrix (Definition AM [81]). Use
row operations (Definition RO [84]) to convert this matrix into reduced row-echelon form
(Definition RREF [91]), using the procedure outlined in the proof of Theorem REMEF [94].
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Theorem REMEF [94] also tells us we can always accomplish this, and that the result is
row-equivalent (Definition REM [85]) to the original augmented matrix. Since the matrix in
reduced-row echelon form has the same solution set, we can analyze the row-reduced version
instead of the original matrix, viewing it as the augmented matrix of a different system
of equations. The beauty of augmented matrices in reduced row-echelon form is that the
solution sets to their corresponding systems can be easily determined, as we will see in the
next few examples and in the next section.

We will see through the course that almost every interesting property of a matrix can
be discerned by looking at a row-equivalent matrix in reduced row-echelon form. For this
reason it is important to know that the matrix B guaranteed to exist by Theorem REMEF
[94] is also unique.

Two proof techniques are applicable to the proof. First, head out and read two proof
techniques: Technique CD [2354] and Technique U [2357].

Theorem RREFU
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Reduced Row-Echelon Form is Unique
Suppose that A is an m × n matrix and that B and C are m × n matrices that are row-
equivalent to A and in reduced row-echelon form. Then B = C. �

Proof We need to begin with no assumptions about any relationships between B and C,
other than they are both in reduced row-echelon form, and they are both row-equivalent to
A.

If B and C are both row-equivalent to A, then they are row-equivalent to each other.
Repeated row operations on a matrix combine the rows with each other using operations
that are linear, and are identical in each column. A key observation for this proof is that
each individual row of B is linearly related to the rows of C. This relationship is different
for each row of B, but once we fix a row, the relationship is the same across columns. More
precisely, there are scalars δik, 1 ≤ i, k ≤ m such that for any 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[B]ij =
m∑
k=1

δik [C]kj
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You should read this as saying that an entry of row i of B (in column j) is a linear function
of the entries of all the rows of C that are also in column j, and the scalars (δik) depend
on which row of B we are considering (the i subscript on δik), but are the same for every
column (no dependence on j in δik). This idea may be complicated now, but will feel more
familiar once we discuss “linear combinations” (Definition LCCV [316]) and moreso when we
discuss “row spaces” (Definition RSM [833]). For now, spend some time carefully working
Exercise RREF.M40 [135], which is designed to illustrate the origins of this expression. This
completes our exploitation of the row-equivalence of B and C.

We now repeatedly exploit the fact that B and C are in reduced row-echelon form.
Recall that a pivot column is all zeros, except a single one. More carefully, if R is a matrix
in reduced row-echelon form, and d` is the index of a pivot column, then [R]kd` = 1 precisely
when k = ` and is otherwise zero. Notice also that any entry of R that is both below the
entry in row ` and to the left of column d` is also zero (with below and left understood to
include equality). In other words, look at examples of matrices in reduced row-echelon form
and choose a leading 1 (with a box around it). The rest of the column is also zeros, and the
lower left “quadrant” of the matrix that begins here is totally zeros.
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Assuming no relationship about the form of B and C, let B have r nonzero rows and
denote the pivot columns as D = {d1, d2, d3, . . . , dr}. For C let r′ denote the number
of nonzero rows and denote the pivot columns as D′ = {d′1, d′2, d′3, . . . , d′r′} (Notation
RREFA [92]). There are four steps in the proof, and the first three are about showing that
B and C have the same number of pivot columns, in the same places. In other words, the
“primed” symbols are a necessary fiction.

First Step. Suppose that d1 < d′1. Then

1 = [B]1d1 Definition RREF [91]

=
m∑
k=1

δ1k [C]kd1

=
m∑
k=1

δ1k(0) d1 < d′1

= 0
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The entries of C are all zero since they are left and below of the leading 1 in row 1 and
column d′1 of C. This is a contradiction, so we know that d1 ≥ d′1. By an entirely similar
argument, reversing the roles of B and C, we could conclude that d1 ≤ d′1. Together this
means that d1 = d′1.

Second Step. Suppose that we have determined that d1 = d′1, d2 = d′2, d3 = d′3, . . . ,
dp = d′p. Let’s now show that dp+1 = d′p+1. Working towards a contradiction, suppose that
dp+1 < d′p+1. For 1 ≤ ` ≤ p,

0 = [B]p+1,d`
Definition RREF [91]

=
m∑
k=1

δp+1,k [C]kd`

=
m∑
k=1

δp+1,k [C]kd′`
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= δp+1,` [C]`d′`
+

m∑
k=1
k 6=`

δp+1,k [C]kd′`
Property CACN [2317]

= δp+1,`(1) +
m∑
k=1
k 6=`

δp+1,k(0) Definition RREF [91]

= δp+1,`

Now,

1 = [B]p+1,dp+1
Definition RREF [91]

=
m∑
k=1

δp+1,k [C]kdp+1

=

p∑
k=1

δp+1,k [C]kdp+1
+

m∑
k=p+1

δp+1,k [C]kdp+1
Property AACN [2317]

Version 2.11



Subsection RREF.RREF Reduced Row-Echelon Form 106

=

p∑
k=1

(0) [C]kdp+1
+

m∑
k=p+1

δp+1,k [C]kdp+1

=
m∑

k=p+1

δp+1,k [C]kdp+1

=
m∑

k=p+1

δp+1,k(0) dp+1 < d′p+1

= 0

This contradiction shows that dp+1 ≥ d′p+1. By an entirely similar argument, we could
conclude that dp+1 ≤ d′p+1, and therefore dp+1 = d′p+1.

Third Step. Now we establish that r = r′. Suppose that r′ < r. By the arguments above
know that d1 = d′1, d2 = d′2, d3 = d′3, . . . , dr′ = d′r′ . For 1 ≤ ` ≤ r′ < r,

0 = [B]rd` Definition RREF [91]
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=
m∑
k=1

δrk [C]kd`

=
r′∑
k=1

δrk [C]kd` +
m∑

k=r′+1

δrk [C]kd` Property AACN [2317]

=
r′∑
k=1

δrk [C]kd` +
m∑

k=r′+1

δrk(0) Property AACN [2317]

=
r′∑
k=1

δrk [C]kd`

=
r′∑
k=1

δrk [C]kd′`
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= δr` [C]`d′`
+

r′∑
k=1
k 6=`

δrk [C]kd′`
Property CACN [2317]

= δr`(1) +
r′∑
k=1
k 6=`

δrk(0) Definition RREF [91]

= δr`

Now examine the entries of row r of B,

[B]rj =
m∑
k=1

δrk [C]kj

=
r′∑
k=1

δrk [C]kj +
m∑

k=r′+1

δrk [C]kj Property CACN [2317]
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=
r′∑
k=1

δrk [C]kj +
m∑

k=r′+1

δrk(0) Definition RREF [91]

=
r′∑
k=1

δrk [C]kj

=
r′∑
k=1

(0) [C]kj

= 0

So row r is a totally zero row, contradicting that this should be the bottommost nonzero
row of B. So r′ ≥ r. By an entirely similar argument, reversing the roles of B and C, we
would conclude that r′ ≤ r and therefore r = r′. Thus, combining the first three steps we
can say that D = D′. In other words, B and C have the same pivot columns, in the same
locations.

Fourth Step. In this final step, we will not argue by contradiction. Our intent is to
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determine the values of the δij. Notice that we can use the values of the di interchangeably
for B and C. Here we go,

1 = [B]idi Definition RREF [91]

=
m∑
k=1

δik [C]kdi

= δii [C]idi +
m∑
k=1
k 6=i

δik [C]kdi Property CACN [2317]

= δii(1) +
m∑
k=1
k 6=i

δik(0) Definition RREF [91]

= δii
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and for ` 6= i

0 = [B]id` Definition RREF [91]

=
m∑
k=1

δik [C]kd`

= δi` [C]`d` +
m∑
k=1
k 6=`

δik [C]kdi Property CACN [2317]

= δi`(1) +
m∑
k=1
k 6=`

δik(0) Definition RREF [91]

= δi`

Finally, having determined the values of the δij, we can show that B = C. For 1 ≤ i ≤ m,
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1 ≤ j ≤ n,

[B]ij =
m∑
k=1

δik [C]kj

= δii [C]ij +
m∑
k=1
k 6=i

δik [C]kj Property CACN [2317]

= (1) [C]ij +
m∑
k=1
k 6=i

(0) [C]kj

= [C]ij

So B and C have equal values in every entry, and so are the same matrix. �

We will now run through some examples of using these definitions and theorems to solve
some systems of equations. From now on, when we have a matrix in reduced row-echelon
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form, we will mark the leading 1’s with a small box. In your work, you can box ’em, circle
’em or write ’em in a different color — just identify ’em somehow. This device will prove
very useful later and is a very good habit to start developing right now.

Example SAB
Solutions for Archetype B
Let’s find the solutions to the following system of equations,

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

First, form the augmented matrix,−7 −6 −12 −33
5 5 7 24
1 0 4 5
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and work to reduced row-echelon form, first with i = 1,

R1↔R3−−−−→
 1 0 4 5

5 5 7 24
−7 −6 −12 −33

 −5R1+R2−−−−−→
 1 0 4 5

0 5 −13 −1
−7 −6 −12 −33


7R1+R3−−−−→

 1 0 4 5
0 5 −13 −1
0 −6 16 2


Now, with i = 2,

1
5
R2−−→
 1 0 4 5

0 1 −13
5

−1
5

0 −6 16 2

 6R2+R3−−−−→
 1 0 4 5

0 1 −13
5

−1
5

0 0 2
5

4
5
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And finally, with i = 3,

5
2
R3−−→
 1 0 4 5

0 1 −13
5

−1
5

0 0 1 2

 13
5
R3+R2−−−−−→

 1 0 4 5

0 1 0 5
0 0 1 2


−4R3+R1−−−−−→

 1 0 0 −3

0 1 0 5

0 0 1 2


This is now the augmented matrix of a very simple system of equations, namely x1 = −3,
x2 = 5, x3 = 2, which has an obvious solution. Furthermore, we can see that this is the only
solution to this system, so we have determined the entire solution set,

S =


−3

5
2
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You might compare this example with the procedure we used in Example US [40]. �

Archetypes A and B are meant to contrast each other in many respects. So let’s solve
Archetype A now.

Example SAA
Solutions for Archetype A
Let’s find the solutions to the following system of equations,

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5

First, form the augmented matrix, 1 −1 2 1
2 1 1 8
1 1 0 5
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and work to reduced row-echelon form, first with i = 1,

−2R1+R2−−−−−→
1 −1 2 1

0 3 −3 6
1 1 0 5

 −1R1+R3−−−−−→
 1 −1 2 1

0 3 −3 6
0 2 −2 4


Now, with i = 2,

1
3
R2−−→
 1 −1 2 1

0 1 −1 2
0 2 −2 4

 1R2+R1−−−−→
 1 0 1 3

0 1 −1 2
0 2 −2 4


−2R2+R3−−−−−→

 1 0 1 3

0 1 −1 2
0 0 0 0


The system of equations represented by this augmented matrix needs to be considered a bit
differently than that for Archetype B. First, the last row of the matrix is the equation 0 = 0,
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which is always true, so it imposes no restrictions on our possible solutions and therefore we
can safely ignore it as we analyze the other two equations. These equations are,

x1 + x3 = 3

x2 − x3 = 2.

While this system is fairly easy to solve, it also appears to have a multitude of solutions. For
example, choose x3 = 1 and see that then x1 = 2 and x2 = 3 will together form a solution.
Or choose x3 = 0, and then discover that x1 = 3 and x2 = 2 lead to a solution. Try it
yourself: pick any value of x3 you please, and figure out what x1 and x2 should be to make
the first and second equations (respectively) true. We’ll wait while you do that. Because
of this behavior, we say that x3 is a “free” or “independent” variable. But why do we vary
x3 and not some other variable? For now, notice that the third column of the augmented
matrix does not have any leading 1’s in its column. With this idea, we can rearrange the
two equations, solving each for the variable that corresponds to the leading 1 in that row.

x1 = 3− x3
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x2 = 2 + x3

To write the set of solution vectors in set notation, we have

S =


3− x3

2 + x3

x3

 | x3 ∈ C


We’ll learn more in the next section about systems with infinitely many solutions and how
to express their solution sets. Right now, you might look back at Example IS [43]. �

Example SAE
Solutions for Archetype E
Let’s find the solutions to the following system of equations,

2x1 + x2 + 7x3 − 7x4 = 2

−3x1 + 4x2 − 5x3 − 6x4 = 3
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x1 + x2 + 4x3 − 5x4 = 2

First, form the augmented matrix, 2 1 7 −7 2
−3 4 −5 −6 3
1 1 4 −5 2


and work to reduced row-echelon form, first with i = 1,

R1↔R3−−−−→
 1 1 4 −5 2
−3 4 −5 −6 3
2 1 7 −7 2

 3R1+R2−−−−→
1 1 4 −5 2

0 7 7 −21 9
2 1 7 −7 2


−2R1+R3−−−−−→

 1 1 4 −5 2
0 7 7 −21 9
0 −1 −1 3 −2
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Now, with i = 2,

R2↔R3−−−−→
 1 1 4 −5 2

0 −1 −1 3 −2
0 7 7 −21 9

 −1R2−−−→
 1 1 4 −5 2

0 1 1 −3 2
0 7 7 −21 9


−1R2+R1−−−−−→

 1 0 3 −2 0
0 1 1 −3 2
0 7 7 −21 9

 −7R2+R3−−−−−→
 1 0 3 −2 0

0 1 1 −3 2
0 0 0 0 −5


And finally, with i = 3,

− 1
5
R3−−−→
 1 0 3 −2 0

0 1 1 −3 2
0 0 0 0 1

 −2R3+R2−−−−−→
 1 0 3 −2 0

0 1 1 −3 0

0 0 0 0 1


Let’s analyze the equations in the system represented by this augmented matrix. The third
equation will read 0 = 1. This is patently false, all the time. No choice of values for our
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variables will ever make it true. We’re done. Since we cannot even make the last equation
true, we have no hope of making all of the equations simultaneously true. So this system
has no solutions, and its solution set is the empty set, ∅ = { } (Definition ES [2326]).

Notice that we could have reached this conclusion sooner. After performing the row
operation −7R2 + R3, we can see that the third equation reads 0 = −5, a false statement.
Since the system represented by this matrix has no solutions, none of the systems represented
has any solutions. However, for this example, we have chosen to bring the matrix fully to
reduced row-echelon form for the practice. �

These three examples (Example SAB [113], Example SAA [116], Example SAE [119])
illustrate the full range of possibilities for a system of linear equations — no solutions, one
solution, or infinitely many solutions. In the next section we’ll examine these three scenarios
more closely.

Definition RR
Row-Reducing
To row-reduce the matrix A means to apply row operations to A and arrive at a row-
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equivalent matrix B in reduced row-echelon form. 4

So the term row-reduce is used as a verb. Theorem REMEF [94] tells us that this
process will always be successful and Theorem RREFU [101] tells us that the result will
be unambiguous. Typically, the analysis of A will proceed by analyzing B and applying
theorems whose hypotheses include the row-equivalence of A and B.

After some practice by hand, you will want to use your favorite computing device to do the
computations required to bring a matrix to reduced row-echelon form (Exercise RREF.C30
[133]). See: Computation RR.MMA [2272] Computation RR.TI86 [2290] Computa-
tion RR.TI83 [2294] Computation RR.SAGE [2301]
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Subsection READ
Reading Questions

1. Is the matrix below in reduced row-echelon form? Why or why not?1 5 0 6 8
0 0 1 2 0
0 0 0 0 1


2. Use row operations to convert the matrix below to reduced row-echelon form and report

the final matrix.  2 1 8
−1 1 −1
−2 5 4
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3. Find all the solutions to the system below by using an augmented matrix and row oper-
ations. Report your final matrix in reduced row-echelon form and the set of solutions.

2x1 + 3x2 − x3 = 0

x1 + 2x2 + x3 = 3

x1 + 3x2 + 3x3 = 7
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Subsection EXC
Exercises

C05 Each archetype below is a system of equations. Form the augmented matrix of the
system of equations, convert the matrix to reduced row-echelon form by using equation
operations and then describe the solution set of the original system of equations.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]
Archetype E [2431]
Archetype F [2443]
Archetype G [2460]
Archetype H [2472]
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Archetype I [2485]
Archetype J [2498]
Contributed by Robert Beezer

For problems C10–C19, find all solutions to the system of linear equations. Use your
favorite computing device to row-reduce the augmented matrices for the systems, and write
the solutions as a set, using correct set notation.
C10

2x1 − 3x2 + x3 + 7x4 = 14

2x1 + 8x2 − 4x3 + 5x4 = −1

x1 + 3x2 − 3x3 = 4

−5x1 + 2x2 + 3x3 + 4x4 = −19

Contributed by Robert Beezer Solution [139]
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C11

3x1 + 4x2 − x3 + 2x4 = 6

x1 − 2x2 + 3x3 + x4 = 2

10x2 − 10x3 − x4 = 1

Contributed by Robert Beezer Solution [140]

C12

2x1 + 4x2 + 5x3 + 7x4 = −26

x1 + 2x2 + x3 − x4 = −4

−2x1 − 4x2 + x3 + 11x4 = −10

Contributed by Robert Beezer Solution [141]
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C13

x1 + 2x2 + 8x3 − 7x4 = −2

3x1 + 2x2 + 12x3 − 5x4 = 6

−x1 + x2 + x3 − 5x4 = −10

Contributed by Robert Beezer Solution [142]

C14

2x1 + x2 + 7x3 − 2x4 = 4

3x1 − 2x2 + 11x4 = 13

x1 + x2 + 5x3 − 3x4 = 1

Contributed by Robert Beezer Solution [143]
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C15

2x1 + 3x2 − x3 − 9x4 = −16

x1 + 2x2 + x3 = 0

−x1 + 2x2 + 3x3 + 4x4 = 8

Contributed by Robert Beezer Solution [144]

C16

2x1 + 3x2 + 19x3 − 4x4 = 2

x1 + 2x2 + 12x3 − 3x4 = 1

−x1 + 2x2 + 8x3 − 5x4 = 1

Contributed by Robert Beezer Solution [145]

Version 2.11



Subsection RREF.EXC Exercises 131

C17

−x1 + 5x2 = −8

−2x1 + 5x2 + 5x3 + 2x4 = 9

−3x1 − x2 + 3x3 + x4 = 3

7x1 + 6x2 + 5x3 + x4 = 30

Contributed by Robert Beezer Solution [146]

C18

x1 + 2x2 − 4x3 − x4 = 32

x1 + 3x2 − 7x3 − x5 = 33

x1 + 2x3 − 2x4 + 3x5 = 22
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Contributed by Robert Beezer Solution [147]

C19

2x1 + x2 = 6

−x1 − x2 = −2

3x1 + 4x2 = 4

3x1 + 5x2 = 2

Contributed by Robert Beezer Solution [149]

For problems C30–C33, row-reduce the matrix without the aid of a calculator, indicating
the row operations you are using at each step using the notation of Definition RO [84].
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C30 2 1 5 10
1 −3 −1 −2
4 −2 6 12


Contributed by Robert Beezer Solution [150]

C31  1 2 −4
−3 −1 −3
−2 1 −7


Contributed by Robert Beezer Solution [151]
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C32  1 1 1
−4 −3 −2
3 2 1


Contributed by Robert Beezer Solution [152]

C33  1 2 −1 −1
2 4 −1 4
−1 −2 3 5


Contributed by Robert Beezer Solution [153]

Version 2.11



Subsection RREF.EXC Exercises 135

M40 Consider the two 3× 4 matrices below

B =

 1 3 −2 2
−1 −2 −1 −1
−1 −5 8 −3

 C =

 1 2 1 2
1 1 4 0
−1 −1 −4 1


(a) Row-reduce each matrix and determine that the reduced row-echelon forms of B

and C are identical. From this argue that B and C are row-equivalent.
(b) In the proof of Theorem RREFU [101], we begin by arguing that entries of row-

equivalent matrices are related by way of certain scalars and sums. In this example, we
would write that entries of B from row i that are in column j are linearly related to the
entries of C in column j from all three rows

[B]ij = δi1 [C]1j + δi2 [C]2j + δi3 [C]3j 1 ≤ j ≤ 4

For each 1 ≤ i ≤ 3 find the corresponding three scalars in this relationship. So your answer
will be nine scalars, determined three at a time.
Contributed by Robert Beezer Solution [153]
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M45 You keep a number of lizards, mice and peacocks as pets. There are a total of 108
legs and 30 tails in your menagerie. You have twice as many mice as lizards. How many of
each creature do you have?
Contributed by Chris Black Solution [156]

M50 A parking lot has 66 vehicles (cars, trucks, motorcycles and bicycles) in it. There
are four times as many cars as trucks. The total number of tires (4 per car or truck, 2 per
motorcycle or bicycle) is 252. How many cars are there? How many bicycles?
Contributed by Robert Beezer Solution [157]

T10 Prove that each of the three row operations (Definition RO [84]) is reversible. More
precisely, if the matrix B is obtained from A by application of a single row operation, show
that there is a single row operation that will transform B back into A.
Contributed by Robert Beezer Solution [158]

T11 Suppose that A, B and C are m× n matrices. Use the definition of row-equivalence
(Definition REM [85]) to prove the following three facts.
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1. A is row-equivalent to A.

2. If A is row-equivalent to B, then B is row-equivalent to A.

3. If A is row-equivalent to B, and B is row-equivalent to C, then A is row-equivalent to
C.

A relationship that satisfies these three properties is known as an equivalence relation,
an important idea in the study of various algebras. This is a formal way of saying that
a relationship behaves like equality, without requiring the relationship to be as strict as
equality itself. We’ll see it again in Theorem SER [1490].
Contributed by Robert Beezer

T12 Suppose that B is an m× n matrix in reduced row-echelon form. Build a new, likely
smaller, k × ` matrix C as follows. Keep any collection of k adjacent rows, k ≤ m. From
these rows, keep columns 1 through `, ` ≤ n. Prove that C is in reduced row-echelon form.
Contributed by Robert Beezer
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T13 Generalize Exercise RREF.T12 [137] by just keeping any k rows, and not requiring
the rows to be adjacent. Prove that any such matrix C is in reduced row-echelon form.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [127]
The augmented matrix row-reduces to


1 0 0 0 1

0 1 0 0 −3

0 0 1 0 −4

0 0 0 1 1


and we see from the locations of the leading 1’s that the system is consistent (Theorem
RCLS [172]) and that n− r = 4− 4 = 0 and so the system has no free variables (Theorem
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CSRN [176]) and hence has a unique solution. This solution is

S =




1
−3
−4
1




C11 Contributed by Robert Beezer Statement [128]
The augmented matrix row-reduces to 1 0 1 4/5 0

0 1 −1 −1/10 0

0 0 0 0 1


and a leading 1 in the last column tells us that the system is inconsistent (Theorem RCLS
[172]). So the solution set is ∅ = {}.
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C12 Contributed by Robert Beezer Statement [128]
The augmented matrix row-reduces to

 1 2 0 −4 2

0 0 1 3 −6
0 0 0 0 0


(Theorem RCLS [172]) and (Theorem CSRN [176]) tells us the system is consistent and the
solution set can be described with n−r = 4−2 = 2 free variables, namely x2 and x4. Solving
for the dependent variables (D = {x1, x3}) the first and second equations represented in the
row-reduced matrix yields,

x1 = 2− 2x2 + 4x4

x3 = −6 − 3x4
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As a set, we write this as 


2− 2x2 + 4x4

x2

−6− 3x4

x4

 | x2, x4 ∈ C


C13 Contributed by Robert Beezer Statement [129]
The augmented matrix of the system of equations is 1 2 8 −7 −2

3 2 12 −5 6
−1 1 1 −5 −10


which row-reduces to  1 0 2 1 0

0 1 3 −4 0

0 0 0 0 1
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With a leading one in the last column Theorem RCLS [172] tells us the system of equations
is inconsistent, so the solution set is the empty set, ∅.
C14 Contributed by Robert Beezer Statement [129]
The augmented matrix of the system of equations is2 1 7 −2 4

3 −2 0 11 13
1 1 5 −3 1


which row-reduces to  1 0 2 1 3

0 1 3 −4 −2
0 0 0 0 0


Then D = {1, 2} and F = {3, 4, 5}, so the system is consistent (5 6∈ D) and can be described
by the two free variables x3 and x4. Rearranging the equations represented by the two
nonzero rows to gain expressions for the dependent variables x1 and x2, yields the solution
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set,

S =




3− 2x3 − x4

−2− 3x3 + 4x4

x3

x4

 | x3, x4 ∈ C


C15 Contributed by Robert Beezer Statement [130]
The augmented matrix of the system of equations is 2 3 −1 −9 −16

1 2 1 0 0
−1 2 3 4 8


which row-reduces to  1 0 0 2 3

0 1 0 −3 −5

0 0 1 4 7
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Then D = {1, 2, 3} and F = {4, 5}, so the system is consistent (5 6∈ D) and can be described
by the one free variable x4. Rearranging the equations represented by the three nonzero
rows to gain expressions for the dependent variables x1, x2 and x3, yields the solution set,

S =




3− 2x4

−5 + 3x4

7− 4x4

x4

 | x4 ∈ C


C16 Contributed by Robert Beezer Statement [130]
The augmented matrix of the system of equations is

 2 3 19 −4 2
1 2 12 −3 1
−1 2 8 −5 1
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which row-reduces to  1 0 2 1 0

0 1 5 −2 0

0 0 0 0 1


With a leading one in the last column Theorem RCLS [172] tells us the system of equations
is inconsistent, so the solution set is the empty set, ∅ = {}.
C17 Contributed by Robert Beezer Statement [131]
We row-reduce the augmented matrix of the system of equations,

−1 5 0 0 −8
−2 5 5 2 9
−3 −1 3 1 3
7 6 5 1 30

 RREF−−−→


1 0 0 0 3

0 1 0 0 −1

0 0 1 0 2

0 0 0 1 5


The reduced row-echelon form of the matrix is the augmented matrix of the system x1 = 3,
x2 = −1, x3 = 2, x4 = 5, which has a unique solution. As a set of column vectors, the
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solution set is

S =




3
−1
2
5




C18 Contributed by Robert Beezer Statement [131]
We row-reduce the augmented matrix of the system of equations,1 2 −4 −1 0 32

1 3 −7 0 −1 33
1 0 2 −2 3 22

 RREF−−−→
 1 0 2 0 5 6

0 1 −3 0 −2 9

0 0 0 1 1 −8


With no leading 1 in the final column, we recognize the system as consistent (Theorem
RCLS [172]). Since the system is consistent, we compute the number of free variables as
n− r = 5− 3 = 2 (), and we see that columns 3 and 5 are not pivot columns, so x3 and x5
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are free variables. We convert each row of the reduced row-echelon form of the matrix into
an equation, and solve it for the lone dependent variable, as in expression in the two free
variables.

x1 + 2x3 + 5x5 = 6 → x1 = 6− 2x3 − 5x5

x2 − 3x3 − 2x5 = 9 → x2 = 9 + 3x3 + 2x5

x4 + x5 = −8 → x4 = −8− x5

These expressions give us a convenient way to describe the solution set, S.

S =




6− 2x3 − 5x5

9 + 3x3 + 2x5

x3

−8− x5

x5

 | x3, x5 ∈ C


C19 Contributed by Robert Beezer Statement [132]
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We form the augmented matrix of the system,
2 1 6
−1 −1 −2
3 4 4
3 5 2


which row-reduces to 

1 0 4

0 1 −2
0 0 0
0 0 0


With no leading 1 in the final column, this system is consistent (Theorem RCLS [172]).
There are n = 2 variables in the system and r = 2 non-zero rows in the row-reduced matrix.
By Theorem FVCS [178], there are n−r = 2−2 = 0 free variables and we therefore know the
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solution is unique. Forming the system of equations represented by the row-reduced matrix,
we see that x1 = 4 and x2 = −2. Written as set of column vectors,

S =

{[
4
−2

]}

C30 Contributed by Robert Beezer Statement [133]

2 1 5 10
1 −3 −1 −2
4 −2 6 12

 R1↔R2−−−−→
1 −3 −1 −2

2 1 5 10
4 −2 6 12


−2R1+R2−−−−−→

1 −3 −1 −2
0 7 7 14
4 −2 6 12

 −4R1+R3−−−−−→
1 −3 −1 −2

0 7 7 14
0 10 10 20
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1
7
R2−−→

1 −3 −1 −2
0 1 1 2
0 10 10 20

 3R2+R1−−−−→
1 0 2 4

0 1 1 2
0 10 10 20


−10R2+R3−−−−−−→

 1 0 2 4

0 1 1 2
0 0 0 0


C31 Contributed by Robert Beezer Statement [133]

 1 2 −4
−3 −1 −3
−2 1 −7

 3R1+R2−−−−→
 1 2 −4

0 5 −15
−2 1 −7


2R1+R3−−−−→

1 2 −4
0 5 −15
0 5 −15

 1
5
R2−−→
1 2 −4

0 1 −3
0 5 −15
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−2R2+R1−−−−−→
1 0 2

0 1 −3
0 5 −15

 −5R2+R3−−−−−→
 1 0 2

0 1 −3
0 0 0


C32 Contributed by Robert Beezer Statement [134]
Following the algorithm of Theorem REMEF [94], and working to create pivot columns from
left to right, we have 1 1 1

−4 −3 −2
3 2 1

 4R1+R2−−−−→
1 1 1

0 1 2
3 2 1

 −3R1+R3−−−−−→
 1 1 1

0 1 2
0 −1 −2

 −1R2+R1−−−−−→
 1 0 −1

0 1 2
0 −1 −2

 1R2+R3−−−−→
 1 0 −1

0 1 2
0 0 0


C33 Contributed by Robert Beezer Statement [134]
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Following the algorithm of Theorem REMEF [94], and working to create pivot columns from
left to right, we have 1 2 −1 −1

2 4 −1 4
−1 −2 3 5

 −2R1+R2−−−−−→
 1 2 −1 −1

0 0 1 6
−1 −2 3 5

 1R1+R3−−−−→
 1 2 −1 −1

0 0 1 6
0 0 2 4

 1R2+R1−−−−→
 1 2 0 5

0 0 1 6
0 0 2 4

 −2R2+R3−−−−−→
 1 2 0 5

0 0 1 6
0 0 0 −8

 − 1
8
R3−−−→

 1 2 0 5

0 0 1 6
0 0 0 1

 −6R3+R2−−−−−→
 1 2 0 5

0 0 1 0
0 0 0 1

 −5R3+R1−−−−−→
 1 2 0 0

0 0 1 0

0 0 0 1


M40 Contributed by Robert Beezer Statement [135]
(a) Let R be the common reduced row-echelon form of B and C. A sequence of row

Version 2.11



Subsection RREF.SOL Solutions 154

operations converts B to R and a second sequence of row operations converts C to R. If
we “reverse” the second sequence’s order, and reverse each individual row operation (see
Exercise RREF.T10 [136]) then we can begin with B, convert to R with the first sequence,
and then convert to C with the reversed sequence. Satisfying Definition REM [85] we can
say B and C are row-equivalent matrices.

(b) We will work this carefully for the first row of B and just give the solution for the
next two rows. For row 1 of B take i = 1 and we have

[B]1j = δ11 [C]1j + δ12 [C]2j + δ13 [C]3j 1 ≤ j ≤ 4

If we substitute the four values for j we arrive at four linear equations in the three unknowns
δ11, δ12, δ13,

(j = 1) [B]11 = δ11 [C]11 + δ12 [C]21 + δ13 [C]31 ⇒ 1 = δ11(1) + δ12(1) + δ13(−1)

(j = 2) [B]12 = δ11 [C]12 + δ12 [C]22 + δ13 [C]32 ⇒ 3 = δ11(2) + δ12(1) + δ13(−1)

(j = 3) [B]13 = δ11 [C]13 + δ12 [C]23 + δ13 [C]33 ⇒ −2 = δ11(1) + δ12(4) + δ13(−4)
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(j = 4) [B]14 = δ11 [C]14 + δ12 [C]24 + δ13 [C]34 ⇒ 2 = δ11(2) + δ12(0) + δ13(1)

We form the augmented matrix of this system and row-reduce to find the solutions,
1 1 −1 1
2 1 −1 3
1 4 −4 −2
2 0 1 2

 RREF−−−→


1 0 0 2

0 1 0 −3

0 0 1 −2
0 0 0 0


So the unique solution is δ11 = 2, δ12 = −3, δ13 = −2. Entirely similar work will lead you to

δ21 = −1 δ22 = 1 δ23 = 1

and

δ31 = −4 δ32 = 8 δ33 = 5
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M45 Contributed by Chris Black Statement [136]
Let l,m, p denote the number of lizards, mice and peacocks. Then the statements from the
problem yield the equations:

4l + 4m+ 2p = 108

l +m+ p = 30

2l −m = 0

The augmented matrix for this system is4 4 2 108
1 1 1 30
2 −1 0 0


which row-reduces to  1 0 0 8

0 1 0 16

0 0 1 6
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From the row-reduced matrix, we see that we have an equivalent system l = 8, m = 16, and
p = 6, which means that you have 8 lizards, 16 mice and 6 peacocks.

M50 Contributed by Robert Beezer Statement [136]
Let c, t, m, b denote the number of cars, trucks, motorcycles, and bicycles. Then the state-
ments from the problem yield the equations:

c+ t+m+ b = 66

c− 4t = 0

4c+ 4t+ 2m+ 2b = 252

The augmented matrix for this system is1 1 1 1 66
1 −4 0 0 0
4 4 2 2 252
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which row-reduces to  1 0 0 0 48

0 1 0 0 12

0 0 1 1 6


The first row of the matrix represents the equation c = 48, so there are 48 cars. The second
row of the matrix represents the equation t = 12, so there are 12 trucks. The third row of
the matrix represents the equation m + b = 6 so there are anywhere from 0 to 6 bicycles.
We can also say that b is a free variable, but the context of the problem limits it to 7 integer
values since you cannot have a negative number of motorcycles.

T10 Contributed by Robert Beezer Statement [136]
If we can reverse each row operation individually, then we can reverse a sequence of row
operations. The operations that reverse each operation are listed below, using our shorthand
notation,

Ri ↔ Rj Ri ↔ Rj
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αRi, α 6= 0
1

α
Ri

αRi +Rj − αRi +Rj
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Section TSS

Types of Solution Sets

We will now be more careful about analyzing the reduced row-echelon form derived from
the augmented matrix of a system of linear equations. In particular, we will see how to
systematically handle the situation when we have infinitely many solutions to a system,
and we will prove that every system of linear equations has either zero, one or infinitely
many solutions. With these tools, we will be able to solve any system by a well-described
method.
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Subsection CS
Consistent Systems

The computer scientist Donald Knuth said, “Science is what we understand well enough to
explain to a computer. Art is everything else.” In this section we’ll remove solving systems
of equations from the realm of art, and into the realm of science. We begin with a definition.

Definition CS
Consistent System
A system of linear equations is consistent if it has at least one solution. Otherwise, the
system is called inconsistent. 4

We will want to first recognize when a system is inconsistent or consistent, and in the
case of consistent systems we will be able to further refine the types of solutions possible.
We will do this by analyzing the reduced row-echelon form of a matrix, using the value of r,
and the sets of column indices, D and F , first defined back in Definition RREF [91].
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Use of the notation for the elements of D and F can be a bit confusing, since we have
subscripted variables that are in turn equal to integers used to index the matrix. However,
many questions about matrices and systems of equations can be answered once we know r,
D and F . The choice of the letters D and F refer to our upcoming definition of dependent
and free variables (Definition IDV [169]). An example will help us begin to get comfortable
with this aspect of reduced row-echelon form.

Example RREFN
Reduced row-echelon form notation
For the 5× 9 matrix

B =


1 5 0 0 2 8 0 5 −1

0 0 1 0 4 7 0 2 0

0 0 0 1 3 9 0 3 −6

0 0 0 0 0 0 1 4 2
0 0 0 0 0 0 0 0 0
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in reduced row-echelon form we have

r = 4

d1 = 1 d2 = 3 d3 = 4 d4 = 7

f1 = 2 f2 = 5 f3 = 6 f4 = 8 f5 = 9

Notice that the sets

D = {d1, d2, d3, d4} = {1, 3, 4, 7} F = {f1, f2, f3, f4, f5} = {2, 5, 6, 8, 9}

have nothing in common and together account for all of the columns of B (we say it is a
partition of the set of column indices). �

The number r is the single most important piece of information we can get from the
reduced row-echelon form of a matrix. It is defined as the number of nonzero rows, but since
each nonzero row has a leading 1, it is also the number of leading 1’s present. For each
leading 1, we have a pivot column, so r is also the number of pivot columns. Repeating
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ourselves, r is the number of nonzero rows, the number of leading 1’s and the number of
pivot columns. Across different situations, each of these interpretations of the meaning of r
will be useful.

Before proving some theorems about the possibilities for solution sets to systems of
equations, let’s analyze one particular system with an infinite solution set very carefully as
an example. We’ll use this technique frequently, and shortly we’ll refine it slightly.

Archetypes I and J are both fairly large for doing computations by hand (though not im-
possibly large). Their properties are very similar, so we will frequently analyze the situation
in Archetype I, and leave you the joy of analyzing Archetype J yourself. So work through
Archetype I with the text, by hand and/or with a computer, and then tackle Archetype J
yourself (and check your results with those listed). Notice too that the archetypes describing
systems of equations each lists the values of r, D and F . Here we go. . .

Example ISSI
Describing infinite solution sets, Archetype I
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Archetype I [2485] is the system of m = 4 equations in n = 7 variables.

x1 + 4x2 − x4 + 7x6 − 9x7 = 3

2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 9

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 1

−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 4

This system has a 4 × 8 augmented matrix that is row-equivalent to the following matrix
(check this!), and which is in reduced row-echelon form (the existence of this matrix is
guaranteed by Theorem REMEF [94] and its uniqueness is guaranteed by Theorem RREFU
[101]), 

1 4 0 0 2 1 −3 4

0 0 1 0 1 −3 5 2

0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0
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So we find that r = 3 and

D = {d1, d2, d3} = {1, 3, 4} F = {f1, f2, f3, f4, f5} = {2, 5, 6, 7, 8}
Let i denote one of the r = 3 non-zero rows, and then we see that we can solve the cor-
responding equation represented by this row for the variable xdi and write it as a linear
function of the variables xf1 , xf2 , xf3 , xf4 (notice that f5 = 8 does not reference a variable).
We’ll do this now, but you can already see how the subscripts upon subscripts takes some
getting used to.

(i = 1) xd1 = x1 = 4− 4x2 − 2x5 − x6 + 3x7

(i = 2) xd2 = x3 = 2− x5 + 3x6 − 5x7

(i = 3) xd3 = x4 = 1− 2x5 + 6x6 − 6x7

Each element of the set F = {f1, f2, f3, f4, f5} = {2, 5, 6, 7, 8} is the index of a variable,
except for f5 = 8. We refer to xf1 = x2, xf2 = x5, xf3 = x6 and xf4 = x7 as “free”
(or “independent”) variables since they are allowed to assume any possible combination of
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values that we can imagine and we can continue on to build a solution to the system by
solving individual equations for the values of the other (“dependent”) variables.

Each element of the set D = {d1, d2, d3} = {1, 3, 4} is the index of a variable. We
refer to the variables xd1 = x1, xd2 = x3 and xd3 = x4 as “dependent” variables since they
depend on the independent variables. More precisely, for each possible choice of values for
the independent variables we get exactly one set of values for the dependent variables that
combine to form a solution of the system.

To express the solutions as a set, we write



4− 4x2 − 2x5 − x6 + 3x7

x2

2− x5 + 3x6 − 5x7

1− 2x5 + 6x6 − 6x7

x5

x6

x7


| x2, x5, x6, x7 ∈ C
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The condition that x2, x5, x6, x7 ∈ C is how we specify that the variables x2, x5, x6, x7 are
“free” to assume any possible values.

This systematic approach to solving a system of equations will allow us to create a precise
description of the solution set for any consistent system once we have found the reduced row-
echelon form of the augmented matrix. It will work just as well when the set of free variables
is empty and we get just a single solution. And we could program a computer to do it! Now
have a whack at Archetype J (Exercise TSS.T10 [194]), mimicking the discussion in this
example. We’ll still be here when you get back. �

Using the reduced row-echelon form of the augmented matrix of a system of equations
to determine the nature of the solution set of the system is a very key idea. So let’s look at
one more example like the last one. But first a definition, and then the example. We mix
our metaphors a bit when we call variables free versus dependent. Maybe we should call
dependent variables “enslaved”?

Definition IDV
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Independent and Dependent Variables
Suppose A is the augmented matrix of a consistent system of linear equations and B is a
row-equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B
that contains the leading 1 for some row (i.e. column j is a pivot column). Then the variable
xj is dependent. A variable that is not dependent is called independent or free. 4

If you studied this definition carefully, you might wonder what to do if the system has n
variables and column n+ 1 is a pivot column? We will see shortly, by Theorem RCLS [172],
that this never happens for a consistent system.

Example FDV
Free and dependent variables
Consider the system of five equations in five variables,

x1 − x2 − 2x3 + x4 + 11x5 = 13

x1 − x2 + x3 + x4 + 5x5 = 16

2x1 − 2x2 + x4 + 10x5 = 21
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2x1 − 2x2 − x3 + 3x4 + 20x5 = 38

2x1 − 2x2 + x3 + x4 + 8x5 = 22

whose augmented matrix row-reduces to
1 −1 0 0 3 6

0 0 1 0 −2 1

0 0 0 1 4 9
0 0 0 0 0 0
0 0 0 0 0 0


There are leading 1’s in columns 1, 3 and 4, so D = {1, 3, 4}. From this we know that the
variables x1, x3 and x4 will be dependent variables, and each of the r = 3 nonzero rows of
the row-reduced matrix will yield an expression for one of these three variables. The set
F is all the remaining column indices, F = {2, 5, 6}. That 6 ∈ F refers to the column
originating from the vector of constants, but the remaining indices in F will correspond to
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free variables, so x2 and x5 (the remaining variables) are our free variables. The resulting
three equations that describe our solution set are then,

(xd1 = x1) x1 = 6 + x2 − 3x5

(xd2 = x3) x3 = 1 + 2x5

(xd3 = x4) x4 = 9− 4x5

Make sure you understand where these three equations came from, and notice how the
location of the leading 1’s determined the variables on the left-hand side of each equation.
We can compactly describe the solution set as,

S =




6 + x2 − 3x5

x2

1 + 2x5

9− 4x5

x5

 | x2, x5 ∈ C
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Notice how we express the freedom for x2 and x5: x2, x5 ∈ C. �

Sets are an important part of algebra, and we’ve seen a few already. Being comfortable
with sets is important for understanding and writing proofs. If you haven’t already, pay a
visit now to Section SET [2324].

We can now use the values of m, n, r, and the independent and dependent variables to
categorize the solution sets for linear systems through a sequence of theorems. Through the
following sequence of proofs, you will want to consult three proof techniques. See Technique
E [2348]. See Technique N [2350]. See Technique CP [2352].

First we have an important theorem that explores the distinction between consistent and
inconsistent linear systems.

Theorem RCLS
Recognizing Consistency of a Linear System
Suppose A is the augmented matrix of a system of linear equations with n variables. Suppose
also that B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows.
Then the system of equations is inconsistent if and only if the leading 1 of row r is located

Version 2.11



Subsection TSS.CS Consistent Systems 173

in column n+ 1 of B. �

Proof (⇐) The first half of the proof begins with the assumption that the leading 1 of row
r is located in column n+1 of B. Then row r of B begins with n consecutive zeros, finishing
with the leading 1. This is a representation of the equation 0 = 1, which is false. Since this
equation is false for any collection of values we might choose for the variables, there are no
solutions for the system of equations, and it is inconsistent.

(⇒) For the second half of the proof, we wish to show that if we assume the system is
inconsistent, then the final leading 1 is located in the last column. But instead of proving this
directly, we’ll form the logically equivalent statement that is the contrapositive, and prove
that instead (see Technique CP [2352]). Turning the implication around, and negating each
portion, we arrive at the logically equivalent statement: If the leading 1 of row r is not in
column n+ 1, then the system of equations is consistent.

If the leading 1 for row r is located somewhere in columns 1 through n, then every
preceding row’s leading 1 is also located in columns 1 through n. In other words, since the
last leading 1 is not in the last column, no leading 1 for any row is in the last column, due
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to the echelon layout of the leading 1’s (Definition RREF [91]). We will now construct a
solution to the system by setting each dependent variable to the entry of the final column
for the row with the corresponding leading 1, and setting each free variable to zero. That
sentence is pretty vague, so let’s be more precise. Using our notation for the sets D and F
from the reduced row-echelon form (Notation RREFA [92]):

xdi = [B]i,n+1 , 1 ≤ i ≤ r xfi = 0, 1 ≤ i ≤ n− r

These values for the variables make the equations represented by the first r rows of B all true
(convince yourself of this). Rows numbered greater than r (if any) are all zero rows, hence
represent the equation 0 = 0 and are also all true. We have now identified one solution to
the system represented by B, and hence a solution to the system represented by A (Theorem
REMES [87]). So we can say the system is consistent (Definition CS [161]). �

The beauty of this theorem being an equivalence is that we can unequivocally test to
see if a system is consistent or inconsistent by looking at just a single entry of the reduced
row-echelon form matrix. We could program a computer to do it!
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Notice that for a consistent system the row-reduced augmented matrix has n + 1 ∈ F ,
so the largest element of F does not refer to a variable. Also, for an inconsistent system,
n+1 ∈ D, and it then does not make much sense to discuss whether or not variables are free
or dependent since there is no solution. Take a look back at Definition IDV [169] and see
why we did not need to consider the possibility of referencing xn+1 as a dependent variable.

With the characterization of Theorem RCLS [172], we can explore the relationships be-
tween r and n in light of the consistency of a system of equations. First, a situation where
we can quickly conclude the inconsistency of a system.

Theorem ISRN
Inconsistent Systems, r and n
Suppose A is the augmented matrix of a system of linear equations in n variables. Suppose
also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not
completely zeros. If r = n+ 1, then the system of equations is inconsistent. �

Proof If r = n + 1, then D = {1, 2, 3, . . . , n, n+ 1} and every column of B contains a
leading 1 and is a pivot column. In particular, the entry of column n+ 1 for row r = n+ 1
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is a leading 1. Theorem RCLS [172] then says that the system is inconsistent. �

Do not confuse Theorem ISRN [175] with its converse! Go check out Technique CV [2353]
right now.

Next, if a system is consistent, we can distinguish between a unique solution and infinitely
many solutions, and furthermore, we recognize that these are the only two possibilities.

Theorem CSRN
Consistent Systems, r and n
Suppose A is the augmented matrix of a consistent system of linear equations with n vari-
ables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not zero rows. Then r ≤ n. If r = n, then the system has a unique solution,
and if r < n, then the system has infinitely many solutions. �

Proof This theorem contains three implications that we must establish. Notice first that
B has n+1 columns, so there can be at most n+1 pivot columns, i.e. r ≤ n+1. If r = n+1,
then Theorem ISRN [175] tells us that the system is inconsistent, contrary to our hypothesis.
We are left with r ≤ n.
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When r = n, we find n − r = 0 free variables (i.e. F = {n+ 1}) and any solution must
equal the unique solution given by the first n entries of column n+ 1 of B.

When r < n, we have n− r > 0 free variables, corresponding to columns of B without a
leading 1, excepting the final column, which also does not contain a leading 1 by Theorem
RCLS [172]. By varying the values of the free variables suitably, we can demonstrate infinitely
many solutions. �

Subsection FV
Free Variables

The next theorem simply states a conclusion from the final paragraph of the previous proof,
allowing us to state explicitly the number of free variables for a consistent system.

Theorem FVCS
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Free Variables for Consistent Systems
Suppose A is the augmented matrix of a consistent system of linear equations with n vari-
ables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not completely zeros. Then the solution set can be described with n − r free
variables. �

Proof See the proof of Theorem CSRN [176]. �

Example CFV
Counting free variables
For each archetype that is a system of equations, the values of n and r are listed. Many
also contain a few sample solutions. We can use this information profitably, as illustrated
by four examples.

1. Archetype A [2378] has n = 3 and r = 2. It can be seen to be consistent by the sample
solutions given. Its solution set then has n− r = 1 free variables, and therefore will be
infinite.
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2. Archetype B [2392] has n = 3 and r = 3. It can be seen to be consistent by the
single sample solution given. Its solution set can then be described with n− r = 0 free
variables, and therefore will have just the single solution.

3. Archetype H [2472] has n = 2 and r = 3. In this case, r = n + 1, so Theorem ISRN
[175] says the system is inconsistent. We should not try to apply Theorem FVCS [178]
to count free variables, since the theorem only applies to consistent systems. (What
would happen if you did?)

4. Archetype E [2431] has n = 4 and r = 3. However, by looking at the reduced row-
echelon form of the augmented matrix, we find a leading 1 in row 3, column 4. By
Theorem RCLS [172] we recognize the system as inconsistent. (Why doesn’t this ex-
ample contradict Theorem ISRN [175]?)

�

We have accomplished a lot so far, but our main goal has been the following theorem,
which is now very simple to prove. The proof is so simple that we ought to call it a corollary,
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but the result is important enough that it deserves to be called a theorem. (See Technique
LC [2369].) Notice that this theorem was presaged first by Example TTS [28] and further
foreshadowed by other examples.

Theorem PSSLS
Possible Solution Sets for Linear Systems
A system of linear equations has no solutions, a unique solution or infinitely many solutions.

�

Proof By its definition, a system is either inconsistent or consistent (Definition CS [161]).
The first case describes systems with no solutions. For consistent systems, we have the
remaining two possibilities as guaranteed by, and described in, Theorem CSRN [176]. �

Here is a diagram that consolidates several of our theorems from this section, and which
is of practical use when you analyze systems of equations.
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Theorem RCLS

Consistent Inconsistent

no leading 1 in
column n + 1

a leading 1 in
column n + 1

Theorem FVCS

Infinite solutions Unique solution

r < n r = n

Diagram DTSLS. Decision Tree for Solving Linear Systems

We have one more theorem to round out our set of tools for determining solution sets to
systems of linear equations.

Theorem CMVEI
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Consistent, More Variables than Equations, Infinite solutions
Suppose a consistent system of linear equations has m equations in n variables. If n > m,
then the system has infinitely many solutions. �

Proof Suppose that the augmented matrix of the system of equations is row-equivalent
to B, a matrix in reduced row-echelon form with r nonzero rows. Because B has m rows in
total, the number that are nonzero rows is less. In other words, r ≤ m. Follow this with the
hypothesis that n > m and we find that the system has a solution set described by at least
one free variable because

n− r ≥ n−m > 0.

A consistent system with free variables will have an infinite number of solutions, as given by
Theorem CSRN [176]. �

Notice that to use this theorem we need only know that the system is consistent, together
with the values of m and n. We do not necessarily have to compute a row-equivalent reduced
row-echelon form matrix, even though we discussed such a matrix in the proof. This is the
substance of the following example.
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Example OSGMD
One solution gives many, Archetype D
Archetype D is the system of m = 3 equations in n = 4 variables,

2x1 + x2 + 7x3 − 7x4 = 8

−3x1 + 4x2 − 5x3 − 6x4 = −12

x1 + x2 + 4x3 − 5x4 = 4

and the solution x1 = 0, x2 = 1, x3 = 2, x4 = 1 can be checked easily by substitution.
Having been handed this solution, we know the system is consistent. This, together with
n > m, allows us to apply Theorem CMVEI [182] and conclude that the system has infinitely
many solutions. �

These theorems give us the procedures and implications that allow us to completely
solve any system of linear equations. The main computational tool is using row operations
to convert an augmented matrix into reduced row-echelon form. Here’s a broad outline of
how we would instruct a computer to solve a system of linear equations.
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1. Represent a system of linear equations by an augmented matrix (an array is the appro-
priate data structure in most computer languages).

2. Convert the matrix to a row-equivalent matrix in reduced row-echelon form using the
procedure from the proof of Theorem REMEF [94].

3. Determine r and locate the leading 1 of row r. If it is in column n + 1, output the
statement that the system is inconsistent and halt.

4. With the leading 1 of row r not in column n+ 1, there are two possibilities:

(a) r = n and the solution is unique. It can be read off directly from the entries in
rows 1 through n of column n+ 1.

(b) r < n and there are infinitely many solutions. If only a single solution is needed,
set all the free variables to zero and read off the dependent variable values from
column n + 1, as in the second half of the proof of Theorem RCLS [172]. If the
entire solution set is required, figure out some nice compact way to describe it, since
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your finite computer is not big enough to hold all the solutions (we’ll have such a
way soon).

The above makes it all sound a bit simpler than it really is. In practice, row operations
employ division (usually to get a leading entry of a row to convert to a leading 1) and that
will introduce round-off errors. Entries that should be zero sometimes end up being very,
very small nonzero entries, or small entries lead to overflow errors when used as divisors. A
variety of strategies can be employed to minimize these sorts of errors, and this is one of the
main topics in the important subject known as numerical linear algebra.

Solving a linear system is such a fundamental problem in so many areas of mathematics,
and its applications, that any computational device worth using for linear algebra will have
a built-in routine to do just that. See: Computation LS.MMA [2273] Computation
LS.SAGE [2304] In this section we’ve gained a foolproof procedure for solving any system
of linear equations, no matter how many equations or variables. We also have a handful
of theorems that allow us to determine partial information about a solution set without
actually constructing the whole set itself. Donald Knuth would be proud.
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Subsection READ
Reading Questions

1. How do we recognize when a system of linear equations is inconsistent?

2. Suppose we have converted the augmented matrix of a system of equations into reduced
row-echelon form. How do we then identify the dependent and independent (free)
variables?

3. What are the possible solution sets for a system of linear equations?
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Subsection EXC
Exercises

C10 In the spirit of Example ISSI [164], describe the infinite solution set for Archetype J
[2498].
Contributed by Robert Beezer

For Exercises C21–C28, find the solution set of the given system of linear equations.
Identify the values of n and r, and compare your answers to the results of the theorems of
this section.
C21

x1 + 4x2 + 3x3 − x4 = 5

x1 − x2 + x3 + 2x4 = 6

4x1 + x2 + 6x3 + 5x4 = 9
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Contributed by Chris Black Solution [195]

C22

x1 − 2x2 + x3 − x4 = 3

2x1 − 4x2 + x3 + x4 = 2

x1 − 2x2 − 2x3 + 3x4 = 1

Contributed by Chris Black Solution [196]

C23

x1 − 2x2 + x3 − x4 = 3

x1 + x2 + x3 − x4 = 1

x1 + x3 − x4 = 2
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Contributed by Chris Black Solution [197]

C24

x1 − 2x2 + x3 − x4 = 2

x1 + x2 + x3 − x4 = 2

x1 + x3 − x4 = 2

Contributed by Chris Black Solution [197]

C25

x1 + 2x2 + 3x3 = 1

2x1 − x2 + x3 = 2

3x1 + x2 + x3 = 4
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x2 + 2x3 = 6

Contributed by Chris Black Solution [198]

C26

x1 + 2x2 + 3x3 = 1

2x1 − x2 + x3 = 2

3x1 + x2 + x3 = 4

5x2 + 2x3 = 1

Contributed by Chris Black Solution [199]

C27

x1 + 2x2 + 3x3 = 0
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2x1 − x2 + x3 = 2

x1 − 8x2 − 7x3 = 1

x2 + x3 = 0

Contributed by Chris Black Solution [200]

C28

x1 + 2x2 + 3x3 = 1

2x1 − x2 + x3 = 2

x1 − 8x2 − 7x3 = 1

x2 + x3 = 0

Contributed by Chris Black Solution [200]
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M45 Prove that Archetype J [2498] has infinitely many solutions without row-reducing the
augmented matrix.
Contributed by Robert Beezer Solution [201]

For Exercises M51–M57 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.
M51 A consistent system of 8 equations in 6 variables.
Contributed by Robert Beezer Solution [202]

M52 A consistent system of 6 equations in 8 variables.
Contributed by Robert Beezer Solution [202]

M53 A system of 5 equations in 9 variables.
Contributed by Robert Beezer Solution [202]

M54 A system with 12 equations in 35 variables.
Contributed by Robert Beezer Solution [203]
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M56 A system with 6 equations in 12 variables.
Contributed by Robert Beezer Solution [203]

M57 A system with 8 equations and 6 variables. The reduced row-echelon form of the
augmented matrix of the system has 7 pivot columns.
Contributed by Robert Beezer Solution [203]

M60 Without doing any computations, and without examining any solutions, say as much
as possible about the form of the solution set for each archetype that is a system of equations.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]
Archetype E [2431]
Archetype F [2443]
Archetype G [2460]
Archetype H [2472]
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Archetype I [2485]
Archetype J [2498]
Contributed by Robert Beezer

T10 An inconsistent system may have r > n. If we try (incorrectly!) to apply Theorem
FVCS [178] to such a system, how many free variables would we discover?
Contributed by Robert Beezer Solution [203]

T40 Suppose that the coefficient matrix of a consistent system of linear equations has two
columns that are identical. Prove that the system has infinitely many solutions.
Contributed by Robert Beezer Solution [204]

T41 Consider the system of linear equations LS(A, b), and suppose that every element
of the vector of constants b is a common multiple of the corresponding element of a certain
column of A. More precisely, there is a complex number α, and a column index j, such that
[b]i = α [A]ij for all i. Prove that the system is consistent.
Contributed by Robert Beezer Solution [204]
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Subsection SOL
Solutions

C21 Contributed by Chris Black Statement [187]
The augmented matrix for the given linear system and its row-reduced form are:

1 4 3 −1 5
1 −1 1 2 6
4 1 6 5 9

 RREF−−−→
 1 0 7/5 7/5 0

0 1 2/5 −3/5 0

0 0 0 0 1

 .
For this system, we have n = 4 and r = 3. However, with a leading 1 in the last column we
see that the original system has no solution by Theorem RCLS [172].

C22 Contributed by Chris Black Statement [188]

Version 2.11



Subsection TSS.SOL Solutions 196

The augmented matrix for the given linear system and its row-reduced form are:1 −2 1 −1 3
2 −4 1 1 2
1 −2 −2 3 1

 RREF−−−→
 1 −2 0 0 3

0 0 1 0 −2

0 0 0 1 −2

 .
Thus, we see we have an equivalent system for any scalar x2:

x1 = 3 + 2x2

x3 = −2

x4 = −2.

For this system, n = 4 and r = 3. Since it is a consistent system by Theorem RCLS [172],
Theorem CSRN [176] guarantees an infinite number of solutions.

C23 Contributed by Chris Black Statement [188]
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The augmented matrix for the given linear system and its row-reduced form are:1 −2 1 −1 3
1 1 1 −1 1
1 0 1 −1 2

 RREF−−−→
 1 0 1 −1 0

0 1 0 0 0

0 0 0 0 1

 .
For this system, we have n = 4 and r = 3. However, with a leading 1 in the last column we
see that the original system has no solution by Theorem RCLS [172].

C24 Contributed by Chris Black Statement [189]
The augmented matrix for the given linear system and its row-reduced form are:1 −2 1 −1 2

1 1 1 −1 2
1 0 1 −1 2

 RREF−−−→
 1 0 1 −1 2

0 1 0 0 0
0 0 0 0 0

 .
Thus, we see that an equivalent system is

x1 = 2− x3 + x4
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x2 = 0,

and the solution set is




2− x3 + x4

0
x3

x4

 | x3, x4 ∈ C

. For this system, n = 4 and r = 2.

Since it is a consistent system by Theorem RCLS [172], Theorem CSRN [176] guarantees an
infinite number of solutions.

C25 Contributed by Chris Black Statement [189]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 3 1
2 −1 1 2
3 1 1 4
0 1 2 6

 RREF−−−→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
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Since n = 3 and r = 4 = n+ 1, Theorem ISRN [175] guarantees that the system is inconsis-
tent. Thus, we see that the given system has no solution.

C26 Contributed by Chris Black Statement [190]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 3 1
2 −1 1 2
3 1 1 4
0 5 2 1

 RREF−−−→


1 0 0 4/3

0 1 0 1/3

0 0 1 −1/3
0 0 0 0

 .
Since r = n = 3 and the system is consistent by Theorem RCLS [172], Theorem CSRN [176]
guarantees a unique solution, which is

x1 = 4/3

x2 = 1/3

x3 = −1/3.
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C27 Contributed by Chris Black Statement [190]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 3 0
2 −1 1 2
1 −8 −7 1
0 1 1 0

 RREF−−−→


1 0 1 0

0 1 1 0

0 0 0 1
0 0 0 0

 .
For this system, we have n = 3 and r = 3. However, with a leading 1 in the last column we
see that the original system has no solution by Theorem RCLS [172].

C28 Contributed by Chris Black Statement [191]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 3 1
2 −1 1 2
1 −8 −7 1
0 1 1 0

 RREF−−−→


1 0 1 1

0 1 1 0
0 0 0 0
0 0 0 0

 .
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For this system, n = 3 and r = 2. Since it is a consistent system by Theorem RCLS [172],
Theorem CSRN [176] guarantees an infinite number of solutions. An equivalent system is

x1 = 1− x3

x2 = −x3,

where x3 is any scalar. So we can express the solution set as
1− x3

−x3

x3

 | x3 ∈ C


M45 Contributed by Robert Beezer Statement [192]
Demonstrate that the system is consistent by verifying any one of the four sample solutions
provided. Then because n = 9 > 6 = m, Theorem CMVEI [182] gives us the conclusion that
the system has infinitely many solutions.
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Notice that we only know the system will have at least 9− 6 = 3 free variables, but very
well could have more. We do not know know that r = 6, only that r ≤ 6.

M51 Contributed by Robert Beezer Statement [192]
Consistent means there is at least one solution (Definition CS [161]). It will have either a
unique solution or infinitely many solutions (Theorem PSSLS [180]).

M52 Contributed by Robert Beezer Statement [192]
With 6 rows in the augmented matrix, the row-reduced version will have r ≤ 6. Since the
system is consistent, apply Theorem CSRN [176] to see that n − r ≥ 2 implies infinitely
many solutions.

M53 Contributed by Robert Beezer Statement [192]
The system could be inconsistent. If it is consistent, then because it has more variables than
equations Theorem CMVEI [182] implies that there would be infinitely many solutions. So,
of all the possibilities in Theorem PSSLS [180], only the case of a unique solution can be
ruled out.
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M54 Contributed by Robert Beezer Statement [192]
The system could be inconsistent. If it is consistent, then Theorem CMVEI [182] tells us
the solution set will be infinite. So we can be certain that there is not a unique solution.

M56 Contributed by Robert Beezer Statement [193]
The system could be inconsistent. If it is consistent, and since 12 > 6, then Theorem CMVEI
[182] says we will have infinitely many solutions. So there are two possibilities. Theorem
PSSLS [180] allows to state equivalently that a unique solution is an impossibility.

M57 Contributed by Robert Beezer Statement [193]
7 pivot columns implies that there are r = 7 nonzero rows (so row 8 is all zeros in the reduced
row-echelon form). Then n+ 1 = 6 + 1 = 7 = r and Theorem ISRN [175] allows to conclude
that the system is inconsistent.

T10 Contributed by Robert Beezer Statement [194]
Theorem FVCS [178] will indicate a negative number of free variables, but we can say
even more. If r > n, then the only possibility is that r = n + 1, and then we compute
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n− r = n− (n+ 1) = −1 free variables.

T40 Contributed by Robert Beezer Statement [194]
Since the system is consistent, we know there is either a unique solution, or infinitely many
solutions (Theorem PSSLS [180]). If we perform row operations (Definition RO [84]) on the
augmented matrix of the system, the two equal columns of the coefficient matrix will suffer
the same fate, and remain equal in the final reduced row-echelon form. Suppose both of these
columns are pivot columns (Definition RREF [91]). Then there is single row containing the
two leading 1’s of the two pivot columns, a violation of reduced row-echelon form (Definition
RREF [91]). So at least one of these columns is not a pivot column, and the column index
indicates a free variable in the description of the solution set (Definition IDV [169]). With a
free variable, we arrive at an infinite solution set (Theorem FVCS [178]).

T41 Contributed by Robert Beezer Statement [194]
The condition about the multiple of the column of constants will allow you to show that the
following values form a solution of the system LS(A, b),

x1 = 0 x2 = 0 . . . xj−1 = 0 xj = α xj+1 = 0 . . . xn−1 = 0 xn = 0
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With one solution of the system known, we can say the system is consistent (Definition CS
[161]).

A more involved proof can be built using Theorem RCLS [172]. Begin by proving that
each of the three row operations (Definition RO [84]) will convert the augmented matrix
of the system into another matrix where column j is α times the entry of the same row in
the last column. In other words, the “column multiple property” is preserved under row
operations. These proofs will get successively more involved as you work through the three
operations.

Now construct a proof by contradiction (Technique CD [2354]), by supposing that the
system is inconsistent. Then the last column of the reduced row-echelon form of the aug-
mented matrix is a pivot column (Theorem RCLS [172]). Then column j must have a zero
in the same row as the leading 1 of the final column. But the “column multiple property”
implies that there is an α in column j in the same row as the leading 1. So α = 0. By
hypothesis, then the vector of constants is the zero vector. However, if we began with a final
column of zeros, row operations would never have created a leading 1 in the final column.
This contradicts the final column being a pivot column, and therefore the system cannot be
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inconsistent.
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Section HSE

Homogeneous Systems of Equations

In this section we specialize to systems of linear equations where every equation has a zero
as its constant term. Along the way, we will begin to express more and more ideas in the
language of matrices and begin a move away from writing out whole systems of equations.
The ideas initiated in this section will carry through the remainder of the course.
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Subsection SHS
Solutions of Homogeneous Systems

As usual, we begin with a definition.

Definition HS
Homogeneous System
A system of linear equations, LS(A, b) is homogeneous if the vector of constants is the
zero vector, in other words, b = 0. 4

Example AHSAC
Archetype C as a homogeneous system
For each archetype that is a system of equations, we have formulated a similar, yet different,
homogeneous system of equations by replacing each equation’s constant term with a zero.
To wit, for Archetype C [2407], we can convert the original system of equations into the
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homogeneous system,

2x1 − 3x2 + x3 − 6x4 = 0

4x1 + x2 + 2x3 + 9x4 = 0

3x1 + x2 + x3 + 8x4 = 0

Can you quickly find a solution to this system without row-reducing the augmented matrix?
�

As you might have discovered by studying Example AHSAC [207], setting each variable
to zero will always be a solution of a homogeneous system. This is the substance of the
following theorem.

Theorem HSC
Homogeneous Systems are Consistent
Suppose that a system of linear equations is homogeneous. Then the system is consistent.
�
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Proof Set each variable of the system to zero. When substituting these values into each
equation, the left-hand side evaluates to zero, no matter what the coefficients are. Since a
homogeneous system has zero on the right-hand side of each equation as the constant term,
each equation is true. With one demonstrated solution, we can call the system consistent.
�

Since this solution is so obvious, we now define it as the trivial solution.

Definition TSHSE
Trivial Solution to Homogeneous Systems of Equations
Suppose a homogeneous system of linear equations has n variables. The solution x1 = 0,
x2 = 0,. . . , xn = 0 (i.e. x = 0) is called the trivial solution. 4

Here are three typical examples, which we will reference throughout this section. Work
through the row operations as we bring each to reduced row-echelon form. Also notice what
is similar in each example, and what differs.

Example HUSAB
Homogeneous, unique solution, Archetype B
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Archetype B can be converted to the homogeneous system,

−11x1 + 2x2 − 14x3 = 0

23x1 − 6x2 + 33x3 = 0

14x1 − 2x2 + 17x3 = 0

whose augmented matrix row-reduces to 1 0 0 0

0 1 0 0

0 0 1 0


By Theorem HSC [208], the system is consistent, and so the computation n− r = 3− 3 = 0
means the solution set contains just a single solution. Then, this lone solution must be the
trivial solution. �

Example HISAA
Homogeneous, infinite solutions, Archetype A
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Archetype A [2378] can be converted to the homogeneous system,

x1 − x2 + 2x3 = 0

2x1 + x2 + x3 = 0

x1 + x2 = 0

whose augmented matrix row-reduces to 1 0 1 0

0 1 −1 0
0 0 0 0


By Theorem HSC [208], the system is consistent, and so the computation n− r = 3− 2 = 1
means the solution set contains one free variable by Theorem FVCS [178], and hence has
infinitely many solutions. We can describe this solution set using the free variable x3,

S =


x1

x2

x3

 | x1 = −x3, x2 = x3

 =


−x3

x3

x3

 | x3 ∈ C
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Geometrically, these are points in three dimensions that lie on a line through the origin. �

Example HISAD
Homogeneous, infinite solutions, Archetype D
Archetype D [2419] (and identically, Archetype E [2431]) can be converted to the homoge-
neous system,

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

whose augmented matrix row-reduces to 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0
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By Theorem HSC [208], the system is consistent, and so the computation n− r = 4− 2 = 2
means the solution set contains two free variables by Theorem FVCS [178], and hence has
infinitely many solutions. We can describe this solution set using the free variables x3 and
x4,

S =



x1

x2

x3

x4

 | x1 = −3x3 + 2x4, x2 = −x3 + 3x4


=



−3x3 + 2x4

−x3 + 3x4

x3

x4

 | x3, x4 ∈ C
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�

After working through these examples, you might perform the same computations for
the slightly larger example, Archetype J [2498].

Notice that when we do row operations on the augmented matrix of a homogeneous
system of linear equations the last column of the matrix is all zeros. Any one of the three
allowable row operations will convert zeros to zeros and thus, the final column of the matrix
in reduced row-echelon form will also be all zeros. So in this case, we may be as likely to
reference only the coefficient matrix and presume that we remember that the final column
begins with zeros, and after any number of row operations is still zero.

Example HISAD [212] suggests the following theorem.

Theorem HMVEI
Homogeneous, More Variables than Equations, Infinite solutions
Suppose that a homogeneous system of linear equations has m equations and n variables
with n > m. Then the system has infinitely many solutions. �

Proof We are assuming the system is homogeneous, so Theorem HSC [208] says it is
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consistent. Then the hypothesis that n > m, together with Theorem CMVEI [182], gives
infinitely many solutions. �

Example HUSAB [209] and Example HISAA [210] are concerned with homogeneous sys-
tems where n = m and expose a fundamental distinction between the two examples. One
has a unique solution, while the other has infinitely many. These are exactly the only two
possibilities for a homogeneous system and illustrate that each is possible (unlike the case
when n > m where Theorem HMVEI [214] tells us that there is only one possibility for a
homogeneous system).
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Subsection NSM
Null Space of a Matrix

The set of solutions to a homogeneous system (which by Theorem HSC [208] is never empty)
is of enough interest to warrant its own name. However, we define it as a property of the
coefficient matrix, not as a property of some system of equations.

Definition NSM
Null Space of a Matrix
The null space of a matrix A, denoted N (A), is the set of all the vectors that are solutions
to the homogeneous system LS(A, 0).

(This definition contains Notation NSM.) 4
In the Archetypes (Appendix A [2372]) each example that is a system of equations also

has a corresponding homogeneous system of equations listed, and several sample solutions
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are given. These solutions will be elements of the null space of the coefficient matrix. We’ll
look at one example.

Example NSEAI
Null space elements of Archetype I
The write-up for Archetype I [2485] lists several solutions of the corresponding homogeneous
system. Here are two, written as solution vectors. We can say that they are in the null space
of the coefficient matrix for the system of equations in Archetype I [2485].

x =



3
0
−5
−6
0
0
1


y =



−4
1
−3
−2
1
1
1
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However, the vector

z =



1
0
0
0
0
0
2


is not in the null space, since it is not a solution to the homogeneous system. For example,
it fails to even make the first equation true. �

Here are two (prototypical) examples of the computation of the null space of a matrix.

Example CNS1
Computing a null space, #1
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Let’s compute the null space of

A =

2 −1 7 −3 −8
1 0 2 4 9
2 2 −2 −1 8


which we write as N (A). Translating Definition NSM [216], we simply desire to solve the
homogeneous system LS(A, 0). So we row-reduce the augmented matrix to obtain 1 0 2 0 1 0

0 1 −3 0 4 0

0 0 0 1 2 0


The variables (of the homogeneous system) x3 and x5 are free (since columns 1, 2 and 4 are
pivot columns), so we arrange the equations represented by the matrix in reduced row-echelon
form to

x1 = −2x3 − x5
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x2 = 3x3 − 4x5

x4 = −2x5

So we can write the infinite solution set as sets using column vectors,

N (A) =




−2x3 − x5

3x3 − 4x5

x3

−2x5

x5

 | x3, x5 ∈ C


�

Example CNS2
Computing a null space, #2
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Let’s compute the null space of

C =


−4 6 1
−1 4 1
5 6 7
4 7 1


which we write as N (C). Translating Definition NSM [216], we simply desire to solve the
homogeneous system LS(C, 0). So we row-reduce the augmented matrix to obtain

1 0 0 0

0 1 0 0

0 0 1 0
0 0 0 0


There are no free variables in the homogeneous system represented by the row-reduced
matrix, so there is only the trivial solution, the zero vector, 0. So we can write the (trivial)
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solution set as

N (C) = {0} =


0

0
0


�

Subsection READ
Reading Questions

1. What is always true of the solution set for a homogeneous system of equations?

2. Suppose a homogeneous system of equations has 13 variables and 8 equations. How
many solutions will it have? Why?
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3. Describe in words (not symbols) the null space of a matrix.
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Subsection EXC
Exercises

C10 Each Archetype (Appendix A [2372]) that is a system of equations has a corresponding
homogeneous system with the same coefficient matrix. Compute the set of solutions for each.
Notice that these solution sets are the null spaces of the coefficient matrices.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/ Archetype H [2472]
Archetype I [2485]
and Archetype J [2498]
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Contributed by Robert Beezer

C20 Archetype K [2515] and Archetype L [2527] are simply 5 × 5 matrices (i.e. they are
not systems of equations). Compute the null space of each matrix.
Contributed by Robert Beezer

For Exercises C21-C23, solve the given homogeneous linear system. Compare your results
to the results of the corresponding exercise in Section TSS [160].
C21

x1 + 4x2 + 3x3 − x4 = 0

x1 − x2 + x3 + 2x4 = 0

4x1 + x2 + 6x3 + 5x4 = 0

Contributed by Chris Black Solution [233]
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C22

x1 − 2x2 + x3 − x4 = 0

2x1 − 4x2 + x3 + x4 = 0

x1 − 2x2 − 2x3 + 3x4 = 0

Contributed by Chris Black Solution [234]

C23

x1 − 2x2 + x3 − x4 = 0

x1 + x2 + x3 − x4 = 0

x1 + x3 − x4 = 0

Contributed by Chris Black Solution [235]
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For Exercises C25-C27, solve the given homogeneous linear system. Compare your results
to the results of the corresponding exercise in Section TSS [160].
C25

x1 + 2x2 + 3x3 = 0

2x1 − x2 + x3 = 0

3x1 + x2 + x3 = 0

x2 + 2x3 = 0

Contributed by Chris Black Solution [236]

C26

x1 + 2x2 + 3x3 = 0

2x1 − x2 + x3 = 0
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3x1 + x2 + x3 = 0

5x2 + 2x3 = 0

Contributed by Chris Black Solution [237]

C27

x1 + 2x2 + 3x3 = 0

2x1 − x2 + x3 = 0

x1 − 8x2 − 7x3 = 0

x2 + x3 = 0

Contributed by Chris Black Solution [238]
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C30 Compute the null space of the matrix A, N (A).

A =


2 4 1 3 8
−1 −2 −1 −1 1
2 4 0 −3 4
2 4 −1 −7 4


Contributed by Robert Beezer Solution [238]

C31 Find the null space of the matrix B, N (B).

B =

−6 4 −36 6
2 −1 10 −1
−3 2 −18 3


Contributed by Robert Beezer Solution [240]
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M45 Without doing any computations, and without examining any solutions, say as much
as possible about the form of the solution set for corresponding homogeneous system of
equations of each archetype that is a system of equations.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
Contributed by Robert Beezer

For Exercises M50–M52 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.
M50 A homogeneous system of 8 equations in 8 variables.
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Contributed by Robert Beezer Solution [241]

M51 A homogeneous system of 8 equations in 9 variables.
Contributed by Robert Beezer Solution [242]

M52 A homogeneous system of 8 equations in 7 variables.
Contributed by Robert Beezer Solution [242]

T10 Prove or disprove: A system of linear equations is homogeneous if and only if the
system has the zero vector as a solution.
Contributed by Martin Jackson Solution [242]

T20 Consider the homogeneous system of linear equations LS(A, 0), and suppose that
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u =


u1

u2

u3
...
un

 is one solution to the system of equations. Prove that v =


4u1

4u2

4u3
...

4un

 is also a

solution to LS(A, 0).
Contributed by Robert Beezer Solution [243]
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Subsection SOL
Solutions

C21 Contributed by Chris Black Statement [225]
The augmented matrix for the given linear system and its row-reduced form are:

1 4 3 −1 0
1 −1 1 2 0
4 1 6 5 0

 RREF−−−→
 1 0 7/5 7/5 0

0 1 2/5 −3/5 0
0 0 0 0 0

 .

Thus, we see that the system is consistent (as predicted by Theorem HSC [208]) and has an
infinite number of solutions (as predicted by Theorem HMVEI [214]). With suitable choices
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of x3 and x4, each solution can be written as
−7

5
x3 − 7

5
x4

−2
5
x3 + 3

5
x4

x3

x4


C22 Contributed by Chris Black Statement [226]
The augmented matrix for the given linear system and its row-reduced form are:1 −2 1 −1 0

2 −4 1 1 0
1 −2 −2 3 0

 RREF−−−→
 1 −2 0 0 0

0 0 1 0 0

0 0 0 1 0

 .
Thus, we see that the system is consistent (as predicted by Theorem HSC [208]) and has
an infinite number of solutions (as predicted by Theorem HMVEI [214]). With a suitable
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choice of x2, each solution can be written as
2x2

x2

0
0


C23 Contributed by Chris Black Statement [226]
The augmented matrix for the given linear system and its row-reduced form are:1 −2 1 −1 0

1 1 1 −1 0
1 0 1 −1 0

 RREF−−−→
 1 0 1 −1 0

0 1 0 0 0
0 0 0 0 0

 .
Thus, we see that the system is consistent (as predicted by Theorem HSC [208]) and has an
infinite number of solutions (as predicted by Theorem HMVEI [214]). With suitable choices
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of x3 and x4, each solution can be written as
−x3 + x4

0
x3

x4


C25 Contributed by Chris Black Statement [227]
The augmented matrix for the given linear system and its row-reduced form are:

1 2 3 0
2 −1 1 0
3 1 1 0
0 1 2 0

 RREF−−−→


1 0 0 0

0 1 0 0

0 0 1 0
0 0 0 0

 .
An homogeneous system is always consistent (Theorem HSC [208]) and with n = r = 3 an
application of Theorem FVCS [178] yields zero free variables. Thus the only solution to the
given system is the trivial solution, x = 0.
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C26 Contributed by Chris Black Statement [227]
The augmented matrix for the given linear system and its row-reduced form are:


1 2 3 0
2 −1 1 0
3 1 1 0
0 5 2 0

 RREF−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

An homogeneous system is always consistent (Theorem HSC [208]) and with n = r = 3 an
application of Theorem FVCS [178] yields zero free variables. Thus the only solution to the
given system is the trivial solution, x = 0.

C27 Contributed by Chris Black Statement [228]

Version 2.11



Subsection HSE.SOL Solutions 239

The augmented matrix for the given linear system and its row-reduced form are:
1 2 3 0
2 −1 1 0
1 −8 −7 0
0 1 1 0

 RREF−−−→


1 0 1 0

0 1 1 0
0 0 0 0
0 0 0 0

 .
An homogeneous system is always consistent (Theorem HSC [208]) and with n = 3, r = 2
an application of Theorem FVCS [178] yields one free variable. With a suitable choice of x3

each solution can be written in the form −x3

−x3

x3


C30 Contributed by Robert Beezer Statement [229]
Definition NSM [216] tells us that the null space of A is the solution set to the homogeneous
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system LS(A, 0). The augmented matrix of this system is
2 4 1 3 8 0
−1 −2 −1 −1 1 0
2 4 0 −3 4 0
2 4 −1 −7 4 0


To solve the system, we row-reduce the augmented matrix and obtain,

1 2 0 0 5 0

0 0 1 0 −8 0

0 0 0 1 2 0
0 0 0 0 0 0


This matrix represents a system with equations having three dependent variables (x1, x3,
and x4) and two independent variables (x2 and x5). These equations rearrange to

x1 = −2x2 − 5x5 x3 = 8x5 x4 = −2x5
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So we can write the solution set (which is the requested null space) as

N (A) =




−2x2 − 5x5

x2

8x5

−2x5

x5

 | x2, x5 ∈ C


C31 Contributed by Robert Beezer Statement [229]
We form the augmented matrix of the homogeneous system LS(B, 0) and row-reduce the
matrix, −6 4 −36 6 0

2 −1 10 −1 0
−3 2 −18 3 0

 RREF−−−→
 1 0 2 1 0

0 1 −6 3 0
0 0 0 0 0


We knew ahead of time that this system would be consistent (Theorem HSC [208]), but we
can now see there are n − r = 4 − 2 = 2 free variables, namely x3 and x4 (Theorem FVCS

Version 2.11



Subsection HSE.SOL Solutions 242

[178]). Based on this analysis, we can rearrange the equations associated with each nonzero
row of the reduced row-echelon form into an expression for the lone dependent variable as
a function of the free variables. We arrive at the solution set to the homogeneous system,
which is the null space of the matrix by Definition NSM [216],

N (B) =



−2x3 − x4

6x3 − 3x4

x3

x4

 | x3, x4 ∈ C


M50 Contributed by Robert Beezer Statement [230]
Since the system is homogeneous, we know it has the trivial solution (Theorem HSC [208]).
We cannot say anymore based on the information provided, except to say that there is either
a unique solution or infinitely many solutions (Theorem PSSLS [180]). See Archetype A
[2378] and Archetype B [2392] to understand the possibilities.

M51 Contributed by Robert Beezer Statement [231]
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Since there are more variables than equations, Theorem HMVEI [214] applies and tells us
that the solution set is infinite. From the proof of Theorem HSC [208] we know that the
zero vector is one solution.

M52 Contributed by Robert Beezer Statement [231]
By Theorem HSC [208], we know the system is consistent because the zero vector is always
a solution of a homogeneous system. There is no more that we can say, since both a unique
solution and infinitely many solutions are possibilities.

T10 Contributed by Robert Beezer Statement [231]
This is a true statement. A proof is:

(⇒) Suppose we have a homogeneous system LS(A, 0). Then by substituting the scalar
zero for each variable, we arrive at true statements for each equation. So the zero vector is
a solution. This is the content of Theorem HSC [208].

(⇐) Suppose now that we have a generic (i.e. not necessarily homogeneous) system of
equations, LS(A, b) that has the zero vector as a solution. Upon substituting this solution
into the system, we discover that each component of b must also be zero. So b = 0.
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T20 Contributed by Robert Beezer Statement [231]
Suppose that a single equation from this system (the i-th one) has the form,

ai1x1 + ai2x2 + ai3x3 + · · ·+ ainxn = 0

Evaluate the left-hand side of this equation with the components of the proposed solution
vector v,

ai1 (4u1) + ai2 (4u2) + ai3 (4u3) + · · ·+ ain (4un)

= 4ai1u1 + 4ai2u2 + 4ai3u3 + · · ·+ 4ainun Commutativity

= 4 (ai1u1 + ai2u2 + ai3u3 + · · ·+ ainun) Distributivity

= 4(0) u solution to LS(A, 0)

= 0

So v makes each equation true, and so is a solution to the system.
Notice that this result is not true if we change LS(A, 0) from a homogeneous system

to a non-homogeneous system. Can you create an example of a (non-homogeneous) system
with a solution u such that v is not a solution?
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Section NM

Nonsingular Matrices

In this section we specialize and consider matrices with equal numbers of rows and columns,
which when considered as coefficient matrices lead to systems with equal numbers of equa-
tions and variables. We will see in the second half of the course (Chapter D [1274], Chapter E
[1363] Chapter LT [1548], Chapter R [1818]) that these matrices are especially important.
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Subsection NM
Nonsingular Matrices

Our theorems will now establish connections between systems of equations (homogeneous
or otherwise), augmented matrices representing those systems, coefficient matrices, constant
vectors, the reduced row-echelon form of matrices (augmented and coefficient) and solution
sets. Be very careful in your reading, writing and speaking about systems of equations,
matrices and sets of vectors. A system of equations is not a matrix, a matrix is not a
solution set, and a solution set is not a system of equations. Now would be a great time to
review the discussion about speaking and writing mathematics in Technique L [2341].

Definition SQM
Square Matrix
A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has
size n. To emphasize the situation when a matrix is not square, we will call it rectangular.
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4
We can now present one of the central definitions of linear algebra.

Definition NM
Nonsingular Matrix
Suppose A is a square matrix. Suppose further that the solution set to the homogeneous
linear system of equations LS(A, 0) is {0}, i.e. the system has only the trivial solution.
Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix. 4

We can investigate whether any square matrix is nonsingular or not, no matter if the
matrix is derived somehow from a system of equations or if it is simply a matrix. The def-
inition says that to perform this investigation we must construct a very specific system of
equations (homogeneous, with the matrix as the coefficient matrix) and look at its solution
set. We will have theorems in this section that connect nonsingular matrices with systems
of equations, creating more opportunities for confusion. Convince yourself now of two obser-
vations, (1) we can decide nonsingularity for any square matrix, and (2) the determination
of nonsingularity involves the solution set for a certain homogeneous system of equations.
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Notice that it makes no sense to call a system of equations nonsingular (the term does
not apply to a system of equations), nor does it make any sense to call a 5×7 matrix singular
(the matrix is not square).

Example S
A singular matrix, Archetype A
Example HISAA [210] shows that the coefficient matrix derived from Archetype A [2378],
specifically the 3× 3 matrix,

A =

1 −1 2
2 1 1
1 1 0


is a singular matrix since there are nontrivial solutions to the homogeneous system LS(A, 0).

�

Example NM
A nonsingular matrix, Archetype B
Example HUSAB [209] shows that the coefficient matrix derived from Archetype B [2392],
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specifically the 3× 3 matrix,

B =

−7 −6 −12
5 5 7
1 0 4


is a nonsingular matrix since the homogeneous system, LS(B, 0), has only the trivial solu-
tion. �

Notice that we will not discuss Example HISAD [212] as being a singular or nonsingular
coefficient matrix since the matrix is not square.

The next theorem combines with our main computational technique (row-reducing a
matrix) to make it easy to recognize a nonsingular matrix. But first a definition.

Definition IM
Identity Matrix
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The m×m identity matrix, Im, is defined by

[Im]ij =

{
1 i = j

0 i 6= j
1 ≤ i, j ≤ m

(This definition contains Notation IM.) 4
Example IM
An identity matrix
The 4× 4 identity matrix is

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
�

Notice that an identity matrix is square, and in reduced row-echelon form. So in particu-
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lar, if we were to arrive at the identity matrix while bringing a matrix to reduced row-echelon
form, then it would have all of the diagonal entries circled as leading 1’s.

Theorem NMRRI
Nonsingular Matrices Row Reduce to the Identity matrix
Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon
form. Then A is nonsingular if and only if B is the identity matrix. �

Proof (⇐) Suppose B is the identity matrix. When the augmented matrix [A | 0] is row-
reduced, the result is [B | 0] = [In | 0]. The number of nonzero rows is equal to the number
of variables in the linear system of equations LS(A, 0), so n = r and Theorem FVCS [178]
gives n−r = 0 free variables. Thus, the homogeneous system LS(A, 0) has just one solution,
which must be the trivial solution. This is exactly the definition of a nonsingular matrix.

(⇒) If A is nonsingular, then the homogeneous system LS(A, 0) has a unique solution,
and has no free variables in the description of the solution set. The homogeneous system is
consistent (Theorem HSC [208]) so Theorem FVCS [178] applies and tells us there are n− r
free variables. Thus, n− r = 0, and so n = r. So B has n pivot columns among its total of
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n columns. This is enough to force B to be the n× n identity matrix In. �

Notice that since this theorem is an equivalence it will always allow us to determine if a
matrix is either nonsingular or singular. Here are two examples of this, continuing our study
of Archetype A and Archetype B.

Example SRR
Singular matrix, row-reduced
The coefficient matrix for Archetype A [2378] is

A =

1 −1 2
2 1 1
1 1 0


which when row-reduced becomes the row-equivalent matrix

B =

 1 0 1

0 1 −1
0 0 0

 .
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Since this matrix is not the 3× 3 identity matrix, Theorem NMRRI [250] tells us that A is
a singular matrix. �

Example NSR
Nonsingular matrix, row-reduced
The coefficient matrix for Archetype B [2392] is

A =

−7 −6 −12
5 5 7
1 0 4


which when row-reduced becomes the row-equivalent matrix

B =

 1 0 0

0 1 0

0 0 1

 .
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Since this matrix is the 3 × 3 identity matrix, Theorem NMRRI [250] tells us that A is a
nonsingular matrix. �

Subsection NSNM
Null Space of a Nonsingular Matrix

Nonsingular matrices and their null spaces are intimately related, as the next two examples
illustrate.

Example NSS
Null space of a singular matrix
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Given the coefficient matrix from Archetype A [2378],

A =

1 −1 2
2 1 1
1 1 0


the null space is the set of solutions to the homogeneous system of equations LS(A, 0) has
a solution set and null space constructed in Example HISAA [210] as

N (A) =


−x3

x3

x3

 | x3 ∈ C


�

Example NSNM
Null space of a nonsingular matrix
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Given the coefficient matrix from Archetype B [2392],

A =

−7 −6 −12
5 5 7
1 0 4


the homogeneous system LS(A, 0) has a solution set constructed in Example HUSAB [209]
that contains only the trivial solution, so the null space has only a single element,

N (A) =


0

0
0


�

These two examples illustrate the next theorem, which is another equivalence.

Theorem NMTNS
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Nonsingular Matrices have Trivial Null Spaces
Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A,
N (A), contains only the zero vector, i.e. N (A) = {0}. �

Proof The null space of a square matrix, A, is equal to the set of solutions to the homo-
geneous system, LS(A, 0). A matrix is nonsingular if and only if the set of solutions to the
homogeneous system, LS(A, 0), has only a trivial solution. These two observations may be
chained together to construct the two proofs necessary for each half of this theorem. �

The next theorem pulls a lot of big ideas together. Theorem NMUS [256] tells us that
we can learn much about solutions to a system of linear equations with a square coefficient
matrix by just examining a similar homogeneous system.

Theorem NMUS
Nonsingular Matrices and Unique Solutions
Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system
LS(A, b) has a unique solution for every choice of the constant vector b. �

Proof (⇐) The hypothesis for this half of the proof is that the system LS(A, b) has a
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unique solution for every choice of the constant vector b. We will make a very specific choice
for b: b = 0. Then we know that the system LS(A, 0) has a unique solution. But this
is precisely the definition of what it means for A to be nonsingular (Definition NM [246]).
That almost seems too easy! Notice that we have not used the full power of our hypothesis,
but there is nothing that says we must use a hypothesis to its fullest.

(⇒) We assume that A is nonsingular of size n × n, so we know there is a sequence
of row operations that will convert A into the identity matrix In (Theorem NMRRI [250]).
Form the augmented matrix A′ = [A | b] and apply this same sequence of row operations
to A′. The result will be the matrix B′ = [In | c], which is in reduced row-echelon form
with r = n. Then the augmented matrix B′ represents the (extremely simple) system of
equations xi = [c]i, 1 ≤ i ≤ n. The vector c is clearly a solution, so the system is consistent
(Definition CS [161]). With a consistent system, we use Theorem FVCS [178] to count free
variables. We find that there are n− r = n− n = 0 free variables, and so we therefore know
that the solution is unique. (This half of the proof was suggested by Asa Scherer.)

�
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This theorem helps to explain part of our interest in nonsingular matrices. If a matrix
is nonsingular, then no matter what vector of constants we pair it with, using the matrix as
the coefficient matrix will always yield a linear system of equations with a solution, and the
solution is unique. To determine if a matrix has this property (non-singularity) it is enough
to just solve one linear system, the homogeneous system with the matrix as coefficient matrix
and the zero vector as the vector of constants (or any other vector of constants, see Exercise
MM.T10 [709]).

Formulating the negation of the second part of this theorem is a good exercise. A singular
matrix has the property that for some value of the vector b, the system LS(A, b) does not
have a unique solution (which means that it has no solution or infinitely many solutions). We
will be able to say more about this case later (see the discussion following Theorem PSPHS
[368]). Square matrices that are nonsingular have a long list of interesting properties, which
we will start to catalog in the following, recurring, theorem. Of course, singular matrices
will then have all of the opposite properties. The following theorem is a list of equivalences.
We want to understand just what is involved with understanding and proving a theorem
that says several conditions are equivalent. So have a look at Technique ME [2358] before
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studying the first in this series of theorems.

Theorem NME1
Nonsingular Matrix Equivalences, Round 1
Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

�

Proof That A is nonsingular is equivalent to each of the subsequent statements by, in
turn, Theorem NMRRI [250], Theorem NMTNS [256] and Theorem NMUS [256]. So the
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statement of this theorem is just a convenient way to organize all these results. �

Finally, you may have wondered why we refer to a matrix as nonsingular when it creates
systems of equations with single solutions (Theorem NMUS [256])! I’ve wondered the same
thing. We’ll have an opportunity to address this when we get to Theorem SMZD [1348].
Can you wait that long?

Subsection READ
Reading Questions

1. What is the definition of a nonsingular matrix?

2. What is the easiest way to recognize a nonsingular matrix?

3. Suppose we have a system of equations and its coefficient matrix is nonsingular. What
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can you say about the solution set for this system?
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Subsection EXC
Exercises

In Exercises C30–C33 determine if the matrix is nonsingular or singular. Give reasons for
your answer.
C30 

−3 1 2 8
2 0 3 4
1 2 7 −4
5 −1 2 0



Contributed by Robert Beezer Solution [268]
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C31 
2 3 1 4
1 1 1 0
−1 2 3 5
1 2 1 3



Contributed by Robert Beezer Solution [269]

C32 9 3 2 4
5 −6 1 3
4 1 3 −5



Contributed by Robert Beezer Solution [269]
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C33 
−1 2 0 3
1 −3 −2 4
−2 0 4 3
−3 1 −2 3


Contributed by Robert Beezer Solution [269]

C40 Each of the archetypes below is a system of equations with a square coefficient ma-
trix, or is itself a square matrix. Determine if these matrices are nonsingular, or singular.
Comment on the null space of each matrix.
Archetype A [2378]
Archetype B [2392]
Archetype F [2443]
Archetype K [2515]
Archetype L [2527]
Contributed by Robert Beezer

Version 2.11



Subsection NM.EXC Exercises 266

C50 Find the null space of the matrix E below.

E =


2 1 −1 −9
2 2 −6 −6
1 2 −8 0
−1 2 −12 12


Contributed by Robert Beezer Solution [270]

M30 Let A be the coefficient matrix of the system of equations below. Is A nonsingular
or singular? Explain what you could infer about the solution set for the system based only
on what you have learned about A being singular or nonsingular.

−x1 + 5x2 = −8

−2x1 + 5x2 + 5x3 + 2x4 = 9

−3x1 − x2 + 3x3 + x4 = 3

7x1 + 6x2 + 5x3 + x4 = 30
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Contributed by Robert Beezer Solution [272]

For Exercises M51–M52 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.
M51 6 equations in 6 variables, singular coefficient matrix.
Contributed by Robert Beezer Solution [272]

M52 A system with a nonsingular coefficient matrix, not homogeneous.
Contributed by Robert Beezer Solution [273]

T10 Suppose that A is a singular matrix, and B is a matrix in reduced row-echelon form
that is row-equivalent to A. Prove that the last row of B is a zero row.
Contributed by Robert Beezer Solution [273]

T30 Suppose that A is a nonsingular matrix and A is row-equivalent to the matrix B.
Prove that B is nonsingular.
Contributed by Robert Beezer Solution [273]
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T90 Provide an alternative for the second half of the proof of Theorem NMUS [256],
without appealing to properties of the reduced row-echelon form of the coefficient matrix. In
other words, prove that if A is nonsingular, then LS(A, b) has a unique solution for every
choice of the constant vector b. Construct this proof without using Theorem REMEF [94]
or Theorem RREFU [101].
Contributed by Robert Beezer Solution [274]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [262]
The matrix row-reduces to 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


which is the 4 × 4 identity matrix. By Theorem NMRRI [250] the original matrix must be
nonsingular.

C31 Contributed by Robert Beezer Statement [263]
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Row-reducing the matrix yields,


1 0 0 −2

0 1 0 3

0 0 1 −1
0 0 0 0


Since this is not the 4 × 4 identity matrix, Theorem NMRRI [250] tells us the matrix is
singular.

C32 Contributed by Robert Beezer Statement [263]
The matrix is not square, so neither term is applicable. See Definition NM [246], which is
stated for just square matrices.

C33 Contributed by Robert Beezer Statement [264]
Theorem NMRRI [250] tells us we can answer this question by simply row-reducing the
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matrix. Doing this we obtain, 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Since the reduced row-echelon form of the matrix is the 4 × 4 identity matrix I4, we know
that B is nonsingular.

C50 Contributed by Robert Beezer Statement [265]
We form the augmented matrix of the homogeneous system LS(E, 0) and row-reduce the
matrix, 

2 1 −1 −9 0
2 2 −6 −6 0
1 2 −8 0 0
−1 2 −12 12 0

 RREF−−−→


1 0 2 −6 0

0 1 −5 3 0
0 0 0 0 0
0 0 0 0 0
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We knew ahead of time that this system would be consistent (Theorem HSC [208]), but we
can now see there are n− r = 4− 2 = 2 free variables, namely x3 and x4 since F = {3, 4, 5}
(Theorem FVCS [178]). Based on this analysis, we can rearrange the equations associated
with each nonzero row of the reduced row-echelon form into an expression for the lone
dependent variable as a function of the free variables. We arrive at the solution set to this
homogeneous system, which is the null space of the matrix by Definition NSM [216],

N (E) =



−2x3 + 6x4

5x3 − 3x4

x3

x4

 | x3, x4 ∈ C



M30 Contributed by Robert Beezer Statement [265]
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We row-reduce the coefficient matrix of the system of equations,
−1 5 0 0
−2 5 5 2
−3 −1 3 1
7 6 5 1

 RREF−−−→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Since the row-reduced version of the coefficient matrix is the 4× 4 identity matrix, I4 (Def-
inition IM [248] byTheorem NMRRI [250], we know the coefficient matrix is nonsingular.
According to Theorem NMUS [256] we know that the system is guaranteed to have a unique
solution, based only on the extra information that the coefficient matrix is nonsingular.

M51 Contributed by Robert Beezer Statement [266]
Theorem NMRRI [250] tells us that the coefficient matrix will not row-reduce to the identity
matrix. So if we were to row-reduce the augmented matrix of this system of equations, we
would not get a unique solution. So by Theorem PSSLS [180] the remaining possibilities are
no solutions, or infinitely many.
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M52 Contributed by Robert Beezer Statement [266]
Any system with a nonsingular coefficient matrix will have a unique solution by Theorem
NMUS [256]. If the system is not homogeneous, the solution cannot be the zero vector
(Exercise HSE.T10 [231]).

T10 Contributed by Robert Beezer Statement [266]
Let n denote the size of the square matrix A. By Theorem NMRRI [250] the hypothesis
that A is singular implies that B is not the identity matrix In. If B has n pivot columns,
then it would have to be In, so B must have fewer than n pivot columns. But the number
of nonzero rows in B (r) is equal to the number of pivot columns as well. So the n rows of
B have fewer than n nonzero rows, and B must contain at least one zero row. By Definition
RREF [91], this row must be at the bottom of B.

T30 Contributed by Robert Beezer Statement [266]
Since A and B are row-equivalent matrices, consideration of the three row operations (Def-
inition RO [84]) will show that the augmented matrices, [A | 0] and [B | 0], are also row-
equivalent matrices. This says that the two homogeneous systems, LS(A, 0) and LS(B, 0)
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are equivalent systems. LS(A, 0) has only the zero vector as a solution (Definition NM
[246]), thus LS(B, 0) has only the zero vector as a solution. Finally, by Definition NM
[246], we see that B is nonsingular.

Form a similar theorem replacing “nonsingular” by “singular” in both the hypothesis and
the conclusion. Prove this new theorem with an approach just like the one above, and/or
employ the result about nonsingular matrices in a proof by contradiction.

T90 Contributed by Robert Beezer Statement [267]
We assume A is nonsingular, and try to solve the system LS(A, b) without making any
assumptions about b. To do this we will begin by constructing a new homogeneous linear
system of equations that looks very much like the original. Suppose A has size n (why must
it be square?) and write the original system as,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
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... (∗)
an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn

Form the new, homogeneous system in n equations with n + 1 variables, by adding a new
variable y, whose coefficients are the negatives of the constant terms,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn − b1y = 0

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn − b2y = 0

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn − b3y = 0

... (∗∗)
an1x1 + an2x2 + an3x3 + · · ·+ annxn − bny = 0

Since this is a homogeneous system with more variables than equations (m = n + 1 > n),
Theorem HMVEI [214] says that the system has infinitely many solutions. We will choose
one of these solutions, any one of these solutions, so long as it is not the trivial solution.
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Write this solution as

x1 = c1 x2 = c2 x3 = c3 . . . xn = cn y = cn+1

We know that at least one value of the ci is nonzero, but we will now show that in particular
cn+1 6= 0. We do this using a proof by contradiction (Technique CD [2354]). So suppose the
ci form a solution as described, and in addition that cn+1 = 0. Then we can write the i-th
equation of system (∗∗) as,

ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn − bi(0) = 0

which becomes

ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn = 0

Since this is true for each i, we have that x1 = c1, x2 = c2, x3 = c3, . . . , xn = cn is a
solution to the homogeneous system LS(A, 0) formed with a nonsingular coefficient matrix.
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This means that the only possible solution is the trivial solution, so c1 = 0, c2 = 0, c3 =
0, . . . , cn = 0. So, assuming simply that cn+1 = 0, we conclude that all of the ci are zero.
But this contradicts our choice of the ci as not being the trivial solution to the system (∗∗).
So cn+1 6= 0.

We now propose and verify a solution to the original system (∗). Set

x1 =
c1
cn+1

x2 =
c2
cn+1

x3 =
c3
cn+1

. . . xn =
cn
cn+1

Notice how it was necessary that we know that cn+1 6= 0 for this step to succeed. Now,
evaluate the i-th equation of system (∗) with this proposed solution, and recognize in the
third line that c1 through cn+1 appear as if they were substituted into the left-hand side of
the i-th equation of system (∗∗),

ai1
c1
cn+1

+ ai2
c2
cn+1

+ ai3
c3
cn+1

+ · · ·+ ain
cn
cn+1

=
1

cn+1

(ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn)
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=
1

cn+1

(ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn − bicn+1) + bi

=
1

cn+1

(0) + bi

= bi

Since this equation is true for every i, we have found a solution to system (∗). To finish, we
still need to establish that this solution is unique.

With one solution in hand, we will entertain the possibility of a second solution. So
assume system (∗) has two solutions,

x1 = d1 x2 = d2 x3 = d3 . . . xn = dn

x1 = e1 x2 = e2 x3 = e3 . . . xn = en

Then,

(ai1(d1 − e1) + ai2(d2 − e2) + ai3(d3 − e3) + · · ·+ ain(dn − en))
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= (ai1d1 + ai2d2 + ai3d3 + · · ·+ aindn)− (ai1e1 + ai2e2 + ai3e3 + · · ·+ ainen)

= bi − bi
= 0

This is the i-th equation of the homogeneous system LS(A, 0) evaluated with xj = dj − ej,
1 ≤ j ≤ n. Since A is nonsingular, we must conclude that this solution is the trivial solution,
and so 0 = dj − ej, 1 ≤ j ≤ n. That is, dj = ej for all j and the two solutions are identical,
meaning any solution to (∗) is unique.

Notice that the proposed solution (xi = ci
cn+1

) appeared in this proof with no motivation
whatsoever. This is just fine in a proof. A proof should convince you that a theorem is true.
It is your job to read the proof and be convinced of every assertion. Questions like “Where
did that come from?” or “How would I think of that?” have no bearing on the validity of
the proof.
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Annotated Acronyms SLE
Systems of Linear Equations

At the conclusion of each chapter you will find a section like this, reviewing selected def-
initions and theorems. There are many reasons for why a definition or theorem might be
placed here. It might represent a key concept, it might be used frequently for computations,
provide the critical step in many proofs, or it may deserve special comment.

These lists are not meant to be exhaustive, but should still be useful as part of reviewing
each chapter. We will mention a few of these that you might eventually recognize on sight
as being worth memorization. By that we mean that you can associate the acronym with
a rough statement of the theorem — not that the exact details of the theorem need to be
memorized. And it is certainly not our intent that everything on these lists is important
enough to memorize.

Theorem RCLS [172]
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We will repeatedly appeal to this theorem to determine if a system of linear equations, does,
or doesn’t, have a solution. This one we will see often enough that it is worth memorizing.

Theorem HMVEI [214]

This theorem is the theoretical basis of several of our most important theorems. So keep an
eye out for it, and its descendants, as you study other proofs. For example, Theorem HMVEI
[214] is critical to the proof of Theorem SSLD [1178], Theorem SSLD [1178] is critical to the
proof of Theorem G [1228], Theorem G [1228] is critical to the proofs of the pair of similar
theorems, Theorem ILTD [1662] and Theorem SLTD [1722], while finally Theorem ILTD
[1662] and Theorem SLTD [1722] are critical to the proof of an important result, Theorem
IVSED [1777]. This chain of implications might not make much sense on a first reading, but
come back later to see how some very important theorems build on the seemingly simple
result that is Theorem HMVEI [214]. Using the “find” feature in whatever software you use
to read the electronic version of the text can be a fun way to explore these relationships.

Theorem NMRRI [250]
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This theorem gives us one of simplest ways, computationally, to recognize if a matrix is
nonsingular, or singular. We will see this one often, in computational exercises especially.

Theorem NMUS [256]

Nonsingular matrices will be an important topic going forward (witness the NMEx series of
theorems). This is our first result along these lines, a useful theorem for other proofs, and
also illustrates a more general concept from Chapter LT [1548].
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Chapter V
Vectors

We have worked extensively in the last chapter with matrices, and some with vectors. In
this chapter we will develop the properties of vectors, while preparing to study vector spaces
(Chapter VS [954]). Initially we will depart from our study of systems of linear equations,
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but in Section LC [315] we will forge a connection between linear combinations and systems
of linear equations in Theorem SLSLC [327]. This connection will allow us to understand sys-
tems of linear equations at a higher level, while consequently discussing them less frequently.

Section VO

Vector Operations

In this section we define some new operations involving vectors, and collect some basic
properties of these operations. Begin by recalling our definition of a column vector as an
ordered list of complex numbers, written vertically (Definition CV [73]). The collection of
all possible vectors of a fixed size is a commonly used set, so we start with its definition.
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Definition VSCV
Vector Space of Column Vectors
The vector space Cm is the set of all column vectors (Definition CV [73]) of size m with
entries from the set of complex numbers, C.

(This definition contains Notation VSCV.) 4

When a set similar to this is defined using only column vectors where all the entries are
from the real numbers, it is written as Rm and is known as Euclidean m-space.

The term “vector” is used in a variety of different ways. We have defined it as an
ordered list written vertically. It could simply be an ordered list of numbers, and written
as (2, 3, −1, 6). Or it could be interpreted as a point in m dimensions, such as (3, 4, −2)
representing a point in three dimensions relative to x, y and z axes. With an interpretation
as a point, we can construct an arrow from the origin to the point which is consistent with
the notion that a vector has direction and magnitude.

All of these ideas can be shown to be related and equivalent, so keep that in mind as you
connect the ideas of this course with ideas from other disciplines. For now, we’ll stick with
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the idea that a vector is a just a list of numbers, in some particular order.

Subsection VEASM
Vector Equality, Addition, Scalar Multiplication

We start our study of this set by first defining what it means for two vectors to be the same.

Definition CVE
Column Vector Equality
Suppose that u, v ∈ Cm. Then u and v are equal, written u = v if

[u]i = [v]i 1 ≤ i ≤ m
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(This definition contains Notation CVE.) 4

Now this may seem like a silly (or even stupid) thing to say so carefully. Of course two
vectors are equal if they are equal for each corresponding entry! Well, this is not as silly as
it appears. We will see a few occasions later where the obvious definition is not the right
one. And besides, in doing mathematics we need to be very careful about making all the
necessary definitions and making them unambiguous. And we’ve done that here.

Notice now that the symbol ‘=’ is now doing triple-duty. We know from our earlier
education what it means for two numbers (real or complex) to be equal, and we take this
for granted. In Definition SE [2327] we defined what it meant for two sets to be equal. Now
we have defined what it means for two vectors to be equal, and that definition builds on
our definition for when two numbers are equal when we use the condition ui = vi for all
1 ≤ i ≤ m. So think carefully about your objects when you see an equal sign and think
about just which notion of equality you have encountered. This will be especially important
when you are asked to construct proofs whose conclusion states that two objects are equal.

OK, let’s do an example of vector equality that begins to hint at the utility of this
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definition.

Example VESE
Vector equality for a system of equations
Consider the system of linear equations in Archetype B [2392],

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

Note the use of three equals signs — each indicates an equality of numbers (the linear
expressions are numbers when we evaluate them with fixed values of the variable quantities).
Now write the vector equality,−7x1 − 6x2 − 12x3

5x1 + 5x2 + 7x3

x1 + 4x3

 =

−33
24
5

 .
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By Definition CVE [286], this single equality (of two column vectors) translates into three
simultaneous equalities of numbers that form the system of equations. So with this new
notion of vector equality we can become less reliant on referring to systems of simultaneous
equations. There’s more to vector equality than just this, but this is a good example for
starters and we will develop it further. �

We will now define two operations on the set Cm. By this we mean well-defined procedures
that somehow convert vectors into other vectors. Here are two of the most basic definitions
of the entire course.

Definition CVA
Column Vector Addition
Suppose that u, v ∈ Cm. The sum of u and v is the vector u + v defined by

[u + v]i = [u]i + [v]i 1 ≤ i ≤ m
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(This definition contains Notation CVA.) 4

So vector addition takes two vectors of the same size and combines them (in a natural
way!) to create a new vector of the same size. Notice that this definition is required, even
if we agree that this is the obvious, right, natural or correct way to do it. Notice too that
the symbol ‘+’ is being recycled. We all know how to add numbers, but now we have the
same symbol extended to double-duty and we use it to indicate how to add two new objects,
vectors. And this definition of our new meaning is built on our previous meaning of addition
via the expressions ui + vi. Think about your objects, especially when doing proofs. Vector
addition is easy, here’s an example from C4.

Example VA
Addition of two vectors in C4
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If

u =


2
−3
4
2

 v =


−1
5
2
−7


then

u + v =


2
−3
4
2

+


−1
5
2
−7

 =


2 + (−1)
−3 + 5
4 + 2

2 + (−7)

 =


1
2
6
−5

 .
�

Our second operation takes two objects of different types, specifically a number and a
vector, and combines them to create another vector. In this context we call a number a
scalar in order to emphasize that it is not a vector.
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Definition CVSM
Column Vector Scalar Multiplication
Suppose u ∈ Cm and α ∈ C, then the scalar multiple of u by α is the vector αu defined
by

[αu]i = α [u]i 1 ≤ i ≤ m

(This definition contains Notation CVSM.) 4
Notice that we are doing a kind of multiplication here, but we are defining a new type,

perhaps in what appears to be a natural way. We use juxtaposition (smashing two symbols
together side-by-side) to denote this operation rather than using a symbol like we did with
vector addition. So this can be another source of confusion. When two symbols are next to
each other, are we doing regular old multiplication, the kind we’ve done for years, or are we
doing scalar vector multiplication, the operation we just defined? Think about your objects
— if the first object is a scalar, and the second is a vector, then it must be that we are doing
our new operation, and the result of this operation will be another vector.
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Notice how consistency in notation can be an aid here. If we write scalars as lower case
Greek letters from the start of the alphabet (such as α, β, . . . ) and write vectors in bold
Latin letters from the end of the alphabet (u, v, . . . ), then we have some hints about what
type of objects we are working with. This can be a blessing and a curse, since when we go
read another book about linear algebra, or read an application in another discipline (physics,
economics, . . . ) the types of notation employed may be very different and hence unfamiliar.

Again, computationally, vector scalar multiplication is very easy.

Example CVSM
Scalar multiplication in C5

If

u =


3
1
−2
4
−1
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and α = 6, then

αu = 6


3
1
−2
4
−1

 =


6(3)
6(1)

6(−2)
6(4)

6(−1)

 =


18
6
−12
24
−6

 .

�

Vector addition and scalar multiplication are the most natural and basic operations to
perform on vectors, so it should be easy to have your computational device form a lin-
ear combination. See: Computation VLC.MMA [2275] Computation VLC.TI86 [2291]
Computation VLC.TI83 [2295] Computation VLC.SAGE [2306]

Version 2.11



Subsection VO.VSP Vector Space Properties 296

Subsection VSP
Vector Space Properties

With definitions of vector addition and scalar multiplication we can state, and prove, several
properties of each operation, and some properties that involve their interplay. We now collect
ten of them here for later reference.

Theorem VSPCV
Vector Space Properties of Column Vectors
Suppose that Cm is the set of column vectors of size m (Definition VSCV [285]) with addition
and scalar multiplication as defined in Definition CVA [289] and Definition CVSM [291].
Then

• ACC Additive Closure, Column Vectors
If u, v ∈ Cm, then u + v ∈ Cm.
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• SCC Scalar Closure, Column Vectors
If α ∈ C and u ∈ Cm, then αu ∈ Cm.

• CC Commutativity, Column Vectors
If u, v ∈ Cm, then u + v = v + u.

• AAC Additive Associativity, Column Vectors
If u, v, w ∈ Cm, then u + (v + w) = (u + v) + w.

• ZC Zero Vector, Column Vectors
There is a vector, 0, called the zero vector, such that u + 0 = u for all u ∈ Cm.

• AIC Additive Inverses, Column Vectors
If u ∈ Cm, then there exists a vector −u ∈ Cm so that u + (−u) = 0.

• SMAC Scalar Multiplication Associativity, Column Vectors
If α, β ∈ C and u ∈ Cm, then α(βu) = (αβ)u.
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• DVAC Distributivity across Vector Addition, Column Vectors
If α ∈ C and u, v ∈ Cm, then α(u + v) = αu + αv.

• DSAC Distributivity across Scalar Addition, Column Vectors
If α, β ∈ C and u ∈ Cm, then (α + β)u = αu + βu.

• OC One, Column Vectors
If u ∈ Cm, then 1u = u.

�

Proof While some of these properties seem very obvious, they all require proof. How-
ever, the proofs are not very interesting, and border on tedious. We’ll prove one version
of distributivity very carefully, and you can test your proof-building skills on some of the
others. We need to establish an equality, so we will do so by beginning with one side of the
equality, apply various definitions and theorems (listed to the right of each step) to massage
the expression from the left into the expression on the right. Here we go with a proof of
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Property DSAC [296]. For 1 ≤ i ≤ m,

[(α + β)u]i = (α + β) [u]i Definition CVSM [291]

= α [u]i + β [u]i Distributivity in C
= [αu]i + [βu]i Definition CVSM [291]

= [αu + βu]i Definition CVA [289]

Since the individual components of the vectors (α + β)u and αu + βu are equal for all i,
1 ≤ i ≤ m, Definition CVE [286] tells us the vectors are equal. �

Many of the conclusions of our theorems can be characterized as “identities,” especially
when we are establishing basic properties of operations such as those in this section. Most
of the properties listed in Theorem VSPCV [295] are examples. So some advice about the
style we use for proving identities is appropriate right now. Have a look at Technique PI
[2359].
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Be careful with the notion of the vector −u. This is a vector that we add to u so that the
result is the particular vector 0. This is basically a property of vector addition. It happens
that we can compute −u using the other operation, scalar multiplication. We can prove this
directly by writing that

[−u]i = − [u]i = (−1) [u]i = [(−1)u]i

We will see later how to derive this property as a consequence of several of the ten properties
listed in Theorem VSPCV [295].

Similarly, we will often write something you would immediately recognize as “vector
subtraction.” This could be placed on a firm theoretical foundation — as you can do yourself
with Exercise VO.T30 [306].

A final note. Property ACC [295] implies that we do not have to be careful about how
we “parenthesize” the addition of vectors. In other words, there is nothing to be gained by
writing (u + v) + (w + (x + y)) rather than u + v + w + x + y, since we get the same result
no matter which order we choose to perform the four additions. So we won’t be careful
about using parentheses this way.
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Subsection READ
Reading Questions

1. Where have you seen vectors used before in other courses? How were they different?

2. In words, when are two vectors equal?

3. Perform the following computation with vector operations

2

1
5
0

+ (−3)

7
6
5
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Subsection EXC
Exercises

C10 Compute

4


2
−3
4
1
0

+ (−2)


1
2
−5
2
4

+


−1
3
0
1
2



Contributed by Robert Beezer Solution [308]
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C11 Solve the given vector equation for x, or explain why no solution exists:

3

 1
2
−1

+ 4

2
0
x

 =

11
6
17


Contributed by Chris Black Solution [308]

C12 Solve the given vector equation for α, or explain why no solution exists:

α

 1
2
−1

+ 4

3
4
2

 =

−1
0
4


Contributed by Chris Black Solution [309]
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C13 Solve the given vector equation for α, or explain why no solution exists:

α

 3
2
−2

+

6
1
2

 =

 0
−3
6


Contributed by Chris Black Solution [310]

C14 Find α and β that solve the vector equation.

α

[
1
0

]
+ β

[
0
1

]
=

[
3
2

]
Contributed by Chris Black Solution [311]

C15 Find α and β that solve the vector equation.

α

[
2
1

]
+ β

[
1
3

]
=

[
5
0

]
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Contributed by Chris Black Solution [311]

T5 Fill in each blank with an appropriate vector space property to provide justification for
the proof of the following proposition:

Proposition 1. For any vectors u, v, w ∈ Cm, if u + v = u + w, then v = w.
Proof: Let u, v, w ∈ Cm, and suppose u + v = u + w.

1. Then −u + (u + v) = −u + (u + w), Additive Property of Equality
2. so (−u + u) + v = (−u + u) + w.
3. Thus, we have 0 + v = 0 + w,
4. and it follows that v = w.

Thus, for any vectors u, v, w ∈ Cm, if u + v = u + w, then v = w. �
Contributed by Chris Black Solution [313]

T6 Fill in each blank with an appropriate vector space property to provide justification for
the proof of the following proposition:
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Proposition 2. For any vector u ∈ Cm, 0u = 0.

Proof: Let u ∈ Cm.

1. Since 0 + 0 = 0, we have 0u = (0 + 0)u. Substitution
2. We then have 0u = 0u + 0u.
3. It follows that 0u + [−(0u)] = (0u + 0u) + [−(0u)], Additive Property of Equality
4. so 0u + [−(0u)] = 0u + (0u + [−(0u)]),
5. so that 0 = 0u + 0,
6. and thus 0 = 0u.

Thus, for any vector u ∈ Cm, 0u = 0. �
Contributed by Chris Black Solution [313]

T7 Fill in each blank with an appropriate vector space property to provide justification for
the proof of the following proposition:

Proposition 3. For any scalar c, c0 = 0.

Proof: Let c be an arbitrary scalar.
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1. Then c0 = c (0 + 0),
2. so c0 = c0 + c0.
3. We then have c0 + (−c0) = (c0 + c0) + (−c0), Additive Property of Equality
4. so that c0 + (−c0) = c0 + (c0 + (−c0)).
5. It follows that 0 = c0 + 0,
6. and finally we have 0 = c0.

Thus, for any scalar c, c0 = 0. �
Contributed by Chris Black Solution [314]

T13 Prove Property CC [295] of Theorem VSPCV [295]. Write your proof in the style of
the proof of Property DSAC [296] given in this section.
Contributed by Robert Beezer Solution [314]

T17 Prove Property SMAC [296] of Theorem VSPCV [295]. Write your proof in the style
of the proof of Property DSAC [296] given in this section.
Contributed by Robert Beezer
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T18 Prove Property DVAC [296] of Theorem VSPCV [295]. Write your proof in the style
of the proof of Property DSAC [296] given in this section.
Contributed by Robert Beezer

T30 Suppose u and v are two vectors in Cm. Define a new operation, called “subtraction,”
as the new vector denoted u− v and defined by

[u− v]i = [u]i − [v]i 1 ≤ i ≤ m

Prove that we can express the subtraction of two vectors in terms of our two basic operations.
More precisely, prove that u − v = u + (−1)v. So in a sense, subtraction is not something
new and different, but is just a convenience. Mimic the style of similar proofs in this section.
Contributed by Robert Beezer

T31 Review the definition of vector subtraction in Exercise VO.T30 [306]. Prove, by using
counterexamples, that vector subtraction is not commutative and not associative.
Contributed by Robert Beezer
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T32 Review the definition of vector subtraction in Exercise VO.T30 [306]. Prove that
vector subtraction obeys a distributive property. Specifically, prove that α (u− v) = αu −
αv.

Can you give two different proofs? Base one on the definition given in Exercise VO.T30
[306] and base the other on the equivalent formulation proved in Exercise VO.T30 [306].
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [300]
5
−13
26
1
−6


C11 Contributed by Chris Black Statement [301]
Performing the indicated operations (Definition CVA [289], Definition CVSM [291]), we
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obtain the vector equations11
6
17

 = 3

 1
2
−1

+ 4

2
0
x

 =

 11
6

−3 + 4x


Since the entries of the vectors must be equal by Definition CVE [286], we have −3+4x = 17,
which leads to x = 5.

C12 Contributed by Chris Black Statement [301]
Performing the indicated operations (Definition CVA [289], Definition CVSM [291]), we
obtain the vector equations α

2α
−α

+

12
16
8

 =

 α + 12
2α + 16
−α + 8

 =

−1
0
4


Thus, if a solution α exists, by Definition CVE [286] then α must satisfy the three equations:

α + 12 = −1
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2α + 16 = 0

−α + 8 = 4

which leads to α = −13, α = −8 and α = 4. Since α cannot simultaneously have three
different values, there is no solution to the original vector equation.

C13 Contributed by Chris Black Statement [302]
Performing the indicated operations (Definition CVA [289], Definition CVSM [291]), we
obtain the vector equations 3α

2α
−2α

+

6
1
2

 =

 3α + 6
2α + 1
−2α + 2

 =

 0
−3
6


Thus, if a solution α exists, by Definition CVE [286] then α must satisfy the three equations:

3α + 6 = 0
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2α + 1 = −3

−2α + 2 = 6

which leads to 3α = −6, 2α = −4 and −2α = 4. And thus, the solution to the given vector
equation is α = −2.

C14 Contributed by Chris Black Statement [302]
Performing the indicated operations (Definition CVA [289], Definition CVSM [291]), we
obtain the vector equations[

3
2

]
= α

[
1
0

]
+ β

[
0
1

]
=

[
α + 0
0 + β

]
=

[
α
β

]
Since the entries of the vectors must be equal by Definition CVE [286], we have α = 3 and
β = 2.

C15 Contributed by Chris Black Statement [302]
Performing the indicated operations (Definition CVA [289], Definition CVSM [291]), we
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obtain the vector equations [
5
0

]
= α

[
2
1

]
+ β

[
1
3

]
=

[
2α + β
α + 3β

]
Since the entries of the vectors must be equal by Definition CVE [286], we obtain the system
of equations

2α + β = 5

α + 3β = 0.

which we can solve by row-reducing the augmented matrix of the system,[
2 1 5
1 3 0

]
RREF−−−→

[
1 0 3

0 1 −1

]
Thus, the only solution is α = 3, β = −1.
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T5 Contributed by Chris Black Statement [303]

1. (Additive Property of Equality)
2. Additive Associativity Property AAC [295]
3. Additive Inverses Property AIC [296]
4. Zero Vector Property ZC [295]

T6 Contributed by Chris Black Statement [303]

1. (Substitution)
2. Distributive across Scalar Addition Property DSAC [296]
3. (Additive Property of Equality)
4. Additive Associativity Property AAC [295]
5. Additive Inverses Property AIC [296]
6. Zero Vector Property ZC [295]

T7 Contributed by Chris Black Statement [304]
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1. Zero Vector Property ZC [295]
2. Distributive across Vector Addition Property DVAC [296]
3. (Additive Property of Equality)
4. Additive Associativity Property AAC [295]
5. Additive Inverses Property AIC [296]
6. Zero Vector Property ZC [295]

T13 Contributed by Robert Beezer Statement [305]
For all 1 ≤ i ≤ m,

[u + v]i = [u]i + [v]i Definition CVA [289]

= [v]i + [u]i Commutativity in C
= [v + u]i Definition CVA [289]

With equality of each component of the vectors u+v and v +u being equal Definition CVE
[286] tells us the two vectors are equal.
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Section LC

Linear Combinations

In Section VO [284] we defined vector addition and scalar multiplication. These two oper-
ations combine nicely to give us a construction known as a linear combination, a construct
that we will work with throughout this course.
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Subsection LC
Linear Combinations

Definition LCCV
Linear Combination of Column Vectors
Given n vectors u1, u2, u3, . . . , un from Cm and n scalars α1, α2, α3, . . . , αn, their linear
combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun

4
So this definition takes an equal number of scalars and vectors, combines them using our

two new operations (scalar multiplication and vector addition) and creates a single brand-
new vector, of the same size as the original vectors. When a definition or theorem employs
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a linear combination, think about the nature of the objects that go into its creation (lists of
scalars and vectors), and the type of object that results (a single vector). Computationally,
a linear combination is pretty easy.

Example TLC
Two linear combinations in C6

Suppose that

α1 = 1 α2 = −4 α3 = 2 α4 = −1

and

u1 =


2
4
−3
1
2
9

 u2 =


6
3
0
−2
1
4

 u3 =


−5
2
1
1
−3
0

 u4 =


3
2
−5
7
1
3
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then their linear combination is

α1u1 + α2u2 + α3u3 + α4u4 = (1)


2
4
−3
1
2
9

+ (−4)


6
3
0
−2
1
4

+ (2)


−5
2
1
1
−3
0

+ (−1)


3
2
−5
7
1
3



=


2
4
−3
1
2
9

+


−24
−12

0
8
−4
−16

+


−10

4
2
2
−6
0

+


−3
−2
5
−7
−1
−3

 =


−35
−6
4
4
−9
−10

 .

A different linear combination, of the same set of vectors, can be formed with different
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scalars. Take

β1 = 3 β2 = 0 β3 = 5 β4 = −1

and form the linear combination

β1u1 + β2u2 + β3u3 + β4u4 = (3)


2
4
−3
1
2
9

+ (0)


6
3
0
−2
1
4

+ (5)


−5
2
1
1
−3
0

+ (−1)


3
2
−5
7
1
3



=


6
12
−9
3
6
27

+


0
0
0
0
0
0

+


−25
10
5
5
−15

0

+


−3
−2
5
−7
−1
−3

 =


−22
20
1
1
−10
24

 .
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Notice how we could keep our set of vectors fixed, and use different sets of scalars to construct
different vectors. You might build a few new linear combinations of u1, u2, u3, u4 right now.
We’ll be right here when you get back. What vectors were you able to create? Do you think
you could create the vector

w =


13
15
5
−17

2
25


with a “suitable” choice of four scalars? Do you think you could create any possible vector
from C6 by choosing the proper scalars? These last two questions are very fundamental, and
time spent considering them now will prove beneficial later. �

Our next two examples are key ones, and a discussion about decompositions is timely.
Have a look at Technique DC [2361] before studying the next two examples.
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Example ABLC
Archetype B as a linear combination
In this example we will rewrite Archetype B [2392] in the language of vectors, vector equality
and linear combinations. In Example VESE [287] we wrote the system of m = 3 equations
as the vector equality −7x1 − 6x2 − 12x3

5x1 + 5x2 + 7x3

x1 + 4x3

 =

−33
24
5

 .
Now we will bust up the linear expressions on the left, first using vector addition,−7x1

5x1

x1

+

−6x2

5x2

0x2

+

−12x3

7x3

4x3

 =

−33
24
5

 .
Now we can rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector,
where the scalar is one of the unknown variables, converting the left-hand side into a linear
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combination

x1

−7
5
1

+ x2

−6
5
0

+ x3

−12
7
4

 =

−33
24
5

 .
We can now interpret the problem of solving the system of equations as determining values
for the scalar multiples that make the vector equation true. In the analysis of Archetype B
[2392], we were able to determine that it had only one solution. A quick way to see this is to
row-reduce the coefficient matrix to the 3 × 3 identity matrix and apply Theorem NMRRI
[250] to determine that the coefficient matrix is nonsingular. Then Theorem NMUS [256]
tells us that the system of equations has a unique solution. This solution is

x1 = −3 x2 = 5 x3 = 2.

So, in the context of this example, we can express the fact that these values of the variables
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are a solution by writing the linear combination,

(−3)

−7
5
1

+ (5)

−6
5
0

+ (2)

−12
7
4

 =

−33
24
5

 .
Furthermore, these are the only three scalars that will accomplish this equality, since they
come from a unique solution.

Notice how the three vectors in this example are the columns of the coefficient matrix of
the system of equations. This is our first hint of the important interplay between the vectors
that form the columns of a matrix, and the matrix itself. �

With any discussion of Archetype A [2378] or Archetype B [2392] we should be sure to
contrast with the other.

Example AALC
Archetype A as a linear combination

Version 2.11



Subsection LC.LC Linear Combinations 326

As a vector equality, Archetype A [2378] can be written asx1 − x2 + 2x3

2x1 + x2 + x3

x1 + x2

 =

1
8
5

 .
Now bust up the linear expressions on the left, first using vector addition, x1

2x1

x1

+

−x2

x2

x2

+

2x3

x3

0x3

 =

1
8
5

 .
Rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector, where the scalar
is one of the unknown variables, converting the left-hand side into a linear combination

x1

1
2
1

+ x2

−1
1
1

+ x3

2
1
0

 =

1
8
5

 .
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Row-reducing the augmented matrix for Archetype A [2378] leads to the conclusion that the
system is consistent and has free variables, hence infinitely many solutions. So for example,
the two solutions

x1 = 2 x2 = 3 x3 = 1

x1 = 3 x2 = 2 x3 = 0

can be used together to say that,

(2)

1
2
1

+ (3)

−1
1
1

+ (1)

2
1
0

 =

1
8
5

 = (3)

1
2
1

+ (2)

−1
1
1

+ (0)

2
1
0


Ignore the middle of this equation, and move all the terms to the left-hand side,

(2)

1
2
1

+ (3)

−1
1
1

+ (1)

2
1
0

+ (−3)

1
2
1

+ (−2)

−1
1
1

+ (−0)

2
1
0

 =

0
0
0

 .
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Regrouping gives

(−1)

1
2
1

+ (1)

−1
1
1

+ (1)

2
1
0

 =

0
0
0

 .
Notice that these three vectors are the columns of the coefficient matrix for the system of
equations in Archetype A [2378]. This equality says there is a linear combination of those
columns that equals the vector of all zeros. Give it some thought, but this says that

x1 = −1 x2 = 1 x3 = 1

is a nontrivial solution to the homogeneous system of equations with the coefficient matrix
for the original system in Archetype A [2378]. In particular, this demonstrates that this
coefficient matrix is singular. �

There’s a lot going on in the last two examples. Come back to them in a while and make
some connections with the intervening material. For now, we will summarize and explain
some of this behavior with a theorem.
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Theorem SLSLC
Solutions to Linear Systems are Linear Combinations
Denote the columns of the m × n matrix A as the vectors A1, A2, A3, . . . , An. Then x
is a solution to the linear system of equations LS(A, b) if and only if b equals the linear
combination of the columns of A formed with the entries of x,

[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An = b

�

Proof The proof of this theorem is as much about a change in notation as it is about
making logical deductions. Write the system of equations LS(A, b) as

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...
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am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm.

Notice then that the entry of the coefficient matrix A in row i and column j has two names:
aij as the coefficient of xj in equation i of the system and [Aj]i as the i-th entry of the
column vector in column j of the coefficient matrix A. Likewise, entry i of b has two names:
bi from the linear system and [b]i as an entry of a vector. Our theorem is an equivalence
(Technique E [2348]) so we need to prove both “directions.”

(⇐) Suppose we have the vector equality between b and the linear combination of the
columns of A. Then for 1 ≤ i ≤ m,

bi = [b]i Notation

= [[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An]i Hypothesis

= [[x]1 A1]i + [[x]2 A2]i + [[x]3 A3]i + · · ·+ [[x]n An]i Definition CVA [289]

= [x]1 [A1]i + [x]2 [A2]i + [x]3 [A3]i + · · ·+ [x]n [An]i Definition CVSM [291]

= [x]1 ai1 + [x]2 ai2 + [x]3 ai3 + · · ·+ [x]n ain Notation

= ai1 [x]1 + ai2 [x]2 + ai3 [x]3 + · · ·+ ain [x]n Property CMCN [2317]
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This says that the entries of x form a solution to equation i of LS(A, b) for all 1 ≤ i ≤ m,
in other words, x is a solution to LS(A, b).

(⇒) Suppose now that x is a solution to the linear system LS(A, b). Then for all
1 ≤ i ≤ m,

[b]i = bi Notation

= ai1 [x]1 + ai2 [x]2 + ai3 [x]3 + · · ·+ ain [x]n Hypothesis

= [x]1 ai1 + [x]2 ai2 + [x]3 ai3 + · · ·+ [x]n ain Property CMCN [2317]

= [x]1 [A1]i + [x]2 [A2]i + [x]3 [A3]i + · · ·+ [x]n [An]i Notation

= [[x]1 A1]i + [[x]2 A2]i + [[x]3 A3]i + · · ·+ [[x]n An]i Definition CVSM [291]

= [[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An]i Definition CVA [289]

Since the components of b and the linear combination of the columns of A agree for all
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1 ≤ i ≤ m, Definition CVE [286] tells us that the vectors are equal. �

In other words, this theorem tells us that solutions to systems of equations are linear
combinations of the n column vectors of the coefficient matrix (Aj) which yield the constant
vector b. Or said another way, a solution to a system of equations LS(A, b) is an answer
to the question “How can I form the vector b as a linear combination of the columns of
A?” Look through the archetypes that are systems of equations and examine a few of the
advertised solutions. In each case use the solution to form a linear combination of the
columns of the coefficient matrix and verify that the result equals the constant vector (see
Exercise LC.C21 [378]).
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Subsection VFSS
Vector Form of Solution Sets

We have written solutions to systems of equations as column vectors. For example Archetype
B [2392] has the solution x1 = −3, x2 = 5, x3 = 2 which we now write as

x =

x1

x2

x3

 =

−3
5
2

 .
Now, we will use column vectors and linear combinations to express all of the solutions to a
linear system of equations in a compact and understandable way. First, here’s two examples
that will motivate our next theorem. This is a valuable technique, almost the equal of
row-reducing a matrix, so be sure you get comfortable with it over the course of this section.

Example VFSAD
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Vector form of solutions for Archetype D
Archetype D [2419] is a linear system of 3 equations in 4 variables. Row-reducing the
augmented matrix yields

 1 0 3 −2 4

0 1 1 −3 0
0 0 0 0 0



and we see r = 2 nonzero rows. Also, D = {1, 2} so the dependent variables are then x1 and
x2. F = {3, 4, 5} so the two free variables are x3 and x4. We will express a generic solution
for the system by two slightly different methods, though both arrive at the same conclusion.

First, we will decompose (Technique DC [2361]) a solution vector. Rearranging each
equation represented in the row-reduced form of the augmented matrix by solving for the
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dependent variable in each row yields the vector equality,


x1

x2

x3

x4

 =


4− 3x3 + 2x4

−x3 + 3x4

x3

x4



Now we will use the definitions of column vector addition and scalar multiplication to express
this vector as a linear combination,

=


4
0
0
0

+


−3x3

−x3

x3

0

+


2x4

3x4

0
x4

 Definition CVA [289]
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=


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1

 Definition CVSM [291]

We will develop the same linear combination a bit quicker, using three steps. While the
method above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of n− r
vectors, using the free variables as the scalars.

x =


x1

x2

x3

x4

 =


+ x3


+ x4




Step 2. Use 0’s and 1’s to ensure equality for the entries of the the vectors with indices in F
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(corresponding to the free variables).

x =


x1

x2

x3

x4

 =

0
0

+ x3

1
0

+ x4

0
1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Convert
this equation into entries of the vectors that ensure equality for each dependent variable, one
at a time.

x1 = 4− 3x3 + 2x4 ⇒ x =


x1

x2

x3

x4

 =


4

0
0

+ x3


−3

1
0

+ x4


2

0
1
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x2 = 0− 1x3 + 3x4 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1



This final form of a typical solution is especially pleasing and useful. For example, we can
build solutions quickly by choosing values for our free variables, and then compute a linear
combination. Such as

x3 = 2, x4 = −5 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ (2)


−3
−1
1
0

+ (−5)


2
3
0
1

 =


−12
−17

2
−5
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or,

x3 = 1, x4 = 3 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ (1)


−3
−1
1
0

+ (3)


2
3
0
1

 =


7
8
1
3

 .

You’ll find the second solution listed in the write-up for Archetype D [2419], and you might
check the first solution by substituting it back into the original equations.

While this form is useful for quickly creating solutions, its even better because it tells us
exactly what every solution looks like. We know the solution set is infinite, which is pretty

big, but now we can say that a solution is some multiple of


−3
−1
1
0

 plus a multiple of


2
3
0
1
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plus the fixed vector


4
0
0
0

. Period. So it only takes us three vectors to describe the entire

infinite solution set, provided we also agree on how to combine the three vectors into a linear
combination. �

This is such an important and fundamental technique, we’ll do another example.

Example VFS
Vector form of solutions
Consider a linear system of m = 5 equations in n = 7 variables, having the augmented
matrix A.

A =


2 1 −1 −2 2 1 5 21
1 1 −3 1 1 1 2 −5
1 2 −8 5 1 1 −6 −15
3 3 −9 3 6 5 2 −24
−2 −1 1 2 1 1 −9 −30
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Row-reducing we obtain the matrix

B =


1 0 2 −3 0 0 9 15

0 1 −5 4 0 0 −8 −10

0 0 0 0 1 0 −6 11

0 0 0 0 0 1 7 −21
0 0 0 0 0 0 0 0



and we see r = 4 nonzero rows. Also, D = {1, 2, 5, 6} so the dependent variables are then
x1, x2, x5, and x6. F = {3, 4, 7, 8} so the n−r = 3 free variables are x3, x4 and x7. We will
express a generic solution for the system by two different methods: both a decomposition
and a construction.

First, we will decompose (Technique DC [2361]) a solution vector. Rearranging each
equation represented in the row-reduced form of the augmented matrix by solving for the
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dependent variable in each row yields the vector equality,



x1

x2

x3

x4

x5

x6

x7


=



15− 2x3 + 3x4 − 9x7

−10 + 5x3 − 4x4 + 8x7

x3

x4

11 + 6x7

−21− 7x7

x7
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Now we will use the definitions of column vector addition and scalar multiplication to de-
compose this generic solution vector as a linear combination,

=



15
−10

0
0
11
−21

0


+



−2x3

5x3

x3

0
0
0
0


+



3x4

−4x4

0
x4

0
0
0


+



−9x7

8x7

0
0

6x7

−7x7

x7


Definition CVA [289]
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=



15
−10

0
0
11
−21

0


+ x3



−2
5
1
0
0
0
0


+ x4



3
−4
0
1
0
0
0


+ x7



−9
8
0
0
6
−7
1


Definition CVSM [291]

We will now develop the same linear combination a bit quicker, using three steps. While the
method above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of n− r
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vectors, using the free variables as the scalars.

x =



x1

x2

x3

x4

x5

x6

x7


=




+ x3




+ x4




+ x7





Step 2. Use 0’s and 1’s to ensure equality for the entries of the the vectors with indices in F
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(corresponding to the free variables).

x =



x1

x2

x3

x4

x5

x6

x7


=


0
0

0


+ x3


1
0

0


+ x4


0
1

0


+ x7


0
0

1



Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Convert
this equation into entries of the vectors that ensure equality for each dependent variable, one
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at a time.

x1 = 15− 2x3 + 3x4 − 9x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15

0
0

0


+ x3



−2

1
0

0


+ x4



3

0
1

0


+ x7



−9

0
0

1



x2 = −10 + 5x3 − 4x4 + 8x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0

0


+ x3



−2
5
1
0

0


+ x4



3
−4
0
1

0


+ x7



−9
8
0
0

1
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x5 = 11 + 6x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11

0


+ x3



−2
5
1
0
0

0


+ x4



3
−4
0
1
0

0


+ x7



−9
8
0
0
6

1



x6 = −21− 7x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11
−21

0


+ x3



−2
5
1
0
0
0
0


+ x4



3
−4
0
1
0
0
0


+ x7



−9
8
0
0
6
−7
1



Version 2.11



Subsection LC.VFSS Vector Form of Solution Sets 349

This final form of a typical solution is especially pleasing and useful. For example, we can
build solutions quickly by choosing values for our free variables, and then compute a linear
combination. For example

x3 = 2, x4 = −4, x7 = 3 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11
−21

0


+ (2)



−2
5
1
0
0
0
0


+ (−4)



3
−4
0
1
0
0
0


+ (3)



−9
8
0
0
6
−7
1


=



−28
40
2
−4
29
−42

3


or perhaps,

x3 = 5, x4 = 2, x7 = 1 ⇒
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x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11
−21

0


+ (5)



−2
5
1
0
0
0
0


+ (2)



3
−4
0
1
0
0
0


+ (1)



−9
8
0
0
6
−7
1


=



2
15
5
2
17
−28

1



or even,

x3 = 0, x4 = 0, x7 = 0 ⇒
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x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11
−21

0


+ (0)



−2
5
1
0
0
0
0


+ (0)



3
−4
0
1
0
0
0


+ (0)



−9
8
0
0
6
−7
1


=



15
−10

0
0
11
−21

0



So we can compactly express all of the solutions to this linear system with just 4 fixed
vectors, provided we agree how to combine them in a linear combinations to create solution
vectors.

Suppose you were told that the vector w below was a solution to this system of equations.
Could you turn the problem around and write w as a linear combination of the four vectors
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c, u1, u2, u3? (See Exercise LC.M11 [383].)

w =



100
−75

7
9
−37
35
−8


c =



15
−10

0
0
11
−21

0


u1 =



−2
5
1
0
0
0
0


u2 =



3
−4
0
1
0
0
0


u3 =



−9
8
0
0
6
−7
1


�

Did you think a few weeks ago that you could so quickly and easily list all the solutions
to a linear system of 5 equations in 7 variables?

We’ll now formalize the last two (important) examples as a theorem.

Theorem VFSLS
Vector Form of Solutions to Linear Systems
Suppose that [A | b] is the augmented matrix for a consistent linear system LS(A, b) of m
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equations in n variables. Let B be a row-equivalent m × (n + 1) matrix in reduced row-
echelon form. Suppose that B has r nonzero rows, columns without leading 1’s with indices
F = {f1, f2, f3, . . . , fn−r, n+ 1}, and columns with leading 1’s (pivot columns) having
indices D = {d1, d2, d3, . . . , dr}. Define vectors c, uj, 1 ≤ j ≤ n− r of size n by

[c]i =

{
0 if i ∈ F
[B]k,n+1 if i ∈ D, i = dk

[uj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

.

Then the set of solutions to the system of equations LS(A, b) is

S = {c + α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r | α1, α2, α3, . . . , αn−r ∈ C}
�

Proof First, LS(A, b) is equivalent to the linear system of equations that has the matrix
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B as its augmented matrix (Theorem REMES [87]), so we need only show that S is the
solution set for the system with B as its augmented matrix. The conclusion of this theorem
is that the solution set is equal to the set S, so we will apply Definition SE [2327].

We begin by showing that every element of S is indeed a solution to the system. Let
α1, α2, α3, . . . , αn−r be one choice of the scalars used to describe elements of S. So an
arbitrary element of S, which we will consider as a proposed solution is

x = c + α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r

When r + 1 ≤ ` ≤ m, row ` of the matrix B is a zero row, so the equation represented
by that row is always true, no matter which solution vector we propose. So concentrate on
rows representing equations 1 ≤ ` ≤ r. We evaluate equation ` of the system represented
by B with the proposed solution vector x and refer to the value of the left-hand side of the
equation as β`,

β` = [B]`1 [x]1 + [B]`2 [x]2 + [B]`3 [x]3 + · · ·+ [B]`n [x]n

Version 2.11



Subsection LC.VFSS Vector Form of Solution Sets 355

Since [B]`di = 0 for all 1 ≤ i ≤ r, except that [B]`d` = 1, we see that β` simplifies to

β` = [x]d` + [B]`f1 [x]f1 + [B]`f2 [x]f2 + [B]`f3 [x]f3 + · · ·+ [B]`fn−r [x]fn−r

Notice that for 1 ≤ i ≤ n− r
[x]fi = [c]fi + α1 [u1]fi + α2 [u2]fi + α3 [u3]fi + · · ·+ αi [ui]fi + · · ·+ αn−r [un−r]fi

= 0 + α1(0) + α2(0) + α3(0) + · · ·+ αi(1) + · · ·+ αn−r(0)

= αi

So β` simplifies further, and we expand the first term

β` = [x]d` + [B]`f1 α1 + [B]`f2 α2 + [B]`f3 α3 + · · ·+ [B]`fn−r αn−r

= [c + α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r]d` +

[B]`f1 α1 + [B]`f2 α2 + [B]`f3 α3 + · · ·+ [B]`fn−r αn−r

= [c]d` + α1 [u1]d` + α2 [u2]d` + α3 [u3]d` + · · ·+ αn−r [un−r]d` +
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[B]`f1 α1 + [B]`f2 α2 + [B]`f3 α3 + · · ·+ [B]`fn−r αn−r

= [B]`,n+1 + α1(− [B]`,f1) + α2(− [B]`,f2) + α3(− [B]`,f3) + · · ·+ αn−r(− [B]`,fn−r)+

[B]`f1 α1 + [B]`f2 α2 + [B]`f3 α3 + · · ·+ [B]`fn−r αn−r

= [B]`,n+1

So β` began as the left-hand side of equation ` of the system represented by B and we now
know it equals [B]`,n+1, the constant term for equation ` of this system. So the arbitrarily
chosen vector from S makes every equation of the system true, and therefore is a solution
to the system. So all the elements of S are solutions to the system.

For the second half of the proof, assume that x is a solution vector for the system having
B as its augmented matrix. For convenience and clarity, denote the entries of x by xi, in
other words, xi = [x]i. We desire to show that this solution vector is also an element of the
set S. Begin with the observation that a solution vector’s entries makes equation ` of the
system true for all 1 ≤ ` ≤ m,

[B]`,1 x1 + [B]`,2 x2 + [B]`,3 x3 + · · ·+ [B]`,n xn = [B]`,n+1
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When ` ≤ r, the pivot columns of B have zero entries in row ` with the exception of column
d`, which will contain a 1. So for 1 ≤ ` ≤ r, equation ` simplifies to

1xd` + [B]`,f1 xf1 + [B]`,f2 xf2 + [B]`,f3 xf3 + · · ·+ [B]`,fn−r xfn−r = [B]`,n+1

This allows us to write,

[x]d` = xd`

= [B]`,n+1 − [B]`,f1 xf1 − [B]`,f2 xf2 − [B]`,f3 xf3 − · · · − [B]`,fn−r xfn−r

= [c]d` + xf1 [u1]d` + xf2 [u2]d` + xf3 [u3]d` + · · ·+ xfn−r [un−r]d`
=
[
c + xf1u1 + xf2u2 + xf3u3 + · · ·+ xfn−run−r

]
d`

This tells us that the entries of the solution vector x corresponding to dependent variables
(indices in D), are equal to those of a vector in the set S. We still need to check the other
entries of the solution vector x corresponding to the free variables (indices in F ) to see if
they are equal to the entries of the same vector in the set S. To this end, suppose i ∈ F and
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i = fj. Then

[x]i = xi = xfj
= 0 + 0xf1 + 0xf2 + 0xf3 + · · ·+ 0xfj−1

+ 1xfj + 0xfj+1
+ · · ·+ 0xfn−r

= [c]i + xf1 [u1]i + xf2 [u2]i + xf3 [u3]i + · · ·+ xfj [uj]i + · · ·+ xfn−r [un−r]i

=
[
c + xf1u1 + xf2u2 + · · ·+ xfn−run−r

]
i

So entries of x and c + xf1u1 + xf2u2 + · · ·+ xfn−run−r are equal and therefore by Definition
CVE [286] they are equal vectors. Since xf1 , xf2 , xf3 , . . . , xfn−r are scalars, this shows us
that x qualifies for membership in S. So the set S contains all of the solutions to the system.

�

Note that both halves of the proof of Theorem VFSLS [350] indicate that αi = [x]fi .
In other words, the arbitrary scalars, αi, in the description of the set S actually have more
meaning — they are the values of the free variables [x]fi , 1 ≤ i ≤ n − r. So we will often
exploit this observation in our descriptions of solution sets.
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Theorem VFSLS [350] formalizes what happened in the three steps of Example VFSAD
[332]. The theorem will be useful in proving other theorems, and it it is useful since it
tells us an exact procedure for simply describing an infinite solution set. We could program
a computer to implement it, once we have the augmented matrix row-reduced and have
checked that the system is consistent. By Knuth’s definition, this completes our conversion
of linear equation solving from art into science. Notice that it even applies (but is overkill) in
the case of a unique solution. However, as a practical matter, I prefer the three-step process
of Example VFSAD [332] when I need to describe an infinite solution set. So let’s practice
some more, but with a bigger example.

Example VFSAI
Vector form of solutions for Archetype I
Archetype I [2485] is a linear system of m = 4 equations in n = 7 variables. Row-reducing
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the augmented matrix yields


1 4 0 0 2 1 −3 4

0 0 1 0 1 −3 5 2

0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0



and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 3, 4} so the r
dependent variables are x1, x3, x4. The columns without leading 1’s are F = {2, 5, 6, 7, 8},
so the n− r = 4 free variables are x2, x5, x6, x7.

Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear combination
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of n− r = 4 vectors (u1, u2, u3, u4), using the free variables as the scalars.

x =



x1

x2

x3

x4

x5

x6

x7


=




+ x2




+ x5




+ x6




+ x7





Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corresponding entry
of the the vectors. Take note of the pattern of 0’s and 1’s at this stage, because this is the
best look you’ll have at it. We’ll state an important theorem in the next section and the

Version 2.11



Subsection LC.VFSS Vector Form of Solution Sets 362

proof will essentially rely on this observation.

x =



x1

x2

x3

x4

x5

x6

x7


=


0

0
0
0


+ x2


1

0
0
0


+ x5


0

1
0
0


+ x6


0

0
1
0


+ x7


0

0
0
1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Convert
this equation into entries of the vectors that ensure equality for each dependent variable, one
at a time.

x1 = 4− 4x2 − 2x5 − 1x6 + 3x7 ⇒
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x =



x1

x2

x3

x4

x5

x6

x7


=



4
0

0
0
0


+ x2



−4
1

0
0
0


+ x5



−2
0

1
0
0


+ x6



−1
0

0
1
0


+ x7



3
0

0
0
1


x3 = 2 + 0x2 − x5 + 3x6 − 5x7 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



4
0
2

0
0
0


+ x2



−4
1
0

0
0
0


+ x5



−2
0
−1

1
0
0


+ x6



−1
0
3

0
1
0


+ x7



3
0
−5

0
0
1
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x4 = 1 + 0x2 − 2x5 + 6x6 − 6x7 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



4
0
2
1
0
0
0


+ x2



−4
1
0
0
0
0
0


+ x5



−2
0
−1
−2
1
0
0


+ x6



−1
0
3
6
0
1
0


+ x7



3
0
−5
−6
0
0
1



We can now use this final expression to quickly build solutions to the system. You might try
to recreate each of the solutions listed in the write-up for Archetype I [2485]. (Hint: look at
the values of the free variables in each solution, and notice that the vector c has 0’s in these
locations.)

Even better, we have a description of the infinite solution set, based on just 5 vectors,
which we combine in linear combinations to produce solutions.
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Whenever we discuss Archetype I [2485] you know that’s your cue to go work through
Archetype J [2498] by yourself. Remember to take note of the 0/1 pattern at the conclusion
of Step 2. Have fun — we won’t go anywhere while you’re away. �

This technique is so important, that we’ll do one more example. However, an important
distinction will be that this system is homogeneous.

Example VFSAL
Vector form of solutions for Archetype L
Archetype L [2527] is presented simply as the 5× 5 matrix

L =


−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6


We’ll interpret it here as the coefficient matrix of a homogeneous system and reference this
matrix as L. So we are solving the homogeneous system LS(L, 0) having m = 5 equations
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in n = 5 variables. If we built the augmented matrix, we would add a sixth column to L
containing all zeros. As we did row operations, this sixth column would remain all zeros. So
instead we will row-reduce the coefficient matrix, and mentally remember the missing sixth
column of zeros. This row-reduced matrix is

1 0 0 1 −2

0 1 0 −2 2

0 0 1 2 −1
0 0 0 0 0
0 0 0 0 0


and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 2, 3} so the
r dependent variables are x1, x2, x3. The columns without leading 1’s are F = {4, 5}, so
the n − r = 2 free variables are x4, x5. Notice that if we had included the all-zero vector
of constants to form the augmented matrix for the system, then the index 6 would have
appeared in the set F , and subsequently would have been ignored when listing the free
variables.
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Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear combination
of n− r = 2 vectors (u1, u2), using the free variables as the scalars.

x =


x1

x2

x3

x4

x5

 =


+ x4


+ x5




Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corresponding entry
of the the vectors. Take note of the pattern of 0’s and 1’s at this stage, even if it is not as
illuminating as in other examples.

x =


x1

x2

x3

x4

x5

 =

0
0

+ x4

1
0

+ x5

0
1
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Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Don’t
forget about the “missing” sixth column being full of zeros. Convert this equation into
entries of the vectors that ensure equality for each dependent variable, one at a time.

x1 = 0− 1x4 + 2x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0

0
0

+ x4


−1

1
0

+ x5


2

0
1



x2 = 0 + 2x4 − 2x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0
0

0
0

+ x4


−1
2

1
0

+ x5


2
−2

0
1
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x3 = 0− 2x4 + 1x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0
0
0
0
0

+ x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1


The vector c will always have 0’s in the entries corresponding to free variables. However,
since we are solving a homogeneous system, the row-reduced augmented matrix has zeros in
column n+ 1 = 6, and hence all the entries of c are zero. So we can write

x =


x1

x2

x3

x4

x5

 = 0 + x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1

 = x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1


It will always happen that the solutions to a homogeneous system has c = 0 (even in the
case of a unique solution?). So our expression for the solutions is a bit more pleasing. In
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this example it says that the solutions are all possible linear combinations of the two vectors

u1 =


−1
2
−2
1
0

 and u2 =


2
−2
1
0
1

, with no mention of any fixed vector entering into the linear

combination.

This observation will motivate our next section and the main definition of that section,
and after that we will conclude the section by formalizing this situation. �
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Subsection PSHS
Particular Solutions, Homogeneous Solutions

The next theorem tells us that in order to find all of the solutions to a linear system of
equations, it is sufficient to find just one solution, and then find all of the solutions to the
corresponding homogeneous system. This explains part of our interest in the null space, the
set of all solutions to a homogeneous system.

Theorem PSPHS
Particular Solution Plus Homogeneous Solutions
Suppose that w is one solution to the linear system of equations LS(A, b). Then y is a
solution to LS(A, b) if and only if y = w + z for some vector z ∈ N (A). �

Proof Let A1, A2, A3, . . . , An be the columns of the coefficient matrix A.
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(⇐) Suppose y = w + z and z ∈ N (A). Then

b = [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An Theorem SLSLC [327]

= [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An + 0 Property ZC [295]

= [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An Theorem SLSLC [327]

+ [z]1 A1 + [z]2 A2 + [z]3 A3 + · · ·+ [z]n An

= ([w]1 + [z]1) A1 + ([w]2 + [z]2) A2 + · · ·+ ([w]n + [z]n) An Theorem VSPCV [295]

= [w + z]1 A1 + [w + z]2 A2 + [w + z]3 A3 + · · ·+ [w + z]n An Definition CVA [289]

= [y]1 A1 + [y]2 A2 + [y]3 A3 + · · ·+ [y]n An Definition of y

Applying Theorem SLSLC [327] we see that the vector y is a solution to LS(A, b).
(⇒) Suppose y is a solution to LS(A, b). Then

0 = b− b

= [y]1 A1 + [y]2 A2 + [y]3 A3 + · · ·+ [y]n An Theorem SLSLC [327]
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− ([w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An)

= ([y]1 − [w]1) A1 + ([y]2 − [w]2) A2 + · · ·+ ([y]n − [w]n) An Theorem VSPCV [295]

= [y −w]1 A1 + [y −w]2 A2 + [y −w]3 A3 + · · ·+ [y −w]n An Definition CVA [289]

By Theorem SLSLC [327] we see that the vector y − w is a solution to the homogeneous
system LS(A, 0) and by Definition NSM [216], y −w ∈ N (A). In other words, y −w = z
for some vector z ∈ N (A). Rewritten, this is y = w + z, as desired. �

After proving Theorem NMUS [256] we commented (insufficiently) on the negation of one
half of the theorem. Nonsingular coefficient matrices lead to unique solutions for every choice
of the vector of constants. What does this say about singular matrices? A singular matrix
A has a nontrivial null space (Theorem NMTNS [256]). For a given vector of constants, b,
the system LS(A, b) could be inconsistent, meaning there are no solutions. But if there is
at least one solution (w), then Theorem PSPHS [368] tells us there will be infinitely many
solutions because of the role of the infinite null space for a singular matrix. So a system of
equations with a singular coefficient matrix never has a unique solution. Either there are
no solutions, or infinitely many solutions, depending on the choice of the vector of constants
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(b).

Example PSHS
Particular solutions, homogeneous solutions, Archetype D
Archetype D [2419] is a consistent system of equations with a nontrivial null space. Let A
denote the coefficient matrix of this system. The write-up for this system begins with three
solutions,

y1 =


0
1
2
1

 y2 =


4
0
0
0

 y3 =


7
8
1
3


We will choose to have y1 play the role of w in the statement of Theorem PSPHS [368],
any one of the three vectors listed here (or others) could have been chosen. To illustrate
the theorem, we should be able to write each of these three solutions as the vector w plus a
solution to the corresponding homogeneous system of equations. Since 0 is always a solution
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to a homogeneous system we can easily write

y1 = w = w + 0.

The vectors y2 and y3 will require a bit more effort. Solutions to the homogeneous system
LS(A, 0) are exactly the elements of the null space of the coefficient matrix, which by an
application of Theorem VFSLS [350] is

N (A) =

x3


−3
−1
1
0

+ x4


2
3
0
1

 | x3, x4 ∈ C


Then

y2 =


4
0
0
0

 =


0
1
2
1

+


4
−1
−2
−1

 =


0
1
2
1

+

(−2)


−3
−1
1
0

+ (−1)


2
3
0
1


 = w + z2
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where

z2 =


4
−1
−2
−1

 = (−2)


−3
−1
1
0

+ (−1)


2
3
0
1


is obviously a solution of the homogeneous system since it is written as a linear combination
of the vectors describing the null space of the coefficient matrix (or as a check, you could
just evaluate the equations in the homogeneous system with z2).

Again

y3 =


7
8
1
3

 =


0
1
2
1

+


7
7
−1
2

 =


0
1
2
1

+

(−1)


−3
−1
1
0

+ 2


2
3
0
1


 = w + z3
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where

z3 =


7
7
−1
2

 = (−1)


−3
−1
1
0

+ 2


2
3
0
1


is obviously a solution of the homogeneous system since it is written as a linear combination
of the vectors describing the null space of the coefficient matrix (or as a check, you could
just evaluate the equations in the homogeneous system with z2).

Here’s another view of this theorem, in the context of this example. Grab two new
solutions of the original system of equations, say

y4 =


11
0
−3
−1

 y5 =


−4
2
4
2
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and form their difference,

u =


11
0
−3
−1

−

−4
2
4
2

 =


15
−2
−7
−3

 .

It is no accident that u is a solution to the homogeneous system (check this!). In other words,
the difference between any two solutions to a linear system of equations is an element of the
null space of the coefficient matrix. This is an equivalent way to state Theorem PSPHS
[368]. (See Exercise MM.T50 [711]). �

The ideas of this subsection will be appear again in Chapter LT [1548] when we discuss
pre-images of linear transformations (Definition PI [1592]).
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Subsection READ
Reading Questions

1. Earlier, a reading question asked you to solve the system of equations

2x1 + 3x2 − x3 = 0

x1 + 2x2 + x3 = 3

x1 + 3x2 + 3x3 = 7

Use a linear combination to rewrite this system of equations as a vector equality.

2. Find a linear combination of the vectors

S =


 1

3
−1

 ,
2

0
4

 ,
−1

3
−5
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that equals the vector

 1
−9
11

.

3. The matrix below is the augmented matrix of a system of equations, row-reduced to
reduced row-echelon form. Write the vector form of the solutions to the system. 1 3 0 6 0 9

0 0 1 −2 0 −8

0 0 0 0 1 3
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Subsection EXC
Exercises

C21 Consider each archetype that is a system of equations. For individual solutions listed
(both for the original system and the corresponding homogeneous system) express the vector
of constants as a linear combination of the columns of the coefficient matrix, as guaranteed
by Theorem SLSLC [327]. Verify this equality by computing the linear combination. For
systems with no solutions, recognize that it is then impossible to write the vector of constants
as a linear combination of the columns of the coefficient matrix. Note too, for homogeneous
systems, that the solutions give rise to linear combinations that equal the zero vector.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]
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Archetype E [2431]
Archetype F [2443]
Archetype G [2460]
Archetype H [2472]
Archetype I [2485]
Archetype J [2498]

Contributed by Robert Beezer Solution [384]

C22 Consider each archetype that is a system of equations. Write elements of the solution
set in vector form, as guaranteed by Theorem VFSLS [350].
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]
Archetype E [2431]
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Archetype F [2443]
Archetype G [2460]
Archetype H [2472]
Archetype I [2485]
Archetype J [2498]

Contributed by Robert Beezer Solution [384]

C40 Find the vector form of the solutions to the system of equations below.

2x1 − 4x2 + 3x3 + x5 = 6

x1 − 2x2 − 2x3 + 14x4 − 4x5 = 15

x1 − 2x2 + x3 + 2x4 + x5 = −1

−2x1 + 4x2 − 12x4 + x5 = −7

Contributed by Robert Beezer Solution [385]
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C41 Find the vector form of the solutions to the system of equations below.

−2x1 − 1x2 − 8x3 + 8x4 + 4x5 − 9x6 − 1x7 − 1x8 − 18x9 = 3

3x1 − 2x2 + 5x3 + 2x4 − 2x5 − 5x6 + 1x7 + 2x8 + 15x9 = 10

4x1 − 2x2 + 8x3 + 2x5 − 14x6 − 2x8 + 2x9 = 36

−1x1 + 2x2 + 1x3 − 6x4 + 7x6 − 1x7 − 3x9 = −8

3x1 + 2x2 + 13x3 − 14x4 − 1x5 + 5x6 − 1x8 + 12x9 = 15

−2x1 + 2x2 − 2x3 − 4x4 + 1x5 + 6x6 − 2x7 − 2x8 − 15x9 = −7

Contributed by Robert Beezer Solution [386]
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M10 Example TLC [317] asks if the vector

w =


13
15
5
−17

2
25


can be written as a linear combination of the four vectors

u1 =


2
4
−3
1
2
9

 u2 =


6
3
0
−2
1
4

 u3 =


−5
2
1
1
−3
0

 u4 =


3
2
−5
7
1
3
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Can it? Can any vector in C6 be written as a linear combination of the four vectors
u1, u2, u3, u4?
Contributed by Robert Beezer Solution [387]

M11 At the end of Example VFS [338], the vector w is claimed to be a solution to the
linear system under discussion. Verify that w really is a solution. Then determine the four
scalars that express w as a linear combination of c, u1, u2, u3.
Contributed by Robert Beezer Solution [388]
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer Statement [378]
Solutions for Archetype A [2378] and Archetype B [2392] are described carefully in Example
AALC [323] and Example ABLC [321].

C22 Contributed by Robert Beezer Statement [379]
Solutions for Archetype D [2419] and Archetype I [2485] are described carefully in Example
VFSAD [332] and Example VFSAI [357]. The technique described in these examples is
probably more useful than carefully deciphering the notation of Theorem VFSLS [350]. The
solution for each archetype is contained in its description. So now you can check-off the box
for that item.

C40 Contributed by Robert Beezer Statement [380]
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Row-reduce the augmented matrix representing this system, to find
1 −2 0 6 0 1

0 0 1 −4 0 3

0 0 0 0 1 −5
0 0 0 0 0 0


The system is consistent (no leading one in column 6, Theorem RCLS [172]). x2 and x4

are the free variables. Now apply Theorem VFSLS [350] directly, or follow the three-step
process of Example VFS [338], Example VFSAD [332], Example VFSAI [357], or Example
VFSAL [362] to obtain 

x1

x2

x3

x4

x5

 =


1
0
3
0
−5

+ x2


2
1
0
0
0

+ x4


−6
0
4
1
0
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C41 Contributed by Robert Beezer Statement [381]
Row-reduce the augmented matrix representing this system, to find



1 0 3 −2 0 −1 0 0 3 6

0 1 2 −4 0 3 0 0 2 −1

0 0 0 0 1 −2 0 0 −1 3

0 0 0 0 0 0 1 0 4 0

0 0 0 0 0 0 0 1 2 −2
0 0 0 0 0 0 0 0 0 0



The system is consistent (no leading one in column 10, Theorem RCLS [172]). F =
{3, 4, 6, 9, 10}, so the free variables are x3, x4, x6 and x9. Now apply Theorem VFSLS
[350] directly, or follow the three-step process of Example VFS [338], Example VFSAD
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[332], Example VFSAI [357], or Example VFSAL [362] to obtain the solution set

S =





6
−1
0
0
3
0
0
−2
0


+ x3



−3
−2
1
0
0
0
0
0
0


+ x4



2
4
0
1
0
0
0
0
0


+ x6



1
−3
0
0
2
1
0
0
0


+ x9



−3
−2
0
0
1
0
−4
−2
1


| x3, x4, x6, x9 ∈ C


M10 Contributed by Robert Beezer Statement [382]
No, it is not possible to create w as a linear combination of the four vectors u1, u2, u3, u4.
By creating the desired linear combination with unknowns as scalars, Theorem SLSLC [327]
provides a system of equations that has no solution. This one computation is enough to
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show us that it is not possible to create all the vectors of C6 through linear combinations of
the four vectors u1, u2, u3, u4.

M11 Contributed by Robert Beezer Statement [383]
The coefficient of c is 1. The coefficients of u1, u2, u3 lie in the third, fourth and seventh
entries of w. Can you see why? (Hint: F = {3, 4, 7, 8}, so the free variables are x3, x4 and
x7.)
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Section SS

Spanning Sets

In this section we will describe a compact way to indicate the elements of an infinite set of
vectors, making use of linear combinations. This will give us a convenient way to describe
the elements of a set of solutions to a linear system, or the elements of the null space of a
matrix, or many other sets of vectors.
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Subsection SSV
Span of a Set of Vectors

In Example VFSAL [362] we saw the solution set of a homogeneous system described as all
possible linear combinations of two particular vectors. This happens to be a useful way to
construct or describe infinite sets of vectors, so we encapsulate this idea in a definition.

Definition SSCV
Span of a Set of Column Vectors
Given a set of vectors S = {u1, u2, u3, . . . , up}, their span, 〈S〉, is the set of all possible
linear combinations of u1, u2, u3, . . . , up. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αpup | αi ∈ C, 1 ≤ i ≤ p}

=

{
p∑
i=1

αiui | αi ∈ C, 1 ≤ i ≤ p

}
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(This definition contains Notation SSV.) 4

The span is just a set of vectors, though in all but one situation it is an infinite set.
(Just when is it not infinite?) So we start with a finite collection of vectors S (p of them to
be precise), and use this finite set to describe an infinite set of vectors, 〈S〉. Confusing the
finite set S with the infinite set 〈S〉 is one of the most pervasive problems in understanding
introductory linear algebra. We will see this construction repeatedly, so let’s work through
some examples to get comfortable with it. The most obvious question about a set is if a
particular item of the correct type is in the set, or not.

Example ABS
A basic span
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Consider the set of 5 vectors, S, from C4

S =




1
1
3
1

 ,


2
1
2
−1

 ,


7
3
5
−5

 ,


1
1
−1
2

 ,

−1
0
9
0




and consider the infinite set of vectors 〈S〉 formed from all possible linear combinations of
the elements of S. Here are four vectors we definitely know are elements of 〈S〉, since we
will construct them in accordance with Definition SSCV [390],

w = (2)


1
1
3
1

+ (1)


2
1
2
−1

+ (−1)


7
3
5
−5

+ (2)


1
1
−1
2

+ (3)


−1
0
9
0

 =


−4
2
28
10
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x = (5)


1
1
3
1

+ (−6)


2
1
2
−1

+ (−3)


7
3
5
−5

+ (4)


1
1
−1
2

+ (2)


−1
0
9
0

 =


−26
−6
2
34



y = (1)


1
1
3
1

+ (0)


2
1
2
−1

+ (1)


7
3
5
−5

+ (0)


1
1
−1
2

+ (1)


−1
0
9
0

 =


7
4
17
−4



z = (0)


1
1
3
1

+ (0)


2
1
2
−1

+ (0)


7
3
5
−5

+ (0)


1
1
−1
2

+ (0)


−1
0
9
0

 =


0
0
0
0


The purpose of a set is to collect objects with some common property, and to exclude objects
without that property. So the most fundamental question about a set is if a given object is
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an element of the set or not. Let’s learn more about 〈S〉 by investigating which vectors are
elements of the set, and which are not.

First, is u =


−15
−6
19
5

 an element of 〈S〉? We are asking if there are scalars α1, α2, α3, α4, α5

such that

α1


1
1
3
1

+ α2


2
1
2
−1

+ α3


7
3
5
−5

+ α4


1
1
−1
2

+ α5


−1
0
9
0

 = u =


−15
−6
19
5



Applying Theorem SLSLC [327] we recognize the search for these scalars as a solution to a
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linear system of equations with augmented matrix
1 2 7 1 −1 −15
1 1 3 1 0 −6
3 2 5 −1 9 19
1 −1 −5 2 0 5


which row-reduces to 

1 0 −1 0 3 10

0 1 4 0 −1 −9

0 0 0 1 −2 −7
0 0 0 0 0 0


At this point, we see that the system is consistent (Theorem RCLS [172]), so we know there
is a solution for the five scalars α1, α2, α3, α4, α5. This is enough evidence for us to say that
u ∈ 〈S〉. If we wished further evidence, we could compute an actual solution, say

α1 = 2 α2 = 1 α3 = −2 α4 = −3 α5 = 2
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This particular solution allows us to write

(2)


1
1
3
1

+ (1)


2
1
2
−1

+ (−2)


7
3
5
−5

+ (−3)


1
1
−1
2

+ (2)


−1
0
9
0

 = u =


−15
−6
19
5


making it even more obvious that u ∈ 〈S〉.

Lets do it again. Is v =


3
1
2
−1

 an element of 〈S〉? We are asking if there are scalars

α1, α2, α3, α4, α5 such that

α1


1
1
3
1

+ α2


2
1
2
−1

+ α3


7
3
5
−5

+ α4


1
1
−1
2

+ α5


−1
0
9
0

 = v =


3
1
2
−1
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Applying Theorem SLSLC [327] we recognize the search for these scalars as a solution to a
linear system of equations with augmented matrix

1 2 7 1 −1 3
1 1 3 1 0 1
3 2 5 −1 9 2
1 −1 −5 2 0 −1


which row-reduces to 

1 0 −1 0 3 0

0 1 4 0 −1 0

0 0 0 1 −2 0

0 0 0 0 0 1


At this point, we see that the system is inconsistent by Theorem RCLS [172], so we know
there is not a solution for the five scalars α1, α2, α3, α4, α5. This is enough evidence for us
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to say that v 6∈ 〈S〉. End of story. �

Example SCAA
Span of the columns of Archetype A
Begin with the finite set of three vectors of size 3

S = {u1, u2, u3} =


1

2
1

 ,
−1

1
1

 ,
2

1
0


and consider the infinite set 〈S〉. The vectors of S could have been chosen to be anything, but
for reasons that will become clear later, we have chosen the three columns of the coefficient
matrix in Archetype A [2378]. First, as an example, note that

v = (5)

1
2
1

+ (−3)

−1
1
1

+ (7)

2
1
0

 =

22
14
2
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is in 〈S〉, since it is a linear combination of u1, u2, u3. We write this succinctly as v ∈ 〈S〉.
There is nothing magical about the scalars α1 = 5, α2 = −3, α3 = 7, they could have been
chosen to be anything. So repeat this part of the example yourself, using different values of
α1, α2, α3. What happens if you choose all three scalars to be zero?

So we know how to quickly construct sample elements of the set 〈S〉. A slightly different
question arises when you are handed a vector of the correct size and asked if it is an element

of 〈S〉. For example, is w =

1
8
5

 in 〈S〉? More succinctly, w ∈ 〈S〉?

To answer this question, we will look for scalars α1, α2, α3 so that

α1u1 + α2u2 + α3u3 = w.

By Theorem SLSLC [327] solutions to this vector equation are solutions to the system of
equations

α1 − α2 + 2α3 = 1
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2α1 + α2 + α3 = 8

α1 + α2 = 5.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 1 3

0 1 −1 2
0 0 0 0

 .
This system has infinitely many solutions (there’s a free variable in x3), but all we need is
one solution vector. The solution,

α1 = 2 α2 = 3 α3 = 1

tells us that

(2)u1 + (3)u2 + (1)u3 = w
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so we are convinced that w really is in 〈S〉. Notice that there are an infinite number of
ways to answer this question affirmatively. We could choose a different solution, this time
choosing the free variable to be zero,

α1 = 3 α2 = 2 α3 = 0

shows us that
(3)u1 + (2)u2 + (0)u3 = w

Verifying the arithmetic in this second solution will make it obvious that w is in this span.
And of course, we now realize that there are an infinite number of ways to realize w as

element of 〈S〉. Let’s ask the same type of question again, but this time with y =

2
4
3

, i.e.

is y ∈ 〈S〉?
So we’ll look for scalars α1, α2, α3 so that

α1u1 + α2u2 + α3u3 = y.
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By Theorem SLSLC [327] solutions to this vector equation are the solutions to the system
of equations

α1 − α2 + 2α3 = 2

2α1 + α2 + α3 = 4

α1 + α2 = 3.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 1 0

0 1 −1 0

0 0 0 1


This system is inconsistent (there’s a leading 1 in the last column, Theorem RCLS [172]), so
there are no scalars α1, α2, α3 that will create a linear combination of u1, u2, u3 that equals
y. More precisely, y 6∈ 〈S〉.
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There are three things to observe in this example. (1) It is easy to construct vectors in
〈S〉. (2) It is possible that some vectors are in 〈S〉 (e.g. w), while others are not (e.g. y). (3)
Deciding if a given vector is in 〈S〉 leads to solving a linear system of equations and asking
if the system is consistent.

With a computer program in hand to solve systems of linear equations, could you create
a program to decide if a vector was, or wasn’t, in the span of a given set of vectors? Is this
art or science?

This example was built on vectors from the columns of the coefficient matrix of Archetype
A [2378]. Study the determination that v ∈ 〈S〉 and see if you can connect it with some of
the other properties of Archetype A [2378]. �

Having analyzed Archetype A [2378] in Example SCAA [398], we will of course subject
Archetype B [2392] to a similar investigation.

Example SCAB
Span of the columns of Archetype B
Begin with the finite set of three vectors of size 3 that are the columns of the coefficient
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matrix in Archetype B [2392],

R = {v1, v2, v3} =


−7

5
1

 ,
−6

5
0

 ,
−12

7
4


and consider the infinite set 〈R〉. First, as an example, note that

x = (2)

−7
5
1

+ (4)

−6
5
0

+ (−3)

−12
7
4

 =

 −2
9
−10


is in 〈R〉, since it is a linear combination of v1, v2, v3. In other words, x ∈ 〈R〉. Try some
different values of α1, α2, α3 yourself, and see what vectors you can create as elements of
〈R〉.

Now ask if a given vector is an element of 〈R〉. For example, is z =

−33
24
5

 in 〈R〉? Is
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z ∈ 〈R〉?
To answer this question, we will look for scalars α1, α2, α3 so that

α1v1 + α2v2 + α3v3 = z.

By Theorem SLSLC [327] solutions to this vector equation are the solutions to the system
of equations

−7α1 − 6α2 − 12α3 = −33

5α1 + 5α2 + 7α3 = 24

α1 + 4α3 = 5.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 0 −3

0 1 0 5

0 0 1 2

 .
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This system has a unique solution,

α1 = −3 α2 = 5 α3 = 2

telling us that

(−3)v1 + (5)v2 + (2)v3 = z

so we are convinced that z really is in 〈R〉. Notice that in this case we have only one way to
answer the question affirmatively since the solution is unique.

Let’s ask about another vector, say is x =

−7
8
−3

 in 〈R〉? Is x ∈ 〈R〉?

We desire scalars α1, α2, α3 so that

α1v1 + α2v2 + α3v3 = x.
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By Theorem SLSLC [327] solutions to this vector equation are the solutions to the system
of equations

−7α1 − 6α2 − 12α3 = −7

5α1 + 5α2 + 7α3 = 8

α1 + 4α3 = −3.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 0 1

0 1 0 2

0 0 1 −1


This system has a unique solution,

α1 = 1 α2 = 2 α3 = −1
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telling us that

(1)v1 + (2)v2 + (−1)v3 = x

so we are convinced that x really is in 〈R〉. Notice that in this case we again have only one
way to answer the question affirmatively since the solution is again unique.

We could continue to test other vectors for membership in 〈R〉, but there is no point.
A question about membership in 〈R〉 inevitably leads to a system of three equations in the
three variables α1, α2, α3 with a coefficient matrix whose columns are the vectors v1, v2, v3.
This particular coefficient matrix is nonsingular, so by Theorem NMUS [256], the system is
guaranteed to have a solution. (This solution is unique, but that’s not critical here.) So no
matter which vector we might have chosen for z, we would have been certain to discover that
it was an element of 〈R〉. Stated differently, every vector of size 3 is in 〈R〉, or 〈R〉 = C3.

Compare this example with Example SCAA [398], and see if you can connect z with
some aspects of the write-up for Archetype B [2392]. �
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Subsection SSNS
Spanning Sets of Null Spaces

We saw in Example VFSAL [362] that when a system of equations is homogeneous the
solution set can be expressed in the form described by Theorem VFSLS [350] where the
vector c is the zero vector. We can essentially ignore this vector, so that the remainder of
the typical expression for a solution looks like an arbitrary linear combination, where the
scalars are the free variables and the vectors are u1, u2, u3, . . . , un−r. Which sounds a lot
like a span. This is the substance of the next theorem.

Theorem SSNS
Spanning Sets for Null Spaces
Suppose that A is an m×n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the column indices where B
has leading 1’s (pivot columns) and F = {f1, f2, f3, . . . , fn−r} be the set of column indices

Version 2.11



Subsection SS.SSNS Spanning Sets of Null Spaces 413

where B does not have leading 1’s. Construct the n− r vectors zj, 1 ≤ j ≤ n− r of size n as

[zj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

Then the null space of A is given by

N (A) = 〈{z1, z2, z3, . . . , zn−r}〉 .
�

Proof Consider the homogeneous system with A as a coefficient matrix, LS(A, 0). Its set
of solutions, S, is by Definition NSM [216], the null space of A, N (A). Let B′ denote the
result of row-reducing the augmented matrix of this homogeneous system. Since the system
is homogeneous, the final column of the augmented matrix will be all zeros, and after any
number of row operations (Definition RO [84]), the column will still be all zeros. So B′ has
a final column that is totally zeros.
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Now apply Theorem VFSLS [350] to B′, after noting that our homogeneous system must
be consistent (Theorem HSC [208]). The vector c has zeros for each entry that corresponds
to an index in F . For entries that correspond to an index in D, the value is − [B′]k,n+1,
but for B′ any entry in the final column (index n + 1) is zero. So c = 0. The vectors zj,
1 ≤ j ≤ n − r are identical to the vectors uj, 1 ≤ j ≤ n − r described in Theorem VFSLS
[350]. Putting it all together and applying Definition SSCV [390] in the final step,

N (A) = S

= {c + α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r | α1, α2, α3, . . . , αn−r ∈ C}
= {α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r | α1, α2, α3, . . . , αn−r ∈ C}
= 〈{z1, z2, z3, . . . , zn−r}〉

�

Example SSNS
Spanning set of a null space
Find a set of vectors, S, so that the null space of the matrix A below is the span of S, that
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is, 〈S〉 = N (A).

A =


1 3 3 −1 −5
2 5 7 1 1
1 1 5 1 5
−1 −4 −2 0 4



The null space of A is the set of all solutions to the homogeneous system LS(A, 0). If we
find the vector form of the solutions to this homogeneous system (Theorem VFSLS [350])
then the vectors uj, 1 ≤ j ≤ n − r in the linear combination are exactly the vectors zj,
1 ≤ j ≤ n − r described in Theorem SSNS [409]. So we can mimic Example VFSAL [362]
to arrive at these vectors (rather than being a slave to the formulas in the statement of the
theorem).
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Begin by row-reducing A. The result is
1 0 6 0 4

0 1 −1 0 −2

0 0 0 1 3
0 0 0 0 0


With D = {1, 2, 4} and F = {3, 5} we recognize that x3 and x5 are free variables and
we can express each nonzero row as an expression for the dependent variables x1, x2, x4

(respectively) in the free variables x3 and x5. With this we can write the vector form of a
solution vector as 

x1

x2

x3

x4

x5

 =


−6x3 − 4x5

x3 + 2x5

x3

−3x5

x5

 = x3


−6
1
1
0
0

+ x5


−4
2
0
−3
1
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Then in the notation of Theorem SSNS [409],

z1 =


−6
1
1
0
0

 z2 =


−4
2
0
−3
1


and

N (A) = 〈{z1, z2}〉 =

〈


−6
1
1
0
0

 ,

−4
2
0
−3
1



〉

�

Example NSDS
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Null space directly as a span
Let’s express the null space of A as the span of a set of vectors, applying Theorem SSNS
[409] as economically as possible, without reference to the underlying homogeneous system
of equations (in contrast to Example SSNS [411]).

A =


2 1 5 1 5 1
1 1 3 1 6 −1
−1 1 −1 0 4 −3
−3 2 −4 −4 −7 0
3 −1 5 2 2 3



Theorem SSNS [409] creates vectors for the span by first row-reducing the matrix in question.
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The row-reduced version of A is

B =


1 0 2 0 −1 2

0 1 1 0 3 −1

0 0 0 1 4 −2
0 0 0 0 0 0
0 0 0 0 0 0



We will mechanically follow the prescription of Theorem SSNS [409]. Here we go, in two big
steps.

First, the non-pivot columns have indices F = {3, 5, 6}, so we will construct the n− r =
6− 3 = 3 vectors with a pattern of zeros and ones corresponding to the indices in F . This is
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the realization of the first two lines of the three-case definition of the vectors zj, 1 ≤ j ≤ n−r.

z1 =


1

0
0

 z2 =


0

1
0

 z3 =


0

0
1



Each of these vectors arises due to the presence of a column that is not a pivot column.
The remaining entries of each vector are the entries of the corresponding non-pivot column,
negated, and distributed into the empty slots in order (these slots have indices in the set D
and correspond to pivot columns). This is the realization of the third line of the three-case
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definition of the vectors zj, 1 ≤ j ≤ n− r.

z1 =


−2
−1
1
0
0
0

 z2 =


1
−3
0
−4
1
0

 z3 =


−2
1
0
2
0
1


So, by Theorem SSNS [409], we have

N (A) = 〈{z1, z2, z3}〉 =

〈



−2
−1
1
0
0
0

 ,


1
−3
0
−4
1
0

 ,

−2
1
0
2
0
1




〉
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We know that the null space of A is the solution set of the homogeneous system LS(A, 0),
but nowhere in this application of Theorem SSNS [409] have we found occasion to reference
the variables or equations of this system. These details are all buried in the proof of Theorem
SSNS [409]. �

More advanced computational devices will compute the null space of a matrix. See:
Computation NS.MMA [2276] Here’s an example that will simultaneously exercise the span
construction and Theorem SSNS [409], while also pointing the way to the next section.

Example SCAD
Span of the columns of Archetype D
Begin with the set of four vectors of size 3

T = {w1, w2, w3, w4} =


 2
−3
1

 ,
1

4
1

 ,
 7
−5
4

 ,
−7
−6
−5


and consider the infinite set W = 〈T 〉. The vectors of T have been chosen as the four
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columns of the coefficient matrix in Archetype D [2419]. Check that the vector

z2 =


2
3
0
1


is a solution to the homogeneous system LS(D, 0) (it is the vector z2 provided by the
description of the null space of the coefficient matrix D from Theorem SSNS [409]). Applying
Theorem SLSLC [327], we can write the linear combination,

2w1 + 3w2 + 0w3 + 1w4 = 0

which we can solve for w4,
w4 = (−2)w1 + (−3)w2.

This equation says that whenever we encounter the vector w4, we can replace it with a
specific linear combination of the vectors w1 and w2. So using w4 in the set T , along
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with w1 and w2, is excessive. An example of what we mean here can be illustrated by the
computation,

5w1 + (−4)w2 + 6w3 + (−3)w4 = 5w1 + (−4)w2 + 6w3 + (−3) ((−2)w1 + (−3)w2)

= 5w1 + (−4)w2 + 6w3 + (6w1 + 9w2)

= 11w1 + 5w2 + 6w3.

So what began as a linear combination of the vectors w1, w2, w3, w4 has been reduced to
a linear combination of the vectors w1, w2, w3. A careful proof using our definition of set
equality (Definition SE [2327]) would now allow us to conclude that this reduction is possible
for any vector in W , so

W = 〈{w1, w2, w3}〉 .
So the span of our set of vectors, W , has not changed, but we have described it by the span
of a set of three vectors, rather than four. Furthermore, we can achieve yet another, similar,
reduction.
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Check that the vector

z1 =


−3
−1
1
0


is a solution to the homogeneous system LS(D, 0) (it is the vector z1 provided by the
description of the null space of the coefficient matrix D from Theorem SSNS [409]). Applying
Theorem SLSLC [327], we can write the linear combination,

(−3)w1 + (−1)w2 + 1w3 = 0

which we can solve for w3,

w3 = 3w1 + 1w2.

This equation says that whenever we encounter the vector w3, we can replace it with a
specific linear combination of the vectors w1 and w2. So, as before, the vector w3 is not
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needed in the description of W , provided we have w1 and w2 available. In particular, a
careful proof (such as is done in Example RSC5 [525]) would show that

W = 〈{w1, w2}〉 .
So W began life as the span of a set of four vectors, and we have now shown (utilizing
solutions to a homogeneous system) that W can also be described as the span of a set of
just two vectors. Convince yourself that we cannot go any further. In other words, it is not
possible to dismiss either w1 or w2 in a similar fashion and winnow the set down to just one
vector.

What was it about the original set of four vectors that allowed us to declare certain
vectors as surplus? And just which vectors were we able to dismiss? And why did we have
to stop once we had two vectors remaining? The answers to these questions motivate “linear
independence,” our next section and next definition, and so are worth considering carefully
now. �

It is possible to have your computational device crank out the vector form of the solution
set to a linear system of equations. See: Computation VFSS.MMA [2278]
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Subsection READ
Reading Questions

1. Let S be the set of three vectors below.

S =


 1

2
−1

 ,
 3
−4
2

 ,
 4
−2
1



Let W = 〈S〉 be the span of S. Is the vector

−1
8
−4

 in W? Give an explanation of the

reason for your answer.
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2. Use S and W from the previous question. Is the vector

 6
5
−1

 in W? Give an explana-

tion of the reason for your answer.

3. For the matrix A below, find a set S so that 〈S〉 = N (A), where N (A) is the null space
of A. (See Theorem SSNS [409].)

A =

1 3 1 9
2 1 −3 8
1 1 −1 5
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Subsection EXC
Exercises

C22 For each archetype that is a system of equations, consider the corresponding homoge-
neous system of equations. Write elements of the solution set to these homogeneous systems
in vector form, as guaranteed by Theorem VFSLS [350]. Then write the null space of the
coefficient matrix of each system as the span of a set of vectors, as described in Theorem
SSNS [409].
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/ Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/ Archetype H [2472]
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Archetype I [2485]
Archetype J [2498]

Contributed by Robert Beezer Solution [435]

C23 Archetype K [2515] and Archetype L [2527] are defined as matrices. Use Theorem
SSNS [409] directly to find a set S so that 〈S〉 is the null space of the matrix. Do not make
any reference to the associated homogeneous system of equations in your solution.
Contributed by Robert Beezer Solution [435]

C40 Suppose that S =




2
−1
3
4

 ,


3
2
−2
1


. Let W = 〈S〉 and let x =


5
8
−12
−5

. Is x ∈ W?

If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [436]
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C41 Suppose that S =




2
−1
3
4

 ,


3
2
−2
1


. Let W = 〈S〉 and let y =


5
1
3
5

. Is y ∈ W? If

so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [438]

C42 Suppose R =




2
−1
3
4
0

 ,


1
1
2
2
−1

 ,


3
−1
0
3
−2


. Is y =


1
−1
−8
−4
−3

 in 〈R〉?

Contributed by Robert Beezer Solution [439]
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C43 Suppose R =




2
−1
3
4
0

 ,


1
1
2
2
−1

 ,


3
−1
0
3
−2


. Is z =


1
1
5
3
1

 in 〈R〉?

Contributed by Robert Beezer Solution [441]

C44 Suppose that S =


−1

2
1

 ,
3

1
2

 ,
1

5
4

 ,
−6

5
1

. Let W = 〈S〉 and let y =

−5
3
0

.

Is y ∈ W? If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [443]

C45 Suppose that S =


−1

2
1

 ,
3

1
2

 ,
1

5
4

 ,
−6

5
1

. Let W = 〈S〉 and let w =

2
1
3

. Is

w ∈ W? If so, provide an explicit linear combination that demonstrates this.
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Contributed by Robert Beezer Solution [445]

C50 Let A be the matrix below.
(a) Find a set S so that N (A) = 〈S〉.

(b) If z =


3
−5
1
2

, then show directly that z ∈ N (A).

(c) Write z as a linear combination of the vectors in S.

A =

 2 3 1 4
1 2 1 3
−1 0 1 1


Contributed by Robert Beezer Solution [446]

C60 For the matrix A below, find a set of vectors S so that the span of S equals the null
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space of A, 〈S〉 = N (A).

A =

 1 1 6 −8
1 −2 0 1
−2 1 −6 7


Contributed by Robert Beezer Solution [448]

M10 Consider the set of all size 2 vectors in the Cartesian plane R2.

1. Give a geometric description of the span of a single vector.

2. How can you tell if two vectors span the entire plane, without doing any row reduction
or calculation?

Contributed by Chris Black Solution [450]

M11 Consider the set of all size 3 vectors in Cartesian 3-space R3.
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1. Give a geometric description of the span of a single vector.

2. Describe the possibilities for the span of two vectors.

3. Describe the possibilities for the span of three vectors.

Contributed by Chris Black Solution [451]

M12 Let u =

 1
3
−2

 and v =

 2
−2
1

.

1. Find a vector w1, different from u and v, so that 〈u,v,w1〉 = 〈u,v〉.
2. Find a vector w2 so that 〈u,v,w2〉 6= 〈u,v〉.

Contributed by Chris Black Solution [452]
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M20 In Example SCAD [419] we began with the four columns of the coefficient matrix of
Archetype D [2419], and used these columns in a span construction. Then we methodically
argued that we could remove the last column, then the third column, and create the same set
by just doing a span construction with the first two columns. We claimed we could not go
any further, and had removed as many vectors as possible. Provide a convincing argument
for why a third vector cannot be removed.
Contributed by Robert Beezer

M21 In the spirit of Example SCAD [419], begin with the four columns of the coefficient
matrix of Archetype C [2407], and use these columns in a span construction to build the set
S. Argue that S can be expressed as the span of just three of the columns of the coefficient
matrix (saying exactly which three) and in the spirit of Exercise SS.M20 [433] argue that no
one of these three vectors can be removed and still have a span construction create S.
Contributed by Robert Beezer Solution [453]
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T10 Suppose that v1, v2 ∈ Cm. Prove that

〈{v1, v2}〉 = 〈{v1, v2, 5v1 + 3v2}〉

Contributed by Robert Beezer Solution [454]

T20 Suppose that S is a set of vectors from Cm. Prove that the zero vector, 0, is an
element of 〈S〉.
Contributed by Robert Beezer Solution [455]

T21 Suppose that S is a set of vectors from Cm and x, y ∈ 〈S〉. Prove that x + y ∈ 〈S〉.
Contributed by Robert Beezer

T22 Suppose that S is a set of vectors from Cm, α ∈ C, and x ∈ 〈S〉. Prove that αx ∈ 〈S〉.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C22 Contributed by Robert Beezer Statement [426]
The vector form of the solutions obtained in this manner will involve precisely the vectors
described in Theorem SSNS [409] as providing the null space of the coefficient matrix of the
system as a span. These vectors occur in each archetype in a description of the null space.
Studying Example VFSAL [362] may be of some help.

C23 Contributed by Robert Beezer Statement [427]
Study Example NSDS [415] to understand the correct approach to this question. The solution
for each is listed in the Archetypes (Appendix A [2372]) themselves.

C40 Contributed by Robert Beezer Statement [427]
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Rephrasing the question, we want to know if there are scalars α1 and α2 such that

α1


2
−1
3
4

+ α2


3
2
−2
1

 =


5
8
−12
−5



Theorem SLSLC [327] allows us to rephrase the question again as a quest for solutions to
the system of four equations in two unknowns with an augmented matrix given by


2 3 5
−1 2 8
3 −2 −12
4 1 −5
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This matrix row-reduces to 
1 0 −2

0 1 3
0 0 0
0 0 0


From the form of this matrix, we can see that α1 = −2 and α2 = 3 is an affirmative answer
to our question. More convincingly,

(−2)


2
−1
3
4

+ (3)


3
2
−2
1

 =


5
8
−12
−5



C41 Contributed by Robert Beezer Statement [428]
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Rephrasing the question, we want to know if there are scalars α1 and α2 such that

α1


2
−1
3
4

+ α2


3
2
−2
1

 =


5
1
3
5



Theorem SLSLC [327] allows us to rephrase the question again as a quest for solutions to
the system of four equations in two unknowns with an augmented matrix given by


2 3 5
−1 2 1
3 −2 3
4 1 5
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This matrix row-reduces to 
1 0 0

0 1 0

0 0 1
0 0 0


With a leading 1 in the last column of this matrix (Theorem RCLS [172]) we can see that
the system of equations has no solution, so there are no values for α1 and α2 that will allow
us to conclude that y is in W . So y 6∈ W .

C42 Contributed by Robert Beezer Statement [428]
Form a linear combination, with unknown scalars, of R that equals y,

a1


2
−1
3
4
0

+ a2


1
1
2
2
−1

+ a3


3
−1
0
3
−2

 =


1
−1
−8
−4
−3
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We want to know if there are values for the scalars that make the vector equation true since
that is the definition of membership in 〈R〉. By Theorem SLSLC [327] any such values will
also be solutions to the linear system represented by the augmented matrix,

2 1 3 1
−1 1 −1 −1
3 2 0 −8
4 2 3 −4
0 −1 −2 −3


Row-reducing the matrix yields, 

1 0 0 −2

0 1 0 −1

0 0 1 2
0 0 0 0
0 0 0 0
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From this we see that the system of equations is consistent (Theorem RCLS [172]), and has
a unique solution. This solution will provide a linear combination of the vectors in R that
equals y. So y ∈ R.

C43 Contributed by Robert Beezer Statement [429]
Form a linear combination, with unknown scalars, of R that equals z,

a1


2
−1
3
4
0

+ a2


1
1
2
2
−1

+ a3


3
−1
0
3
−2

 =


1
1
5
3
1



We want to know if there are values for the scalars that make the vector equation true since
that is the definition of membership in 〈R〉. By Theorem SLSLC [327] any such values will
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also be solutions to the linear system represented by the augmented matrix,
2 1 3 1
−1 1 −1 1
3 2 0 5
4 2 3 3
0 −1 −2 1


Row-reducing the matrix yields, 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


With a leading 1 in the last column, the system is inconsistent (Theorem RCLS [172]), so
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there are no scalars a1, a2, a3 that will create a linear combination of the vectors in R that
equal z. So z 6∈ R.

C44 Contributed by Robert Beezer Statement [429]
Form a linear combination, with unknown scalars, of S that equals y,

a1

−1
2
1

+ a2

3
1
2

+ a3

1
5
4

+ a4

−6
5
1

 =

−5
3
0


We want to know if there are values for the scalars that make the vector equation true since
that is the definition of membership in 〈S〉. By Theorem SLSLC [327] any such values will
also be solutions to the linear system represented by the augmented matrix,−1 3 1 −6 −5

2 1 5 5 3
1 2 4 1 0
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Row-reducing the matrix yields,  1 0 2 3 2

0 1 1 −1 −1
0 0 0 0 0


From this we see that the system of equations is consistent (Theorem RCLS [172]), and has
a infinitely many solutions. Any solution will provide a linear combination of the vectors in
R that equals y. So y ∈ S, for example,

(−10)

−1
2
1

+ (−2)

3
1
2

+ (3)

1
5
4

+ (2)

−6
5
1

 =

−5
3
0



C45 Contributed by Robert Beezer Statement [429]
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Form a linear combination, with unknown scalars, of S that equals w,

a1

−1
2
1

+ a2

3
1
2

+ a3

1
5
4

+ a4

−6
5
1

 =

2
1
3


We want to know if there are values for the scalars that make the vector equation true since
that is the definition of membership in 〈S〉. By Theorem SLSLC [327] any such values will
also be solutions to the linear system represented by the augmented matrix,−1 3 1 −6 2

2 1 5 5 1
1 2 4 1 3


Row-reducing the matrix yields,  1 0 2 3 0

0 1 1 −1 0

0 0 0 0 1
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With a leading 1 in the last column, the system is inconsistent (Theorem RCLS [172]), so
there are no scalars a1, a2, a3, a4 that will create a linear combination of the vectors in S
that equal w. So w 6∈ 〈S〉.
C50 Contributed by Robert Beezer Statement [430]
(a) Theorem SSNS [409] provides formulas for a set S with this property, but first we must
row-reduce A

A
RREF−−−→

 1 0 −1 −1

0 1 1 2
0 0 0 0


x3 and x4 would be the free variables in the homogeneous system LS(A, 0) and Theorem
SSNS [409] provides the set S = {z1, z2} where

z1 =


1
−1
1
0

 z2 =


1
−2
0
1
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(b) Simply employ the components of the vector z as the variables in the homogeneous
system LS(A, 0). The three equations of this system evaluate as follows,

2(3) + 3(−5) + 1(1) + 4(2) = 0

1(3) + 2(−5) + 1(1) + 3(2) = 0

−1(3) + 0(−5) + 1(1) + 1(2) = 0

Since each result is zero, z qualifies for membership in N (A).
(c) By Theorem SSNS [409] we know this must be possible (that is the moral of this

exercise). Find scalars α1 and α2 so that

α1z1 + α2z2 = α1


1
−1
1
0

+ α2


1
−2
0
1

 =


3
−5
1
2

 = z

Theorem SLSLC [327] allows us to convert this question into a question about a system of
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four equations in two variables. The augmented matrix of this system row-reduces to
1 0 1

0 1 2
0 0 0
0 0 0


A solution is α1 = 1 and α2 = 2. (Notice too that this solution is unique!)

C60 Contributed by Robert Beezer Statement [430]
Theorem SSNS [409] says that if we find the vector form of the solutions to the homogeneous
system LS(A, 0), then the fixed vectors (one per free variable) will have the desired property.
Row-reduce A, viewing it as the augmented matrix of a homogeneous system with an invisible
columns of zeros as the last column,  1 0 4 −5

0 1 2 −3
0 0 0 0
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Moving to the vector form of the solutions (Theorem VFSLS [350]), with free variables x3

and x4, solutions to the consistent system (it is homogeneous, Theorem HSC [208]) can be
expressed as


x1

x2

x3

x4

 = x3


−4
−2
1
0

+ x4


5
3
0
1



Then with S given by

S =



−4
−2
1
0

 ,


5
3
0
1
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Theorem SSNS [409] guarantees that

N (A) = 〈S〉 =

〈

−4
−2
1
0

 ,


5
3
0
1



〉

M10 Contributed by Chris Black Statement [431]

1. The span of a single vector v is the set of all linear combinations of that vector. Thus,
〈v〉 = {αv | α ∈ R}. This is the line through the origin and containing the (geometric)

vector v. Thus, if v =

[
v1

v2

]
, then the span of v is the line through (0, 0) and (v1, v2).

2. Two vectors will span the entire plane if they point in different directions, meaning that
u does not lie on the line through v and vice-versa. That is, for vectors u and v in R2,
〈u,v〉 = R2 if u is not a multiple of v.
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M11 Contributed by Chris Black Statement [431]

1. The span of a single vector v is the set of all linear combinations of that vector. Thus,
〈v〉 = {αv | α ∈ R}. This is the line through the origin and containing the (geometric)

vector v. Thus, if v =

v1

v2

v3

, then the span of v is the line through (0, 0, 0) and

(v1, v2, v3).

2. If the two vectors point in the same direction, then their span is the line through them.
Recall that while two points determine a line, three points determine a plane. Two
vectors will span a plane if they point in different directions, meaning that u does not

lie on the line through v and vice-versa. The plane spanned by u =

u1

u1

u1

 and v =

v1

v2

v3


is determined by the origin and the points (u1, u2, u3) and (v1, v2, v3).
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3. If all three vectors lie on the same line, then the span is that line. If one is a linear
combination of the other two, but they are not all on the same line, then they will lie
in a plane. Otherwise, the span of the set of three vectors will be all of 3-space.

M12 Contributed by Chris Black Statement [432]

1. If we can find a vector w1 that is a linear combination of u and v, then 〈u,v,w1〉 will
be the same set as 〈u,v〉. Thus, w1 can be any linear combination of u and v. One

such example is w1 = 3u− v =

 1
11
−7

.

2. Now we are looking for a vector w2 that cannot be written as a linear combination of
u and v. How can we find such a vector? Any vector that matches two components
but not the third of any element of 〈u,v〉 will not be in the span (why?). One such
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example is w2 =

 4
−4
1

 (which is nearly 2v, but not quite).

M21 Contributed by Robert Beezer Statement [433]
If the columns of the coefficient matrix from Archetype C [2407] are named u1, u2, u3, u4

then we can discover the equation

(−2)u1 + (−3)u2 + u3 + u4 = 0

by building a homogeneous system of equations and viewing a solution to the system as
scalars in a linear combination via Theorem SLSLC [327]. This particular vector equation
can be rearranged to read

u4 = (2)u1 + (3)u2 + (−1)u3

This can be interpreted to mean that u4 is unnecessary in 〈{u1, u2, u3, u4}〉, so that

〈{u1, u2, u3, u4}〉 = 〈{u1, u2, u3}〉
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If we try to repeat this process and find a linear combination of u1, u2, u3 that equals
the zero vector, we will fail. The required homogeneous system of equations (via Theorem
SLSLC [327]) has only a trivial solution, which will not provide the kind of equation we need
to remove one of the three remaining vectors.

T10 Contributed by Robert Beezer Statement [434]
This is an equality of sets, so Definition SE [2327] applies.

First show that X = 〈{v1, v2}〉 ⊆ 〈{v1, v2, 5v1 + 3v2}〉 = Y .
Choose x ∈ X. Then x = a1v1 + a2v2 for some scalars a1 and a2. Then,

x = a1v1 + a2v2 = a1v1 + a2v2 + 0(5v1 + 3v2)

which qualifies x for membership in Y , as it is a linear combination of v1, v2, 5v1 + 3v2.
Now show the opposite inclusion, Y = 〈{v1, v2, 5v1 + 3v2}〉 ⊆ 〈{v1, v2}〉 = X.

Choose y ∈ Y . Then there are scalars a1, a2, a3 such that

y = a1v1 + a2v2 + a3(5v1 + 3v2)
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Rearranging, we obtain,

y = a1v1 + a2v2 + a3(5v1 + 3v2)

= a1v1 + a2v2 + 5a3v1 + 3a3v2 Property DVAC [296]

= a1v1 + 5a3v1 + a2v2 + 3a3v2 Property CC [295]

= (a1 + 5a3)v1 + (a2 + 3a3)v2 Property DSAC [296]

This is an expression for y as a linear combination of v1 and v2, earning y membership in
X. Since X is a subset of Y , and vice versa, we see that X = Y , as desired.

T20 Contributed by Robert Beezer Statement [434]
No matter what the elements of the set S are, we can choose the scalars in a linear combi-
nation to all be zero. Suppose that S = {v1, v2, v3, . . . , vp}. Then compute

0v1 + 0v2 + 0v3 + · · ·+ 0vp = 0 + 0 + 0 + · · ·+ 0

= 0
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But what if we choose S to be the empty set? The convention is that the empty sum in
Definition SSCV [390] evaluates to “zero,” in this case this is the zero vector.
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Section LI

Linear Independence

Subsection LISV
Linearly Independent Sets of Vectors

Theorem SLSLC [327] tells us that a solution to a homogeneous system of equations is a
linear combination of the columns of the coefficient matrix that equals the zero vector. We
used just this situation to our advantage (twice!) in Example SCAD [419] where we reduced
the set of vectors used in a span construction from four down to two, by declaring certain
vectors as surplus. The next two definitions will allow us to formalize this situation.
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Definition RLDCV
Relation of Linear Dependence for Column Vectors
Given a set of vectors S = {u1, u2, u3, . . . , un}, a true statement of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this statement is formed in a trivial fashion,
i.e. αi = 0, 1 ≤ i ≤ n, then we say it is the trivial relation of linear dependence on S.
4
Definition LICV
Linear Independence of Column Vectors
The set of vectors S = {u1, u2, u3, . . . , un} is linearly dependent if there is a relation
of linear dependence on S that is not trivial. In the case where the only relation of linear
dependence on S is the trivial one, then S is a linearly independent set of vectors. 4

Notice that a relation of linear dependence is an equation. Though most of it is a linear
combination, it is not a linear combination (that would be a vector). Linear independence
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is a property of a set of vectors. It is easy to take a set of vectors, and an equal number of
scalars, all zero, and form a linear combination that equals the zero vector. When the easy
way is the only way, then we say the set is linearly independent. Here’s a couple of examples.

Example LDS
Linearly dependent set in C5

Consider the set of n = 4 vectors from C5,

S =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,

−6
7
−1
0
1


 .
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To determine linear independence we first form a relation of linear dependence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
0
1

 = 0.

We know that α1 = α2 = α3 = α4 = 0 is a solution to this equation, but that is of no interest
whatsoever. That is always the case, no matter what four vectors we might have chosen.
We are curious to know if there are other, nontrivial, solutions. Theorem SLSLC [327] tells
us that we can find such solutions as solutions to the homogeneous system LS(A, 0) where
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the coefficient matrix has these four vectors as columns,

A =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 0
2 2 1 1

 .
Row-reducing this coefficient matrix yields,

1 0 0 −2

0 1 0 4

0 0 1 −3
0 0 0 0
0 0 0 0

 .
We could solve this homogeneous system completely, but for this example all we need is one
nontrivial solution. Setting the lone free variable to any nonzero value, such as x4 = 1, yields
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the nontrivial solution

x =


2
−4
3
1

 .
completing our application of Theorem SLSLC [327], we have

2


2
−1
3
1
2

+ (−4)


1
2
−1
5
2

+ 3


2
1
−3
6
1

+ 1


−6
7
−1
0
1

 = 0.

This is a relation of linear dependence on S that is not trivial, so we conclude that S is
linearly dependent. �

Example LIS
Linearly independent set in C5
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Consider the set of n = 4 vectors from C5,

T =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,

−6
7
−1
1
1


 .

To determine linear independence we first form a relation of linear dependence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
1
1

 = 0.

We know that α1 = α2 = α3 = α4 = 0 is a solution to this equation, but that is of no interest
whatsoever. That is always the case, no matter what four vectors we might have chosen.
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We are curious to know if there are other, nontrivial, solutions. Theorem SLSLC [327] tells
us that we can find such solutions as solution to the homogeneous system LS(B, 0) where
the coefficient matrix has these four vectors as columns,

B =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 1
2 2 1 1

 .
Row-reducing this coefficient matrix yields,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0

 .
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From the form of this matrix, we see that there are no free variables, so the solution is
unique, and because the system is homogeneous, this unique solution is the trivial solution.
So we now know that there is but one way to combine the four vectors of T into a relation
of linear dependence, and that one way is the easy and obvious way. In this situation we say
that the set, T , is linearly independent. �

Example LDS [459] and Example LIS [462] relied on solving a homogeneous system of
equations to determine linear independence. We can codify this process in a time-saving
theorem.

Theorem LIVHS
Linearly Independent Vectors and Homogeneous Systems
Suppose that A is an m × n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors
in Cm that are the columns of A. Then S is a linearly independent set if and only if the
homogeneous system LS(A, 0) has a unique solution. �

Proof (⇐) Suppose that LS(A, 0) has a unique solution. Since it is a homogeneous system,
this solution must be the trivial solution x = 0. By Theorem SLSLC [327], this means that
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the only relation of linear dependence on S is the trivial one. So S is linearly independent.

(⇒) We will prove the contrapositive. Suppose that LS(A, 0) does not have a unique
solution. Since it is a homogeneous system, it is consistent (Theorem HSC [208]), and so
must have infinitely many solutions (Theorem PSSLS [180]). One of these infinitely many
solutions must be nontrivial (in fact, almost all of them are), so choose one. By Theorem
SLSLC [327] this nontrivial solution will give a nontrivial relation of linear dependence on
S, so we can conclude that S is a linearly dependent set. �

Since Theorem LIVHS [465] is an equivalence, we can use it to determine the linear
independence or dependence of any set of column vectors, just by creating a corresponding
matrix and analyzing the row-reduced form. Let’s illustrate this with two more examples.

Example LIHS
Linearly independent, homogeneous system
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Is the set of vectors

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
5
1




linearly independent or linearly dependent?
Theorem LIVHS [465] suggests we study the matrix whose columns are the vectors in S,

A =


2 6 4
−1 2 3
3 −1 −4
4 3 5
2 4 1


Specifically, we are interested in the size of the solution set for the homogeneous system
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LS(A, 0). Row-reducing A, we obtain


1 0 0

0 1 0

0 0 1
0 0 0
0 0 0


Now, r = 3, so there are n − r = 3 − 3 = 0 free variables and we see that LS(A, 0) has a
unique solution (Theorem HSC [208], Theorem FVCS [178]). By Theorem LIVHS [465], the
set S is linearly independent. �

Example LDHS
Linearly dependent, homogeneous system
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Is the set of vectors

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
−1
2




linearly independent or linearly dependent?
Theorem LIVHS [465] suggests we study the matrix whose columns are the vectors in S,

A =


2 6 4
−1 2 3
3 −1 −4
4 3 −1
2 4 2


Specifically, we are interested in the size of the solution set for the homogeneous system
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LS(A, 0). Row-reducing A, we obtain
1 0 −1

0 1 1
0 0 0
0 0 0
0 0 0


Now, r = 2, so there are n − r = 3 − 2 = 1 free variables and we see that LS(A, 0) has
infinitely many solutions (Theorem HSC [208], Theorem FVCS [178]). By Theorem LIVHS
[465], the set S is linearly dependent. �

As an equivalence, Theorem LIVHS [465] gives us a straightforward way to determine if
a set of vectors is linearly independent or dependent.

Review Example LIHS [466] and Example LDHS [468]. They are very similar, differing
only in the last two slots of the third vector. This resulted in slightly different matrices
when row-reduced, and slightly different values of r, the number of nonzero rows. Notice,
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too, that we are less interested in the actual solution set, and more interested in its form or
size. These observations allow us to make a slight improvement in Theorem LIVHS [465].

Theorem LIVRN
Linearly Independent Vectors, r and n
Suppose that A is an m × n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors
in Cm that are the columns of A. Let B be a matrix in reduced row-echelon form that is
row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly
independent if and only if n = r. �

Proof Theorem LIVHS [465] says the linear independence of S is equivalent to the ho-
mogeneous linear system LS(A, 0) having a unique solution. Since LS(A, 0) is consistent
(Theorem HSC [208]) we can apply Theorem CSRN [176] to see that the solution is unique
exactly when n = r. �

So now here’s an example of the most straightforward way to determine if a set of column
vectors in linearly independent or linearly dependent. While this method can be quick and
easy, don’t forget the logical progression from the definition of linear independence through
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homogeneous system of equations which makes it possible.

Example LDRN
Linearly dependent, r < n
Is the set of vectors

S =




2
−1
3
1
0
3

 ,


9
−6
−2
3
2
1

 ,


1
1
1
0
0
1

 ,

−3
1
4
2
1
2

 ,


6
−2
1
4
3
2




linearly independent or linearly dependent? Theorem LIVHS [465] suggests we place these
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vectors into a matrix as columns and analyze the row-reduced version of the matrix,


2 9 1 −3 6
−1 −6 1 1 −2
3 −2 1 4 1
1 3 0 2 4
0 2 0 1 3
3 1 1 2 2


RREF−−−→



1 0 0 0 −1

0 1 0 0 1

0 0 1 0 2

0 0 0 1 1
0 0 0 0 0
0 0 0 0 0


Now we need only compute that r = 4 < 5 = n to recognize, via Theorem LIVHS [465] that
S is a linearly dependent set. Boom! �

Example LLDS
Large linearly dependent set in C4
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Consider the set of n = 9 vectors from C4,

R =



−1
3
1
2

 ,


7
1
−3
6

 ,


1
2
−1
−2

 ,


0
4
2
9

 ,


5
−2
4
3

 ,


2
1
−6
4

 ,


3
0
−3
1

 ,


1
1
5
3

 ,

−6
−1
1
1


 .

To employ Theorem LIVHS [465], we form a 4× 9 coefficient matrix, C,

C =


−1 7 1 0 5 2 3 1 −6
3 1 2 4 −2 1 0 1 −1
1 −3 −1 2 4 −6 −3 5 1
2 6 −2 9 3 4 1 3 1

 .
To determine if the homogeneous system LS(C, 0) has a unique solution or not, we would
normally row-reduce this matrix. But in this particular example, we can do better. Theorem
HMVEI [214] tells us that since the system is homogeneous with n = 9 variables in m = 4
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equations, and n > m, there must be infinitely many solutions. Since there is not a unique
solution, Theorem LIVHS [465] says the set is linearly dependent. �

The situation in Example LLDS [473] is slick enough to warrant formulating as a theorem.

Theorem MVSLD
More Vectors than Size implies Linear Dependence
Suppose that S = {u1, u2, u3, . . . , un} is the set of vectors in Cm, and that n > m. Then
S is a linearly dependent set. �

Proof Form the m × n coefficient matrix A that has the column vectors ui, 1 ≤ i ≤ n
as its columns. Consider the homogeneous system LS(A, 0). By Theorem HMVEI [214]
this system has infinitely many solutions. Since the system does not have a unique solution,
Theorem LIVHS [465] says the columns of A form a linearly dependent set, which is the
desired conclusion. �
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Subsection LINM
Linear Independence and Nonsingular Matrices

We will now specialize to sets of n vectors from Cn. This will put Theorem MVSLD [475] off-
limits, while Theorem LIVHS [465] will involve square matrices. Let’s begin by contrasting
Archetype A [2378] and Archetype B [2392].

Example LDCAA
Linearly dependent columns in Archetype A
Archetype A [2378] is a system of linear equations with coefficient matrix,

A =

1 −1 2
2 1 1
1 1 0

 .
Do the columns of this matrix form a linearly independent or dependent set? By Example
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S [247] we know that A is singular. According to the definition of nonsingular matrices,
Definition NM [246], the homogeneous system LS(A, 0) has infinitely many solutions. So
by Theorem LIVHS [465], the columns of A form a linearly dependent set. �

Example LICAB
Linearly independent columns in Archetype B
Archetype B [2392] is a system of linear equations with coefficient matrix,

B =

−7 −6 −12
5 5 7
1 0 4

 .
Do the columns of this matrix form a linearly independent or dependent set? By Example
NM [247] we know that B is nonsingular. According to the definition of nonsingular matri-
ces, Definition NM [246], the homogeneous system LS(A, 0) has a unique solution. So by
Theorem LIVHS [465], the columns of B form a linearly independent set. �

That Archetype A [2378] and Archetype B [2392] have opposite properties for the columns
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of their coefficient matrices is no accident. Here’s the theorem, and then we will update our
equivalences for nonsingular matrices, Theorem NME1 [259].

Theorem NMLIC
Nonsingular Matrices have Linearly Independent Columns
Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A
form a linearly independent set. �

Proof This is a proof where we can chain together equivalences, rather than proving the
two halves separately.

A nonsingular ⇐⇒ LS(A, 0) has a unique solution Definition NM [246]

⇐⇒ columns of A are linearly independent Theorem LIVHS [465]

�

Here’s an update to Theorem NME1 [259].
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Theorem NME2
Nonsingular Matrix Equivalences, Round 2
Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.
4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A form a linearly independent set.

�

Proof Theorem NMLIC [478] is yet another equivalence for a nonsingular matrix, so we
can add it to the list in Theorem NME1 [259]. �
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Subsection NSSLI
Null Spaces, Spans, Linear Independence

In Subsection SS.SSNS [409] we proved Theorem SSNS [409] which provided n − r vectors
that could be used with the span construction to build the entire null space of a matrix.
As we have hinted in Example SCAD [419], and as we will see again going forward, linearly
dependent sets carry redundant vectors with them when used in building a set as a span.
Our aim now is to show that the vectors provided by Theorem SSNS [409] form a linearly
independent set, so in one sense they are as efficient as possible a way to describe the null
space. Notice that the vectors zj, 1 ≤ j ≤ n− r first appear in the vector form of solutions
to arbitrary linear systems (Theorem VFSLS [350]). The exact same vectors appear again in
the span construction in the conclusion of Theorem SSNS [409]. Since this second theorem
specializes to homogeneous systems the only real difference is that the vector c in Theorem
VFSLS [350] is the zero vector for a homogeneous system. Finally, Theorem BNS [484] will
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now show that these same vectors are a linearly independent set. We’ll set the stage for the
proof of this theorem with a moderately large example. Study the example carefully, as it
will make it easier to understand the proof.

Example LINSB
Linear independence of null space basis
Suppose that we are interested in the null space of the a 3× 7 matrix, A, which row-reduces
to

B =

 1 0 −2 4 0 3 9

0 1 5 6 0 7 1

0 0 0 0 1 8 −5


The set F = {3, 4, 6, 7} is the set of indices for our four free variables that would be used in
a description of the solution set for the homogeneous system LS(A, 0). Applying Theorem
SSNS [409] we can begin to construct a set of four vectors whose span is the null space of
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A, a set of vectors we will reference as T .

N (A) = 〈T 〉 = 〈{z1, z2, z3, z4}〉 =

〈



1
0

0
0


,


0
1

0
0


,


0
0

1
0


,


0
0

0
1





〉

So far, we have constructed as much of these individual vectors as we can, based just on the
knowledge of the contents of the set F . This has allowed us to determine the entries in slots
3, 4, 6 and 7, while we have left slots 1, 2 and 5 blank. Without doing any more, lets ask
if T is linearly independent? Begin with a relation of linear dependence on T , and see what
we can learn about the scalars,

0 = α1z1 + α2z2 + α3z3 + α4z4
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0
0
0
0
0
0
0


= α1


1
0

0
0


+ α2


0
1

0
0


+ α3


0
0

1
0


+ α4


0
0

0
1



=


α1

0

0
0


+


0
α2

0
0


+


0
0

α3

0


+


0
0

0
α4


=


α1

α2

α3

α4


Applying Definition CVE [286] to the two ends of this chain of equalities, we see that
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α1 = α2 = α3 = α4 = 0. So the only relation of linear dependence on the set T is a trivial
one. By Definition LICV [458] the set T is linearly independent. The important feature of
this example is how the “pattern of zeros and ones” in the four vectors led to the conclusion
of linear independence. �

The proof of Theorem BNS [484] is really quite straightforward, and relies on the “pattern
of zeros and ones” that arise in the vectors zi, 1 ≤ i ≤ n− r in the entries that correspond
to the free variables. Play along with Example LINSB [481] as you study the proof. Also,
take a look at Example VFSAD [332], Example VFSAI [357] and Example VFSAL [362],
especially at the conclusion of Step 2 (temporarily ignore the construction of the constant
vector, c). This proof is also a good first example of how to prove a conclusion that states
a set is linearly independent.

Theorem BNS
Basis for Null Spaces
Suppose that A is an m×n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r}
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be the sets of column indices where B does and does not (respectively) have leading 1’s.
Construct the n− r vectors zj, 1 ≤ j ≤ n− r of size n as

[zj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

Define the set S = {z1, z2, z3, . . . , zn−r}. Then

1. N (A) = 〈S〉.
2. S is a linearly independent set.

�

Proof Notice first that the vectors zj, 1 ≤ j ≤ n − r are exactly the same as the n − r
vectors defined in Theorem SSNS [409]. Also, the hypotheses of Theorem SSNS [409] are
the same as the hypotheses of the theorem we are currently proving. So it is then simply the
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conclusion of Theorem SSNS [409] that tells us that N (A) = 〈S〉. That was the easy half,
but the second part is not much harder. What is new here is the claim that S is a linearly
independent set.

To prove the linear independence of a set, we need to start with a relation of linear
dependence and somehow conclude that the scalars involved must all be zero, i.e. that the
relation of linear dependence only happens in the trivial fashion. So to establish the linear
independence of S, we start with

α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r = 0.

For each j, 1 ≤ j ≤ n − r, consider the equality of the individual entries of the vectors on
both sides of this equality in position fj,

0 = [0]fj

= [α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r]fj Definition CVE [286]

= [α1z1]fj + [α2z2]fj + [α3z3]fj + · · ·+ [αn−rzn−r]fj Definition CVA [289]
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= α1 [z1]fj + α2 [z2]fj + α3 [z3]fj + · · ·+
αj−1 [zj−1]fj + αj [zj]fj + αj+1 [zj+1]fj + · · ·+
αn−r [zn−r]fj Definition CVSM [291]

= α1(0) + α2(0) + α3(0) + · · ·+
αj−1(0) + αj(1) + αj+1(0) + · · ·+ αn−r(0) Definition of zj

= αj

So for all j, 1 ≤ j ≤ n − r, we have αj = 0, which is the conclusion that tells us that the
only relation of linear dependence on S = {z1, z2, z3, . . . , zn−r} is the trivial one. Hence,
by Definition LICV [458] the set is linearly independent, as desired. �

Example NSLIL
Null space spanned by linearly independent set, Archetype L
In Example VFSAL [362] we previewed Theorem SSNS [409] by finding a set of two vectors
such that their span was the null space for the matrix in Archetype L [2527]. Writing the
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matrix as L, we have

N (L) =

〈


−1
2
−2
1
0

 ,


2
−2
1
0
1



〉
.

Solving the homogeneous system LS(L, 0) resulted in recognizing x4 and x5 as the free
variables. So look in entries 4 and 5 of the two vectors above and notice the pattern of zeros
and ones that provides the linear independence of the set. �
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Subsection READ
Reading Questions

1. Let S be the set of three vectors below.

S =


 1

2
−1

 ,
 3
−4
2

 ,
 4
−2
1


Is S linearly independent or linearly dependent? Explain why.

2. Let S be the set of three vectors below.

S =


 1
−1
0

 ,
3

2
2

 ,
 4

3
−4
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Is S linearly independent or linearly dependent? Explain why.

3. Based on your answer to the previous question, is the matrix below singular or nonsin-
gular? Explain.  1 3 4

−1 2 3
0 2 −4
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Subsection EXC
Exercises

Determine if the sets of vectors in Exercises C20–C25 are linearly independent or linearly
dependent. When the set is linearly dependent, exhibit a nontrivial relation of linear depen-
dence.

C20


 1
−2
1

 ,
 2
−1
3

 ,
1

5
0


Contributed by Robert Beezer Solution [502]

C21



−1
2
4
2

 ,


3
3
−1
3

 ,


7
3
−6
4
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Contributed by Robert Beezer Solution [502]

C22


1

5
1

 ,
 6
−1
2

 ,
 9
−3
8

 ,
 2

8
−1

 ,
 3
−2
0


Contributed by Robert Beezer Solution [503]

C23




1
−2
2
5
3

 ,


3
3
1
2
−4

 ,


2
1
2
−1
1

 ,


1
0
1
2
2




Contributed by Robert Beezer Solution [504]
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C24




1
2
−1
0
1

 ,


3
2
−1
2
2

 ,


4
4
−2
2
3

 ,

−1
2
−1
−2
0




Contributed by Robert Beezer Solution [505]

C25




2
1
3
−1
2

 ,


4
−2
1
3
2

 ,


10
−7
0
10
4




Contributed by Robert Beezer Solution [506]

C30 For the matrix B below, find a set S that is linearly independent and spans the null
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space of B, that is, N (B) = 〈S〉.

B =

−3 1 −2 7
−1 2 1 4
1 1 2 −1


Contributed by Robert Beezer Solution [507]

C31 For the matrix A below, find a linearly independent set S so that the null space of A
is spanned by S, that is, N (A) = 〈S〉.

A =


−1 −2 2 1 5
1 2 1 1 5
3 6 1 2 7
2 4 0 1 2


Contributed by Robert Beezer Solution [508]
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C32 Find a set of column vectors, T , such that (1) the span of T is the null space of B,
〈T 〉 = N (B) and (2) T is a linearly independent set.

B =

 2 1 1 1
−4 −3 1 −7
1 1 −1 3


Contributed by Robert Beezer Solution [510]

C33 Find a set S so that S is linearly independent and N (A) = 〈S〉, where N (A) is the
null space of the matrix A below.

A =

2 3 3 1 4
1 1 −1 −1 −3
3 2 −8 −1 1


Contributed by Robert Beezer Solution [511]
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C50 Consider each archetype that is a system of equations and consider the solutions
listed for the homogeneous version of the archetype. (If only the trivial solution is listed,
then assume this is the only solution to the system.) From the solution set, determine if the
columns of the coefficient matrix form a linearly independent or linearly dependent set. In
the case of a linearly dependent set, use one of the sample solutions to provide a nontrivial
relation of linear dependence on the set of columns of the coefficient matrix (Definition RLD
[1061]). Indicate when Theorem MVSLD [475] applies and connect this with the number of
variables and equations in the system of equations.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
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Contributed by Robert Beezer

C51 For each archetype that is a system of equations consider the homogeneous version.
Write elements of the solution set in vector form (Theorem VFSLS [350]) and from this
extract the vectors zj described in Theorem BNS [484]. These vectors are used in a span
construction to describe the null space of the coefficient matrix for each archetype. What
does it mean when we write a null space as 〈{ }〉?
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
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Contributed by Robert Beezer

C52 For each archetype that is a system of equations consider the homogeneous version.
Sample solutions are given and a linearly independent spanning set is given for the null
space of the coefficient matrix. Write each of the sample solutions individually as a linear
combination of the vectors in the spanning set for the null space of the coefficient matrix.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
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Contributed by Robert Beezer

C60 For the matrix A below, find a set of vectors S so that (1) S is linearly independent,
and (2) the span of S equals the null space of A, 〈S〉 = N (A). (See Exercise SS.C60 [430].)

A =

 1 1 6 −8
1 −2 0 1
−2 1 −6 7


Contributed by Robert Beezer Solution [512]

M50 Consider the set of vectors from C3, W , given below. Find a set T that contains
three vectors from W and such that W = 〈T 〉.

W = 〈{v1, v2, v3, v4, v5}〉 =

〈
2

1
1

 ,
−1
−1
1

 ,
1

2
3

 ,
3

1
3

 ,
 0

1
−3


〉
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Contributed by Robert Beezer Solution [514]

T10 Prove that if a set of vectors contains the zero vector, then the set is linearly depen-
dent. (Ed. “The zero vector is death to linearly independent sets.”)
Contributed by Martin Jackson

T12 Suppose that S is a linearly independent set of vectors, and T is a subset of S, T ⊆ S
(Definition SSET [2325]). Prove that T is linearly independent.
Contributed by Robert Beezer

T13 Suppose that T is a linearly dependent set of vectors, and T is a subset of S, T ⊆ S
(Definition SSET [2325]). Prove that S is linearly dependent.
Contributed by Robert Beezer

T15 Suppose that {v1, v2, v3, . . . , vn} is a set of vectors. Prove that

{v1 − v2, v2 − v3, v3 − v4, . . . , vn − v1}
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is a linearly dependent set.

Contributed by Robert Beezer Solution [516]

T20 Suppose that {v1, v2, v3, v4} is a linearly independent set in C35. Prove that

{v1, v1 + v2, v1 + v2 + v3, v1 + v2 + v3 + v4}

is a linearly independent set.
Contributed by Robert Beezer Solution [517]

T50 Suppose that A is an m× n matrix with linearly independent columns and the linear
system LS(A, b) is consistent. Show that this system has a unique solution. (Notice that
we are not requiring A to be square.)
Contributed by Robert Beezer Solution [519]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [491]
With three vectors from C3, we can form a square matrix by making these three vectors the
columns of a matrix. We do so, and row-reduce to obtain, 1 0 0

0 1 0

0 0 1


the 3×3 identity matrix. So by Theorem NME2 [479] the original matrix is nonsingular and
its columns are therefore a linearly independent set.

C21 Contributed by Robert Beezer Statement [491]
Theorem LIVRN [471] says we can answer this question by putting theses vectors into a
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matrix as columns and row-reducing. Doing this we obtain,


1 0 0

0 1 0

0 0 1
0 0 0



With n = 3 (3 vectors, 3 columns) and r = 3 (3 leading 1’s) we have n = r and the theorem
says the vectors are linearly independent.

C22 Contributed by Robert Beezer Statement [492]
Five vectors from C3. Theorem MVSLD [475] says the set is linearly dependent. Boom.

C23 Contributed by Robert Beezer Statement [492]
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Theorem LIVRN [471] suggests we analyze a matrix whose columns are the vectors of S,

A =


1 3 2 1
−2 3 1 0
2 1 2 1
5 2 −1 2
3 −4 1 2


Row-reducing the matrix A yields, 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


We see that r = 4 = n, where r is the number of nonzero rows and n is the number of
columns. By Theorem LIVRN [471], the set S is linearly independent.
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C24 Contributed by Robert Beezer Statement [493]
Theorem LIVRN [471] suggests we analyze a matrix whose columns are the vectors from the
set,

A =


1 3 4 −1
2 2 4 2
−1 −1 −2 −1
0 2 2 −2
1 2 3 0


Row-reducing the matrix A yields, 

1 0 1 2

0 1 1 −1
0 0 0 0
0 0 0 0
0 0 0 0


We see that r = 2 6= 4 = n, where r is the number of nonzero rows and n is the number of
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columns. By Theorem LIVRN [471], the set S is linearly dependent.

C25 Contributed by Robert Beezer Statement [493]
Theorem LIVRN [471] suggests we analyze a matrix whose columns are the vectors from the
set,

A =


2 4 10
1 −2 −7
3 1 0
−1 3 10
2 2 4


Row-reducing the matrix A yields, 

1 0 −1

0 1 3
0 0 0
0 0 0
0 0 0
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We see that r = 2 6= 3 = n, where r is the number of nonzero rows and n is the number of
columns. By Theorem LIVRN [471], the set S is linearly dependent.

C30 Contributed by Robert Beezer Statement [493]
The requested set is described by Theorem BNS [484]. It is easiest to find by using the
procedure of Example VFSAL [362]. Begin by row-reducing the matrix, viewing it as the
coefficient matrix of a homogeneous system of equations. We obtain,

 1 0 1 −2

0 1 1 1
0 0 0 0



Now build the vector form of the solutions to this homogeneous system (Theorem VFSLS
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[350]). The free variables are x3 and x4, corresponding to the columns without leading 1’s,
x1

x2

x3

x4

 = x3


−1
−1
1
0

+ x4


2
−1
0
1


The desired set S is simply the constant vectors in this expression, and these are the vectors
z1 and z2 described by Theorem BNS [484].

S =



−1
−1
1
0

 ,


2
−1
0
1




C31 Contributed by Robert Beezer Statement [494]
Theorem BNS [484] provides formulas for n − r vectors that will meet the requirements of
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this question. These vectors are the same ones listed in Theorem VFSLS [350] when we
solve the homogeneous system LS(A, 0), whose solution set is the null space (Definition
NSM [216]).

To apply Theorem BNS [484] or Theorem VFSLS [350] we first row-reduce the matrix,
resulting in

B =


1 2 0 0 3

0 0 1 0 6

0 0 0 1 −4
0 0 0 0 0


So we see that n − r = 5 − 3 = 2 and F = {2, 5}, so the vector form of a generic solution
vector is 

x1

x2

x3

x4

x5

 = x2


−2
1
0
0
0

+ x5


−3
0
−6
4
1
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So we have

N (A) =

〈


−2
1
0
0
0

 ,

−3
0
−6
4
1



〉

C32 Contributed by Robert Beezer Statement [495]
The conclusion of Theorem BNS [484] gives us everything this question asks for. We need
the reduced row-echelon form of the matrix so we can determine the number of vectors in
T , and their entries.  2 1 1 1

−4 −3 1 −7
1 1 −1 3

 RREF−−−→
 1 0 2 −2

0 1 −3 5
0 0 0 0


We can build the set T in immediately via Theorem BNS [484], but we will illustrate its
construction in two steps. Since F = {3, 4}, we will have two vectors and can distribute
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strategically placed ones, and many zeros. Then we distribute the negatives of the appro-
priate entries of the non-pivot columns of the reduced row-echelon matrix.

T =


1

0

 ,
0

1


 T =



−2
3
1
0

 ,


2
−5
0
1




C33 Contributed by Robert Beezer Statement [495]
A direct application of Theorem BNS [484] will provide the desired set. We require the
reduced row-echelon form of A.2 3 3 1 4

1 1 −1 −1 −3
3 2 −8 −1 1

 RREF−−−→
 1 0 −6 0 3

0 1 5 0 −2

0 0 0 1 4


The non-pivot columns have indices F = {3, 5}. We build the desired set in two steps, first
placing the requisite zeros and ones in locations based on F , then placing the negatives of
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the entries of columns 3 and 5 in the proper locations. This is all specified in Theorem BNS
[484].

S =



1

0

 ,
0

1


 =




6
−5
1
0
0

 ,

−3
2
0
−4
1




C60 Contributed by Robert Beezer Statement [499]
Theorem BNS [484] says that if we find the vector form of the solutions to the homogeneous
system LS(A, 0), then the fixed vectors (one per free variable) will have the desired proper-
ties. Row-reduce A, viewing it as the augmented matrix of a homogeneous system with an

Version 2.11



Subsection LI.SOL Solutions 516

invisible columns of zeros as the last column,

 1 0 4 −5

0 1 2 −3
0 0 0 0



Moving to the vector form of the solutions (Theorem VFSLS [350]), with free variables x3

and x4, solutions to the consistent system (it is homogeneous, Theorem HSC [208]) can be
expressed as 

x1

x2

x3

x4

 = x3


−4
−2
1
0

+ x4


5
3
0
1
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Then with S given by

S =



−4
−2
1
0

 ,


5
3
0
1




Theorem BNS [484] guarantees the set has the desired properties.

M50 Contributed by Robert Beezer Statement [499]
We want to first find some relations of linear dependence on {v1, v2, v3, v4, v5} that will
allow us to “kick out” some vectors, in the spirit of Example SCAD [419]. To find relations
of linear dependence, we formulate a matrix A whose columns are v1, v2, v3, v4, v5. Then
we consider the homogeneous system of equations LS(A, 0) by row-reducing its coefficient
matrix (remember that if we formulated the augmented matrix we would just add a column
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of zeros). After row-reducing, we obtain 1 0 0 2 −1

0 1 0 1 −2

0 0 1 0 0


From this we that solutions can be obtained employing the free variables x4 and x5. With
appropriate choices we will be able to conclude that vectors v4 and v5 are unnecessary for
creating W via a span. By Theorem SLSLC [327] the choice of free variables below lead to
solutions and linear combinations, which are then rearranged.

x4 = 1, x5 = 0 ⇒ (−2)v1 + (−1)v2 + (0)v3 + (1)v4 + (0)v5 = 0 ⇒ v4 = 2v1 + v2

x4 = 0, x5 = 1 ⇒ (1)v1 + (2)v2 + (0)v3 + (0)v4 + (1)v5 = 0 ⇒ v5 = −v1 − 2v2

Since v4 and v5 can be expressed as linear combinations of v1 and v2 we can say that v4

and v5 are not needed for the linear combinations used to build W (a claim that we could
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establish carefully with a pair of set equality arguments). Thus

W = 〈{v1, v2, v3}〉 =

〈
2

1
1

 ,
−1
−1
1

 ,
1

2
3


〉

That the {v1, v2, v3} is linearly independent set can be established quickly with Theorem
LIVRN [471].

There are other answers to this question, but notice that any nontrivial linear combination
of v1, v2, v3, v4, v5 will have a zero coefficient on v3, so this vector can never be eliminated
from the set used to build the span.

T15 Contributed by Robert Beezer Statement [500]
Consider the following linear combination

1 (v1 − v2) +1 (v2 − v3) + 1 (v3 − v4) + · · ·+ 1 (vn − v1)

= v1 − v2 + v2 − v3 + v3 − v4 + · · ·+ vn − v1
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= v1 + 0 + 0 + · · ·+ 0− v1

= 0

This is a nontrivial relation of linear dependence (Definition RLDCV [458]), so by Definition
LICV [458] the set is linearly dependent.

T20 Contributed by Robert Beezer Statement [501]
Our hypothesis and our conclusion use the term linear independence, so it will get a workout.
To establish linear independence, we begin with the definition (Definition LICV [458]) and
write a relation of linear dependence (Definition RLDCV [458]),

α1 (v1) + α2 (v1 + v2) + α3 (v1 + v2 + v3) + α4 (v1 + v2 + v3 + v4) = 0

Using the distributive and commutative properties of vector addition and scalar multiplica-
tion (Theorem VSPCV [295]) this equation can be rearranged as

(α1 + α2 + α3 + α4) v1 + (α2 + α3 + α4) v2 + (α3 + α4) v3 + (α4) v4 = 0
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However, this is a relation of linear dependence (Definition RLDCV [458]) on a linearly
independent set, {v1, v2, v3, v4} (this was our lone hypothesis). By the definition of linear
independence (Definition LICV [458]) the scalars must all be zero. This is the homogeneous
system of equations,

α1 + α2 + α3 + α4 = 0

α2 + α3 + α4 = 0

α3 + α4 = 0

α4 = 0

Row-reducing the coefficient matrix of this system (or backsolving) gives the conclusion

α1 = 0 α2 = 0 α3 = 0 α4 = 0

This means, by Definition LICV [458], that the original set

{v1, v1 + v2, v1 + v2 + v3, v1 + v2 + v3 + v4}
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is linearly independent.

T50 Contributed by Robert Beezer Statement [501]
Let A = [A1|A2|A3| . . . |An]. LS(A, b) is consistent, so we know the system has at least
one solution (Definition CS [161]). We would like to show that there are no more than
one solution to the system. Employing Technique U [2357], suppose that x and y are two
solution vectors for LS(A, b). By Theorem SLSLC [327] we know we can write,

b = [x]1A1 + [x]2A2 + [x]3A3 + · · ·+ [x]nAn

b = [y]1A1 + [y]2A2 + [y]3A3 + · · ·+ [y]nAn

Then

0 = b− b

= ([x]1A1 + [x]2A2 + · · ·+ [x]nAn)− ([y]1A1 + [y]2A2 + · · ·+ [y]nAn)

= ([x]1 − [y]1)A1 + ([x]2 − [y]2)A2 + · · ·+ ([x]n − [y]n)An

Version 2.11



Subsection LI.SOL Solutions 523

This is a relation of linear dependence (Definition RLDCV [458]) on a linearly independent
set (the columns of A). So the scalars must all be zero,

[x]1 − [y]1 = 0 [x]2 − [y]2 = 0 . . . [x]n − [y]n = 0

Rearranging these equations yields the statement that [x]i = [y]i, for 1 ≤ i ≤ n. However,
this is exactly how we define vector equality (Definition CVE [286]), so x = y and the system
has only one solution.
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Section LDS

Linear Dependence and Spans

In any linearly dependent set there is always one vector that can be written as a linear
combination of the others. This is the substance of the upcoming Theorem DLDS [522].
Perhaps this will explain the use of the word “dependent.” In a linearly dependent set, at
least one vector “depends” on the others (via a linear combination).

Indeed, because Theorem DLDS [522] is an equivalence (Technique E [2348]) some au-
thors use this condition as a definition (Technique D [2337]) of linear dependence. Then
linear independence is defined as the logical opposite of linear dependence. Of course, we
have chosen to take Definition LICV [458] as our definition, and then follow with Theorem
DLDS [522] as a theorem.
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Subsection LDSS
Linearly Dependent Sets and Spans

If we use a linearly dependent set to construct a span, then we can always create the same
infinite set with a starting set that is one vector smaller in size. We will illustrate this
behavior in Example RSC5 [525]. However, this will not be possible if we build a span from
a linearly independent set. So in a certain sense, using a linearly independent set to formulate
a span is the best possible way — there aren’t any extra vectors being used to build up all
the necessary linear combinations. OK, here’s the theorem, and then the example.

Theorem DLDS
Dependency in Linearly Dependent Sets
Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors. Then S is a linearly dependent
set if and only if there is an index t, 1 ≤ t ≤ n such that ut is a linear combination of the

Version 2.11



Subsection LDS.LDSS Linearly Dependent Sets and Spans 526

vectors u1, u2, u3, . . . , ut−1, ut+1, . . . , un. �

Proof (⇒) Suppose that S is linearly dependent, so there exists a nontrivial relation of
linear dependence by Definition LICV [458]. That is, there are scalars, αi, 1 ≤ i ≤ n, which
are not all zero, such that

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0.

Since the αi cannot all be zero, choose one, say αt, that is nonzero. Then,

ut =
−1

αt
(−αtut) Property MICN [2318]

=
−1

αt
(α1u1 + · · ·+ αt−1ut−1 + αt+1ut+1 + · · ·+ αnun) Theorem VSPCV [295]

=
−α1

αt
u1 + · · ·+ −αt−1

αt
ut−1 +

−αt+1

αt
ut+1 + · · ·+ −αn

αt
un Theorem VSPCV [295]

Since the values of αi
αt

are again scalars, we have expressed ut as a linear combination of the
other elements of S.
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(⇐) Assume that the vector ut is a linear combination of the other vectors in S. Write
this linear combination, denoting the relevant scalars as β1, β2, . . . , βt−1, βt+1, . . .βn, as

ut = β1u1 + β2u2 + · · ·+ βt−1ut−1 + βt+1ut+1 + · · ·+ βnun

Then we have

β1u1 + · · ·+ βt−1ut−1 + (−1)ut + βt+1ut+1 + · · ·+ βnun

= ut + (−1)ut Theorem VSPCV [295]

= (1 + (−1)) ut Property DSAC [296]

= 0ut Property AICN [2318]

= 0 Definition CVSM [291]

So the scalars β1, β2, β3, . . . , βt−1, βt = −1, βt+1, . . . , βn provide a nontrivial linear combi-
nation of the vectors in S, thus establishing that S is a linearly dependent set (Definition
LICV [458]). �

This theorem can be used, sometimes repeatedly, to whittle down the size of a set of
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vectors used in a span construction. We have seen some of this already in Example SCAD
[419], but in the next example we will detail some of the subtleties.

Example RSC5
Reducing a span in C5

Consider the set of n = 4 vectors from C5,

R = {v1, v2, v3, v4} =




1
2
−1
3
2

 ,


2
1
3
1
2

 ,


0
−7
6
−11
−2

 ,


4
1
2
1
6




and define V = 〈R〉.
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To employ Theorem LIVHS [465], we form a 5× 4 coefficient matrix, D,

D =


1 2 0 4
2 1 −7 1
−1 3 6 2
3 1 −11 1
2 2 −2 6


and row-reduce to understand solutions to the homogeneous system LS(D, 0),

1 0 0 4

0 1 0 0

0 0 1 1
0 0 0 0
0 0 0 0

 .
We can find infinitely many solutions to this system, most of them nontrivial, and we choose
any one we like to build a relation of linear dependence on R. Let’s begin with x4 = 1, to
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find the solution 
−4
0
−1
1

 .
So we can write the relation of linear dependence,

(−4)v1 + 0v2 + (−1)v3 + 1v4 = 0.

Theorem DLDS [522] guarantees that we can solve this relation of linear dependence for
some vector in R, but the choice of which one is up to us. Notice however that v2 has a
zero coefficient. In this case, we cannot choose to solve for v2. Maybe some other relation of
linear dependence would produce a nonzero coefficient for v2 if we just had to solve for this
vector. Unfortunately, this example has been engineered to always produce a zero coefficient
here, as you can see from solving the homogeneous system. Every solution has x2 = 0!

OK, if we are convinced that we cannot solve for v2, let’s instead solve for v3,

v3 = (−4)v1 + 0v2 + 1v4 = (−4)v1 + 1v4.
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We now claim that this particular equation will allow us to write

V = 〈R〉 = 〈{v1, v2, v3, v4}〉 = 〈{v1, v2, v4}〉

in essence declaring v3 as surplus for the task of building V as a span. This claim is
an equality of two sets, so we will use Definition SE [2327] to establish it carefully. Let
R′ = {v1, v2, v4} and V ′ = 〈R′〉. We want to show that V = V ′.

First show that V ′ ⊆ V . Since every vector of R′ is in R, any vector we can construct in
V ′ as a linear combination of vectors from R′ can also be constructed as a vector in V by
the same linear combination of the same vectors in R. That was easy, now turn it around.

Next show that V ⊆ V ′. Choose any v from V . Then there are scalars α1, α2, α3, α4 so
that

v = α1v1 + α2v2 + α3v3 + α4v4

= α1v1 + α2v2 + α3 ((−4)v1 + 1v4) + α4v4

= α1v1 + α2v2 + ((−4α3)v1 + α3v4) + α4v4
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= (α1 − 4α3) v1 + α2v2 + (α3 + α4) v4.

This equation says that v can then be written as a linear combination of the vectors in R′

and hence qualifies for membership in V ′. So V ⊆ V ′ and we have established that V = V ′.
If R′ was also linearly dependent (it is not), we could reduce the set even further. Notice

that we could have chosen to eliminate any one of v1, v3 or v4, but somehow v2 is essential
to the creation of V since it cannot be replaced by any linear combination of v1, v3 or v4. �

Subsection COV
Casting Out Vectors

In Example RSC5 [525] we used four vectors to create a span. With a relation of linear
dependence in hand, we were able to “toss-out” one of these four vectors and create the
same span from a subset of just three vectors from the original set of four. We did have
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to take some care as to just which vector we tossed-out. In the next example, we will be
more methodical about just how we choose to eliminate vectors from a linearly dependent
set while preserving a span.

Example COV
Casting out vectors
We begin with a set S containing seven vectors from C4,

S =




1
2
0
−1

 ,


4
8
0
−4

 ,


0
−1
2
2

 ,

−1
3
−3
4

 ,


0
9
−4
8

 ,


7
−13
12
−31

 ,

−9
7
−8
37




and define W = 〈S〉. The set S is obviously linearly dependent by Theorem MVSLD [475],
since we have n = 7 vectors from C4. So we can slim down S some, and still create W as the
span of a smaller set of vectors. As a device for identifying relations of linear dependence
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among the vectors of S, we place the seven column vectors of S into a matrix as columns,

A = [A1|A2|A3| . . . |A7] =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37


By Theorem SLSLC [327] a nontrivial solution to LS(A, 0) will give us a nontrivial relation
of linear dependence (Definition RLDCV [458]) on the columns of A (which are the elements
of the set S). The row-reduced form for A is the matrix

B =


1 4 0 0 2 1 −3

0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0


so we can easily create solutions to the homogeneous system LS(A, 0) using the free variables
x2, x5, x6, x7. Any such solution will correspond to a relation of linear dependence on the
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columns of B. These solutions will allow us to solve for one column vector as a linear
combination of some others, in the spirit of Theorem DLDS [522], and remove that vector
from the set. We’ll set about forming these linear combinations methodically. Set the free
variable x2 to one, and set the other free variables to zero. Then a solution to LS(A, 0) is

x =



−4
1
0
0
0
0
0


which can be used to create the linear combination

(−4)A1 + 1A2 + 0A3 + 0A4 + 0A5 + 0A6 + 0A7 = 0
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This can then be arranged and solved for A2, resulting in A2 expressed as a linear combi-
nation of {A1, A3, A4},

A2 = 4A1 + 0A3 + 0A4

This means that A2 is surplus, and we can create W just as well with a smaller set with this
vector removed,

W = 〈{A1, A3, A4, A5, A6, A7}〉

Technically, this set equality for W requires a proof, in the spirit of Example RSC5 [525],
but we will bypass this requirement here, and in the next few paragraphs.

Now, set the free variable x5 to one, and set the other free variables to zero. Then a
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solution to LS(B, 0) is

x =



−2
0
−1
−2
1
0
0


which can be used to create the linear combination

(−2)A1 + 0A2 + (−1)A3 + (−2)A4 + 1A5 + 0A6 + 0A7 = 0

This can then be arranged and solved for A5, resulting in A5 expressed as a linear combi-
nation of {A1, A3, A4},

A5 = 2A1 + 1A3 + 2A4
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This means that A5 is surplus, and we can create W just as well with a smaller set with this
vector removed,

W = 〈{A1, A3, A4, A6, A7}〉
Do it again, set the free variable x6 to one, and set the other free variables to zero. Then

a solution to LS(B, 0) is

x =



−1
0
3
6
0
1
0


which can be used to create the linear combination

(−1)A1 + 0A2 + 3A3 + 6A4 + 0A5 + 1A6 + 0A7 = 0
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This can then be arranged and solved for A6, resulting in A6 expressed as a linear combi-
nation of {A1, A3, A4},

A6 = 1A1 + (−3)A3 + (−6)A4

This means that A6 is surplus, and we can create W just as well with a smaller set with this
vector removed,

W = 〈{A1, A3, A4, A7}〉
Set the free variable x7 to one, and set the other free variables to zero. Then a solution

to LS(B, 0) is

x =



3
0
−5
−6
0
0
1
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which can be used to create the linear combination

3A1 + 0A2 + (−5)A3 + (−6)A4 + 0A5 + 0A6 + 1A7 = 0

This can then be arranged and solved for A7, resulting in A7 expressed as a linear combi-
nation of {A1, A3, A4},

A7 = (−3)A1 + 5A3 + 6A4

This means that A7 is surplus, and we can create W just as well with a smaller set with this
vector removed,

W = 〈{A1, A3, A4}〉
You might think we could keep this up, but we have run out of free variables. And not

coincidentally, the set {A1, A3, A4} is linearly independent (check this!). It should be clear
how each free variable was used to eliminate the corresponding column from the set used to
span the column space, as this will be the essence of the proof of the next theorem. The
column vectors in S were not chosen entirely at random, they are the columns of Archetype
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I [2485]. See if you can mimic this example using the columns of Archetype J [2498]. Go
ahead, we’ll go grab a cup of coffee and be back before you finish up.

For extra credit, notice that the vector

b =


3
9
1
4


is the vector of constants in the definition of Archetype I [2485]. Since the system LS(A, b)
is consistent, we know by Theorem SLSLC [327] that b is a linear combination of the columns
of A, or stated equivalently, b ∈ W . This means that b must also be a linear combination
of just the three columns A1, A3, A4. Can you find such a linear combination? Did you
notice that there is just a single (unique) answer? Hmmmm. �

Example COV [530] deserves your careful attention, since this important example moti-
vates the following very fundamental theorem.
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Theorem BS
Basis of a Span
Suppose that S = {v1, v2, v3, . . . , vn} is a set of column vectors. Define W = 〈S〉 and let
A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon
form of A, with D = {d1, d2, d3, . . . , dr} the set of column indices corresponding to the
pivot columns of B. Then

1. T = {vd1 , vd2 , vd3 , . . . vdr} is a linearly independent set.

2. W = 〈T 〉.
�

Proof To prove that T is linearly independent, begin with a relation of linear dependence
on T ,

0 = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr

and we will try to conclude that the only possibility for the scalars αi is that they are all zero.
Denote the non-pivot columns of B by F = {f1, f2, f3, . . . , fn−r}. Then we can preserve
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the equality by adding a big fat zero to the linear combination,

0 = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr + 0vf1 + 0vf2 + 0vf3 + . . .+ 0vfn−r

By Theorem SLSLC [327], the scalars in this linear combination (suitably reordered) are a
solution to the homogeneous system LS(A, 0). But notice that this is the solution obtained
by setting each free variable to zero. If we consider the description of a solution vector in
the conclusion of Theorem VFSLS [350], in the case of a homogeneous system, then we see
that if all the free variables are set to zero the resulting solution vector is trivial (all zeros).
So it must be that αi = 0, 1 ≤ i ≤ r. This implies by Definition LICV [458] that T is a
linearly independent set.

The second conclusion of this theorem is an equality of sets (Definition SE [2327]). Since
T is a subset of S, any linear combination of elements of the set T can also be viewed as a
linear combination of elements of the set S. So 〈T 〉 ⊆ 〈S〉 = W . It remains to prove that
W = 〈S〉 ⊆ 〈T 〉.

For each k, 1 ≤ k ≤ n− r, form a solution x to LS(A, 0) by setting the free variables as
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follows:

xf1 = 0 xf2 = 0 xf3 = 0 . . . xfk = 1 . . . xfn−r = 0

By Theorem VFSLS [350], the remainder of this solution vector is given by,

xd1 = − [B]1,fk xd2 = − [B]2,fk xd3 = − [B]3,fk . . . xdr = − [B]r,fk

From this solution, we obtain a relation of linear dependence on the columns of A,

− [B]1,fk vd1 − [B]2,fk vd2 − [B]3,fk vd3 − . . .− [B]r,fk vdr + 1vfk = 0

which can be arranged as the equality

vfk = [B]1,fk vd1 + [B]2,fk vd2 + [B]3,fk vd3 + . . .+ [B]r,fk vdr

Now, suppose we take an arbitrary element, w, of W = 〈S〉 and write it as a linear
combination of the elements of S, but with the terms organized according to the indices in
D and F ,

w = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr + β1vf1 + β2vf2 + β3vf3 + . . .+ βn−rvfn−r
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From the above, we can replace each vfj by a linear combination of the vdi ,

w = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr+

β1

(
[B]1,f1 vd1 + [B]2,f1 vd2 + [B]3,f1 vd3 + . . .+ [B]r,f1 vdr

)
+

β2

(
[B]1,f2 vd1 + [B]2,f2 vd2 + [B]3,f2 vd3 + . . .+ [B]r,f2 vdr

)
+

β3

(
[B]1,f3 vd1 + [B]2,f3 vd2 + [B]3,f3 vd3 + . . .+ [B]r,f3 vdr

)
+

...

βn−r

(
[B]1,fn−r vd1 + [B]2,fn−r vd2 + [B]3,fn−r vd3 + . . .+ [B]r,fn−r vdr

)
With repeated applications of several of the properties of Theorem VSPCV [295] we can
rearrange this expression as,

=
(
α1 + β1 [B]1,f1 + β2 [B]1,f2 + β3 [B]1,f3 + . . .+ βn−r [B]1,fn−r

)
vd1+
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(
α2 + β1 [B]2,f1 + β2 [B]2,f2 + β3 [B]2,f3 + . . .+ βn−r [B]2,fn−r

)
vd2+(

α3 + β1 [B]3,f1 + β2 [B]3,f2 + β3 [B]3,f3 + . . .+ βn−r [B]3,fn−r

)
vd3+

...(
αr + β1 [B]r,f1 + β2 [B]r,f2 + β3 [B]r,f3 + . . .+ βn−r [B]r,fn−r

)
vdr

This mess expresses the vector w as a linear combination of the vectors in

T = {vd1 , vd2 , vd3 , . . . vdr}
thus saying that w ∈ 〈T 〉. Therefore, W = 〈S〉 ⊆ 〈T 〉. �

In Example COV [530], we tossed-out vectors one at a time. But in each instance, we
rewrote the offending vector as a linear combination of those vectors that corresponded to
the pivot columns of the reduced row-echelon form of the matrix of columns. In the proof
of Theorem BS [539], we accomplish this reduction in one big step. In Example COV [530]
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we arrived at a linearly independent set at exactly the same moment that we ran out of
free variables to exploit. This was not a coincidence, it is the substance of our conclusion of
linear independence in Theorem BS [539].

Here’s a straightforward application of Theorem BS [539].

Example RSC4
Reducing a span in C4

Begin with a set of five vectors from C4,

S =




1
1
2
1

 ,


2
2
4
2

 ,


2
0
−1
1

 ,


7
1
−1
4

 ,


0
2
5
1




and let W = 〈S〉. To arrive at a (smaller) linearly independent set, follow the procedure
described in Theorem BS [539]. Place the vectors from S into a matrix as columns, and
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row-reduce, 
1 2 2 7 0
1 2 0 1 2
2 4 −1 −1 5
1 2 1 4 1

 RREF−−−→


1 2 0 1 2

0 0 1 3 −1
0 0 0 0 0
0 0 0 0 0


Columns 1 and 3 are the pivot columns (D = {1, 3}) so the set

T =




1
1
2
1

 ,


2
0
−1
1




is linearly independent and 〈T 〉 = 〈S〉 = W . Boom!
Since the reduced row-echelon form of a matrix is unique (Theorem RREFU [101]), the

procedure of Theorem BS [539] leads us to a unique set T . However, there is a wide variety
of possibilities for sets T that are linearly independent and which can be employed in a span
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to create W . Without proof, we list two other possibilities:

T ′ =




2
2
4
2

 ,


2
0
−1
1




T ∗ =




3
1
1
2

 ,

−1
1
3
0




Can you prove that T ′ and T ∗ are linearly independent sets and W = 〈S〉 = 〈T ′〉 = 〈T ∗〉? �

Example RES
Reworking elements of a span
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Begin with a set of five vectors from C4,

R =




2
1
3
2

 ,

−1
1
0
1

 ,

−8
−1
−9
−4

 ,


3
1
−1
−2

 ,

−10
−1
−1
4




It is easy to create elements of X = 〈R〉 — we will create one at random,

y = 6


2
1
3
2

+ (−7)


−1
1
0
1

+ 1


−8
−1
−9
−4

+ 6


3
1
−1
−2

+ 2


−10
−1
−1
4

 =


9
2
1
−3


We know we can replace R by a smaller set (since it is obviously linearly dependent by
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Theorem MVSLD [475]) that will create the same span. Here goes,
2 −1 −8 3 −10
1 1 −1 1 −1
3 0 −9 −1 −1
2 1 −4 −2 4

 RREF−−−→


1 0 −3 0 −1

0 1 2 0 2

0 0 0 1 −2
0 0 0 0 0


So, if we collect the first, second and fourth vectors from R,

P =




2
1
3
2

 ,

−1
1
0
1

 ,


3
1
−1
−2




then P is linearly independent and 〈P 〉 = 〈R〉 = X by Theorem BS [539]. Since we built
y as an element of 〈R〉 it must also be an element of 〈P 〉. Can we write y as a linear
combination of just the three vectors in P? The answer is, of course, yes. But let’s compute

Version 2.11



Subsection LDS.COV Casting Out Vectors 552

an explicit linear combination just for fun. By Theorem SLSLC [327] we can get such a
linear combination by solving a system of equations with the column vectors of R as the
columns of a coefficient matrix, and y as the vector of constants. Employing an augmented
matrix to solve this system,

2 −1 3 9
1 1 1 2
3 0 −1 1
2 1 −2 −3

 RREF−−−→


1 0 0 1

0 1 0 −1

0 0 1 2
0 0 0 0


So we see, as expected, that

1


2
1
3
2

+ (−1)


−1
1
0
1

+ 2


3
1
−1
−2

 =


9
2
1
−3

 = y

A key feature of this example is that the linear combination that expresses y as a linear
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combination of the vectors in P is unique. This is a consequence of the linear independence
of P . The linearly independent set P is smaller than R, but still just (barely) big enough
to create elements of the set X = 〈R〉. There are many, many ways to write y as a linear
combination of the five vectors in R (the appropriate system of equations to verify this claim
has two free variables in the description of the solution set), yet there is precisely one way
to write y as a linear combination of the three vectors in P . �
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Subsection READ
Reading Questions

1. Let S be the linearly dependent set of three vectors below.

S =




1
10
100
1000

 ,


1
1
1
1

 ,


5
23
203
2003




Write one vector from S as a linear combination of the other two (you should be able to
do this on sight, rather than doing some computations). Convert this expression into a
nontrivial relation of linear dependence on S.

2. Explain why the word “dependent” is used in the definition of linear dependence.
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3. Suppose that Y = 〈P 〉 = 〈Q〉, where P is a linearly dependent set and Q is linearly
independent. Would you rather use P or Q to describe Y ? Why?
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Subsection EXC
Exercises

C20 Let T be the set of columns of the matrix B below. Define W = 〈T 〉. Find a set R
so that (1) R has 3 vectors, (2) R is a subset of T , and (3) W = 〈R〉.

B =

−3 1 −2 7
−1 2 1 4
1 1 2 −1


Contributed by Robert Beezer Solution [557]

C40 Verify that the set R′ = {v1, v2, v4} at the end of Example RSC5 [525] is linearly
independent.
Contributed by Robert Beezer
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C50 Consider the set of vectors from C3, W , given below. Find a linearly independent set
T that contains three vectors from W and such that 〈W 〉 = 〈T 〉.

W = {v1, v2, v3, v4, v5} =


2

1
1

 ,
−1
−1
1

 ,
1

2
3

 ,
3

1
3

 ,
 0

1
−3


Contributed by Robert Beezer Solution [558]

C51 Given the set S below, find a linearly independent set T so that 〈T 〉 = 〈S〉.

S =


 2
−1
2

 ,
3

0
1

 ,
 1

1
−1

 ,
 5
−1
3


Contributed by Robert Beezer Solution [559]
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C52 Let W be the span of the set of vectors S below, W = 〈S〉. Find a set T so that 1)
the span of T is W , 〈T 〉 = W , (2) T is a linearly independent set, and (3) T is a subset of
S. (15 points)

S =


 1

2
−1

 ,
 2
−3
1

 ,
 4

1
−1

 ,
3

1
1

 ,
 3
−1
0


Contributed by Robert Beezer Solution [560]

C55 Let T be the set of vectors T =


 1
−1
2

 ,
3

0
1

 ,
4

2
3

 ,
3

0
6

. Find two different

subsets of T , named R and S, so that R and S each contain three vectors, and so that
〈R〉 = 〈T 〉 and 〈S〉 = 〈T 〉. Prove that both R and S are linearly independent.
Contributed by Robert Beezer Solution [561]

C70 Reprise Example RES [546] by creating a new version of the vector y. In other words,
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form a new, different linear combination of the vectors in R to create a new vector y (but
do not simplify the problem too much by choosing any of the five new scalars to be zero).
Then express this new y as a combination of the vectors in P .
Contributed by Robert Beezer

M10 At the conclusion of Example RSC4 [544] two alternative solutions, sets T ′ and T ∗,
are proposed. Verify these claims by proving that 〈T 〉 = 〈T ′〉 and 〈T 〉 = 〈T ∗〉.
Contributed by Robert Beezer

T40 Suppose that v1 and v2 are any two vectors from Cm. Prove the following set equality.

〈{v1, v2}〉 = 〈{v1 + v2, v1 − v2}〉

Contributed by Robert Beezer Solution [563]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [553]

Let T = {w1, w2, w3, w4}. The vector


2
−1
0
1

 is a solution to the homogeneous system with

the matrix B as the coefficient matrix (check this!). By Theorem SLSLC [327] it provides
the scalars for a linear combination of the columns of B (the vectors in T ) that equals the
zero vector, a relation of linear dependence on T ,

2w1 + (−1)w2 + (1)w4 = 0
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We can rearrange this equation by solving for w4,

w4 = (−2)w1 + w2

This equation tells us that the vector w4 is superfluous in the span construction that creates
W . So W = 〈{w1, w2, w3}〉. The requested set is R = {w1, w2, w3}.
C50 Contributed by Robert Beezer Statement [554]
To apply Theorem BS [539], we formulate a matrix A whose columns are v1, v2, v3, v4, v5.
Then we row-reduce A. After row-reducing, we obtain 1 0 0 2 −1

0 1 0 1 −2

0 0 1 0 0


From this we that the pivot columns are D = {1, 2, 3}. Thus

T = {v1, v2, v3} =


2

1
1

 ,
−1
−1
1

 ,
1

2
3
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is a linearly independent set and 〈T 〉 = W . Compare this problem with Exercise LI.M50
[499].

C51 Contributed by Robert Beezer Statement [554]
Theorem BS [539] says we can make a matrix with these four vectors as columns, row-reduce,
and just keep the columns with indices in the set D. Here we go, forming the relevant matrix
and row-reducing,  2 3 1 5

−1 0 1 −1
2 1 −1 3

 RREF−−−→
 1 0 −1 1

0 1 1 1
0 0 0 0


Analyzing the row-reduced version of this matrix, we see that the first two columns are pivot
columns, so D = {1, 2}. Theorem BS [539] says we need only “keep” the first two columns
to create a set with the requisite properties,

T =


 2
−1
2

 ,
3

0
1


Version 2.11



Subsection LDS.SOL Solutions 563

C52 Contributed by Robert Beezer Statement [555]

This is a straight setup for the conclusion of Theorem BS [539]. The hypotheses of this
theorem tell us to pack the vectors of W into the columns of a matrix and row-reduce, 1 2 4 3 3

2 −3 1 1 −1
−1 1 −1 1 0

 RREF−−−→
 1 0 2 0 1

0 1 1 0 1

0 0 0 1 0


Pivot columns have indices D = {1, 2, 4}. Theorem BS [539] tells us to form T with columns
1, 2 and 4 of S,

S =


 1

2
−1

 ,
 2
−3
1

 ,
3

1
1


C55 Contributed by Robert Beezer Statement [555]
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Let A be the matrix whose columns are the vectors in T . Then row-reduce A,

A
RREF−−−→ B =

 1 0 0 2

0 1 0 −1

0 0 1 1


From Theorem BS [539] we can form R by choosing the columns of A that correspond to the
pivot columns of B. Theorem BS [539] also guarantees that R will be linearly independent.

R =


 1
−1
2

 ,
3

0
1

 ,
4

2
3


That was easy. To find S will require a bit more work. From B we can obtain a solution
to LS(A, 0), which by Theorem SLSLC [327] will provide a nontrivial relation of linear
dependence on the columns of A, which are the vectors in T . To wit, choose the free variable
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x4 to be 1, then x1 = −2, x2 = 1, x3 = −1, and so

(−2)

 1
−1
2

+ (1)

3
0
1

+ (−1)

4
2
3

+ (1)

3
0
6

 =

0
0
0


this equation can be rewritten with the second vector staying put, and the other three moving
to the other side of the equality,

3
0
1

 = (2)

 1
−1
2

+ (1)

4
2
3

+ (−1)

3
0
6


We could have chosen other vectors to stay put, but may have then needed to divide by a
nonzero scalar. This equation is enough to conclude that the second vector in T is “surplus”

Version 2.11



Subsection LDS.SOL Solutions 566

and can be replaced (see the careful argument in Example RSC5 [525]). So set

S =


 1
−1
2

 ,
4

2
3

 ,
3

0
6


and then 〈S〉 = 〈T 〉. T is also a linearly independent set, which we can show directly. Make
a matrix C whose columns are the vectors in S. Row-reduce B and you will obtain the
identity matrix I3. By Theorem LIVRN [471], the set S is linearly independent.

T40 Contributed by Robert Beezer Statement [556]
This is an equality of sets, so Definition SE [2327] applies.

The “easy” half first. Show that X = 〈{v1 + v2, v1 − v2}〉 ⊆ 〈{v1, v2}〉 = Y .
Choose x ∈ X. Then x = a1(v1 + v2) + a2(v1 − v2) for some scalars a1 and a2. Then,

x = a1(v1 + v2) + a2(v1 − v2)

= a1v1 + a1v2 + a2v1 + (−a2)v2
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= (a1 + a2)v1 + (a1 − a2)v2

which qualifies x for membership in Y , as it is a linear combination of v1, v2.
Now show the opposite inclusion, Y = 〈{v1, v2}〉 ⊆ 〈{v1 + v2, v1 − v2}〉 = X.

Choose y ∈ Y . Then there are scalars b1, b2 such that y = b1v1 + b2v2. Rearranging, we
obtain,

y = b1v1 + b2v2

=
b1
2

[(v1 + v2) + (v1 − v2)] +
b2
2

[(v1 + v2)− (v1 − v2)]

=
b1 + b2

2
(v1 + v2) +

b1 − b2
2

(v1 − v2)

This is an expression for y as a linear combination of v1 + v2 and v1 − v2, earning y
membership in X. Since X is a subset of Y , and vice versa, we see that X = Y , as desired.
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Section O

Orthogonality

In this section we define a couple more operations with vectors, and prove a few theorems.
At first blush these definitions and results will not appear central to what follows, but we will
make use of them at key points in the remainder of the course (such as Section MINM [773],
Section OD [2040]). Because we have chosen to use C as our set of scalars, this subsection
is a bit more, uh, . . . complex than it would be for the real numbers. We’ll explain as we
go along how things get easier for the real numbers R. If you haven’t already, now would
be a good time to review some of the basic properties of arithmetic with complex numbers
described in Section CNO [2313]. With that done, we can extend the basics of complex
number arithmetic to our study of vectors in Cm.
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Subsection CAV
Complex Arithmetic and Vectors

We know how the addition and multiplication of complex numbers is employed in defining
the operations for vectors in Cm (Definition CVA [289] and Definition CVSM [291]). We can
also extend the idea of the conjugate to vectors.

Definition CCCV
Complex Conjugate of a Column Vector
Suppose that u is a vector from Cm. Then the conjugate of the vector, u, is defined by

[u]i = [u]i 1 ≤ i ≤ m

(This definition contains Notation CCCV.) 4
With this definition we can show that the conjugate of a column vector behaves as we
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would expect with regard to vector addition and scalar multiplication.

Theorem CRVA
Conjugation Respects Vector Addition
Suppose x and y are two vectors from Cm. Then

x + y = x + y

�

Proof For each 1 ≤ i ≤ m,

[x + y]i = [x + y]i Definition CCCV [566]

= [x]i + [y]i Definition CVA [289]

= [x]i + [y]i Theorem CCRA [2320]

= [x]i + [y]i Definition CCCV [566]

= [x + y]i Definition CVA [289]
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Then by Definition CVE [286] we have x + y = x + y. �

Theorem CRSM
Conjugation Respects Vector Scalar Multiplication
Suppose x is a vector from Cm, and α ∈ C is a scalar. Then

αx = αx

�

Proof For 1 ≤ i ≤ m,

[αx]i = [αx]i Definition CCCV [566]

= α [x]i Definition CVSM [291]

= α [x]i Theorem CCRM [2321]

= α [x]i Definition CCCV [566]

= [αx]i Definition CVSM [291]
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Then by Definition CVE [286] we have αx = αx. �

These two theorems together tell us how we can “push” complex conjugation through
linear combinations.

Subsection IP
Inner products

Definition IP
Inner Product
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Given the vectors u, v ∈ Cm the inner product of u and v is the scalar quantity in C,

〈u, v〉 = [u]1 [v]1 + [u]2 [v]2 + [u]3 [v]3 + · · ·+ [u]m [v]m =
m∑
i=1

[u]i [v]i

(This definition contains Notation IP.) 4
This operation is a bit different in that we begin with two vectors but produce a scalar.

Computing one is straightforward.

Example CSIP
Computing some inner products
The scalar product of

u =

2 + 3i
5 + 2i
−3 + i

 and v =

 1 + 2i
−4 + 5i
0 + 5i
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is

〈u, v〉 = (2 + 3i)(1 + 2i) + (5 + 2i)(−4 + 5i) + (−3 + i)(0 + 5i)

= (2 + 3i)(1− 2i) + (5 + 2i)(−4− 5i) + (−3 + i)(0− 5i)

= (8− i) + (−10− 33i) + (5 + 15i)

= 3− 19i

The scalar product of

w =


2
4
−3
2
8

 and x =


3
1
0
−1
−2


is

〈w, x〉 = 2(3)+4(1)+(−3)(0)+2(−1)+8(−2) = 2(3)+4(1)+(−3)0+2(−1)+8(−2) = −8.
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�

In the case where the entries of our vectors are all real numbers (as in the second part
of Example CSIP [570]), the computation of the inner product may look familiar and be
known to you as a dot product or scalar product. So you can view the inner product as
a generalization of the scalar product to vectors from Cm (rather than Rm).

Also, note that we have chosen to conjugate the entries of the second vector listed in the
inner product, while many authors choose to conjugate entries from the first component. It
really makes no difference which choice is made, it just requires that subsequent definitions
and theorems are consistent with the choice. You can study the conclusion of Theorem IPAC
[576] as an explanation of the magnitude of the difference that results from this choice. But
be careful as you read other treatments of the inner product or its use in applications, and
be sure you know ahead of time which choice has been made.

There are several quick theorems we can now prove, and they will each be useful later.

Theorem IPVA
Inner Product and Vector Addition
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Suppose u, v, w ∈ Cm. Then

1. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
2. 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉

�

Proof The proofs of the two parts are very similar, with the second one requiring just a
bit more effort due to the conjugation that occurs. We will prove part 2 and you can prove
part 1 (Exercise O.T10 [605]).

〈u, v + w〉 =
m∑
i=1

[u]i [v + w]i Definition IP [569]

=
m∑
i=1

[u]i ([v]i + [w]i) Definition CVA [289]

=
m∑
i=1

[u]i ([v]i + [w]i) Theorem CCRA [2320]
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=
m∑
i=1

[u]i [v]i + [u]i [w]i Property DCN [2317]

=
m∑
i=1

[u]i [v]i +
m∑
i=1

[u]i [w]i Property CACN [2317]

= 〈u, v〉+ 〈u, w〉 Definition IP [569]

�

Theorem IPSM
Inner Product and Scalar Multiplication
Suppose u, v ∈ Cm and α ∈ C. Then

1. 〈αu, v〉 = α 〈u, v〉
2. 〈u, αv〉 = α 〈u, v〉
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�

Proof The proofs of the two parts are very similar, with the second one requiring just a
bit more effort due to the conjugation that occurs. We will prove part 2 and you can prove
part 1 (Exercise O.T11 [606]).

〈u, αv〉 =
m∑
i=1

[u]i [αv]i Definition IP [569]

=
m∑
i=1

[u]i α [v]i Definition CVSM [291]

=
m∑
i=1

[u]i α [v]i Theorem CCRM [2321]

=
m∑
i=1

α [u]i [v]i Property CMCN [2317]
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= α
m∑
i=1

[u]i [v]i Property DCN [2317]

= α 〈u, v〉 Definition IP [569]

�

Theorem IPAC
Inner Product is Anti-Commutative
Suppose that u and v are vectors in Cm. Then 〈u, v〉 = 〈v, u〉. �

Proof

〈u, v〉 =
m∑
i=1

[u]i [v]i Definition IP [569]

=
m∑
i=1

[u]i [v]i Theorem CCT [2321]
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=
m∑
i=1

[u]i [v]i Theorem CCRM [2321]

=

(
m∑
i=1

[u]i [v]i

)
Theorem CCRA [2320]

=

(
m∑
i=1

[v]i [u]i

)
Property CMCN [2317]

= 〈v, u〉 Definition IP [569]

�
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Subsection N
Norm

If treating linear algebra in a more geometric fashion, the length of a vector occurs naturally,
and is what you would expect from its name. With complex numbers, we will define a similar
function. Recall that if c is a complex number, then |c| denotes its modulus (Definition MCN
[2322]).

Definition NV
Norm of a Vector
The norm of the vector u is the scalar quantity in C

‖u‖ =

√
|[u]1|2 + |[u]2|2 + |[u]3|2 + · · ·+ |[u]m|2 =

√√√√ m∑
i=1

|[u]i|2
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(This definition contains Notation NV.) 4

Computing a norm is also easy to do.

Example CNSV
Computing the norm of some vectors
The norm of

u =


3 + 2i
1− 6i
2 + 4i
2 + i


is

‖u‖ =

√
|3 + 2i|2 + |1− 6i|2 + |2 + 4i|2 + |2 + i|2 =

√
13 + 37 + 20 + 5 =

√
75 = 5

√
3.
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The norm of

v =


3
−1
2
4
−3


is

‖v‖ =

√
|3|2 + |−1|2 + |2|2 + |4|2 + |−3|2 =

√
32 + 12 + 22 + 42 + 32 =

√
39.

�

Notice how the norm of a vector with real number entries is just the length of the vector.
Inner products and norms are related by the following theorem.

Theorem IPN
Inner Products and Norms
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Suppose that u is a vector in Cm. Then ‖u‖2 = 〈u, u〉. �

Proof

‖u‖2 =

√√√√ m∑
i=1

|[u]i|2
2

Definition NV [578]

=
m∑
i=1

|[u]i|2

=
m∑
i=1

[u]i [u]i Definition MCN [2322]

= 〈u, u〉 Definition IP [569]

�

When our vectors have entries only from the real numbers Theorem IPN [580] says that
the dot product of a vector with itself is equal to the length of the vector squared.
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Theorem PIP
Positive Inner Products
Suppose that u is a vector in Cm. Then 〈u, u〉 ≥ 0 with equality if and only if u = 0. �

Proof From the proof of Theorem IPN [580] we see that

〈u, u〉 = |[u]1|2 + |[u]2|2 + |[u]3|2 + · · ·+ |[u]m|2

Since each modulus is squared, every term is positive, and the sum must also be positive.
(Notice that in general the inner product is a complex number and cannot be compared
with zero, but in the special case of 〈u, u〉 the result is a real number.) The phrase, “with
equality if and only if” means that we want to show that the statement 〈u, u〉 = 0 (i.e. with
equality) is equivalent (“if and only if”) to the statement u = 0.

If u = 0, then it is a straightforward computation to see that 〈u, u〉 = 0. In the other
direction, assume that 〈u, u〉 = 0. As before, 〈u, u〉 is a sum of moduli. So we have

0 = 〈u, u〉 = |[u]1|2 + |[u]2|2 + |[u]3|2 + · · ·+ |[u]m|2

Version 2.11



Subsection O.N Norm 586

Now we have a sum of squares equaling zero, so each term must be zero. Then by similar
logic, |[u]i| = 0 will imply that [u]i = 0, since 0 + 0i is the only complex number with zero
modulus. Thus every entry of u is zero and so u = 0, as desired. �

Notice that Theorem PIP [582] contains three implications:

u ∈ Cm ⇒ 〈u, u〉 ≥ 0

u = 0⇒ 〈u, u〉 = 0

〈u, u〉 = 0⇒ u = 0

The results contained in Theorem PIP [582] are summarized by saying “the inner product
is positive definite.”
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Subsection OV
Orthogonal Vectors

“Orthogonal” is a generalization of “perpendicular.” You may have used mutually perpen-
dicular vectors in a physics class, or you may recall from a calculus class that perpendicular
vectors have a zero dot product. We will now extend these ideas into the realm of higher
dimensions and complex scalars.

Definition OV
Orthogonal Vectors
A pair of vectors, u and v, from Cm are orthogonal if their inner product is zero, that is,
〈u, v〉 = 0. 4

Example TOV
Two orthogonal vectors

Version 2.11



Subsection O.OV Orthogonal Vectors 588

The vectors

u =


2 + 3i
4− 2i
1 + i
1 + i

 v =


1− i
2 + 3i
4− 6i

1


are orthogonal since

〈u, v〉 = (2 + 3i)(1 + i) + (4− 2i)(2− 3i) + (1 + i)(4 + 6i) + (1 + i)(1)

= (−1 + 5i) + (2− 16i) + (−2 + 10i) + (1 + i)

= 0 + 0i.

�

We extend this definition to whole sets by requiring vectors to be pairwise orthogonal.
Despite using the same word, careful thought about what objects you are using will eliminate
any source of confusion.
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Definition OSV
Orthogonal Set of Vectors
Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors from Cm. Then S is an orthogonal
set if every pair of different vectors from S is orthogonal, that is 〈ui, uj〉 = 0 whenever i 6= j.

4
We now define the prototypical orthogonal set, which we will reference repeatedly.

Definition SUV
Standard Unit Vectors
Let ej ∈ Cm, 1 ≤ j ≤ m denote the column vectors defined by

[ej]i =

{
0 if i 6= j

1 if i = j

Then the set

{e1, e2, e3, . . . , em} = {ej | 1 ≤ j ≤ m}
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is the set of standard unit vectors in Cm.
(This definition contains Notation SUV.) 4

Notice that ej is identical to column j of the m ×m identity matrix Im (Definition IM
[248]). This observation will often be useful. It is not hard to see that the set of standard
unit vectors is an orthogonal set. We will reserve the notation ei for these vectors.

Example SUVOS
Standard Unit Vectors are an Orthogonal Set
Compute the inner product of two distinct vectors from the set of standard unit vectors
(Definition SUV [586]), say ei, ej, where i 6= j,

〈ei, ej〉 = 00 + 00 + · · ·+ 10 + · · ·+ 00 + · · ·+ 01 + · · ·+ 00 + 00

= 0(0) + 0(0) + · · ·+ 1(0) + · · ·+ 0(1) + · · ·+ 0(0) + 0(0)

= 0

So the set {e1, e2, e3, . . . , em} is an orthogonal set. �

Example AOS
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An orthogonal set
The set

{x1, x2, x3, x4} =




1 + i
1

1− i
i

 ,


1 + 5i
6 + 5i
−7− i
1− 6i

 ,

−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 ,

−2− 4i

6 + i
4 + 3i
6− i




is an orthogonal set. Since the inner product is anti-commutative (Theorem IPAC [576]) we
can test pairs of different vectors in any order. If the result is zero, then it will also be zero
if the inner product is computed in the opposite order. This means there are six pairs of
different vectors to use in an inner product computation. We’ll do two and you can practice
your inner products on the other four.

〈x1, x3〉 = (1 + i)(−7− 34i) + (1)(−8 + 23i) + (1− i)(−10− 22i) + (i)(30− 13i)

= (27− 41i) + (−8 + 23i) + (−32− 12i) + (13 + 30i)

= 0 + 0i
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and

〈x2, x4〉 = (1 + 5i)(−2 + 4i) + (6 + 5i)(6− i) + (−7− i)(4− 3i) + (1− 6i)(6 + i)

= (−22− 6i) + (41 + 24i) + (−31 + 17i) + (12− 35i)

= 0 + 0i

�

So far, this section has seen lots of definitions, and lots of theorems establishing un-
surprising consequences of those definitions. But here is our first theorem that suggests that
inner products and orthogonal vectors have some utility. It is also one of our first illustrations
of how to arrive at linear independence as the conclusion of a theorem.

Theorem OSLI
Orthogonal Sets are Linearly Independent
Suppose that S is an orthogonal set of nonzero vectors. Then S is linearly independent. �

Proof Let S = {u1, u2, u3, . . . , un} be an orthogonal set of nonzero vectors. To prove the
linear independence of S, we can appeal to the definition (Definition LICV [458]) and begin
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with an arbitrary relation of linear dependence (Definition RLDCV [458]),

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0.

Then, for every 1 ≤ i ≤ n, we have

αi =
1

〈ui, ui〉 (αi 〈ui, ui〉) Theorem PIP [582]

=
1

〈ui, ui〉 (α1(0) + α2(0) + · · ·+ αi 〈ui, ui〉+ · · ·+ αn(0)) Property ZCN [2317]

=
1

〈ui, ui〉 (α1 〈u1, ui〉+ · · ·+ αi 〈ui, ui〉+ · · ·+ αn 〈un, ui〉) Definition OSV [586]

=
1

〈ui, ui〉 (〈α1u1, ui〉+ 〈α2u2, ui〉+ · · ·+ 〈αnun, ui〉) Theorem IPSM [574]

=
1

〈ui, ui〉 〈α1u1 + α2u2 + α3u3 + · · ·+ αnun, ui〉 Theorem IPVA [572]
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=
1

〈ui, ui〉 〈0, ui〉 Definition RLDCV [458]

=
1

〈ui, ui〉 0 Definition IP [569]

= 0 Property ZCN [2317]

So we conclude that αi = 0 for all 1 ≤ i ≤ n in any relation of linear dependence on S. But
this says that S is a linearly independent set since the only way to form a relation of linear
dependence is the trivial way (Definition LICV [458]). Boom! �
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Subsection GSP
Gram-Schmidt Procedure

The Gram-Schmidt Procedure is really a theorem. It says that if we begin with a linearly
independent set of p vectors, S, then we can do a number of calculations with these vectors
and produce an orthogonal set of p vectors, T , so that 〈S〉 = 〈T 〉. Given the large number
of computations involved, it is indeed a procedure to do all the necessary computations, and
it is best employed on a computer. However, it also has value in proofs where we may on
occasion wish to replace a linearly independent set by an orthogonal set.

This is our first occasion to use the technique of “mathematical induction” for a proof, a
technique we will see again several times, especially in Chapter D [1274]. So study the simple
example described in Technique I [2363] first.

Theorem GSP
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Gram-Schmidt Procedure
Suppose that S = {v1, v2, v3, . . . , vp} is a linearly independent set of vectors in Cm. Define
the vectors ui, 1 ≤ i ≤ p by

ui = vi − 〈vi, u1〉
〈u1, u1〉u1 − 〈vi, u2〉

〈u2, u2〉u2 − 〈vi, u3〉
〈u3, u3〉u3 − · · · − 〈vi, ui−1〉

〈ui−1, ui−1〉ui−1

Then if T = {u1, u2, u3, . . . , up}, then T is an orthogonal set of non-zero vectors, and
〈T 〉 = 〈S〉. �

Proof We will prove the result by using induction on p (Technique I [2363]). To begin, we
prove that T has the desired properties when p = 1. In this case u1 = v1 and T = {u1} =
{v1} = S. Because S and T are equal, 〈S〉 = 〈T 〉. Equally trivial, T is an orthogonal set. If
u1 = 0, then S would be a linearly dependent set, a contradiction.

Suppose that the theorem is true for any set of p − 1 linearly independent vectors.
Let S = {v1, v2, v3, . . . , vp} be a linearly independent set of p vectors. Then S ′ =
{v1, v2, v3, . . . , vp−1} is also linearly independent. So we can apply the theorem to S ′
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and construct the vectors T ′ = {u1, u2, u3, . . . , up−1}. T ′ is therefore an orthogonal set of
nonzero vectors and 〈S ′〉 = 〈T ′〉. Define

up = vp − 〈vp, u1〉
〈u1, u1〉u1 − 〈vp, u2〉

〈u2, u2〉u2 − 〈vp, u3〉
〈u3, u3〉u3 − · · · − 〈vp, up−1〉

〈up−1, up−1〉up−1

and let T = T ′ ∪ {up}. We need to now show that T has several properties by building on
what we know about T ′. But first notice that the above equation has no problems with the
denominators (〈ui, ui〉) being zero, since the ui are from T ′, which is composed of nonzero
vectors.

We show that 〈T 〉 = 〈S〉, by first establishing that 〈T 〉 ⊆ 〈S〉. Suppose x ∈ 〈T 〉, so

x = a1u1 + a2u2 + a3u3 + · · ·+ apup

The term apup is a linear combination of vectors from T ′ and the vector vp, while the
remaining terms are a linear combination of vectors from T ′. Since 〈T ′〉 = 〈S ′〉, any term
that is a multiple of a vector from T ′ can be rewritten as a linear combination of vectors
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from S ′. The remaining term apvp is a multiple of a vector in S. So we see that x can be
rewritten as a linear combination of vectors from S, i.e. x ∈ 〈S〉.

To show that 〈S〉 ⊆ 〈T 〉, begin with y ∈ 〈S〉, so

y = a1v1 + a2v2 + a3v3 + · · ·+ apvp

Rearrange our defining equation for up by solving for vp. Then the term apvp is a multiple
of a linear combination of elements of T . The remaining terms are a linear combination of
v1, v2, v3, . . . , vp−1, hence an element of 〈S ′〉 = 〈T ′〉. Thus these remaining terms can be
written as a linear combination of the vectors in T ′. So y is a linear combination of vectors
from T , i.e. y ∈ 〈T 〉.

The elements of T ′ are nonzero, but what about up? Suppose to the contrary that up = 0,

0 = up = vp − 〈vp, u1〉
〈u1, u1〉u1 − 〈vp, u2〉

〈u2, u2〉u2 − 〈vp, u3〉
〈u3, u3〉u3 − · · · − 〈vp, up−1〉

〈up−1, up−1〉up−1

vp =
〈vp, u1〉
〈u1, u1〉u1 +

〈vp, u2〉
〈u2, u2〉u2 +

〈vp, u3〉
〈u3, u3〉u3 + · · ·+ 〈vp, up−1〉

〈up−1, up−1〉up−1
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Since 〈S ′〉 = 〈T ′〉 we can write the vectors u1, u2, u3, . . . , up−1 on the right side of this
equation in terms of the vectors v1, v2, v3, . . . , vp−1 and we then have the vector vp ex-
pressed as a linear combination of the other p− 1 vectors in S, implying that S is a linearly
dependent set (Theorem DLDS [522]), contrary to our lone hypothesis about S.

Finally, it is a simple matter to establish that T is an orthogonal set, though it will not
appear so simple looking. Think about your objects as you work through the following —
what is a vector and what is a scalar. Since T ′ is an orthogonal set by induction, most pairs
of elements in T are already known to be orthogonal. We just need to test “new” inner
products, between up and ui, for 1 ≤ i ≤ p− 1. Here we go, using summation notation,

〈up, ui〉 =

〈
vp −

p−1∑
k=1

〈vp, uk〉
〈uk, uk〉uk, ui

〉

= 〈vp, ui〉 −
〈
p−1∑
k=1

〈vp, uk〉
〈uk, uk〉uk, ui

〉
Theorem IPVA [572]
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= 〈vp, ui〉 −
p−1∑
k=1

〈 〈vp, uk〉
〈uk, uk〉uk, ui

〉
Theorem IPVA [572]

= 〈vp, ui〉 −
p−1∑
k=1

〈vp, uk〉
〈uk, uk〉 〈uk, ui〉 Theorem IPSM [574]

= 〈vp, ui〉 − 〈vp, ui〉
〈ui, ui〉 〈ui, ui〉 −

∑
k 6=i

〈vp, uk〉
〈uk, uk〉(0) Induction Hypothesis

= 〈vp, ui〉 − 〈vp, ui〉 −
∑
k 6=i

0

= 0

�

Example GSTV
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Gram-Schmidt of three vectors
We will illustrate the Gram-Schmidt process with three vectors. Begin with the linearly
independent (check this!) set

S = {v1, v2, v3} =


 1

1 + i
1

 ,
 −i1

1 + i

 ,
0
i
i


Then

u1 = v1 =

 1
1 + i

1


u2 = v2 − 〈v2, u1〉

〈u1, u1〉u1 =
1

4

−2− 3i
1− i
2 + 5i
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u3 = v3 − 〈v3, u1〉
〈u1, u1〉u1 − 〈v3, u2〉

〈u2, u2〉u2 =
1

11

−3− i
1 + 3i
−1− i


and

T = {u1, u2, u3} =


 1

1 + i
1

 , 1

4

−2− 3i
1− i
2 + 5i

 , 1

11

−3− i
1 + 3i
−1− i


is an orthogonal set (which you can check) of nonzero vectors and 〈T 〉 = 〈S〉 (all by Theorem
GSP [593]). Of course, as a by-product of orthogonality, the set T is also linearly independent
(Theorem OSLI [589]). �

One final definition related to orthogonal vectors.

Definition ONS
OrthoNormal Set
Suppose S = {u1, u2, u3, . . . , un} is an orthogonal set of vectors such that ‖ui‖ = 1 for all
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1 ≤ i ≤ n. Then S is an orthonormal set of vectors. 4
Once you have an orthogonal set, it is easy to convert it to an orthonormal set — multiply

each vector by the reciprocal of its norm, and the resulting vector will have norm 1. This
scaling of each vector will not affect the orthogonality properties (apply Theorem IPSM
[574]).

Example ONTV
Orthonormal set, three vectors
The set

T = {u1, u2, u3} =


 1

1 + i
1

 , 1

4

−2− 3i
1− i
2 + 5i

 , 1

11

−3− i
1 + 3i
−1− i


from Example GSTV [598] is an orthogonal set. We compute the norm of each vector,

‖u1‖ = 2 ‖u2‖ =
1

2

√
11 ‖u3‖ =

√
2√
11
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Converting each vector to a norm of 1, yields an orthonormal set,

w1 =
1

2

 1
1 + i

1


w2 =

1
1
2

√
11

1

4

−2− 3i
1− i
2 + 5i

 =
1

2
√

11

−2− 3i
1− i
2 + 5i


w3 =

1
√

2√
11

1

11

−3− i
1 + 3i
−1− i

 =
1√
22

−3− i
1 + 3i
−1− i


�

Example ONFV
Orthonormal set, four vectors
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As an exercise convert the linearly independent set

S =




1 + i
1

1− i
i

 ,


i
1 + i
−1
−i

 ,


i
−i
−1 + i

1

 ,

−1− i
i
1
−1




to an orthogonal set via the Gram-Schmidt Process (Theorem GSP [593]) and then scale the
vectors to norm 1 to create an orthonormal set. You should get the same set you would if
you scaled the orthogonal set of Example AOS [588] to become an orthonormal set. �

It is crazy to do all but the simplest and smallest instances of the Gram-Schmidt proce-
dure by hand. Well, OK, maybe just once or twice to get a good understanding of Theorem
GSP [593]. After that, let a machine do the work for you. That’s what they are for. See:
Computation GSP.MMA [2282]

We will see orthonormal sets again in Subsection MINM.UM [784]. They are intimately
related to unitary matrices (Definition UM [785]) through Theorem CUMOS [788]. Some of
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the utility of orthonormal sets is captured by Theorem COB [1144] in Subsection B.OBC
[1142]. Orthonormal sets appear once again in Section OD [2040] where they are key in
orthonormal diagonalization.

Subsection READ
Reading Questions

1. Is the set 
 1
−1
2

 ,
 5

3
−1

 ,
 8

4
−2


an orthogonal set? Why?

2. What is the distinction between an orthogonal set and an orthonormal set?
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3. What is nice about the output of the Gram-Schmidt process?
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Subsection EXC
Exercises

C20 Complete Example AOS [588] by verifying that the four remaining inner products are
zero.

Contributed by Robert Beezer

C21 Verify that the set T created in Example GSTV [598] by the Gram-Schmidt Procedure
is an orthogonal set.
Contributed by Robert Beezer

T10 Prove part 1 of the conclusion of Theorem IPVA [572].
Contributed by Robert Beezer
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T11 Prove part 1 of the conclusion of Theorem IPSM [574].
Contributed by Robert Beezer

T20 Suppose that u, v, w ∈ Cn, α, β ∈ C and u is orthogonal to both v and w. Prove
that u is orthogonal to αv + βw.
Contributed by Robert Beezer Solution [607]

T30 Suppose that the set S in the hypothesis of Theorem GSP [593] is not just linearly
independent, but is also orthogonal. Prove that the set T created by the Gram-Schmidt
procedure is equal to S. (Note that we are getting a stronger conclusion than 〈T 〉 = 〈S〉 —
the conclusion is that T = S.) In other words, it is pointless to apply the Gram-Schmidt
procedure to a set that is already orthogonal.
Contributed by Steve Canfield

Version 2.11



Subsection O.SOL Solutions 610

Subsection SOL
Solutions

T20 Contributed by Robert Beezer Statement [606]
Vectors are orthogonal if their inner product is zero (Definition OV [584]), so we compute,

〈αv + βw, u〉 = 〈αv, u〉+ 〈βw, u〉 Theorem IPVA [572]

= α 〈v, u〉+ β 〈w, u〉 Theorem IPSM [574]

= α (0) + β (0) Definition OV [584]

= 0

So by Definition OV [584], u and αv + βw are an orthogonal pair of vectors.
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Annotated Acronyms V
Vectors

Theorem VSPCV [295]

These are the fundamental rules for working with the addition, and scalar multiplication, of
column vectors. We will see something very similar in the next chapter (Theorem VSPM
[618]) and then this will be generalized into what is arguably our most important definition,
Definition VS [956].

Theorem SLSLC [327]

Vector addition and scalar multiplication are the two fundamental operations on vectors,
and linear combinations roll them both into one. Theorem SLSLC [327] connects linear
combinations with systems of equations. This one we will see often enough that it is worth
memorizing.
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Theorem PSPHS [368]

This theorem is interesting in its own right, and sometimes the vaugeness surrounding the
choice of z can seem mysterious. But we list it here because we will see an important theorem
in Section ILT [1630] which will generalize this result (Theorem KPI [1651]).

Theorem LIVRN [471]

If you have a set of column vectors, this is the fastest computational approach to determine
if the set is linearly independent. Make the vectors the columns of a matrix, row-reduce,
compare r and n. That’s it — and you always get an answer. Put this one in your toolkit.

Theorem BNS [484]

We will have several theorems (all listed in these “Annotated Acronyms” sections) whose
conclusions will provide a linearly independent set of vectors whose span equals some set of
interest (the null space here). While the notation in this theorem might appear gruesome,
in practice it can become very routine to apply. So practice this one — we’ll be using it all
through the book.
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Theorem BS [539]

As promised, another theorem that provides a linearly independent set of vectors whose span
equals some set of interest (a span now). You can use this one to clean up any span.
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Chapter M
Matrices

We have made frequent use of matrices for solving systems of equations, and we have begun
to investigate a few of their properties, such as the null space and nonsingularity. In this
chapter, we will take a more systematic approach to the study of matrices.
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Section MO

Matrix Operations

In this section we will back up and start simple. First a definition of a totally general set of
matrices.

Definition VSM
Vector Space of m× n Matrices
The vector space Mmn is the set of all m× n matrices with entries from the set of complex
numbers.

(This definition contains Notation VSM.) 4
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Subsection MEASM
Matrix Equality, Addition, Scalar Multiplication

Just as we made, and used, a careful definition of equality for column vectors, so too, we
have precise definitions for matrices.

Definition ME
Matrix Equality
The m × n matrices A and B are equal, written A = B provided [A]ij = [B]ij for all
1 ≤ i ≤ m, 1 ≤ j ≤ n.
(This definition contains Notation ME.) 4

So equality of matrices translates to the equality of complex numbers, on an entry-by-
entry basis. Notice that we now have yet another definition that uses the symbol “=” for
shorthand. Whenever a theorem has a conclusion saying two matrices are equal (think about
your objects), we will consider appealing to this definition as a way of formulating the top-
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level structure of the proof. We will now define two operations on the set Mmn. Again, we
will overload a symbol (‘+’) and a convention (juxtaposition for scalar multiplication).

Definition MA
Matrix Addition
Given the m×n matrices A and B, define the sum of A and B as an m×n matrix, written
A+B, according to

[A+B]ij = [A]ij + [B]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n

(This definition contains Notation MA.) 4
So matrix addition takes two matrices of the same size and combines them (in a natural

way!) to create a new matrix of the same size. Perhaps this is the “obvious” thing to do,
but it doesn’t relieve us from the obligation to state it carefully.

Example MA
Addition of two matrices in M23
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If

A =

[
2 −3 4
1 0 −7

]
B =

[
6 2 −4
3 5 2

]
then

A+B =

[
2 −3 4
1 0 −7

]
+

[
6 2 −4
3 5 2

]
=

[
2 + 6 −3 + 2 4 + (−4)
1 + 3 0 + 5 −7 + 2

]
=

[
8 −1 0
4 5 −5

]
�

Our second operation takes two objects of different types, specifically a number and a
matrix, and combines them to create another matrix. As with vectors, in this context we
call a number a scalar in order to emphasize that it is not a matrix.

Definition MSM
Matrix Scalar Multiplication
Given the m × n matrix A and the scalar α ∈ C, the scalar multiple of A is an m × n
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matrix, written αA and defined according to

[αA]ij = α [A]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n

(This definition contains Notation MSM.) 4
Notice again that we have yet another kind of multiplication, and it is again written

putting two symbols side-by-side. Computationally, scalar matrix multiplication is very
easy.

Example MSM
Scalar multiplication in M32

If

A =

 2 8
−3 5
0 1
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and α = 7, then

αA = 7

 2 8
−3 5
0 1

 =

 7(2) 7(8)
7(−3) 7(5)
7(0) 7(1)

 =

 14 56
−21 35

0 7


�

Subsection VSP
Vector Space Properties

With definitions of matrix addition and scalar multiplication we can now state, and prove,
several properties of each operation, and some properties that involve their interplay. We
now collect ten of them here for later reference.

Theorem VSPM
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Vector Space Properties of Matrices
Suppose that Mmn is the set of all m×n matrices (Definition VSM [612]) with addition and
scalar multiplication as defined in Definition MA [614] and Definition MSM [615]. Then

• ACM Additive Closure, Matrices
If A, B ∈Mmn, then A+B ∈Mmn.

• SCM Scalar Closure, Matrices
If α ∈ C and A ∈Mmn, then αA ∈Mmn.

• CM Commutativity, Matrices
If A, B ∈Mmn, then A+B = B + A.

• AAM Additive Associativity, Matrices
If A, B, C ∈Mmn, then A+ (B + C) = (A+B) + C.

• ZM Zero Vector, Matrices
There is a matrix, O, called the zero matrix, such that A+O = A for all A ∈Mmn.
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• AIM Additive Inverses, Matrices
If A ∈Mmn, then there exists a matrix −A ∈Mmn so that A+ (−A) = O.

• SMAM Scalar Multiplication Associativity, Matrices
If α, β ∈ C and A ∈Mmn, then α(βA) = (αβ)A.

• DMAM Distributivity across Matrix Addition, Matrices
If α ∈ C and A, B ∈Mmn, then α(A+B) = αA+ αB.

• DSAM Distributivity across Scalar Addition, Matrices
If α, β ∈ C and A ∈Mmn, then (α + β)A = αA+ βA.

• OM One, Matrices
If A ∈Mmn, then 1A = A.

�
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Proof While some of these properties seem very obvious, they all require proof. However,
the proofs are not very interesting, and border on tedious. We’ll prove one version of dis-
tributivity very carefully, and you can test your proof-building skills on some of the others.
We’ll give our new notation for matrix entries a workout here. Compare the style of the
proofs here with those given for vectors in Theorem VSPCV [295] — while the objects here
are more complicated, our notation makes the proofs cleaner.

To prove Property DSAM [619], (α+ β)A = αA+ βA, we need to establish the equality
of two matrices (see Technique GS [2345]). Definition ME [613] says we need to establish
the equality of their entries, one-by-one. How do we do this, when we do not even know how
many entries the two matrices might have? This is where Notation ME [613] comes into
play. Ready? Here we go.

For any i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[(α + β)A]ij = (α + β) [A]ij Definition MSM [615]

= α [A]ij + β [A]ij Distributivity in C
= [αA]ij + [βA]ij Definition MSM [615]
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= [αA+ βA]ij Definition MA [614]

There are several things to notice here. (1) Each equals sign is an equality of numbers. (2)
The two ends of the equation, being true for any i and j, allow us to conclude the equality of
the matrices by Definition ME [613]. (3) There are several plus signs, and several instances
of juxtaposition. Identify each one, and state exactly what operation is being represented
by each. �

For now, note the similarities between Theorem VSPM [618] about matrices and Theorem
VSPCV [295] about vectors.

The zero matrix described in this theorem, O, is what you would expect — a matrix full
of zeros.

Definition ZM
Zero Matrix
The m×n zero matrix is written as O = Om×n and defined by [O]ij = 0, for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.
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(This definition contains Notation ZM.) 4

Subsection TSM
Transposes and Symmetric Matrices

We describe one more common operation we can perform on matrices. Informally, to trans-
pose a matrix is to build a new matrix by swapping its rows and columns.

Definition TM
Transpose of a Matrix
Given an m× n matrix A, its transpose is the n×m matrix At given by[

At
]
ij

= [A]ji , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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(This definition contains Notation TM.) 4

Example TM
Transpose of a 3× 4 matrix
Suppose

D =

 3 7 2 −3
−1 4 2 8
0 3 −2 5

 .
We could formulate the transpose, entry-by-entry, using the definition. But it is easier to
just systematically rewrite rows as columns (or vice-versa). The form of the definition given
will be more useful in proofs. So we have

Dt =


3 −1 0
7 4 3
2 2 −2
−3 8 5
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�

It will sometimes happen that a matrix is equal to its transpose. In this case, we will call
a matrix symmetric. These matrices occur naturally in certain situations, and also have
some nice properties, so it is worth stating the definition carefully. Informally a matrix is
symmetric if we can “flip” it about the main diagonal (upper-left corner, running down to
the lower-right corner) and have it look unchanged.

Definition SYM
Symmetric Matrix
The matrix A is symmetric if A = At. 4

Example SYM
A symmetric 5× 5 matrix
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The matrix

E =


2 3 −9 5 7
3 1 6 −2 −3
−9 6 0 −1 9
5 −2 −1 4 −8
7 −3 9 −8 −3


is symmetric. �

You might have noticed that Definition SYM [624] did not specify the size of the matrix
A, as has been our custom. That’s because it wasn’t necessary. An alternative would have
been to state the definition just for square matrices, but this is the substance of the next
proof. Before reading the next proof, we want to offer you some advice about how to
become more proficient at constructing proofs. Perhaps you can apply this advice to the
next theorem. Have a peek at Technique P [2368] now.

Theorem SMS
Symmetric Matrices are Square

Version 2.11



Subsection MO.TSM Transposes and Symmetric Matrices 629

Suppose that A is a symmetric matrix. Then A is square. �

Proof We start by specifying A’s size, without assuming it is square, since we are trying
to prove that, so we can’t also assume it. Suppose A is an m × n matrix. Because A is
symmetric, we know by Definition SM [1290] that A = At. So, in particular, Definition ME
[613] requires that A and At must have the same size. The size of At is n ×m. Because A
has m rows and At has n rows, we conclude that m = n, and hence A must be square by
Definition SQM [245]. �

We finish this section with three easy theorems, but they illustrate the interplay of our
three new operations, our new notation, and the techniques used to prove matrix equalities.

Theorem TMA
Transpose and Matrix Addition
Suppose that A and B are m× n matrices. Then (A+B)t = At +Bt. �

Proof The statement to be proved is an equality of matrices, so we work entry-by-entry
and use Definition ME [613]. Think carefully about the objects involved here, and the many
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uses of the plus sign. For 1 ≤ i ≤ m, 1 ≤ j ≤ n,[
(A+B)t

]
ij

= [A+B]ji Definition TM [622]

= [A]ji + [B]ji Definition MA [614]

=
[
At
]
ij

+
[
Bt
]
ij

Definition TM [622]

=
[
At +Bt

]
ij

Definition MA [614]

Since the matrices (A + B)t and At + Bt agree at each entry, Definition ME [613] tells us
the two matrices are equal. �

Theorem TMSM
Transpose and Matrix Scalar Multiplication
Suppose that α ∈ C and A is an m× n matrix. Then (αA)t = αAt. �

Proof The statement to be proved is an equality of matrices, so we work entry-by-entry
and use Definition ME [613]. Notice that the desired equality is of n × m matrices, and
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think carefully about the objects involved here, plus the many uses of juxtaposition. For
1 ≤ i ≤ m, 1 ≤ j ≤ n,[

(αA)t
]
ji

= [αA]ij Definition TM [622]

= α [A]ij Definition MSM [615]

= α
[
At
]
ji

Definition TM [622]

=
[
αAt

]
ji

Definition MSM [615]

Since the matrices (αA)t and αAt agree at each entry, Definition ME [613] tells us the two
matrices are equal. �

Theorem TT
Transpose of a Transpose
Suppose that A is an m× n matrix. Then (At)

t
= A. �

Proof We again want to prove an equality of matrices, so we work entry-by-entry and use
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Definition ME [613]. For 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[(
At
)t]

ij
=
[
At
]
ji

Definition TM [622]

= [A]ij Definition TM [622]

�

Its usually straightforward to coax the transpose of a matrix out of a computational de-
vice. See: Computation TM.MMA [2285] Computation TM.TI86 [2292] Computation
TM.SAGE [2309]
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Subsection MCC
Matrices and Complex Conjugation

As we did with vectors (Definition CCCV [566]), we can define what it means to take the
conjugate of a matrix.

Definition CCM
Complex Conjugate of a Matrix
Suppose A is an m × n matrix. Then the conjugate of A, written A is an m × n matrix
defined by [

A
]
ij

= [A]ij

(This definition contains Notation CCM.) 4
Example CCM
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Complex conjugate of a matrix
If

A =

[
2− i 3 5 + 4i
−3 + 6i 2− 3i 0

]
then

A =

[
2 + i 3 5− 4i
−3− 6i 2 + 3i 0

]
�

The interplay between the conjugate of a matrix and the two operations on matrices is
what you might expect.

Theorem CRMA
Conjugation Respects Matrix Addition
Suppose that A and B are m× n matrices. Then A+B = A+B. �

Proof For 1 ≤ i ≤ m, 1 ≤ j ≤ n,[
A+B

]
ij

= [A+B]ij Definition CCM [630]
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= [A]ij + [B]ij Definition MA [614]

= [A]ij + [B]ij Theorem CCRA [2320]

=
[
A
]
ij

+
[
B
]
ij

Definition CCM [630]

=
[
A+B

]
ij

Definition MA [614]

Since the matrices A+B and A+B are equal in each entry, Definition ME [613] says that
A+B = A+B. �

Theorem CRMSM
Conjugation Respects Matrix Scalar Multiplication
Suppose that α ∈ C and A is an m× n matrix. Then αA = αA. �

Proof For 1 ≤ i ≤ m, 1 ≤ j ≤ n,[
αA
]
ij

= [αA]ij Definition CCM [630]

= α [A]ij Definition MSM [615]
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= α[A]ij Theorem CCRM [2321]

= α
[
A
]
ij

Definition CCM [630]

=
[
αA
]
ij

Definition MSM [615]

Since the matrices αA and αA are equal in each entry, Definition ME [613] says that αA =
αA. �

Theorem CCM
Conjugate of the Conjugate of a Matrix

Suppose that A is an m× n matrix. Then
(
A
)

= A. �

Proof For 1 ≤ i ≤ m, 1 ≤ j ≤ n,[(
A
)]

ij
=
[
A
]
ij

Definition CCM [630]

= [A]ij Definition CCM [630]
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= [A]ij Theorem CCT [2321]

Since the matrices
(
A
)

and A are equal in each entry, Definition ME [613] says that
(
A
)

= A.
�

Finally, we will need the following result about matrix conjugation and transposes later.

Theorem MCT
Matrix Conjugation and Transposes

Suppose that A is an m× n matrix. Then (At) =
(
A
)t

. �

Proof For 1 ≤ i ≤ m, 1 ≤ j ≤ n,[
(At)

]
ji

= [At]ji Definition CCM [630]

= [A]ij Definition TM [622]

=
[
A
]
ij

Definition CCM [630]
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=
[(
A
)t]

ji
Definition TM [622]

Since the matrices (At) and
(
A
)t

are equal in each entry, Definition ME [613] says that

(At) =
(
A
)t

. �

Subsection AM
Adjoint of a Matrix

The combination of transposing and conjugating a matrix will be important in subsequent
sections, such as Subsection MINM.UM [784] and Section OD [2040]. We make a key defi-
nition here and prove some basic results in the same spirit as those above.
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Definition A
Adjoint

If A is a matrix, then its adjoint is A∗ =
(
A
)t

.

(This definition contains Notation A.) 4
You will see the adjoint written elsewhere variously as AH , A∗ or A†. Notice that Theorem

MCT [634] says it does not really matter if we conjugate and then transpose, or transpose
and then conjugate.

Theorem AMA
Adjoint and Matrix Addition
Suppose A and B are matrices of the same size. Then (A+B)∗ = A∗ +B∗. �

Proof

(A+B)∗ =
(
A+B

)t
Definition A [636]

=
(
A+B

)t
Theorem CRMA [631]
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=
(
A
)t

+
(
B
)t

Theorem TMA [626]

= A∗ +B∗ Definition A [636]

�

Theorem AMSM
Adjoint and Matrix Scalar Multiplication
Suppose α ∈ C is a scalar and A is a matrix. Then (αA)∗ = αA∗. �

Proof

(αA)∗ =
(
αA
)t

Definition A [636]

=
(
αA
)t

Theorem CRMSM [632]

= α
(
A
)t

Theorem TMSM [627]

= αA∗ Definition A [636]
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�

Theorem AA
Adjoint of an Adjoint
Suppose that A is a matrix. Then (A∗)∗ = A �

Proof

(A∗)∗ =
(

(A∗)
)t

Definition A [636]

=
(
(A∗)t

)
Theorem MCT [634]

=

(((
A
)t)t)

Definition A [636]

=
(
A
)

Theorem TT [628]

= A Theorem CCM [633]
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�

Take note of how the theorems in this section, while simple, build on earlier theorems
and definitions and never descend to the level of entry-by-entry proofs based on Definition
ME [613]. In other words, the equal signs that appear in the previous proofs are equalities
of matrices, not scalars (which is the opposite of a proof like that of Theorem TMA [626]).

Subsection READ
Reading Questions

1. Perform the following matrix computation.

(6)

2 −2 8 1
4 5 −1 3
7 −3 0 2

+ (−2)

2 7 1 2
3 −1 0 5
1 7 3 3
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2. Theorem VSPM [618] reminds you of what previous theorem? How strong is the simi-
larity?

3. Compute the transpose of the matrix below. 6 8 4
−2 1 0
9 −5 6
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Subsection EXC
Exercises

C10 Let A =

[
1 4 −3
6 3 0

]
, B =

[
3 2 1
−2 −6 5

]
and C =

 2 4
4 0
−2 2

. Let α = 4 and β =

−1/2. Perform the following calculations:

1. A+B

2. A+ C

3. Bt + C

4. A+Bt

5. βC
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6. 4A− 3B

7. At + αC

8. A+B − Ct

9. 4A+ 2B − 5Ct

Contributed by Chris Black Solution [649]

C11 Solve the given vector equation for x, or explain why no solution exists:

2

[
1 2 3
0 4 2

]
− 3

[
1 1 2
0 1 x

]
=

[−1 1 0
0 5 −2

]

Contributed by Chris Black Solution [651]
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C12 Solve the given vector equation for α, or explain why no solution exists:

α

[
1 3 4
2 1 −1

]
+

[
4 3 −6
0 1 1

]
=

[
7 12 6
6 4 −2

]
Contributed by Chris Black Solution [651]

C13 Solve the given vector equation for α, or explain why no solution exists:

α

3 1
2 0
1 4

−
4 1

3 2
0 1

 =

2 1
1 −2
2 6


Contributed by Chris Black Solution [653]

C14 Find α and β that solve the following equation:

α

[
1 2
4 1

]
+ β

[
2 1
3 1

]
=

[−1 4
6 1

]
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Contributed by Chris Black Solution [654]

In Chapter V [283] we defined the operations of vector addition and vector scalar multi-
plication in Definition CVA [289] and Definition CVSM [291]. These two operations formed
the underpinnings of the remainder of the chapter. We have now defined similar operations
for matrices in Definition MA [614] and Definition MSM [615]. You will have noticed the
resulting similarities between Theorem VSPCV [295] and Theorem VSPM [618].

In Exercises M20–M25, you will be asked to extend these similarities to other fundamen-
tal definitions and concepts we first saw in Chapter V [283]. This sequence of problems was
suggested by Martin Jackson.

M20 Suppose S = {B1, B2, B3, . . . , Bp} is a set of matrices from Mmn. Formulate appro-
priate definitions for the following terms and give an example of the use of each.

1. A linear combination of elements of S.
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2. A relation of linear dependence on S, both trivial and non-trivial.

3. S is a linearly independent set.

4. 〈S〉.

Contributed by Robert Beezer

M21 Show that the set S is linearly independent in M2,2.

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Contributed by Robert Beezer Solution [655]

M22 Determine if the set

S =

{[−2 3 4
−1 3 −2

]
,

[
4 −2 2
0 −1 1

]
,

[−1 −2 −2
2 2 2

]
,

[−1 1 0
−1 0 −2

]
,

[−1 2 −2
0 −1 −2

]}
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is linearly independent in M2,3.

Contributed by Robert Beezer Solution [656]

M23 Determine if the matrix A is in the span of S. In other words, is A ∈ 〈S〉? If so write
A as a linear combination of the elements of S.

A =

[−13 24 2
−8 −2 −20

]
S =

{[−2 3 4
−1 3 −2

]
,

[
4 −2 2
0 −1 1

]
,

[−1 −2 −2
2 2 2

]
,

[−1 1 0
−1 0 −2

]
,

[−1 2 −2
0 −1 −2

]}

Contributed by Robert Beezer Solution [657]

M24 Suppose Y is the set of all 3× 3 symmetric matrices (Definition SYM [624]). Find a
set T so that T is linearly independent and 〈T 〉 = Y .
Contributed by Robert Beezer Solution [657]

Version 2.11



Subsection MO.EXC Exercises 650

M25 Define a subset of M3,3 by

U33 =
{
A ∈M3,3 | [A]ij = 0 whenever i > j

}
Find a set R so that R is linearly independent and 〈R〉 = U33.
Contributed by Robert Beezer

T13 Prove Property CM [618] of Theorem VSPM [618]. Write your proof in the style of
the proof of Property DSAM [619] given in this section.
Contributed by Robert Beezer Solution [658]

T14 Prove Property AAM [618] of Theorem VSPM [618]. Write your proof in the style of
the proof of Property DSAM [619] given in this section.
Contributed by Robert Beezer

T17 Prove Property SMAM [619] of Theorem VSPM [618]. Write your proof in the style
of the proof of Property DSAM [619] given in this section.
Contributed by Robert Beezer
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T18 Prove Property DMAM [619] of Theorem VSPM [618]. Write your proof in the style
of the proof of Property DSAM [619] given in this section.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Chris Black Statement [641]

1. A+B =

[
4 6 −2
4 −3 5

]
2. A+ C is undefined; A and C are not the same size.

3. Bt + C =

 5 2
6 −6
−1 7


4. A+Bt is undefined; A and Bt are not the same size.
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5. βC =

 1 2
2 0
−1 1


6. 4A− 3B =

[−5 10 −15
30 30 −15

]

7. At + αC =

 9 22
20 3
−11 8


8. A+B − Ct =

[
2 2 0
0 −3 3

]

9. 4A+ 2B − 5Ct =

[
0 0 0
0 0 0

]
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C11 Contributed by Chris Black Statement [642]
The given equation[−1 1 0

0 5 −2

]
= 2

[
1 2 3
0 4 2

]
− 3

[
1 1 2
0 1 x

]
=

[−1 1 0
0 5 4− 3x

]
is valid only if 4− 3x = −2. Thus, the only solution is x = 2.

C12 Contributed by Chris Black Statement [643]
The given equation [

7 12 6
6 4 −2

]
= α

[
1 3 4
2 1 −1

]
+

[
4 3 −6
0 1 1

]
=

[
α 3α 4α
2α α −α

]
+

[
4 3 −6
0 1 1

]
=

[
4 + α 3 + 3α −6 + 4α

2α 1 + α 1− α
]
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leads to the 6 equations in α:

4 + α = 7

3 + 3α = 12

−6 + 4α = 6

2α = 6

1 + α = 4

1− α = −2.

The only value that solves all 6 equations is α = 3, which is the solution to the original
matrix equation.
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C13 Contributed by Chris Black Statement [643]
The given equation2 1

1 −2
2 6

 = α

3 1
2 0
1 4

+

4 1
3 2
0 1

 =

3α− 4 α− 1
2α− 3 −2
α 4α− 1


gives a system of six equations in α:

3α− 4 = 2

α− 1 = 1

2α− 3 = 1

−2 = −2

α = 2

4α− 1 = 6.
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Solving each of these equations, we see that the first 3 and the fifth all lead to the solution
α = −2, the fourth equation is true no matter what the value of α, but the last equation is
only solved by α = 7/4. Thus, the system has no solution, and the original matrix equation
also has no solution.

C14 Contributed by Chris Black Statement [643]
The given equation[−1 4

6 1

]
= α

[
1 2
4 1

]
+ β

[
2 1
3 1

]
=

[
α + 2β 2α + β
4α + 3β α + β

]
gives a system of four equations in two variables

α + 2β = −1

2α + β = 4

4α + 3β = 6

α + β = 1.
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Solving this linear system by row-reducing the augmnented matrix shows that α = 3, β = −2
is the only solution.

M21 Contributed by Chris Black Statement [645]
Suppose there exist constants α, β, γ, and δ so that

α

[
1 0
0 0

]
+ β

[
0 1
0 0

]
+ γ

[
0 0
1 0

]
+ δ

[
0 0
0 1

]
=

[
0 0
0 0

]
.

Then, [
α 0
0 0

]
+

[
0 β
0 0

]
+

[
0 0
γ 0

]
+

[
0 0
0 δ

]
=

[
0 0
0 0

]

so that

[
α β
γ δ

]
=

[
0 0
0 0

]
. The only solution is then α = 0, β = 0, γ = 0, and δ = 0, so that

the set S is a linearly independent set of matrices.
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M22 Contributed by Chris Black Statement [645]
Suppose that there exist constants a1, a2, a3, a4, and a5 so that

a1

[−2 3 4
−1 3 −2

]
+ a2

[
4 −2 2
0 −1 1

]
+ a3

[−1 −2 −2
2 2 2

]
+ a4

[−1 1 0
−1 0 2

]
+ a5

[−1 2 −1
0 −1 −2

]
=

[
0 0 0
0 0 0

]
.

Then, we have the matrix equality (Definition ME [613])[−2a1 + 4a2 − a3 − a4 − a5 3a1 − 2a2 − 2a3 + a4 + 2a5 4a1 + 2a2 − 2a3 − 2a5

−a1 + 2a3 − a4 3a1 − a2 + 2a3 − a5 −2a1 + a2 + 2a3 + 2a4 − 2a5

]
=

[
0 0 0
0 0 0

]
,

which yields the linear system of equations

−2a1 + 4a2 − a3 − a4 − a5 = 0

3a1 − 2a2 − 2a3 + a4 + 2a5 = 0

4a1 + 2a2 − 2a3 − 2a5 = 0

−a1 + 2a3 − a4 = 0
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3a1 − a2 + 2a3 − a5 = 0

−2a1 + a2 + 2a3 + 2a4 − 2a5 = 0.

By row-reducing the associated 6× 5 homogeneous system, we see that the only solution is
a1 = a2 = a3 = a4 = a5 = 0, so these matrices are a linearly independent subset of M2,3.

M23 Contributed by Chris Black Statement [646]
The matrix A is in the span of S, since[−13 24 2
−8 −2 −20

]
= 2

[−2 3 4
−1 3 −2

]
− 2

[
4 −2 2
0 −1 1

]
− 3

[−1 −2 −2
2 2 2

]
+ 4

[−1 2 −2
0 −1 −2

]
M24 Contributed by Chris Black Statement [646]
Since any symmetric matrix is of the forma b c
b d e
c e f

 =

a 0 0
0 0 0
0 0 0

+

0 b 0
b 0 0
0 0 0

+

0 0 c
0 0 0
c 0 0

+

0 0 0
0 d 0
0 0 0

+

0 0 0
0 0 e
0 e 0

+

0 0 0
0 0 0
0 0 f

 ,
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Any symmetric matrix is a linear combination of the linearly independent vectors in set T
below, so that 〈T 〉 = Y :

T =


1 0 0

0 0 0
0 0 0

 ,
0 1 0

1 0 0
0 0 0

 ,
0 0 1

0 0 0
1 0 0

 ,
0 0 0

0 1 0
0 0 0

 ,
0 0 0

0 0 1
0 1 0

 ,
0 0 0

0 0 0
0 0 1


(Something to think about: How do we know that these matrices are linearly independent?)

T13 Contributed by Robert Beezer Statement [647]
For all A, B ∈Mmn and for all 1 ≤ i ≤ m, 1 ≤ i ≤ n,

[A+B]ij = [A]ij + [B]ij Definition MA [614]

= [B]ij + [A]ij Commutativity in C
= [B + A]ij Definition MA [614]

Version 2.11



Subsection MO.SOL Solutions 662

With equality of each entry of the matrices A + B and B + A being equal Definition ME
[613] tells us the two matrices are equal.
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Section MM

Matrix Multiplication

We know how to add vectors and how to multiply them by scalars. Together, these operations
give us the possibility of making linear combinations. Similarly, we know how to add matrices
and how to multiply matrices by scalars. In this section we mix all these ideas together and
produce an operation known as “matrix multiplication.” This will lead to some results that
are both surprising and central. We begin with a definition of how to multiply a vector by
a matrix.
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Subsection MVP
Matrix-Vector Product

We have repeatedly seen the importance of forming linear combinations of the columns of a
matrix. As one example of this, the oft-used Theorem SLSLC [327], said that every solution
to a system of linear equations gives rise to a linear combination of the column vectors of the
coefficient matrix that equals the vector of constants. This theorem, and others, motivate
the following central definition.

Definition MVP
Matrix-Vector Product
Suppose A is an m × n matrix with columns A1, A2, A3, . . . , An and u is a vector of size
n. Then the matrix-vector product of A with u is the linear combination

Au = [u]1 A1 + [u]2 A2 + [u]3 A3 + · · ·+ [u]n An
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(This definition contains Notation MVP.) 4
So, the matrix-vector product is yet another version of “multiplication,” at least in the

sense that we have yet again overloaded juxtaposition of two symbols as our notation. Re-
member your objects, an m×n matrix times a vector of size n will create a vector of size m.
So if A is rectangular, then the size of the vector changes. With all the linear combinations
we have performed so far, this computation should now seem second nature.

Example MTV
A matrix times a vector
Consider

A =

 1 4 2 3 4
−3 2 0 1 −2
1 6 −3 −1 5

 u =


2
1
−2
3
−1
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Then

Au = 2

 1
−3
1

+ 1

4
2
6

+ (−2)

 2
0
−3

+ 3

 3
1
−1

+ (−1)

 4
−2
5

 =

7
1
6

 .
�

We can now represent systems of linear equations compactly with a matrix-vector product
(Definition MVP [661]) and column vector equality (Definition CVE [286]). This finally yields
a very popular alternative to our unconventional LS(A, b) notation.

Theorem SLEMM
Systems of Linear Equations as Matrix Multiplication
The set of solutions to the linear system LS(A, b) equals the set of solutions for x in the
vector equation Ax = b. �

Proof This theorem says that two sets (of solutions) are equal. So we need to show that
one set of solutions is a subset of the other, and vice versa (Definition SE [2327]). Let
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A1, A2, A3, . . . , An be the columns of A. Both of these set inclusions then follow from the
following chain of equivalences (Technique E [2348]),

x is a solution to LS(A, b)

⇐⇒ [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An = b Theorem SLSLC [327]

⇐⇒ x is a solution to Ax = b Definition MVP [661]

�

Example MNSLE
Matrix notation for systems of linear equations
Consider the system of linear equations from Example NSLE [80].

2x1 + 4x2 − 3x3 + 5x4 + x5 = 9

3x1 + x2 + x4 − 3x5 = 0

−2x1 + 7x2 − 5x3 + 2x4 + 2x5 = −3

Version 2.11



Subsection MM.MVP Matrix-Vector Product 668

has coefficient matrix

A =

 2 4 −3 5 1
3 1 0 1 −3
−2 7 −5 2 2


and vector of constants

b =

 9
0
−3


and so will be described compactly by the vector equation Ax = b. �

The matrix-vector product is a very natural computation. We have motivated it by its
connections with systems of equations, but here is a another example.

Example MBC
Money’s best cities
Every year Money magazine selects several cities in the United States as the “best” cities
to live in, based on a wide array of statistics about each city. This is an example of how
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the editors of Money might arrive at a single number that consolidates the statistics about
a city. We will analyze Los Angeles, Chicago and New York City, based on four criteria:
average high temperature in July (Farenheit), number of colleges and universities in a 30-mile
radius, number of toxic waste sites in the Superfund environmental clean-up program and a
personal crime index based on FBI statistics (average = 100, smaller is safer). It should be
apparent how to generalize the example to a greater number of cities and a greater number
of statistics.

We begin by building a table of statistics. The rows will be labeled with the cities, and
the columns with statistical categories. These values are from Money’s website in early 2005.

City Temp Colleges Superfund Crime

Los Angeles 77 28 93 254
Chicago 84 38 85 363
New York 84 99 1 193

Conceivably these data might reside in a spreadsheet. Now we must combine the statistics
for each city. We could accomplish this by weighting each category, scaling the values
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and summing them. The sizes of the weights would depend upon the numerical size of
each statistic generally, but more importantly, they would reflect the editors opinions or
beliefs about which statistics were most important to their readers. Is the crime index more
important than the number of colleges and universities? Of course, there is no right answer
to this question.

Suppose the editors finally decide on the following weights to employ: temperature, 0.23;
colleges, 0.46; Superfund, −0.05; crime, −0.20. Notice how negative weights are used for
undesirable statistics. Then, for example, the editors would compute for Los Angeles,

(0.23)(77) + (0.46)(28) + (−0.05)(93) + (−0.20)(254) = −24.86

This computation might remind you of an inner product, but we will produce the computa-
tions for all of the cities as a matrix-vector product. Write the table of raw statistics as a
matrix

T =

77 28 93 254
84 38 85 363
84 99 1 193
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and the weights as a vector

w =


0.23
0.46
−0.05
−0.20


then the matrix-vector product (Definition MVP [661]) yields

Tw = (0.23)

77
84
84

+ (0.46)

28
38
99

+ (−0.05)

93
85
1

+ (−0.20)

254
363
193

 =

−24.86
−40.05
26.21


This vector contains a single number for each of the cities being studied, so the editors would
rank New York best (26.21), Los Angeles next (−24.86), and Chicago third (−40.05). Of
course, the mayor’s offices in Chicago and Los Angeles are free to counter with a different
set of weights that cause their city to be ranked best. These alternative weights would be
chosen to play to each cities’ strengths, and minimize their problem areas.
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If a speadsheet were used to make these computations, a row of weights would be entered
somewhere near the table of data and the formulas in the spreadsheet would effect a matrix-
vector product. This example is meant to illustrate how “linear” computations (addition,
multiplication) can be organized as a matrix-vector product.

Another example would be the matrix of numerical scores on examinations and exer-
cises for students in a class. The rows would correspond to students and the columns to
exams and assignments. The instructor could then assign weights to the different exams and
assignments, and via a matrix-vector product, compute a single score for each student. �

Later (much later) we will need the following theorem, which is really a technical lemma
(see Technique LC [2369]). Since we are in a position to prove it now, we will. But you can
safely skip it for the moment, if you promise to come back later to study the proof when the
theorem is employed. At that point you will also be able to understand the comments in the
paragraph following the proof.

Theorem EMMVP
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Equal Matrices and Matrix-Vector Products
Suppose that A and B are m × n matrices such that Ax = Bx for every x ∈ Cn. Then
A = B. �

Proof We are assuming Ax = Bx for all x ∈ Cn, so we can employ this equality for any
choice of the vector x. However, we’ll limit our use of this equality to the standard unit
vectors, ej, 1 ≤ j ≤ n (Definition SUV [586]). For all 1 ≤ j ≤ n, 1 ≤ i ≤ m,

[A]ij = 0 [A]i1 + · · ·+ 0 [A]i,j−1 + 1 [A]ij + 0 [A]i,j+1 + · · ·+ 0 [A]in

= [A]i1 [ej]1 + [A]i2 [ej]2 + [A]i3 [ej]3 + · · ·+ [A]in [ej]n Definition SUV [586]

= [Aej]i Definition MVP [661]

= [Bej]i Definition CVE [286]

= [B]i1 [ej]1 + [B]i2 [ej]2 + [B]i3 [ej]3 + · · ·+ [B]in [ej]n Definition MVP [661]

= 0 [B]i1 + · · ·+ 0 [B]i,j−1 + 1 [B]ij + 0 [B]i,j+1 + · · ·+ 0 [B]in Definition SUV [586]

= [B]ij
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So by Definition ME [613] the matrices A and B are equal, as desired. �

You might notice that the hypotheses of this theorem could be “weakened” (i.e. made
less restrictive). We could suppose the equality of the matrix-vector products for just the
standard unit vectors (Definition SUV [586]) or any other spanning set (Definition TSVS
[1076]) of Cn (Exercise LISS.T40 [1100]). However, in practice, when we apply this theorem
we will only need this weaker form. (If we made the hypothesis less restrictive, we would
call the theorem “stronger.”)

Subsection MM
Matrix Multiplication

We now define how to multiply two matrices together. Stop for a minute and think about
how you might define this new operation.
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Many books would present this definition much earlier in the course. However, we have
taken great care to delay it as long as possible and to present as many ideas as practical
based mostly on the notion of linear combinations. Towards the conclusion of the course,
or when you perhaps take a second course in linear algebra, you may be in a position to
appreciate the reasons for this. For now, understand that matrix multiplication is a central
definition and perhaps you will appreciate its importance more by having saved it for later.

Definition MM
Matrix Multiplication
Suppose A is an m× n matrix and B is an n× p matrix with columns B1, B2, B3, . . . , Bp.
Then the matrix product of A with B is the m× p matrix where column i is the matrix-
vector product ABi. Symbolically,

AB = A [B1|B2|B3| . . . |Bp] = [AB1|AB2|AB3| . . . |ABp] .

4
Example PTM
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Product of two matrices
Set

A =

 1 2 −1 4 6
0 −4 1 2 3
−5 1 2 −3 4

 B =


1 6 2 1
−1 4 3 2
1 1 2 3
6 4 −1 2
1 −2 3 0


Then

AB =

A


1
−1
1
6
1


∣∣∣∣∣∣∣∣∣∣
A


6
4
1
4
−2


∣∣∣∣∣∣∣∣∣∣
A


2
3
2
−1
3


∣∣∣∣∣∣∣∣∣∣
A


1
2
3
2
0


 =

 28 17 20 10
20 −13 −3 −1
−18 −44 12 −3

 .
�

Is this the definition of matrix multiplication you expected? Perhaps our previous opera-
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tions for matrices caused you to think that we might multiply two matrices of the same size,
entry-by-entry? Notice that our current definition uses matrices of different sizes (though
the number of columns in the first must equal the number of rows in the second), and the
result is of a third size. Notice too in the previous example that we cannot even consider
the product BA, since the sizes of the two matrices in this order aren’t right.

But it gets weirder than that. Many of your old ideas about “multiplication” won’t apply
to matrix multiplication, but some still will. So make no assumptions, and don’t do anything
until you have a theorem that says you can. Even if the sizes are right, matrix multiplication
is not commutative — order matters.

Example MMNC
Matrix multiplication is not commutative
Set

A =

[
1 3
−1 2

]
B =

[
4 0
5 1

]
.

Then we have two square, 2×2 matrices, so Definition MM [672] allows us to multiply them
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in either order. We find

AB =

[
19 3
6 2

]
BA =

[
4 12
4 17

]

and AB 6= BA. Not even close. It should not be hard for you to construct other pairs of
matrices that do not commute (try a couple of 3× 3’s). Can you find a pair of non-identical
matrices that do commute? �

Matrix multiplication is fundamental, so it is a natural procedure for any computational
device. See: Computation MM.MMA [2285]
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Subsection MMEE
Matrix Multiplication, Entry-by-Entry

While certain “natural” properties of multiplication don’t hold, many more do. In the next
subsection, we’ll state and prove the relevant theorems. But first, we need a theorem that
provides an alternate means of multiplying two matrices. In many texts, this would be given
as the definition of matrix multiplication. We prefer to turn it around and have the following
formula as a consequence of our definition. It will prove useful for proofs of matrix equality,
where we need to examine products of matrices, entry-by-entry.

Theorem EMP
Entries of Matrix Products
Suppose A is an m × n matrix and B is an n × p matrix. Then for 1 ≤ i ≤ m, 1 ≤ j ≤ p,
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the individual entries of AB are given by

[AB]ij = [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj

=
n∑
k=1

[A]ik [B]kj

�

Proof Denote the columns of A as the vectors A1, A2, A3, . . . , An and the columns of B
as the vectors B1, B2, B3, . . . , Bp. Then for 1 ≤ i ≤ m, 1 ≤ j ≤ p,

[AB]ij = [ABj]i Definition MM [672]

=
[
[Bj]1 A1 + [Bj]2 A2 + [Bj]3 A3 + · · ·+ [Bj]n An

]
i

Definition MVP [661]

=
[
[Bj]1 A1

]
i
+
[
[Bj]2 A2

]
i
+
[
[Bj]3 A3

]
i
+ · · ·+ [[Bj]n An

]
i

Definition CVA [289]

= [Bj]1 [A1]i + [Bj]2 [A2]i + [Bj]3 [A3]i + · · ·+ [Bj]n [An]i Definition CVSM [291]

= [B]1j [A]i1 + [B]2j [A]i2 + [B]3j [A]i3 + · · ·+ [B]nj [A]in Notation ME [613]
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= [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj Property CMCN [2317]

=
n∑
k=1

[A]ik [B]kj

�

Example PTMEE
Product of two matrices, entry-by-entry
Consider again the two matrices from Example PTM [673]

A =

 1 2 −1 4 6
0 −4 1 2 3
−5 1 2 −3 4

 B =


1 6 2 1
−1 4 3 2
1 1 2 3
6 4 −1 2
1 −2 3 0
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Then suppose we just wanted the entry of AB in the second row, third column:

[AB]23 = [A]21 [B]13 + [A]22 [B]23 + [A]23 [B]33 + [A]24 [B]43 + [A]25 [B]53

=(0)(2) + (−4)(3) + (1)(2) + (2)(−1) + (3)(3) = −3

Notice how there are 5 terms in the sum, since 5 is the common dimension of the two matrices
(column count for A, row count for B). In the conclusion of Theorem EMP [676], it would
be the index k that would run from 1 to 5 in this computation. Here’s a bit more practice.

The entry of third row, first column:

[AB]31 = [A]31 [B]11 + [A]32 [B]21 + [A]33 [B]31 + [A]34 [B]41 + [A]35 [B]51

=(−5)(1) + (1)(−1) + (2)(1) + (−3)(6) + (4)(1) = −18

To get some more practice on your own, complete the computation of the other 10 entries
of this product. Construct some other pairs of matrices (of compatible sizes) and compute
their product two ways. First use Definition MM [672]. Since linear combinations are
straightforward for you now, this should be easy to do and to do correctly. Then do it
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again, using Theorem EMP [676]. Since this process may take some practice, use your first
computation to check your work. �

Theorem EMP [676] is the way many people compute matrix products by hand. It will
also be very useful for the theorems we are going to prove shortly. However, the definition
(Definition MM [672]) is frequently the most useful for its connections with deeper ideas like
the null space and the upcoming column space.

Subsection PMM
Properties of Matrix Multiplication

In this subsection, we collect properties of matrix multiplication and its interaction with
the zero matrix (Definition ZM [621]), the identity matrix (Definition IM [248]), matrix
addition (Definition MA [614]), scalar matrix multiplication (Definition MSM [615]), the
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inner product (Definition IP [569]), conjugation (Theorem MMCC [691]), and the transpose
(Definition TM [622]). Whew! Here we go. These are great proofs to practice with, so try
to concoct the proofs before reading them, they’ll get progressively more complicated as we
go.

Theorem MMZM
Matrix Multiplication and the Zero Matrix
Suppose A is an m× n matrix. Then
1. AOn×p = Om×p
2. Op×mA = Op×n �

Proof We’ll prove (1) and leave (2) to you. Entry-by-entry, for 1 ≤ i ≤ m, 1 ≤ j ≤ p,

[AOn×p]ij =
n∑
k=1

[A]ik [On×p]kj Theorem EMP [676]

=
n∑
k=1

[A]ik 0 Definition ZM [621]
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=
n∑
k=1

0

= 0 Property ZCN [2317]

= [Om×p]ij Definition ZM [621]

So by the definition of matrix equality (Definition ME [613]), the matrices AOn×p and Om×p
are equal. �

Theorem MMIM
Matrix Multiplication and Identity Matrix
Suppose A is an m× n matrix. Then
1. AIn = A
2. ImA = A �

Proof Again, we’ll prove (1) and leave (2) to you. Entry-by-entry, For 1 ≤ i ≤ m,
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1 ≤ j ≤ n,

[AIn]ij =
n∑
k=1

[A]ik [In]kj Theorem EMP [676]

= [A]ij [In]jj +
n∑
k=1
k 6=j

[A]ik [In]kj Property CACN [2317]

= [A]ij (1) +
n∑

k=1,k 6=j

[A]ik (0) Definition IM [248]

= [A]ij +
n∑

k=1,k 6=j

0

= [A]ij

So the matrices A and AIn are equal, entry-by-entry, and by the definition of matrix equality
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(Definition ME [613]) we can say they are equal matrices. �

It is this theorem that gives the identity matrix its name. It is a matrix that behaves
with matrix multiplication like the scalar 1 does with scalar multiplication. To multiply by
the identity matrix is to have no effect on the other matrix.

Theorem MMDAA
Matrix Multiplication Distributes Across Addition
Suppose A is an m × n matrix and B and C are n × p matrices and D is a p × s matrix.
Then
1. A(B + C) = AB + AC
2. (B + C)D = BD + CD �

Proof We’ll do (1), you do (2). Entry-by-entry, for 1 ≤ i ≤ m, 1 ≤ j ≤ p,

[A(B + C)]ij =
n∑
k=1

[A]ik [B + C]kj Theorem EMP [676]
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=
n∑
k=1

[A]ik ([B]kj + [C]kj) Definition MA [614]

=
n∑
k=1

[A]ik [B]kj + [A]ik [C]kj Property DCN [2317]

=
n∑
k=1

[A]ik [B]kj +
n∑
k=1

[A]ik [C]kj Property CACN [2317]

= [AB]ij + [AC]ij Theorem EMP [676]

= [AB + AC]ij Definition MA [614]

So the matrices A(B +C) and AB +AC are equal, entry-by-entry, and by the definition of
matrix equality (Definition ME [613]) we can say they are equal matrices. �

Theorem MMSMM
Matrix Multiplication and Scalar Matrix Multiplication
Suppose A is an m× n matrix and B is an n× p matrix. Let α be a scalar. Then α(AB) =
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(αA)B = A(αB). �

Proof These are equalities of matrices. We’ll do the first one, the second is similar and
will be good practice for you. For 1 ≤ i ≤ m, 1 ≤ j ≤ p,

[α(AB)]ij = α [AB]ij Definition MSM [615]

= α
n∑
k=1

[A]ik [B]kj Theorem EMP [676]

=
n∑
k=1

α [A]ik [B]kj Property DCN [2317]

=
n∑
k=1

[αA]ik [B]kj Definition MSM [615]

= [(αA)B]ij Theorem EMP [676]

So the matrices α(AB) and (αA)B are equal, entry-by-entry, and by the definition of matrix
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equality (Definition ME [613]) we can say they are equal matrices. �

Theorem MMA
Matrix Multiplication is Associative
Suppose A is an m × n matrix, B is an n × p matrix and D is a p × s matrix. Then
A(BD) = (AB)D. �

Proof A matrix equality, so we’ll go entry-by-entry, no surprise there. For 1 ≤ i ≤ m,
1 ≤ j ≤ s,

[A(BD)]ij =
n∑
k=1

[A]ik [BD]kj Theorem EMP [676]

=
n∑
k=1

[A]ik

(
p∑
`=1

[B]k` [D]`j

)
Theorem EMP [676]

=
n∑
k=1

p∑
`=1

[A]ik [B]k` [D]`j Property DCN [2317]
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We can switch the order of the summation since these are finite sums,

=

p∑
`=1

n∑
k=1

[A]ik [B]k` [D]`j Property CACN [2317]

As [D]`j does not depend on the index k, we can use distributivity to move it outside of the
inner sum,

=

p∑
`=1

[D]`j

(
n∑
k=1

[A]ik [B]k`

)
Property DCN [2317]

=

p∑
`=1

[D]`j [AB]i` Theorem EMP [676]

=

p∑
`=1

[AB]i` [D]`j Property CMCN [2317]
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= [(AB)D]ij Theorem EMP [676]

So the matrices (AB)D and A(BD) are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [613]) we can say they are equal matrices. �

The statement of our next theorem is technically inaccurate. If we upgrade the vectors
u, v to matrices with a single column, then the expression utv is a 1× 1 matrix, though we
will treat this small matrix as if it was simply the scalar quantity in its lone entry. When
we apply Theorem MMIP [689] there should not be any confusion.

Theorem MMIP
Matrix Multiplication and Inner Products
If we consider the vectors u, v ∈ Cm as m× 1 matrices then

〈u, v〉 = utv
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�

Proof

〈u, v〉 =
m∑
k=1

[u]k [v]k Definition IP [569]

=
m∑
k=1

[u]k1 [v]k1 Column vectors as matrices

=
m∑
k=1

[
ut
]
1k

[v]k1 Definition TM [622]

=
m∑
k=1

[
ut
]
1k

[v]k1 Definition CCCV [566]

=
[
utv
]
11

Theorem EMP [676]

Version 2.11



Subsection MM.PMM Properties of Matrix Multiplication 694

To finish we just blur the distinction between a 1× 1 matrix (utv) and its lone entry. �

Theorem MMCC
Matrix Multiplication and Complex Conjugation
Suppose A is an m× n matrix and B is an n× p matrix. Then AB = AB. �

Proof To obtain this matrix equality, we will work entry-by-entry. For 1 ≤ i ≤ m,
1 ≤ j ≤ p,

[
AB
]
ij

= [AB]ij Definition CCM [630]

=
n∑
k=1

[A]ik [B]kj Theorem EMP [676]

=
n∑
k=1

[A]ik [B]kj Theorem CCRA [2320]
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=
n∑
k=1

[A]ik [B]kj Theorem CCRM [2321]

=
n∑
k=1

[
A
]
ik

[
B
]
kj

Definition CCM [630]

=
[
AB

]
ij

Theorem EMP [676]

So the matrices AB and AB are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [613]) we can say they are equal matrices. �

Another theorem in this style, and its a good one. If you’ve been practicing with the
previous proofs you should be able to do this one yourself.

Theorem MMT
Matrix Multiplication and Transposes
Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)t = BtAt. �

Proof This theorem may be surprising but if we check the sizes of the matrices involved,
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then maybe it will not seem so far-fetched. First, AB has size m × p, so its transpose has
size p×m. The product of Bt with At is a p×n matrix times an n×m matrix, also resulting
in a p×m matrix. So at least our objects are compatible for equality (and would not be, in
general, if we didn’t reverse the order of the matrix multiplication).

Here we go again, entry-by-entry. For 1 ≤ i ≤ m, 1 ≤ j ≤ p,[
(AB)t

]
ji

= [AB]ij Definition TM [622]

=
n∑
k=1

[A]ik [B]kj Theorem EMP [676]

=
n∑
k=1

[B]kj [A]ik Property CMCN [2317]

=
n∑
k=1

[
Bt
]
jk

[
At
]
ki

Definition TM [622]

=
[
BtAt

]
ji

Theorem EMP [676]
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So the matrices (AB)t and BtAt are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [613]) we can say they are equal matrices. �

This theorem seems odd at first glance, since we have to switch the order of A and B.
But if we simply consider the sizes of the matrices involved, we can see that the switch is
necessary for this reason alone. That the individual entries of the products then come along
to be equal is a bonus.

As the adjoint of a matrix is a composition of a conjugate and a transpose, its interaction
with matrix multiplication is similar to that of a transpose. Here’s the last of our long list
of basic properties of matrix multiplication.

Theorem MMAD
Matrix Multiplication and Adjoints
Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)∗ = B∗A∗. �

Proof

(AB)∗ =
(
AB
)t

Definition A [636]
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=
(
AB

)t
Theorem MMCC [691]

=
(
B
)t (

A
)t

Theorem MMT [692]

= B∗A∗ Definition A [636]

�

Notice how none of these proofs above relied on writing out huge general matrices with
lots of ellipses (“. . . ”) and trying to formulate the equalities a whole matrix at a time. This
messy business is a “proof technique” to be avoided at all costs. Notice too how the proof
of Theorem MMAD [694] does not use an entry-by-entry approach, but simply builds on
previous results about matrix multiplication’s interaction with conjugation and transposes.

These theorems, along with Theorem VSPM [618] and the other results in Section MO
[612], give you the “rules” for how matrices interact with the various operations we have de-
fined on matrices (addition, scalar multiplication, matrix multiplication, conjugation, trans-
poses and adjoints). Use them and use them often. But don’t try to do anything with a
matrix that you don’t have a rule for. Together, we would informally call all these opera-
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tions, and the attendant theorems, “the algebra of matrices.” Notice, too, that every column
vector is just a n× 1 matrix, so these theorems apply to column vectors also. Finally, these
results, taken as a whole, may make us feel that the definition of matrix multiplication is
not so unnatural.

Subsection HM
Hermitian Matrices

The adjoint of a matrix has a basic property when employed in a matrix-vector product
as part of an inner product. At this point, you could even use the following result as a
motivation for the definition of an adjoint.

Theorem AIP
Adjoint and Inner Product
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Suppose that A is an m× n matrix and x ∈ Cn, y ∈ Cm. Then 〈Ax, y〉 = 〈x, A∗y〉. �

Proof

〈Ax, y〉 = (Ax)t y Theorem MMIP [689]

= xtAty Theorem MMT [692]

= xt
(
A
)t

y Theorem CCM [633]

= xt
((
A
)t)

y Theorem MCT [634]

= xt(A∗)y Definition A [636]

= xt(A∗y) Theorem MMCC [691]

= 〈x, A∗y〉 Theorem MMIP [689]

�

Sometimes a matrix is equal to its adjoint (Definition A [636]), and these matrices have
interesting properties. One of the most common situations where this occurs is when a
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matrix has only real number entries. Then we are simply talking about symmetric matrices
(Definition SYM [624]), so you can view this as a generalization of a symmetric matrix.

Definition HM
Hermitian Matrix
The square matrix A is Hermitian (or self-adjoint) if A = A∗. 4

Again, the set of real matrices that are Hermitian is exactly the set of symmetric matrices.
In Section PEE [1445] we will uncover some amazing properties of Hermitian matrices, so
when you get there, run back here to remind yourself of this definition. Further properties
will also appear in various sections of the Topics (Part T [2650]). Right now we prove a
fundamental result about Hermitian matrices, matrix vector products and inner products.
As a characterization, this could be employed as a definition of a Hermitian matrix and some
authors take this approach.

Theorem HMIP
Hermitian Matrices and Inner Products
Suppose that A is a square matrix of size n. Then A is Hermitian if and only if 〈Ax, y〉 =

Version 2.11



Subsection MM.HM Hermitian Matrices 702

〈x, Ay〉 for all x, y ∈ Cn. �

Proof (⇒) This is the “easy half” of the proof, and makes the rationale for a definition
of Hermitian matrices most obvious. Assume A is Hermitian,

〈Ax, y〉 = 〈x, A∗y〉 Theorem AIP [696]

= 〈x, Ay〉 Definition HM [698]

(⇐) This “half” will take a bit more work. Assume that 〈Ax, y〉 = 〈x, Ay〉 for all x, y ∈
Cn. Choose any x ∈ Cn. We want to show that A = A∗ by establishing that Ax = A∗x.
With only this much motivation, consider the inner product,

〈Ax− A∗x, Ax− A∗x〉 = 〈Ax− A∗x, Ax〉 − 〈Ax− A∗x, A∗x〉 Theorem IPVA [572]

= 〈Ax− A∗x, Ax〉 − 〈A (Ax− A∗x) , x〉 Theorem AIP [696]

= 〈A (Ax− A∗x) , x〉 − 〈A (Ax− A∗x) , x〉 Hypothesis

= 0 Property AICN [2318]
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Because this inner product equals zero, and has the same vector in each argument (Ax−A∗x),
Theorem PIP [582] gives the conclusion that Ax−A∗x = 0. With Ax = A∗x for all x ∈ Cn,
Theorem EMMVP [670] says A = A∗, which is the defining property of a Hermitian matrix
(Definition HM [698]). �

So, informally, Hermitian matrices are those that can be tossed around from one side of
an inner product to the other with reckless abandon. We’ll see later what this buys us.
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Subsection READ
Reading Questions

1. Form the matrix vector product of2 3 −1 0
1 −2 7 3
1 5 3 2

 with


2
−3
0
5


2. Multiply together the two matrices below (in the order given).2 3 −1 0

1 −2 7 3
1 5 3 2




2 6
−3 −4
0 2
3 −1
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3. Rewrite the system of linear equations below as a vector equality and using a matrix-
vector product. (This question does not ask for a solution to the system. But it does
ask you to express the system of equations in a new form using tools from this section.)

2x1 + 3x2 − x3 = 0

x1 + 2x2 + x3 = 3

x1 + 3x2 + 3x3 = 7
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Subsection EXC
Exercises

C20 Compute the product of the two matrices below, AB. Do this using the definitions of
the matrix-vector product (Definition MVP [661]) and the definition of matrix multiplication
(Definition MM [672]).

A =

 2 5
−1 3
2 −2

 B =

[
1 5 −3 4
2 0 2 −3

]

Contributed by Robert Beezer Solution [712]

C21 Compute the product AB of the two matrices below using both the definition of the
matrix-vector product (Definition MVP [661]) and the definition of matrix multiplication
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(Definition MM [672]).

A =

 1 3 2
−1 2 1
0 1 0

 B =

4 1 2
1 0 1
3 1 5


Contributed by Chris Black Solution [713]

C22 Compute the product AB of the two matrices below using both the definition of the
matrix-vector product (Definition MVP [661]) and the definition of matrix multiplication
(Definition MM [672]).

A =

[
1 0
−2 1

]
B =

[
2 3
4 6

]

Contributed by Chris Black Solution [713]
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C23 Compute the product AB of the two matrices below using both the definition of the
matrix-vector product (Definition MVP [661]) and the definition of matrix multiplication
(Definition MM [672]).

A =


3 1
2 4
6 5
1 2

 B =

[−3 1
4 2

]

Contributed by Chris Black Solution [714]

C24 Compute the product AB of the two matrices below.

A =

1 2 3 −2
0 1 −2 −1
1 1 3 1

 B =


3
4
0
2
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Contributed by Chris Black Solution [714]

C25 Compute the product AB of the two matrices below.

A =

1 2 3 −2
0 1 −2 −1
1 1 3 1

 B =


−7
3
1
1



Contributed by Chris Black Solution [714]

C26 Compute the product AB of the two matrices below using both the definition of the
matrix-vector product (Definition MVP [661]) and the definition of matrix multiplication
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(Definition MM [672]).

A =

1 3 1
0 1 0
1 1 2

 B =

 2 −5 −1
0 1 0
−1 2 1


Contributed by Chris Black Solution [715]

C30 For the matrix A =

[
1 2
0 1

]
, find A2, A3, A4. Find a general formula for An for any

positive integer n.
Contributed by Chris Black Solution [715]

C31 For the matrix A =

[
1 −1
0 1

]
, find A2, A3, A4. Find a general formula for An for any

positive integer n.
Contributed by Chris Black Solution [715]
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C32 For the matrix A =

1 0 0
0 2 0
0 0 3

, find A2, A3, A4. Find a general formula for An for

any positive integer n.
Contributed by Chris Black Solution [715]

C33 For the matrix A =

0 1 2
0 0 1
0 0 0

, find A2, A3, A4. Find a general formula for An for

any positive integer n.
Contributed by Chris Black Solution [716]

M30 Let A be a nonsingular n × n matrix, and let B be any n × p matrix. Show that if
x ∈ N (B), then x ∈ N (AB).
Contributed by Chris Black Solution [716]

M31 Let A be a nonsingular n × n matrix, and let B be any n × p matrix. Show that if
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x ∈ N (AB), then x ∈ N (B).
Contributed by Chris Black Solution [716]

T10 Suppose that A is a square matrix and there is a vector, b, such that LS(A, b) has
a unique solution. Prove that A is nonsingular. Give a direct proof (perhaps appealing
to Theorem PSPHS [368]) rather than just negating a sentence from the text discussing a
similar situation.
Contributed by Robert Beezer Solution [717]

T20 Prove the second part of Theorem MMZM [681].
Contributed by Robert Beezer

T21 Prove the second part of Theorem MMIM [682].
Contributed by Robert Beezer

T22 Prove the second part of Theorem MMDAA [684].
Contributed by Robert Beezer
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T23 Prove the second part of Theorem MMSMM [685].
Contributed by Robert Beezer Solution [717]

T31 Suppose that A is an m× n matrix and x, y ∈ N (A). Prove that x + y ∈ N (A).
Contributed by Robert Beezer

T32 Suppose that A is an m× n matrix, α ∈ C, and x ∈ N (A). Prove that αx ∈ N (A).
Contributed by Robert Beezer

T40 Suppose that A is an m × n matrix and B is an n × p matrix. Prove that the null
space of B is a subset of the null space of AB, that is N (B) ⊆ N (AB). Provide an example
where the opposite is false, in other words give an example where N (AB) 6⊆ N (B).
Contributed by Robert Beezer Solution [718]

T41 Suppose that A is an n× n nonsingular matrix and B is an n× p matrix. Prove that
the null space of B is equal to the null space of AB, that is N (B) = N (AB). (Compare
with Exercise MM.T40 [710].)
Contributed by Robert Beezer Solution [719]
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T50 Suppose u and v are any two solutions of the linear system LS(A, b). Prove that
u− v is an element of the null space of A, that is, u− v ∈ N (A).
Contributed by Robert Beezer

T51 Give a new proof of Theorem PSPHS [368] replacing applications of Theorem SLSLC
[327] with matrix-vector products (Theorem SLEMM [663]).
Contributed by Robert Beezer Solution [720]

T52 Suppose that x, y ∈ Cn, b ∈ Cm and A is an m × n matrix. If x, y and x + y are
each a solution to the linear system LS(A, b), what interesting can you say about b? Form
an implication with the existence of the three solutions as the hypothesis and an interesting
statement about LS(A, b) as the conclusion, and then give a proof.
Contributed by Robert Beezer Solution [722]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [703]
By Definition MM [672],

AB =

 2 5
−1 3
2 −2

[1
2

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[5
0

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[−3
2

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[ 4
−2

]
Repeated applications of Definition MVP [661] give

=

1

 2
−1
2

+ 2

 5
3
−2

∣∣∣∣∣∣ 5

 2
−1
2

+ 0

 5
3
−2

∣∣∣∣∣∣ −3

 2
−1
2

+ 2

 5
3
−2

∣∣∣∣∣∣ 4

 2
−1
2

+ (−3)

 5
3
−2
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=

12 10 4 −7
5 −5 9 −13
−2 10 −10 14



C21 Contributed by Chris Black Statement [703]

AB =

13 3 15
1 0 5
1 0 1

.

C22 Contributed by Chris Black Statement [704]

AB =

[
2 3
0 0

]
.

C23 Contributed by Chris Black Statement [705]
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AB =


−5 5
10 10
2 16
5 5

.

C24 Contributed by Chris Black Statement [705]

AB =

7
2
9

.

C25 Contributed by Chris Black Statement [706]

AB =

0
0
0

.

C26 Contributed by Chris Black Statement [706]
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AB =

1 0 0
0 1 0
0 0 1

.

C30 Contributed by Chris Black Statement [707]

A2 =

[
1 4
0 1

]
, A3 =

[
1 6
0 1

]
, A4 =

[
1 8
0 1

]
. From this pattern, we see that An =

[
1 2n
0 1

]
.

C31 Contributed by Chris Black Statement [707]

A2 =

[
1 −2
0 1

]
, A3 =

[
1 −3
0 1

]
, A4 =

[
1 −4
0 1

]
. From this pattern, we see that An =[

1 −n
0 1

]
.

C32 Contributed by Chris Black Statement [708]

A2 =

1 0 0
0 4 0
0 0 9

, A3 =

1 0 0
0 8 0
0 0 27

, and A4 =

1 0 0
0 16 0
0 0 81

. The pattern emerges, and we
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see that An =

1 0 0
0 2n 0
0 0 3n

.

C33 Contributed by Chris Black Statement [708]

We quickly compute A2 =

0 0 1
0 0 0
0 0 0

, and we then see that A3 and all subsequent powers

of A are the 3× 3 zero matrix; that is, An = O3,3 for n ≥ 3.

M30 Contributed by Chris Black Statement [708]
We are given that A is a nonsingular n × n matrix, and B is any n × p matrix. We are
hypothesizing that x ∈ N (B), which means that Bx = 0, the zero vector in Cn. Then,
(AB)x = A(Bx) = A0n = 0, and so x ∈ N (AB).

M31 Contributed by Chris Black Statement [708]
We are given that A is a nonsingular n × n matrix, and B is any n × p matrix. We are
hypothesizing that x ∈ N (AB), which means that ABx = 0, the zero vector in Cn. But,
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ABx = A(Bx), so the vector Bx is in N (A). However, A is nonsingular, so we know that
N (A) = {0}, so that Bx is the zero vector. We then have x ∈ N (B), and we are done.

T10 Contributed by Robert Beezer Statement [709]
Since LS(A, b) has at least one solution, we can apply Theorem PSPHS [368]. Because
the solution is assumed to be unique, the null space of A must be trivial. Then Theorem
NMTNS [256] implies that A is nonsingular.

The converse of this statement is a trivial application of Theorem NMUS [256]. That said,
we could extend our NSMxx series of theorems with an added equivalence for nonsingularity,
“Given a single vector of constants, b, the system LS(A, b) has a unique solution.”

T23 Contributed by Robert Beezer Statement [710]
We’ll run the proof entry-by-entry.

[α(AB)]ij =α [AB]ij Definition MSM [615]

=α
n∑
k=1

[A]ik [B]kj Theorem EMP [676]
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=
n∑
k=1

α [A]ik [B]kj Distributivity in C

=
n∑
k=1

[A]ik α [B]kj Commutativity in C

=
n∑
k=1

[A]ik [αB]kj Definition MSM [615]

= [A(αB)]ij Theorem EMP [676]

So the matrices α(AB) and A(αB) are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [613]) we can say they are equal matrices.

T40 Contributed by Robert Beezer Statement [710]
To prove that one set is a subset of another, we start with an element of the smaller set
and see if we can determine that it is a member of the larger set (Definition SSET [2325]).
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Suppose x ∈ N (B). Then we know that Bx = 0 by Definition NSM [216]. Consider

(AB)x = A(Bx) Theorem MMA [687]

= A0 Hypothesis

= 0 Theorem MMZM [681]

This establishes that x ∈ N (AB), so N (B) ⊆ N (AB).

To show that the inclusion does not hold in the opposite direction, choose B to be any
nonsingular matrix of size n. Then N (B) = {0} by Theorem NMTNS [256]. Let A be the
square zero matrix, O, of the same size. Then AB = OB = O by Theorem MMZM [681]
and therefore N (AB) = Cn, and is not a subset of N (B) = {0}.
T41 Contributed by David Braithwaite Statement [710]
From the solution to Exercise MM.T40 [710] we know that N (B) ⊆ N (AB). So to establish
the set equality (Definition SE [2327]) we need to show that N (AB) ⊆ N (B).
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Suppose x ∈ N (AB). Then we know that ABx = 0 by Definition NSM [216]. Consider

0 = (AB) x Definition NSM [216]

= A (Bx) Theorem MMA [687]

So, Bx ∈ N (A). Because A is nonsingular, it has a trivial null space (Theorem NMTNS
[256]) and we conclude that Bx = 0. This establishes that x ∈ N (B), so N (AB) ⊆ N (B)
and combined with the solution to Exercise MM.T40 [710] we have N (B) = N (AB) when
A is nonsingular.

T51 Contributed by Robert Beezer Statement [711]
We will work with the vector equality representations of the relevant systems of equations,
as described by Theorem SLEMM [663].

(⇐) Suppose y = w + z and z ∈ N (A). Then

Ay = A(w + z) Substitution

= Aw + Az Theorem MMDAA [684]
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= b + 0 z ∈ N (A)

= b Property ZC [295]

demonstrating that y is a solution.
(⇒) Suppose y is a solution to LS(A, b). Then

A(y −w) = Ay − Aw Theorem MMDAA [684]

= b− b y, w solutions to Ax = b

= 0 Property AIC [296]

which says that y − w ∈ N (A). In other words, y − w = z for some vector z ∈ N (A).
Rewritten, this is y = w + z, as desired.

T52 Contributed by Robert Beezer Statement [711]
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LS(A, b) must be homogeneous. To see this consider that

b = Ax Theorem SLEMM [663]

= Ax + 0 Property ZC [295]

= Ax + Ay − Ay Property AIC [296]

= A (x + y)− Ay Theorem MMDAA [684]

= b− b Theorem SLEMM [663]

= 0 Property AIC [296]

By Definition HS [207] we see that LS(A, b) is homogeneous.
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Section MISLE

Matrix Inverses and Systems of Linear Equations

We begin with a familiar example, performed in a novel way.

Example SABMI
Solutions to Archetype B with a matrix inverse
Archetype B [2392] is the system of m = 3 linear equations in n = 3 variables,

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5
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By Theorem SLEMM [663] we can represent this system of equations as

Ax = b

where

A =

−7 −6 −12
5 5 7
1 0 4

 x =

x1

x2

x3

 b =

−33
24
5


We’ll pull a rabbit out of our hat and present the 3× 3 matrix B,

B =

−10 −12 −9
13
2

8 11
2

5
2

3 5
2


and note that

BA =

−10 −12 −9
13
2

8 11
2

5
2

3 5
2

−7 −6 −12
5 5 7
1 0 4

 =

1 0 0
0 1 0
0 0 1
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Now apply this computation to the problem of solving the system of equations,

x = I3x Theorem MMIM [682]

= (BA)x Substitution

= B(Ax) Theorem MMA [687]

= Bb Substitution

So we have

x = Bb =

−10 −12 −9
13
2

8 11
2

5
2

3 5
2

−33
24
5

 =

−3
5
2


So with the help and assistance of B we have been able to determine a solution to the system
represented by Ax = b through judicious use of matrix multiplication. We know by Theorem
NMUS [256] that since the coefficient matrix in this example is nonsingular, there would be
a unique solution, no matter what the choice of b. The derivation above amplifies this result,
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since we were forced to conclude that x = Bb and the solution couldn’t be anything else.
You should notice that this argument would hold for any particular value of b. �

The matrix B of the previous example is called the inverse of A. When A and B are
combined via matrix multiplication, the result is the identity matrix, which can be inserted
“in front” of x as the first step in finding the solution. This is entirely analogous to how we
might solve a single linear equation like 3x = 12.

x = 1x =

(
1

3
(3)

)
x =

1

3
(3x) =

1

3
(12) = 4

Here we have obtained a solution by employing the “multiplicative inverse” of 3, 3−1 = 1
3
.

This works fine for any scalar multiple of x, except for zero, since zero does not have a
multiplicative inverse. For matrices, it is more complicated. Some matrices have inverses,
some do not. And when a matrix does have an inverse, just how would we compute it? In
other words, just where did that matrix B in the last example come from? Are there other
matrices that might have worked just as well?
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Subsection IM
Inverse of a Matrix

Definition MI
Matrix Inverse
Suppose A and B are square matrices of size n such that AB = In and BA = In. Then A
is invertible and B is the inverse of A. In this situation, we write B = A−1.
(This definition contains Notation MI.) 4

Notice that if B is the inverse of A, then we can just as easily say A is the inverse of B,
or A and B are inverses of each other.

Not every square matrix has an inverse. In Example SABMI [723] the matrix B is the
inverse the coefficient matrix of Archetype B [2392]. To see this it only remains to check that
AB = I3. What about Archetype A [2378]? It is an example of a square matrix without an
inverse.
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Example MWIAA
A matrix without an inverse, Archetype A
Consider the coefficient matrix from Archetype A [2378],

A =

1 −1 2
2 1 1
1 1 0


Suppose that A is invertible and does have an inverse, say B. Choose the vector of constants

b =

1
3
2


and consider the system of equations LS(A, b). Just as in Example SABMI [723], this vector
equation would have the unique solution x = Bb.

However, the system LS(A, b) is inconsistent. Form the augmented matrix [A | b] and
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row-reduce to  1 0 1 0

0 1 −1 0

0 0 0 1


which allows to recognize the inconsistency by Theorem RCLS [172].

So the assumption of A’s inverse leads to a logical inconsistency (the system can’t be
both consistent and inconsistent), so our assumption is false. A is not invertible.

Its possible this example is less than satisfying. Just where did that particular choice of
the vector b come from anyway? Stay tuned for an application of the future Theorem CSCS
[812] in Example CSAA [827]. �

Let’s look at one more matrix inverse before we embark on a more systematic study.

Example MI
Matrix inverse
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Consider the matrices,

A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1

 B =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1


Then

AB =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1



−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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and

BA =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1




1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



so by Definition MI [727], we can say that A is invertible and write B = A−1. �

We will now concern ourselves less with whether or not an inverse of a matrix exists,
but instead with how you can find one when it does exist. In Section MINM [773] we will
have some theorems that allow us to more quickly and easily determine just when a matrix
is invertible.
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Subsection CIM
Computing the Inverse of a Matrix

We’ve seen that the matrices from Archetype B [2392] and Archetype K [2515] both have
inverses, but these inverse matrices have just dropped from the sky. How would we compute
an inverse? And just when is a matrix invertible, and when is it not? Writing a putative
inverse with n2 unknowns and solving the resultant n2 equations is one approach. Applying
this approach to 2× 2 matrices can get us somewhere, so just for fun, let’s do it.

Theorem TTMI
Two-by-Two Matrix Inverse
Suppose

A =

[
a b
c d

]
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Then A is invertible if and only if ad− bc 6= 0. When A is invertible, then

A−1 =
1

ad− bc
[
d −b
−c a

]
�

Proof (⇐) Assume that ad−bc 6= 0. We will use the definition of the inverse of a matrix to
establish that A has inverse (Definition MI [727]). Note that if ad−bc 6= 0 then the displayed
formula for A−1 is legitimate since we are not dividing by zero). Using this proposed formula
for the inverse of A, we compute

AA−1 =

[
a b
c d

](
1

ad− bc
[
d −b
−c a

])
=

1

ad− bc
[
ad− bc 0

0 ad− bc
]

=

[
1 0
0 1

]
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and

A−1A =
1

ad− bc
[
d −b
−c a

] [
a b
c d

]
=

1

ad− bc
[
ad− bc 0

0 ad− bc
]

=

[
1 0
0 1

]
By Definition MI [727] this is sufficient to establish that A is invertible, and that the expres-
sion for A−1 is correct.

(⇒) Assume that A is invertible, and proceed with a proof by contradiction (Technique
CD [2354]), by assuming also that ad− bc = 0. This translates to ad = bc. Let

B =

[
e f
g h

]
be a putative inverse of A. This means that

I2 = AB =

[
a b
c d

] [
e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]
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Working on the matrices on both ends of this equation, we will multiply the top row by c
and the bottom row by a. [

c 0
0 a

]
=

[
ace+ bcg acf + bch
ace+ adg acf + adh

]
We are assuming that ad = bc, so we can replace two occurrences of ad by bc in the bottom
row of the right matrix. [

c 0
0 a

]
=

[
ace+ bcg acf + bch
ace+ bcg acf + bch

]
The matrix on the right now has two rows that are identical, and therefore the same must
be true of the matrix on the left. Given the form of the matrix on the left, identical rows
implies that a = 0 and c = 0.

With this information, the product AB becomes[
1 0
0 1

]
= I2 = AB =

[
ae+ bg af + bh
ce+ dg cf + dh

]
=

[
bg bh
dg dh

]
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So bg = dh = 1 and thus b, g, d, h are all nonzero. But then bh and dg (the “other corners”)
must also be nonzero, so this is (finally) a contradiction. So our assumption was false and
we see that ad− bc 6= 0 whenever A has an inverse. �

There are several ways one could try to prove this theorem, but there is a continual
temptation to divide by one of the eight entries involved (a through f), but we can never
be sure if these numbers are zero or not. This could lead to an analysis by cases, which is
messy, messy, messy. Note how the above proof never divides, but always multiplies, and
how zero/nonzero considerations are handled. Pay attention to the expression ad − bc, as
we will see it again in a while (Chapter D [1274]).

This theorem is cute, and it is nice to have a formula for the inverse, and a condition that
tells us when we can use it. However, this approach becomes impractical for larger matrices,
even though it is possible to demonstrate that, in theory, there is a general formula. (Think
for a minute about extending this result to just 3 × 3 matrices. For starters, we need 18
letters!) Instead, we will work column-by-column. Let’s first work an example that will
motivate the main theorem and remove some of the previous mystery.
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Example CMI
Computing a matrix inverse
Consider the matrix defined in Example MI [729] as,

A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1


For its inverse, we desire a matrix B so that AB = I5. Emphasizing the structure of the
columns and employing the definition of matrix multiplication Definition MM [672],

AB = I5

A[B1|B2|B3|B4|B5] = [e1|e2|e3|e4|e5]

[AB1|AB2|AB3|AB4|AB5] = [e1|e2|e3|e4|e5].
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Equating the matrices column-by-column we have

AB1 = e1 AB2 = e2 AB3 = e3 AB4 = e4 AB5 = e5.

Since the matrix B is what we are trying to compute, we can view each column, Bi, as a
column vector of unknowns. Then we have five systems of equations to solve, each with 5
equations in 5 variables. Notice that all 5 of these systems have the same coefficient matrix.
We’ll now solve each system in turn,

Row-reduce the augmented matrix of the linear system LS(A, e1),
1 2 1 2 1 1
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−→


1 0 0 0 0 −3

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 1

0 0 0 0 1 1

 so B1 =


−3
0
1
1
1
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Row-reduce the augmented matrix of the linear system LS(A, e2),
1 2 1 2 1 0
−2 −3 0 −5 −1 1
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−→


1 0 0 0 0 3

0 1 0 0 0 −2

0 0 1 0 0 2

0 0 0 1 0 0

0 0 0 0 1 −1

 so B2 =


3
−2
2
0
−1


Row-reduce the augmented matrix of the linear system LS(A, e3),

1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 1
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−→


1 0 0 0 0 6

0 1 0 0 0 −5

0 0 1 0 0 4

0 0 0 1 0 1

0 0 0 0 1 −2

 so B3 =


6
−5
4
1
−2
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Row-reduce the augmented matrix of the linear system LS(A, e4),


1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 1
−1 −3 −1 −3 1 0

 RREF−−−→


1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 1

0 0 0 1 0 1

0 0 0 0 1 0

 so B4 =


−1
−1
1
1
0


Row-reduce the augmented matrix of the linear system LS(A, e5),


1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 1

 RREF−−−→


1 0 0 0 0 −2

0 1 0 0 0 1

0 0 1 0 0 −1

0 0 0 1 0 0

0 0 0 0 1 1

 so B5 =


−2
1
−1
0
1
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We can now collect our 5 solution vectors into the matrix B,

B =[B1|B2|B3|B4|B5]

=



−3
0
1
1
1


∣∣∣∣∣∣∣∣∣∣


3
−2
2
0
−1


∣∣∣∣∣∣∣∣∣∣


6
−5
4
1
−2


∣∣∣∣∣∣∣∣∣∣


−1
−1
1
1
0


∣∣∣∣∣∣∣∣∣∣


−2
1
−1
0
1




=


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1


By this method, we know that AB = I5. Check that BA = I5, and then we will know that
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we have the inverse of A. �

Notice how the five systems of equations in the preceding example were all solved by
exactly the same sequence of row operations. Wouldn’t it be nice to avoid this obvious
duplication of effort? Our main theorem for this section follows, and it mimics this previous
example, while also avoiding all the overhead.

Theorem CINM
Computing the Inverse of a Nonsingular Matrix
Suppose A is a nonsingular square matrix of size n. Create the n× 2n matrix M by placing
the n × n identity matrix In to the right of the matrix A. Let N be a matrix that is row-
equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from
the final n columns of N . Then AJ = In. �

Proof A is nonsingular, so by Theorem NMRRI [250] there is a sequence of row operations
that will convert A into In. It is this same sequence of row operations that will convert M
into N , since having the identity matrix in the first n columns of N is sufficient to guarantee
that N is in reduced row-echelon form.
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If we consider the systems of linear equations, LS(A, ei), 1 ≤ i ≤ n, we see that the
aforementioned sequence of row operations will also bring the augmented matrix of each of
these systems into reduced row-echelon form. Furthermore, the unique solution to LS(A, ei)
appears in column n+ 1 of the row-reduced augmented matrix of the system and is identical
to column n+ i of N . Let N1, N2, N3, . . . , N2n denote the columns of N . So we find,

AJ =A[Nn+1|Nn+2|Nn+3| . . . |Nn+n]

=[ANn+1|ANn+2|ANn+3| . . . |ANn+n] Definition MM [672]

=[e1|e2|e3| . . . |en]

=In Definition IM [248]

as desired. �

We have to be just a bit careful here about both what this theorem says and what it
doesn’t say. If A is a nonsingular matrix, then we are guaranteed a matrix B such that
AB = In, and the proof gives us a process for constructing B. However, the definition of the
inverse of a matrix (Definition MI [727]) requires that BA = In also. So at this juncture we
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must compute the matrix product in the “opposite” order before we claim B as the inverse
of A. However, we’ll soon see that this is always the case, in Theorem OSIS [779], so the
title of this theorem is not inaccurate.

What if A is singular? At this point we only know that Theorem CINM [742] cannot
be applied. The question of A’s inverse is still open. (But see Theorem NI [781] in the
next section.) We’ll finish by computing the inverse for the coefficient matrix of Archetype
B [2392], the one we just pulled from a hat in Example SABMI [723]. There are more
examples in the Archetypes (Appendix A [2372]) to practice with, though notice that it is
silly to ask for the inverse of a rectangular matrix (the sizes aren’t right) and not every
square matrix has an inverse (remember Example MWIAA [728]?).

Example CMIAB
Computing a matrix inverse, Archetype B
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Archetype B [2392] has a coefficient matrix given as

B =

−7 −6 −12
5 5 7
1 0 4


Exercising Theorem CINM [742] we set

M =

−7 −6 −12 1 0 0
5 5 7 0 1 0
1 0 4 0 0 1

 .
which row reduces to

N =

1 0 0 −10 −12 −9
0 1 0 13

2
8 11

2

0 0 1 5
2

3 5
2

 .
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So

B−1 =

−10 −12 −9
13
2

8 11
2

5
2

3 5
2



once we check that B−1B = I3 (the product in the opposite order is a consequence of the
theorem). �

While we can use a row-reducing procedure to compute any needed inverse, most compu-
tational devices have a built-in procedure to compute the inverse of a matrix straightaway.
See: Computation MI.MMA [2287] Computation MI.SAGE [2308]
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Subsection PMI
Properties of Matrix Inverses

The inverse of a matrix enjoys some nice properties. We collect a few here. First, a matrix
can have but one inverse.

Theorem MIU
Matrix Inverse is Unique
Suppose the square matrix A has an inverse. Then A−1 is unique. �

Proof As described in Technique U [2357], we will assume that A has two inverses. The
hypothesis tells there is at least one. Suppose then that B and C are both inverses for A.
Then, repeated use of Definition MI [727] and Theorem MMIM [682] plus one application of
Theorem MMA [687] gives

B = BIn Theorem MMIM [682]
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= B(AC) Definition MI [727]

= (BA)C Theorem MMA [687]

= InC Definition MI [727]

= C Theorem MMIM [682]

So we conclude that B and C are the same, and cannot be different. So any matrix that
acts like an inverse, must be the inverse. �

When most of us dress in the morning, we put on our socks first, followed by our shoes.
In the evening we must then first remove our shoes, followed by our socks. Try to connect
the conclusion of the following theorem with this everyday example.

Theorem SS
Socks and Shoes
Suppose A and B are invertible matrices of size n. Then AB is an invertible matrix and
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(AB)−1 = B−1A−1. �

Proof At the risk of carrying our everyday analogies too far, the proof of this theorem is
quite easy when we compare it to the workings of a dating service. We have a statement
about the inverse of the matrix AB, which for all we know right now might not even exist.
Suppose AB was to sign up for a dating service with two requirements for a compatible date.
Upon multiplication on the left, and on the right, the result should be the identity matrix.
In other words, AB’s ideal date would be its inverse.

Now along comes the matrix B−1A−1 (which we know exists because our hypothesis says
both A and B are invertible and we can form the product of these two matrices), also looking
for a date. Let’s see if B−1A−1 is a good match for AB. First they meet at a non-committal
neutral location, say a coffee shop, for quiet conversation:

(B−1A−1)(AB) = B−1(A−1A)B Theorem MMA [687]

= B−1InB Definition MI [727]

= B−1B Theorem MMIM [682]
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= In Definition MI [727]

The first date having gone smoothly, a second, more serious, date is arranged, say dinner
and a show:

(AB)(B−1A−1) = A(BB−1)A−1 Theorem MMA [687]

= AInA
−1 Definition MI [727]

= AA−1 Theorem MMIM [682]

= In Definition MI [727]

So the matrix B−1A−1 has met all of the requirements to be AB’s inverse (date) and with
the ensuing marriage proposal we can announce that (AB)−1 = B−1A−1. �

Theorem MIMI
Matrix Inverse of a Matrix Inverse
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Suppose A is an invertible matrix. Then A−1 is invertible and (A−1)−1 = A. �

Proof As with the proof of Theorem SS [748], we examine if A is a suitable inverse for
A−1 (by definition, the opposite is true).

AA−1 = In Definition MI [727]

and

A−1A = In Definition MI [727]

The matrix A has met all the requirements to be the inverse of A−1, and so is invertible and
we can write A = (A−1)−1. �

Theorem MIT
Matrix Inverse of a Transpose
Suppose A is an invertible matrix. Then At is invertible and (At)−1 = (A−1)t. �

Proof As with the proof of Theorem SS [748], we see if (A−1)t is a suitable inverse for At.
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Apply Theorem MMT [692] to see that

(A−1)tAt = (AA−1)t Theorem MMT [692]

= I tn Definition MI [727]

= In In is symmetric

and

At(A−1)t = (A−1A)t Theorem MMT [692]

= I tn Definition MI [727]

= In In is symmetric

The matrix (A−1)t has met all the requirements to be the inverse of At, and so is invertible
and we can write (At)−1 = (A−1)t. �

Theorem MISM
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Matrix Inverse of a Scalar Multiple
Suppose A is an invertible matrix and α is a nonzero scalar. Then (αA)−1 = 1

α
A−1 and αA

is invertible. �

Proof As with the proof of Theorem SS [748], we see if 1
α
A−1 is a suitable inverse for αA.(

1

α
A−1

)
(αA) =

(
1

α
α

)(
AA−1

)
Theorem MMSMM [685]

= 1In Scalar multiplicative inverses

= In Property OM [619]

and

(αA)

(
1

α
A−1

)
=

(
α

1

α

)(
A−1A

)
Theorem MMSMM [685]

= 1In Scalar multiplicative inverses
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= In Property OM [619]

The matrix 1
α
A−1 has met all the requirements to be the inverse of αA, so we can write

(αA)−1 = 1
α
A−1. �

Notice that there are some likely theorems that are missing here. For example, it would
be tempting to think that (A + B)−1 = A−1 + B−1, but this is false. Can you find a
counterexample? (See Exercise MISLE.T10 [763].)

Subsection READ
Reading Questions

1. Compute the inverse of the matrix below.[
4 10
2 6

]
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2. Compute the inverse of the matrix below. 2 3 1
1 −2 −3
−2 4 6


3. Explain why Theorem SS [748] has the title it does. (Do not just state the theorem,

explain the choice of the title making reference to the theorem itself.)
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Subsection EXC
Exercises

C16 If it exists, find the inverse of A =

1 0 1
1 1 1
2 −1 1

, and check your answer.

Contributed by Chris Black Solution [764]

C17 If it exists, find the inverse of A =

2 −1 1
1 2 1
3 1 2

, and check your answer.

Contributed by Chris Black Solution [764]
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C18 If it exists, find the inverse of A =

1 3 1
1 2 1
2 2 1

, and check your answer.

Contributed by Chris Black Solution [765]

C19 If it exists, find the inverse of A =

1 3 1
0 2 1
2 2 1

, and check your answer.

Contributed by Chris Black Solution [765]

C21 Verify that B is the inverse of A.

A =


1 1 −1 2
−2 −1 2 −3
1 1 0 2
−1 2 0 2

 B =


4 2 0 −1
8 4 −1 −1
−1 0 1 0
−6 −3 1 1


Contributed by Robert Beezer Solution [765]
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C22 Recycle the matrices A and B from Exercise MISLE.C21 [757] and set

c =


2
1
−3
2

 d =


1
1
1
1


Employ the matrix B to solve the two linear systems LS(A, c) and LS(A, d).
Contributed by Robert Beezer Solution [765]

C23 If it exists, find the inverse of the 2× 2 matrix

A =

[
7 3
5 2

]
and check your answer. (See Theorem TTMI [732].)
Contributed by Robert Beezer
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C24 If it exists, find the inverse of the 2× 2 matrix

A =

[
6 3
4 2

]
and check your answer. (See Theorem TTMI [732].)
Contributed by Robert Beezer

C25 At the conclusion of Example CMI [737], verify that BA = I5 by computing the
matrix product.
Contributed by Robert Beezer

C26 Let

D =


1 −1 3 −2 1
−2 3 −5 3 0
1 −1 4 −2 2
−1 4 −1 0 4
1 0 5 −2 5
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Compute the inverse of D, D−1, by forming the 5 × 10 matrix [D | I5] and row-reducing
(Theorem CINM [742]). Then use a calculator to compute D−1 directly.
Contributed by Robert Beezer Solution [767]

C27 Let

E =


1 −1 3 −2 1
−2 3 −5 3 −1
1 −1 4 −2 2
−1 4 −1 0 2
1 0 5 −2 4



Compute the inverse of E, E−1, by forming the 5 × 10 matrix [E | I5] and row-reducing
(Theorem CINM [742]). Then use a calculator to compute E−1 directly.
Contributed by Robert Beezer Solution [767]
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C28 Let

C =


1 1 3 1
−2 −1 −4 −1
1 4 10 2
−2 0 −4 5


Compute the inverse of C, C−1, by forming the 4 × 8 matrix [C | I4] and row-reducing
(Theorem CINM [742]). Then use a calculator to compute C−1 directly.
Contributed by Robert Beezer Solution [768]

C40 Find all solutions to the system of equations below, making use of the matrix inverse
found in Exercise MISLE.C28 [761].

x1 + x2 + 3x3 + x4 = −4

−2x1 − x2 − 4x3 − x4 = 4

x1 + 4x2 + 10x3 + 2x4 = −20

−2x1 − 4x3 + 5x4 = 9
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Contributed by Robert Beezer Solution [768]

C41 Use the inverse of a matrix to find all the solutions to the following system of equations.

x1 + 2x2 − x3 = −3

2x1 + 5x2 − x3 = −4

−x1 − 4x2 = 2

Contributed by Robert Beezer Solution [769]

C42 Use a matrix inverse to solve the linear system of equations.

x1 − x2 + 2x3 = 5

x1 − 2x3 = −8

2x1 − x2 − x3 = −6
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Contributed by Robert Beezer Solution [770]

T10 Construct an example to demonstrate that (A+B)−1 = A−1 +B−1 is not true for all
square matrices A and B of the same size.
Contributed by Robert Beezer Solution [772]
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Subsection SOL
Solutions

C16 Contributed by Chris Black Statement [756]

Answer: A−1 =

−2 1 1
−1 1 0
3 −1 −1

.

C17 Contributed by Chris Black Statement [756]
The procedure we have for finding a matrix inverse fails for this matrix A since A does not
row-reduce to I3. We suspect in this case that A is not invertible, although we do not yet
know that concretely. (Stay tuned for upcoming revelations in Section MINM [773]!)

C18 Contributed by Chris Black Statement [757]
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Answer: A−1 =

 0 −1 1
1 −1 0
−2 4 −1


C19 Contributed by Chris Black Statement [757]

Answer: A−1 =

 0 −1/2 1/2
1 −1/2 −1/2
−2 2 1


C21 Contributed by Robert Beezer Statement [757]
Check that both matrix products (Definition MM [672]) AB and BA equal the 4×4 identity
matrix I4 (Definition IM [248]).

C22 Contributed by Robert Beezer Statement [758]
Represent each of the two systems by a vector equality, Ax = c and Ay = d. Then in the
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spirit of Example SABMI [723], solutions are given by

x = Bc =


8
21
−5
−16

 y = Bd =


5
10
0
−7



Notice how we could solve many more systems having A as the coefficient matrix, and
how each such system has a unique solution. You might check your work by substituting
the solutions back into the systems of equations, or forming the linear combinations of the
columns of A suggested by Theorem SLSLC [327].

C26 Contributed by Robert Beezer Statement [759]
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The inverse of D is

D−1 =


−7 −6 −3 2 1
−7 −4 2 2 −1
−5 −2 3 1 −1
−6 −3 1 1 0
4 2 −2 −1 1



C27 Contributed by Robert Beezer Statement [760]
The matrix E has no inverse, though we do not yet have a theorem that allows us to reach
this conclusion. However, when row-reducing the matrix [E | I5], the first 5 columns will not
row-reduce to the 5× 5 identity matrix, so we are a t a loss on how we might compute the
inverse. When requesting that your calculator compute E−1, it should give some indication
that E does not have an inverse.

C28 Contributed by Robert Beezer Statement [761]
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Employ Theorem CINM [742],
1 1 3 1 1 0 0 0
−2 −1 −4 −1 0 1 0 0
1 4 10 2 0 0 1 0
−2 0 −4 5 0 0 0 1

 RREF−−−→


1 0 0 0 38 18 −5 −2

0 1 0 0 96 47 −12 −5

0 0 1 0 −39 −19 5 2

0 0 0 1 −16 −8 2 1


And therefore we see that C is nonsingular (C row-reduces to the identity matrix, Theorem
NMRRI [250]) and by Theorem CINM [742],

C−1 =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1


C40 Contributed by Robert Beezer Statement [761]
View this system as LS(C, b), where C is the 4× 4 matrix from Exercise MISLE.C28 [761]
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and b =


−4
4
−20

9

. Since C was seen to be nonsingular in Exercise MISLE.C28 [761] Theorem

SNCM [783] says the solution, which is unique by Theorem NMUS [256], is given by

C−1b =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1



−4
4
−20

9

 =


2
−1
−2
1


Notice that this solution can be easily checked in the original system of equations.

C41 Contributed by Robert Beezer Statement [762]
The coefficient matrix of this system of equations is

A =

 1 2 −1
2 5 −1
−1 −4 0
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and the vector of constants is b =

−3
−4
2

. So by Theorem SLEMM [663] we can convert

the system to the form Ax = b. Row-reducing this matrix yields the identity matrix so by
Theorem NMRRI [250] we know A is nonsingular. This allows us to apply Theorem SNCM
[783] to find the unique solution as

x = A−1b =

−4 4 3
1 −1 −1
−3 2 1

−3
−4
2

 =

 2
−1
3


Remember, you can check this solution easily by evaluating the matrix-vector product Ax
(Definition MVP [661]).

C42 Contributed by Robert Beezer Statement [762]
We can reformulate the linear system as a vector equality with a matrix-vector product via
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Theorem SLEMM [663]. The system is then represented by Ax = b where

A =

1 −1 2
1 0 −2
2 −1 −1

 b =

 5
−8
−6


According to Theorem SNCM [783], if A is nonsingular then the (unique) solution will be
given by A−1b. We attempt the computation of A−1 through Theorem CINM [742], or with
our favorite computational device and obtain,

A−1 =

2 3 −2
3 5 −4
1 1 −1


So by Theorem NI [781], we know A is nonsingular, and so the unique solution is

A−1b =

2 3 −2
3 5 −4
1 1 −1

 5
−8
−6

 =

−2
−1
3
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T10 Contributed by Robert Beezer Statement [763]
Let D be any 2× 2 matrix that has an inverse (Theorem TTMI [732] can help you construct
such a matrix, I2 is a simple choice). Set A = D and B = (−1)D. While A−1 and B−1 both
exist, what is (A+B)−1? Can the proposed statement be a theorem?

Version 2.11



Section MINM Matrix Inverses and Nonsingular Matrices 776

Section MINM

Matrix Inverses and Nonsingular Matrices

We saw in Theorem CINM [742] that if a square matrix A is nonsingular, then there is a
matrix B so that AB = In. In other words, B is halfway to being an inverse of A. We will
see in this section that B automatically fulfills the second condition (BA = In). Example
MWIAA [728] showed us that the coefficient matrix from Archetype A [2378] had no inverse.
Not coincidentally, this coefficient matrix is singular. We’ll make all these connections precise
now. Not many examples or definitions in this section, just theorems.
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Subsection NMI
Nonsingular Matrices are Invertible

We need a couple of technical results for starters. Some books would call these minor, but
essential, results “lemmas.” We’ll just call ’em theorems. See Technique LC [2369] for
more on the distinction.

The first of these technical results is interesting in that the hypothesis says something
about a product of two square matrices and the conclusion then says the same thing about
each individual matrix in the product. This result has an analogy in the algebra of complex
numbers: suppose α, β ∈ C, then αβ 6= 0 if and only if α 6= 0 and β 6= 0. We can view this
result as suggesting that the term “nonsingular” for matrices is like the term “nonzero” for
scalars.

Theorem NPNT
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Nonsingular Product has Nonsingular Terms
Suppose that A and B are square matrices of size n. The product AB is nonsingular if and
only if A and B are both nonsingular. �

Proof (⇒) We’ll do this portion of the proof in two parts, each as a proof by contradiction
(Technique CD [2354]). Assume that AB is nonsingular. Establishing that B is nonsingular
is the easier part, so we will do it first, but in reality, we will need to know that B is
nonsingular when we prove that A is nonsingular.

You can also think of this proof as being a study of four possible conclusions in the table
below. One of the four rows must happen (the list is exhaustive). In the proof we learn that
the first three rows lead to contradictions, and so are impossible. That leaves the fourth row
as a certainty, which is our desired conclusion.
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A B Case

Singular Singular 1
Nonsingular Singular 1
Singular Nonsingular 2
Nonsingular Nonsingular

Part 1. Suppose B is singular. Then there is a nonzero vector z that is a solution to
LS(B, 0). So

(AB)z = A(Bz) Theorem MMA [687]

= A0 Theorem SLEMM [663]

= 0 Theorem MMZM [681]

Because z is a nonzero solution to LS(AB, 0), we conclude that AB is singular (Definition
NM [246]). This is a contradiction, so B is nonsingular, as desired.
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Part 2. Suppose A is singular. Then there is a nonzero vector y that is a solution to
LS(A, 0). Now consider the linear system LS(B, y). Since we know B is nonsingular from
Case 1, the system has a unique solution (Theorem NMUS [256]), which we will denote as
w. We first claim w is not the zero vector either. Assuming the opposite, suppose that
w = 0 (Technique CD [2354]). Then

y = Bw Theorem SLEMM [663]

= B0 Hypothesis

= 0 Theorem MMZM [681]

contrary to y being nonzero. So w 6= 0. The pieces are in place, so here we go,

(AB)w = A(Bw) Theorem MMA [687]

= Ay Theorem SLEMM [663]

= 0 Theorem SLEMM [663]
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So w is a nonzero solution to LS(AB, 0), and thus we can say that AB is singular (Definition
NM [246]). This is a contradiction, so A is nonsingular, as desired.

(⇐) Now assume that both A and B are nonsingular. Suppose that x ∈ Cn is a solution
to LS(AB, 0). Then

0 = (AB) x Theorem SLEMM [663]

= A (Bx) Theorem MMA [687]

By Theorem SLEMM [663], Bx is a solution to LS(A, 0), and by the definition of a nonsin-
gular matrix (Definition NM [246]), we conclude that Bx = 0. Now, by an entirely similar
argument, the nonsingularity of B forces us to conclude that x = 0. So the only solution
to LS(AB, 0) is the zero vector and we conclude that AB is nonsingular by Definition NM
[246]. �

This is a powerful result in the “forward” direction, because it allows us to begin with a
hypothesis that something complicated (the matrix product AB) has the property of being
nonsingular, and we can then conclude that the simpler constituents (A and B individually)

Version 2.11



Subsection MINM.NMI Nonsingular Matrices are Invertible 782

then also have the property of being nonsingular. If we had thought that the matrix product
was an artificial construction, results like this would make us begin to think twice.

The contrapositive of this result is equally interesting. It says that A or B (or both) is
a singular matrix if and only if the product AB is singular. Notice how the negation of the
theorem’s conclusion (A and B both nonsingular) becomes the statement “at least one of A
and B is singular.” (See Technique CP [2352].)

Theorem OSIS
One-Sided Inverse is Sufficient
Suppose A and B are square matrices of size n such that AB = In. Then BA = In. �

Proof The matrix In is nonsingular (since it row-reduces easily to In, Theorem NMRRI
[250]). So A and B are nonsingular by Theorem NPNT [775], so in particular B is non-
singular. We can therefore apply Theorem CINM [742] to assert the existence of a matrix
C so that BC = In. This application of Theorem CINM [742] could be a bit confusing,
mostly because of the names of the matrices involved. B is nonsingular, so there must be a
“right-inverse” for B, and we’re calling it C.
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Now

BA = (BA)In Theorem MMIM [682]

= (BA)(BC) Theorem CINM [742]

= B(AB)C Theorem MMA [687]

= BInC Hypothesis

= BC Theorem MMIM [682]

= In Theorem CINM [742]

which is the desired conclusion. �

So Theorem OSIS [779] tells us that if A is nonsingular, then the matrix B guaranteed
by Theorem CINM [742] will be both a “right-inverse” and a “left-inverse” for A, so A is
invertible and A−1 = B.

So if you have a nonsingular matrix, A, you can use the procedure described in Theorem
CINM [742] to find an inverse for A. If A is singular, then the procedure in Theorem CINM
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[742] will fail as the first n columns of M will not row-reduce to the identity matrix. However,
we can say a bit more. When A is singular, then A does not have an inverse (which is very
different from saying that the procedure in Theorem CINM [742] fails to find an inverse).
This may feel like we are splitting hairs, but its important that we do not make unfounded
assumptions. These observations motivate the next theorem.

Theorem NI
Nonsingularity is Invertibility
Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible. �

Proof (⇐) Suppose A is invertible, and suppose that x is any solution to the homogeneous
system LS(A, 0). Then

x = Inx Theorem MMIM [682]

=
(
A−1A

)
x Definition MI [727]

= A−1 (Ax) Theorem MMA [687]

= A−10 Theorem SLEMM [663]
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= 0 Theorem MMZM [681]

So the only solution to LS(A, 0) is the zero vector, so by Definition NM [246], A is nonsin-
gular.

(⇒) Suppose now that A is nonsingular. By Theorem CINM [742] we find B so that
AB = In. Then Theorem OSIS [779] tells us that BA = In. So B is A’s inverse, and by
construction, A is invertible. �

So for a square matrix, the properties of having an inverse and of having a trivial null
space are one and the same. Can’t have one without the other.

Theorem NME3
Nonsingular Matrix Equivalences, Round 3
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.
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3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

�

Proof We can update our list of equivalences for nonsingular matrices (Theorem NME2
[479]) with the equivalent condition from Theorem NI [781]. �

In the case that A is a nonsingular coefficient matrix of a system of equations, the inverse
allows us to very quickly compute the unique solution, for any vector of constants.

Theorem SNCM
Solution with Nonsingular Coefficient Matrix
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Suppose that A is nonsingular. Then the unique solution to LS(A, b) is A−1b. �

Proof By Theorem NMUS [256] we know already that LS(A, b) has a unique solution
for every choice of b. We need to show that the expression stated is indeed a solution (the
solution). That’s easy, just “plug it in” to the corresponding vector equation representation
(Theorem SLEMM [663]),

A
(
A−1b

)
=
(
AA−1

)
b Theorem MMA [687]

= Inb Definition MI [727]

= b Theorem MMIM [682]

Since Ax = b is true when we substitute A−1b for x, A−1b is a (the!) solution to LS(A, b).
�
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Subsection UM
Unitary Matrices

Recall that the adjoint of a matrix is A∗ =
(
A
)t

(Definition A [636]).

Definition UM
Unitary Matrices
Suppose that U is a square matrix of size n such that U∗U = In. Then we say U is unitary.

4
This condition may seem rather far-fetched at first glance. Would there be any matrix

that behaved this way? Well, yes, here’s one.

Example UM3
Unitary matrix of size 3
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U =


1+i√

5
3+2 i√

55
2+2i√

22
1−i√

5
2+2 i√

55
−3+i√

22
i√
5

3−5 i√
55
− 2√

22



The computations get a bit tiresome, but if you work your way through the computation of
U∗U , you will arrive at the 3× 3 identity matrix I3. �

Unitary matrices do not have to look quite so gruesome. Here’s a larger one that is a bit
more pleasing.

Example UPM
Unitary permutation matrix
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The matrix

P =


0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0


is unitary as can be easily checked. Notice that it is just a rearrangement of the columns of
the 5× 5 identity matrix, I5 (Definition IM [248]).

An interesting exercise is to build another 5 × 5 unitary matrix, R, using a different
rearrangement of the columns of I5. Then form the product PR. This will be another unitary
matrix (Exercise MINM.T10 [800]). If you were to build all 5! = 5 × 4 × 3 × 2 × 1 = 120
matrices of this type you would have a set that remains closed under matrix multiplication.
It is an example of another algebraic structure known as a group since together the set and
the one operation (matrix multiplication here) is closed, associative, has an identity (I5),
and inverses (Theorem UMI [787]). Notice though that the operation in this group is not
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commutative! �

If a matrix A has only real number entries (we say it is a real matrix) then the defining
property of being unitary simplifies to AtA = In. In this case we, and everybody else, calls
the matrix orthogonal, so you may often encounter this term in your other reading when
the complex numbers are not under consideration.

Unitary matrices have easily computed inverses. They also have columns that form
orthonormal sets. Here are the theorems that show us that unitary matrices are not as
strange as they might initially appear.

Theorem UMI
Unitary Matrices are Invertible
Suppose that U is a unitary matrix of size n. Then U is nonsingular, and U−1 = U∗. �

Proof By Definition UM [785], we know that U∗U = In. The matrix In is nonsingular
(since it row-reduces easily to In, Theorem NMRRI [250]). So by Theorem NPNT [775], U
and U∗ are both nonsingular matrices.

The equation U∗U = In gets us halfway to an inverse of U , and Theorem OSIS [779] tells
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us that then UU∗ = In also. So U and U∗ are inverses of each other (Definition MI [727]).
�

Theorem CUMOS
Columns of Unitary Matrices are Orthonormal Sets
Suppose that A is a square matrix of size n with columns S = {A1, A2, A3, . . . , An}. Then
A is a unitary matrix if and only if S is an orthonormal set. �

Proof The proof revolves around recognizing that a typical entry of the product A∗A is
an inner product of columns of A. Here are the details to support this claim.

[A∗A]ij =
n∑
k=1

[A∗]ik [A]kj Theorem EMP [676]

=
n∑
k=1

[(
A
)t]

ik
[A]kj Theorem EMP [676]
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=
n∑
k=1

[
A
]
ki

[A]kj Definition TM [622]

=
n∑
k=1

[A]ki [A]kj Definition CCM [630]

=
n∑
k=1

[A]kj [A]ki Property CMCN [2317]

=
n∑
k=1

[Aj]k [Ai]k

= 〈Aj, Ai〉 Definition IP [569]

We now employ this equality in a chain of equivalences,

S = {A1, A2, A3, . . . , An} is an orthonormal set
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⇐⇒ 〈Aj, Ai〉 =

{
0 if i 6= j

1 if i = j
Definition ONS [599]

⇐⇒ [A∗A]ij =

{
0 if i 6= j

1 if i = j

⇐⇒ [A∗A]ij = [In]ij , 1 ≤ i ≤ n, 1 ≤ j ≤ n Definition IM [248]

⇐⇒ A∗A = In Definition ME [613]

⇐⇒ A is a unitary matrix Definition UM [785]

�

Example OSMC
Orthonormal set from matrix columns
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The matrix

U =


1+i√

5
3+2 i√

55
2+2i√

22
1−i√

5
2+2 i√

55
−3+i√

22
i√
5

3−5 i√
55
− 2√

22


from Example UM3 [785] is a unitary matrix. By Theorem CUMOS [788], its columns


1+i√

5
1−i√

5
i√
5

 ,


3+2 i√
55

2+2 i√
55

3−5 i√
55

 ,


2+2i√
22

−3+i√
22

− 2√
22




form an orthonormal set. You might find checking the six inner products of pairs of these
vectors easier than doing the matrix product U∗U . Or, because the inner product is anti-
commutative (Theorem IPAC [576]) you only need check three inner products (see Exercise
MINM.T12 [801]). �

When using vectors and matrices that only have real number entries, orthogonal matrices
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are those matrices with inverses that equal their transpose. Similarly, the inner product is
the familiar dot product. Keep this special case in mind as you read the next theorem.

Theorem UMPIP
Unitary Matrices Preserve Inner Products
Suppose that U is a unitary matrix of size n and u and v are two vectors from Cn. Then

〈Uu, Uv〉 = 〈u, v〉 and ‖Uv‖ = ‖v‖
�

Proof

〈Uu, Uv〉 = (Uu)tUv Theorem MMIP [689]

= utU tUv Theorem MMT [692]

= utU tUv Theorem MMCC [691]

= ut
(
U
)t
Uv Theorem CCT [2321]
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= ut
(
U
)t
Uv Theorem MCT [634]

= ut
(
U
)t
Uv Theorem MMCC [691]

= utU∗Uv Definition A [636]

= utInv Definition UM [785]

= utInv Definition IM [248]

= utv Theorem MMIM [682]

= 〈u, v〉 Theorem MMIP [689]

The second conclusion is just a specialization of the first conclusion.

‖Uv‖ =

√
‖Uv‖2

=
√
〈Uv, Uv〉 Theorem IPN [580]

=
√
〈v, v〉
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=

√
‖v‖2 Theorem IPN [580]

= ‖v‖

�

Aside from the inherent interest in this theorem, it makes a bigger statement about
unitary matrices. When we view vectors geometrically as directions or forces, then the norm
equates to a notion of length. If we transform a vector by multiplication with a unitary
matrix, then the length (norm) of that vector stays the same. If we consider column vectors
with two or three slots containing only real numbers, then the inner product of two such
vectors is just the dot product, and this quantity can be used to compute the angle between
two vectors. When two vectors are multiplied (transformed) by the same unitary matrix,
their dot product is unchanged and their individual lengths are unchanged. The results in
the angle between the two vectors remaining unchanged.

A “unitary transformation” (matrix-vector products with unitary matrices) thus preserve
geometrical relationships among vectors representing directions, forces, or other physical
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quantities. In the case of a two-slot vector with real entries, this is simply a rotation. These
sorts of computations are exceedingly important in computer graphics such as games and
real-time simulations, especially when increased realism is achieved by performing many such
computations quickly. We will see unitary matrices again in subsequent sections (especially
Theorem OD [2062]) and in each instance, consider the interpretation of the unitary matrix
as a sort of geometry-preserving transformation. Some authors use the term isometry
to highlight this behavior. We will speak loosely of a unitary matrix as being a sort of
generalized rotation.

A final reminder: the terms “dot product,” “symmetric matrix” and “orthogonal matrix”
used in reference to vectors or matrices with real number entries correspond to the terms
“inner product,” “Hermitian matrix” and “unitary matrix” when we generalize to include
complex number entries, so keep that in mind as you read elsewhere.
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Subsection READ
Reading Questions

1. Compute the inverse of the coefficient matrix of the system of equations below and use
the inverse to solve the system.

4x1 + 10x2 = 12

2x1 + 6x2 = 4

2. In the reading questions for Section MISLE [723] you were asked to find the inverse of
the 3× 3 matrix below.  2 3 1

1 −2 −3
−2 4 6
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Because the matrix was not nonsingular, you had no theorems at that point that would
allow you to compute the inverse. Explain why you now know that the inverse does
not exist (which is different than not being able to compute it) by quoting the relevant
theorem’s acronym.

3. Is the matrix A unitary? Why?

A =

[
1√
22

(4 + 2i) 1√
374

(5 + 3i)
1√
22

(−1− i) 1√
374

(12 + 14i)

]
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Subsection EXC
Exercises

C20 Let A =

1 2 1
0 1 1
1 0 2

 and B =

−1 1 0
1 2 1
0 1 1

. Verify that AB is nonsingular.

Contributed by Chris Black

C40 Solve the system of equations below using the inverse of a matrix.

x1 + x2 + 3x3 + x4 = 5

−2x1 − x2 − 4x3 − x4 = −7

x1 + 4x2 + 10x3 + 2x4 = 9

−2x1 − 4x3 + 5x4 = 9
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Contributed by Robert Beezer Solution [802]

M10 Find values of x, y z so that matrix A =

1 2 x
3 0 y
1 1 z

 is invertible.

Contributed by Chris Black Solution [803]

M11 Find values of x, y z so that matrix A =

1 x 1
1 y 4
0 z 5

 is singular.

Contributed by Chris Black Solution [805]

M15 If A and B are n × n matrices, A is nonsingular, and B is singular, show directly
that AB is singular, without using Theorem NPNT [775].
Contributed by Chris Black Solution [806]

M20 Construct an example of a 4× 4 unitary matrix.
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Contributed by Robert Beezer Solution [803]

M80 Matrix multiplication interacts nicely with many operations. But not always with
transforming a matrix to reduced row-echelon form. Suppose that A is an m × n matrix
and B is an n × p matrix. Let P be a matrix that is row-equivalent to A and in reduced
row-echelon form, Q be a matrix that is row-equivalent to B and in reduced row-echelon
form, and let R be a matrix that is row-equivalent to AB and in reduced row-echelon form.
Is PQ = R? (In other words, with nonstandard notation, is rref(A)rref(B) = rref(AB)?)

Construct a counterexample to show that, in general, this statement is false. Then find
a large class of matrices where if A and B are in the class, then the statement is true.
Contributed by Mark Hamrick Solution [806]

T10 Suppose that Q and P are unitary matrices of size n. Prove that QP is a unitary
matrix.
Contributed by Robert Beezer

T11 Prove that Hermitian matrices (Definition HM [698]) have real entries on the diagonal.

Version 2.11



Subsection MINM.EXC Exercises 805

More precisely, suppose that A is a Hermitian matrix of size n. Then [A]ii ∈ R, 1 ≤ i ≤ n.
Contributed by Robert Beezer

T12 Suppose that we are checking if a square matrix of size n is unitary. Show that a
straightforward application of Theorem CUMOS [788] requires the computation of n2 inner
products when the matrix is unitary, and fewer when the matrix is not orthogonal. Then
show that this maximum number of inner products can be reduced to 1

2
n(n + 1) in light of

Theorem IPAC [576].
Contributed by Robert Beezer
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Subsection SOL
Solutions

C40 Contributed by Robert Beezer Statement [798]
The coefficient matrix and vector of constants for the system are


1 1 3 1
−2 −1 −4 −1
1 4 10 2
−2 0 −4 5

 b =


5
−7
9
9
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A−1 can be computed by using a calculator, or by the method of Theorem CINM [742]. Then
Theorem SNCM [783] says the unique solution is

A−1b =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1




5
−7
9
9

 =


1
−2
1
3


M20 Contributed by Robert Beezer Statement [799]
The 4 × 4 identity matrix, I4, would be one example (Definition IM [248]). Any of the 23
other rearrangements of the columns of I4 would be a simple, but less trivial, example. See
Example UPM [786].

M10 Contributed by Chris Black Statement [799]

There are an infinite number of possible answers. We want to find a vector

xy
z

 so that the
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set

S =


1

3
1

 ,
2

0
1

 ,
xy
z


is a linearly independent set. We need a vector not in the span of the first two columns,
which geometrically means that we need it to not be in the same plane as the first two
columns of A. We can choose any values we want for x and y, and then choose a value of z
that makes the three vectors independent.

I will (arbitrarily) choose x = 1, y = 1. Then, we have

A =

1 2 1
3 0 1
1 1 z

 RREF−−−→
 1 0 2z − 1

0 1 1− z
0 0 4− 6z


which is invertible if and only if 4− 6z 6= 0. Thus, we can choose any value as long as z 6= 2

3
,
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so we choose z = 0, and we have found a matrix A =

1 2 1
3 0 1
1 1 0

 that is invertible.

M11 Contributed by Chris Black Statement [799]
There are an infinite number of possible answers. We need the set of vectors

S =


1

1
0

 ,
xy
z

 ,
1

4
5


to be linearly dependent. One way to do this by inspection is to have

xy
z

 =

1
4
5

. Thus, if

we let x = 1, y = 4, z = 5, then the matrix A =

1 1 1
1 4 4
0 5 5

 is singular.

Version 2.11



Subsection MINM.SOL Solutions 810

M15 Contributed by Chris Black Statement [799]
If B is singular, then there exists a vector x 6= 0 so that x ∈ N (B). Thus, Bx = 0, so
A(Bx) = (AB)x = 0, so x ∈ N (AB). Since the null space of AB is not trivial, AB is a
nonsingular matrix.

M80 Contributed by Robert Beezer Statement [800]
Take

A =

[
1 0
0 0

]
B =

[
0 0
1 0

]
Then A is already in reduced row-echelon form, and by swapping rows, B row-reduces to A.
So the product of the row-echelon forms of A is AA = A 6= O. However, the product AB is
the 2 × 2 zero matrix, which is in reduced-echelon form, and not equal to AA. When you
get there, Theorem PEEF [897] or Theorem EMDRO [1281] might shed some light on why
we would not expect this statement to be true in general.

If A and B are nonsingular, then AB is nonsingular (Theorem NPNT [775]), and all
three matrices A, B and AB row-reduce to the identity matrix (Theorem NMRRI [250]).
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By Theorem MMIM [682], the desired relationship is true.
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Section CRS

Column and Row Spaces

Theorem SLSLC [327] showed us that there is a natural correspondence between solutions
to linear systems and linear combinations of the columns of the coefficient matrix. This idea
motivates the following important definition.

Definition CSM
Column Space of a Matrix
Suppose that A is an m×n matrix with columns {A1, A2, A3, . . . , An}. Then the column
space of A, written C(A), is the subset of Cm containing all linear combinations of the
columns of A,

C(A) = 〈{A1, A2, A3, . . . , An}〉
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(This definition contains Notation CSM.) 4
Some authors refer to the column space of a matrix as the range, but we will reserve

this term for use with linear transformations (Definition RLT [1701]).

Subsection CSSE
Column Spaces and Systems of Equations

Upon encountering any new set, the first question we ask is what objects are in the set, and
which objects are not? Here’s an example of one way to answer this question, and it will
motivate a theorem that will then answer the question precisely.

Example CSMCS
Column space of a matrix and consistent systems
Archetype D [2419] and Archetype E [2431] are linear systems of equations, with an identical
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3 × 4 coefficient matrix, which we call A here. However, Archetype D [2419] is consistent,
while Archetype E [2431] is not. We can explain this difference by employing the column
space of the matrix A.

The column vector of constants, b, in Archetype D [2419] is

b =

 8
−12

4


One solution to LS(A, b), as listed, is

x =


7
8
1
3


By Theorem SLSLC [327], we can summarize this solution as a linear combination of the
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columns of A that equals b,

7

 2
−3
1

+ 8

1
4
1

+ 1

 7
−5
4

+ 3

−7
−6
−5

 =

 8
−12

4

 = b.

This equation says that b is a linear combination of the columns of A, and then by Definition
CSM [808], we can say that b ∈ C(A).

On the other hand, Archetype E [2431] is the linear system LS(A, c), where the vector
of constants is

c =

2
3
2


and this system of equations is inconsistent. This means c 6∈ C(A), for if it were, then it
would equal a linear combination of the columns of A and Theorem SLSLC [327] would lead
us to a solution of the system LS(A, c). �

So if we fix the coefficient matrix, and vary the vector of constants, we can sometimes find
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consistent systems, and sometimes inconsistent systems. The vectors of constants that lead
to consistent systems are exactly the elements of the column space. This is the content of
the next theorem, and since it is an equivalence, it provides an alternate view of the column
space.

Theorem CSCS
Column Spaces and Consistent Systems
Suppose A is an m × n matrix and b is a vector of size m. Then b ∈ C(A) if and only if
LS(A, b) is consistent. �

Proof (⇒) Suppose b ∈ C(A). Then we can write b as some linear combination of the
columns of A. By Theorem SLSLC [327] we can use the scalars from this linear combination
to form a solution to LS(A, b), so this system is consistent.

(⇐) If LS(A, b) is consistent, there is a solution that may be used with Theorem SLSLC
[327] to write b as a linear combination of the columns of A. This qualifies b for membership
in C(A). �

This theorem tells us that asking if the system LS(A, b) is consistent is exactly the same
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question as asking if b is in the column space of A. Or equivalently, it tells us that the
column space of the matrix A is precisely those vectors of constants, b, that can be paired
with A to create a system of linear equations LS(A, b) that is consistent.

Employing Theorem SLEMM [663] we can form the chain of equivalences

b ∈ C(A) ⇐⇒ LS(A, b) is consistent ⇐⇒ Ax = b for some x

Thus, an alternative (and popular) definition of the column space of an m× n matrix A is

C(A) = {y ∈ Cm | y = Ax for some x ∈ Cn} = {Ax | x ∈ Cn} ⊆ Cm

We recognize this as saying create all the matrix vector products possible with the matrix
A by letting x range over all of the possibilities. By Definition MVP [661] we see that this
means take all possible linear combinations of the columns of A — precisely the definition
of the column space (Definition CSM [808]) we have chosen.

Notice how this formulation of the column space looks very much like the definition of
the null space of a matrix (Definition NSM [216]), but for a rectangular matrix the column
vectors of C(A) and N (A) have different sizes, so the sets are very different.
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Given a vector b and a matrix A it is now very mechanical to test if b ∈ C(A). Form the
linear system LS(A, b), row-reduce the augmented matrix, [A | b], and test for consistency
with Theorem RCLS [172]. Here’s an example of this procedure.

Example MCSM
Membership in the column space of a matrix
Consider the column space of the 3× 4 matrix A,

A =

 3 2 1 −4
−1 1 −2 3
2 −4 6 −8



We first show that v =

18
−6
12

 is in the column space of A, v ∈ C(A). Theorem CSCS

[812] says we need only check the consistency of LS(A, v). Form the augmented matrix and
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row-reduce,  3 2 1 −4 18
−1 1 −2 3 −6
2 −4 6 −8 12

 RREF−−−→
 1 0 1 −2 6

0 1 −1 1 0
0 0 0 0 0


Without a leading 1 in the final column, Theorem RCLS [172] tells us the system is consistent
and therefore by Theorem CSCS [812], v ∈ C(A).

If we wished to demonstrate explicitly that v is a linear combination of the columns of A,
we can find a solution (any solution) of LS(A, v) and use Theorem SLSLC [327] to construct
the desired linear combination. For example, set the free variables to x3 = 2 and x4 = 1.
Then a solution has x2 = 1 and x1 = 6. Then by Theorem SLSLC [327],

v =

18
−6
12

 = 6

 3
−1
2

+ 1

 2
1
−4

+ 2

 1
−2
6

+ 1

−4
3
−8
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Now we show that w =

 2
1
−3

 is not in the column space of A, w 6∈ C(A). Theorem CSCS

[812] says we need only check the consistency of LS(A, w). Form the augmented matrix
and row-reduce,  3 2 1 −4 2

−1 1 −2 3 1
2 −4 6 −8 −3

 RREF−−−→
 1 0 1 −2 0

0 1 −1 1 0

0 0 0 0 1


With a leading 1 in the final column, Theorem RCLS [172] tells us the system is inconsistent
and therefore by Theorem CSCS [812], w 6∈ C(A). �

Theorem CSCS [812] completes a collection of three theorems, and one definition, that
deserve comment. Many questions about spans, linear independence, null space, column
spaces and similar objects can be converted to questions about systems of equations (ho-
mogeneous or not), which we understand well from our previous results, especially those in
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Chapter SLE [2]. These previous results include theorems like Theorem RCLS [172] which
allows us to quickly decide consistency of a system, and Theorem BNS [484] which allows
us to describe solution sets for homogeneous systems compactly as the span of a linearly
independent set of column vectors.

The table below lists these for definitions and theorems along with a brief reminder of
the statement and an example of how the statement is used.

Version 2.11



Subsection CRS.CSSE Column Spaces and Systems of Equations 822

Definition NSM [216]
Synopsis Null space is solution set of homogeneous system
Example General solution sets described by Theorem PSPHS [368]

Theorem SLSLC [327]
Synopsis Solutions for linear combinations with unknown scalars
Example Deciding membership in spans

Theorem SLEMM [663]
Synopsis System of equations represented by matrix-vector product
Example Solution to LS(A, b) is A−1b when A is nonsingular

Theorem CSCS [812]
Synopsis Column space vectors create consistent systems
Example Deciding membership in column spaces
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Subsection CSSOC
Column Space Spanned by Original Columns

So we have a foolproof, automated procedure for determining membership in C(A). While
this works just fine a vector at a time, we would like to have a more useful description of
the set C(A) as a whole. The next example will preview the first of two fundamental results
about the column space of a matrix.

Example CSTW
Column space, two ways
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Consider the 5× 7 matrix A,
2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2


According to the definition (Definition CSM [808]), the column space of A is

C(A) =

〈


2
1
0
1
−2

 ,


4
2
0
2
−4

 ,


1
1
1
−1
1

 ,

−1
0
4
2
3

 ,


1
2
1
1
−1

 ,


4
4
8
9
−2

 ,


4
7
7
6
−2



〉

While this is a concise description of an infinite set, we might be able to describe the span
with fewer than seven vectors. This is the substance of Theorem BS [539]. So we take these
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seven vectors and make them the columns of matrix, which is simply the original matrix A
again. Now we row-reduce,

2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2

 RREF−−−→


1 2 0 0 0 3 1

0 0 1 0 0 −1 0

0 0 0 1 0 2 1

0 0 0 0 1 1 3
0 0 0 0 0 0 0


The pivot columns are D = {1, 3, 4, 5}, so we can create the set

T =




2
1
0
1
−2

 ,


1
1
1
−1
1

 ,

−1
0
4
2
3

 ,


1
2
1
1
−1
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and know that C(A) = 〈T 〉 and T is a linearly independent set of columns from the set of
columns of A. �

We will now formalize the previous example, which will make it trivial to determine
a linearly independent set of vectors that will span the column space of a matrix, and is
constituted of just columns of A.

Theorem BCS
Basis of the Column Space
Suppose that A is an m × n matrix with columns A1, A2, A3, . . . , An, and B is a row-
equivalent matrix in reduced row-echelon form with r nonzero rows. LetD = {d1, d2, d3, . . . , dr}
be the set of column indices where B has leading 1’s. Let T = {Ad1 , Ad2 , Ad3 , . . . , Adr}.
Then

1. T is a linearly independent set.

2. C(A) = 〈T 〉.
�
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Proof Definition CSM [808] describes the column space as the span of the set of columns
of A. Theorem BS [539] tells us that we can reduce the set of vectors used in a span. If we
apply Theorem BS [539] to C(A), we would collect the columns of A into a matrix (which
would just be A again) and bring the matrix to reduced row-echelon form, which is the
matrix B in the statement of the theorem. In this case, the conclusions of Theorem BS [539]
applied to A, B and C(A) are exactly the conclusions we desire. �

This is a nice result since it gives us a handful of vectors that describe the entire column
space (through the span), and we believe this set is as small as possible because we cannot
create any more relations of linear dependence to trim it down further. Furthermore, we
defined the column space (Definition CSM [808]) as all linear combinations of the columns
of the matrix, and the elements of the set S are still columns of the matrix (we won’t be so
lucky in the next two constructions of the column space).

Procedurally this theorem is extremely easy to apply. Row-reduce the original matrix,
identify r columns with leading 1’s in this reduced matrix, and grab the corresponding
columns of the original matrix. But it is still important to study the proof of Theorem BS
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[539] and its motivation in Example COV [530] which lie at the root of this theorem. We’ll
trot through an example all the same.

Example CSOCD
Column space, original columns, Archetype D
Let’s determine a compact expression for the entire column space of the coefficient matrix of
the system of equations that is Archetype D [2419]. Notice that in Example CSMCS [809]
we were only determining if individual vectors were in the column space or not, now we are
describing the entire column space.

To start with the application of Theorem BCS [822], call the coefficient matrix A

A =

 2 1 7 −7
−3 4 −5 −6
1 1 4 −5

 .
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and row-reduce it to reduced row-echelon form,

B =

 1 0 3 −2

0 1 1 −3
0 0 0 0

 .
There are leading 1’s in columns 1 and 2, so D = {1, 2}. To construct a set that spans C(A),
just grab the columns of A indicated by the set D, so

C(A) =

〈
 2
−3
1

 ,
1

4
1


〉
.

That’s it.
In Example CSMCS [809] we determined that the vector

c =

2
3
2
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was not in the column space of A. Try to write c as a linear combination of the first two
columns of A. What happens?

Also in Example CSMCS [809] we determined that the vector

b =

 8
−12

4



was in the column space of A. Try to write b as a linear combination of the first two columns
of A. What happens? Did you find a unique solution to this question? Hmmmm. �
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Subsection CSNM
Column Space of a Nonsingular Matrix

Let’s specialize to square matrices and contrast the column spaces of the coefficient matrices
in Archetype A [2378] and Archetype B [2392].

Example CSAA
Column space of Archetype A
The coefficient matrix in Archetype A [2378] is

A =

1 −1 2
2 1 1
1 1 0
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which row-reduces to  1 0 1

0 1 −1
0 0 0

 .
Columns 1 and 2 have leading 1’s, so by Theorem BCS [822] we can write

C(A) = 〈{A1, A2}〉 =

〈
1

2
1

 ,
−1

1
1


〉
.

We want to show in this example that C(A) 6= C3. So take, for example, the vector b =

1
3
2

.

Then there is no solution to the system LS(A, b), or equivalently, it is not possible to write
b as a linear combination of A1 and A2. Try one of these two computations yourself. (Or try
both!). Since b 6∈ C(A), the column space of A cannot be all of C3. So by varying the vector
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of constants, it is possible to create inconsistent systems of equations with this coefficient
matrix (the vector b being one such example).

In Example MWIAA [728] we wished to show that the coefficient matrix from Archetype
A [2378] was not invertible as a first example of a matrix without an inverse. Our device
there was to find an inconsistent linear system with A as the coefficient matrix. The vector
of constants in that example was b, deliberately chosen outside the column space of A. �

Example CSAB
Column space of Archetype B
The coefficient matrix in Archetype B [2392], call it B here, is known to be nonsingular (see
Example NM [247]). By Theorem NMUS [256], the linear system LS(B, b) has a (unique)
solution for every choice of b. Theorem CSCS [812] then says that b ∈ C(B) for all b ∈ C3.
Stated differently, there is no way to build an inconsistent system with the coefficient matrix
B, but then we knew that already from Theorem NMUS [256]. �

Example CSAA [827] and Example CSAB [829] together motivate the following equiva-
lence, which says that nonsingular matrices have column spaces that are as big as possible.
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Theorem CSNM
Column Space of a Nonsingular Matrix
Suppose A is a square matrix of size n. Then A is nonsingular if and only if C(A) = Cn. �

Proof (⇒) Suppose A is nonsingular. We wish to establish the set equality C(A) = Cn.
By Definition CSM [808], C(A) ⊆ Cn.

To show that Cn ⊆ C(A) choose b ∈ Cn. By Theorem NMUS [256], we know the linear
system LS(A, b) has a (unique) solution and therefore is consistent. Theorem CSCS [812]
then says that b ∈ C(A). So by Definition SE [2327], C(A) = Cn.

(⇐) If ei is column i of the n×n identity matrix (Definition SUV [586]) and by hypothesis
C(A) = Cn, then ei ∈ C(A) for 1 ≤ i ≤ n. By Theorem CSCS [812], the system LS(A, ei) is
consistent for 1 ≤ i ≤ n. Let bi denote any one particular solution to LS(A, ei), 1 ≤ i ≤ n.

Define the n× n matrix B = [b1|b2|b3| . . . |bn]. Then

AB = A [b1|b2|b3| . . . |bn]

= [Ab1|Ab2|Ab3| . . . |Abn] Definition MM [672]

= [e1|e2|e3| . . . |en]
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= In Definition SUV [586]

So the matrix B is a “right-inverse” for A. By Theorem NMRRI [250], In is a nonsingular
matrix, so by Theorem NPNT [775] both A and B are nonsingular. Thus, in particular, A
is nonsingular. (Travis Osborne contributed to this proof.) �

With this equivalence for nonsingular matrices we can update our list, Theorem NME3
[782].

Theorem NME4
Nonsingular Matrix Equivalences, Round 4
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.
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4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

�

Proof Since Theorem CSNM [830] is an equivalence, we can add it to the list in Theorem
NME3 [782]. �
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Subsection RSM
Row Space of a Matrix

The rows of a matrix can be viewed as vectors, since they are just lists of numbers, arranged
horizontally. So we will transpose a matrix, turning rows into columns, so we can then
manipulate rows as column vectors. As a result we will be able to make some new connections
between row operations and solutions to systems of equations. OK, here is the second
primary definition of this section.

Definition RSM
Row Space of a Matrix
Suppose A is an m×n matrix. Then the row space of A, R(A), is the column space of At,
i.e. R(A) = C(At).
(This definition contains Notation RSM.) 4

Informally, the row space is the set of all linear combinations of the rows of A. However,
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we write the rows as column vectors, thus the necessity of using the transpose to make the
rows into columns. Additionally, with the row space defined in terms of the column space,
all of the previous results of this section can be applied to row spaces.

Notice that if A is a rectangular m × n matrix, then C(A) ⊆ Cm, while R(A) ⊆ Cn

and the two sets are not comparable since they do not even hold objects of the same type.
However, when A is square of size n, both C(A) and R(A) are subsets of Cn, though usually
the sets will not be equal (but see Exercise CRS.M20 [866]).

Example RSAI
Row space of Archetype I
The coefficient matrix in Archetype I [2485] is

I =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
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To build the row space, we transpose the matrix,

I t =



1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37
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Then the columns of this matrix are used in a span to build the row space,

R(I) = C(I t) =

〈




1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13

7


,



0
0
2
−3
−4
12
−8


,



−1
−4
2
4
8
−31
37





〉
.

However, we can use Theorem BCS [822] to get a slightly better description. First, row-
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reduce I t,



1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Since there are leading 1’s in columns with indices D = {1, 2, 3}, the column space of I t
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can be spanned by just the first three columns of I t,

R(I) = C(I t) =

〈




1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13

7


,



0
0
2
−3
−4
12
−8





〉
.

�

The row space would not be too interesting if it was simply the column space of the
transpose. However, when we do row operations on a matrix we have no effect on the many
linear combinations that can be formed with the rows of the matrix. This is stated more
carefully in the following theorem.

Theorem REMRS
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Row-Equivalent Matrices have equal Row Spaces
Suppose A and B are row-equivalent matrices. Then R(A) = R(B). �

Proof Two matrices are row-equivalent (Definition REM [85]) if one can be obtained from
another by a sequence of (possibly many) row operations. We will prove the theorem for two
matrices that differ by a single row operation, and then this result can be applied repeatedly
to get the full statement of the theorem. The row spaces of A and B are spans of the
columns of their transposes. For each row operation we perform on a matrix, we can define
an analogous operation on the columns. Perhaps we should call these column operations.
Instead, we will still call them row operations, but we will apply them to the columns of the
transposes.

Refer to the columns of At and Bt as Ai and Bi, 1 ≤ i ≤ m. The row operation that
switches rows will just switch columns of the transposed matrices. This will have no effect
on the possible linear combinations formed by the columns.

Suppose that Bt is formed from At by multiplying column At by α 6= 0. In other words,
Bt = αAt, and Bi = Ai for all i 6= t. We need to establish that two sets are equal,
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C(At) = C(Bt). We will take a generic element of one and show that it is contained in the
other.

β1B1+β2B2 + β3B3 + · · ·+ βtBt + · · ·+ βmBm

= β1A1 + β2A2 + β3A3 + · · ·+ βt (αAt) + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ (αβt) At + · · ·+ βmAm

says that C(Bt) ⊆ C(At). Similarly,

γ1A1+γ2A2 + γ3A3 + · · ·+ γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+
(γt
α
α
)

At + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ γt
α

(αAt) + · · ·+ γmAm

= γ1B1 + γ2B2 + γ3B3 + · · ·+ γt
α

Bt + · · ·+ γmBm

says that C(At) ⊆ C(Bt). So R(A) = C(At) = C(Bt) = R(B) when a single row operation of
the second type is performed.
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Suppose now that Bt is formed from At by replacing At with αAs + At for some α ∈ C
and s 6= t. In other words, Bt = αAs + At, and Bi = Ai for i 6= t.

β1B1+β2B2 + β3B3 + · · ·+ βsBs + · · ·+ βtBt + · · ·+ βmBm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + · · ·+ βt (αAs + At) + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + · · ·+ (βtα) As + βtAt + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + (βtα) As + · · ·+ βtAt + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ (βs + βtα) As + · · ·+ βtAt + · · ·+ βmAm

says that C(Bt) ⊆ C(At). Similarly,

γ1A1 + γ2A2 + γ3A3 + · · ·+ γsAs + · · ·+ γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ γsAs + · · ·+ (−αγtAs + αγtAs) + γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ (−αγtAs) + γsAs + · · ·+ (αγtAs + γtAt) + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ (−αγt + γs) As + · · ·+ γt (αAs + At) + · · ·+ γmAm
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= γ1B1 + γ2B2 + γ3B3 + · · ·+ (−αγt + γs) Bs + · · ·+ γtBt + · · ·+ γmBm

says that C(At) ⊆ C(Bt). So R(A) = C(At) = C(Bt) = R(B) when a single row operation of
the third type is performed.

So the row space of a matrix is preserved by each row operation, and hence row spaces
of row-equivalent matrices are equal sets. �

Example RSREM
Row spaces of two row-equivalent matrices
In Example TREM [85] we saw that the matrices

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent by demonstrating a sequence of two row operations that converted A into
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B. Applying Theorem REMRS [839] we can say

R(A) =

〈


2
−1
3
4

 ,


5
2
−2
3

 ,


1
1
0
6



〉

=

〈


1
1
0
6

 ,


3
0
−2
−9

 ,


2
−1
3
4



〉

= R(B)

�

Theorem REMRS [839] is at its best when one of the row-equivalent matrices is in
reduced row-echelon form. The vectors that correspond to the zero rows can be ignored.
(Who needs the zero vector when building a span? See Exercise LI.T10 [500].) The echelon
pattern insures that the nonzero rows yield vectors that are linearly independent. Here’s the
theorem.

Theorem BRS
Basis for the Row Space
Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form.
Let S be the set of nonzero columns of Bt. Then
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1. R(A) = 〈S〉.
2. S is a linearly independent set.

�

Proof From Theorem REMRS [839] we know that R(A) = R(B). If B has any zero rows,
these correspond to columns of Bt that are the zero vector. We can safely toss out the zero
vector in the span construction, since it can be recreated from the nonzero vectors by a linear
combination where all the scalars are zero. So R(A) = 〈S〉.

Suppose B has r nonzero rows and let D = {d1, d2, d3, . . . , dr} denote the column indices
of B that have a leading one in them. Denote the r column vectors of Bt, the vectors in
S, as B1, B2, B3, . . . , Br. To show that S is linearly independent, start with a relation of
linear dependence

α1B1 + α2B2 + α3B3 + · · ·+ αrBr = 0

Now consider this vector equality in location di. Since B is in reduced row-echelon form, the
entries of column di of B are all zero, except for a (leading) 1 in row i. Thus, in Bt, row di
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is all zeros, excepting a 1 in column i. So, for 1 ≤ i ≤ r,

0 = [0]di Definition ZCV [74]

= [α1B1 + α2B2 + α3B3 + · · ·+ αrBr]di Definition RLDCV [458]

= [α1B1]di + [α2B2]di + [α3B3]di + · · ·+ [αrBr]di + Definition MA [614]

= α1 [B1]di + α2 [B2]di + α3 [B3]di + · · ·+ αr [Br]di + Definition MSM [615]

= α1(0) + α2(0) + α3(0) + · · ·+ αi(1) + · · ·+ αr(0) Definition RREF [91]

= αi

So we conclude that αi = 0 for all 1 ≤ i ≤ r, establishing the linear independence of S
(Definition LICV [458]). �

Example IAS
Improving a span
Suppose in the course of analyzing a matrix (its column space, its null space, its. . . ) we
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encounter the following set of vectors, described by a span

X =

〈


1
2
1
6
6

 ,


3
−1
2
−1
6

 ,


1
−1
0
−1
−2

 ,

−3
2
−3
6
−10



〉

Let A be the matrix whose rows are the vectors in X, so by design X = R(A),

A =


1 2 1 6 6
3 −1 2 −1 6
1 −1 0 −1 −2
−3 2 −3 6 −10


Version 2.11



Subsection CRS.RSM Row Space of a Matrix 851

Row-reduce A to form a row-equivalent matrix in reduced row-echelon form,

B =


1 0 0 2 −1

0 1 0 3 1

0 0 1 −2 5
0 0 0 0 0


Then Theorem BRS [843] says we can grab the nonzero columns of Bt and write

X = R(A) = R(B) =

〈


1
0
0
2
−1

 ,


0
1
0
3
1

 ,


0
0
1
−2
5



〉

These three vectors provide a much-improved description of X. There are fewer vectors,
and the pattern of zeros and ones in the first three entries makes it easier to determine
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membership in X. And all we had to do was row-reduce the right matrix and toss out a zero
row. Next to row operations themselves, this is probably the most powerful computational
technique at your disposal as it quickly provides a much improved description of a span, any
span. �

Theorem BRS [843] and the techniques of Example IAS [845] will provide yet another
description of the column space of a matrix. First we state a triviality as a theorem, so we
can reference it later.

Theorem CSRST
Column Space, Row Space, Transpose
Suppose A is a matrix. Then C(A) = R(At). �

Proof

C(A) = C
((
At
)t)

Theorem TT [628]

= R(At) Definition RSM [833]

Version 2.11



Subsection CRS.RSM Row Space of a Matrix 853

�

So to find another expression for the column space of a matrix, build its transpose, row-
reduce it, toss out the zero rows, and convert the nonzero rows to column vectors to yield an
improved set for the span construction. We’ll do Archetype I [2485], then you do Archetype
J [2498].

Example CSROI
Column space from row operations, Archetype I
To find the column space of the coefficient matrix of Archetype I [2485], we proceed as
follows. The matrix is

I =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
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The transpose is 

1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


.

Row-reduced this becomes, 

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.
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Now, using Theorem CSRST [848] and Theorem BRS [843]

C(I) = R(I t) =

〈


1
0
0
−31

7

 ,


0
1
0
12
7

 ,


0
0
1
13
7



〉
.

This is a very nice description of the column space. Fewer vectors than the 7 involved in the
definition, and the pattern of the zeros and ones in the first 3 slots can be used to advantage.
For example, Archetype I [2485] is presented as a consistent system of equations with a
vector of constants

b =


3
9
1
4

 .
Since LS(I, b) is consistent, Theorem CSCS [812] tells us that b ∈ C(I). But we could see
this quickly with the following computation, which really only involves any work in the 4th
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entry of the vectors as the scalars in the linear combination are dictated by the first three
entries of b.

b =


3
9
1
4

 = 3


1
0
0
−31

7

+ 9


0
1
0
12
7

+ 1


0
0
1
13
7



Can you now rapidly construct several vectors, b, so that LS(I, b) is consistent, and several
more so that the system is inconsistent? �
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Subsection READ
Reading Questions

1. Write the column space of the matrix below as the span of a set of three vectors and
explain your choice of method.  1 3 1 3

2 0 1 1
−1 2 1 0



2. Suppose that A is an n × n nonsingular matrix. What can you say about its column
space?
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3. Is the vector


0
5
2
3

 in the row space of the following matrix? Why or why not?

 1 3 1 3
2 0 1 1
−1 2 1 0
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Subsection EXC
Exercises

C20 For parts (a), (b) and c, find a set of linearly independent vectors X so that C(A) =
〈X〉, and a set of linearly independent vectors Y so that R(A) = 〈Y 〉.

a). A =


1 2 3 1
0 1 1 2
1 −1 2 3
1 1 2 −1



b). A =

1 2 1 1 1
3 2 −1 4 5
0 1 1 1 2
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c). A =


2 1 0
3 0 3
1 2 −3
1 1 −1
1 1 −1



d). From your results in parts (a) - (c), can you formulate a conjecture about the sets X
and Y ?

Contributed by Chris Black

C30 Example CSOCD [824] expresses the column space of the coefficient matrix from
Archetype D [2419] (call the matrix A here) as the span of the first two columns of A. In
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Example CSMCS [809] we determined that the vector

c =

2
3
2


was not in the column space of A and that the vector

b =

 8
−12

4


was in the column space of A. Attempt to write c and b as linear combinations of the two
vectors in the span construction for the column space in Example CSOCD [824] and record
your observations.
Contributed by Robert Beezer Solution [869]

C31 For the matrix A below find a set of vectors T meeting the following requirements: (1)
the span of T is the column space of A, that is, 〈T 〉 = C(A), (2) T is linearly independent,
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and (3) the elements of T are columns of A.

A =


2 1 4 −1 2
1 −1 5 1 1
−1 2 −7 0 1
2 −1 8 −1 2



Contributed by Robert Beezer Solution [869]

C32 In Example CSAA [827], verify that the vector b is not in the column space of the
coefficient matrix.
Contributed by Robert Beezer
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C33 Find a linearly independent set S so that the span of S, 〈S〉, is row space of the
matrix B, and S is linearly independent.

B =

 2 3 1 1
1 1 0 1
−1 2 3 −4


Contributed by Robert Beezer Solution [870]

C34 For the 3× 4 matrix A and the column vector y ∈ C4 given below, determine if y is
in the row space of A. In other words, answer the question: y ∈ R(A)? (15 points)

A =

−2 6 7 −1
7 −3 0 −3
8 0 7 6

 y =


2
1
3
−2


Contributed by Robert Beezer Solution [871]
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C35 For the matrix A below, find two different linearly independent sets whose spans equal
the column space of A, C(A), such that
(a) the elements are each columns of A.
(b) the set is obtained by a procedure that is substantially different from the procedure
you use in part (a).

A =

 3 5 1 −2
1 2 3 3
−3 −4 7 13


Contributed by Robert Beezer Solution [872]

C40 The following archetypes are systems of equations. For each system, write the vector
of constants as a linear combination of the vectors in the span construction for the column
space provided by Theorem BCS [822] (these vectors are listed for each of these archetypes).
Archetype A [2378]
Archetype B [2392]
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Archetype C [2407]
Archetype D [2419]
Archetype E [2431]
Archetype F [2443]
Archetype G [2460]
Archetype H [2472]
Archetype I [2485]
Archetype J [2498]

Contributed by Robert Beezer

C42 The following archetypes are either matrices or systems of equations with coefficient
matrices. For each matrix, compute a set of column vectors such that (1) the vectors are
columns of the matrix, (2) the set is linearly independent, and (3) the span of the set is the
column space of the matrix. See Theorem BCS [822].
Archetype A [2378]
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Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
Archetype K [2515]
Archetype L [2527]

Contributed by Robert Beezer

C50 The following archetypes are either matrices or systems of equations with coefficient
matrices. For each matrix, compute a set of column vectors such that (1) the set is linearly
independent, and (2) the span of the set is the row space of the matrix. See Theorem BRS
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[843].
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
Archetype K [2515]
Archetype L [2527]

Contributed by Robert Beezer
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C51 The following archetypes are either matrices or systems of equations with coefficient
matrices. For each matrix, compute the column space as the span of a linearly independent
set as follows: transpose the matrix, row-reduce, toss out zero rows, convert rows into col-
umn vectors. See Example CSROI [849].
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
Archetype K [2515]
Archetype L [2527]
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Contributed by Robert Beezer

C52 The following archetypes are systems of equations. For each different coefficient ma-
trix build two new vectors of constants. The first should lead to a consistent system and the
second should lead to an inconsistent system. Descriptions of the column space as spans of
linearly independent sets of vectors with “nice patterns” of zeros and ones might be most
useful and instructive in connection with this exercise. (See the end of Example CSROI
[849].)
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
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Archetype J [2498]

Contributed by Robert Beezer

M10 For the matrix E below, find vectors b and c so that the system LS(E, b) is consistent
and LS(E, c) is inconsistent.

E =

−2 1 1 0
3 −1 0 2
4 1 1 6


Contributed by Robert Beezer Solution [874]

M20 Usually the column space and null space of a matrix contain vectors of different sizes.
For a square matrix, though, the vectors in these two sets are the same size. Usually the
two sets will be different. Construct an example of a square matrix where the column space
and null space are equal.
Contributed by Robert Beezer Solution [875]
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M21 We have a variety of theorems about how to create column spaces and row spaces
and they frequently involve row-reducing a matrix. Here is a procedure that some try to use
to get a column space. Begin with an m × n matrix A and row-reduce to a matrix B with
columns B1, B2, B3, . . . , Bn. Then form the column space of A as

C(A) = 〈{B1, B2, B3, . . . , Bn}〉 = C(B)

This is not not a legitimate procedure, and therefore is not a theorem. Construct an example
to show that the procedure will not in general create the column space of A.
Contributed by Robert Beezer Solution [875]

T40 Suppose that A is an m× n matrix and B is an n× p matrix. Prove that the column
space of AB is a subset of the column space of A, that is C(AB) ⊆ C(A). Provide an example
where the opposite is false, in other words give an example where C(A) 6⊆ C(AB). (Compare
with Exercise MM.T40 [710].)
Contributed by Robert Beezer Solution [876]
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T41 Suppose that A is an m×n matrix and B is an n×n nonsingular matrix. Prove that
the column space of A is equal to the column space of AB, that is C(A) = C(AB). (Compare
with Exercise MM.T41 [710] and Exercise CRS.T40 [867].)
Contributed by Robert Beezer Solution [877]

T45 Suppose that A is an m×n matrix and B is an n×m matrix where AB is a nonsingular
matrix. Prove that
(1) N (B) = {0}
(2) C(B) ∩N (A) = {0}
Discuss the case when m = n in connection with Theorem NPNT [775].
Contributed by Robert Beezer Solution [878]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [856]
In each case, begin with a vector equation where one side contains a linear combination of
the two vectors from the span construction that gives the column space of A with unknowns
for scalars, and then use Theorem SLSLC [327] to set up a system of equations. For c, the
corresponding system has no solution, as we would expect.

For b there is a solution, as we would expect. What is interesting is that the solution
is unique. This is a consequence of the linear independence of the set of two vectors in the
span construction. If we wrote b as a linear combination of all four columns of A, then there
would be infinitely many ways to do this.

C31 Contributed by Robert Beezer Statement [857]
Theorem BCS [822] is the right tool for this problem. Row-reduce this matrix, identify the
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pivot columns and then grab the corresponding columns of A for the set T . The matrix A
row-reduces to 

1 0 3 0 0

0 1 −2 0 0

0 0 0 1 0

0 0 0 0 1


So D = {1, 2, 4, 5} and then

T = {A1, A2, A4, A5} =




2
1
−1
2

 ,


1
−1
2
−1

 ,

−1
1
0
−1

 ,


2
1
1
2




has the requested properties.

C33 Contributed by Robert Beezer Statement [859]
Theorem BRS [843] is the most direct route to a set with these properties. Row-reduce, toss
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zero rows, keep the others. You could also transpose the matrix, then look for the column
space by row-reducing the transpose and applying Theorem BCS [822]. We’ll do the former,

B
RREF−−−→

 1 0 −1 2

0 1 1 −1
0 0 0 0


So the set S is

S =




1
0
−1
2

 ,


0
1
1
−1




C34 Contributed by Robert Beezer Statement [859]

y ∈ R(A) ⇐⇒ y ∈ C(At) Definition RSM [833]
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⇐⇒ LS(At, y
)

is consistent Theorem CSCS [812]

The augmented matrix [At | y] row reduces to
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


and with a leading 1 in the final column Theorem RCLS [172] tells us the linear system is
inconsistent and so y 6∈ R(A).

C35 Contributed by Robert Beezer Statement [860]
(a) By Theorem BCS [822] we can row-reduce A, identify pivot columns with the set D,
and “keep” those columns of A and we will have a set with the desired properties.

A
RREF−−−→

 1 0 −13 −19

0 1 8 11
0 0 0 0
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So we have the set of pivot columns D = {1, 2} and we “keep” the first two columns of A,


 3

1
−3

 ,
 5

2
−4


(b) We can view the column space as the row space of the transpose (Theorem CSRST
[848]). We can get a basis of the row space of a matrix quickly by bringing the matrix to
reduced row-echelon form and keeping the nonzero rows as column vectors (Theorem BRS
[843]). Here goes.

At
RREF−−−→


1 0 −2

0 1 3
0 0 0
0 0 0
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Taking the nonzero rows and tilting them up as columns gives us
 1

0
−2

 ,
0

1
3


An approach based on the matrix L from extended echelon form (Definition EEF [894]) and
Theorem FS [902] will work as well as an alternative approach.

M10 Contributed by Robert Beezer Statement [866]
Any vector from C3 will lead to a consistent system, and therefore there is no vector that
will lead to an inconsistent system.

How do we convince ourselves of this? First, row-reduce E,

E
RREF−−−→

 1 0 0 1

0 1 0 1

0 0 1 1
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If we augment E with any vector of constants, and row-reduce the augmented matrix, we
will never find a leading 1 in the final column, so by Theorem RCLS [172] the system will
always be consistent.

Said another way, the column space of E is all of C3, C(E) = C3. So by Theorem
CSCS [812] any vector of constants will create a consistent system (and none will create an
inconsistent system).

M20 Contributed by Robert Beezer Statement [866]
The 2× 2 matrix [

1 1
−1 −1

]
has C(A) = N (A) =

〈{[
1
−1

]}〉
.

M21 Contributed by Robert Beezer Statement [867]
Begin with a matrix A (of any size) that does not have any zero rows, but which when
row-reduced to B yields at least one row of zeros. Such a matrix should be easy to construct
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(or find, like say from Archetype A [2378]).
C(A) will contain some vectors whose final slot (entry m) is non-zero, however, every

column vector from the matrix B will have a zero in slot m and so every vector in C(B) will
also contain a zero in the final slot. This means that C(A) 6= C(B), since we have vectors in
C(A) that cannot be elements of C(B).

T40 Contributed by Robert Beezer Statement [867]
Choose x ∈ C(AB). Then by Theorem CSCS [812] there is a vector w that is a solution to
LS(AB, x). Define the vector y by y = Bw. We’re set,

Ay = A (Bw) Definition of y

= (AB) w Theorem MMA [687]

= x w solution to LS(AB, x)

This says that LS(A, x) is a consistent system, and by Theorem CSCS [812], we see that
x ∈ C(A) and therefore C(AB) ⊆ C(A).
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For an example where C(A) 6⊆ C(AB) choose A to be any nonzero matrix and choose B
to be a zero matrix. Then C(A) 6= {0} and C(AB) = C(O) = {0}.
T41 Contributed by Robert Beezer Statement [868]
From the solution to Exercise CRS.T40 [867] we know that C(AB) ⊆ C(A). So to establish
the set equality (Definition SE [2327]) we need to show that C(A) ⊆ C(AB).

Choose x ∈ C(A). By Theorem CSCS [812] the linear system LS(A, x) is consistent,
so let y be one such solution. Because B is nonsingular, and linear system using B as a
coefficient matrix will have a solution (Theorem NMUS [256]). Let w be the unique solution
to the linear system LS(B, y). All set, here we go,

(AB) w = A (Bw) Theorem MMA [687]

= Ay w solution to LS(B, y)

= x y solution to LS(A, x)

This says that the linear system LS(AB, x) is consistent, so by Theorem CSCS [812], x ∈
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C(AB). So C(A) ⊆ C(AB).

T45 Contributed by Robert Beezer Statement [868]
First, 0 ∈ N (B) trivially. Now suppose that x ∈ N (B). Then

ABx = A(Bx) Theorem MMA [687]

= A0 x ∈ N (B)

= 0 Theorem MMZM [681]

Since we have assumed AB is nonsingular, Definition NM [246] implies that x = 0.
Second, 0 ∈ C(B) and 0 ∈ N (A) trivially, and so the zero vector is in the intersection

as well (Definition SI [2332]). Now suppose that y ∈ C(B) ∩ N (A). Because y ∈ C(B),
Theorem CSCS [812] says the system LS(B, y) is consistent. Let x ∈ Cn be one solution to
this system. Then

ABx = A(Bx) Theorem MMA [687]

= Ay x solution to LS(B, y)
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= 0 y ∈ N (A)

Since we have assumed AB is nonsingular, Definition NM [246] implies that x = 0. Then
y = Bx = B0 = 0.

When AB is nonsingular and m = n we know that the first condition, N (B) = {0},
means that B is nonsingular (Theorem NMTNS [256]). Because B is nonsingular Theorem
CSNM [830] implies that C(B) = Cm. In order to have the second condition fulfilled,
C(B) ∩ N (A) = {0}, we must realize that N (A) = {0}. However, a second application
of Theorem NMTNS [256] shows that A must be nonsingular. This reproduces Theorem
NPNT [775].
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Section FS

Four Subsets

There are four natural subsets associated with a matrix. We have met three already: the null
space, the column space and the row space. In this section we will introduce a fourth, the
left null space. The objective of this section is to describe one procedure that will allow us
to find linearly independent sets that span each of these four sets of column vectors. Along
the way, we will make a connection with the inverse of a matrix, so Theorem FS [902] will
tie together most all of this chapter (and the entire course so far).

Version 2.11



Subsection FS.LNS Left Null Space 885

Subsection LNS
Left Null Space

Definition LNS
Left Null Space
Suppose A is an m×n matrix. Then the left null space is defined as L(A) = N (At) ⊆ Cm.

(This definition contains Notation LNS.) 4
The left null space will not feature prominently in the sequel, but we can explain its

name and connect it to row operations. Suppose y ∈ L(A). Then by Definition LNS [881],
Aty = 0. We can then write

0t =
(
Aty

)t
Definition LNS [881]

= yt
(
At
)t

Theorem MMT [692]
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= ytA Theorem TT [628]

The product ytA can be viewed as the components of y acting as the scalars in a linear
combination of the rows of A. And the result is a “row vector”, 0t that is totally zeros.
When we apply a sequence of row operations to a matrix, each row of the resulting matrix is
some linear combination of the rows. These observations tell us that the vectors in the left
null space are scalars that record a sequence of row operations that result in a row of zeros
in the row-reduced version of the matrix. We will see this idea more explicitly in the course
of proving Theorem FS [902].

Example LNS
Left null space
We will find the left null space of

A =


1 −3 1
−2 1 1
1 5 1
9 −4 0
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We transpose A and row-reduce,

At =

 1 −2 1 9
−3 1 5 −4
1 1 1 0

 RREF−−−→
 1 0 0 2

0 1 0 −3

0 0 1 1


Applying Definition LNS [881] and Theorem BNS [484] we have

L(A) = N (At) =

〈

−2
3
−1
1



〉

If you row-reduce A you will discover one zero row in the reduced row-echelon form. This
zero row is created by a sequence of row operations, which in total amounts to a linear
combination, with scalars a1 = −2, a2 = 3, a3 = −1 and a4 = 1, on the rows of A and which
results in the zero vector (check this!). So the components of the vector describing the left
null space of A provide a relation of linear dependence on the rows of A. �
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Subsection CRS
Computing Column Spaces

We have three ways to build the column space of a matrix. First, we can use just the
definition, Definition CSM [808], and express the column space as a span of the columns
of the matrix. A second approach gives us the column space as the span of some of the
columns of the matrix, but this set is linearly independent (Theorem BCS [822]). Finally,
we can transpose the matrix, row-reduce the transpose, kick out zero rows, and transpose
the remaining rows back into column vectors. Theorem CSRST [848] and Theorem BRS
[843] tell us that the resulting vectors are linearly independent and their span is the column
space of the original matrix.

We will now demonstrate a fourth method by way of a rather complicated example.
Study this example carefully, but realize that its main purpose is to motivate a theorem that
simplifies much of the apparent complexity. So other than an instructive exercise or two,
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the procedure we are about to describe will not be a usual approach to computing a column
space.

Example CSANS
Column space as null space
Lets find the column space of the matrix A below with a new approach.

A =


10 0 3 8 7
−16 −1 −4 −10 −13
−6 1 −3 −6 −6
0 2 −2 −3 −2
3 0 1 2 3
−1 −1 1 1 0


By Theorem CSCS [812] we know that the column vector b is in the column space of A
if and only if the linear system LS(A, b) is consistent. So let’s try to solve this system in
full generality, using a vector of variables for the vector of constants. In other words, which
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vectors b lead to consistent systems? Begin by forming the augmented matrix [A | b] with
a general version of b,

[A | b] =


10 0 3 8 7 b1
−16 −1 −4 −10 −13 b2
−6 1 −3 −6 −6 b3
0 2 −2 −3 −2 b4
3 0 1 2 3 b5
−1 −1 1 1 0 b6


To identify solutions we will row-reduce this matrix and bring it to reduced row-echelon
form. Despite the presence of variables in the last column, there is nothing to stop us from
doing this. Except our numerical routines on calculators can’t be used, and even some of
the symbolic algebra routines do some unexpected maneuvers with this computation. So do
it by hand. Yes, it is a bit of work. But worth it. We’ll still be here when you get back.
Notice along the way that the row operations are exactly the same ones you would do if you
were just row-reducing the coefficient matrix alone, say in connection with a homogeneous
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system of equations. The column with the bi acts as a sort of bookkeeping device. There are
many different possibilities for the result, depending on what order you choose to perform
the row operations, but shortly we’ll all be on the same page. Here’s one possibility (you
can find this same result by doing additional row operations with the fifth and sixth rows to
remove any occurrences of b1 and b2 from the first four rows of your result):

1 0 0 0 2 b3 − b4 + 2b5 − b6
0 1 0 0 −3 −2b3 + 3b4 − 3b5 + 3b6
0 0 1 0 1 b3 + b4 + 3b5 + 3b6
0 0 0 1 −2 −2b3 + b4 − 4b5
0 0 0 0 0 b1 + 3b3 − b4 + 3b5 + b6
0 0 0 0 0 b2 − 2b3 + b4 + b5 − b6


Our goal is to identify those vectors b which make LS(A, b) consistent. By Theorem RCLS
[172] we know that the consistent systems are precisely those without a leading 1 in the last
column. Are the expressions in the last column of rows 5 and 6 equal to zero, or are they
leading 1’s? The answer is: maybe. It depends on b. With a nonzero value for either of these
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expressions, we would scale the row and produce a leading 1. So we get a consistent system,
and b is in the column space, if and only if these two expressions are both simultaneously
zero. In other words, members of the column space of A are exactly those vectors b that
satisfy

b1 + 3b3 − b4 + 3b5 + b6 = 0

b2 − 2b3 + b4 + b5 − b6 = 0

Hmmm. Looks suspiciously like a homogeneous system of two equations with six variables.
If you’ve been playing along (and we hope you have) then you may have a slightly different
system, but you should have just two equations. Form the coefficient matrix and row-reduce
(notice that the system above has a coefficient matrix that is already in reduced row-echelon
form). We should all be together now with the same matrix,

L =

[
1 0 3 −1 3 1

0 1 −2 1 1 −1

]
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So, C(A) = N (L) and we can apply Theorem BNS [484] to obtain a linearly independent set
to use in a span construction,

C(A) = N (L) =

〈



−3
2
1
0
0
0

 ,


1
−1
0
1
0
0

 ,

−3
−1
0
0
1
0

 ,

−1
1
0
0
0
1




〉

Whew! As a postscript to this central example, you may wish to convince yourself that the
four vectors above really are elements of the column space? Do they create consistent systems
with A as coefficient matrix? Can you recognize the constant vector in your description of
these solution sets?

OK, that was so much fun, let’s do it again. But simpler this time. And we’ll all get
the same results all the way through. Doing row operations by hand with variables can be
a bit error prone, so let’s see if we can improve the process some. Rather than row-reduce
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a column vector b full of variables, let’s write b = I6b and we will row-reduce the matrix
I6 and when we finish row-reducing, then we will compute the matrix-vector product. You
should first convince yourself that we can operate like this (this is the subject of a future
homework exercise). Rather than augmenting A with b, we will instead augment it with I6
(does this feel familiar?),

M =


10 0 3 8 7 1 0 0 0 0 0
−16 −1 −4 −10 −13 0 1 0 0 0 0
−6 1 −3 −6 −6 0 0 1 0 0 0
0 2 −2 −3 −2 0 0 0 1 0 0
3 0 1 2 3 0 0 0 0 1 0
−1 −1 1 1 0 0 0 0 0 0 1


We want to row-reduce the left-hand side of this matrix, but we will apply the same row
operations to the right-hand side as well. And once we get the left-hand side in reduced
row-echelon form, we will continue on to put leading 1’s in the final two rows, as well as
clearing out the columns containing those two additional leading 1’s. It is these additional
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row operations that will ensure that we all get to the same place, since the reduced row-
echelon form is unique (Theorem RREFU [101]),

N =


1 0 0 0 2 0 0 1 −1 2 −1
0 1 0 0 −3 0 0 −2 3 −3 3
0 0 1 0 1 0 0 1 1 3 3
0 0 0 1 −2 0 0 −2 1 −4 0
0 0 0 0 0 1 0 3 −1 3 1
0 0 0 0 0 0 1 −2 1 1 −1


We are after the final six columns of this matrix, which we will multiply by b

J =


0 0 1 −1 2 −1
0 0 −2 3 −3 3
0 0 1 1 3 3
0 0 −2 1 −4 0
1 0 3 −1 3 1
0 1 −2 1 1 −1
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so

Jb =


0 0 1 −1 2 −1
0 0 −2 3 −3 3
0 0 1 1 3 3
0 0 −2 1 −4 0
1 0 3 −1 3 1
0 1 −2 1 1 −1




b1
b2
b3
b4
b5
b6

 =


b3 − b4 + 2b5 − b6

−2b3 + 3b4 − 3b5 + 3b6
b3 + b4 + 3b5 + 3b6
−2b3 + b4 − 4b5

b1 + 3b3 − b4 + 3b5 + b6
b2 − 2b3 + b4 + b5 − b6


So by applying the same row operations that row-reduce A to the identity matrix (which we
could do with a calculator once I6 is placed alongside of A), we can then arrive at the result
of row-reducing a column of symbols where the vector of constants usually resides. Since the
row-reduced version of A has two zero rows, for a consistent system we require that

b1 + 3b3 − b4 + 3b5 + b6 = 0

b2 − 2b3 + b4 + b5 − b6 = 0

Now we are exactly back where we were on the first go-round. Notice that we obtain the
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matrix L as simply the last two rows and last six columns of N . �

This example motivates the remainder of this section, so it is worth careful study. You
might attempt to mimic the second approach with the coefficient matrices of Archetype
I [2485] and Archetype J [2498]. We will see shortly that the matrix L contains more
information about A than just the column space.

Subsection EEF
Extended echelon form

The final matrix that we row-reduced in Example CSANS [885] should look familiar in most
respects to the procedure we used to compute the inverse of a nonsingular matrix, Theorem
CINM [742]. We will now generalize that procedure to matrices that are not necessarily
nonsingular, or even square. First a definition.
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Definition EEF
Extended Echelon Form
Suppose A is an m × n matrix. Add m new columns to A that together equal an m × m
identity matrix to form an m×(n+m) matrix M . Use row operations to bring M to reduced
row-echelon form and call the result N . N is the extended reduced row-echelon form
of A, and we will standardize on names for five submatrices (B, C, J , K, L) of N .

Let B denote the m×n matrix formed from the first n columns of N and let J denote the
m ×m matrix formed from the last m columns of N . Suppose that B has r nonzero rows.
Further partition N by letting C denote the r × n matrix formed from all of the non-zero
rows of B. Let K be the r×m matrix formed from the first r rows of J , while L will be the
(m− r)×m matrix formed from the bottom m− r rows of J . Pictorially,

M = [A|Im]
RREF−−−→ N = [B|J ] =

[
C K
0 L

]
4

Example SEEF
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Submatrices of extended echelon form
We illustrate Definition EEF [894] with the matrix A,

A =


1 −1 −2 7 1 6
−6 2 −4 −18 −3 −26
4 −1 4 10 2 17
3 −1 2 9 1 12



Augmenting with the 4× 4 identity matrix, M=


1 −1 −2 7 1 6 1 0 0 0
−6 2 −4 −18 −3 −26 0 1 0 0
4 −1 4 10 2 17 0 0 1 0
3 −1 2 9 1 12 0 0 0 1


Version 2.11



Subsection FS.EEF Extended echelon form 900

and row-reducing, we obtain

N =


1 0 2 1 0 3 0 1 1 1

0 1 4 −6 0 −1 0 2 3 0

0 0 0 0 1 2 0 −1 0 −2

0 0 0 0 0 0 1 2 2 1


So we then obtain

B =


1 0 2 1 0 3

0 1 4 −6 0 −1

0 0 0 0 1 2
0 0 0 0 0 0


C =

 1 0 2 1 0 3

0 1 4 −6 0 −1

0 0 0 0 1 2


Version 2.11



Subsection FS.EEF Extended echelon form 901

J =


0 1 1 1
0 2 3 0
0 −1 0 −2

1 2 2 1


K =

0 1 1 1
0 2 3 0
0 −1 0 −2


L =

[
1 2 2 1

]
You can observe (or verify) the properties of the following theorem with this example. �

Theorem PEEF
Properties of Extended Echelon Form
Suppose that A is an m× n matrix and that N is its extended echelon form. Then

1. J is nonsingular.
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2. B = JA.

3. If x ∈ Cn and y ∈ Cm, then Ax = y if and only if Bx = Jy.

4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.

5. L is in reduced row-echelon form, has no zero rows and has m− r pivot columns.

�

Proof J is the result of applying a sequence of row operations to Im, as such J and Im
are row-equivalent. LS(Im, 0) has only the zero solution, since Im is nonsingular (Theorem
NMRRI [250]). Thus, LS(J, 0) also has only the zero solution (Theorem REMES [87],
Definition ESYS [31]) and J is therefore nonsingular (Definition NSM [216]).

To prove the second part of this conclusion, first convince yourself that row operations
and the matrix-vector are commutative operations. By this we mean the following. Suppose
that F is an m × n matrix that is row-equivalent to the matrix G. Apply to the column
vector Fw the same sequence of row operations that converts F to G. Then the result is
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Gw. So we can do row operations on the matrix, then do a matrix-vector product, or do a
matrix-vector product and then do row operations on a column vector, and the result will be
the same either way. Since matrix multiplication is defined by a collection of matrix-vector
products (Definition MM [672]), if we apply to the matrix product FH the same sequence
of row operations that converts F to G then the result will equal GH. Now apply these
observations to A.

Write AIn = ImA and apply the row operations that convert M to N . A is converted
to B, while Im is converted to J , so we have BIn = JA. Simplifying the left side gives the
desired conclusion.

For the third conclusion, we now establish the two equivalences

Ax = y ⇐⇒ JAx = Jy ⇐⇒ Bx = Jy

The forward direction of the first equivalence is accomplished by multiplying both sides of
the matrix equality by J , while the backward direction is accomplished by multiplying by
the inverse of J (which we know exists by Theorem NI [781] since J is nonsingular). The
second equivalence is obtained simply by the substitutions given by JA = B.
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The first r rows of N are in reduced row-echelon form, since any contiguous collection of
rows taken from a matrix in reduced row-echelon form will form a matrix that is again in
reduced row-echelon form. Since the matrix C is formed by removing the last n entries of
each these rows, the remainder is still in reduced row-echelon form. By its construction, C
has no zero rows. C has r rows and each contains a leading 1, so there are r pivot columns
in C.

The final m−r rows of N are in reduced row-echelon form, since any contiguous collection
of rows taken from a matrix in reduced row-echelon form will form a matrix that is again in
reduced row-echelon form. Since the matrix L is formed by removing the first n entries of
each these rows, and these entries are all zero (they form the zero rows of B), the remainder
is still in reduced row-echelon form. L is the final m− r rows of the nonsingular matrix J ,
so none of these rows can be totally zero, or J would not row-reduce to the identity matrix.
L has m− r rows and each contains a leading 1, so there are m− r pivot columns in L.

�

Notice that in the case where A is a nonsingular matrix we know that the reduced row-
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echelon form of A is the identity matrix (Theorem NMRRI [250]), so B = In. Then the
second conclusion above says JA = B = In, so J is the inverse of A. Thus this theorem
generalizes Theorem CINM [742], though the result is a “left-inverse” of A rather than a
“right-inverse.”

The third conclusion of Theorem PEEF [897] is the most telling. It says that x is a
solution to the linear system LS(A, y) if and only if x is a solution to the linear system
LS(B, Jy). Or said differently, if we row-reduce the augmented matrix [A | y] we will get the
augmented matrix [B | Jy]. The matrix J tracks the cumulative effect of the row operations
that converts A to reduced row-echelon form, here effectively applying them to the vector
of constants in a system of equations having A as a coefficient matrix. When A row-reduces
to a matrix with zero rows, then Jy should also have zero entries in the same rows if the
system is to be consistent.
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Subsection FS
Four Subsets

With all the preliminaries in place we can state our main result for this section. In essence
this result will allow us to say that we can find linearly independent sets to use in span
constructions for all four subsets (null space, column space, row space, left null space) by
analyzing only the extended echelon form of the matrix, and specifically, just the two subma-
trices C and L, which will be ripe for analysis since they are already in reduced row-echelon
form (Theorem PEEF [897]).

Theorem FS
Four Subsets
Suppose A is an m × n matrix with extended echelon form N . Suppose the reduced row-
echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first
r rows and the first n columns and L is the submatrix of N formed from the last m columns
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and the last m− r rows. Then

1. The null space of A is the null space of C, N (A) = N (C).

2. The row space of A is the row space of C, R(A) = R(C).

3. The column space of A is the null space of L, C(A) = N (L).

4. The left null space of A is the row space of L, L(A) = R(L).

�

Proof First, N (A) = N (B) since B is row-equivalent to A (Theorem REMES [87]).
The zero rows of B represent equations that are always true in the homogeneous system
LS(B, 0), so the removal of these equations will not change the solution set. Thus, in turn,
N (B) = N (C).

Second, R(A) = R(B) since B is row-equivalent to A (Theorem REMRS [839]). The
zero rows of B contribute nothing to the span that is the row space of B, so the removal of
these rows will not change the row space. Thus, in turn, R(B) = R(C).

Version 2.11



Subsection FS.FS Four Subsets 908

Third, we prove the set equality C(A) = N (L) with Definition SE [2327]. Begin by
showing that C(A) ⊆ N (L). Choose y ∈ C(A) ⊆ Cm. Then there exists a vector x ∈ Cn

such that Ax = y (Theorem CSCS [812]). Then for 1 ≤ k ≤ m− r,
[Ly]k = [Jy]r+k L a submatrix of J

= [Bx]r+k Theorem PEEF [897]

= [Ox]k Zero matrix a submatrix of B

= [0]k Theorem MMZM [681]

So, for all 1 ≤ k ≤ m − r, [Ly]k = [0]k. So by Definition CVE [286] we have Ly = 0 and
thus y ∈ N (L).

Now, show that N (L) ⊆ C(A). Choose y ∈ N (L) ⊆ Cm. Form the vector Ky ∈ Cr.
The linear system LS(C, Ky) is consistent since C is in reduced row-echelon form and has
no zero rows (Theorem PEEF [897]). Let x ∈ Cn denote a solution to LS(C, Ky).

Then for 1 ≤ j ≤ r,

[Bx]j = [Cx]j C a submatrix of B
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= [Ky]j x a solution to LS(C, Ky)

= [Jy]j K a submatrix of J

And for r + 1 ≤ k ≤ m,

[Bx]k = [Ox]k−r Zero matrix a submatrix of B

= [0]k−r Theorem MMZM [681]

= [Ly]k−r y in N (L)

= [Jy]k L a submatrix of J

So for all 1 ≤ i ≤ m, [Bx]i = [Jy]i and by Definition CVE [286] we have Bx = Jy. From
Theorem PEEF [897] we know then that Ax = y, and therefore y ∈ C(A) (Theorem CSCS
[812]). By Definition SE [2327] we now have C(A) = N (L).
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Fourth, we prove the set equality L(A) = R(L) with Definition SE [2327]. Begin by
showing that R(L) ⊆ L(A). Choose y ∈ R(L) ⊆ Cm. Then there exists a vector w ∈ Cm−r

such that y = Ltw (Definition RSM [833], Theorem CSCS [812]). Then for 1 ≤ i ≤ n,

[
Aty

]
i

=
m∑
k=1

[
At
]
ik

[y]k Theorem EMP [676]

=
m∑
k=1

[
At
]
ik

[
Ltw

]
k

Definition of w

=
m∑
k=1

[
At
]
ik

m−r∑
`=1

[
Lt
]
k`

[w]` Theorem EMP [676]

=
m∑
k=1

m−r∑
`=1

[
At
]
ik

[
Lt
]
k`

[w]` Property DCN [2317]
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=
m−r∑
`=1

m∑
k=1

[
At
]
ik

[
Lt
]
k`

[w]` Property CACN [2317]

=
m−r∑
`=1

(
m∑
k=1

[
At
]
ik

[
Lt
]
k`

)
[w]` Property DCN [2317]

=
m−r∑
`=1

(
m∑
k=1

[
At
]
ik

[
J t
]
k,r+`

)
[w]` L a submatrix of J

=
m−r∑
`=1

[
AtJ t

]
i,r+`

[w]` Theorem EMP [676]

=
m−r∑
`=1

[
(JA)t

]
i,r+`

[w]` Theorem MMT [692]

=
m−r∑
`=1

[
Bt
]
i,r+`

[w]` Theorem PEEF [897]
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=
m−r∑
`=1

0 [w]` Zero rows in B

= 0 Property ZCN [2317]

= [0]i Definition ZCV [74]

Since [Aty]i = [0]i for 1 ≤ i ≤ n, Definition CVE [286] implies that Aty = 0. This means
that y ∈ N (At).

Now, show that L(A) ⊆ R(L). Choose y ∈ L(A) ⊆ Cm. The matrix J is nonsingular
(Theorem PEEF [897]), so J t is also nonsingular (Theorem MIT [751]) and therefore the
linear system LS(J t, y) has a unique solution. Denote this solution as x ∈ Cm. We will
need to work with two “halves” of x, which we will denote as z and w with formal definitions
given by

[z]j = [x]i 1 ≤ j ≤ r, [w]k = [x]r+k 1 ≤ k ≤ m− r
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Now, for 1 ≤ j ≤ r,

[
Ctz
]
j

=
r∑

k=1

[
Ct
]
jk

[z]k Theorem EMP [676]

=
r∑

k=1

[
Ct
]
jk

[z]k +
m−r∑
`=1

[O]j` [w]` Definition ZM [621]

=
r∑

k=1

[
Bt
]
jk

[z]k +
m−r∑
`=1

[
Bt
]
j,r+`

[w]` C, O submatrices of B

=
r∑

k=1

[
Bt
]
jk

[x]k +
m−r∑
`=1

[
Bt
]
j,r+`

[x]r+` Definitions of z and w

=
r∑

k=1

[
Bt
]
jk

[x]k +
m∑

k=r+1

[
Bt
]
jk

[x]k Re-index second sum
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=
m∑
k=1

[
Bt
]
jk

[x]k Combine sums

=
m∑
k=1

[
(JA)t

]
jk

[x]k Theorem PEEF [897]

=
m∑
k=1

[
AtJ t

]
jk

[x]k Theorem MMT [692]

=
m∑
k=1

m∑
`=1

[
At
]
j`

[
J t
]
`k

[x]k Theorem EMP [676]

=
m∑
`=1

m∑
k=1

[
At
]
j`

[
J t
]
`k

[x]k Property CACN [2317]

=
m∑
`=1

[
At
]
j`

(
m∑
k=1

[
J t
]
`k

[x]k

)
Property DCN [2317]
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=
m∑
`=1

[
At
]
j`

[
J tx
]
`

Theorem EMP [676]

=
m∑
`=1

[
At
]
j`

[y]` Definition of x

=
[
Aty

]
j

Theorem EMP [676]

= [0]j y ∈ L(A)

So, by Definition CVE [286], Ctz = 0 and the vector z gives us a linear combination of
the columns of Ct that equals the zero vector. In other words, z gives a relation of linear
dependence on the the rows of C. However, the rows of C are a linearly independent set by
Theorem BRS [843]. According to Definition LICV [458] we must conclude that the entries
of z are all zero, i.e. z = 0.

Now, for 1 ≤ i ≤ m, we have

[y]i =
[
J tx
]
i

Definition of x

Version 2.11



Subsection FS.FS Four Subsets 916

=
m∑
k=1

[
J t
]
ik

[x]k Theorem EMP [676]

=
r∑

k=1

[
J t
]
ik

[x]k +
m∑

k=r+1

[
J t
]
ik

[x]k Break apart sum

=
r∑

k=1

[
J t
]
ik

[z]k +
m∑

k=r+1

[
J t
]
ik

[w]k−r Definition of z and w

=
r∑

k=1

[
J t
]
ik

0 +
m−r∑
`=1

[
J t
]
i,r+`

[w]` z = 0, re-index

= 0 +
m−r∑
`=1

[
Lt
]
i,`

[w]` L a submatrix of J

=
[
Ltw

]
i

Theorem EMP [676]
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So by Definition CVE [286], y = Ltw. The existence of w implies that y ∈ R(L), and
therefore L(A) ⊆ R(L). So by Definition SE [2327] we have L(A) = R(L). �

The first two conclusions of this theorem are nearly trivial. But they set up a pattern of
results for C that is reflected in the latter two conclusions about L. In total, they tell us that
we can compute all four subsets just by finding null spaces and row spaces. This theorem
does not tell us exactly how to compute these subsets, but instead simply expresses them as
null spaces and row spaces of matrices in reduced row-echelon form without any zero rows
(C and L). A linearly independent set that spans the null space of a matrix in reduced row-
echelon form can be found easily with Theorem BNS [484]. It is an even easier matter to find
a linearly independent set that spans the row space of a matrix in reduced row-echelon form
with Theorem BRS [843], especially when there are no zero rows present. So an application
of Theorem FS [902] is typically followed by two applications each of Theorem BNS [484]
and Theorem BRS [843].

The situation when r = m deserves comment, since now the matrix L has no rows. What
is C(A) when we try to apply Theorem FS [902] and encounter N (L)? One interpretation
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of this situation is that L is the coefficient matrix of a homogeneous system that has no
equations. How hard is it to find a solution vector to this system? Some thought will convince
you that any proposed vector will qualify as a solution, since it makes all of the equations
true. So every possible vector is in the null space of L and therefore C(A) = N (L) = Cm.
OK, perhaps this sounds like some twisted argument from Alice in Wonderland. Let us try
another argument that might solidly convince you of this logic.

If r = m, when we row-reduce the augmented matrix of LS(A, b) the result will have no
zero rows, and all the leading 1’s will occur in first n columns, so by Theorem RCLS [172] the
system will be consistent. By Theorem CSCS [812], b ∈ C(A). Since b was arbitrary, every
possible vector is in the column space of A, so we again have C(A) = Cm. The situation
when a matrix has r = m is known by the term full rank, and in the case of a square matrix
coincides with nonsingularity (see Exercise FS.M50 [937]).

The properties of the matrix L described by this theorem can be explained informally as
follows. A column vector y ∈ Cm is in the column space of A if the linear system LS(A, y)
is consistent (Theorem CSCS [812]). By Theorem RCLS [172], the reduced row-echelon form
of the augmented matrix [A | y] of a consistent system will have zeros in the bottom m− r
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locations of the last column. By Theorem PEEF [897] this final column is the vector Jy and
so should then have zeros in the final m− r locations. But since L comprises the final m− r
rows of J , this condition is expressed by saying y ∈ N (L).

Additionally, the rows of J are the scalars in linear combinations of the rows of A that
create the rows of B. That is, the rows of J record the net effect of the sequence of row
operations that takes A to its reduced row-echelon form, B. This can be seen in the equation
JA = B (Theorem PEEF [897]). As such, the rows of L are scalars for linear combinations of
the rows of A that yield zero rows. But such linear combinations are precisely the elements
of the left null space. So any element of the row space of L is also an element of the left null
space of A. We will now illustrate Theorem FS [902] with a few examples.

Example FS1
Four subsets, #1
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In Example SEEF [895] we found the five relevant submatrices of the matrix

A =


1 −1 −2 7 1 6
−6 2 −4 −18 −3 −26
4 −1 4 10 2 17
3 −1 2 9 1 12



To apply Theorem FS [902] we only need C and L,

C =

 1 0 2 1 0 3

0 1 4 −6 0 −1

0 0 0 0 1 2

 L =
[

1 2 2 1
]
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Then we use Theorem FS [902] to obtain

N (A) = N (C) =

〈



−2
−4
1
0
0
0

 ,

−1
6
0
1
0
0

 ,

−3
1
0
0
−2
1




〉

Theorem BNS [484]

R(A) = R(C) =

〈



1
0
2
1
0
3

 ,


0
1
4
−6
0
−1

 ,


0
0
0
0
1
2




〉

Theorem BRS [843]
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C(A) = N (L) =

〈

−2
1
0
0

 ,

−2
0
1
0

 ,

−1
0
0
1



〉

Theorem BNS [484]

L(A) = R(L) =

〈


1
2
2
1



〉

Theorem BRS [843]

Boom! �

Example FS2
Four subsets, #2
Now lets return to the matrix A that we used to motivate this section in Example CSANS
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[885],

A =


10 0 3 8 7
−16 −1 −4 −10 −13
−6 1 −3 −6 −6
0 2 −2 −3 −2
3 0 1 2 3
−1 −1 1 1 0


We form the matrix M by adjoining the 6× 6 identity matrix I6,

M =


10 0 3 8 7 1 0 0 0 0 0
−16 −1 −4 −10 −13 0 1 0 0 0 0
−6 1 −3 −6 −6 0 0 1 0 0 0
0 2 −2 −3 −2 0 0 0 1 0 0
3 0 1 2 3 0 0 0 0 1 0
−1 −1 1 1 0 0 0 0 0 0 1
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and row-reduce to obtain N

N =



1 0 0 0 2 0 0 1 −1 2 −1

0 1 0 0 −3 0 0 −2 3 −3 3

0 0 1 0 1 0 0 1 1 3 3

0 0 0 1 −2 0 0 −2 1 −4 0

0 0 0 0 0 1 0 3 −1 3 1

0 0 0 0 0 0 1 −2 1 1 −1


To find the four subsets for A, we only need identify the 4×5 matrix C and the 2×6 matrix
L,

C =


1 0 0 0 2

0 1 0 0 −3

0 0 1 0 1

0 0 0 1 −2

 L =

[
1 0 3 −1 3 1

0 1 −2 1 1 −1

]
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Then we apply Theorem FS [902],

N (A) = N (C) =

〈


−2
3
−1
2
1



〉

Theorem BNS [484]

R(A) = R(C) =

〈


1
0
0
0
2

 ,


0
1
0
0
−3

 ,


0
0
1
0
1

 ,


0
0
0
1
−2



〉

Theorem BRS [843]
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C(A) = N (L) =

〈



−3
2
1
0
0
0

 ,


1
−1
0
1
0
0

 ,

−3
−1
0
0
1
0

 ,

−1
1
0
0
0
1




〉

Theorem BNS [484]

L(A) = R(L) =

〈



1
0
3
−1
3
1

 ,


0
1
−2
1
1
−1




〉

Theorem BRS [843]

�

The next example is just a bit different since the matrix has more rows than columns,
and a trivial null space.
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Example FSAG
Four subsets, Archetype G
Archetype G [2460] and Archetype H [2472] are both systems of m = 5 equations in n = 2
variables. They have identical coefficient matrices, which we will denote here as the matrix
G,

G =


2 3
−1 4
3 10
3 −1
6 9
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Adjoin the 5× 5 identity matrix, I5, to form

M =


2 3 1 0 0 0 0
−1 4 0 1 0 0 0
3 10 0 0 1 0 0
3 −1 0 0 0 1 0
6 9 0 0 0 0 1


This row-reduces to

N =


1 0 0 0 0 3

11
1
33

0 1 0 0 0 − 2
11

1
11

0 0 1 0 0 0 −1
3

0 0 0 1 0 1 −1
3

0 0 0 0 1 1 −1


The first n = 2 columns contain r = 2 leading 1’s, so we obtain C as the 2 × 2 identity
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matrix and extract L from the final m− r = 3 rows in the final m = 5 columns.

C =

[
1 0

0 1

]
L =

 1 0 0 0 −1
3

0 1 0 1 −1
3

0 0 1 1 −1


Then we apply Theorem FS [902],

N (G) = N (C) = 〈∅〉 = {0} Theorem BNS [484]

R(G) = R(C) =

〈{[
1
0

]
,

[
0
1

]}〉
= C2 Theorem BRS [843]

C(G) = N (L) =

〈


0
−1
−1
1
0

 ,


1
3
1
3

1
0
1



〉

Theorem BNS [484]
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=

〈


0
−1
−1
1
0

 ,


1
1
3
0
3



〉

L(G) = R(L) =

〈


1
0
0
0
−1

3

 ,


0
1
0
1
−1

3

 ,


0
0
1
1
−1



〉

Theorem BRS [843]

=

〈


3
0
0
0
−1

 ,


0
3
0
3
−1

 ,


0
0
1
1
−1



〉
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As mentioned earlier, Archetype G [2460] is consistent, while Archetype H [2472] is incon-
sistent. See if you can write the two different vectors of constants from these two archetypes
as linear combinations of the two vectors in C(G). How about the two columns of G, can
you write each individually as a linear combination of the two vectors in C(G)? They must
be in the column space of G also. Are your answers unique? Do you notice anything about
the scalars that appear in the linear combinations you are forming? �

Example COV [530] and Example CSROI [849] each describes the column space of the
coefficient matrix from Archetype I [2485] as the span of a set of r = 3 linearly independent
vectors. It is no accident that these two different sets both have the same size. If we (you?)
were to calculate the column space of this matrix using the null space of the matrix L from
Theorem FS [902] then we would again find a set of 3 linearly independent vectors that span
the range. More on this later.

So we have three different methods to obtain a description of the column space of a
matrix as the span of a linearly independent set. Theorem BCS [822] is sometimes useful
since the vectors it specifies are equal to actual columns of the matrix. Theorem BRS [843]
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and Theorem CSRST [848] combine to create vectors with lots of zeros, and strategically
placed 1’s near the top of the vector. Theorem FS [902] and the matrix L from the extended
echelon form gives us a third method, which tends to create vectors with lots of zeros,
and strategically placed 1’s near the bottom of the vector. If we don’t care about linear
independence we can also appeal to Definition CSM [808] and simply express the column
space as the span of all the columns of the matrix, giving us a fourth description.

With Theorem CSRST [848] and Definition RSM [833], we can compute column spaces
with theorems about row spaces, and we can compute row spaces with theorems about row
spaces, but in each case we must transpose the matrix first. At this point you may be
overwhelmed by all the possibilities for computing column and row spaces. Diagram CSRST
[928] is meant to help. For both the column space and row space, it suggests four techniques.
One is to appeal to the definition, another yields a span of a linearly independent set, and a
third uses Theorem FS [902]. A fourth suggests transposing the matrix and the dashed line
implies that then the companion set of techniques can be applied. This can lead to a bit of
silliness, since if you were to follow the dashed lines twice you would transpose the matrix
twice, and by Theorem TT [628] would accomplish nothing productive.
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R(A)

C(A)

Definition CSM

Theorem BCS
Theorem FS, N (L)

Theorem CSRST, R(At)

Definition RSM, C(At)

Theorem FS, R(C)

Theorem BRS

Definition RSM

Diagram CSRST. Column Space and Row Space Techniques

Although we have many ways to describe a column space, notice that one tempting strategy
will usually fail. It is not possible to simply row-reduce a matrix directly and then use the
columns of the row-reduced matrix as a set whose span equals the column space. In other
words, row operations do not preserve column spaces (however row operations do preserve
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row spaces, Theorem REMRS [839]). See Exercise CRS.M21 [867].

Subsection READ
Reading Questions

1. Find a nontrivial element of the left null space of A.

A =

 2 1 −3 4
−1 −1 2 −1
0 −1 1 2


2. Find the matrices C and L in the extended echelon form of A.

A =

−9 5 −3
2 −1 1
−5 3 −1
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3. Why is Theorem FS [902] a great conclusion to Chapter M [611]?
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Subsection EXC
Exercises

C20 Example FSAG [923] concludes with several questions. Perform the analysis suggested
by these questions.
Contributed by Robert Beezer

C25 Given the matrix A below, use the extended echelon form of A to answer each part
of this problem. In each part, find a linearly independent set of vectors, S, so that the span
of S, 〈S〉, equals the specified set of vectors.

A =


−5 3 −1
−1 1 1
−8 5 −1
3 −2 0
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(a) The row space of A, R(A).
(b) The column space of A, C(A).
(c) The null space of A, N (A).
(d) The left null space of A, L(A).

Contributed by Robert Beezer Solution [939]

C26 For the matrix D below use the extended echelon form to find
(a) a linearly independent set whose span is the column space of D.
(b) a linearly independent set whose span is the left null space of D.

D =


−7 −11 −19 −15
6 10 18 14
3 5 9 7
−1 −2 −4 −3
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Contributed by Robert Beezer Solution [942]

C41 The following archetypes are systems of equations. For each system, write the vector
of constants as a linear combination of the vectors in the span construction for the column
space provided by Theorem FS [902] and Theorem BNS [484] (these vectors are listed for
each of these archetypes).
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]
Archetype E [2431]
Archetype F [2443]
Archetype G [2460]
Archetype H [2472]
Archetype I [2485]
Archetype J [2498]

Version 2.11



Subsection FS.EXC Exercises 939

Contributed by Robert Beezer

C43 The following archetypes are either matrices or systems of equations with coefficient
matrices. For each matrix, compute the extended echelon form N and identify the matrices
C and L. Using Theorem FS [902], Theorem BNS [484] and Theorem BRS [843] express the
null space, the row space, the column space and left null space of each coefficient matrix as
a span of a linearly independent set.
Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]
Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
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Archetype K [2515]
Archetype L [2527]

Contributed by Robert Beezer

C60 For the matrix B below, find sets of vectors whose span equals the column space of
B (C(B)) and which individually meet the following extra requirements.
(a) The set illustrates the definition of the column space.
(b) The set is linearly independent and the members of the set are columns of B.
(c) The set is linearly independent with a “nice pattern of zeros and ones” at the top of
each vector.
(d) The set is linearly independent with a “nice pattern of zeros and ones” at the bottom
of each vector.

B =

 2 3 1 1
1 1 0 1
−1 2 3 −4
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Contributed by Robert Beezer Solution [943]

C61 Let A be the matrix below, and find the indicated sets with the requested properties.

A =

 2 −1 5 −3
−5 3 −12 7
1 1 4 −3


(a) A linearly independent set S so that C(A) = 〈S〉 and S is composed of columns of A.
(b) A linearly independent set S so that C(A) = 〈S〉 and the vectors in S have a nice
pattern of zeros and ones at the top of the vectors.
(c) A linearly independent set S so that C(A) = 〈S〉 and the vectors in S have a nice
pattern of zeros and ones at the bottom of the vectors.
(d) A linearly independent set S so that R(A) = 〈S〉.
Contributed by Robert Beezer Solution [947]

M50 Suppose that A is a nonsingular matrix. Extend the four conclusions of Theorem
FS [902] in this special case and discuss connections with previous results (such as Theorem
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NME4 [831]).
Contributed by Robert Beezer

M51 Suppose that A is a singular matrix. Extend the four conclusions of Theorem FS
[902] in this special case and discuss connections with previous results (such as Theorem
NME4 [831]).
Contributed by Robert Beezer
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Subsection SOL
Solutions

C25 Contributed by Robert Beezer Statement [932]
Add a 4× 4 identity matrix to the right of A to form the matrix M and then row-reduce to
the matrix N ,

M =


−5 3 −1 1 0 0 0
−1 1 1 0 1 0 0
−8 5 −1 0 0 1 0
3 −2 0 0 0 0 1

 RREF−−−→


1 0 2 0 0 −2 −5

0 1 3 0 0 −3 −8

0 0 0 1 0 −1 −1

0 0 0 0 1 1 3

 = N

To apply Theorem FS [902] in each of these four parts, we need the two matrices,

C =

[
1 0 2

0 1 3

]
L =

[
1 0 −1 −1

0 1 1 3

]
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(a)

R(A) = R(C) Theorem FS [902]

=

〈1
0
2

 ,
0

1
3

〉 Theorem BRS [843]

(b)

C(A) = N (L) Theorem FS [902]

=

〈
1
−1
1
0

 ,


1
−3
0
1


〉

Theorem BNS [484]

(c)

N (A) = N (C) Theorem FS [902]
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=

〈−2
−3
1

〉 Theorem BNS [484]

(d)

L(A) = R(L) Theorem FS [902]

=

〈
1
0
−1
−1

 ,


0
1
1
3


〉

Theorem BRS [843]

C26 Contributed by Robert Beezer Statement [933]

Version 2.11



Subsection FS.SOL Solutions 946

For both parts, we need the extended echelon form of the matrix.
−7 −11 −19 −15 1 0 0 0
6 10 18 14 0 1 0 0
3 5 9 7 0 0 1 0
−1 −2 −4 −3 0 0 0 1

 RREF−−−→


1 0 −2 −1 0 0 2 5

0 1 3 2 0 0 −1 −3

0 0 0 0 1 0 3 2

0 0 0 0 0 1 −2 0


From this matrix we extract the last two rows, in the last four columns to form the matrix
L,

L =

[
1 0 3 2

0 1 −2 0

]
(a) By Theorem FS [902] and Theorem BNS [484] we have

C(D) = N (L) =

〈

−3
2
1
0

 ,

−2
0
0
1



〉
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(b) By Theorem FS [902] and Theorem BRS [843] we have

L(D) = R(L) =

〈


1
0
3
2

 ,


0
1
−2
0



〉

C60 Contributed by Robert Beezer Statement [936]
(a) The definition of the column space is the span of the set of columns (Definition CSM
[808]). So the desired set is just the four columns of B,

S =


 2

1
−1

 ,
3

1
2

 ,
1

0
3

 ,
 1

1
−4


(b) Theorem BCS [822] suggests row-reducing the matrix and using the columns of B that
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correspond to the pivot columns.

B
RREF−−−→

 1 0 −1 2

0 1 1 −1
0 0 0 0


So the pivot columns are numbered by elements of D = {1, 2}, so the requested set is

S =


 2

1
−1

 ,
3

1
2


(c) We can find this set by row-reducing the transpose of B, deleting the zero rows, and
using the nonzero rows as column vectors in the set. This is an application of Theorem
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CSRST [848] followed by Theorem BRS [843].

Bt RREF−−−→


1 0 3

0 1 −7
0 0 0
0 0 0


So the requested set is

S =


1

0
3

 ,
 0

1
−7


(d) With the column space expressed as a null space, the vectors obtained via Theorem
BNS [484] will be of the desired shape. So we first proceed with Theorem FS [902] and create
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the extended echelon form,

[B | I3] =

 2 3 1 1 1 0 0
1 1 0 1 0 1 0
−1 2 3 −4 0 0 1

 RREF−−−→
 1 0 −1 2 0 2

3
−1
3

0 1 1 −1 0 1
3

1
3

0 0 0 0 1 −7
3

−1
3


So, employing Theorem FS [902], we have C(B) = N (L), where

L =
[

1 −7
3

−1
3

]
We can find the desired set of vectors from Theorem BNS [484] as

S =


7

3

1
0

 ,
1

3

0
1


C61 Contributed by Robert Beezer Statement [937]
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(a) First find a matrix B that is row-equivalent to A and in reduced row-echelon form

B =

 1 0 3 −2

0 1 1 −1
0 0 0 0


By Theorem BCS [822] we can choose the columns of A that correspond to dependent
variables (D = {1, 2}) as the elements of S and obtain the desired properties. So

S =


 2
−5
1

 ,
−1

3
1


(b) We can write the column space of A as the row space of the transpose (Theorem CSRST
[848]). So we row-reduce the transpose of A to obtain the row-equivalent matrix C in reduced
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row-echelon form

C =


1 0 8
0 1 3
0 0 0
0 0 0


The nonzero rows (written as columns) will be a linearly independent set that spans the row
space of At, by Theorem BRS [843], and the zeros and ones will be at the top of the vectors,

S =


1

0
8

 ,
0

1
3


(c) In preparation for Theorem FS [902], augment A with the 3× 3 identity matrix I3 and
row-reduce to obtain the extended echelon form,1 0 3 −2 0 −1

8
3
8

0 1 1 −1 0 1
8

5
8

0 0 0 0 1 3
8
−1

8
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Then since the first four columns of row 3 are all zeros, we extract

L =
[

1 3
8
−1

8

]
Theorem FS [902] says that C(A) = N (L). We can then use Theorem BNS [484] to construct
the desired set S, based on the free variables with indices in F = {2, 3} for the homogeneous
system LS(L, 0), so

S =


−3

8

1
0

 ,
1

8

0
1


Notice that the zeros and ones are at the bottom of the vectors.
(d) This is a straightforward application of Theorem BRS [843]. Use the row-reduced
matrix B from part (a), grab the nonzero rows, and write them as column vectors,

S =




1
0
3
−2

 ,


0
1
1
−1
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Annotated Acronyms M
Matrices

Theorem VSPM [618]

These are the fundamental rules for working with the addition, and scalar multiplication, of
matrices. We saw something very similar in the previous chapter (Theorem VSPCV [295]).
Together, these two definitions will provide our definition for the key definition, Definition
VS [956].

Theorem SLEMM [663]

Theorem SLSLC [327] connected linear combinations with systems of equations. Theorem
SLEMM [663] connects the matrix-vector product (Definition MVP [661]) and column vector
equality (Definition CVE [286]) with systems of equations. We’ll see this one regularly.
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Theorem EMP [676]

This theorem is a workhorse in Section MM [660] and will continue to make regular appear-
ances. If you want to get better at formulating proofs, the application of this theorem can
be a key step in gaining that broader understanding. While it might be hard to imagine
Theorem EMP [676] as a definition of matrix multiplication, we’ll see in Exercise MR.T80
[1927] that in theory it is actually a better definition of matrix multiplication long-term.

Theorem CINM [742]

The inverse of a matrix is key. Here’s how you can get one if you know how to row-reduce.

Theorem NI [781]

“Nonsingularity” or “invertibility”? Pick your favorite, or show your versatility by using one
or the other in the right context. They mean the same thing.

Theorem CSCS [812]
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Given a coefficient matrix, which vectors of constants create consistent systems. This theo-
rem tells us that the answer is exactly those column vectors in the column space. Conversely,
we also use this teorem to test for membership in the column space by checking the consis-
tency of the appropriate system of equations.

Theorem BCS [822]

Another theorem that provides a linearly independent set of vectors whose span equals some
set of interest (a column space this time).

Theorem BRS [843]

Yet another theorem that provides a linearly independent set of vectors whose span equals
some set of interest (a row space).

Theorem CSRST [848]

Column spaces, row spaces, transposes, rows, columns. Many of the connections between
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these objects are based on the simple observation captured in this theorem. This is not a
deep result. We state it as a theorem for convenience, so we can refer to it as needed.

Theorem FS [902]

This theorem is inherently interesting, if not computationally satisfying. Null space, row
space, column space, left null space — here they all are, simply by row reducing the extended
matrix and applying Theorem BNS [484] and Theorem BCS [822] twice (each). Nice.

Version 2.11



Chapter VS
Vector Spaces

We now have a computational toolkit in place and so we can begin our study of linear algebra
in a more theoretical style.

Linear algebra is the study of two fundamental objects, vector spaces and linear trans-
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formations (see Chapter LT [1548]). This chapter will focus on the former. The power of
mathematics is often derived from generalizing many different situations into one abstract
formulation, and that is exactly what we will be doing throughout this chapter.

Section VS

Vector Spaces

In this section we present a formal definition of a vector space, which will lead to an extra
increment of abstraction. Once defined, we study its most basic properties.
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Subsection VS
Vector Spaces

Here is one of the two most important definitions in the entire course.

Definition VS
Vector Space
Suppose that V is a set upon which we have defined two operations: (1) vector addition,
which combines two elements of V and is denoted by “+”, and (2) scalar multiplication,
which combines a complex number with an element of V and is denoted by juxtaposition.
Then V , along with the two operations, is a vector space if the following ten properties
hold.

• AC Additive Closure
If u, v ∈ V , then u + v ∈ V .
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• SC Scalar Closure
If α ∈ C and u ∈ V , then αu ∈ V .

• C Commutativity
If u, v ∈ V , then u + v = v + u.

• AA Additive Associativity
If u, v, w ∈ V , then u + (v + w) = (u + v) + w.

• Z Zero Vector
There is a vector, 0, called the zero vector, such that u + 0 = u for all u ∈ V .

• AI Additive Inverses
If u ∈ V , then there exists a vector −u ∈ V so that u + (−u) = 0.

• SMA Scalar Multiplication Associativity
If α, β ∈ C and u ∈ V , then α(βu) = (αβ)u.
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• DVA Distributivity across Vector Addition
If α ∈ C and u, v ∈ V , then α(u + v) = αu + αv.

• DSA Distributivity across Scalar Addition
If α, β ∈ C and u ∈ V , then (α + β)u = αu + βu.

• O One
If u ∈ V , then 1u = u.

The objects in V are called vectors, no matter what else they might really be, simply by
virtue of being elements of a vector space. 4

Now, there are several important observations to make. Many of these will be easier to
understand on a second or third reading, and especially after carefully studying the examples
in Subsection VS.EVS [960].

An axiom is often a “self-evident” truth. Something so fundamental that we all agree it
is true and accept it without proof. Typically, it would be the logical underpinning that we
would begin to build theorems upon. Some might refer to the ten properties of Definition VS
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[956] as axioms, implying that a vector space is a very natural object and the ten properties
are the essence of a vector space. We will instead emphasize that we will begin with a
definition of a vector space. After studying the remainder of this chapter, you might return
here and remind yourself how all our forthcoming theorems and definitions rest on this
foundation.

As we will see shortly, the objects in V can be anything, even though we will call them
vectors. We have been working with vectors frequently, but we should stress here that these
have so far just been column vectors — scalars arranged in a columnar list of fixed length.
In a similar vein, you have used the symbol “+” for many years to represent the addition of
numbers (scalars). We have extended its use to the addition of column vectors and to the
addition of matrices, and now we are going to recycle it even further and let it denote vector
addition in any possible vector space. So when describing a new vector space, we will have
to define exactly what “+” is. Similar comments apply to scalar multiplication. Conversely,
we can define our operations any way we like, so long as the ten properties are fulfilled (see
Example CVS [970]).

A vector space is composed of three objects, a set and two operations. However, we
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usually use the same symbol for both the set and the vector space itself. Do not let this
convenience fool you into thinking the operations are secondary!

This discussion has either convinced you that we are really embarking on a new level
of abstraction, or they have seemed cryptic, mysterious or nonsensical. You might want to
return to this section in a few days and give it another read then. In any case, let’s look at
some concrete examples now.

Subsection EVS
Examples of Vector Spaces

Our aim in this subsection is to give you a storehouse of examples to work with, to become
comfortable with the ten vector space properties and to convince you that the multitude of
examples justifies (at least initially) making such a broad definition as Definition VS [956].
Some of our claims will be justified by reference to previous theorems, we will prove some
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facts from scratch, and we will do one non-trivial example completely. In other places, our
usual thoroughness will be neglected, so grab paper and pencil and play along.

Example VSCV
The vector space Cm

Set: Cm, all column vectors of size m, Definition VSCV [285].
Equality: Entry-wise, Definition CVE [286].
Vector Addition: The “usual” addition, given in Definition CVA [289].
Scalar Multiplication: The “usual” scalar multiplication, given in Definition CVSM [291].

Does this set with these operations fulfill the ten properties? Yes. And by design all we
need to do is quote Theorem VSPCV [295]. That was easy. �

Example VSM
The vector space of matrices, Mmn

Set: Mmn, the set of all matrices of size m× n and entries from C, Example VSM [961].
Equality: Entry-wise, Definition ME [613].
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Vector Addition: The “usual” addition, given in Definition MA [614].
Scalar Multiplication: The “usual” scalar multiplication, given in Definition MSM [615].

Does this set with these operations fulfill the ten properties? Yes. And all we need to do
is quote Theorem VSPM [618]. Another easy one (by design). �

So, the set of all matrices of a fixed size forms a vector space. That entitles us to call a
matrix a vector, since a matrix is an element of a vector space. For example, if A, B ∈M3,4

then we call A and B “vectors,” and we even use our previous notation for column vectors
to refer to A and B. So we could legitimately write expressions like

u + v = A+B = B + A = v + u

This could lead to some confusion, but it is not too great a danger. But it is worth comment.
The previous two examples may be less than satisfying. We made all the relevant defi-

nitions long ago. And the required verifications were all handled by quoting old theorems.
However, it is important to consider these two examples first. We have been studying vectors
and matrices carefully (Chapter V [283], Chapter M [611]), and both objects, along with
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their operations, have certain properties in common, as you may have noticed in comparing
Theorem VSPCV [295] with Theorem VSPM [618]. Indeed, it is these two theorems that
motivate us to formulate the abstract definition of a vector space, Definition VS [956]. Now,
should we prove some general theorems about vector spaces (as we will shortly in Subsection
VS.VSP [975]), we can instantly apply the conclusions to both Cm and Mmn. Notice too how
we have taken six definitions and two theorems and reduced them down to two examples .
With greater generalization and abstraction our old ideas get downgraded in stature.

Let us look at some more examples, now considering some new vector spaces.

Example VSP
The vector space of polynomials, Pn
Set: Pn, the set of all polynomials of degree n or less in the variable x with coefficients from
C.
Equality:

a0 +a1x+a2x
2 + · · ·+anx

n = b0 + b1x+ b2x
2 + · · ·+ bnx

n if and only if ai = bi for 0 ≤ i ≤ n
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Vector Addition:

(a0 + a1x+ a2x
2 + · · ·+ anx

n) + (b0 + b1x+ b2x
2 + · · ·+ bnx

n) =

(a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + · · ·+ (an + bn)xn

Scalar Multiplication:

α(a0 + a1x+ a2x
2 + · · ·+ anx

n) = (αa0) + (αa1)x+ (αa2)x
2 + · · ·+ (αan)xn

This set, with these operations, will fulfill the ten properties, though we will not work
all the details here. However, we will make a few comments and prove one of the properties.
First, the zero vector (Property Z [957]) is what you might expect, and you can check that
it has the required property.

0 = 0 + 0x+ 0x2 + · · ·+ 0xn

The additive inverse (Property AI [957]) is also no surprise, though consider how we have
chosen to write it.

− (a0 + a1x+ a2x
2 + · · ·+ anx

n
)

= (−a0) + (−a1)x+ (−a2)x
2 + · · ·+ (−an)xn
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Now let’s prove the associativity of vector addition (Property AA [957]). This is a bit tedious,
though necessary. Throughout, the plus sign (“+”) does triple-duty. You might ask yourself
what each plus sign represents as you work through this proof.

u+(v + w)

= (a0 + a1x+ · · ·+ anx
n) + ((b0 + b1x+ · · ·+ bnx

n) + (c0 + c1x+ · · ·+ cnx
n))

= (a0 + a1x+ · · ·+ anx
n) + ((b0 + c0) + (b1 + c1)x+ · · ·+ (bn + cn)xn)

= (a0 + (b0 + c0)) + (a1 + (b1 + c1))x+ · · ·+ (an + (bn + cn))xn

= ((a0 + b0) + c0) + ((a1 + b1) + c1)x+ · · ·+ ((an + bn) + cn)xn

= ((a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn) + (c0 + c1x+ · · ·+ cnx
n)

= ((a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)) + (c0 + c1x+ · · ·+ cnx
n)

= (u + v) + w

Notice how it is the application of the associativity of the (old) addition of complex numbers
in the middle of this chain of equalities that makes the whole proof happen. The remainder
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is successive applications of our (new) definition of vector (polynomial) addition. Proving
the remainder of the ten properties is similar in style and tedium. You might try proving the
commutativity of vector addition (Property C [957]), or one of the distributivity properties
(Property DVA [958], Property DSA [958]). �

Example VSIS
The vector space of infinite sequences
Set: C∞ = {(c0, c1, c2, c3, . . .) | ci ∈ C, i ∈ N}.
Equality:

(c0, c1, c2, . . .) = (d0, d1, d2, . . .) if and only if ci = di for all i ≥ 0

Vector Addition:

(c0, c1, c2, . . .) + (d0, d1, d2, . . .) = (c0 + d0, c1 + d1, c2 + d2, . . .)

Scalar Multiplication:

α(c0, c1, c2, c3, . . .) = (αc0, αc1, αc2, αc3, . . .)
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This should remind you of the vector space Cm, though now our lists of scalars are written
horizontally with commas as delimiters and they are allowed to be infinite in length. What
does the zero vector look like (Property Z [957])? Additive inverses (Property AI [957])?
Can you prove the associativity of vector addition (Property AA [957])? �

Example VSF
The vector space of functions
Set: F = {f | f : C → C}.
Equality: f = g if and only if f(x) = g(x) for all x ∈ C.
Vector Addition: f + g is the function with outputs defined by (f + g)(x) = f(x) + g(x).
Scalar Multiplication: αf is the function with outputs defined by (αf)(x) = αf(x).

So this is the set of all functions of one variable that take a complex number to a complex
number. You might have studied functions of one variable that take a real number to a real
number, and that might be a more natural set to study. But since we are allowing our
scalars to be complex numbers, we need to expand the domain and range of our functions
also. Study carefully how the definitions of the operation are made, and think about the
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different uses of “+” and juxtaposition. As an example of what is required when verifying
that this is a vector space, consider that the zero vector (Property Z [957]) is the function z
whose definition is z(x) = 0 for every input x.

While vector spaces of functions are very important in mathematics and physics, we will
not devote them much more attention.

�

Here’s a unique example.

Example VSS
The singleton vector space
Set: Z = {z}.
Equality: Huh?
Vector Addition: z + z = z.
Scalar Multiplication: αz = z.

This should look pretty wild. First, just what is z? Column vector, matrix, polynomial,
sequence, function? Mineral, plant, or animal? We aren’t saying! z just is. And we have
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definitions of vector addition and scalar multiplication that are sufficient for an occurrence
of either that may come along.

Our only concern is if this set, along with the definitions of two operations, fulfills the
ten properties of Definition VS [956]. Let’s check associativity of vector addition (Property
AA [957]). For all u, v, w ∈ Z,

u + (v + w) = z + (z + z)

= z + z

= (z + z) + z

= (u + v) + w

What is the zero vector in this vector space (Property Z [957])? With only one element in
the set, we do not have much choice. Is z = 0? It appears that z behaves like the zero vector
should, so it gets the title. Maybe now the definition of this vector space does not seem so
bizarre. It is a set whose only element is the element that behaves like the zero vector, so
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that lone element is the zero vector. �

Perhaps some of the above definitions and verifications seem obvious or like splitting
hairs, but the next example should convince you that they are necessary. We will study this
one carefully. Ready? Check your preconceptions at the door.

Example CVS
The crazy vector space
Set: C = {(x1, x2) | x1, x2 ∈ C}.
Vector Addition: (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1).
Scalar Multiplication: α(x1, x2) = (αx1 + α− 1, αx2 + α− 1).

Now, the first thing I hear you say is “You can’t do that!” And my response is, “Oh yes,
I can!” I am free to define my set and my operations any way I please. They may not look
natural, or even useful, but we will now verify that they provide us with another example
of a vector space. And that is enough. If you are adventurous, you might try first checking
some of the properties yourself. What is the zero vector? Additive inverses? Can you prove
associativity? Ready, here we go.
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Property AC [956], Property SC [957]: The result of each operation is a pair of complex
numbers, so these two closure properties are fulfilled.

Property C [957]:

u + v = (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1)

= (y1 + x1 + 1, y2 + x2 + 1) = (y1, y2) + (x1, x2)

= v + u

Property AA [957]:

u + (v + w) = (x1, x2) + ((y1, y2) + (z1, z2))

= (x1, x2) + (y1 + z1 + 1, y2 + z2 + 1)

= (x1 + (y1 + z1 + 1) + 1, x2 + (y2 + z2 + 1) + 1)

= (x1 + y1 + z1 + 2, x2 + y2 + z2 + 2)

= ((x1 + y1 + 1) + z1 + 1, (x2 + y2 + 1) + z2 + 1)

= (x1 + y1 + 1, x2 + y2 + 1) + (z1, z2)
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= ((x1, x2) + (y1, y2)) + (z1, z2)

= (u + v) + w

Property Z [957]: The zero vector is . . . 0 = (−1, −1). Now I hear you say, “No, no, that
can’t be, it must be (0, 0)!” Indulge me for a moment and let us check my proposal.

u + 0 = (x1, x2) + (−1, −1) = (x1 + (−1) + 1, x2 + (−1) + 1) = (x1, x2) = u

Feeling better? Or worse?
Property AI [957]: For each vector, u, we must locate an additive inverse, −u. Here

it is, −(x1, x2) = (−x1 − 2, −x2 − 2). As odd as it may look, I hope you are withholding
judgment. Check:

u+(−u) = (x1, x2)+(−x1−2, −x2−2) = (x1+(−x1−2)+1, −x2+(x2−2)+1) = (−1, −1) = 0

Property SMA [957]:

α(βu) = α(β(x1, x2))
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= α(βx1 + β − 1, βx2 + β − 1)

= (α(βx1 + β − 1) + α− 1, α(βx2 + β − 1) + α− 1)

= ((αβx1 + αβ − α) + α− 1, (αβx2 + αβ − α) + α− 1)

= (αβx1 + αβ − 1, αβx2 + αβ − 1)

= (αβ)(x1, x2)

= (αβ)u

Property DVA [958]: If you have hung on so far, here’s where it gets even wilder. In the
next two properties we mix and mash the two operations.

α(u + v) = α ((x1, x2) + (y1, y2))

= α(x1 + y1 + 1, x2 + y2 + 1)

= (α(x1 + y1 + 1) + α− 1, α(x2 + y2 + 1) + α− 1)

= (αx1 + αy1 + α + α− 1, αx2 + αy2 + α + α− 1)

= (αx1 + α− 1 + αy1 + α− 1 + 1, αx2 + α− 1 + αy2 + α− 1 + 1)
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= ((αx1 + α− 1) + (αy1 + α− 1) + 1, (αx2 + α− 1) + (αy2 + α− 1) + 1)

= (αx1 + α− 1, αx2 + α− 1) + (αy1 + α− 1, αy2 + α− 1)

= α(x1, x2) + α(y1, y2)

= αu + αv

Property DSA [958]:

(α + β)u = (α + β)(x1, x2)

= ((α + β)x1 + (α + β)− 1, (α + β)x2 + (α + β)− 1)

= (αx1 + βx1 + α + β − 1, αx2 + βx2 + α + β − 1)

= (αx1 + α− 1 + βx1 + β − 1 + 1, αx2 + α− 1 + βx2 + β − 1 + 1)

= ((αx1 + α− 1) + (βx1 + β − 1) + 1, (αx2 + α− 1) + (βx2 + β − 1) + 1)

= (αx1 + α− 1, αx2 + α− 1) + (βx1 + β − 1, βx2 + β − 1)

= α(x1, x2) + β(x1, x2)

= αu + βu
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Property O [958]: After all that, this one is easy, but no less pleasing.

1u = 1(x1, x2) = (x1 + 1− 1, x2 + 1− 1) = (x1, x2) = u

That’s it, C is a vector space, as crazy as that may seem.
Notice that in the case of the zero vector and additive inverses, we only had to propose

possibilities and then verify that they were the correct choices. You might try to discover
how you would arrive at these choices, though you should understand why the process of
discovering them is not a necessary component of the proof itself. �

Subsection VSP
Vector Space Properties

Subsection VS.EVS [960] has provided us with an abundance of examples of vector spaces,
most of them containing useful and interesting mathematical objects along with natural
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operations. In this subsection we will prove some general properties of vector spaces. Some
of these results will again seem obvious, but it is important to understand why it is necessary
to state and prove them. A typical hypothesis will be “Let V be a vector space.” From this
we may assume the ten properties of Definition VS [956], and nothing more. Its like starting
over, as we learn about what can happen in this new algebra we are learning. But the
power of this careful approach is that we can apply these theorems to any vector space we
encounter — those in the previous examples, or new ones we have not yet contemplated.
Or perhaps new ones that nobody has ever contemplated. We will illustrate some of these
results with examples from the crazy vector space (Example CVS [970]), but mostly we are
stating theorems and doing proofs. These proofs do not get too involved, but are not trivial
either, so these are good theorems to try proving yourself before you study the proof given
here. (See Technique P [2368].)

First we show that there is just one zero vector. Notice that the properties only require
there to be at least one, and say nothing about there possibly being more. That is because
we can use the ten properties of a vector space (Definition VS [956]) to learn that there
can never be more than one. To require that this extra condition be stated as an eleventh
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property would make the definition of a vector space more complicated than it needs to be.

Theorem ZVU
Zero Vector is Unique
Suppose that V is a vector space. The zero vector, 0, is unique. �

Proof To prove uniqueness, a standard technique is to suppose the existence of two objects
(Technique U [2357]). So let 01 and 02 be two zero vectors in V . Then

01 = 01 + 02 Property Z [957] for 02

= 02 + 01 Property C [957]

= 02 Property Z [957] for 01

This proves the uniqueness since the two zero vectors are really the same. �

Theorem AIU
Additive Inverses are Unique
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Suppose that V is a vector space. For each u ∈ V , the additive inverse, −u, is unique. �

Proof To prove uniqueness, a standard technique is to suppose the existence of two objects
(Technique U [2357]). So let −u1 and −u2 be two additive inverses for u. Then

−u1 = −u1 + 0 Property Z [957]

= −u1 + (u +−u2) Property AI [957]

= (−u1 + u) +−u2 Property AA [957]

= 0 +−u2 Property AI [957]

= −u2 Property Z [957]

So the two additive inverses are really the same. �

As obvious as the next three theorems appear, nowhere have we guaranteed that the zero
scalar, scalar multiplication and the zero vector all interact this way. Until we have proved
it, anyway.
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Theorem ZSSM
Zero Scalar in Scalar Multiplication
Suppose that V is a vector space and u ∈ V . Then 0u = 0. �

Proof Notice that 0 is a scalar, u is a vector, so Property SC [957] says 0u is again a
vector. As such, 0u has an additive inverse, −(0u) by Property AI [957].

0u = 0 + 0u Property Z [957]

= (−(0u) + 0u) + 0u Property AI [957]

= −(0u) + (0u + 0u) Property AA [957]

= −(0u) + (0 + 0)u Property DSA [958]

= −(0u) + 0u Property ZCN [2317]

= 0 Property AI [957]

�

Here’s another theorem that looks like it should be obvious, but is still in need of a proof.
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Theorem ZVSM
Zero Vector in Scalar Multiplication
Suppose that V is a vector space and α ∈ C. Then α0 = 0. �

Proof Notice that α is a scalar, 0 is a vector, so Property SC [957] means α0 is again a
vector. As such, α0 has an additive inverse, −(α0) by Property AI [957].

α0 = 0 + α0 Property Z [957]

= (−(α0) + α0) + α0 Property AI [957]

= −(α0) + (α0 + α0) Property AA [957]

= −(α0) + α (0 + 0) Property DVA [958]

= −(α0) + α0 Property Z [957]

= 0 Property AI [957]

�

Here’s another one that sure looks obvious. But understand that we have chosen to use

Version 2.11



Subsection VS.VSP Vector Space Properties 985

certain notation because it makes the theorem’s conclusion look so nice. The theorem is not
true because the notation looks so good, it still needs a proof. If we had really wanted to
make this point, we might have defined the additive inverse of u as u]. Then we would have
written the defining property, Property AI [957], as u+u] = 0. This theorem would become
u] = (−1)u. Not really quite as pretty, is it?

Theorem AISM
Additive Inverses from Scalar Multiplication
Suppose that V is a vector space and u ∈ V . Then −u = (−1)u. �

Proof

−u = −u + 0 Property Z [957]

= −u + 0u Theorem ZSSM [979]

= −u + (1 + (−1)) u

= −u + (1u + (−1)u) Property DSA [958]

= −u + (u + (−1)u) Property O [958]
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= (−u + u) + (−1)u Property AA [957]

= 0 + (−1)u Property AI [957]

= (−1)u Property Z [957]

�

Because of this theorem, we can now write linear combinations like 6u1 + (−4)u2

as 6u1 − 4u2, even though we have not formally defined an operation called vector sub-
traction. Our next theorem is a bit different from several of the others in the list. Rather
than making a declaration (“the zero vector is unique”) it is an implication (“if. . . , then. . . ”)
and so can be used in proofs to convert a vector equality into two possibilities, one a scalar
equality and the other a vector equality. It should remind you of the situation for complex
numbers. If α, β ∈ C and αβ = 0, then α = 0 or β = 0. This critical property is the driving
force behind using a factorization to solve a polynomial equation.

Theorem SMEZV
Scalar Multiplication Equals the Zero Vector
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Suppose that V is a vector space and α ∈ C. If αu = 0, then either α = 0 or u = 0. �

Proof We prove this theorem by breaking up the analysis into two cases. The first seems
too trivial, and it is, but the logic of the argument is still legitimate.

Case 1. Suppose α = 0. In this case our conclusion is true (the first part of the either/or
is true) and we are done. That was easy.

Case 2. Suppose α 6= 0.

u = 1u Property O [958]

=

(
1

α
α

)
u α 6= 0

=
1

α
(αu) Property SMA [957]

=
1

α
(0) Hypothesis

= 0 Theorem ZVSM [980]
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So in this case, the conclusion is true (the second part of the either/or is true) and we are
done since the conclusion was true in each of the two cases. �

Example PCVS
Properties for the Crazy Vector Space
Several of the above theorems have interesting demonstrations when applied to the crazy
vector space, C (Example CVS [970]). We are not proving anything new here, or learning
anything we did not know already about C. It is just plain fun to see how these general
theorems apply in a specific instance. For most of our examples, the applications are obvious
or trivial, but not with C.

Suppose u ∈ C.
Then, as given by Theorem ZSSM [979],

0u = 0(x1, x2) = (0x1 + 0− 1, 0x2 + 0− 1) = (−1,−1) = 0

And as given by Theorem ZVSM [980],

α0 = α(−1, −1) = (α(−1) + α− 1, α(−1) + α− 1)
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= (−α + α− 1, −α + α− 1) = (−1, −1) = 0

Finally, as given by Theorem AISM [981],

(−1)u = (−1)(x1, x2) = ((−1)x1 + (−1)− 1, (−1)x2 + (−1)− 1)

= (−x1 − 2, −x2 − 2) = −u

�

Subsection RD
Recycling Definitions

When we say that V is a vector space, we then know we have a set of objects (the “vectors”),
but we also know we have been provided with two operations (“vector addition” and “scalar
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multiplication”) and these operations behave with these objects according to the ten prop-
erties of Definition VS [956]. One combines two vectors and produces a vector, the other
takes a scalar and a vector, producing a vector as the result. So if u1, u2, u3 ∈ V then an
expression like

5u1 + 7u2 − 13u3

would be unambiguous in any of the vector spaces we have discussed in this section. And
the resulting object would be another vector in the vector space. If you were tempted to
call the above expression a linear combination, you would be right. Four of the definitions
that were central to our discussions in Chapter V [283] were stated in the context of vectors
being column vectors, but were purposely kept broad enough that they could be applied in
the context of any vector space. They only rely on the presence of scalars, vectors, vector
addition and scalar multiplication to make sense. We will restate them shortly, unchanged,
except that their titles and acronyms no longer refer to column vectors, and the hypothesis
of being in a vector space has been added. Take the time now to look forward and review
each one, and begin to form some connections to what we have done earlier and what we
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will be doing in subsequent sections and chapters. Specifically, compare the following pairs
of definitions:

Definition LCCV [316] and Definition LC [1020]
Definition SSCV [390] and Definition SS [1023]
Definition RLDCV [458] and Definition RLD [1061]
Definition LICV [458] and Definition LI [1061]

Subsection READ
Reading Questions

1. Comment on how the vector space Cm went from a theorem (Theorem VSPCV [295])
to an example (Example VSCV [961]).
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2. In the crazy vector space, C, (Example CVS [970]) compute the linear combination

2(3, 4) + (−6)(1, 2).

3. Suppose that α is a scalar and 0 is the zero vector. Why should we prove anything as
obvious as α0 = 0 such as we did in Theorem ZVSM [980]?
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Subsection EXC
Exercises

M10 Define a possibly new vector space by beginning with the set and vector addition
from C2 (Example VSCV [961]) but change the definition of scalar multiplication to

αx = 0 =

[
0
0

]
α ∈ C, x ∈ C2

Prove that the first nine properties required for a vector space hold, but Property O [958]
does not hold.

This example shows us that we cannot expect to be able to derive Property O [958] as
a consequence of assuming the first nine properties. In other words, we cannot slim down
our list of properties by jettisoning the last one, and still have the same collection of objects
qualify as vector spaces.

Version 2.11



Subsection VS.EXC Exercises 994

Contributed by Robert Beezer

M11 Let V be the set C2 with the usual vector addition, but with scalar multiplication
defined by

α

[
x
y

]
=

[
αy
αx

]
Determine whether or not V is a vector space with these operations.
Contributed by Chris Black Solution [995]

M12 Let V be the set C2 with the usual scalar multiplication, but with vector addition
defined by [

x
y

]
⊕
[
z
w

]
=

[
y + w
x+ z

]
Determine whether or not V is a vector space with these operations.
Contributed by Chris Black Solution [995]

M13 Let V be the set M2,2 with the usual scalar multiplication, but with addition defined
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by A ⊕ B = O2,2 for all 2 × 2 matrices A and B. Determine whether or not V is a vector
space with these operations.
Contributed by Chris Black Solution [996]

M14 Let V be the set M2,2 with the usual addition, but with scalar multiplication defined
by αA = O2,2 for all 2× 2 matrices A and scalars α. Determine whether or not V is a vector
space with these operations.
Contributed by Chris Black Solution [997]

M15 Consider the following sets of 3×3 matrices, where the symbol ∗ indicates the position
of an arbitrary complex number. Determine whether or not these sets form vector spaces
with the usual operations of addition and scalar multiplication for matrices.

1. All matrices of the form

∗ ∗ 1
∗ 1 ∗
1 ∗ ∗
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2. All matrices of the form

∗ 0 ∗
0 ∗ 0
∗ 0 ∗



3. All matrices of the form

∗ 0 0
0 ∗ 0
0 0 ∗

 (These are the diagonal matrices.)

4. All matrices of the form

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 (These are the upper triangular matrices.)

Contributed by Chris Black Solution [997]

M20 Explain why we need to define the vector space Pn as the set of all polynomials with
degree up to and including n instead of the more obvious set of all polynomials of degree
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exactly n.
Contributed by Chris Black Solution [998]

M21 Does the set Z2 =

{[
m
n

]
| m,n ∈ Z

}
with the operations of standard addition and

multiplication of vectors form a vector space?
Contributed by Chris Black Solution [998]

T10 Prove each of the ten properties of Definition VS [956] for each of the following
examples of a vector space:
Example VSP [963]
Example VSIS [966]
Example VSF [967]
Example VSS [968]
Contributed by Robert Beezer

The next three problems suggest that under the right situations we can “cancel.” In

Version 2.11



Subsection VS.EXC Exercises 998

practice, these techniques should be avoided in other proofs. Prove each of the following
statements.

T21 Suppose that V is a vector space, and u, v, w ∈ V . If w + u = w + v, then u = v.
Contributed by Robert Beezer Solution [999]

T22 Suppose V is a vector space, u, v ∈ V and α is a nonzero scalar from C. If αu = αv,
then u = v.
Contributed by Robert Beezer Solution [999]

T23 Suppose V is a vector space, u 6= 0 is a vector in V and α, β ∈ C. If αu = βu, then
α = β.
Contributed by Robert Beezer Solution [1000]

Version 2.11



Subsection VS.SOL Solutions 999

Subsection SOL
Solutions

M11 Contributed by Chris Black Statement [990]
The set C2 with the proposed operations is not a vector space since Property O [958] is not

valid. A counterexample is 1

[
3
2

]
=

[
2
3

]
6=
[
3
2

]
, so in general, 1u 6= u.

M12 Contributed by Chris Black Statement [990]
Let’s consider the existence of a zero vector, as required by Property Z [957] of a vector space.

The “regular” zero vector fails :

[
x
y

]
⊕
[
0
0

]
=

[
y
x

]
6=
[
x
y

]
(remember that the property must

hold for every vector, not just for some). Is there another vector that fills the role of the
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zero vector? Suppose that 0 =

[
z1

z2

]
. Then for any vector

[
x
y

]
, we have

[
x
y

]
⊕
[
z1

z2

]
=

[
y + z2

x+ z1

]
=

[
x
y

]
so that x = y + z2 and y = x + z1. This means that z1 = y − x and z2 = x − y. However,
since x and y can be any complex numbers, there are no fixed complex numbers z1 and z2

that satisfy these equations. Thus, there is no zero vector, Property Z [957] is not valid, and
the set C2 with the proposed operations is not a vector space.

M13 Contributed by Chris Black Statement [990]
Since scalar multiplication remains unchanged, we only need to consider the axioms that
involve vector addition. Since every sum is the zero matrix, the first 4 properties hold easily.
However, there is no zero vector in this set. Suppose that there was. Then there is a matrix
Z so that A + Z = A for any 2 × 2 matrix A. However, A + Z = O2,2, which is in general
not equal to A, so Property Z [957] fails and this set is not a vector space.
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M14 Contributed by Chris Black Statement [991]
Since addition is unchanged, we only need to check the axioms involving scalar multiplication.
The proposed scalar multiplication clearly fails Property O [958] : 1A = O2,2 6= A. Thus,
the proposed set is not a vector space.

M15 Contributed by Chris Black Statement [991]
There is something to notice here that will make our job much easier: Since each of these
sets are comprised of 3 × 3 matrices with the standard operations of addition and scalar
multiplication of matrices, the last 8 properties will automatically hold. That is, we really
only need to verify Property AC [956] and Property SC [957].

a). This set is not closed under either scalar multiplication or addition (fails Property AC

[956] and Property SC [957]). For example, 3

∗ ∗ 1
∗ 1 ∗
1 ∗ ∗

 =

∗ ∗ 3
∗ 3 ∗
3 ∗ ∗

 is not a member

of the proposed set.

b). This set is closed under both scalar multiplication and addition, so this set is a vector
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space with the standard operation of addition and scalar multiplication.

c). This set is closed under both scalar multiplication and addition, so this set is a vector
space with the standard operation of addition and scalar multiplication.

d). This set is closed under both scalar multiplication and addition, so this set is a vector
space with the standard operation of addition and scalar multiplication.

M20 Contributed by Chris Black Statement [992]
Hint: The set of all polynomials of degree exactly n fails one of the closure properties of a
vector space. Which one, and why?

M21 Contributed by Robert Beezer Statement [993]
Additive closure will hold, but scalar closure will not. The best way to convince yourself of

this is to construct a counterexample. Such as, 1
2
∈ C and

[
1
0

]
∈ Z2, however 1

2

[
1
0

]
=

[
1
2

0

]
6∈

Z2, which violates Property SC [957]. So Z2 is not a vector space.

Version 2.11



Subsection VS.SOL Solutions 1003

T21 Contributed by Robert Beezer Statement [994]

u = 0 + u Property Z [957]

= (−w + w) + u Property AI [957]

= −w + (w + u) Property AA [957]

= −w + (w + v) Hypothesis

= (−w + w) + v Property AA [957]

= 0 + v Property AI [957]

= v Property Z [957]

T22 Contributed by Robert Beezer Statement [994]

u = 1u Property O [958]
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=

(
1

α
α

)
u α 6= 0

=
1

α
(αu) Property SMA [957]

=
1

α
(αv) Hypothesis

=

(
1

α
α

)
v Property SMA [957]

= 1v

= v Property O [958]

T23 Contributed by Robert Beezer Statement [994]

0 = αu +− (αu) Property AI [957]

= βu +− (αu) Hypothesis
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= βu + (−1) (αu) Theorem AISM [981]

= βu + ((−1)α) u Property SMA [957]

= βu + (−α) u

= (β − α) u Property DSA [958]

By hypothesis, u 6= 0, so Theorem SMEZV [982] implies

0 = β − α
α = β

Version 2.11



Section S Subspaces 1006

Section S

Subspaces

A subspace is a vector space that is contained within another vector space. So every subspace
is a vector space in its own right, but it is also defined relative to some other (larger) vector
space. We will discover shortly that we are already familiar with a wide variety of subspaces
from previous sections. Here’s the definition.

Definition S
Subspace
Suppose that V and W are two vector spaces that have identical definitions of vector addition
and scalar multiplication, and that W is a subset of V , W ⊆ V . Then W is a subspace of
V . 4

Lets look at an example of a vector space inside another vector space.

Version 2.11



Section S Subspaces 1007

Example SC3
A subspace of C3

We know that C3 is a vector space (Example VSCV [961]). Consider the subset,

W =


x1

x2

x3

 | 2x1 − 5x2 + 7x3 = 0


It is clear that W ⊆ C3, since the objects in W are column vectors of size 3. But is W a
vector space? Does it satisfy the ten properties of Definition VS [956] when we use the same

operations? That is the main question. Suppose x =

x1

x2

x3

 and y =

y1

y2

y3

 are vectors from

W . Then we know that these vectors cannot be totally arbitrary, they must have gained
membership in W by virtue of meeting the membership test. For example, we know that x
must satisfy 2x1− 5x2 + 7x3 = 0 while y must satisfy 2y1− 5y2 + 7y3 = 0. Our first property
(Property AC [956]) asks the question, is x + y ∈ W? When our set of vectors was C3, this
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was an easy question to answer. Now it is not so obvious. Notice first that

x + y =

x1

x2

x3

+

y1

y2

y3

 =

x1 + y1

x2 + y2

x3 + y3


and we can test this vector for membership in W as follows,

2(x1 + y1)− 5(x2 + y2) + 7(x3 + y3) = 2x1 + 2y1 − 5x2 − 5y2 + 7x3 + 7y3

= (2x1 − 5x2 + 7x3) + (2y1 − 5y2 + 7y3)

= 0 + 0 x ∈ W, y ∈ W
= 0

and by this computation we see that x + y ∈ W . One property down, nine to go.
If α is a scalar and x ∈ W , is it always true that αx ∈ W? This is what we need to

establish Property SC [957]. Again, the answer is not as obvious as it was when our set of
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vectors was all of C3. Let’s see.

αx = α

x1

x2

x3

 =

αx1

αx2

αx3


and we can test this vector for membership in W with

2(αx1)− 5(αx2) + 7(αx3) = α(2x1 − 5x2 + 7x3)

= α0 x ∈ W
= 0

and we see that indeed αx ∈ W . Always.
If W has a zero vector, it will be unique (Theorem ZVU [977]). The zero vector for

C3 should also perform the required duties when added to elements of W . So the likely
candidate for a zero vector in W is the same zero vector that we know C3 has. You can

check that 0 =

0
0
0

 is a zero vector in W too (Property Z [957]).
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With a zero vector, we can now ask about additive inverses (Property AI [957]). As you
might suspect, the natural candidate for an additive inverse in W is the same as the additive
inverse from C3. However, we must insure that these additive inverses actually are elements
of W . Given x ∈ W , is −x ∈ W?

−x =

−x1

−x2

−x3


and we can test this vector for membership in W with

2(−x1)− 5(−x2) + 7(−x3) = −(2x1 − 5x2 + 7x3)

= −0 x ∈ W
= 0

and we now believe that −x ∈ W .
Is the vector addition in W commutative (Property C [957])? Is x + y = y + x? Of

course! Nothing about restricting the scope of our set of vectors will prevent the operation
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from still being commutative. Indeed, the remaining five properties are unaffected by the
transition to a smaller set of vectors, and so remain true. That was convenient.

So W satisfies all ten properties, is therefore a vector space, and thus earns the title of
being a subspace of C3. �

Subsection TS
Testing Subspaces

In Example SC3 [1003] we proceeded through all ten of the vector space properties before
believing that a subset was a subspace. But six of the properties were easy to prove, and
we can lean on some of the properties of the vector space (the superset) to make the other
four easier. Here is a theorem that will make it easier to test if a subset is a vector space. A
shortcut if there ever was one.
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Theorem TSS
Testing Subsets for Subspaces
Suppose that V is a vector space and W is a subset of V , W ⊆ V . Endow W with the same
operations as V . Then W is a subspace if and only if three conditions are met

1. W is non-empty, W 6= ∅.
2. If x ∈ W and y ∈ W , then x + y ∈ W .

3. If α ∈ C and x ∈ W , then αx ∈ W .

�

Proof (⇒) We have the hypothesis that W is a subspace, so by Definition VS [956] we
know that W contains a zero vector. This is enough to show that W 6= ∅. Also, since W
is a vector space it satisfies the additive and scalar multiplication closure properties, and
so exactly meets the second and third conditions. If that was easy, the the other direction
might require a bit more work.
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(⇐) We have three properties for our hypothesis, and from this we should conclude that
W has the ten defining properties of a vector space. The second and third conditions of
our hypothesis are exactly Property AC [956] and Property SC [957]. Our hypothesis that
V is a vector space implies that Property C [957], Property AA [957], Property SMA [957],
Property DVA [958], Property DSA [958] and Property O [958] all hold. They continue to
be true for vectors from W since passing to a subset, and keeping the operation the same,
leaves their statements unchanged. Eight down, two to go.

Suppose x ∈ W . Then by the third part of our hypothesis (scalar closure), we know
that (−1)x ∈ W . By Theorem AISM [981] (−1)x = −x, so together these statements show
us that −x ∈ W . −x is the additive inverse of x in V , but will continue in this role when
viewed as element of the subset W . So every element of W has an additive inverse that is
an element of W and Property AI [957] is completed. Just one property left.

While we have implicitly discussed the zero vector in the previous paragraph, we need to
be certain that the zero vector (of V ) really lives in W . Since W is non-empty, we can choose
some vector z ∈ W . Then by the argument in the previous paragraph, we know −z ∈ W .
Now by Property AI [957] for V and then by the second part of our hypothesis (additive
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closure) we see that
0 = z + (−z) ∈ W

So W contain the zero vector from V . Since this vector performs the required duties of a
zero vector in V , it will continue in that role as an element of W . This gives us, Property Z
[957], the final property of the ten required. (Sarah Fellez contributed to this proof.)

�

So just three conditions, plus being a subset of a known vector space, gets us all ten
properties. Fabulous! This theorem can be paraphrased by saying that a subspace is “a
non-empty subset (of a vector space) that is closed under vector addition and scalar multi-
plication.”

You might want to go back and rework Example SC3 [1003] in light of this result, perhaps
seeing where we can now economize or where the work done in the example mirrored the
proof and where it did not. We will press on and apply this theorem in a slightly more
abstract setting.

Example SP4
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A subspace of P4

P4 is the vector space of polynomials with degree at most 4 (Example VSP [963]). Define a
subset W as

W = {p(x) | p ∈ P4, p(2) = 0}
so W is the collection of those polynomials (with degree 4 or less) whose graphs cross the
x-axis at x = 2. Whenever we encounter a new set it is a good idea to gain a better
understanding of the set by finding a few elements in the set, and a few outside it. For
example x2 − x− 2 ∈ W , while x4 + x3 − 7 6∈ W .

Is W nonempty? Yes, x− 2 ∈ W .
Additive closure? Suppose p ∈ W and q ∈ W . Is p + q ∈ W? p and q are not totally

arbitrary, we know that p(2) = 0 and q(2) = 0. Then we can check p+ q for membership in
W ,

(p+ q)(2) = p(2) + q(2) Addition in P4

= 0 + 0 p ∈ W, q ∈ W
= 0
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so we see that p+ q qualifies for membership in W .
Scalar multiplication closure? Suppose that α ∈ C and p ∈ W . Then we know that

p(2) = 0. Testing αp for membership,

(αp)(2) = αp(2) Scalar multiplication in P4

= α0 p ∈ W
= 0

so αp ∈ W .
We have shown that W meets the three conditions of Theorem TSS [1008] and so qualifies

as a subspace of P4. Notice that by Definition S [1002] we now know that W is also a vector
space. So all the properties of a vector space (Definition VS [956]) and the theorems of
Section VS [955] apply in full.

�

Much of the power of Theorem TSS [1008] is that we can easily establish new vector
spaces if we can locate them as subsets of other vector spaces, such as the ones presented in
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Subsection VS.EVS [960].

It can be as instructive to consider some subsets that are not subspaces. Since Theorem
TSS [1008] is an equivalence (see Technique E [2348]) we can be assured that a subset is not
a subspace if it violates one of the three conditions, and in any example of interest this will
not be the “non-empty” condition. However, since a subspace has to be a vector space in
its own right, we can also search for a violation of any one of the ten defining properties in
Definition VS [956] or any inherent property of a vector space, such as those given by the
basic theorems of Subsection VS.VSP [975]. Notice also that a violation need only be for a
specific vector or pair of vectors.

Example NSC2Z
A non-subspace in C2, zero vector
Consider the subset W below as a candidate for being a subspace of C2

W =

{[
x1

x2

]
| 3x1 − 5x2 = 12

}
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The zero vector of C2, 0 =

[
0
0

]
will need to be the zero vector in W also. However, 0 6∈ W

since 3(0)− 5(0) = 0 6= 12. So W has no zero vector and fails Property Z [957] of Definition
VS [956]. This subspace also fails to be closed under addition and scalar multiplication. Can
you find examples of this? �

Example NSC2A
A non-subspace in C2, additive closure
Consider the subset X below as a candidate for being a subspace of C2

X =

{[
x1

x2

]
| x1x2 = 0

}
You can check that 0 ∈ X, so the approach of the last example will not get us anywhere.

However, notice that x =

[
1
0

]
∈ X and y =

[
0
1

]
∈ X. Yet

x + y =

[
1
0

]
+

[
0
1

]
=

[
1
1

]
6∈ X
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So X fails the additive closure requirement of either Property AC [956] or Theorem TSS
[1008], and is therefore not a subspace. �

Example NSC2S
A non-subspace in C2, scalar multiplication closure
Consider the subset Y below as a candidate for being a subspace of C2

Y =

{[
x1

x2

]
| x1 ∈ Z, x2 ∈ Z

}
Z is the set of integers, so we are only allowing “whole numbers” as the constituents of our
vectors. Now, 0 ∈ Y , and additive closure also holds (can you prove these claims?). So we

will have to try something different. Note that α = 1
2
∈ C and

[
2
3

]
∈ Y , but

αx =
1

2

[
2
3

]
=

[
1
3
2

]
6∈ Y
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So Y fails the scalar multiplication closure requirement of either Property SC [957] or The-
orem TSS [1008], and is therefore not a subspace. �

There are two examples of subspaces that are trivial. Suppose that V is any vector space.
Then V is a subset of itself and is a vector space. By Definition S [1002], V qualifies as a
subspace of itself. The set containing just the zero vector Z = {0} is also a subspace as
can be seen by applying Theorem TSS [1008] or by simple modifications of the techniques
hinted at in Example VSS [968]. Since these subspaces are so obvious (and therefore not too
interesting) we will refer to them as being trivial.

Definition TS
Trivial Subspaces
Given the vector space V , the subspaces V and {0} are each called a trivial subspace. 4

We can also use Theorem TSS [1008] to prove more general statements about subspaces,
as illustrated in the next theorem.

Theorem NSMS
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Null Space of a Matrix is a Subspace
Suppose that A is an m×n matrix. Then the null space of A, N (A), is a subspace of Cn. �

Proof We will examine the three requirements of Theorem TSS [1008]. Recall that N (A) =
{x ∈ Cn | Ax = 0}.

First, 0 ∈ N (A), which can be inferred as a consequence of Theorem HSC [208]. So
N (A) 6= ∅.

Second, check additive closure by supposing that x ∈ N (A) and y ∈ N (A). So we know
a little something about x and y: Ax = 0 and Ay = 0, and that is all we know. Question:
Is x + y ∈ N (A)? Let’s check.

A(x + y) = Ax + Ay Theorem MMDAA [684]

= 0 + 0 x ∈ N (A) , y ∈ N (A)

= 0 Theorem VSPCV [295]

So, yes, x + y qualifies for membership in N (A).

Version 2.11



Subsection S.TS Testing Subspaces 1022

Third, check scalar multiplication closure by supposing that α ∈ C and x ∈ N (A). So we
know a little something about x: Ax = 0, and that is all we know. Question: Is αx ∈ N (A)?
Let’s check.

A(αx) = α(Ax) Theorem MMSMM [685]

= α0 x ∈ N (A)

= 0 Theorem ZVSM [980]

So, yes, αx qualifies for membership in N (A).

Having met the three conditions in Theorem TSS [1008] we can now say that the null
space of a matrix is a subspace (and hence a vector space in its own right!). �

Here is an example where we can exercise Theorem NSMS [1017].

Example RSNS
Recasting a subspace as a null space
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Consider the subset of C5 defined as

W =




x1

x2

x3

x4

x5

 |
3x1 + x2 − 5x3 + 7x4 + x5 = 0,
4x1 + 6x2 + 3x3 − 6x4 − 5x5 = 0,
−2x1 + 4x2 + 7x4 + x5 = 0


It is possible to show that W is a subspace of C5 by checking the three conditions of Theorem
TSS [1008] directly, but it will get tedious rather quickly. Instead, give W a fresh look and
notice that it is a set of solutions to a homogeneous system of equations. Define the matrix

A =

 3 1 −5 7 1
4 6 3 −6 −5
−2 4 0 7 1


and then recognize that W = N (A). By Theorem NSMS [1017] we can immediately see that
W is a subspace. Boom! �
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Subsection TSS
The Span of a Set

The span of a set of column vectors got a heavy workout in Chapter V [283] and Chapter
M [611]. The definition of the span depended only on being able to formulate linear com-
binations. In any of our more general vector spaces we always have a definition of vector
addition and of scalar multiplication. So we can build linear combinations and manufacture
spans. This subsection contains two definitions that are just mild variants of definitions we
have seen earlier for column vectors. If you haven’t already, compare them with Definition
LCCV [316] and Definition SSCV [390].

Definition LC
Linear Combination
Suppose that V is a vector space. Given n vectors u1, u2, u3, . . . , un and n scalars α1, α2, α3, . . . , αn,
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their linear combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.

4

Example LCM
A linear combination of matrices
In the vector space M23 of 2× 3 matrices, we have the vectors

x =

[
1 3 −2
2 0 7

]
y =

[
3 −1 2
5 5 1

]
z =

[
4 2 −4
1 1 1

]
and we can form linear combinations such as

2x + 4y + (−1)z = 2

[
1 3 −2
2 0 7

]
+ 4

[
3 −1 2
5 5 1

]
+ (−1)

[
4 2 −4
1 1 1

]
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=

[
2 6 −4
4 0 14

]
+

[
12 −4 8
20 20 4

]
+

[−4 −2 4
−1 −1 −1

]
=

[
10 0 8
23 19 17

]
or,

4x− 2y + 3z = 4

[
1 3 −2
2 0 7

]
− 2

[
3 −1 2
5 5 1

]
+ 3

[
4 2 −4
1 1 1

]
=

[
4 12 −8
8 0 28

]
+

[ −6 2 −4
−10 −10 −2

]
+

[
12 6 −12
3 3 3

]
=

[
10 20 −24
1 −7 29

]
�

When we realize that we can form linear combinations in any vector space, then it is
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natural to revisit our definition of the span of a set, since it is the set of all possible linear
combinations of a set of vectors.

Definition SS
Span of a Set
Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut}, their
span, 〈S〉, is the set of all possible linear combinations of u1, u2, u3, . . . , ut. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αtut | αi ∈ C, 1 ≤ i ≤ t}

=

{
t∑
i=1

αiui | αi ∈ C, 1 ≤ i ≤ t

}
4

Theorem SSS
Span of a Set is a Subspace
Suppose V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut} ⊆ V , their
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span, 〈S〉, is a subspace. �

Proof We will verify the three conditions of Theorem TSS [1008]. First,

0 = 0 + 0 + 0 + . . .+ 0 Property Z [957] for V

= 0u1 + 0u2 + 0u3 + · · ·+ 0ut Theorem ZSSM [979]

So we have written 0 as a linear combination of the vectors in S and by Definition SS
[1023],0 ∈ 〈S〉 and therefore S 6= ∅.

Second, suppose x ∈ 〈S〉 and y ∈ 〈S〉. Can we conclude that x + y ∈ 〈S〉? What do we
know about x and y by virtue of their membership in 〈S〉? There must be scalars from C,
α1, α2, α3, . . . , αt and β1, β2, β3, . . . , βt so that

x = α1u1 + α2u2 + α3u3 + · · ·+ αtut

y = β1u1 + β2u2 + β3u3 + · · ·+ βtut

Then

x + y = α1u1 + α2u2 + α3u3 + · · ·+ αtut
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+ β1u1 + β2u2 + β3u3 + · · ·+ βtut

= α1u1 + β1u1 + α2u2 + β2u2

+ α3u3 + β3u3 + · · ·+ αtut + βtut Property AA [957], Property C [957]

= (α1 + β1)u1 + (α2 + β2)u2

+ (α3 + β3)u3 + · · ·+ (αt + βt)ut Property DSA [958]

Since each αi + βi is again a scalar from C we have expressed the vector sum x + y as a
linear combination of the vectors from S, and therefore by Definition SS [1023] we can say
that x + y ∈ 〈S〉.

Third, suppose α ∈ C and x ∈ 〈S〉. Can we conclude that αx ∈ 〈S〉? What do we know
about x by virtue of its membership in 〈S〉? There must be scalars from C, α1, α2, α3, . . . , αt
so that

x = α1u1 + α2u2 + α3u3 + · · ·+ αtut
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Then

αx = α (α1u1 + α2u2 + α3u3 + · · ·+ αtut)

= α(α1u1) + α(α2u2) + α(α3u3) + · · ·+ α(αtut) Property DVA [958]

= (αα1)u1 + (αα2)u2 + (αα3)u3 + · · ·+ (ααt)ut Property SMA [957]

Since each ααi is again a scalar from C we have expressed the scalar multiple αx as a linear
combination of the vectors from S, and therefore by Definition SS [1023] we can say that
αx ∈ 〈S〉.

With the three conditions of Theorem TSS [1008] met, we can say that 〈S〉 is a subspace
(and so is also vector space, Definition VS [956]). (See Exercise SS.T20 [434], Exercise
SS.T21 [434], Exercise SS.T22 [434].) �

Example SSP
Span of a set of polynomials
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In Example SP4 [1011] we proved that

W = {p(x) | p ∈ P4, p(2) = 0}

is a subspace of P4, the vector space of polynomials of degree at most 4. Since W is a vector
space itself, let’s construct a span within W . First let

S =
{
x4 − 4x3 + 5x2 − x− 2, 2x4 − 3x3 − 6x2 + 6x+ 4

}
and verify that S is a subset of W by checking that each of these two polynomials has x = 2
as a root. Now, if we define U = 〈S〉, then Theorem SSS [1023] tells us that U is a subspace
of W . So quite quickly we have built a chain of subspaces, U inside W , and W inside P4.

Rather than dwell on how quickly we can build subspaces, let’s try to gain a better
understanding of just how the span construction creates subspaces, in the context of this
example. We can quickly build representative elements of U ,

3(x4 − 4x3 + 5x2 − x− 2) + 5(2x4 − 3x3 − 6x2 + 6x+ 4) = 13x4 − 27x3 − 15x2 + 27x+ 14
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and

(−2)(x4− 4x3 + 5x2− x− 2) + 8(2x4− 3x3− 6x2 + 6x+ 4) = 14x4− 16x3− 58x2 + 50x+ 36

and each of these polynomials must be in W since it is closed under addition and scalar
multiplication. But you might check for yourself that both of these polynomials have x = 2
as a root.

I can tell you that y = 3x4− 7x3− x2 + 7x− 2 is not in U , but would you believe me? A
first check shows that y does have x = 2 as a root, but that only shows that y ∈ W . What
does y have to do to gain membership in U = 〈S〉? It must be a linear combination of the
vectors in S, x4 − 4x3 + 5x2 − x− 2 and 2x4 − 3x3 − 6x2 + 6x+ 4. So let’s suppose that y
is such a linear combination,

y = 3x4 − 7x3 − x2 + 7x− 2

= α1(x
4 − 4x3 + 5x2 − x− 2) + α2(2x

4 − 3x3 − 6x2 + 6x+ 4)

= (α1 + 2α2)x
4 + (−4α1 − 3α2)x

3 + (5α1 − 6α2)x
2 + (−α1 + 6α2)x− (−2α1 + 4α2)
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Notice that operations above are done in accordance with the definition of the vector space of
polynomials (Example VSP [963]). Now, if we equate coefficients, which is the definition of
equality for polynomials, then we obtain the system of five linear equations in two variables

α1 + 2α2 = 3

−4α1 − 3α2 = −7

5α1 − 6α2 = −1

−α1 + 6α2 = 7

−2α1 + 4α2 = −2

Build an augmented matrix from the system and row-reduce,
1 2 3
−4 −3 −7
5 −6 −1
−1 6 7
−2 4 −2

 RREF−−−→


1 0 0

0 1 0

0 0 1
0 0 0
0 0 0
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With a leading 1 in the final column of the row-reduced augmented matrix, Theorem RCLS
[172] tells us the system of equations is inconsistent. Therefore, there are no scalars, α1 and
α2, to establish y as a linear combination of the elements in U . So y 6∈ U . �

Let’s again examine membership in a span.

Example SM32
A subspace of M32

The set of all 3 × 2 matrices forms a vector space when we use the operations of matrix
addition (Definition MA [614]) and scalar matrix multiplication (Definition MSM [615]), as
was show in Example VSM [961]. Consider the subset

S =


3 1

4 2
5 −5

 ,
 1 1

2 −1
14 −1

 ,
 3 −1
−1 2
−19 −11

 ,
 4 2

1 −2
14 −2

 ,
 3 1
−4 0
−17 7


and define a new subset of vectors W in M32 using the span (Definition SS [1023]), W = 〈S〉.
So by Theorem SSS [1023] we know that W is a subspace of M32. While W is an infinite
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set, and this is a precise description, it would still be worthwhile to investigate whether or
not W contains certain elements.

First, is

y =

 9 3
7 3
10 −11


in W? To answer this, we want to determine if y can be written as a linear combination of
the five matrices in S. Can we find scalars, α1, α2, α3, α4, α5 so that 9 3

7 3
10 −11

 = α1

3 1
4 2
5 −5

+ α2

 1 1
2 −1
14 −1

+ α3

 3 −1
−1 2
−19 −11

+ α4

 4 2
1 −2
14 −2

+ α5

 3 1
−4 0
−17 7


=

 3α1 + α2 + 3α3 + 4α4 + 3α5 α1 + α2 − α3 + 2α4 + α5

4α1 + 2α2 − α3 + α4 − 4α5 2α1 − α2 + 2α3 − 2α4

5α1 + 14α2 − 19α3 + 14α4 − 17α5 −5α1 − α2 − 11α3 − 2α4 + 7α5
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Using our definition of matrix equality (Definition ME [613]) we can translate this statement
into six equations in the five unknowns,

3α1 + α2 + 3α3 + 4α4 + 3α5 = 9

α1 + α2 − α3 + 2α4 + α5 = 3

4α1 + 2α2 − α3 + α4 − 4α5 = 7

2α1 − α2 + 2α3 − 2α4 = 3

5α1 + 14α2 − 19α3 + 14α4 − 17α5 = 10

−5α1 − α2 − 11α3 − 2α4 + 7α5 = −11

This is a linear system of equations, which we can represent with an augmented matrix
and row-reduce in search of solutions. The matrix that is row-equivalent to the augmented
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matrix is



1 0 0 0 5
8

2

0 1 0 0 −19
4
−1

0 0 1 0 −7
8

0

0 0 0 1 17
8

1
0 0 0 0 0 0
0 0 0 0 0 0



So we recognize that the system is consistent since there is no leading 1 in the final column
(Theorem RCLS [172]), and compute n − r = 5 − 4 = 1 free variables (Theorem FVCS
[178]). While there are infinitely many solutions, we are only in pursuit of a single solution,
so let’s choose the free variable α5 = 0 for simplicity’s sake. Then we easily see that α1 = 2,
α2 = −1, α3 = 0, α4 = 1. So the scalars α1 = 2, α2 = −1, α3 = 0, α4 = 1, α5 = 0 will
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provide a linear combination of the elements of S that equals y, as we can verify by checking, 9 3
7 3
10 −11

 = 2

3 1
4 2
5 −5

+ (−1)

 1 1
2 −1
14 −1

+ (1)

 4 2
1 −2
14 −2


So with one particular linear combination in hand, we are convinced that y deserves to be
a member of W = 〈S〉. Second, is

x =

2 1
3 1
4 −2


in W? To answer this, we want to determine if x can be written as a linear combination of
the five matrices in S. Can we find scalars, α1, α2, α3, α4, α5 so that2 1

3 1
4 −2

 = α1

3 1
4 2
5 −5

+ α2

 1 1
2 −1
14 −1

+ α3

 3 −1
−1 2
−19 −11

+ α4

 4 2
1 −2
14 −2

+ α5

 3 1
−4 0
−17 7
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=

 3α1 + α2 + 3α3 + 4α4 + 3α5 α1 + α2 − α3 + 2α4 + α5

4α1 + 2α2 − α3 + α4 − 4α5 2α1 − α2 + 2α3 − 2α4

5α1 + 14α2 − 19α3 + 14α4 − 17α5 −5α1 − α2 − 11α3 − 2α4 + 7α5


Using our definition of matrix equality (Definition ME [613]) we can translate this statement
into six equations in the five unknowns,

3α1 + α2 + 3α3 + 4α4 + 3α5 = 2

α1 + α2 − α3 + 2α4 + α5 = 1

4α1 + 2α2 − α3 + α4 − 4α5 = 3

2α1 − α2 + 2α3 − 2α4 = 1

5α1 + 14α2 − 19α3 + 14α4 − 17α5 = 4

−5α1 − α2 − 11α3 − 2α4 + 7α5 = −2

This is a linear system of equations, which we can represent with an augmented matrix
and row-reduce in search of solutions. The matrix that is row-equivalent to the augmented
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matrix is 

1 0 0 0 5
8

0

0 1 0 0 −38
8

0

0 0 1 0 −7
8

0

0 0 0 1 −17
8

0

0 0 0 0 0 1
0 0 0 0 0 0


With a leading 1 in the last column Theorem RCLS [172] tells us that the system is incon-
sistent. Therefore, there are no values for the scalars that will place x in W , and so we
conclude that x 6∈ W . �

Notice how Example SSP [1026] and Example SM32 [1030] contained questions about
membership in a span, but these questions quickly became questions about solutions to a
system of linear equations. This will be a common theme going forward.
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Subsection SC
Subspace Constructions

Several of the subsets of vectors spaces that we worked with in Chapter M [611] are also
subspaces — they are closed under vector addition and scalar multiplication in Cm.

Theorem CSMS
Column Space of a Matrix is a Subspace
Suppose that A is an m× n matrix. Then C(A) is a subspace of Cm. �

Proof Definition CSM [808] shows us that C(A) is a subset of Cm, and that it is defined
as the span of a set of vectors from Cm (the columns of the matrix). Since C(A) is a span,
Theorem SSS [1023] says it is a subspace. �

That was easy! Notice that we could have used this same approach to prove that the null
space is a subspace, since Theorem SSNS [409] provided a description of the null space of a
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matrix as the span of a set of vectors. However, I much prefer the current proof of Theorem
NSMS [1017]. Speaking of easy, here is a very easy theorem that exposes another of our
constructions as creating subspaces.

Theorem RSMS
Row Space of a Matrix is a Subspace
Suppose that A is an m× n matrix. Then R(A) is a subspace of Cn. �

Proof Definition RSM [833] says R(A) = C(At), so the row space of a matrix is a column
space, and every column space is a subspace by Theorem CSMS [1037]. That’s enough. �

One more.

Theorem LNSMS
Left Null Space of a Matrix is a Subspace
Suppose that A is an m× n matrix. Then L(A) is a subspace of Cm. �

Proof Definition LNS [881] says L(A) = N (At), so the left null space is a null space, and
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every null space is a subspace by Theorem NSMS [1017]. Done. �

So the span of a set of vectors, and the null space, column space, row space and left null
space of a matrix are all subspaces, and hence are all vector spaces, meaning they have all
the properties detailed in Definition VS [956] and in the basic theorems presented in Section
VS [955]. We have worked with these objects as just sets in Chapter V [283] and Chapter
M [611], but now we understand that they have much more structure. In particular, being
closed under vector addition and scalar multiplication means a subspace is also closed under
linear combinations.

Subsection READ
Reading Questions

1. Summarize the three conditions that allow us to quickly test if a set is a subspace.
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2. Consider the set of vectors

W =


ab
c

 | 3a− 2b+ c = 5


Is the set W a subspace of C3? Explain your answer.

3. Name five general constructions of sets of column vectors (subsets of Cm) that we now
know as subspaces.
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Subsection EXC
Exercises

C15 Working within the vector space C3, determine if b =

4
3
1

 is in the subspace W ,

W =

〈
3

2
3

 ,
1

0
3

 ,
1

1
0

 ,
2

1
3


〉

Contributed by Chris Black Solution [1047]
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C16 Working within the vector space C4, determine if b =


1
1
0
1

 is in the subspace W ,

W =

〈


1
2
−1
1

 ,


1
0
3
1

 ,


2
1
1
2



〉

Contributed by Chris Black Solution [1048]
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C17 Working within the vector space C4, determine if b =


2
1
2
1

 is in the subspace W ,

W =

〈


1
2
0
2

 ,


1
0
3
1

 ,


0
1
0
2

 ,


1
1
2
0



〉

Contributed by Chris Black Solution [1048]

C20 Working within the vector space P3 of polynomials of degree 3 or less, determine if
p(x) = x3 + 6x+ 4 is in the subspace W below.

W =
〈{
x3 + x2 + x, x3 + 2x− 6, x2 − 5

}〉
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Contributed by Robert Beezer Solution [1049]

C21 Consider the subspace

W =

〈{[
2 1
3 −1

]
,

[
4 0
2 3

]
,

[−3 1
2 1

]}〉
of the vector space of 2× 2 matrices, M22. Is C =

[−3 3
6 −4

]
an element of W?

Contributed by Robert Beezer Solution [1051]

C25 Show that the set W =

{[
x1

x2

]
| 3x1 − 5x2 = 12

}
from Example NSC2Z [1013] fails

Property AC [956] and Property SC [957].
Contributed by Robert Beezer

C26 Show that the set Y =

{[
x1

x2

]
| x1 ∈ Z, x2 ∈ Z

}
from Example NSC2S [1015] has
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Property AC [956].
Contributed by Robert Beezer

M20 In C3, the vector space of column vectors of size 3, prove that the set Z is a subspace.

Z =


x1

x2

x3

 | 4x1 − x2 + 5x3 = 0


Contributed by Robert Beezer Solution [1052]

T20 A square matrix A of size n is upper triangular if [A]ij = 0 whenever i > j. Let UTn
be the set of all upper triangular matrices of size n. Prove that UTn is a subspace of the
vector space of all square matrices of size n, Mnn.
Contributed by Robert Beezer Solution [1055]

T30 Let P be the set of all polynomials, of any degree. The set P is a vector space. Let
E be the subset of P consisting of all polynomials with only terms of even degree. Prove or
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disprove: the set E is a subspace of P .
Contributed by Chris Black Solution [1056]

T31 Let P be the set of all polynomials, of any degree. The set P is a vector space. Let
F be the subset of P consisting of all polynomials with only terms of odd degree. Prove or
disprove: the set F is a subspace of P .
Contributed by Chris Black Solution [1058]
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Subsection SOL
Solutions

C15 Contributed by Chris Black Statement [1041]
For b to be an element of W = 〈S〉 there must be linear combination of the vectors in S that
equals b (Definition SSCV [390]). The existence of such scalars is equivalent to the linear
system LS(A, b) being consistent, where A is the matrix whose columns are the vectors
from S (Theorem SLSLC [327]).3 1 1 2 4

2 0 1 1 3
3 3 0 3 1

 RREF−−−→
 1 0 1/2 1/2 0

0 1 −1/2 1/2 0

0 0 0 0 1


So by Theorem RCLS [172] the system is inconsistent, which indicates that b is not an
element of the subspace W .
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C16 Contributed by Chris Black Statement [1042]
For b to be an element of W = 〈S〉 there must be linear combination of the vectors in S that
equals b (Definition SSCV [390]). The existence of such scalars is equivalent to the linear
system LS(A, b) being consistent, where A is the matrix whose columns are the vectors
from S (Theorem SLSLC [327]).

1 1 2 1
2 0 1 1
−1 3 1 0
1 1 2 1

 RREF−−−→


1 0 0 1/3

0 1 0 0

0 0 1 1/3
0 0 0 0


So by Theorem RCLS [172] the system is consistent, which indicates that b is in the subspace
W .

C17 Contributed by Chris Black Statement [1043]
For b to be an element of W = 〈S〉 there must be linear combination of the vectors in S that
equals b (Definition SSCV [390]). The existence of such scalars is equivalent to the linear
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system LS(A, b) being consistent, where A is the matrix whose columns are the vectors
from S (Theorem SLSLC [327]).

1 1 0 1
2 0 1 1
0 3 0 2
2 1 2 0

 RREF−−−→


1 0 0 0 3/2

0 1 0 0 1

0 0 1 0 −3/2

0 0 0 1 −1/2


So by Theorem RCLS [172] the system is consistent, which indicates that b is in the subspace
W .

C20 Contributed by Robert Beezer Statement [1043]
The question is if p can be written as a linear combination of the vectors in W . To check this,
we set p equal to a linear combination and massage with the definitions of vector addition
and scalar multiplication that we get with P3 (Example VSP [963])

p(x) = a1(x
3 + x2 + x) + a2(x

3 + 2x− 6) + a3(x
2 − 5)
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x3 + 6x+ 4 = (a1 + a2)x
3 + (a1 + a3)x

2 + (a1 + 2a2)x+ (−6a2 − 5a3)

Equating coefficients of equal powers of x, we get the system of equations,

a1 + a2 = 1

a1 + a3 = 0

a1 + 2a2 = 6

−6a2 − 5a3 = 4

The augmented matrix of this system of equations row-reduces to
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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There is a leading 1 in the last column, so Theorem RCLS [172] implies that the system is
inconsistent. So there is no way for p to gain membership in W , so p 6∈ W .

C21 Contributed by Robert Beezer Statement [1044]
In order to belong to W , we must be able to express C as a linear combination of the elements
in the spanning set of W . So we begin with such an expression, using the unknowns a, b, c
for the scalars in the linear combination.

C =

[−3 3
6 −4

]
= a

[
2 1
3 −1

]
+ b

[
4 0
2 3

]
+ c

[−3 1
2 1

]
Massaging the right-hand side, according to the definition of the vector space operations in
M22 (Example VSM [961]), we find the matrix equality,[−3 3

6 −4

]
=

[
2a+ 4b− 3c a+ c
3a+ 2b+ 2c −a+ 3b+ c

]
Matrix equality allows us to form a system of four equations in three variables, whose aug-
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mented matrix row-reduces as follows,


2 4 −3 −3
1 0 1 3
3 2 2 6
−1 3 1 −4

 RREF−−−→


1 0 0 2

0 1 0 −1

0 0 1 1
0 0 0 0


Since this system of equations is consistent (Theorem RCLS [172]), a solution will provide
values for a, b and c that allow us to recognize C as an element of W .

M20 Contributed by Robert Beezer Statement [1045]
The membership criteria for Z is a single linear equation, which comprises a homogeneous
system of equations. As such, we can recognize Z as the solutions to this system, and
therefore Z is a null space. Specifically, Z = N ([4 −1 5

])
. Every null space is a subspace

by Theorem NSMS [1017].

A less direct solution appeals to Theorem TSS [1008].
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First, we want to be certain Z is non-empty. The zero vector of C3, 0 =

0
0
0

, is a good

candidate, since if it fails to be in Z, we will know that Z is not a vector space. Check that

4(0)− (0) + 5(0) = 0

so that 0 ∈ Z.

Suppose x =

x1

x2

x3

 and y =

y1

y2

y3

 are vectors from Z. Then we know that these vectors

cannot be totally arbitrary, they must have gained membership in Z by virtue of meeting
the membership test. For example, we know that x must satisfy 4x1 − x2 + 5x3 = 0 while y
must satisfy 4y1− y2 + 5y3 = 0. Our second criteria asks the question, is x + y ∈ Z? Notice
first that

x + y =

x1

x2

x3

+

y1

y2

y3

 =

x1 + y1

x2 + y2

x3 + y3
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and we can test this vector for membership in Z as follows,

4(x1 + y1)− 1(x2 + y2) + 5(x3 + y3)

= 4x1 + 4y1 − x2 − y2 + 5x3 + 5y3

= (4x1 − x2 + 5x3) + (4y1 − y2 + 5y3)

= 0 + 0 x ∈ Z, y ∈ Z
= 0

and by this computation we see that x + y ∈ Z.
If α is a scalar and x ∈ Z, is it always true that αx ∈ Z? To check our third criteria, we

examine

αx = α

x1

x2

x3

 =

αx1

αx2

αx3


and we can test this vector for membership in Z with

4(αx1)− (αx2) + 5(αx3)

Version 2.11



Subsection S.SOL Solutions 1059

= α(4x1 − x2 + 5x3)

= α0 x ∈ Z
= 0

and we see that indeed αx ∈ Z. With the three conditions of Theorem TSS [1008] fulfilled,
we can conclude that Z is a subspace of C3.

T20 Contributed by Robert Beezer Statement [1045]
Apply Theorem TSS [1008].

First, the zero vector of Mnn is the zero matrix, O, whose entries are all zero (Definition
ZM [621]). This matrix then meets the condition that [O]ij = 0 for i > j and so is an
element of UTn.

Suppose A,B ∈ UTn. Is A + B ∈ UTn? We examine the entries of A + B “below” the
diagonal. That is, in the following, assume that i > j.

[A+B]ij = [A]ij + [B]ij Definition MA [614]

= 0 + 0 A,B ∈ UTn
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= 0

which qualifies A+B for membership in UTn.
Suppose α ∈ C and A ∈ UTn. Is αA ∈ UTn? We examine the entries of αA “below” the

diagonal. That is, in the following, assume that i > j.

[αA]ij = α [A]ij Definition MSM [615]

= α0 A ∈ UTn
= 0

which qualifies αA for membership in UTn.
Having fulfilled the three conditions of Theorem TSS [1008] we see that UTn is a subspace

of Mnn.

T30 Contributed by Chris Black Statement [1045]
Proof: Let E be the subset of P comprised of all polynomials with all terms of even degree.
Clearly the set E is non-empty, as z(x) = 0 is a polynomial of even degree. Let p(x) and
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q(x) be arbitrary elements of E. Then there exist nonnegative integers m and n so that

p(x) = a0 + a2x
2 + a4x

4 + · · ·+ a2nx
2n

q(x) = b0 + b2x
2 + b4x

4 + · · ·+ b2mx
2m

for some constants a0, a2, . . . , a2n and b0, b2, . . . , b2m. Without loss of generality, we can
assume that m ≤ n. Thus, we have

p(x) + q(x) = (a0 + b0) + (a2 + b2)x
2 + · · ·+ (a2m + b2m)x2m + a2m+2x

2m+2 + · · ·+ a2nx
2n

so p(x) + q(x) has all even terms, and thus p(x) + q(x) ∈ E. Similarly, let α be a scalar.
Then

αp(x) = α(a0 + a2x
2 + a4x

4 + · · ·+ a2nx
2n)

= αa0 + (αa2)x
2 + (αa4)x

4 + · · ·+ (αa2n)x2n

so that αp(x) also has only terms of even degree, and αp(x) ∈ E. Thus, E is a subspace of
P .
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T31 Contributed by Chris Black Statement [1046]
This conjecture is false. We know that the zero vector in P is the polynomial z(x) = 0,
which does not have odd degree. Thus, the set F does not contain the zero vector, and
cannot be a vector space.
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Section LISS

Linear Independence and Spanning Sets

A vector space is defined as a set with two operations, meeting ten properties (Definition
VS [956]). Just as the definition of span of a set of vectors only required knowing how to
add vectors and how to multiply vectors by scalars, so it is with linear independence. A
definition of a linear independent set of vectors in an arbitrary vector space only requires
knowing how to form linear combinations and equating these with the zero vector. Since
every vector space must have a zero vector (Property Z [957]), we always have a zero vector
at our disposal.

In this section we will also put a twist on the notion of the span of a set of vectors.
Rather than beginning with a set of vectors and creating a subspace that is the span, we will
instead begin with a subspace and look for a set of vectors whose span equals the subspace.
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The combination of linear independence and spanning will be very important going for-
ward.

Subsection LI
Linear Independence

Our previous definition of linear independence (Definition LI [1061]) employed a relation of
linear dependence that was a linear combination on one side of an equality and a zero vector
on the other side. As a linear combination in a vector space (Definition LC [1020]) depends
only on vector addition and scalar multiplication, and every vector space must have a zero
vector (Property Z [957]), we can extend our definition of linear independence from the
setting of Cm to the setting of a general vector space V with almost no changes. Compare
these next two definitions with Definition RLDCV [458] and Definition LICV [458].
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Definition RLD
Relation of Linear Dependence
Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , un}, an
equation of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion,
i.e. αi = 0, 1 ≤ i ≤ n, then we say it is a trivial relation of linear dependence on S. 4
Definition LI
Linear Independence
Suppose that V is a vector space. The set of vectors S = {u1, u2, u3, . . . , un} from V is
linearly dependent if there is a relation of linear dependence on S that is not trivial. In
the case where the only relation of linear dependence on S is the trivial one, then S is a
linearly independent set of vectors. 4

Notice the emphasis on the word “only.” This might remind you of the definition of a non-
singular matrix, where if the matrix is employed as the coefficient matrix of a homogeneous
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system then the only solution is the trivial one.

Example LIP4
Linear independence in P4

In the vector space of polynomials with degree 4 or less, P4 (Example VSP [963]) consider
the set

S =
{

2x4 + 3x3 + 2x2 − x+ 10, −x4 − 2x3 + x2 + 5x− 8, 2x4 + x3 + 10x2 + 17x− 2
}
.

Is this set of vectors linearly independent or dependent? Consider that

3
(
2x4 + 3x3 + 2x2 − x+ 10

)
+ 4

(−x4 − 2x3 + x2 + 5x− 8
)

+ (−1)
(
2x4 + x3 + 10x2 + 17x− 2

)
= 0x4 + 0x3 + 0x2 + 0x+ 0 = 0

This is a nontrivial relation of linear dependence (Definition RLD [1061]) on the set S and
so convinces us that S is linearly dependent (Definition LI [1061]).

Now, I hear you say, “Where did those scalars come from?” Do not worry about that
right now, just be sure you understand why the above explanation is sufficient to prove that
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S is linearly dependent. The remainder of the example will demonstrate how we might find
these scalars if they had not been provided so readily. Let’s look at another set of vectors
(polynomials) from P4. Let

T =
{

3x4 − 2x3 + 4x2 + 6x− 1, −3x4 + 1x3 + 0x2 + 4x+ 2,

4x4 + 5x3 − 2x2 + 3x+ 1, 2x4 − 7x3 + 4x2 + 2x+ 1
}

Suppose we have a relation of linear dependence on this set,

0 = 0x4 + 0x3 + 0x2 + 0x+ 0

= α1

(
3x4 − 2x3 + 4x2 + 6x− 1

)
+ α2

(−3x4 + 1x3 + 0x2 + 4x+ 2
)

+ α3

(
4x4 + 5x3 − 2x2 + 3x+ 1

)
+ α4

(
2x4 − 7x3 + 4x2 + 2x+ 1

)
Using our definitions of vector addition and scalar multiplication in P4 (Example VSP [963]),
we arrive at,

0x4 + 0x3 + 0x2 + 0x+ 0 = (3α1 − 3α2 + 4α3 + 2α4)x
4 + (−2α1 + α2 + 5α3 − 7α4)x

3
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+ (4α1 +−2α3 + 4α4)x
2 + (6α1 + 4α2 + 3α3 + 2α4)x

+ (−α1 + 2α2 + α3 + α4) .

Equating coefficients, we arrive at the homogeneous system of equations,

3α1 − 3α2 + 4α3 + 2α4 = 0

−2α1 + α2 + 5α3 − 7α4 = 0

4α1 +−2α3 + 4α4 = 0

6α1 + 4α2 + 3α3 + 2α4 = 0

−α1 + 2α2 + α3 + α4 = 0

We form the coefficient matrix of this homogeneous system of equations and row-reduce to
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find 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


We expected the system to be consistent (Theorem HSC [208]) and so can compute n− r =
4 − 4 = 0 and Theorem CSRN [176] tells us that the solution is unique. Since this is a
homogeneous system, this unique solution is the trivial solution (Definition TSHSE [209]),
α1 = 0, α2 = 0, α3 = 0, α4 = 0. So by Definition LI [1061] the set T is linearly independent.

A few observations. If we had discovered infinitely many solutions, then we could have
used one of the non-trivial ones to provide a linear combination in the manner we used to
show that S was linearly dependent. It is important to realize that it is not interesting
that we can create a relation of linear dependence with zero scalars — we can always do
that — but that for T , this is the only way to create a relation of linear dependence. It
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was no accident that we arrived at a homogeneous system of equations in this example,
it is related to our use of the zero vector in defining a relation of linear dependence. It
is easy to present a convincing statement that a set is linearly dependent (just exhibit a
nontrivial relation of linear dependence) but a convincing statement of linear independence
requires demonstrating that there is no relation of linear dependence other than the trivial
one. Notice how we relied on theorems from Chapter SLE [2] to provide this demonstration.
Whew! There’s a lot going on in this example. Spend some time with it, we’ll be waiting
patiently right here when you get back. �

Example LIM32
Linear independence in M32

Consider the two sets of vectors R and S from the vector space of all 3 × 2 matrices, M32

(Example VSM [961])

R =


3 −1

1 4
6 −6

 ,
−2 3

1 −3
−2 −6

 ,
 6 −6
−1 0
7 −9

 ,
 7 9
−4 −5
2 5
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S =


2 0

1 −1
1 3

 ,
−4 0
−2 2
−2 −6

 ,
 1 1
−2 1
2 4

 ,
 −5 3
−10 7

2 0


One set is linearly independent, the other is not. Which is which? Let’s examine R first.
Build a generic relation of linear dependence (Definition RLD [1061]),

α1

3 −1
1 4
6 −6

+ α2

−2 3
1 −3
−2 −6

+ α3

 6 −6
−1 0
7 −9

+ α4

 7 9
−4 −5
2 5

 = 0

Massaging the left-hand side with our definitions of vector addition and scalar multiplication
in M32 (Example VSM [961]) we obtain,3α1 − 2α2 + 6α3 + 7α4 −1α1 + 3α2 − 6α3 + 9α4

1α1 + 1α2 − α3 − 4α4 4α1 − 3α2 +−5α4

6α1 − 2α2 + 7α3 + 2α4 −6α1 − 6α2 − 9α3 + 5α4

 =

0 0
0 0
0 0
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Using our definition of matrix equality (Definition ME [613]) and equating corresponding
entries we get the homogeneous system of six equations in four variables,

3α1 − 2α2 + 6α3 + 7α4 = 0

−1α1 + 3α2 − 6α3 + 9α4 = 0

1α1 + 1α2 − α3 − 4α4 = 0

4α1 − 3α2 +−5α4 = 0

6α1 − 2α2 + 7α3 + 2α4 = 0

−6α1 − 6α2 − 9α3 + 5α4 = 0
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Form the coefficient matrix of this homogeneous system and row-reduce to obtain



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0
0 0 0 0



Analyzing this matrix we are led to conclude that α1 = 0, α2 = 0, α3 = 0, α4 = 0. This
means there is only a trivial relation of linear dependence on the vectors of R and so we call
R a linearly independent set (Definition LI [1061]).

So it must be that S is linearly dependent. Let’s see if we can find a non-trivial relation
of linear dependence on S. We will begin as with R, by constructing a relation of linear
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dependence (Definition RLD [1061]) with unknown scalars,

α1

2 0
1 −1
1 3

+ α2

−4 0
−2 2
−2 −6

+ α3

 1 1
−2 1
2 4

+ α4

 −5 3
−10 7

2 0

 = 0

Massaging the left-hand side with our definitions of vector addition and scalar multiplication
in M32 (Example VSM [961]) we obtain, 2α1 − 4α2 + α3 − 5α4 α3 + 3α4

α1 − 2α2 − 2α3 − 10α4 −α1 + 2α2 + α3 + 7α4

α1 − 2α2 + 2α3 + 2α4 3α1 − 6α2 + 4α3

 =

0 0
0 0
0 0


Using our definition of matrix equality (Definition ME [613]) and equating corresponding
entries we get the homogeneous system of six equations in four variables,

2α1 − 4α2 + α3 − 5α4 = 0
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+α3 + 3α4 = 0

α1 − 2α2 − 2α3 − 10α4 = 0

−α1 + 2α2 + α3 + 7α4 = 0

α1 − 2α2 + 2α3 + 2α4 = 0

3α1 − 6α2 + 4α3 = 0

Form the coefficient matrix of this homogeneous system and row-reduce to obtain
1 −2 0 −4

0 0 1 3
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Analyzing this we see that the system is consistent (we expected this since the system is
homogeneous, Theorem HSC [208]) and has n − r = 4 − 2 = 2 free variables, namely α2
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and α4. This means there are infinitely many solutions, and in particular, we can find a
non-trivial solution, so long as we do not pick all of our free variables to be zero. The mere
presence of a nontrivial solution for these scalars is enough to conclude that S is a linearly
dependent set (Definition LI [1061]). But let’s go ahead and explicitly construct a non-trivial
relation of linear dependence.

Choose α2 = 1 and α4 = −1. There is nothing special about this choice, there are
infinitely many possibilities, some “easier” than this one, just avoid picking both variables
to be zero. Then we find the corresponding dependent variables to be α1 = −2 and α3 = 3.
So the relation of linear dependence,

(−2)

2 0
1 −1
1 3

+ (1)

−4 0
−2 2
−2 −6

+ (3)

 1 1
−2 1
2 4

+ (−1)

 −5 3
−10 7

2 0

 =

0 0
0 0
0 0


is an iron-clad demonstration that S is linearly dependent. Can you construct another such
demonstration? �

Example LIC
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Linearly independent set in the crazy vector space
Is the set R = {(1, 0), (6, 3)} linearly independent in the crazy vector space C (Example
CVS [970])? We begin with an arbitrary relation of linear independence on R

0 = a1(1, 0) + a2(6, 3) Definition RLD [1061]

and then massage it to a point where we can apply the definition of equality in C. Recall the
definitions of vector addition and scalar multiplication in C are not what you would expect.

(−1, −1) = 0 Example CVS [970]

= a1(1, 0) + a2(6, 3) Definition RLD [1061]

= (1a1 + a1 − 1, 0a1 + a1 − 1) + (6a2 + a2 − 1, 3a2 + a2 − 1) Example CVS [970]

= (2a1 − 1, a1 − 1) + (7a2 − 1, 4a2 − 1)

= (2a1 − 1 + 7a2 − 1 + 1, a1 − 1 + 4a2 − 1 + 1) Example CVS [970]

= (2a1 + 7a2 − 1, a1 + 4a2 − 1)
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Equality in C (Example CVS [970]) then yields the two equations,

2a1 + 7a2 − 1 = −1

a1 + 4a2 − 1 = −1

which becomes the homogeneous system

2a1 + 7a2 = 0

a1 + 4a2 = 0

Since the coefficient matrix of this system is nonsingular (check this!) the system has only
the trivial solution a1 = a2 = 0. By Definition LI [1061] the set R is linearly independent.
Notice that even though the zero vector of C is not what we might first suspected, a question
about linear independence still concludes with a question about a homogeneous system of
equations. Hmmm. �
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Subsection SS
Spanning Sets

In a vector space V , suppose we are given a set of vectors S ⊆ V . Then we can immediately
construct a subspace, 〈S〉, using Definition SS [1023] and then be assured by Theorem SSS
[1023] that the construction does provide a subspace. We now turn the situation upside-
down. Suppose we are first given a subspace W ⊆ V . Can we find a set S so that 〈S〉 = W?
Typically W is infinite and we are searching for a finite set of vectors S that we can combine
in linear combinations and “build” all of W .

I like to think of S as the raw materials that are sufficient for the construction of W .
If you have nails, lumber, wire, copper pipe, drywall, plywood, carpet, shingles, paint (and
a few other things), then you can combine them in many different ways to create a house
(or infinitely many different houses for that matter). A fast-food restaurant may have beef,
chicken, beans, cheese, tortillas, taco shells and hot sauce and from this small list of ingre-
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dients build a wide variety of items for sale. Or maybe a better analogy comes from Ben
Cordes — the additive primary colors (red, green and blue) can be combined to create many
different colors by varying the intensity of each. The intensity is like a scalar multiple, and
the combination of the three intensities is like vector addition. The three individual colors,
red, green and blue, are the elements of the spanning set.

Because we will use terms like “spanned by” and “spanning set,” there is the potential
for confusion with “the span.” Come back and reread the first paragraph of this subsection
whenever you are uncertain about the difference. Here’s the working definition.

Definition TSVS
To Span a Vector Space
Suppose V is a vector space. A subset S of V is a spanning set for V if 〈S〉 = V . In this
case, we also say S spans V . 4

The definition of a spanning set requires that two sets (subspaces actually) be equal. If
S is a subset of V , then 〈S〉 ⊆ V , always. Thus it is usually only necessary to prove that
V ⊆ 〈S〉. Now would be a good time to review Definition SE [2327].
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Example SSP4
Spanning set in P4

In Example SP4 [1011] we showed that

W = {p(x) | p ∈ P4, p(2) = 0}

is a subspace of P4, the vector space of polynomials with degree at most 4 (Example VSP
[963]). In this example, we will show that the set

S =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a spanning set for W . To do this, we require that W = 〈S〉. This is an equality of sets.
We can check that every polynomial in S has x = 2 as a root and therefore S ⊆ W . Since
W is closed under addition and scalar multiplication, 〈S〉 ⊆ W also.

So it remains to show that W ⊆ 〈S〉 (Definition SE [2327]). To do this, begin by choosing
an arbitrary polynomial in W , say r(x) = ax4 + bx3 + cx2 + dx+ e ∈ W . This polynomial is
not as arbitrary as it would appear, since we also know it must have x = 2 as a root. This
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translates to

0 = a(2)4 + b(2)3 + c(2)2 + d(2) + e = 16a+ 8b+ 4c+ 2d+ e

as a condition on r.
We wish to show that r is a polynomial in 〈S〉, that is, we want to show that r can be

written as a linear combination of the vectors (polynomials) in S. So let’s try.

r(x) = ax4 + bx3 + cx2 + dx+ e

= α1 (x− 2) + α2

(
x2 − 4x+ 4

)
+ α3

(
x3 − 6x2 + 12x− 8

)
+ α4

(
x4 − 8x3 + 24x2 − 32x+ 16

)
= α4x

4 + (α3 − 8α4)x
3 + (α2 − 6α3 + 24α2)x

2

+ (α1 − 4α2 + 12α3 − 32α4)x+ (−2α1 + 4α2 − 8α3 + 16α4)

Equating coefficients (vector equality in P4) gives the system of five equations in four vari-
ables,

α4 = a
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α3 − 8α4 = b

α2 − 6α3 + 24α2 = c

α1 − 4α2 + 12α3 − 32α4 = d

−2α1 + 4α2 − 8α3 + 16α4 = e

Any solution to this system of equations will provide the linear combination we need to
determine if r ∈ 〈S〉, but we need to be convinced there is a solution for any values of
a, b, c, d, e that qualify r to be a member of W . So the question is: is this system of
equations consistent? We will form the augmented matrix, and row-reduce. (We probably
need to do this by hand, since the matrix is symbolic — reversing the order of the first four
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rows is the best way to start). We obtain a matrix in reduced row-echelon form
1 0 0 0 32a+ 12b+ 4c+ d

0 1 0 0 24a+ 6b+ c

0 0 1 0 8a+ b

0 0 0 1 a
0 0 0 0 16a+ 8b+ 4c+ 2d+ e

 =


1 0 0 0 32a+ 12b+ 4c+ d

0 1 0 0 24a+ 6b+ c

0 0 1 0 8a+ b

0 0 0 1 a
0 0 0 0 0


For your results to match our first matrix, you may find it necessary to multiply the final row
of your row-reduced matrix by the appropriate scalar, and/or add multiples of this row to
some of the other rows. To obtain the second version of the matrix, the last entry of the last
column has been simplified to zero according to the one condition we were able to impose on
an arbitrary polynomial from W . So with no leading 1’s in the last column, Theorem RCLS
[172] tells us this system is consistent. Therefore, any polynomial from W can be written as
a linear combination of the polynomials in S, so W ⊆ 〈S〉. Therefore, W = 〈S〉 and S is a
spanning set for W by Definition TSVS [1076].
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Notice that an alternative to row-reducing the augmented matrix by hand would be to
appeal to Theorem FS [902] by expressing the column space of the coefficient matrix as a
null space, and then verifying that the condition on r guarantees that r is in the column
space, thus implying that the system is always consistent. Give it a try, we’ll wait. This has
been a complicated example, but worth studying carefully. �

Given a subspace and a set of vectors, as in Example SSP4 [1077] it can take some work to
determine that the set actually is a spanning set. An even harder problem is to be confronted
with a subspace and required to construct a spanning set with no guidance. We will now
work an example of this flavor, but some of the steps will be unmotivated. Fortunately, we
will have some better tools for this type of problem later on.

Example SSM22
Spanning set in M22

In the space of all 2× 2 matrices, M22 consider the subspace

Z =

{[
a b
c d

]
| a+ 3b− c− 5d = 0, −2a− 6b+ 3c+ 14d = 0

}
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and find a spanning set for Z.
We need to construct a limited number of matrices in Z so that every matrix in Z

can be expressed as a linear combination of this limited number of matrices. Suppose that

B =

[
a b
c d

]
is a matrix in Z. Then we can form a column vector with the entries of B and

write 
a
b
c
d

 ∈ N([ 1 3 −1 −5
−2 −6 3 14

])

Row-reducing this matrix and applying Theorem REMES [87] we obtain the equivalent
statement, 

a
b
c
d

 ∈ N([ 1 3 0 −1

0 0 1 4

])
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We can then express the subspace Z in the following equal forms,

Z =

{[
a b
c d

]
| a+ 3b− c− 5d = 0, −2a− 6b+ 3c+ 14d = 0

}
=

{[
a b
c d

]
| a+ 3b− d = 0, c+ 4d = 0

}
=

{[
a b
c d

]
| a = −3b+ d, c = −4d

}
=

{[−3b+ d b
−4d d

]
| b, d ∈ C

}
=

{[−3b b
0 0

]
+

[
d 0
−4d d

]
| b, d ∈ C

}
=

{
b

[−3 1
0 0

]
+ d

[
1 0
−4 1

]
| b, d ∈ C

}
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=

〈{[−3 1
0 0

]
,

[
1 0
−4 1

]}〉
So the set

Q =

{[−3 1
0 0

]
,

[
1 0
−4 1

]}
spans Z by Definition TSVS [1076]. �

Example SSC
Spanning set in the crazy vector space
In Example LIC [1073] we determined that the setR = {(1, 0), (6, 3)} is linearly independent
in the crazy vector space C (Example CVS [970]). We now show that R is a spanning set
for C.

Given an arbitrary vector (x, y) ∈ C we desire to show that it can be written as a linear
combination of the elements of R. In other words, are there scalars a1 and a2 so that

(x, y) = a1(1, 0) + a2(6, 3)
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We will act as if this equation is true and try to determine just what a1 and a2 would be (as
functions of x and y).

(x, y) = a1(1, 0) + a2(6, 3)

= (1a1 + a1 − 1, 0a1 + a1 − 1) + (6a2 + a2 − 1, 3a2 + a2 − 1) Scalar mult in C

= (2a1 − 1, a1 − 1) + (7a2 − 1, 4a2 − 1)

= (2a1 − 1 + 7a2 − 1 + 1, a1 − 1 + 4a2 − 1 + 1) Addition in C

= (2a1 + 7a2 − 1, a1 + 4a2 − 1)

Equality in C then yields the two equations,

2a1 + 7a2 − 1 = x

a1 + 4a2 − 1 = y

which becomes the linear system with a matrix representation[
2 7
1 4

] [
a1

a2

]
=

[
x+ 1
y + 1

]
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The coefficient matrix of this system is nonsingular, hence invertible (Theorem NI [781]),
and we can employ its inverse to find a solution (Theorem TTMI [732], Theorem SNCM
[783]), [

a1

a2

]
=

[
2 7
1 4

]−1 [
x+ 1
y + 1

]
=

[
4 −7
−1 2

] [
x+ 1
y + 1

]
=

[
4x− 7y − 3
−x+ 2y + 1

]
We could chase through the above implications backwards and take the existence of these
solutions as sufficient evidence for R being a spanning set for C. Instead, let us view the
above as simply scratchwork and now get serious with a simple direct proof that R is a
spanning set. Ready? Suppose (x, y) is any vector from C, then compute the following
linear combination using the definitions of the operations in C,

(4x− 7y − 3)(1, 0) + (−x+ 2y + 1)(6, 3)

= (1(4x− 7y − 3) + (4x− 7y − 3)− 1, 0(4x− 7y − 3) + (4x− 7y − 3)− 1) +

(6(−x+ 2y + 1) + (−x+ 2y + 1)− 1, 3(−x+ 2y + 1) + (−x+ 2y + 1)− 1)

= (8x− 14y − 7, 4x− 7y − 4) + (−7x+ 14y + 6, −4x+ 8y + 3)
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= ((8x− 14y − 7) + (−7x+ 14y + 6) + 1, (4x− 7y − 4) + (−4x+ 8y + 3) + 1)

= (x, y)

This final sequence of computations in C is sufficient to demonstrate that any element of C
can be written (or expressed) as a linear combination of the two vectors in R, so C ⊆ 〈R〉.
Since the reverse inclusion 〈R〉 ⊆ C is trivially true, C = 〈R〉 and we say R spans C
(Definition TSVS [1076]). Notice that this demonstration is no more or less valid if we hide
from the reader our scratchwork that suggested a1 = 4x− 7y − 3 and a2 = −x+ 2y + 1. �

Subsection VR
Vector Representation

In Chapter R [1818] we will take up the matter of representations fully, where Theorem
VRRB [1090] will be critical for Definition VR [1819]. We will now motivate and prove a
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critical theorem that tells us how to “represent” a vector. This theorem could wait, but
working with it now will provide some extra insight into the nature of linearly independent
spanning sets. First an example, then the theorem.

Example AVR
A vector representation
Consider the set

S =


−7

5
1

 ,
−6

5
0

 ,
−12

7
4


from the vector space C3. Let A be the matrix whose columns are the set S, and verify that
A is nonsingular. By Theorem NMLIC [478] the elements of S form a linearly independent
set. Suppose that b ∈ C3. Then LS(A, b) has a (unique) solution (Theorem NMUS [256])
and hence is consistent. By Theorem SLSLC [327], b ∈ 〈S〉. Since b is arbitrary, this is
enough to show that 〈S〉 = C3, and therefore S is a spanning set for C3 (Definition TSVS
[1076]). (This set comes from the columns of the coefficient matrix of Archetype B [2392].)
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Now examine the situation for a particular choice of b, say b =

−33
24
5

. Because S is a

spanning set for C3, we know we can write b as a linear combination of the vectors in S,−33
24
5

 = (−3)

−7
5
1

+ (5)

−6
5
0

+ (2)

−12
7
4

 .
The nonsingularity of the matrix A tells that the scalars in this linear combination are
unique. More precisely, it is the linear independence of S that provides the uniqueness. We
will refer to the scalars a1 = −3, a2 = 5, a3 = 2 as a “representation of b relative to S.” In
other words, once we settle on S as a linearly independent set that spans C3, the vector b
is recoverable just by knowing the scalars a1 = −3, a2 = 5, a3 = 2 (use these scalars in a
linear combination of the vectors in S). This is all an illustration of the following important
theorem, which we prove in the setting of a general vector space. �

Theorem VRRB
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Vector Representation Relative to a Basis
Suppose that V is a vector space and B = {v1, v2, v3, . . . , vm} is a linearly independent set
that spans V . Let w be any vector in V . Then there exist unique scalars a1, a2, a3, . . . , am
such that

w = a1v1 + a2v2 + a3v3 + · · ·+ amvm.

�

Proof That w can be written as a linear combination of the vectors in B follows from the
spanning property of the set (Definition TSVS [1076]). This is good, but not the meat of
this theorem. We now know that for any choice of the vector w there exist some scalars that
will create w as a linear combination of the basis vectors. The real question is: Is there more
than one way to write w as a linear combination of {v1, v2, v3, . . . , vm}? Are the scalars
a1, a2, a3, . . . , am unique? (Technique U [2357])

Assume there are two ways to express w as a linear combination of {v1, v2, v3, . . . , vm}.
In other words there exist scalars a1, a2, a3, . . . , am and b1, b2, b3, . . . , bm so that

w = a1v1 + a2v2 + a3v3 + · · ·+ amvm
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w = b1v1 + b2v2 + b3v3 + · · ·+ bmvm.

Then notice that

0 = w + (−w) Property AI [957]

= w + (−1)w Theorem AISM [981]

= (a1v1 + a2v2 + a3v3 + · · ·+ amvm)+

(−1)(b1v1 + b2v2 + b3v3 + · · ·+ bmvm)

= (a1v1 + a2v2 + a3v3 + · · ·+ amvm)+

(−b1v1 − b2v2 − b3v3 − . . .− bmvm) Property DVA [958]

= (a1 − b1)v1 + (a2 − b2)v2 + (a3 − b3)v3+

· · ·+ (am − bm)vm Property C [957], Property DSA [958]

But this is a relation of linear dependence on a linearly independent set of vectors (Definition
RLD [1061])! Now we are using the other assumption about B, that {v1, v2, v3, . . . , vm}
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is a linearly independent set. So by Definition LI [1061] it must happen that the scalars are
all zero. That is,

(a1 − b1) = 0 (a2 − b2) = 0 (a3 − b3) = 0 . . . (am − bm) = 0

a1 = b1 a2 = b2 a3 = b3 . . . am = bm.

And so we find that the scalars are unique. �

This is a very typical use of the hypothesis that a set is linearly independent — obtain a
relation of linear dependence and then conclude that the scalars must all be zero. The result
of this theorem tells us that we can write any vector in a vector space as a linear combination
of the vectors in a linearly independent spanning set, but only just. There is only enough
raw material in the spanning set to write each vector one way as a linear combination. So
in this sense, we could call a linearly independent spanning set a “minimal spanning set.”
These sets are so important that we will give them a simpler name (“basis”) and explore
their properties further in the next section.
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Subsection READ
Reading Questions

1. Is the set of matrices below linearly independent or linearly dependent in the vector
space M22? Why or why not?

{[
1 3
−2 4

]
,

[−2 3
3 −5

]
,

[
0 9
−1 3

]}

2. Explain the difference between the following two uses of the term “span”:
(a) S is a subset of the vector space V and the span of S is a subspace of V .
(b) W is subspace of the vector space Y and T spans W .
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3. The set

S =


6

2
1

 ,
 4
−3
1

 ,
5

8
2


is linearly independent and spans C3. Write the vector x =

−6
2
2

 a linear combination

of the elements of S. How many ways are there to answer this question, and which
theorem allows you to say so?
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Subsection EXC
Exercises

C20 In the vector space of 2 × 2 matrices, M22, determine if the set S below is linearly
independent.

S =

{[
2 −1
1 3

]
,

[
0 4
−1 2

]
,

[
4 2
1 3

]}
Contributed by Robert Beezer Solution [1101]

C21 In the crazy vector space C (Example CVS [970]), is the set S = {(0, 2), (2, 8)}
linearly independent?
Contributed by Robert Beezer Solution [1102]

C22 In the vector space of polynomials P3, determine if the set S is linearly independent
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or linearly dependent.

S =
{

2 + x− 3x2 − 8x3, 1 + x+ x2 + 5x3, 3− 4x2 − 7x3
}

Contributed by Robert Beezer Solution [1104]

C23 Determine if the set S = {(3, 1), (7, 3)} is linearly independent in the crazy vector
space C (Example CVS [970]).
Contributed by Robert Beezer Solution [1105]

C24 In the vector space of real-valued functions F = {f | f : R → R}, determine if the
following set S is linearly independent.

S =
{

sin2 x, cos2 x, 2
}

Contributed by Chris Black Solution [1105]
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C25 Let

S =

{[
1 2
2 1

]
,

[
2 1
−1 2

]
,

[
0 1
1 2

]}
1. Determine if S spans M2,2.

2. Determine if S is linearly independent.

Contributed by Chris Black Solution [1106]

C26 Let

S =

{[
1 2
2 1

]
,

[
2 1
−1 2

]
,

[
0 1
1 2

]
,

[
1 0
1 1

]
,

[
1 4
0 3

]}
1. Determine if S spans M2,2.

2. Determine if S is linearly independent.
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Contributed by Chris Black Solution [1108]

C30 In Example LIM32 [1066], find another nontrivial relation of linear dependence on
the linearly dependent set of 3× 2 matrices, S.
Contributed by Robert Beezer

C40 Determine if the set T = {x2 − x+ 5, 4x3 − x2 + 5x, 3x+ 2} spans the vector space
of polynomials with degree 4 or less, P4.
Contributed by Robert Beezer Solution [1112]

C41 The set W is a subspace of M22, the vector space of all 2× 2 matrices. Prove that S
is a spanning set for W .

W =

{[
a b
c d

]
| 2a− 3b+ 4c− d = 0

}
S =

{[
1 0
0 2

]
,

[
0 1
0 −3

]
,

[
0 0
1 4

]}
Contributed by Robert Beezer Solution [1113]
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C42 Determine if the set S = {(3, 1), (7, 3)} spans the crazy vector space C (Example
CVS [970]).
Contributed by Robert Beezer Solution [1115]

M10 Halfway through Example SSP4 [1077], we need to show that the system of equations

LS




0 0 0 1
0 0 1 −8
0 1 −6 24
1 −4 12 −32
−2 4 −8 16

 ,

a
b
c
d
e




is consistent for every choice of the vector of constants satisfying 16a+ 8b+ 4c+ 2d+ e = 0.
Express the column space of the coefficient matrix of this system as a null space, using

Theorem FS [902]. From this use Theorem CSCS [812] to establish that the system is always
consistent. Notice that this approach removes from Example SSP4 [1077] the need to row-
reduce a symbolic matrix.
Contributed by Robert Beezer Solution [1116]
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T40 Prove the following variation of Theorem EMMVP [670]: Suppose thatB = {u1, u2, u3, . . . , un}
is a basis for Cn. Suppose also that A and B are m × n matrices such that Aui = Bui for
every 1 ≤ i ≤ n. Then A = B. Can you modify the hypothesis further and obtain a gener-
alization of Theorem EMMVP [670]?
Contributed by Robert Beezer

T50 Suppose that V is a vector space and u, v ∈ V are two vectors in V . Use the definition
of linear independence to prove that S = {u, v} is a linearly dependent set if and only if
one of the two vectors is a scalar multiple of the other. Prove this directly in the context of
an abstract vector space (V ), without simply giving an upgraded version of Theorem DLDS
[522] for the special case of just two vectors.
Contributed by Robert Beezer Solution [1117]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [1095]
Begin with a relation of linear dependence on the vectors in S and massage it according to
the definitions of vector addition and scalar multiplication in M22,

O = a1

[
2 −1
1 3

]
+ a2

[
0 4
−1 2

]
+ a3

[
4 2
1 3

]
[
0 0
0 0

]
=

[
2a1 + 4a3 −a1 + 4a2 + 2a3

a1 − a2 + a3 3a1 + 2a2 + 3a3

]
By our definition of matrix equality (Definition ME [613]) we arrive at a homogeneous system
of linear equations,

2a1 + 4a3 = 0
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−a1 + 4a2 + 2a3 = 0

a1 − a2 + a3 = 0

3a1 + 2a2 + 3a3 = 0

The coefficient matrix of this system row-reduces to the matrix,
1 0 0

0 1 0

0 0 1
0 0 0


and from this we conclude that the only solution is a1 = a2 = a3 = 0. Since the relation
of linear dependence (Definition RLD [1061]) is trivial, the set S is linearly independent
(Definition LI [1061]).

C21 Contributed by Robert Beezer Statement [1095]
We begin with a relation of linear dependence using unknown scalars a and b. We wish
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to know if these scalars must both be zero. Recall that the zero vector in C is (−1, −1)
and that the definitions of vector addition and scalar multiplication are not what we might
expect.

0 = (−1, −1)

= a(0, 2) + b(2, 8) Definition RLD [1061]

= (0a+ a− 1, 2a+ a− 1) + (2b+ b− 1, 8b+ b− 1) Scalar mult., Example CVS [970]

= (a− 1, 3a− 1) + (3b− 1, 9b− 1)

= (a− 1 + 3b− 1 + 1, 3a− 1 + 9b− 1 + 1) Vector addition, Example CVS [970]

= (a+ 3b− 1, 3a+ 9b− 1)

From this we obtain two equalities, which can be converted to a homogeneous system of
equations,

−1 = a+ 3b− 1 a+ 3b = 0
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−1 = 3a+ 9b− 1 3a+ 9b = 0

This homogeneous system has a singular coefficient matrix (Theorem SMZD [1348]), and so
has more than just the trivial solution (Definition NM [246]). Any nontrivial solution will
give us a nontrivial relation of linear dependence on S. So S is linearly dependent (Definition
LI [1061]).

C22 Contributed by Robert Beezer Statement [1095]
Begin with a relation of linear dependence (Definition RLD [1061]),

a1

(
2 + x− 3x2 − 8x3

)
+ a2

(
1 + x+ x2 + 5x3

)
+ a3

(
3− 4x2 − 7x3

)
= 0

Massage according to the definitions of scalar multiplication and vector addition in the
definition of P3 (Example VSP [963]) and use the zero vector dro this vector space,

(2a1 + a2 + 3a3)+(a1 + a2)x+(−3a1 + a2 − 4a3)x
2+(−8a1 + 5a2 − 7a3)x

3 = 0+0x+0x2+0x3

The definition of the equality of polynomials allows us to deduce the following four equations,

2a1 + a2 + 3a3 = 0
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a1 + a2 = 0

−3a1 + a2 − 4a3 = 0

−8a1 + 5a2 − 7a3 = 0

Row-reducing the coefficient matrix of this homogeneous system leads to the unique solution
a1 = a2 = a3 = 0. So the only relation of linear dependence on S is the trivial one, and this
is linear independence for S (Definition LI [1061]).

C23 Contributed by Robert Beezer Statement [1096]
Notice, or discover, that the following gives a nontrivial relation of linear dependence on S
in C, so by Definition LI [1061], the set S is linearly dependent.

2(3, 1) + (−1)(7, 3) = (7, 3) + (−9, −5) = (−1, −1) = 0

C24 Contributed by Chris Black Statement [1096]
One of the fundamental identities of trigonometry is sin2(x) + cos2(x) = 1. Thus, we have a
dependence relation 2(sin2 x) + 2(cos2 x) + (−1)(2) = 0, and the set is linearly dependent.
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C25 Contributed by Chris Black Statement [1097]

1. If S spans M2,2, then for every 2× 2 matrix B =

[
x y
z w

]
, there exist constants α, β, γ

so that [
x y
z w

]
= α

[
1 2
2 1

]
+ β

[
2 1
−1 2

]
+ γ

[
0 1
1 2

]
Applying Definition ME [613], this leads to the linear system

α + 2β = x

2α + β + γ = y

2α− β + γ = z

α + 2β + 2γ = w.
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We need to row-reduce the augmented matrix of this system by hand due to the symbols
x, y, z, and w in the vector of constants.

1 2 0 x
2 1 1 y
2 −1 1 z
1 2 2 w

 RREF−−−→


1 0 0 x− y + z

0 1 0 1
2
(y − z)

0 0 1 1
2
(w − x)

0 0 0 1
2
(5y − 3x− 3z − w)


With the apperance of a leading 1 possible in the last column, by Theorem RCLS [172]

there will exist some matrices B =

[
x y
z w

]
so that the linear system above has no

solution (namely, whenever 5y − 3x − 3z − w 6= 0), so the set S does not span M2,2.

(For example, you can verify that there is no solution when B =

[
3 3
3 2

]
.)

2. To check for linear independence, we need to see if there are nontrivial coefficients α, β, γ
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that solve [
0 0
0 0

]
= α

[
1 2
2 1

]
+ β

[
2 1
−1 2

]
+ γ

[
0 1
1 2

]
This requires the same work that was done in part (a), with x = y = z = w = 0. In
that case, the coefficient matrix row-reduces to have a leading 1 in each of the first three
columns and a row of zeros on the bottom, so we know that the only solution to the
matrix equation is α = β = γ = 0. So the set S is linearly independent.

C26 Contributed by Chris Black Statement [1097]

1. The matrices in S will span M2,2 if for any

[
x y
z w

]
, there are coefficients a, b, c, d, e so

that

a

[
1 2
2 1

]
+ b

[
2 1
−1 2

]
+ c

[
0 1
1 2

]
+ d

[
1 0
1 1

]
+ e

[
1 4
0 3

]
=

[
x y
z w

]
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Thus, we have [
a+ 2b+ d+ e 2a+ b+ c+ 4e
2a− b+ c+ d a+ 2b+ 2c+ d+ 3e

]
=

[
x y
z w

]
so we have the matrix equation


1 2 0 1 1
2 1 1 0 4
2 −1 1 1 0
1 2 2 1 3



a
b
c
d
e

 =


x
y
z
w


This system will have a solution for every vector on the right side if the row-reduced
coefficient matrix has a leading one in every row, since then it is never possible to have
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a leading 1 appear in teh final colum of a row-reduced augmented matrix.


1 2 0 1 1
2 1 1 0 4
2 −1 1 1 0
1 2 2 1 3

 RREF−−−→


1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 −2



Since there is a leading one in each row of the row-reduced coefficient matrix, there is

a solution for every vector


x
y
z
w

, which means that there is a solution to the original

equation for every matrix

[
x y
z w

]
. Thus, the original four matrices span M2,2.
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2. The matrices in S are linearly independent if the only solution to

a

[
1 2
2 1

]
+ b

[
2 1
−1 2

]
+ c

[
0 1
1 2

]
+ d

[
1 0
1 1

]
+ e

[
1 4
0 3

]
=

[
0 0
0 0

]

is a = b = c = d = e = 0.

We have

[
a+ 2b+ d+ e 2a+ b+ c+ 4e
2a− b+ c+ d a+ 2b+ 2c+ d+ 3e

]
=


1 2 0 1 1
2 1 1 0 4
2 −1 1 1 0
1 2 2 1 3



a
b
c
d
e

 =

[
0 0
0 0

]
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so we need to find the nullspace of the matrix
1 2 0 1 1
2 1 1 0 4
2 −1 1 1 0
1 2 2 1 3


We row-reduced this matrix in part (a), and found that there is a column without a
leading 1, which correspons to a free variable in a description of the solution set to the
homogeneous system, so the nullspace is nontrivial and there are an infinite number of
solutions to

a

[
1 2
2 1

]
+ b

[
2 1
−1 2

]
+ c

[
0 1
1 2

]
+ d

[
1 0
1 1

]
+ e

[
1 4
0 3

]
=

[
0 0
0 0

]
Thus, this set of matrices is not linearly independent.

C40 Contributed by Robert Beezer Statement [1098]
The polynomial x4 is an element of P4. Can we write this element as a linear combination
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of the elements of T? To wit, are there scalars a1, a2, a3 such that

x4 = a1

(
x2 − x+ 5

)
+ a2

(
4x3 − x2 + 5x

)
+ a3 (3x+ 2)

Massaging the right side of this equation, according to the definitions of Example VSP [963],
and then equating coefficients, leads to an inconsistent system of equations (check this!). As
such, T is not a spanning set for P4.

C41 Contributed by Robert Beezer Statement [1098]
We want to show that W = 〈S〉 (Definition TSVS [1076]), which is an equality of sets
(Definition SE [2327]).

First, show that 〈S〉 ⊆ W . Begin by checking that each of the three matrices in S is a
member of the set W . Then, since W is a vector space, the closure properties (Property AC
[956], Property SC [957]) guarantee that every linear combination of elements of S remains
in W .

Second, show that W ⊆ 〈S〉. We want to convince ourselves that an arbitrary element
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of W is a linear combination of elements of S. Choose

x =

[
a b
c d

]
∈ W

The values of a, b, c, d are not totally arbitrary, since membership in W requires that 2a−
3b+ 4c− d = 0. Now, rewrite as follows,

x =

[
a b
c d

]
=

[
a b
c 2a− 3b+ 4c

]
2a− 3b+ 4c− d = 0

=

[
a 0
0 2a

]
+

[
0 b
0 −3b

]
+

[
0 0
c 4c

]
Definition MA [614]

= a

[
1 0
0 2

]
+ b

[
0 1
0 −3

]
+ c

[
0 0
1 4

]
Definition MSM [615]
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∈ 〈S〉 Definition SS [1023]

C42 Contributed by Robert Beezer Statement [1099]
We will try to show that S spans C. Let (x, y) be an arbitrary element of C and search for
scalars a1 and a2 such that

(x, y) = a1(3, 1) + a2(7, 3)

= (4a1 − 1, 2a1 − 1) + (8a2 − 1, 4a2 − 1)

= (4a1 + 8a2 − 1, 2a1 + 4a2 − 1)

Equality in C leads to the system

4a1 + 8a2 = x+ 1

2a1 + 4a2 = y + 1

This system has a singular coefficient matrix whose column space is simply

〈[
2
1

]〉
. So any
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choice of x and y that causes the column vector

[
x+ 1
y + 1

]
to lie outside the column space will

lead to an inconsistent system, and hence create an element (x, y) that is not in the span of
S. So S does not span C.

For example, choose x = 0 and y = 5, and then we can see that

[
1
6

]
6∈
〈[

2
1

]〉
and we

know that (0, 5) cannot be written as a linear combination of the vectors in S. A shorter
solution might begin by asserting that (0, 5) is not in 〈S〉 and then establishing this claim
alone.

M10 Contributed by Robert Beezer Statement [1099]
Theorem FS [902] provides the matrix

L =
[

1 1
2

1
4

1
8

1
16

]
and so if A denotes the coefficient matrix of the system, then C(A) = N (L). The single
homogeneous equation in LS(L, 0) is equivalent to the condition on the vector of constants
(use a, b, c, d, e as variables and then multiply by 16).
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T50 Contributed by Robert Beezer Statement [1100]

(⇒) If S is linearly dependent, then there are scalars α and β, not both zero, such that
αu + βv = 0. Suppose that α 6= 0, the proof proceeds similarly if β 6= 0. Now,

u = 1u Property O [958]

=

(
1

α
α

)
u Property MICN [2318]

=
1

α
(αu) Property SMA [957]

=
1

α
(αu + 0) Property Z [957]

=
1

α
(αu + βv − βv) Property AI [957]

=
1

α
(0− βv) Definition LI [1061]
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=
1

α
(−βv) Property Z [957]

=
−β
α

v Property SMA [957]

which shows that u is a scalar multiple of v.
(⇐) Suppose now that u is a scalar multiple of v. More precisely, suppose there is a

scalar γ such that u = γv. Then

(−1)u + γv = (−1)u + u

= (−1)u + (1)u Property O [958]

= ((−1) + 1) u Property DSA [958]

= 0u Property AICN [2318]

= 0 Theorem ZSSM [979]

This is a relation of linear of linear dependence on S (Definition RLD [1061]), which is
nontrivial since one of the scalars is −1. Therefore S is linearly dependent by Definition LI
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[1061].
Be careful using this theorem. It is only applicable to sets of two vectors. In particular,

linear dependence in a set of three or more vectors can be more complicated than just one
vector being a scalar multiple of another.

Version 2.11



Section B Bases 1124

Section B

Bases

A basis of a vector space is one of the most useful concepts in linear algebra. It often provides
a concise, finite description of an infinite vector space.

Subsection B
Bases

We now have all the tools in place to define a basis of a vector space.

Definition B
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Basis
Suppose V is a vector space. Then a subset S ⊆ V is a basis of V if it is linearly independent
and spans V . 4

So, a basis is a linearly independent spanning set for a vector space. The requirement
that the set spans V insures that S has enough raw material to build V , while the linear
independence requirement insures that we do not have any more raw material than we need.
As we shall see soon in Section D [1176], a basis is a minimal spanning set.

You may have noticed that we used the term basis for some of the titles of previous
theorems (e.g. Theorem BNS [484], Theorem BCS [822], Theorem BRS [843]) and if you
review each of these theorems you will see that their conclusions provide linearly independent
spanning sets for sets that we now recognize as subspaces of Cm. Examples associated with
these theorems include Example NSLIL [487], Example CSOCD [824] and Example IAS
[845]. As we will see, these three theorems will continue to be powerful tools, even in the
setting of more general vector spaces.

Furthermore, the archetypes contain an abundance of bases. For each coefficient matrix
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of a system of equations, and for each archetype defined simply as a matrix, there is a basis
for the null space, three bases for the column space, and a basis for the row space. For this
reason, our subsequent examples will concentrate on bases for vector spaces other than Cm.
Notice that Definition B [1121] does not preclude a vector space from having many bases,
and this is the case, as hinted above by the statement that the archetypes contain three
bases for the column space of a matrix. More generally, we can grab any basis for a vector
space, multiply any one basis vector by a non-zero scalar and create a slightly different set
that is still a basis. For “important” vector spaces, it will be convenient to have a collection
of “nice” bases. When a vector space has a single particularly nice basis, it is sometimes
called the standard basis though there is nothing precise enough about this term to allow
us to define it formally — it is a question of style. Here are some nice bases for important
vector spaces.

Theorem SUVB
Standard Unit Vectors are a Basis
The set of standard unit vectors for Cm (Definition SUV [586]), B = {e1, e2, e3, . . . , em} =
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{ei | 1 ≤ i ≤ m} is a basis for the vector space Cm. �

Proof We must show that the set B is both linearly independent and a spanning set for
Cm. First, the vectors in B are, by Definition SUV [586], the columns of the identity matrix,
which we know is nonsingular (since it row-reduces to the identity matrix, Theorem NMRRI
[250]). And the columns of a nonsingular matrix are linearly independent by Theorem
NMLIC [478].

Suppose we grab an arbitrary vector from Cm, say

v =


v1

v2

v3
...
vm

 .
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Can we write v as a linear combination of the vectors in B? Yes, and quite simply.
v1

v2

v3
...
vm

 = v1


1
0
0
...
0

+ v2


0
1
0
...
0

+ v3


0
0
1
...
0

+ · · ·+ vm


0
0
0
...
1


v = v1e1 + v2e2 + v3e3 + · · ·+ vmem

this shows that Cm ⊆ 〈B〉, which is sufficient to show that B is a spanning set for Cm. �

Example BP
Bases for Pn
The vector space of polynomials with degree at most n, Pn, has the basis

B =
{

1, x, x2, x3, . . . , xn
}
.
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Another nice basis for Pn is

C =
{

1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, . . . , 1 + x+ x2 + x3 + · · ·+ xn
}
.

Checking that each of B and C is a linearly independent spanning set are good exercises. �

Example BM
A basis for the vector space of matrices
In the vector space Mmn of matrices (Example VSM [961]) define the matrices Bk`, 1 ≤ k ≤
m, 1 ≤ ` ≤ n by

[Bk`]ij =

{
1 if k = i, ` = j

0 otherwise

So these matrices have entries that are all zeros, with the exception of a lone entry that is
one. The set of all mn of them,

B = {Bk` | 1 ≤ k ≤ m, 1 ≤ ` ≤ n}
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forms a basis for Mmn. �

The bases described above will often be convenient ones to work with. However a basis
doesn’t have to obviously look like a basis.

Example BSP4
A basis for a subspace of P4

In Example SSP4 [1077] we showed that

S =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a spanning set for W = {p(x) | p ∈ P4, p(2) = 0}. We will now show that S is also linearly
independent in W . Begin with a relation of linear dependence,

0 + 0x+ 0x2 + 0x3 + 0x4 = α1 (x− 2) + α2

(
x2 − 4x+ 4

)
+ α3

(
x3 − 6x2 + 12x− 8

)
+ α4

(
x4 − 8x3 + 24x2 − 32x+ 16

)
= α4x

4 + (α3 − 8α4)x
3 + (α2 − 6α3 + 24α4)x

2
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+ (α1 − 4α2 + 12α3 − 32α4)x+ (−2α1 + 4α2 − 8α3 + 16α4)

Equating coefficients (vector equality in P4) gives the homogeneous system of five equations
in four variables,

α4 = 0

α3 − 8α4 = 0

α2 − 6α3 + 24α4 = 0

α1 − 4α2 + 12α3 − 32α4 = 0

−2α1 + 4α2 − 8α3 + 16α4 = 0

We form the coefficient matrix, and row-reduce to obtain a matrix in reduced row-echelon
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form 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


With only the trivial solution to this homogeneous system, we conclude that only scalars
that will form a relation of linear dependence are the trivial ones, and therefore the set S
is linearly independent (Definition LI [1061]). Finally, S has earned the right to be called a
basis for W (Definition B [1121]). �

Example BSM22
A basis for a subspace of M22

In Example SSM22 [1081] we discovered that

Q =

{[−3 1
0 0

]
,

[
1 0
−4 1

]}
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is a spanning set for the subspace

Z =

{[
a b
c d

]
| a+ 3b− c− 5d = 0, −2a− 6b+ 3c+ 14d = 0

}
of the vector space of all 2 × 2 matrices, M22. If we can also determine that Q is linearly
independent in Z (or in M22), then it will qualify as a basis for Z. Let’s begin with a relation
of linear dependence. [

0 0
0 0

]
= α1

[−3 1
0 0

]
+ α2

[
1 0
−4 1

]
=

[−3α1 + α2 α1

−4α2 α2

]
Using our definition of matrix equality (Definition ME [613]) we equate corresponding entries
and get a homogeneous system of four equations in two variables,

−3α1 + α2 = 0
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α1 = 0

−4α2 = 0

α2 = 0

We could row-reduce the coefficient matrix of this homogeneous system, but it is not nec-
essary. The second and fourth equations tell us that α1 = 0, α2 = 0 is the only solution to
this homogeneous system. This qualifies the set Q as being linearly independent, since the
only relation of linear dependence is trivial (Definition LI [1061]). Therefore Q is a basis for
Z (Definition B [1121]). �

Example BC
Basis for the crazy vector space
In Example LIC [1073] and Example SSC [1084] we determined that the setR = {(1, 0), (6, 3)}
from the crazy vector space, C (Example CVS [970]), is linearly independent and is a span-
ning set for C. By Definition B [1121] we see that R is a basis for C. �

We have seen that several of the sets associated with a matrix are subspaces of vector
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spaces of column vectors. Specifically these are the null space (Theorem NSMS [1017]),
column space (Theorem CSMS [1037]), row space (Theorem RSMS [1038]) and left null
space (Theorem LNSMS [1038]). As subspaces they are vector spaces (Definition S [1002])
and it is natural to ask about bases for these vector spaces. Theorem BNS [484], Theorem
BCS [822], Theorem BRS [843] each have conclusions that provide linearly independent
spanning sets for (respectively) the null space, column space, and row space. Notice that
each of these theorems contains the word “basis” in its title, even though we did not know
the precise meaning of the word at the time. To find a basis for a left null space we can
use the definition of this subspace as a null space (Definition LNS [881]) and apply Theorem
BNS [484]. Or Theorem FS [902] tells us that the left null space can be expressed as a row
space and we can then use Theorem BRS [843].

Theorem BS [539] is another early result that provides a linearly independent spanning
set (i.e. a basis) as its conclusion. If a vector space of column vectors can be expressed as a
span of a set of column vectors, then Theorem BS [539] can be employed in a straightforward
manner to quickly yield a basis.
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Subsection BSCV
Bases for Spans of Column Vectors

We have seen several examples of bases in different vector spaces. In this subsection, and the
next (Subsection B.BNM [1138]), we will consider building bases for Cm and its subspaces.

Suppose we have a subspace of Cm that is expressed as the span of a set of vectors, S, and
S is not necessarily linearly independent, or perhaps not very attractive. Theorem REMRS
[839] says that row-equivalent matrices have identical row spaces, while Theorem BRS [843]
says the nonzero rows of a matrix in reduced row-echelon form are a basis for the row space.
These theorems together give us a great computational tool for quickly finding a basis for a
subspace that is expressed originally as a span.

Example RSB
Row space basis
When we first defined the span of a set of column vectors, in Example SCAD [419] we looked
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at the set

W =

〈
 2
−3
1

 ,
1

4
1

 ,
 7
−5
4

 ,
−7
−6
−5


〉

with an eye towards realizing W as the span of a smaller set. By building relations of linear
dependence (though we did not know them by that name then) we were able to remove two
vectors and write W as the span of the other two vectors. These two remaining vectors
formed a linearly independent set, even though we did not know that at the time.

Now we know that W is a subspace and must have a basis. Consider the matrix, C,
whose rows are the vectors in the spanning set for W ,

C =


2 −3 1
1 4 1
7 −5 4
−7 −6 −5


Then, by Definition RSM [833], the row space of C will be W , R(C) = W . Theorem BRS
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[843] tells us that if we row-reduce C, the nonzero rows of the row-equivalent matrix in
reduced row-echelon form will be a basis for R(C), and hence a basis for W . Let’s do it —
C row-reduces to 

1 0 7
11

0 1 1
11

0 0 0
0 0 0


If we convert the two nonzero rows to column vectors then we have a basis,

B =


 1

0
7
11

 ,
 0

1
1
11


and

W =

〈
 1

0
7
11

 ,
 0

1
1
11


〉
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For aesthetic reasons, we might wish to multiply each vector in B by 11, which will not
change the spanning or linear independence properties of B as a basis. Then we can also
write

W =

〈
11

0
7

 ,
 0

11
1


〉

�

Example IAS [845] provides another example of this flavor, though now we can notice
that X is a subspace, and that the resulting set of three vectors is a basis. This is such a
powerful technique that we should do one more example.

Example RS
Reducing a span
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In Example RSC5 [525] we began with a set of n = 4 vectors from C5,

R = {v1, v2, v3, v4} =




1
2
−1
3
2

 ,


2
1
3
1
2

 ,


0
−7
6
−11
−2

 ,


4
1
2
1
6




and defined V = 〈R〉. Our goal in that problem was to find a relation of linear dependence
on the vectors in R, solve the resulting equation for one of the vectors, and re-express V as
the span of a set of three vectors.

Here is another way to accomplish something similar. The row space of the matrix

A =


1 2 −1 3 2
2 1 3 1 2
0 −7 6 −11 −2
4 1 2 1 6
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is equal to 〈R〉. By Theorem BRS [843] we can row-reduce this matrix, ignore any zero
rows, and use the non-zero rows as column vectors that are a basis for the row space of A.
Row-reducing A creates the matrix

1 0 0 − 1
17

30
17

0 1 0 25
17

− 2
17

0 0 1 − 2
17
− 8

17

0 0 0 0 0


So 


1
0
0
− 1

17
30
17

 ,


0
1
0
25
17− 2
17

 ,


0
0
1
− 2

17− 8
17




is a basis for V . Our theorem tells us this is a basis, there is no need to verify that the
subspace spanned by three vectors (rather than four) is the identical subspace, and there is
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no need to verify that we have reached the limit in reducing the set, since the set of three
vectors is guaranteed to be linearly independent. �

Subsection BNM
Bases and Nonsingular Matrices

A quick source of diverse bases for Cm is the set of columns of a nonsingular matrix.

Theorem CNMB
Columns of Nonsingular Matrix are a Basis
Suppose that A is a square matrix of size m. Then the columns of A are a basis of Cm if
and only if A is nonsingular. �

Proof (⇒) Suppose that the columns of A are a basis for Cm. Then Definition B [1121]
says the set of columns is linearly independent. Theorem NMLIC [478] then says that A is
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nonsingular.

(⇐) Suppose that A is nonsingular. Then by Theorem NMLIC [478] this set of columns is
linearly independent. Theorem CSNM [830] says that for a nonsingular matrix, C(A) = Cm.
This is equivalent to saying that the columns of A are a spanning set for the vector space
Cm. As a linearly independent spanning set, the columns of A qualify as a basis for Cm

(Definition B [1121]). �

Example CABAK
Columns as Basis, Archetype K
Archetype K [2515] is the 5× 5 matrix

K =


10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20
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which is row-equivalent to the 5× 5 identity matrix I5. So by Theorem NMRRI [250], K is
nonsingular. Then Theorem CNMB [1138] says the set


10
12
−30
27
18

 ,


18
−2
−21
30
24

 ,


24
−6
−23
36
30

 ,


24
0
−30
37
30

 ,

−12
−18
39
−30
−20




is a (novel) basis of C5. �

Perhaps we should view the fact that the standard unit vectors are a basis (Theorem
SUVB [1122]) as just a simple corollary of Theorem CNMB [1138]? (See Technique LC
[2369].)

With a new equivalence for a nonsingular matrix, we can update our list of equivalences.

Theorem NME5
Nonsingular Matrix Equivalences, Round 5
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Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.
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�

Proof With a new equivalence for a nonsingular matrix in Theorem CNMB [1138] we can
expand Theorem NME4 [831]. �

Subsection OBC
Orthonormal Bases and Coordinates

We learned about orthogonal sets of vectors in Cm back in Section O [565], and we also
learned that orthogonal sets are automatically linearly independent (Theorem OSLI [589]).
When an orthogonal set also spans a subspace of Cm, then the set is a basis. And when the
set is orthonormal, then the set is an incredibly nice basis. We will back up this claim with
a theorem, but first consider how you might manufacture such a set.

Suppose that W is a subspace of Cm with basis B. Then B spans W and is a linearly
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independent set of nonzero vectors. We can apply the Gram-Schmidt Procedure (Theorem
GSP [593]) and obtain a linearly independent set T such that 〈T 〉 = 〈B〉 = W and T is
orthogonal. In other words, T is a basis for W , and is an orthogonal set. By scaling each
vector of T to norm 1, we can convert T into an orthonormal set, without destroying the
properties that make it a basis of W . In short, we can convert any basis into an orthonormal
basis. Example GSTV [598], followed by Example ONTV [600], illustrates this process.

Unitary matrices (Definition UM [785]) are another good source of orthonormal bases
(and vice versa). Suppose that Q is a unitary matrix of size n. Then the n columns of
Q form an orthonormal set (Theorem CUMOS [788]) that is therefore linearly independent
(Theorem OSLI [589]). Since Q is invertible (Theorem UMI [787]), we know Q is nonsingular
(Theorem NI [781]), and then the columns of Q span Cn (Theorem CSNM [830]). So the
columns of a unitary matrix of size n are an orthonormal basis for Cn.

Why all the fuss about orthonormal bases? Theorem VRRB [1090] told us that any
vector in a vector space could be written, uniquely, as a linear combination of basis vectors.
For an orthonormal basis, finding the scalars for this linear combination is extremely easy,
and this is the content of the next theorem. Furthermore, with vectors written this way
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(as linear combinations of the elements of an orthonormal set) certain computations and
analysis become much easier. Here’s the promised theorem.

Theorem COB
Coordinates and Orthonormal Bases
Suppose that B = {v1, v2, v3, . . . , vp} is an orthonormal basis of the subspace W of Cm.
For any w ∈ W ,

w = 〈w, v1〉v1 + 〈w, v2〉v2 + 〈w, v3〉v3 + · · ·+ 〈w, vp〉vp

�

Proof Because B is a basis of W , Theorem VRRB [1090] tells us that we can write w
uniquely as a linear combination of the vectors in B. So it is not this aspect of the conclusion
that makes this theorem interesting. What is interesting is that the particular scalars are so
easy to compute. No need to solve big systems of equations — just do an inner product of
w with vi to arrive at the coefficient of vi in the linear combination.
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So begin the proof by writing w as a linear combination of the vectors in B, using
unknown scalars,

w = a1v1 + a2v2 + a3v3 + · · ·+ apvp

and compute,

〈w, vi〉 =

〈
p∑

k=1

akvk, vi

〉
Theorem VRRB [1090]

=

p∑
k=1

〈akvk, vi〉 Theorem IPVA [572]

=

p∑
k=1

ak 〈vk, vi〉 Theorem IPSM [574]

= ai 〈vi, vi〉+

p∑
i=1
k 6=i

ak 〈vk, vi〉 Property C [957]
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= ai(1) +

p∑
i=1
k 6=i

ak(0) Definition ONS [599]

= ai

So the (unique) scalars for the linear combination are indeed the inner products advertised
in the conclusion of the theorem’s statement. �

Example CROB4
Coordinatization relative to an orthonormal basis, C4

The set

{x1, x2, x3, x4} =




1 + i
1

1− i
i

 ,


1 + 5i
6 + 5i
−7− i
1− 6i

 ,

−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 ,

−2− 4i

6 + i
4 + 3i
6− i




was proposed, and partially verified, as an orthogonal set in Example AOS [588]. Let’s scale
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each vector to norm 1, so as to form an orthonormal set in C4. Then by Theorem OSLI
[589] the set will be linearly independent, and by Theorem NME5 [1140] the set will be a
basis for C4. So, once scalked to norm 1, the adjusted set will be an orthonormal basis of
C4. The norms are,

‖x1‖ =
√

6 ‖x2‖ =
√

174 ‖x3‖ =
√

3451 ‖x4‖ =
√

119

So an orthonormal basis is

B = {v1, v2, v3, v4}

=


1√
6


1 + i

1
1− i
i

 , 1√
174


1 + 5i
6 + 5i
−7− i
1− 6i

 , 1√
3451


−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 , 1√
119


−2− 4i

6 + i
4 + 3i
6− i
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Now, to illustrate Theorem COB [1144], choose any vector from C4, say w =


2
−3
1
4

, and

compute

〈w, v1〉 =
−5i√

6
, 〈w, v2〉 =

−19 + 30i√
174

, 〈w, v3〉 =
120− 211i√

3451
, 〈w, v4〉 =

6 + 12i√
119

Then Theorem COB [1144] guarantees that


2
−3
1
4

 =
−5i√

6

 1√
6


1 + i

1
1− i
i


+

−19 + 30i√
174

 1√
174


1 + 5i
6 + 5i
−7− i
1− 6i
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+
120− 211i√

3451

 1√
3451


−7 + 34i
−8− 23i
−10 + 22i
30 + 13i


+

6 + 12i√
119

 1√
119


−2− 4i

6 + i
4 + 3i
6− i




as you might want to check (if you have unlimited patience). �

A slightly less intimidating example follows, in three dimensions and with just real num-
bers.

Example CROB3
Coordinatization relative to an orthonormal basis, C3

The set

{x1, x2, x3} =


1

2
1

 ,
−1

0
1

 ,
2

1
1


is a linearly independent set, which the Gram-Schmidt Process (Theorem GSP [593]) converts
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to an orthogonal set, and which can then be converted to the orthonormal set,

B = {v1, v2, v3} =

 1√
6

1
2
1

 , 1√
2

−1
0
1

 , 1√
3

 1
−1
1



which is therefore an orthonormal basis of C3. With three vectors in C3, all with real number
entries, the inner product (Definition IP [569]) reduces to the usual “dot product” (or scalar
product) and the orthogonal pairs of vectors can be interpreted as perpendicular pairs of
directions. So the vectors in B serve as replacements for our usual 3-D axes, or the usual 3-D
unit vectors ~i,~j and ~k. We would like to decompose arbitrary vectors into “components” in
the directions of each of these basis vectors. It is Theorem COB [1144] that tells us how to
do this.
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Suppose that we choose w =

 2
−1
5

. Compute

〈w, v1〉 =
5√
6

〈w, v2〉 =
3√
2

〈w, v3〉 =
8√
3

then Theorem COB [1144] guarantees that 2
−1
5

 =
5√
6

 1√
6

1
2
1

+
3√
2

 1√
2

−1
0
1

+
8√
3

 1√
3

 1
−1
1


which you should be able to check easily, even if you do not have much patience. �

Not only do the columns of a unitary matrix form an orthonormal basis, but there is a
deeper connection between orthonormal bases and unitary matrices. Informally, the next
theorem says that if we transform each vector of an orthonormal basis by multiplying it
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by a unitary matrix, then the resulting set will be another orthonormal basis. And more
remarkably, any matrix with this property must be unitary! As an equivalence (Technique
E [2348]) we could take this as our defining property of a unitary matrix, though it might
not have the same utility as Definition UM [785].

Theorem UMCOB
Unitary Matrices Convert Orthonormal Bases
Let A be an n × n matrix and B = {x1, x2, x3, . . . , xn} be an orthonormal basis of Cn.
Define

C = {Ax1, Ax2, Ax3, . . . , Axn}
Then A is a unitary matrix if and only if C is an orthonormal basis of Cn. �

Proof (⇒) Assume A is a unitary matrix and establish several facts about C. First we
check that C is an orthonormal set (Definition ONS [599]). By Theorem UMPIP [792], for
i 6= j,

〈Axi, Axj〉 = 〈xi, xj〉 = 0
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Similarly, Theorem UMPIP [792] also gives, for 1 ≤ i ≤ n,

‖Axi‖ = ‖xi‖ = 1

As C is an orthogonal set (Definition OSV [586]), Theorem OSLI [589] yields the linear
independence of C. Having established that the column vectors on C form a linearly inde-
pendent set, a matrix whose columns are the vectors of C is nonsingular (Theorem NMLIC
[478]), and hence these vectors form a basis of Cn by Theorem CNMB [1138].

(⇐) Now assume that C is an orthonormal set. Let y be an arbitrary vector from Cn.
Since B spans Cn, there are scalars, a1, a2, a3, . . . , an, such that

y = a1x1 + a2x2 + a3x3 + · · ·+ anxn

Now

A∗Ay =
n∑
i=1

〈A∗Ay, xi〉xi Theorem COB [1144]
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=
n∑
i=1

〈
A∗A

n∑
j=1

ajxj, xi

〉
xi Definition TSVS [1076]

=
n∑
i=1

〈
n∑
j=1

A∗Aajxj, xi

〉
xi Theorem MMDAA [684]

=
n∑
i=1

〈
n∑
j=1

ajA
∗Axj, xi

〉
xi Theorem MMSMM [685]

=
n∑
i=1

n∑
j=1

〈ajA∗Axj, xi〉xi Theorem IPVA [572]

=
n∑
i=1

n∑
j=1

aj 〈A∗Axj, xi〉xi Theorem IPSM [574]
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=
n∑
i=1

n∑
j=1

aj 〈Axj, (A∗)∗ xi〉xi Theorem AIP [696]

=
n∑
i=1

n∑
j=1

aj 〈Axj, Axi〉xi Theorem AA [638]

=
n∑
i=1

n∑
j=1
j 6=i

aj 〈Axj, Axi〉xi +
n∑
`=1

a` 〈Ax`, Ax`〉x` Property C [957]

=
n∑
i=1

n∑
j=1
j 6=i

aj(0)xi +
n∑
`=1

a`(1)x` Definition ONS [599]

=
n∑
i=1

n∑
j=1
j 6=i

0 +
n∑
`=1

a`x` Theorem ZSSM [979]
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=
n∑
`=1

a`x` Property Z [957]

= y

= Iny Theorem MMIM [682]

Since the choice of y was arbitrary, Theorem EMMVP [670] tells us that A∗A = In, so A is
unitary (Definition UM [785]). �

Version 2.11



Subsection B.READ Reading Questions 1161

Subsection READ
Reading Questions

1. The matrix below is nonsingular. What can you now say about its columns?

A =

−3 0 1
1 2 1
5 1 6



2. Write the vector w =

 6
6
15

 as a linear combination of the columns of the matrix A

above. How many ways are there to answer this question?

3. Why is an orthonormal basis desirable?
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Subsection EXC
Exercises

C10 Find a basis for 〈S〉, where

S =




1
3
2
1

 ,


1
2
1
1

 ,


1
1
0
1

 ,


1
2
2
1

 ,


3
4
1
3


 .

Contributed by Chris Black Solution [1161]

Version 2.11



Subsection B.EXC Exercises 1163

C11 Find a basis for the subspace W of C4,

W =




a+ b− 2c
a+ b− 2c+ d
−2a+ 2b+ 4c− d

b+ d

 | a, b, c, d ∈ C


Contributed by Chris Black Solution [1162]

C12 Find a basis for the vector space T of lower triangular 3×3 matrices; that is, matrices

of the form

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

 where the asterisks represent any complex numbers.

Contributed by Chris Black Solution [1164]

C13 Find a basis for the subspaceQ of P2, defined byQ = {p(x) = a+ bx+ cx2 | p(0) = 0}.

Contributed by Chris Black Solution [1166]
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C14 Find a basis for the subspaceR of P2 defined byR = {p(x) = a+ bx+ cx2 | p′(0) = 0},
where p′ denotes the derivative.
Contributed by Chris Black Solution [1166]

C40 From Example RSB [1132], form an arbitrary (and nontrivial) linear combination of
the four vectors in the original spanning set for W . So the result of this computation is of
course an element of W . As such, this vector should be a linear combination of the basis
vectors in B. Find the (unique) scalars that provide this linear combination. Repeat with
another linear combination of the original four vectors.
Contributed by Robert Beezer Solution [1170]

C80 Prove that {(1, 2), (2, 3)} is a basis for the crazy vector space C (Example CVS
[970]).
Contributed by Robert Beezer

M20 In Example BM [1125] provide the verifications (linear independence and spanning)
to show that B is a basis of Mmn.
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Contributed by Robert Beezer Solution [1166]

T50 Theorem UMCOB [1151] says that unitary matrices are characterized as those matri-
ces that “carry” orthonormal bases to orthonormal bases. This problem asks you to prove a
similar result: nonsingular matrices are characterized as those matrices that “carry” bases
to bases.

More precisely, suppose that A is a square matrix of size n and B = {x1, x2, x3, . . . , xn}
is a basis of Cn. Prove that A is nonsingular if and only if C = {Ax1, Ax2, Ax3, . . . , Axn}
is a basis of Cn. (See also Exercise PD.T33 [1265], Exercise MR.T20 [1926].
Contributed by Robert Beezer Solution [1171]

T51 Use the result of Exercise B.T50 [1160] to build a very concise proof of Theorem
CNMB [1138]. (Hint: make a judicious choice for the basis B.)
Contributed by Robert Beezer Solution [1175]
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Subsection SOL
Solutions

C10 Contributed by Chris Black Statement [1157]
Theorem BS [539] says that if we take these 5 vectors, put them into a matrix, and row-
reduce to discover the pivot columns, then the corresponding vectors in S will be linearly
independent and span S, and thus will form a basis of S.


1 1 1 1 3
3 2 1 2 4
2 1 0 2 1
1 1 1 1 3

 RREF−−−→


1 0 −1 0 −2

0 1 2 0 5

0 0 0 1 0
0 0 0 0 0
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Thus, the independent vectors that span S are the first, second and fourth of the set, so a
basis of S is

B =




1
3
2
1

 ,


1
2
1
1

 ,


1
2
2
1




C11 Contributed by Chris Black Statement [1158]
We can rewrite an arbitrary vector of W as


a+ b− 2c

a+ b− 2c+ d
−2a+ 2b+ 4c− d

b+ d

 =


a
a
−2a

0

+


b
b
2b
b

+


−2c
−2c
4c
0

+


0
d
−d
d
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= a


1
1
−2
0

+ b


1
1
2
1

+ c


−2
−2
4
0

+ d


0
1
−1
1



Thus, we can write W as

W =

〈


1
1
−2
0

 ,


1
1
2
1

 ,

−2
−2
4
0

 ,


0
1
−1
1



〉

These four vectors span W , but we also need to determine if they are linearly independent
(turns out they are not). With an application of Theorem BS [539] we can see that the arrive
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at a basis employing three of these vectors,
1 1 −2 0
1 1 −2 1
−2 2 4 −1
0 1 0 1

 RREF−−−→


1 0 −2 0

0 1 0 0

0 0 0 1
0 0 0 0


Thus, we have the following basis of W ,

B =




1
1
−2
0

 ,


1
1
2
1

 ,


0
1
−1
1




C12 Contributed by Chris Black Statement [1158]
Let A be an arbitrary element of the specified vector space T . Then there exist a, b, c, d, e
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and f so that A =

a 0 0
b c 0
d e f

. Then

A = a

1 0 0
0 0 0
0 0 0

+ b

0 0 0
1 0 0
0 0 0

+ c

0 0 0
0 1 0
0 0 0

+ d

0 0 0
0 0 0
1 0 0

+ e

0 0 0
0 0 0
0 1 0

+ f

0 0 0
0 0 0
0 0 1


Consider the set

B =


1 0 0

0 0 0
0 0 0

 ,
0 0 0

1 0 0
0 0 0

 ,
0 0 0

0 1 0
0 0 0

 ,
0 0 0

0 0 0
1 0 0

 ,
0 0 0

0 0 0
0 1 0

 ,
0 0 0

0 0 0
0 0 1


The six vectors in B span the vector space T , and we can check rather simply that they are
also linearly independent. Thus, B is a basis of T .

C13 Contributed by Chris Black Statement [1158]
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If p(0) = 0, then a+b(0)+c(02) = 0, so a = 0. Thus, we can writeQ = {p(x) = bx+ cx2 | b, c ∈ C}.
A linearly independent set that spans Q is B = {x, x2}, and this set forms a basis of Q.

C14 Contributed by Chris Black Statement [1159]
The derivative of p(x) = a+bx+cx2 is p′(x) = b+2cx. Thus, if p ∈ R, then p′(0) = b+2c(0) =
0, so we must have b = 0. We see that we can rewrite R as R = {p(x) = a+ cx2 | a, c ∈ C}.
A linearly independent set that spans R is B = {1, x2}, and B is a basis of R.

M20 Contributed by Robert Beezer Statement [1159]
We need to establish the linear independence and spanning properties of the set

B = {Bk` | 1 ≤ k ≤ m, 1 ≤ ` ≤ n}
relative to the vector space Mmn.

This proof is more transparent if you write out individual matrices in the basis with lots of
zeros and dots and a lone one. But we don’t have room for that here, so we will use summation
notation. Think carefully about each step, especially when the double summations seem to
“disappear.” Begin with a relation of linear dependence, using double subscripts on the
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scalars to align with the basis elements.

O =
m∑
k=1

n∑
`=1

αk`Bk`

Now consider the entry in row i and column j for these equal matrices,

0 = [O]ij Definition ZM [621]

=

[
m∑
k=1

n∑
`=1

αk`Bk`

]
ij

Definition ME [613]

=
m∑
k=1

n∑
`=1

[αk`Bk`]ij Definition MA [614]

=
m∑
k=1

n∑
`=1

αk` [Bk`]ij Definition MSM [615]
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= αij [Bij]ij [Bk`]ij = 0 when (k, `) 6= (i, j)

= αij(1) [Bij]ij = 1

= αij

Since i and j were arbitrary, we find that each scalar is zero and so B is linearly independent
(Definition LI [1061]).

To establish the spanning property of B we need only show that an arbitrary matrix
A can be written as a linear combination of the elements of B. So suppose that A is an
arbitrary m × n matrix and consider the matrix C defined as a linear combination of the
elements of B by

C =
m∑
k=1

n∑
`=1

[A]k`Bk`
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Then,

[C]ij =

[
m∑
k=1

n∑
`=1

[A]k`Bk`

]
ij

Definition ME [613]

=
m∑
k=1

n∑
`=1

[[A]k`Bk`]ij Definition MA [614]

=
m∑
k=1

n∑
`=1

[A]k` [Bk`]ij Definition MSM [615]

= [A]ij [Bij]ij [Bk`]ij = 0 when (k, `) 6= (i, j)

= [A]ij (1) [Bij]ij = 1

= [A]ij

So by Definition ME [613], A = C, and therefore A ∈ 〈B〉. By Definition B [1121], the set
B is a basis of the vector space Mmn.
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C40 Contributed by Robert Beezer Statement [1159]
An arbitrary linear combination is

y = 3

 2
−3
1

+ (−2)

1
4
1

+ 1

 7
−5
4

+ (−2)

−7
−6
−5

 =

 25
−10
15


(You probably used a different collection of scalars.) We want to write y as a linear combi-
nation of

B =


 1

0
7
11

 ,
 0

1
1
11


We could set this up as vector equation with variables as scalars in a linear combination of
the vectors in B, but since the first two slots of B have such a nice pattern of zeros and
ones, we can determine the necessary scalars easily and then double-check our answer with
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a computation in the third slot,

25

 1
0
7
11

+ (−10)

 0
1
1
11

 =

 25
−10

(25) 7
11

+ (−10) 1
11

 =

 25
−10
15

 = y

Notice how the uniqueness of these scalars arises. They are forced to be 25 and −10.

T50 Contributed by Robert Beezer Statement [1160]
Our first proof relies mostly on definitions of linear independence and spanning, which is a
good exercise. The second proof is shorter and turns on a technical result from our work
with matrix inverses, Theorem NPNT [775].

(⇒) Assume that A is nonsingular and prove that C is a basis of Cn. First show that
C is linearly independent. Work on a relation of linear dependence on C,

0 = a1Ax1 + a2Ax2 + a3Ax3 + · · ·+ anAxn Definition RLD [1061]

= Aa1x1 + Aa2x2 + Aa3x3 + · · ·+ Aanxn Theorem MMSMM [685]
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= A (a1x1 + a2x2 + a3x3 + · · ·+ anxn) Theorem MMDAA [684]

Since A is nonsingular, Definition NM [246] and Theorem SLEMM [663] allows us to conclude
that

a1x1 + a2x2 + · · ·+ anxn = 0

But this is a relation of linear dependence of the linearly independent set B, so the scalars
are trivial, a1 = a2 = a3 = · · · = an = 0. By Definition LI [1061], the set C is linearly
independent.

Now prove that C spans Cn. Given an arbitrary vector y ∈ Cn, can it be expressed as a
linear combination of the vectors in C? Since A is a nonsingular matrix we can define the
vector w to be the unique solution of the system LS(A, y) (Theorem NMUS [256]). Since
w ∈ Cn we can write w as a linear combination of the vectors in the basis B. So there are
scalars, b1, b2, b3, . . . , bn such that

w = b1x1 + b2x2 + b3x3 + · · ·+ bnxn
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Then,

y = Aw Theorem SLEMM [663]

= A (b1x1 + b2x2 + b3x3 + · · ·+ bnxn) Definition TSVS [1076]

= Ab1x1 + Ab2x2 + Ab3x3 + · · ·+ Abnxn Theorem MMDAA [684]

= b1Ax1 + b2Ax2 + b3Ax3 + · · ·+ bnAxn Theorem MMSMM [685]

So we can write an arbitrary vector of Cn as a linear combination of the elements of C. In
other words, C spans Cn (Definition TSVS [1076]). By Definition B [1121], the set C is a
basis for Cn.

(⇐) Assume that C is a basis and prove that A is nonsingular. Let x be a solution to the
homogeneous system LS(A, 0). Since B is a basis of Cn there are scalars, a1, a2, a3, . . . , an,
such that

x = a1x1 + a2x2 + a3x3 + · · ·+ anxn
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Then

0 = Ax Theorem SLEMM [663]

= A (a1x1 + a2x2 + a3x3 + · · ·+ anxn) Definition TSVS [1076]

= Aa1x1 + Aa2x2 + Aa3x3 + · · ·+ Aanxn Theorem MMDAA [684]

= a1Ax1 + a2Ax2 + a3Ax3 + · · ·+ anAxn Theorem MMSMM [685]

This is a relation of linear dependence on the linearly independent set C, so the scalars must
all be zero, a1 = a2 = a3 = · · · = an = 0. Thus,

x = a1x1 + a2x2 + a3x3 + · · ·+ anxn = 0x1 + 0x2 + 0x3 + · · ·+ 0xn = 0.

By Definition NM [246] we see that A is nonsingular.

Now for a second proof. Take the vectors for B and use them as the columns of a matrix,
G = [x1|x2|x3| . . . |xn]. By Theorem CNMB [1138], because we have the hypothesis that B
is a basis of Cn, G is a nonsingular matrix. Notice that the columns of AG are exactly the
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vectors in the set C, by Definition MM [672].

A nonsingular ⇐⇒ AG nonsingular Theorem NPNT [775]

⇐⇒ C basis for Cn Theorem CNMB [1138]

That was easy!

T51 Contributed by Robert Beezer Statement [1160]
Choose B to be the set of standard unit vectors, a particularly nice basis of Cn (Theorem
SUVB [1122]). For a vector ej (Definition SUV [586]) from this basis, what is Aej?
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Section D

Dimension

Almost every vector space we have encountered has been infinite in size (an exception is
Example VSS [968]). But some are bigger and richer than others. Dimension, once suitably
defined, will be a measure of the size of a vector space, and a useful tool for studying its
properties. You probably already have a rough notion of what a mathematical definition of
dimension might be — try to forget these imprecise ideas and go with the new ones given
here.
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Subsection D
Dimension

Definition D
Dimension
Suppose that V is a vector space and {v1, v2, v3, . . . , vt} is a basis of V . Then the di-
mension of V is defined by dim (V ) = t. If V has no finite bases, we say V has infinite
dimension.
(This definition contains Notation D.) 4

This is a very simple definition, which belies its power. Grab a basis, any basis, and
count up the number of vectors it contains. That’s the dimension. However, this simplicity
causes a problem. Given a vector space, you and I could each construct different bases —
remember that a vector space might have many bases. And what if your basis and my
basis had different sizes? Applying Definition D [1177] we would arrive at different numbers!
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With our current knowledge about vector spaces, we would have to say that dimension is
not “well-defined.” Fortunately, there is a theorem that will correct this problem.

In a strictly logical progression, the next two theorems would precede the definition
of dimension. Many subsequent theorems will trace their lineage back to the following
fundamental result.

Theorem SSLD
Spanning Sets and Linear Dependence
Suppose that S = {v1, v2, v3, . . . , vt} is a finite set of vectors which spans the vector space
V . Then any set of t+ 1 or more vectors from V is linearly dependent. �

Proof We want to prove that any set of t+1 or more vectors from V is linearly dependent.
So we will begin with a totally arbitrary set of vectors from V , R = {u1, u2, u3, . . . , um},
where m > t. We will now construct a nontrivial relation of linear dependence on R.

Each vector u1, u2, u3, . . . , um can be written as a linear combination of v1, v2, v3, . . . , vt
since S is a spanning set of V . This means there exist scalars aij, 1 ≤ i ≤ t, 1 ≤ j ≤ m, so
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that

u1 = a11v1 + a21v2 + a31v3 + · · ·+ at1vt

u2 = a12v1 + a22v2 + a32v3 + · · ·+ at2vt

u3 = a13v1 + a23v2 + a33v3 + · · ·+ at3vt
...

um = a1mv1 + a2mv2 + a3mv3 + · · ·+ atmvt

Now we form, unmotivated, the homogeneous system of t equations in the m variables,
x1, x2, x3, . . . , xm, where the coefficients are the just-discovered scalars aij,

a11x1 + a12x2 + a13x3 + · · ·+ a1mxm = 0

a21x1 + a22x2 + a23x3 + · · ·+ a2mxm = 0

a31x1 + a32x2 + a33x3 + · · ·+ a3mxm = 0

...
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at1x1 + at2x2 + at3x3 + · · ·+ atmxm = 0

This is a homogeneous system with more variables than equations (our hypothesis is ex-
pressed as m > t), so by Theorem HMVEI [214] there are infinitely many solutions. Choose
a nontrivial solution and denote it by x1 = c1, x2 = c2, x3 = c3, . . . , xm = cm. As a solution
to the homogeneous system, we then have

a11c1 + a12c2 + a13c3 + · · ·+ a1mcm = 0

a21c1 + a22c2 + a23c3 + · · ·+ a2mcm = 0

a31c1 + a32c2 + a33c3 + · · ·+ a3mcm = 0

...

at1c1 + at2c2 + at3c3 + · · ·+ atmcm = 0

As a collection of nontrivial scalars, c1, c2, c3, . . . , cm will provide the nontrivial relation of
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linear dependence we desire,

c1u1 + c2u2 + c3u3 + · · ·+ cmum

= c1 (a11v1 + a21v2 + a31v3 + · · ·+ at1vt) Definition TSVS [1076]

+ c2 (a12v1 + a22v2 + a32v3 + · · ·+ at2vt)

+ c3 (a13v1 + a23v2 + a33v3 + · · ·+ at3vt)

...

+ cm (a1mv1 + a2mv2 + a3mv3 + · · ·+ atmvt)

= c1a11v1 + c1a21v2 + c1a31v3 + · · ·+ c1at1vt Property DVA [958]

+ c2a12v1 + c2a22v2 + c2a32v3 + · · ·+ c2at2vt

+ c3a13v1 + c3a23v2 + c3a33v3 + · · ·+ c3at3vt
...

+ cma1mv1 + cma2mv2 + cma3mv3 + · · ·+ cmatmvt
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= (c1a11 + c2a12 + c3a13 + · · ·+ cma1m) v1 Property DSA [958]

+ (c1a21 + c2a22 + c3a23 + · · ·+ cma2m) v2

+ (c1a31 + c2a32 + c3a33 + · · ·+ cma3m) v3

...

+ (c1at1 + c2at2 + c3at3 + · · ·+ cmatm) vt

= (a11c1 + a12c2 + a13c3 + · · ·+ a1mcm) v1 Property CMCN [2317]

+ (a21c1 + a22c2 + a23c3 + · · ·+ a2mcm) v2

+ (a31c1 + a32c2 + a33c3 + · · ·+ a3mcm) v3

...

+ (at1c1 + at2c2 + at3c3 + · · ·+ atmcm) vt

= 0v1 + 0v2 + 0v3 + · · ·+ 0vt cj as solution

= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [979]
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= 0 Property Z [957]

That does it. R has been undeniably shown to be a linearly dependent set. �

The proof just given has some monstrous expressions in it, mostly owing to the double
subscripts present. Now is a great opportunity to show the value of a more compact notation.
We will rewrite the key steps of the previous proof using summation notation, resulting in
a more economical presentation, and even greater insight into the key aspects of the proof.
So here is an alternate proof — study it carefully.

Proof (Alternate Proof of Theorem SSLD) We want to prove that any set of t + 1
or more vectors from V is linearly dependent. So we will begin with a totally arbitrary set
of vectors from V , R = {uj | 1 ≤ j ≤ m}, where m > t. We will now construct a nontrivial
relation of linear dependence on R.

Each vector uj, 1 ≤ j ≤ m can be written as a linear combination of vi, 1 ≤ i ≤ t since
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S is a spanning set of V . This means there are scalars aij, 1 ≤ i ≤ t, 1 ≤ j ≤ m, so that

uj =
t∑
i=1

aijvi 1 ≤ j ≤ m

Now we form, unmotivated, the homogeneous system of t equations in the m variables, xj,
1 ≤ j ≤ m, where the coefficients are the just-discovered scalars aij,

m∑
j=1

aijxj = 0 1 ≤ i ≤ t

This is a homogeneous system with more variables than equations (our hypothesis is ex-
pressed as m > t), so by Theorem HMVEI [214] there are infinitely many solutions. Choose
one of these solutions that is not trivial and denote it by xj = cj, 1 ≤ j ≤ m. As a solution
to the homogeneous system, we then have

∑m
j=1 aijcj = 0 for 1 ≤ i ≤ t. As a collection of

nontrivial scalars, cj, 1 ≤ j ≤ m, will provide the nontrivial relation of linear dependence
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we desire,

m∑
j=1

cjuj =
m∑
j=1

cj

(
t∑
i=1

aijvi

)
Definition TSVS [1076]

=
m∑
j=1

t∑
i=1

cjaijvi Property DVA [958]

=
t∑
i=1

m∑
j=1

cjaijvi Property CMCN [2317]

=
t∑
i=1

m∑
j=1

aijcjvi Commutativity in C

=
t∑
i=1

(
m∑
j=1

aijcj

)
vi Property DSA [958]
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=
t∑
i=1

0vi cj as solution

=
t∑
i=1

0 Theorem ZSSM [979]

= 0 Property Z [957]

That does it. R has been undeniably shown to be a linearly dependent set. �

Notice how the swap of the two summations is so much easier in the third step above,
as opposed to all the rearranging and regrouping that takes place in the previous proof. In
about half the space. And there are no ellipses (. . .).

Theorem SSLD [1178] can be viewed as a generalization of Theorem MVSLD [475]. We
know that Cm has a basis with m vectors in it (Theorem SUVB [1122]), so it is a set of m
vectors that spans Cm. By Theorem SSLD [1178], any set of more than m vectors from Cm

will be linearly dependent. But this is exactly the conclusion we have in Theorem MVSLD
[475]. Maybe this is not a total shock, as the proofs of both theorems rely heavily on Theorem
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HMVEI [214]. The beauty of Theorem SSLD [1178] is that it applies in any vector space.
We illustrate the generality of this theorem, and hint at its power, in the next example.

Example LDP4
Linearly dependent set in P4

In Example SSP4 [1077] we showed that

S =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a spanning set for W = {p(x) | p ∈ P4, p(2) = 0}. So we can apply Theorem SSLD [1178]
to W with t = 4. Here is a set of five vectors from W , as you may check by verifying that
each is a polynomial of degree 4 or less and has x = 2 as a root,

T = {p1, p2, p3, p4, p5} ⊆ W

p1 = x4 − 2x3 + 2x2 − 8x+ 8

p2 = −x3 + 6x2 − 5x− 6
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p3 = 2x4 − 5x3 + 5x2 − 7x+ 2

p4 = −x4 + 4x3 − 7x2 + 6x

p5 = 4x3 − 9x2 + 5x− 6

By Theorem SSLD [1178] we conclude that T is linearly dependent, with no further compu-
tations. �

Theorem SSLD [1178] is indeed powerful, but our main purpose in proving it right now
was to make sure that our definition of dimension (Definition D [1177]) is well-defined. Here’s
the theorem.

Theorem BIS
Bases have Identical Sizes
Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C
have the same size. �

Proof Suppose that C has more vectors than B. (Allowing for the possibility that C is
infinite, we can replace C by a subset that has more vectors than B.) As a basis, B is a
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spanning set for V (Definition B [1121]), so Theorem SSLD [1178] says that C is linearly
dependent. However, this contradicts the fact that as a basis C is linearly independent
(Definition B [1121]). So C must also be a finite set, with size less than, or equal to, that of
B.

Suppose that B has more vectors than C. As a basis, C is a spanning set for V (Defi-
nition B [1121]), so Theorem SSLD [1178] says that B is linearly dependent. However, this
contradicts the fact that as a basis B is linearly independent (Definition B [1121]). So C
cannot be strictly smaller than B.

The only possibility left for the sizes of B and C is for them to be equal. �

Theorem BIS [1188] tells us that if we find one finite basis in a vector space, then they
all have the same size. This (finally) makes Definition D [1177] unambiguous.
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Subsection DVS
Dimension of Vector Spaces

We can now collect the dimension of some common, and not so common, vector spaces.

Theorem DCM
Dimension of Cm

The dimension of Cm (Example VSCV [961]) is m. �

Proof Theorem SUVB [1122] provides a basis with m vectors. �

Theorem DP
Dimension of Pn
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The dimension of Pn (Example VSP [963]) is n+ 1. �

Proof Example BP [1124] provides two bases with n+ 1 vectors. Take your pick. �

Theorem DM
Dimension of Mmn

The dimension of Mmn (Example VSM [961]) is mn. �

Proof Example BM [1125] provides a basis with mn vectors. �

Example DSM22
Dimension of a subspace of M22

It should now be plausible that

Z =

{[
a b
c d

]
| 2a+ b+ 3c+ 4d = 0, −a+ 3b− 5c− d = 0

}
is a subspace of the vector space M22 (Example VSM [961]). (It is.) To find the dimension
of Z we must first find a basis, though any old basis will do.
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First concentrate on the conditions relating a, b, c and d. They form a homogeneous
system of two equations in four variables with coefficient matrix[

2 1 3 4
−1 3 −5 −1

]
We can row-reduce this matrix to obtain[

1 0 2 2

0 1 −1 0

]
Rewrite the two equations represented by each row of this matrix, expressing the dependent
variables (a and b) in terms of the free variables (c and d), and we obtain,

a = −2c− 2d

b = c
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We can now write a typical entry of Z strictly in terms of c and d, and we can decompose
the result,[

a b
c d

]
=

[−2c− 2d c
c d

]
=

[−2c c
c 0

]
+

[−2d 0
0 d

]
= c

[−2 1
1 0

]
+ d

[−2 0
0 1

]
this equation says that an arbitrary matrix in Z can be written as a linear combination of
the two vectors in

S =

{[−2 1
1 0

]
,

[−2 0
0 1

]}
so we know that

Z = 〈S〉 =

〈{[−2 1
1 0

]
,

[−2 0
0 1

]}〉
Are these two matrices (vectors) also linearly independent? Begin with a relation of linear
dependence on S,

a1

[−2 1
1 0

]
+ a2

[−2 0
0 1

]
= O
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[−2a1 − 2a2 a1

a1 a2

]
=

[
0 0
0 0

]
From the equality of the two entries in the last row, we conclude that a1 = 0, a2 = 0. Thus
the only possible relation of linear dependence is the trivial one, and therefore S is linearly
independent (Definition LI [1061]). So S is a basis for V (Definition B [1121]). Finally, we
can conclude that dim (Z) = 2 (Definition D [1177]) since S has two elements. �

Example DSP4
Dimension of a subspace of P4

In Example BSP4 [1126] we showed that

S =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a basis for W = {p(x) | p ∈ P4, p(2) = 0}. Thus, the dimension of W is four, dim (W ) = 4.

Note that dim (P4) = 5 by Theorem DP [1190], so W is a subspace of dimension 4 within
the vector space P4 of dimension 5, illustrating the upcoming Theorem PSSD [1236]. �

Example DC
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Dimension of the crazy vector space
In Example BC [1130] we determined that the set R = {(1, 0), (6, 3)} from the crazy vector
space, C (Example CVS [970]), is a basis for C. By Definition D [1177] we see that C has
dimension 2, dim (C) = 2. �

It is possible for a vector space to have no finite bases, in which case we say it has
infinite dimension. Many of the best examples of this are vector spaces of functions, which
lead to constructions like Hilbert spaces. We will focus exclusively on finite-dimensional
vector spaces. OK, one infinite-dimensional example, and then we will focus exclusively on
finite-dimensional vector spaces.

Example VSPUD
Vector space of polynomials with unbounded degree
Define the set P by

P = {p | p(x) is a polynomial in x}
Our operations will be the same as those defined for Pn (Example VSP [963]).
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With no restrictions on the possible degrees of our polynomials, any finite set that is
a candidate for spanning P will come up short. We will give a proof by contradiction
(Technique CD [2354]). To this end, suppose that the dimension of P is finite, say dim (P ) =
n.

The set T = {1, x, x2, . . . , xn} is a linearly independent set (check this!) containing
n + 1 polynomials from P . However, a basis of P will be a spanning set of P containing n
vectors. This situation is a contradiction of Theorem SSLD [1178], so our assumption that
P has finite dimension is false. Thus, we say dim (P ) =∞. �
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Subsection RNM
Rank and Nullity of a Matrix

For any matrix, we have seen that we can associate several subspaces — the null space
(Theorem NSMS [1017]), the column space (Theorem CSMS [1037]), row space (Theorem
RSMS [1038]) and the left null space (Theorem LNSMS [1038]). As vector spaces, each of
these has a dimension, and for the null space and column space, they are important enough
to warrant names.

Definition NOM
Nullity Of a Matrix
Suppose that A is an m×n matrix. Then the nullity of A is the dimension of the null space
of A, n (A) = dim (N (A)).
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(This definition contains Notation NOM.) 4

Definition ROM
Rank Of a Matrix
Suppose that A is an m × n matrix. Then the rank of A is the dimension of the column
space of A, r (A) = dim (C(A)).

(This definition contains Notation ROM.) 4

Example RNM
Rank and nullity of a matrix
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Let’s compute the rank and nullity of

A =


2 −4 −1 3 2 1 −4
1 −2 0 0 4 0 1
−2 4 1 0 −5 −4 −8
1 −2 1 1 6 1 −3
2 −4 −1 1 4 −2 −1
−1 2 3 −1 6 3 −1


To do this, we will first row-reduce the matrix since that will help us determine bases for
the null space and column space.

1 −2 0 0 4 0 1

0 0 1 0 3 0 −2

0 0 0 1 −1 0 −3

0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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From this row-equivalent matrix in reduced row-echelon form we record D = {1, 3, 4, 6}
and F = {2, 5, 7}.

For each index in D, Theorem BCS [822] creates a single basis vector. In total the basis
will have 4 vectors, so the column space of A will have dimension 4 and we write r (A) = 4.

For each index in F , Theorem BNS [484] creates a single basis vector. In total the basis
will have 3 vectors, so the null space of A will have dimension 3 and we write n (A) = 3. �

There were no accidents or coincidences in the previous example — with the row-reduced
version of a matrix in hand, the rank and nullity are easy to compute.

Theorem CRN
Computing Rank and Nullity
Suppose that A is an m×n matrix and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Then r (A) = r and n (A) = n− r. �

Proof Theorem BCS [822] provides a basis for the column space by choosing columns of A
that correspond to the dependent variables in a description of the solutions to LS(A, 0). In
the analysis of B, there is one dependent variable for each leading 1, one per nonzero row,
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or one per pivot column. So there are r column vectors in a basis for C(A).
Theorem BNS [484] provide a basis for the null space by creating basis vectors of the null

space of A from entries of B, one for each independent variable, one per column with out a
leading 1. So there are n− r column vectors in a basis for n (A).

�

Every archetype (Appendix A [2372]) that involves a matrix lists its rank and nullity.
You may have noticed as you studied the archetypes that the larger the column space is the
smaller the null space is. A simple corollary states this trade-off succinctly. (See Technique
LC [2369].)

Theorem RPNC
Rank Plus Nullity is Columns
Suppose that A is an m× n matrix. Then r (A) + n (A) = n. �

Proof Let r be the number of nonzero rows in a row-equivalent matrix in reduced row-
echelon form. By Theorem CRN [1200],

r (A) + n (A) = r + (n− r) = n
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�

When we first introduced r as our standard notation for the number of nonzero rows in a
matrix in reduced row-echelon form you might have thought r stood for “rows.” Not really
— it stands for “rank”!

Subsection RNNM
Rank and Nullity of a Nonsingular Matrix

Let’s take a look at the rank and nullity of a square matrix.

Example RNSM
Rank and nullity of a square matrix
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The matrix

E =



0 4 −1 2 2 3 1
2 −2 1 −1 0 −4 −3
−2 −3 9 −3 9 −1 9
−3 −4 9 4 −1 6 −2
−3 −4 6 −2 5 9 −4
9 −3 8 −2 −4 2 4
8 2 2 9 3 0 9
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is row-equivalent to the matrix in reduced row-echelon form,

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


With n = 7 columns and r = 7 nonzero rows Theorem CRN [1200] tells us the rank is
r (E) = 7 and the nullity is n (E) = 7− 7 = 0. �

The value of either the nullity or the rank are enough to characterize a nonsingular
matrix.

Theorem RNNM
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Rank and Nullity of a Nonsingular Matrix
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. The rank of A is n, r (A) = n.

3. The nullity of A is zero, n (A) = 0.

�

Proof (1 ⇒ 2) Theorem CSNM [830] says that if A is nonsingular then C(A) = Cn. If
C(A) = Cn, then the column space has dimension n by Theorem DCM [1190], so the rank
of A is n.
(2 ⇒ 3) Suppose r (A) = n. Then Theorem RPNC [1201] gives

n (A) = n− r (A) Theorem RPNC [1201]

= n− n Hypothesis
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= 0

(3 ⇒ 1) Suppose n (A) = 0, so a basis for the null space of A is the empty set. This implies
that N (A) = {0} and Theorem NMTNS [256] says A is nonsingular. �

With a new equivalence for a nonsingular matrix, we can update our list of equivalences
(Theorem NME5 [1140]) which now becomes a list requiring double digits to number.

Theorem NME6
Nonsingular Matrix Equivalences, Round 6
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.
4. The linear system LS(A, b) has a unique solution for every possible choice of b.
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5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

�

Proof Building on Theorem NME5 [1140] we can add two of the statements from Theorem
RNNM [1204]. �
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Subsection READ
Reading Questions

1. What is the dimension of the vector space P6, the set of all polynomials of degree 6 or
less?

2. How are the rank and nullity of a matrix related?

3. Explain why we might say that a nonsingular matrix has “full rank.”
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Subsection EXC
Exercises

C20 The archetypes listed below are matrices, or systems of equations with coefficient
matrices. For each, compute the nullity and rank of the matrix. This information is listed
for each archetype (along with the number of columns in the matrix, so as to illustrate
Theorem RPNC [1201]), and notice how it could have been computed immediately after
the determination of the sets D and F associated with the reduced row-echelon form of the
matrix.

Archetype A [2378]
Archetype B [2392]
Archetype C [2407]
Archetype D [2419]/Archetype E [2431]
Archetype F [2443]

Version 2.11



Subsection D.EXC Exercises 1215

Archetype G [2460]/Archetype H [2472]
Archetype I [2485]
Archetype J [2498]
Archetype K [2515]
Archetype L [2527]
Contributed by Robert Beezer

C21 Find the dimension of the subspace W =



a+ b
a+ c
a+ d
d

 | a, b, c, d ∈ C

 of C4.

Contributed by Chris Black Solution [1214]

C22 Find the dimension of the subspace W = {a+ bx+ cx2 + dx3 | a+ b+ c+ d = 0} of
P3.
Contributed by Chris Black Solution [1215]
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C23 Find the dimension of the subspace W =

{[
a b
c d

]
| a+ b = c, b+ c = d, c+ d = a

}
of M2,2.
Contributed by Chris Black Solution [1216]

C30 For the matrix A below, compute the dimension of the null space of A, dim (N (A)).

A =


2 −1 −3 11 9
1 2 1 −7 −3
3 1 −3 6 8
2 1 2 −5 −3



Contributed by Robert Beezer Solution [1217]
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C31 The set W below is a subspace of C4. Find the dimension of W .

W =

〈


2
−3
4
1

 ,


3
0
1
−2

 ,

−4
−3
2
5



〉

Contributed by Robert Beezer Solution [1218]

C35 Find the rank and nullity of the matrix A =


1 0 1
1 2 2
2 1 1
−1 0 1
1 1 2

.

Contributed by Chris Black Solution [1219]
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C36 Find the rank and nullity of the matrix A =

1 2 1 1 1
1 3 2 0 4
1 2 1 1 1

.

Contributed by Chris Black Solution [1220]

C37 Find the rank and nullity of the matrix A =


3 2 1 1 1
2 3 0 1 1
−1 1 2 1 0
1 1 0 1 1
0 1 1 2 −1

.

Contributed by Chris Black Solution [1220]

C40 In Example LDP4 [1187] we determined that the set of five polynomials, T , is lin-
early dependent by a simple invocation of Theorem SSLD [1178]. Prove that T is linearly
dependent from scratch, beginning with Definition LI [1061].
Contributed by Robert Beezer
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M20 M22 is the vector space of 2×2 matrices. Let S22 denote the set of all 2×2 symmetric
matrices. That is

S22 =
{
A ∈M22 | At = A

}
(a) Show that S22 is a subspace of M22.
(b) Exhibit a basis for S22 and prove that it has the required properties.
(c) What is the dimension of S22?
Contributed by Robert Beezer Solution [1220]

M21 A 2 × 2 matrix B is upper triangular if [B]21 = 0. Let UT2 be the set of all 2 × 2
upper triangular matrices. Then UT2 is a subspace of the vector space of all 2× 2 matrices,
M22 (you may assume this). Determine the dimension of UT2 providing all of the necessary
justifications for your answer.
Contributed by Robert Beezer Solution [1223]
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Subsection SOL
Solutions

C21 Contributed by Chris Black Statement [1209]
The subspace W can be written as

W =



a+ b
a+ c
a+ d
d

 | a, b, c, d ∈ C


=

a


1
1
1
0

+ b


1
0
0
0

+ c


0
1
0
0

+ d


0
0
1
1

 | a, b, c, d ∈ C
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=

〈


1
1
1
0

 ,


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
1



〉

Since the set of vectors




1
1
1
0

 ,


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
1


 is a linearly independent set (why?), it

forms a basis of W . Thus, W is a subspace of C4 with dimension 4 (and must therefore
equal C4).

C22 Contributed by Chris Black Statement [1209]
The subspace W = {a+ bx+ cx2 + dx3 | a+ b+ c+ d = 0} can be written as

W =
{
a+ bx+ cx2 + (−a− b− c)x3 | a, b, c ∈ C

}
=
{
a(1− x3) + b(x− x3) + c(x2 − x3) | a, b, c ∈ C

}
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=
〈{

1− x3, x− x3, x2 − x3
}〉

Since these vectors are linearly independent (why?), W is a subspace of P3 with dimension
3.

C23 Contributed by Chris Black Statement [1210]
The equations specified are equivalent to the system

a+ b− c = 0

b+ c− d = 0

a− c− d = 0

The coefficient matrix of this system row-reduces to 1 0 0 −3

0 1 0 1

0 0 1 −2


Version 2.11



Subsection D.SOL Solutions 1223

Thus, every solution can be decribed with a suitable choice of d, together with a = 3d,
b = −d and c = 2d. Thus the subspace W can be described as

W =

{[
3d −d
2d d

]
| d ∈ C

}
=

〈{[
3 −1
2 1

]}〉
So, W is a subspace of M2,2 with dimension 1.

C30 Contributed by Robert Beezer Statement [1210]
Row reduce A,

A
RREF−−−→


1 0 0 1 1

0 1 0 −3 −1

0 0 1 −2 −2
0 0 0 0 0


So r = 3 for this matrix. Then

dim (N (A)) = n (A) Definition NOM [1197]
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= (n (A) + r (A))− r (A)

= 5− r (A) Theorem RPNC [1201]

= 5− 3 Theorem CRN [1200]

= 2

We could also use Theorem BNS [484] and create a basis for N (A) with n− r = 5− 3 = 2
vectors (because the solutions are described with 2 free variables) and arrive at the dimension
as the size of this basis.

C31 Contributed by Robert Beezer Statement [1211]
We will appeal to Theorem BS [539] (or you could consider this an appeal to Theorem BCS
[822]). Put the three column vectors of this spanning set into a matrix as columns and
row-reduce. 

2 3 −4
−3 0 −3
4 1 2
1 −2 5

 RREF−−−→


1 0 1

0 1 −2
0 0 0
0 0 0
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The pivot columns are D = {1, 2} so we can “keep” the vectors corresponding to the pivot
columns and set

T =




2
−3
4
1

 ,


3
0
1
−2




and conclude that W = 〈T 〉 and T is linearly independent. In other words, T is a basis with
two vectors, so W has dimension 2.

C35 Contributed by Chris Black Statement [1211]

The row reduced form of matrix A is


1 0 0

0 1 0

0 0 1
0 0 0
0 0 0

, so the rank of A (number of columns

with leading 1’s) is 3, and the nullity is 0.
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C36 Contributed by Chris Black Statement [1212]

The row reduced form of matrix A is

 1 0 −1 3 5

0 1 1 −1 3
0 0 0 0 0

, so the rank of A (number of

columns with leading 1’s) is 2, and the nullity is 5− 2 = 3.

C37 Contributed by Chris Black Statement [1212]
This matrix A row reduces to the 5 × 5 identity matrix, so it has full rank. The rank of A
is 5, and the nullity is 0.

M20 Contributed by Robert Beezer Statement [1213]
(a) We will use the three criteria of Theorem TSS [1008]. The zero vector of M22 is the
zero matrix, O (Definition ZM [621]), which is a symmetric matrix. So S22 is not empty,
since O ∈ S22.

Suppose that A and B are two matrices in S22. Then we know that At = A and Bt = B.
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We want to know if A+B ∈ S22, so test A+B for membership,

(A+B)t = At +Bt Theorem TMA [626]

= A+B A, B ∈ S22

So A+B is symmetric and qualifies for membership in S22.

Suppose that A ∈ S22 and α ∈ C. Is αA ∈ S22? We know that At = A. Now check that,

αAt = αAt Theorem TMSM [627]

= αA A ∈ S22

So αA is also symmetric and qualifies for membership in S22.

With the three criteria of Theorem TSS [1008] fulfilled, we see that S22 is a subspace of
M22.

(b) An arbitrary matrix from S22 can be written as

[
a b
b d

]
. We can express this matrix
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as [
a b
b d

]
=

[
a 0
0 0

]
+

[
0 b
b 0

]
+

[
0 0
0 d

]
= a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ d

[
0 0
0 1

]
this equation says that the set

T =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
spans S22. Is it also linearly independent?

Write a relation of linear dependence on S,

O = a1

[
1 0
0 0

]
+ a2

[
0 1
1 0

]
+ a3

[
0 0
0 1

]
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[
0 0
0 0

]
=

[
a1 a2

a2 a3

]
The equality of these two matrices (Definition ME [613]) tells us that a1 = a2 = a3 = 0,
and the only relation of linear dependence on T is trivial. So T is linearly independent, and
hence is a basis of S22.

(c) The basis T found in part (b) has size 3. So by Definition D [1177], dim (S22) = 3.

M21 Contributed by Robert Beezer Statement [1213]
A typical matrix from UT2 looks like [

a b
0 c

]
where a, b, c ∈ C are arbitrary scalars. Observing this we can then write[

a b
0 c

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
0 1

]
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which says that

R =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]}
is a spanning set for UT2 (Definition TSVS [1076]). Is R is linearly independent? If so, it is
a basis for UT2. So consider a relation of linear dependence on R,

α1

[
1 0
0 0

]
+ α2

[
0 1
0 0

]
+ α3

[
0 0
0 1

]
= O =

[
0 0
0 0

]
From this equation, one rapidly arrives at the conclusion that α1 = α2 = α3 = 0. So R is
a linearly independent set (Definition LI [1061]), and hence is a basis (Definition B [1121])
for UT2. Now, we simply count up the size of the set R to see that the dimension of UT2 is
dim (UT2) = 3.
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Section PD

Properties of Dimension

Once the dimension of a vector space is known, then the determination of whether or not
a set of vectors is linearly independent, or if it spans the vector space, can often be much
easier. In this section we will state a workhorse theorem and then apply it to the column
space and row space of a matrix. It will also help us describe a super-basis for Cm.
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Subsection GT
Goldilocks’ Theorem

We begin with a useful theorem that we will need later, and in the proof of the main theorem
in this subsection. This theorem says that we can extend linearly independent sets, one vector
at a time, by adding vectors from outside the span of the linearly independent set, all the
while preserving the linear independence of the set.

Theorem ELIS
Extending Linearly Independent Sets
Suppose V is vector space and S is a linearly independent set of vectors from V . Suppose
w is a vector such that w 6∈ 〈S〉. Then the set S ′ = S ∪ {w} is linearly independent. �

Proof Suppose S = {v1, v2, v3, . . . , vm} and begin with a relation of linear dependence
on S ′,

a1v1 + a2v2 + a3v3 + · · ·+ amvm + am+1w = 0.
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There are two cases to consider. First suppose that am+1 = 0. Then the relation of linear
dependence on S ′ becomes

a1v1 + a2v2 + a3v3 + · · ·+ amvm = 0.

and by the linear independence of the set S, we conclude that a1 = a2 = a3 = · · · = am = 0.
So all of the scalars in the relation of linear dependence on S ′ are zero.

In the second case, suppose that am+1 6= 0. Then the relation of linear dependence on S ′

becomes

am+1w = −a1v1 − a2v2 − a3v3 − · · · − amvm

w = − a1

am+1

v1 − a2

am+1

v2 − a3

am+1

v3 − · · · − am
am+1

vm

This equation expresses w as a linear combination of the vectors in S, contrary to the
assumption that w 6∈ 〈S〉, so this case leads to a contradiction.
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The first case yielded only a trivial relation of linear dependence on S ′ and the second
case led to a contradiction. So S ′ is a linearly independent set since any relation of linear
dependence is trivial. �

In the story Goldilocks and the Three Bears, the young girl Goldilocks visits the empty
house of the three bears while out walking in the woods. One bowl of porridge is too hot,
the other too cold, the third is just right. One chair is too hard, one too soft, the third is
just right. So it is with sets of vectors — some are too big (linearly dependent), some are
too small (they don’t span), and some are just right (bases). Here’s Goldilocks’ Theorem.

Theorem G
Goldilocks
Suppose that V is a vector space of dimension t. Let S = {v1, v2, v3, . . . , vm} be a set of
vectors from V . Then

1. If m > t, then S is linearly dependent.

2. If m < t, then S does not span V .
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3. If m = t and S is linearly independent, then S spans V .

4. If m = t and S spans V , then S is linearly independent.

�

Proof Let B be a basis of V . Since dim (V ) = t, Definition B [1121] and Theorem BIS
[1188] imply that B is a linearly independent set of t vectors that spans V .

1. Suppose to the contrary that S is linearly independent. Then B is a smaller set of
vectors that spans V . This contradicts Theorem SSLD [1178].

2. Suppose to the contrary that S does span V . Then B is a larger set of vectors that is
linearly independent. This contradicts Theorem SSLD [1178].

3. Suppose to the contrary that S does not span V . Then we can choose a vector w
such that w ∈ V and w 6∈ 〈S〉. By Theorem ELIS [1226], the set S ′ = S ∪ {w} is
again linearly independent. Then S ′ is a set of m + 1 = t + 1 vectors that are linearly
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independent, while B is a set of t vectors that span V . This contradicts Theorem SSLD
[1178].

4. Suppose to the contrary that S is linearly dependent. Then by Theorem DLDS [522]
(which can be upgraded, with no changes in the proof, to the setting of a general vector
space), there is a vector in S, say vk that is equal to a linear combination of the other
vectors in S. Let S ′ = S \ {vk}, the set of “other” vectors in S. Then it is easy to show
that V = 〈S〉 = 〈S ′〉. So S ′ is a set of m− 1 = t− 1 vectors that spans V , while B is a
set of t linearly independent vectors in V . This contradicts Theorem SSLD [1178].

�

There is a tension in the construction of basis. Make a set too big and you will end up
with relations of linear dependence among the vectors. Make a set too small and you will
not have enough raw material to span the entire vector space. Make a set just the right size
(the dimension) and you only need to have linear independence or spanning, and you get the
other property for free. These roughly-stated ideas are made precise by Theorem G [1228].
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The structure and proof of this theorem also deserve comment. The hypotheses seem
innocuous. We presume we know the dimension of the vector space in hand, then we mostly
just look at the size of the set S. From this we get big conclusions about spanning and linear
independence. Each of the four proofs relies on ultimately contradicting Theorem SSLD
[1178], so in a way we could think of this entire theorem as a corollary of Theorem SSLD
[1178]. (See Technique LC [2369].) The proofs of the third and fourth parts parallel each
other in style (add w, toss vk) and then turn on Theorem ELIS [1226] before contradicting
Theorem SSLD [1178].

Theorem G [1228] is useful in both concrete examples and as a tool in other proofs. We
will use it often to bypass verifying linear independence or spanning.

Example BPR
Bases for Pn, reprised
In Example BP [1124] we claimed that

B =
{

1, x, x2, x3, . . . , xn
}

C =
{

1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, . . . , 1 + x+ x2 + x3 + · · ·+ xn
}
.
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were both bases for Pn (Example VSP [963]). Suppose we had first verified that B was a
basis, so we would then know that dim (Pn) = n + 1. The size of C is n + 1, the right size
to be a basis. We could then verify that C is linearly independent. We would not have to
make any special efforts to prove that C spans Pn, since Theorem G [1228] would allow us
to conclude this property of C directly. Then we would be able to say that C is a basis of
Pn also. �

Example BDM22
Basis by dimension in M22

In Example DSM22 [1191] we showed that

B =

{[−2 1
1 0

]
,

[−2 0
0 1

]}
is a basis for the subspace Z of M22 (Example VSM [961]) given by

Z =

{[
a b
c d

]
| 2a+ b+ 3c+ 4d = 0, −a+ 3b− 5c− d = 0

}
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This tells us that dim (Z) = 2. In this example we will find another basis. We can construct
two new matrices in Z by forming linear combinations of the matrices in B.

2

[−2 1
1 0

]
+ (−3)

[−2 0
0 1

]
=

[
2 2
2 −3

]
3

[−2 1
1 0

]
+ 1

[−2 0
0 1

]
=

[−8 3
3 1

]
Then the set

C =

{[
2 2
2 −3

]
,

[−8 3
3 1

]}
has the right size to be a basis of Z. Let’s see if it is a linearly independent set. The relation
of linear dependence

a1

[
2 2
2 −3

]
+ a2

[−8 3
3 1

]
= O
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[
2a1 − 8a2 2a1 + 3a2

2a1 + 3a2 −3a1 + a2

]
=

[
0 0
0 0

]
leads to the homogeneous system of equations whose coefficient matrix

2 −8
2 3
2 3
−3 1


row-reduces to 

1 0

0 1
0 0
0 0


So with a1 = a2 = 0 as the only solution, the set is linearly independent. Now we can apply
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Theorem G [1228] to see that C also spans Z and therefore is a second basis for Z. �

Example SVP4
Sets of vectors in P4

In Example BSP4 [1126] we showed that

B =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a basis for W = {p(x) | p ∈ P4, p(2) = 0}. So dim (W ) = 4.

The set {
3x2 − 5x− 2, 2x2 − 7x+ 6, x3 − 2x2 + x− 2

}
is a subset of W (check this) and it happens to be linearly independent (check this, too).
However, by Theorem G [1228] it cannot span W .

The set{
3x2 − 5x− 2, 2x2 − 7x+ 6, x3 − 2x2 + x− 2, −x4 + 2x3 + 5x2 − 10x, x4 − 16

}
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is another subset of W (check this) and Theorem G [1228] tells us that it must be linearly
dependent.

The set {
x− 2, x2 − 2x, x3 − 2x2, x4 − 2x3

}
is a third subset of W (check this) and is linearly independent (check this). Since it has the
right size to be a basis, and is linearly independent, Theorem G [1228] tells us that it also
spans W , and therefore is a basis of W .

�

A simple consequence of Theorem G [1228] is the observation that proper subspaces have
strictly smaller dimensions. Hopefully this may seem intuitively obvious, but it still requires
proof, and we will cite this result later.

Theorem PSSD
Proper Subspaces have Smaller Dimension
Suppose that U and V are subspaces of the vector space W , such that U ( V . Then
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dim (U) < dim (V ). �

Proof Suppose that dim (U) = m and dim (V ) = t. Then U has a basis B of size m.
If m > t, then by Theorem G [1228], B is linearly dependent, which is a contradiction. If
m = t, then by Theorem G [1228], B spans V . Then U = 〈B〉 = V , also a contradiction.
All that remains is that m < t, which is the desired conclusion. �

The final theorem of this subsection is an extremely powerful tool for establishing the
equality of two sets that are subspaces. Notice that the hypotheses include the equality of
two integers (dimensions) while the conclusion is the equality of two sets (subspaces). It is
the extra “structure” of a vector space and its dimension that makes possible this huge leap
from an integer equality to a set equality.

Theorem EDYES
Equal Dimensions Yields Equal Subspaces
Suppose that U and V are subspaces of the vector space W , such that U ⊆ V and dim (U) =
dim (V ). Then U = V . �

Proof We give a proof by contradiction (Technique CD [2354]). Suppose to the contrary
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that U 6= V . Since U ⊆ V , there must be a vector v such that v ∈ V and v 6∈ U .
Let B = {u1, u2, u3, . . . , ut} be a basis for U . Then, by Theorem ELIS [1226], the set
C = B ∪ {v} = {u1, u2, u3, . . . , ut, v} is a linearly independent set of t + 1 vectors in V .
However, by hypothesis, V has the same dimension as U (namely t) and therefore Theorem
G [1228] says that C is too big to be linearly independent. This contradiction shows that
U = V . �

Subsection RT
Ranks and Transposes

We now prove one of the most surprising theorems about matrices. Notice the paucity of
hypotheses compared to the precision of the conclusion.

Theorem RMRT
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Rank of a Matrix is the Rank of the Transpose
Suppose A is an m× n matrix. Then r (A) = r (At). �

Proof Suppose we row-reduce A to the matrix B in reduced row-echelon form, and B has
r non-zero rows. The quantity r tells us three things about B: the number of leading 1’s,
the number of non-zero rows and the number of pivot columns. For this proof we will be
interested in the latter two.

Theorem BRS [843] and Theorem BCS [822] each has a conclusion that provides a basis,
for the row space and the column space, respectively. In each case, these bases contain r
vectors. This observation makes the following go.

r (A) = dim (C(A)) Definition ROM [1197]

= r Theorem BCS [822]

= dim (R(A)) Theorem BRS [843]

= dim
(C(At)) Theorem CSRST [848]
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= r
(
At
)

Definition ROM [1197]

Jacob Linenthal helped with this proof. �

This says that the row space and the column space of a matrix have the same dimension,
which should be very surprising. It does not say that column space and the row space are
identical. Indeed, if the matrix is not square, then the sizes (number of slots) of the vectors
in each space are different, so the sets are not even comparable.

It is not hard to construct by yourself examples of matrices that illustrate Theorem
RMRT [1239], since it applies equally well to any matrix. Grab a matrix, row-reduce it,
count the nonzero rows or the leading 1’s. That’s the rank. Transpose the matrix, row-
reduce that, count the nonzero rows or the leading 1’s. That’s the rank of the transpose.
The theorem says the two will be equal. Here’s an example anyway.

Example RRTI
Rank, rank of transpose, Archetype I
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Archetype I [2485] has a 4× 7 coefficient matrix which row-reduces to
1 4 0 0 2 1 −3

0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0


so the rank is 3. Row-reducing the transpose yields

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

demonstrating that the rank of the transpose is also 3. �
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Subsection DFS
Dimension of Four Subspaces

That the rank of a matrix equals the rank of its transpose is a fundamental and surprising
result. However, applying Theorem FS [902] we can easily determine the dimension of all
four fundamental subspaces associated with a matrix.

Theorem DFS
Dimensions of Four Subspaces
Suppose that A is an m×n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Then

1. dim (N (A)) = n− r

2. dim (C(A)) = r
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3. dim (R(A)) = r

4. dim (L(A)) = m− r
�

Proof If A row-reduces to a matrix in reduced row-echelon form with r nonzero rows, then
the matrix C of extended echelon form (Definition EEF [894]) will be an r × n matrix in
reduced row-echelon form with no zero rows and r pivot columns (Theorem PEEF [897]).
Similarly, the matrix L of extended echelon form (Definition EEF [894]) will be an m−r×m
matrix in reduced row-echelon form with no zero rows and m − r pivot columns (Theorem
PEEF [897]).

dim (N (A)) = dim (N (C)) Theorem FS [902]

= n− r Theorem BNS [484]

dim (C(A)) = dim (N (L)) Theorem FS [902]
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= m− (m− r) Theorem BNS [484]

= r

dim (R(A)) = dim (R(C)) Theorem FS [902]

= r Theorem BRS [843]

dim (L(A)) = dim (R(L)) Theorem FS [902]

= m− r Theorem BRS [843]

�

There are many different ways to state and prove this result, and indeed, the equality
of the dimensions of the column space and row space is just a slight expansion of Theorem
RMRT [1239]. However, we have restricted our techniques to applying Theorem FS [902]
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and then determining dimensions with bases provided by Theorem BNS [484] and Theorem
BRS [843]. This provides an appealing symmetry to the results and the proof.

Subsection DS
Direct Sums

Some of the more advanced ideas in linear algebra are closely related to decomposing (Tech-
nique DC [2361]) vector spaces into direct sums of subspaces. With our previous results
about bases and dimension, now is the right time to state and collect a few results about
direct sums, though we will only mention these results in passing until we get to Section
NLT [2071], where they will get a heavy workout.

A direct sum is a short-hand way to describe the relationship between a vector space and
two, or more, of its subspaces. As we will use it, it is not a way to construct new vector
spaces from others.
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Definition DS
Direct Sum
Suppose that V is a vector space with two subspaces U and W such that for every v ∈ V ,

1. There exists vectors u ∈ U , w ∈ W such that v = u + w

2. If v = u1 + w1 and v = u2 + w2 where u1, u2 ∈ U , w1, w2 ∈ W then u1 = u2 and
w1 = w2.

Then V is the direct sum of U and W and we write V = U ⊕W .

(This definition contains Notation DS.) 4
Informally, when we say V is the direct sum of the subspaces U and W , we are saying that

each vector of V can always be expressed as the sum of a vector from U and a vector from
W , and this expression can only be accomplished in one way (i.e. uniquely). This statement
should begin to feel something like our definitions of nonsingular matrices (Definition NM
[246]) and linear independence (Definition LI [1061]). It should not be hard to imagine
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the natural extension of this definition to the case of more than two subspaces. Could you
provide a careful definition of V = U1 ⊕ U2 ⊕ U3 ⊕ . . .⊕ Um (Exercise PD.M50 [1263])?

Example SDS
Simple direct sum
In C3, define

v1 =

3
2
5

 v2 =

−1
2
1

 v3 =

 2
1
−2


Then C3 = 〈{v1, v2}〉⊕ 〈{v3}〉. This statement derives from the fact that B = {v1, v2, v3}
is basis for C3. The spanning property of B yields the decomposition of any vector into a sum
of vectors from the two subspaces, and the linear independence of B yields the uniqueness
of the decomposition. We will illustrate these claims with a numerical example.
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Choose v =

10
1
6

. Then

v = 2v1 + (−2)v2 + 1v3 = (2v1 + (−2)v2) + (1v3)

where we have added parentheses for emphasis. Obviously 1v3 ∈ 〈{v3}〉, while 2v1 +
(−2)v2 ∈ 〈{v1, v2}〉. Theorem VRRB [1090] provides the uniqueness of the scalars in these
linear combinations. �

Example SDS [1247] is easy to generalize into a theorem.

Theorem DSFB
Direct Sum From a Basis
Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}. Define

U = 〈{v1, v2, v3, . . . , vm}〉 W = 〈{vm+1, vm+2, vm+3, . . . , vn}〉
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Then V = U ⊕W . �

Proof Choose any vector v ∈ V . Then by Theorem VRRB [1090] there are unique scalars,
a1, a2, a3, . . . , an such that

v = a1v1 + a2v2 + a3v3 + · · ·+ anvn

= (a1v1 + a2v2 + a3v3 + · · ·+ amvm) +

(am+1vm+1 + am+2vm+2 + am+3vm+3 + · · ·+ anvn)

= u + w

where we have implicitly defined u and w in the last line. It should be clear that u ∈ U ,
and similarly, w ∈ W (and not simply by the choice of their names).

Suppose we had another decomposition of v, say v = u∗ + w∗. Then we could write u∗

as a linear combination of v1 through vm, say using scalars b1, b2, b3, . . . , bm. And we could
write w∗ as a linear combination of vm+1 through vn, say using scalars c1, c2, c3, . . . , cn−m.
These two collections of scalars would then together give a linear combination of v1 through
vn that equals v. By the uniqueness of a1, a2, a3, . . . , an, ai = bi for 1 ≤ i ≤ m and
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am+i = ci for 1 ≤ i ≤ n−m. From the equality of these scalars we conclude that u = u∗ and
w = w∗. So with both conditions of Definition DS [1246] fulfilled we see that V = U ⊕W .
�

Given one subspace of a vector space, we can always find another subspace that will pair
with the first to form a direct sum. The main idea of this theorem, and its proof, is the
idea of extending a linearly independent subset into a basis with repeated applications of
Theorem ELIS [1226].

Theorem DSFOS
Direct Sum From One Subspace
Suppose that U is a subspace of the vector space V . Then there exists a subspace W of V
such that V = U ⊕W . �

Proof If U = V , then chooseW = {0}. Otherwise, choose a basisB = {v1, v2, v3, . . . , vm}
for U . Then since B is a linearly independent set, Theorem ELIS [1226] tells us there is a
vector vm+1 in V , but not in U , such that B ∪ {vm+1} is linearly independent. Define the
subspace U1 = 〈B ∪ {vm+1}〉.
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We can repeat this procedure, in the case were U1 6= V , creating a new vector vm+2 in
V , but not in U1, and a new subspace U2 = 〈B ∪ {vm+1, vm+2}〉. If we continue repeating
this procedure, eventually, Uk = V for some k, and we can no longer apply Theorem ELIS
[1226]. No matter, in this case B ∪ {vm+1, vm+2, . . . , vm+k} is a linearly independent set
that spans V , i.e. a basis for V .

Define W = 〈{vm+1, vm+2, . . . , vm+k}〉. We now are exactly in position to apply Theo-
rem DSFB [1248] and see that V = U ⊕W . �

There are several different ways to define a direct sum. Our next two theorems give
equivalences (Technique E [2348]) for direct sums, and therefore could have been employed as
definitions. The first should further cement the notion that a direct sum has some connection
with linear independence.

Theorem DSZV
Direct Sums and Zero Vectors
Suppose U and W are subspaces of the vector space V . Then V = U ⊕W if and only if

1. For every v ∈ V , there exists vectors u ∈ U , w ∈ W such that v = u + w.
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2. Whenever 0 = u + w with u ∈ U , w ∈ W then u = w = 0.

�

Proof The first condition is identical in the definition and the theorem, so we only need
to establish the equivalence of the second conditions.

(⇒) Assume that V = U ⊕W , according to Definition DS [1246]. By Property Z [957],
0 ∈ V and 0 = 0 + 0. If we also assume that 0 = u + w, then the uniqueness of the
decomposition gives u = 0 and w = 0.

(⇐) Suppose that v ∈ V , v = u1 + w1 and v = u2 + w2 where u1, u2 ∈ U , w1, w2 ∈ W .
Then

0 = v − v Property AI [957]

= (u1 + w1)− (u2 + w2)

= (u1 − u2) + (w1 −w2) Property AA [957]

By Property AC [956], u1 − u2 ∈ U and w1 −w2 ∈ W . We can now apply our hypothesis,
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the second statement of the theorem, to conclude that

u1 − u2 = 0 w1 −w2 = 0

u1 = u2 w1 = w2

which establishes the uniqueness needed for the second condition of the definition. �

Our second equivalence lends further credence to calling a direct sum a decomposition.
The two subspaces of a direct sum have no (nontrivial) elements in common.

Theorem DSZI
Direct Sums and Zero Intersection
Suppose U and W are subspaces of the vector space V . Then V = U ⊕W if and only if

1. For every v ∈ V , there exists vectors u ∈ U , w ∈ W such that v = u + w.

2. U ∩W = {0}.
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�

Proof The first condition is identical in the definition and the theorem, so we only need
to establish the equivalence of the second conditions.

(⇒) Assume that V = U ⊕W , according to Definition DS [1246]. By Property Z [957]
and Definition SI [2332], {0} ⊆ U ∩W . To establish the opposite inclusion, suppose that
x ∈ U ∩W . Then, since x is an element of both U and W , we can write two decompositions
of x as a vector from U plus a vector from W ,

x = x + 0 x = 0 + x

By the uniqueness of the decomposition, we see (twice) that x = 0 and U ∩ W ⊆ {0}.
Applying Definition SE [2327], we have U ∩W = {0}.

(⇐) Assume that U∩W = {0}. And assume further that v ∈ V is such that v = u1 +w1

and v = u2 + w2 where u1, u2 ∈ U , w1, w2 ∈ W . Define x = u1 − u2. then by Property
AC [956], x ∈ U . Also

x = u1 − u2
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= (v −w1)− (v −w2)

= (v − v)− (w1 −w2)

= w2 −w1

So x ∈ W by Property AC [956]. Thus, x ∈ U ∩W = {0} (Definition SI [2332]). So x = 0
and

u1 − u2 = 0 w2 −w1 = 0

u1 = u2 w2 = w1

yielding the desired uniqueness of the second condition of the definition. �

If the statement of Theorem DSZV [1251] did not remind you of linear independence, the
next theorem should establish the connection.

Theorem DSLI
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Direct Sums and Linear Independence
Suppose U and W are subspaces of the vector space V with V = U ⊕W . Suppose that R is
a linearly independent subset of U and S is a linearly independent subset of W . Then R∪S
is a linearly independent subset of V . �

Proof Let R = {u1, u2, u3, . . . , uk} and S = {w1, w2, w3, . . . , w`}. Begin with a relation
of linear dependence (Definition RLD [1061]) on the set R∪S using scalars a1, a2, a3, . . . , ak
and b1, b2, b3, . . . , b`. Then,

0 = a1u1 + a2u2 + a3u3 + · · ·+ akuk + b1w1 + b2w2 + b3w3 + · · ·+ b`w`

= (a1u1 + a2u2 + a3u3 + · · ·+ akuk) + (b1w1 + b2w2 + b3w3 + · · ·+ b`w`)

= u + w

where we have made an implicit definition of the vectors u ∈ U , w ∈ W . Applying Theorem
DSZV [1251] we conclude that

u = a1u1 + a2u2 + a3u3 + · · ·+ akuk = 0
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w = b1w1 + b2w2 + b3w3 + · · ·+ b`w` = 0

Now the linear independence of R and S (individually) yields

a1 = a2 = a3 = · · · = ak = 0 b1 = b2 = b3 = · · · = b` = 0

Forced to acknowledge that only a trivial linear combination yields the zero vector, Definition
LI [1061] says the set R ∪ S is linearly independent in V . �

Our last theorem in this collection will go some ways towards explaining the word “sum”
in the moniker “direct sum,” while also partially explaining why these results appear in a
section devoted to a discussion of dimension.

Theorem DSD
Direct Sums and Dimension
Suppose U and W are subspaces of the vector space V with V = U ⊕W . Then dim (V ) =
dim (U) + dim (W ). �

Proof We will establish this equality of positive integers with two inequalities. We will
need a basis of U (call it B) and a basis of W (call it C).
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First, note that B and C have sizes equal to the dimensions of the respective subspaces.
The union of these two linearly independent sets, B∪C will be linearly independent in V by
Theorem DSLI [1255]. Further, the two bases have no vectors in common by Theorem DSZI
[1253], since B ∩ C ⊆ {0} and the zero vector is never an element of a linearly independent
set (Exercise LI.T10 [500]). So the size of the union is exactly the sum of the dimensions of
U and W . By Theorem G [1228] the size of B∪C cannot exceed the dimension of V without
being linearly dependent. These observations give us dim (U) + dim (W ) ≤ dim (V ).

Grab any vector v ∈ V . Then by Theorem DSZI [1253] we can write v = u + w with
u ∈ U and w ∈ W . Individually, we can write u as a linear combination of the basis elements
in B, and similarly, we can write w as a linear combination of the basis elements in C, since
the bases are spanning sets for their respective subspaces. These two sets of scalars will
provide a linear combination of all of the vectors in B ∪ C which will equal v. The upshot
of this is that B ∪C is a spanning set for V . By Theorem G [1228], the size of B ∪C cannot
be smaller than the dimension of V without failing to span V . These observations give us
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dim (U) + dim (W ) ≥ dim (V ). �

There is a certain appealling symmetry in the previous proof, where both linear inde-
pendence and spanning properties of the bases are used, both of the first two conclusions of
Theorem G [1228] are employed, and we have quoted both of the two conditions of Theorem
DSZI [1253].

One final theorem tells us that we can successively decompose direct sums into sums of
smaller and smaller subspaces.

Theorem RDS
Repeated Direct Sums
Suppose V is a vector space with subspaces U and W with V = U ⊕W . Suppose that X
and Y are subspaces of W with W = X ⊕ Y . Then V = U ⊕X ⊕ Y . �

Proof Suppose that v ∈ V . Then due to V = U ⊕W , there exist vectors u ∈ U and
w ∈ W such that v = u + w. Due to W = X ⊕ Y , there exist vectors x ∈ X and y ∈ Y
such that w = x + y. All together,

v = u + w = u + x + y
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which would be the first condition of a definition of a 3-way direct product. Now consider
the uniqueness. Suppose that

v = u1 + x1 + y1 v = u2 + x2 + y2

Because x1 + y1 ∈ W , x2 + y2 ∈ W , and V = U ⊕W , we conclude that

u1 = u2 x1 + y1 = x2 + y2

From the second equality, an application of W = X ⊕ Y yields the conclusions x1 = x2 and
y1 = y2. This establishes the uniqueness of the decomposition of v into a sum of vectors
from U , X and Y . �

Remember that when we write V = U ⊕W there always needs to be a “superspace,”
in this case V . The statement U ⊕ W is meaningless. Writing V = U ⊕ W is simply a
shorthand for a somewhat complicated relationship between V , U and W , as described in
the two conditions of Definition DS [1246], or Theorem DSZV [1251], or Theorem DSZI
[1253]. Theorem DSFB [1248] and Theorem DSFOS [1250] gives us sure-fire ways to build
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direct sums, while Theorem DSLI [1255], Theorem DSD [1257] and Theorem RDS [1259]
tell us interesting properties of direct sums. This subsection has been long on theorems and
short on examples. If we were to use the term “lemma” we might have chosen to label some
of these results as such, since they will be important tools in other proofs, but may not have
much interest on their own (see Technique LC [2369]). We will be referencing these results
heavily in later sections, and will remind you then to come back for a second look.

Subsection READ
Reading Questions

1. Why does Theorem G [1228] have the title it does?

2. What is so surprising about Theorem RMRT [1239]?

3. Row-reduce the matrix A to reduced row-echelon form. Without any further computa-
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tions, compute the dimensions of the four subspaces, N (A), C(A), R(A) and L(A).

A =


1 −1 2 8 5
1 1 1 4 −1
0 2 −3 −8 −6
2 0 1 8 4
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Subsection EXC
Exercises

C10 Example SVP4 [1235] leaves several details for the reader to check. Verify these five
claims.
Contributed by Robert Beezer

C40 Determine if the set T = {x2 − x+ 5, 4x3 − x2 + 5x, 3x+ 2} spans the vector space
of polynomials with degree 4 or less, P4. (Compare the solution to this exercise with Solution
LISS.C40 [1112].)
Contributed by Robert Beezer Solution [1267]

M50 Mimic Definition DS [1246] and construct a reasonable definition of V = U1 ⊕ U2 ⊕
U3 ⊕ . . .⊕ Um.
Contributed by Robert Beezer
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T05 Trivially, if U and V are two subspaces of W , then dim (U) = dim (V ). Combine
this fact, Theorem PSSD [1236], and Theorem EDYES [1237] all into one grand combined
theorem. You might look to Theorem PIP [582] stylistic inspiration. (Notice this problem
does not ask you to prove anything. It just asks you to roll up three theorems into one
compact, logically equivalent statement.)
Contributed by Robert Beezer

T10 Prove the following theorem, which could be viewed as a reformulation of parts (3)
and (4) of Theorem G [1228], or more appropriately as a corollary of Theorem G [1228]
(Technique LC [2369]).

Suppose V is a vector space and S is a subset of V such that the number of vectors in S
equals the dimension of V . Then S is linearly independent if and only if S spans V .
Contributed by Robert Beezer

T15 Suppose that A is an m× n matrix and let min(m,n) denote the minimum of m and
n. Prove that r (A) ≤ min(m,n).
Contributed by Robert Beezer
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T20 Suppose that A is an m × n matrix and b ∈ Cm. Prove that the linear system
LS(A, b) is consistent if and only if r (A) = r ([A | b]).
Contributed by Robert Beezer Solution [1267]

T25 Suppose that V is a vector space with finite dimension. Let W be any subspace of V .
Prove that W has finite dimension.
Contributed by Robert Beezer

T33 Part of Exercise B.T50 [1160] is the half of the proof where we assume the matrix A
is nonsingular and prove that a set is basis. In Solution B.T50 [1171] we proved directly that
the set was both linearly independent and a spanning set. Shorten this part of the proof by
applying Theorem G [1228]. Be careful, there is one subtlety.
Contributed by Robert Beezer Solution [1268]

T60 Suppose that W is a vector space with dimension 5, and U and V are subspaces of
W , each of dimension 3. Prove that U ∩ V contains a non-zero vector. State a more general
result.
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Contributed by Joe Riegsecker Solution [1269]
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Subsection SOL
Solutions

C40 Contributed by Robert Beezer Statement [1263]
The vector space P4 has dimension 5 by Theorem DP [1190]. Since T contains only 3 vectors,
and 3 < 5, Theorem G [1228] tells us that T does not span P5.

T20 Contributed by Robert Beezer Statement [1265]
(⇒) Suppose first that LS(A, b) is consistent. Then by Theorem CSCS [812], b ∈ C(A).
This means that C(A) = C([A | b]) and so it follows that r (A) = r ([A | b]).

(⇐) Adding a column to a matrix will only increase the size of its column space, so in all
cases, C(A) ⊆ C([A | b]). However, if we assume that r (A) = r ([A | b]), then by Theorem
EDYES [1237] we conclude that C(A) = C([A | b]). Then b ∈ C([A | b]) = C(A) so by
Theorem CSCS [812], LS(A, b) is consistent.
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T33 Contributed by Robert Beezer Statement [1265]
By Theorem DCM [1190] we know that Cn has dimension n. So by Theorem G [1228] we
need only establish that the set C is linearly independent or a spanning set. However, the
hypotheses also require that C be of size n. We assumed that B = {x1, x2, x3, . . . , xn}
had size n, but there is no guarantee that C = {Ax1, Ax2, Ax3, . . . , Axn} will have size n.
There could be some “collapsing” or “collisions.”

Suppose we establish that C is linearly independent. Then C must have n distinct
elements or else we could fashion a nontrivial relation of linear dependence involving duplicate
elements.

If we instead to choose to prove that C is a spanning set, then we could establish the
uniqueness of the elements of C quite easily. Suppose that Axi = Axj. Then

A(xi − xj) = Axi − Axj = 0

Since A is nonsingular, we conclude that xi−xj = 0, or xi = xj, contrary to our description
of B.
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T60 Contributed by Robert Beezer Statement [1265]
Let {u1, u2, u3} and {v1, v2, v3} be bases for U and V (respectively). Then, the set
{u1, u2, u3, v1, v2, v3} is linearly dependent, since Theorem G [1228] says we cannot have
6 linearly independent vectors in a vector space of dimension 5. So we can assert that there
is a non-trivial relation of linear dependence,

a1u1 + a2u2 + a3u3 + b1v1 + b2v2 + b3v3 = 0

where a1, a2, a3 and b1, b2, b3 are not all zero.
We can rearrange this equation as

a1u1 + a2u2 + a3u3 = −b1v1 − b2v2 − b3v3

This is an equality of two vectors, so we can give this common vector a name, say w,

w = a1u1 + a2u2 + a3u3 = −b1v1 − b2v2 − b3v3

This is the desired non-zero vector, as we will now show.
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First, since w = a1u1 + a2u2 + a3u3, we can see that w ∈ U . Similarly, w = −b1v1 −
b2v2 − b3v3, so w ∈ V . This establishes that w ∈ U ∩ V (Definition SI [2332]).

Is w 6= 0? Suppose not, in other words, suppose w = 0. Then

0 = w = a1u1 + a2u2 + a3u3

Because {u1, u2, u3} is a basis for U , it is a linearly independent set and the relation of linear
dependence above means we must conclude that a1 = a2 = a3 = 0. By a similar process, we
would conclude that b1 = b2 = b3 = 0. But this is a contradiction since a1, a2, a3, b1, b2, b3
were chosen so that some were nonzero. So w 6= 0.

How does this generalize? All we really needed was the original relation of linear depen-
dence that resulted because we had “too many” vectors in W . A more general statement
would be: Suppose that W is a vector space with dimension n, U is a subspace of dimension
p and V is a subspace of dimension q. If p+ q > n, then U ∩ V contains a non-zero vector.

Version 2.11



Annotated Acronyms PD.VS Vector Spaces 1277

Annotated Acronyms VS
Vector Spaces

Definition VS [956]

The most fundamental object in linear algebra is a vector space. Or else the most fundamen-
tal object is a vector, and a vector space is important because it is a collection of vectors.
Either way, Definition VS [956] is critical. All of our remaining theorems that assume we
are working with a vector space can trace their lineage back to this definition.

Theorem TSS [1008]

Check all ten properties of a vector space (Definition VS [956]) can get tedious. But if you
have a subset of a known vector space, then Theorem TSS [1008] considerably shortens the
verification. Also, proofs of closure (the last trwo conditions in Theorem TSS [1008]) are a
good way tp practice a common style of proof.
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Theorem VRRB [1090]

The proof of uniqueness in this theorem is a very typical employment of the hypothesis of
linear independence. But that’s not why we mention it here. This theorem is critical to our
first section about representations, Section VR [1819], via Definition VR [1819].

Theorem CNMB [1138]

Having just defined a basis (Definition B [1121]) we discover that the columns of a nonsingular
matrix form a basis of Cm. Much of what we know about nonsingular matrices is either
contained in this statement, or much more evident because of it.

Theorem SSLD [1178]

This theorem is a key juncture in our development of linear algebra. You have probably
already realized how useful Theorem G [1228] is. All four parts of Theorem G [1228] have
proofs that finish with an application of Theorem SSLD [1178].

Theorem RPNC [1201]
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This simple relationship between the rank, nullity and number of columns of a matrix might
be surprising. But in simplicity comes power, as this theorem can be very useful. It will be
generalized in the very last theorem of Chapter LT [1548], Theorem RPNDD [1781].

Theorem G [1228]

A whimsical title, but the intent is to make sure you don’t miss this one. Much of the
interaction between bases, dimension, linear independence and spanning is captured in this
theorem.

Theorem RMRT [1239]

This one is a real surprise. Why should a matrix, and its transpose, both row-reduce to the
same number of non-zero rows?
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Chapter D
Determinants

The determinant is a function that takes a square matrix as an input and produces a scalar
as an output. So unlike a vector space, it is not an algebraic structure. However, it has
many beneficial properties for studying vector spaces, matrices and systems of equations, so
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it is hard to ignore (though some have tried). While the properties of a determinant can be
very useful, they are also complicated to prove.

Section DM

Determinant of a Matrix

First, a slight detour, as we introduce elementary matrices, which will bring us back to the
beginning of the course and our old friend, row operations.
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Subsection EM
Elementary Matrices

Elementary matrices are very simple, as you might have suspected from their name. Their
purpose is to effect row operations (Definition RO [84]) on a matrix through matrix multipli-
cation (Definition MM [672]). Their definitions look more complicated than they really are,
so be sure to read ahead after you read the definition for some explanations and an example.

Definition ELEM
Elementary Matrices
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1. For i 6= j, Ei,j is the square matrix of size n with

[Ei,j]k` =



0 k 6= i, k 6= j, ` 6= k

1 k 6= i, k 6= j, ` = k

0 k = i, ` 6= j

1 k = i, ` = j

0 k = j, ` 6= i

1 k = j, ` = i

2. For α 6= 0, Ei (α) is the square matrix of size n with

[Ei (α)]k` =


0 k 6= i, ` 6= k

1 k 6= i, ` = k

α k = i, ` = i
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3. For i 6= j, Ei,j (α) is the square matrix of size n with

[Ei,j (α)]k` =



0 k 6= j, ` 6= k

1 k 6= j, ` = k

0 k = j, ` 6= i, ` 6= j

1 k = j, ` = j

α k = j, ` = i

(This definition contains Notation ELEM.)

4
Again, these matrices are not as complicated as they appear, since they are mostly

perturbations of the n× n identity matrix (Definition IM [248]). Ei,j is the identity matrix
with rows (or columns) i and j trading places, Ei (α) is the identity matrix where the
diagonal entry in row i and column i has been replaced by α, and Ei,j (α) is the identity
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matrix where the entry in row j and column i has been replaced by α. (Yes, those subscripts
look backwards in the description of Ei,j (α)). Notice that our notation makes no reference
to the size of the elementary matrix, since this will always be apparent from the context, or
unimportant.

The raison d’être for elementary matrices is to “do” row operations on matrices with
matrix multiplication. So here is an example where we will both see some elementary matrices
and see how they can accomplish row operations.

Example EMRO
Elementary matrices and row operations
We will perform a sequence of row operations (Definition RO [84]) on the 3 × 4 matrix A,
while also multiplying the matrix on the left by the appropriate 3× 3 elementary matrix.

A =

2 1 3 1
1 3 2 4
5 0 3 1
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R1 ↔ R3 :

5 0 3 1
1 3 2 4
2 1 3 1

 E1,3 :

0 0 1
0 1 0
1 0 0

2 1 3 1
1 3 2 4
5 0 3 1

 =

5 0 3 1
1 3 2 4
2 1 3 1


2R2 :

5 0 3 1
2 6 4 8
2 1 3 1

 E2 (2) :

1 0 0
0 2 0
0 0 1

5 0 3 1
1 3 2 4
2 1 3 1

 =

5 0 3 1
2 6 4 8
2 1 3 1


2R3 +R1 :

9 2 9 3
2 6 4 8
2 1 3 1

 E3,1 (2) :

1 0 2
0 1 0
0 0 1

5 0 3 1
2 6 4 8
2 1 3 1

 =

9 2 9 3
2 6 4 8
2 1 3 1


�

The next three theorems establish that each elementary matrix effects a row operation
via matrix multiplication.

Theorem EMDRO
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Elementary Matrices Do Row Operations
Suppose that A is an m×n matrix, and B is a matrix of the same size that is obtained from
A by a single row operation (Definition RO [84]). Then there is an elementary matrix of size
m that will convert A to B via matrix multiplication on the left. More precisely,

1. If the row operation swaps rows i and j, then B = Ei,jA.

2. If the row operation multiplies row i by α, then B = Ei (α)A.

3. If the row operation multiplies row i by α and adds the result to row j, then B =
Ei,j (α)A.

�

Proof In each of the three conclusions, performing the row operation on A will create the
matrix B where only one or two rows will have changed. So we will establish the equality
of the matrix entries row by row, first for the unchanged rows, then for the changed rows,

Version 2.11



Subsection DM.EM Elementary Matrices 1288

showing in each case that the result of the matrix product is the same as the result of the
row operation. Here we go.

Row k of the product Ei,jA, where k 6= i, k 6= j, is unchanged from A,

[Ei,jA]k` =
n∑
p=1

[Ei,j]kp [A]p` Theorem EMP [676]

= [Ei,j]kk [A]k` +
n∑
p=1
p 6=k

[Ei,j]kp [A]p`

= 1 [A]k` +
n∑
p=1
p 6=k

0 [A]p` Definition ELEM [1276]

= [A]k`
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Row i of the product Ei,jA is row j of A,

[Ei,jA]i` =
n∑
p=1

[Ei,j]ip [A]p` Theorem EMP [676]

= [Ei,j]ij [A]j` +
n∑
p=1
p 6=j

[Ei,j]ip [A]p`

= 1 [A]j` +
n∑
p=1
p 6=j

0 [A]p` Definition ELEM [1276]

= [A]j`

Row j of the product Ei,jA is row i of A,

[Ei,jA]j` =
n∑
p=1

[Ei,j]jp [A]p` Theorem EMP [676]
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= [Ei,j]ji [A]i` +
n∑
p=1
p6=i

[Ei,j]jp [A]p`

= 1 [A]i` +
n∑
p=1
p 6=i

0 [A]p` Definition ELEM [1276]

= [A]i`

So the matrix product Ei,jA is the same as the row operation that swaps rows i and j.
Row k of the product Ei (α)A, where k 6= i, is unchanged from A,

[Ei (α)A]k` =
n∑
p=1

[Ei (α)]kp [A]p` Theorem EMP [676]

= [Ei (α)]kk [A]k` +
n∑
p=1
p 6=k

[Ei (α)]kp [A]p`
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= 1 [A]k` +
n∑
p=1
p6=k

0 [A]p` Definition ELEM [1276]

= [A]k`

Row i of the product Ei (α)A is α times row i of A,

[Ei (α)A]i` =
n∑
p=1

[Ei (α)]ip [A]p` Theorem EMP [676]

= [Ei (α)]ii [A]i` +
n∑
p=1
p6=i

[Ei (α)]ip [A]p`

= α [A]i` +
n∑
p=1
p 6=i

0 [A]p` Definition ELEM [1276]
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= α [A]i`

So the matrix product Ei (α)A is the same as the row operation that swaps multiplies row
i by α.

Row k of the product Ei,j (α)A, where k 6= j, is unchanged from A,

[Ei,j (α)A]k` =
n∑
p=1

[Ei,j (α)]kp [A]p` Theorem EMP [676]

= [Ei,j (α)]kk [A]k` +
n∑
p=1
p 6=k

[Ei,j (α)]kp [A]p`

= 1 [A]k` +
n∑
p=1
p 6=k

0 [A]p` Definition ELEM [1276]

= [A]k`
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Row j of the product Ei,j (α)A, is α times row i of A and then added to row j of A,

[Ei,j (α)A]j` =
n∑
p=1

[Ei,j (α)]jp [A]p` Theorem EMP [676]

= [Ei,j (α)]jj [A]j` +

[Ei,j (α)]ji [A]i` +
n∑
p=1
p 6=j,i

[Ei,j (α)]jp [A]p`

= 1 [A]j` + α [A]i` +
n∑
p=1
p 6=j,i

0 [A]p` Definition ELEM [1276]

= [A]j` + α [A]i`

So the matrix product Ei,j (α)A is the same as the row operation that multiplies row i by
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α and adds the result to row j. �

Later in this section we will need two facts about elementary matrices.

Theorem EMN
Elementary Matrices are Nonsingular
If E is an elementary matrix, then E is nonsingular. �

Proof We show that we can row-reduce each elementary matrix to the identity matrix.
Given an elementary matrix of the form Ei,j, perform the row operation that swaps row j
with row i. Given an elementary matrix of the form Ei (α), with α 6= 0, perform the row
operation that multiplies row i by 1/α. Given an elementary matrix of the form Ei,j (α), with
α 6= 0, perform the row operation that multiplies row i by −α and adds it to row j. In each
case, the result of the single row operation is the identity matrix. So each elementary matrix
is row-equivalent to the identity matrix, and by Theorem NMRRI [250] is nonsingular.

�

Notice that we have now made use of the nonzero restriction on α in the definition of
Ei (α). One more key property of elementary matrices.
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Theorem NMPEM
Nonsingular Matrices are Products of Elementary Matrices
Suppose thatA is a nonsingular matrix. Then there exists elementary matrices E1, E2, E3, . . . , Et
so that A = E1E2E3 . . . Et. �

Proof Since A is nonsingular, it is row-equivalent to the identity matrix by Theorem
NMRRI [250], so there is a sequence of t row operations that converts I to A. For each
of these row operations, form the associated elementary matrix from Theorem EMDRO
[1281] and denote these matrices by E1, E2, E3, . . . , Et. Applying the first row operation
to I yields the matrix E1I. The second row operation yields E2(E1I), and the third row
operation creates E3E2E1I. The result of the full sequence of t row operations will yield A,
so

A = Et . . . E3E2E1I = Et . . . E3E2E1

Other than the cosmetic matter of re-indexing these elementary matrices in the opposite
order, this is the desired result. �
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Subsection DD
Definition of the Determinant

We’ll now turn to the definition of a determinant and do some sample computations. The
definition of the determinant function is recursive, that is, the determinant of a large matrix
is defined in terms of the determinant of smaller matrices. To this end, we will make a few
definitions.

Definition SM
SubMatrix
Suppose that A is an m× n matrix. Then the submatrix A (i|j) is the (m− 1)× (n− 1)
matrix obtained from A by removing row i and column j.
(This definition contains Notation SM.) 4

Example SS
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Some submatrices
For the matrix

A =

1 −2 3 9
4 −2 0 1
3 5 2 1


we have the submatrices

A (2|3) =

[
1 −2 9
3 5 1

]
A (3|1) =

[−2 3 9
−2 0 1

]
�

Definition DM
Determinant of a Matrix
Suppose A is a square matrix. Then its determinant, det (A) = |A|, is an element of C
defined recursively by:

If A is a 1× 1 matrix, then det (A) = [A]11.
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If A is a matrix of size n with n ≥ 2, then

det (A) = [A]11 det (A (1|1))− [A]12 det (A (1|2)) + [A]13 det (A (1|3))−
[A]14 det (A (1|4)) + · · ·+ (−1)n+1 [A]1n det (A (1|n))

(This definition contains Notation DM.) 4
So to compute the determinant of a 5×5 matrix we must build 5 submatrices, each of size

4. To compute the determinants of each the 4× 4 matrices we need to create 4 submatrices
each, these now of size 3 and so on. To compute the determinant of a 10× 10 matrix would
require computing the determinant of 10! = 10× 9× 8× 7× 6× 5× 4× 3× 2 = 3, 628, 800
1 × 1 matrices. Fortunately there are better ways. However this does suggest an excellent
computer programming exercise to write a recursive procedure to compute a determinant.

Let’s compute the determinant of a reasonable sized matrix by hand.

Example D33M
Determinant of a 3× 3 matrix
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Suppose that we have the 3× 3 matrix

A =

 3 2 −1
4 1 6
−3 −1 2


Then

det (A) = |A| =
∣∣∣∣∣∣

3 2 −1
4 1 6
−3 −1 2

∣∣∣∣∣∣
= 3

∣∣∣∣ 1 6
−1 2

∣∣∣∣− 2

∣∣∣∣ 4 6
−3 2

∣∣∣∣+ (−1)

∣∣∣∣ 4 1
−3 −1

∣∣∣∣
= 3

(
1
∣∣2∣∣− 6

∣∣−1
∣∣)− 2

(
4
∣∣2∣∣− 6

∣∣−3
∣∣)− (4 ∣∣−1

∣∣− 1
∣∣−3

∣∣)
= 3 (1(2)− 6(−1))− 2 (4(2)− 6(−3))− (4(−1)− 1(−3))

= 24− 52 + 1
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= −27

�

In practice it is a bit silly to decompose a 2 × 2 matrix down into a couple of 1 × 1
matrices and then compute the exceedingly easy determinant of these puny matrices. So
here is a simple theorem.

Theorem DMST
Determinant of Matrices of Size Two

Suppose that A =

[
a b
c d

]
. Then det (A) = ad− bc �

Proof Applying Definition DM [1291],∣∣∣∣a b
c d

∣∣∣∣ = a
∣∣d∣∣− b ∣∣c∣∣ = ad− bc

�

Do you recall seeing the expression ad− bc before? (Hint: Theorem TTMI [732])
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Subsection CD
Computing Determinants

There are a variety of ways to compute the determinant. We will establish first that we
can choose to mimic our definition of the determinant, but by using matrix entries and
submatrices based on a row other than the first one.

Theorem DER
Determinant Expansion about Rows
Suppose that A is a square matrix of size n. Then

det (A) = (−1)i+1 [A]i1 det (A (i|1)) + (−1)i+2 [A]i2 det (A (i|2))

+ (−1)i+3 [A]i3 det (A (i|3)) + · · ·+ (−1)i+n [A]in det (A (i|n)) 1 ≤ i ≤ n

which is known as expansion about row i. �

Proof First, the statement of the theorem coincides with Definition DM [1291] when i = 1,
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so throughout, we need only consider i > 1.
Given the recursive definition of the determinant, it should be no surprise that we will

use induction for this proof (Technique I [2363]). When n = 1, there is nothing to prove
since there is but one row. When n = 2, we just examine expansion about the second row,

(−1)2+1 [A]21 det (A (2|1)) + (−1)2+2 [A]22 det (A (2|2))

= − [A]21 [A]12 + [A]22 [A]11 Definition DM [1291]

= [A]11 [A]22 − [A]12 [A]21

= det (A) Theorem DMST [1294]

So the theorem is true for matrices of size n = 1 and n = 2. Now assume the result is true for
all matrices of size n−1 as we derive an expression for expansion about row i for a matrix of
size n. We will abuse our notation for a submatrix slightly, so A (i1, i2|j1, j2) will denote the
matrix formed by removing rows i1 and i2, along with removing columns j1 and j2. Also, as
we take a determinant of a submatrix, we will need to “jump up” the index of summation
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partway through as we “skip over” a missing column. To do this smoothly we will set

ε`j =

{
0 ` < j

1 ` > j

Now,

det (A) =
n∑
j=1

(−1)1+j [A]1j det (A (1|j)) Definition DM [1291]

=
n∑
j=1

(−1)1+j [A]1j
∑

1≤`≤n
` 6=j

(−1)i−1+`−ε`j [A]i` det (A (1, i|j, `)) Induction Hypothesis

=
n∑
j=1

∑
1≤`≤n
6̀=j

(−1)j+i+`−ε`j [A]1j [A]i` det (A (1, i|j, `)) Property DCN [2317]
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=
n∑
`=1

∑
1≤j≤n
j 6=`

(−1)j+i+`−ε`j [A]1j [A]i` det (A (1, i|j, `)) Property CACN [2317]

=
n∑
`=1

(−1)i+` [A]i`
∑

1≤j≤n
j 6=`

(−1)j−ε`j [A]1j det (A (1, i|j, `)) Property DCN [2317]

=
n∑
`=1

(−1)i+` [A]i`
∑

1≤j≤n
j 6=`

(−1)ε`j+j [A]1j det (A (i, 1|`, j)) 2ε`j is even

=
n∑
`=1

(−1)i+` [A]i` det (A (i|`)) Definition DM [1291]

�

We can also obtain a formula that computes a determinant by expansion about a column,
but this will be simpler if we first prove a result about the interplay of determinants and
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transposes. Notice how the following proof makes use of the ability to compute a determinant
by expanding about any row.

Theorem DT
Determinant of the Transpose
Suppose that A is a square matrix. Then det (At) = det (A). �

Proof With our definition of the determinant (Definition DM [1291]) and theorems like
Theorem DER [1295], using induction (Technique I [2363]) is a natural approach to proving
properties of determinants. And so it is here. Let n be the size of the matrix A, and we will
use induction on n.

For n = 1, the transpose of a matrix is identical to the original matrix, so vacuously, the
determinants are equal.

Now assume the result is true for matrices of size n− 1. Then,

det
(
At
)

=
1

n

n∑
i=1

det
(
At
)
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=
1

n

n∑
i=1

n∑
j=1

(−1)i+j
[
At
]
ij

det
(
At (i|j)) Theorem DER [1295]

=
1

n

n∑
i=1

n∑
j=1

(−1)i+j [A]ji det
(
At (i|j)) Definition TM [622]

=
1

n

n∑
i=1

n∑
j=1

(−1)i+j [A]ji det
(
(A (j|i))t) Definition TM [622]

=
1

n

n∑
i=1

n∑
j=1

(−1)i+j [A]ji det (A (j|i)) Induction Hypothesis

=
1

n

n∑
j=1

n∑
i=1

(−1)j+i [A]ji det (A (j|i)) Property CACN [2317]

=
1

n

n∑
j=1

det (A) Theorem DER [1295]
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= det (A)

�

Now we can easily get the result that a determinant can be computed by expansion about
any column as well.

Theorem DEC
Determinant Expansion about Columns
Suppose that A is a square matrix of size n. Then

det (A) = (−1)1+j [A]1j det (A (1|j)) + (−1)2+j [A]2j det (A (2|j))
+ (−1)3+j [A]3j det (A (3|j)) + · · ·+ (−1)n+j [A]nj det (A (n|j)) 1 ≤ j ≤ n

which is known as expansion about column j. �

Proof

det (A) = det
(
At
)

Theorem DT [1299]
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=
n∑
i=1

(−1)j+i
[
At
]
ji

det
(
At (j|i)) Theorem DER [1295]

=
n∑
i=1

(−1)j+i
[
At
]
ji

det
(
(A (i|j))t) Definition TM [622]

=
n∑
i=1

(−1)j+i
[
At
]
ji

det (A (i|j)) Theorem DT [1299]

=
n∑
i=1

(−1)i+j [A]ij det (A (i|j)) Definition TM [622]

�

That the determinant of an n×n matrix can be computed in 2n different (albeit similar)
ways is nothing short of remarkable. For the doubters among us, we will do an example,
computing a 4× 4 matrix in two different ways.

Example TCSD
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Two computations, same determinant
Let

A =


−2 3 0 1
9 −2 0 1
1 3 −2 −1
4 1 2 6


Then expanding about the fourth row (Theorem DER [1295] with i = 4) yields,

|A| = (4)(−1)4+1

∣∣∣∣∣∣
3 0 1
−2 0 1
3 −2 −1

∣∣∣∣∣∣+ (1)(−1)4+2

∣∣∣∣∣∣
−2 0 1
9 0 1
1 −2 −1

∣∣∣∣∣∣
+ (2)(−1)4+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
1 3 −1

∣∣∣∣∣∣+ (6)(−1)4+4

∣∣∣∣∣∣
−2 3 0
9 −2 0
1 3 −2

∣∣∣∣∣∣
= (−4)(10) + (1)(−22) + (−2)(61) + 6(46) = 92
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while expanding about column 3 (Theorem DEC [1301] with j = 3) gives

|A| = (0)(−1)1+3

∣∣∣∣∣∣
9 −2 1
1 3 −1
4 1 6

∣∣∣∣∣∣+ (0)(−1)2+3

∣∣∣∣∣∣
−2 3 1
1 3 −1
4 1 6

∣∣∣∣∣∣+
(−2)(−1)3+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
4 1 6

∣∣∣∣∣∣+ (2)(−1)4+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
1 3 −1

∣∣∣∣∣∣
= 0 + 0 + (−2)(−107) + (−2)(61) = 92

Notice how much easier the second computation was. By choosing to expand about the third
column, we have two entries that are zero, so two 3× 3 determinants need not be computed
at all! �

When a matrix has all zeros above (or below) the diagonal, exploiting the zeros by
expanding about the proper row or column makes computing a determinant insanely easy.
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Example DUTM
Determinant of an upper triangular matrix
Suppose that

T =


2 3 −1 3 3
0 −1 5 2 −1
0 0 3 9 2
0 0 0 −1 3
0 0 0 0 5


We will compute the determinant of this 5× 5 matrix by consistently expanding about the
first column for each submatrix that arises and does not have a zero entry multiplying it.

det (T ) =

∣∣∣∣∣∣∣∣∣∣
2 3 −1 3 3
0 −1 5 2 −1
0 0 3 9 2
0 0 0 −1 3
0 0 0 0 5

∣∣∣∣∣∣∣∣∣∣
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= 2(−1)1+1

∣∣∣∣∣∣∣∣
−1 5 2 −1
0 3 9 2
0 0 −1 3
0 0 0 5

∣∣∣∣∣∣∣∣
= 2(−1)(−1)1+1

∣∣∣∣∣∣
3 9 2
0 −1 3
0 0 5

∣∣∣∣∣∣
= 2(−1)(3)(−1)1+1

∣∣∣∣−1 3
0 5

∣∣∣∣
= 2(−1)(3)(−1)(−1)1+1

∣∣5∣∣
= 2(−1)(3)(−1)(5) = 30

�

If you consult other texts in your study of determinants, you may run into the terms
“minor” and “cofactor,” especially in a discussion centered on expansion about rows and
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columns. We’ve chosen not to make these definitions formally since we’ve been able to
get along without them. However, informally, a minor is a determinant of a submatrix,
specifically det (A (i|j)) and is usually referenced as the minor of [A]ij. A cofactor is a

signed minor, specifically the cofactor of [A]ij is (−1)i+j det (A (i|j)).

Subsection READ
Reading Questions

1. Construct the elementary matrix that will effect the row operation −6R2 + R3 on a
4× 7 matrix.
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2. Compute the determinant of the matrix2 3 −1
3 8 2
4 −1 −3


3. Compute the determinant of the matrix

3 9 −2 4 2
0 1 4 −2 7
0 0 −2 5 2
0 0 0 −1 6
0 0 0 0 4
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Subsection EXC
Exercises

C21 Doing the computations by hand, find the determinant of the matrix below.[
1 3
6 2

]
Contributed by Chris Black Solution [1316]

C22 Doing the computations by hand, find the determinant of the matrix below.[
1 3
2 6

]
Contributed by Chris Black Solution [1316]
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C23 Doing the computations by hand, find the determinant of the matrix below.1 3 2
4 1 3
1 0 1


Contributed by Chris Black Solution [1317]

C24 Doing the computations by hand, find the determinant of the matrix below.−2 3 −2
−4 −2 1
2 4 2


Contributed by Robert Beezer Solution [1317]
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C25 Doing the computations by hand, find the determinant of the matrix below.3 −1 4
2 5 1
2 0 6


Contributed by Robert Beezer Solution [1317]

C26 Doing the computations by hand, find the determinant of the matrix A.

A =


2 0 3 2
5 1 2 4
3 0 1 2
5 3 2 1


Contributed by Robert Beezer Solution [1318]
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C27 Doing the computations by hand, find the determinant of the matrix A.

A =


1 0 1 1
2 2 −1 1
2 1 3 0
1 1 0 1


Contributed by Chris Black Solution [1319]

C28 Doing the computations by hand, find the determinant of the matrix A.

A =


1 0 1 1
2 −1 −1 1
2 5 3 0
1 −1 0 1


Contributed by Chris Black Solution [1320]

Version 2.11



Subsection DM.EXC Exercises 1319

C29 Doing the computations by hand, find the determinant of the matrix A.

A =


2 3 0 2 1
0 1 1 1 2
0 0 1 2 3
0 1 2 1 0
0 0 0 1 2


Contributed by Chris Black Solution [1320]

C30 Doing the computations by hand, find the determinant of the matrix A.

A =


2 1 1 0 1
2 1 2 −1 1
0 0 1 2 0
1 0 3 1 1
2 1 1 2 1
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Contributed by Chris Black Solution [1321]

M10 Find a value of k so that the matrix A =

[
2 4
3 k

]
has det(A) = 0, or explain why it

is not possible.
Contributed by Chris Black Solution [1323]

M11 Find a value of k so that the matrix A =

1 2 1
2 0 1
2 3 k

 has det(A) = 0, or explain why

it is not possible.
Contributed by Chris Black Solution [1323]

M15 Given the matrix B =

[
2− x 1

4 2− x
]
, find all values of x that are solutions of

det(B) = 0.
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Contributed by Chris Black Solution [1323]

M16 Given the matrix B =

4− x −4 −4
2 −2− x −4
3 −3 −4− x

, find all values of x that are solu-

tions of det(B) = 0.
Contributed by Chris Black Solution [1324]
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Subsection SOL
Solutions

C21 Contributed by Chris Black Statement [1309]
Using the formula in Theorem DMST [1294] we have∣∣∣∣1 3

6 2

∣∣∣∣ = 1 · 2− 6 · 3 = 2− 18 = −16

C22 Contributed by Chris Black Statement [1309]
Using the formula in Theorem DMST [1294] we have∣∣∣∣1 3

2 6

∣∣∣∣ = 1 · 6− 2 · 3 = 6− 6 = 0
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C23 Contributed by Chris Black Statement [1310]
We can compute the determinant by expanding about any row or column; the most efficient
ones to choose are either the second column or the third row. In any case, the determinant
will be −4.

C24 Contributed by Robert Beezer Statement [1310]
We’ll expand about the first row since there are no zeros to exploit,∣∣∣∣∣∣
−2 3 −2
−4 −2 1
2 4 2

∣∣∣∣∣∣ = (−2)

∣∣∣∣−2 1
4 2

∣∣∣∣+ (−1)(3)

∣∣∣∣−4 1
2 2

∣∣∣∣+ (−2)

∣∣∣∣−4 −2
2 4

∣∣∣∣
= (−2)((−2)(2)− 1(4)) + (−3)((−4)(2)− 1(2)) + (−2)((−4)(4)− (−2)(2))

= (−2)(−8) + (−3)(−10) + (−2)(−12) = 70

C25 Contributed by Robert Beezer Statement [1311]
We can expand about any row or column, so the zero entry in the middle of the last row
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is attractive. Let’s expand about column 2. By Theorem DER [1295] and Theorem DEC
[1301] you will get the same result by expanding about a different row or column. We will
use Theorem DMST [1294] twice.∣∣∣∣∣∣

3 −1 4
2 5 1
2 0 6

∣∣∣∣∣∣ = (−1)(−1)1+2

∣∣∣∣2 1
2 6

∣∣∣∣+ (5)(−1)2+2

∣∣∣∣3 4
2 6

∣∣∣∣+ (0)(−1)3+2

∣∣∣∣3 4
2 1

∣∣∣∣
= (1)(10) + (5)(10) + 0 = 60

C26 Contributed by Robert Beezer Statement [1311]
With two zeros in column 2, we choose to expand about that column (Theorem DEC [1301]),

det (A) =

∣∣∣∣∣∣∣∣
2 0 3 2
5 1 2 4
3 0 1 2
5 3 2 1

∣∣∣∣∣∣∣∣
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= 0(−1)

∣∣∣∣∣∣
5 2 4
3 1 2
5 2 1

∣∣∣∣∣∣+ 1(1)

∣∣∣∣∣∣
2 3 2
3 1 2
5 2 1

∣∣∣∣∣∣+ 0(−1)

∣∣∣∣∣∣
2 3 2
5 2 4
5 2 1

∣∣∣∣∣∣+ 3(1)

∣∣∣∣∣∣
2 3 2
5 2 4
3 1 2

∣∣∣∣∣∣
= (1) (2(1(1)− 2(2))− 3(3(1)− 5(2)) + 2(3(2)− 5(1))) +

(3) (2(2(2)− 4(1))− 3(5(2)− 4(3)) + 2(5(1)− 3(2)))

= (−6 + 21 + 2) + (3)(0 + 6− 2) = 29

C27 Contributed by Chris Black Statement [1312]
Expanding on the first row, we have∣∣∣∣∣∣∣∣

1 0 1 1
2 2 −1 1
2 1 3 0
1 1 0 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 −1 1
1 3 0
1 0 1

∣∣∣∣∣∣− 0 +

∣∣∣∣∣∣
2 2 1
2 1 0
1 1 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
2 2 −1
2 1 3
1 1 0

∣∣∣∣∣∣
= 4 + (−1)− (−1) = 4
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C28 Contributed by Chris Black Statement [1312]
Expanding along the first row, we have∣∣∣∣∣∣∣∣

1 0 1 1
2 −1 −1 1
2 5 3 0
1 −1 0 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
−1 −1 1
5 3 0
−1 0 1

∣∣∣∣∣∣− 0 +

∣∣∣∣∣∣
2 −1 1
2 5 0
1 −1 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
2 −1 −1
2 5 3
1 −1 0

∣∣∣∣∣∣
= 5− 0 + 5− 10 = 0.

C29 Contributed by Chris Black Statement [1313]
Expanding along the first column, we have∣∣∣∣∣∣∣∣∣∣

2 3 0 2 1
0 1 1 1 2
0 0 1 2 3
0 1 2 1 0
0 0 0 1 2

∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣
1 1 1 2
0 1 2 3
1 2 1 0
0 0 1 2

∣∣∣∣∣∣∣∣+ 0 + 0 + 0 + 0
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Now, expanding along the first column again, we have

= 2

∣∣∣∣∣∣
1 2 3
2 1 0
0 1 2

∣∣∣∣∣∣− 0 +

∣∣∣∣∣∣
1 1 2
1 2 3
0 1 2

∣∣∣∣∣∣− 0


= 2([2 + 0 + 6− 0− 0− 8] + [4 + 0 + 2− 0− 3− 2])

= 2

C30 Contributed by Chris Black Statement [1313]
In order to exploit the zeros, let’s expand along row 3. We then have∣∣∣∣∣∣∣∣∣∣

2 3 0 2 1
0 1 1 1 2
0 0 1 2 0
1 0 3 1 1
2 1 1 2 1

∣∣∣∣∣∣∣∣∣∣
= (−1)6

∣∣∣∣∣∣∣∣
2 1 0 1
2 1 −1 1
1 0 1 1
2 1 2 1

∣∣∣∣∣∣∣∣+ (−1)7 · 2

∣∣∣∣∣∣∣∣
2 1 1 1
2 1 2 1
1 0 3 1
2 1 1 1

∣∣∣∣∣∣∣∣
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Notice that the second matrix here is singular since two rows are identical and thus it cannot
row-reduce to an identity matrix. We now have

=

∣∣∣∣∣∣∣∣
2 1 0 1
2 1 −1 1
1 0 1 1
2 1 2 1

∣∣∣∣∣∣∣∣+ 0

and now we expand on the first row of the first matrix:

= 2

∣∣∣∣∣∣
1 −1 1
0 1 1
1 2 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
2 −1 1
1 1 1
2 2 1

∣∣∣∣∣∣+ 0−
∣∣∣∣∣∣
2 1 −1
1 0 1
2 1 2

∣∣∣∣∣∣
= 2(−3)− (−3)− (−3) = 0

M10 Contributed by Chris Black Statement [1314]
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There is only one value of k that will make this matrix have a zero determinant.

det (A) =

∣∣∣∣2 4
3 k

∣∣∣∣ = 2k − 12

so det (A) = 0 only when k = 6.

M11 Contributed by Chris Black Statement [1314]

det (A) =

∣∣∣∣∣∣
1 2 1
2 0 1
2 3 k

∣∣∣∣∣∣ = 7− 4k

Thus, det (A) = 0 only when k = 7
4
.

M15 Contributed by Chris Black Statement [1314]
Using the formula for the determinant of a 2× 2 matrix given in Theorem DMST [1294], we
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have

det (B) =

∣∣∣∣2− x 1
4 2− x

∣∣∣∣ = (2− x)(2− x)− 4 = x2 − 4x = x(x− 4)

and thus det (B) = 0 only when x = 0 or x = 4.

M16 Contributed by Chris Black Statement [1315]

det (B) = 8x− 2x2 − x3 = −x(x2 − 2x+ 8) = −x(x− 2)(x− 4)

And thus, det (B) = 0 when x = 0, x = 2, or x = 4.
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Section PDM

Properties of Determinants of Matrices

We have seen how to compute the determinant of a matrix, and the incredible fact that
we can perform expansion about any row or column to make this computation. In this
largely theoretical section, we will state and prove several more intriguing properties about
determinants. Our main goal will be the two results in Theorem SMZD [1348] and Theorem
DRMM [1353], but more specifically, we will see how the value of a determinant will allow
us to gain insight into the various properties of a square matrix.
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Subsection DRO
Determinants and Row Operations

We start easy with a straightforward theorem whose proof presages the style of subsequent
proofs in this subsection.

Theorem DZRC
Determinant with Zero Row or Column
Suppose that A is a square matrix with a row where every entry is zero, or a column where
every entry is zero. Then det (A) = 0. �

Proof Suppose that A is a square matrix of size n and row i has every entry equal to zero.
We compute det (A) via expansion about row i.

det (A) =
n∑
j=1

(−1)i+j [A]ij det (A (i|j)) Theorem DER [1295]
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=
n∑
j=1

(−1)i+j 0 det (A (i|j)) Row i is zeros

=
n∑
j=1

0 = 0

The proof for the case of a zero column is entirely similar, or could be derived from an
application of Theorem DT [1299] employing the transpose of the matrix. �

Theorem DRCS
Determinant for Row or Column Swap
Suppose that A is a square matrix. Let B be the square matrix obtained from A by in-
terchanging the location of two rows, or interchanging the location of two columns. Then
det (B) = − det (A). �

Proof Begin with the special case where A is a square matrix of size n and we form B
by swapping adjacent rows i and i + 1 for some 1 ≤ i ≤ n− 1. Notice that the assumption
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about swapping adjacent rows means that B (i+ 1|j) = A (i|j) for all 1 ≤ j ≤ n, and
[B]i+1,j = [A]ij for all 1 ≤ j ≤ n. We compute det (B) via expansion about row i+ 1.

det (B) =
n∑
j=1

(−1)(i+1)+j [B]i+1,j det (B (i+ 1|j)) Theorem DER [1295]

=
n∑
j=1

(−1)(i+1)+j [A]ij det (A (i|j)) Hypothesis

=
n∑
j=1

(−1)1(−1)i+j [A]ij det (A (i|j))

= (−1)
n∑
j=1

(−1)i+j [A]ij det (A (i|j))

= − det (A) Theorem DER [1295]

So the result holds for the special case where we swap adjacent rows of the matrix. As

Version 2.11



Subsection PDM.DRO Determinants and Row Operations 1335

any computer scientist knows, we can accomplish any rearrangement of an ordered list by
swapping adjacent elements. This principle can be demonstrated by näıve sorting algorithms
such as “bubble sort.” In any event, we don’t need to discuss every possible reordering, we
just need to consider a swap of two rows, say rows s and t with 1 ≤ s < t ≤ n.

Begin with row s, and repeatedly swap it with each row just below it, including row t
and stopping there. This will total t− s swaps. Now swap the former row t, which currently
lives in row t − 1, with each row above it, stopping when it becomes row s. This will total
another t− s− 1 swaps. In this way, we create B through a sequence of 2(t− s)− 1 swaps
of adjacent rows, each of which adjusts det (A) by a multiplicative factor of −1. So

det (B) = (−1)2(t−s)−1 det (A) =
(
(−1)2

)t−s
(−1)−1 det (A) = − det (A)

as desired.
The proof for the case of swapping two columns is entirely similar, or could be derived

from an application of Theorem DT [1299] employing the transpose of the matrix. �

So Theorem DRCS [1327] tells us the effect of the first row operation (Definition RO
[84]) on the determinant of a matrix. Here’s the effect of the second row operation.
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Theorem DRCM
Determinant for Row or Column Multiples
Suppose that A is a square matrix. Let B be the square matrix obtained from A by multi-
plying a single row by the scalar α, or by multiplying a single column by the scalar α. Then
det (B) = α det (A). �

Proof Suppose that A is a square matrix of size n and we form the square matrix B by
multiplying each entry of row i of A by α. Notice that the other rows of A and B are equal,
so A (i|j) = B (i|j), for all 1 ≤ j ≤ n. We compute det (B) via expansion about row i.

det (B) =
n∑
j=1

(−1)i+j [B]ij det (B (i|j)) Theorem DER [1295]

=
n∑
j=1

(−1)i+j [B]ij det (A (i|j)) Hypothesis
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=
n∑
j=1

(−1)i+jα [A]ij det (A (i|j)) Hypothesis

= α
n∑
j=1

(−1)i+j [A]ij det (A (i|j))

= α det (A) Theorem DER [1295]

The proof for the case of a multiple of a column is entirely similar, or could be derived from
an application of Theorem DT [1299] employing the transpose of the matrix. �

Let’s go for understanding the effect of all three row operations. But first we need an
intermediate result, but it is an easy one.

Theorem DERC
Determinant with Equal Rows or Columns
Suppose that A is a square matrix with two equal rows, or two equal columns. Then
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det (A) = 0. �

Proof Suppose that A is a square matrix of size n where the two rows s and t are equal.
Form the matrix B by swapping rows r and s. Notice that as a consequence of our hypothesis,
A = B. Then

det (A) =
1

2
(det (A) + det (A))

=
1

2
(det (A)− det (B)) Theorem DRCS [1327]

=
1

2
(det (A)− det (A)) Hypothesis, A = B

=
1

2
(0) = 0

The proof for the case of two equal columns is entirely similar, or could be derived from an
application of Theorem DT [1299] employing the transpose of the matrix. �

Now explain the third row operation. Here we go.
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Theorem DRCMA
Determinant for Row or Column Multiples and Addition
Suppose that A is a square matrix. Let B be the square matrix obtained from A by multi-
plying a row by the scalar α and then adding it to another row, or by multiplying a column
by the scalar α and then adding it to another column. Then det (B) = det (A). �

Proof Suppose that A is a square matrix of size n. Form the matrix B by multiplying row
s by α and adding it to row t. Let C be the auxiliary matrix where we replace row t of A
by row s of A. Notice that A (t|j) = B (t|j) = C (t|j) for all 1 ≤ j ≤ n. We compute the
determinant of B by expansion about row t.

det (B) =
n∑
j=1

(−1)t+j [B]tj det (B (t|j)) Theorem DER [1295]

=
n∑
j=1

(−1)t+j
(
α [A]sj + [A]tj

)
det (B (t|j)) Hypothesis
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=
n∑
j=1

(−1)t+jα [A]sj det (B (t|j))

+
n∑
j=1

(−1)t+j [A]tj det (B (t|j))

= α
n∑
j=1

(−1)t+j [A]sj det (B (t|j))

+
n∑
j=1

(−1)t+j [A]tj det (B (t|j))

= α
n∑
j=1

(−1)t+j [C]tj det (C (t|j))

+
n∑
j=1

(−1)t+j [A]tj det (A (t|j))
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= α det (C) + det (A) Theorem DER [1295]

= α 0 + det (A) = det (A) Theorem DERC [1331]

The proof for the case of adding a multiple of a column is entirely similar, or could be derived
from an application of Theorem DT [1299] employing the transpose of the matrix. �

Is this what you expected? We could argue that the third row operation is the most
popular, and yet it has no effect whatsoever on the determinant of a matrix! We can exploit
this, along with our understanding of the other two row operations, to provide another
approach to computing a determinant. We’ll explain this in the context of an example.

Example DRO
Determinant by row operations
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Suppose we desire the determinant of the 4× 4 matrix

A =


2 0 2 3
1 3 −1 1
−1 1 −1 2
3 5 4 0


We will perform a sequence of row operations on this matrix, shooting for an upper triangular
matrix, whose determinant will be simply the product of its diagonal entries. For each row
operation, we will track the effect on the determinant via Theorem DRCS [1327], Theorem
DRCM [1330], Theorem DRCMA [1333].

R1↔R2−−−−→ A1 =


1 3 −1 1
2 0 2 3
−1 1 −1 2
3 5 4 0

 det (A) = − det (A1) Theorem DRCS [1327]
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−2R1+R2−−−−−→ A2 =


1 3 −1 1
0 −6 4 1
−1 1 −1 2
3 5 4 0

 = − det (A2) Theorem DRCMA [1333]

1R1+R3−−−−→ A3 =


1 3 −1 1
0 −6 4 1
0 4 −2 3
3 5 4 0

 = − det (A3) Theorem DRCMA [1333]

−3R1+R4−−−−−→ A4 =


1 3 −1 1
0 −6 4 1
0 4 −2 3
0 −4 7 −3

 = − det (A4) Theorem DRCMA [1333]
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1R3+R2−−−−→ A5 =


1 3 −1 1
0 −2 2 4
0 4 −2 3
0 −4 7 −3

 = − det (A5) Theorem DRCMA [1333]

− 1
2
R2−−−→ A6 =


1 3 −1 1
0 1 −1 −2
0 4 −2 3
0 −4 7 −3

 = 2 det (A6) Theorem DRCM [1330]

−4R2+R3−−−−−→ A7 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 −4 7 −3

 = 2 det (A7) Theorem DRCMA [1333]
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4R2+R4−−−−→ A8 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 0 3 −11

 = 2 det (A8) Theorem DRCMA [1333]

−1R3+R4−−−−−→ A9 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 0 1 −22

 = 2 det (A9) Theorem DRCMA [1333]

−2R4+R3−−−−−→ A10 =


1 3 −1 1
0 1 −1 −2
0 0 0 55
0 0 1 −22

 = 2 det (A10) Theorem DRCMA [1333]
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R3↔R4−−−−→ A11 =


1 3 −1 1
0 1 −1 −2
0 0 1 −22
0 0 0 55

 = −2 det (A11) Theorem DRCS [1327]

1
55
R4−−−→ A12 =


1 3 −1 1
0 1 −1 −2
0 0 1 −22
0 0 0 1

 = −110 det (A12) Theorem DRCM [1330]

The matrix A12 is upper triangular, so expansion about the first column (repeatedly) will
result in det (A12) = (1)(1)(1)(1) = 1 (see Example DUTM [1305]) and thus, det (A) =
−110(1) = −110.

Notice that our sequence of row operations was somewhat ad hoc, such as the transforma-
tion to A5. We could have been even more methodical, and strictly followed the process that
converts a matrix to reduced row-echelon form (Theorem REMEF [94]), eventually achieving
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the same numerical result with a final matrix that equaled the 4× 4 identity matrix. Notice
too that we could have stopped with A8, since at this point we could compute det (A8) by
two expansions about first columns, followed by a simple determinant of a 2 × 2 matrix
(Theorem DMST [1294]).

The beauty of this approach is that computationally we should already have written a
procedure to convert matrices to reduced-row echelon form, so all we need to do is track
the multiplicative changes to the determinant as the algorithm proceeds. Further, for a
square matrix of size n this approach requires on the order of n3 multiplications, while a
recursive application of expansion about a row or column (Theorem DER [1295], Theorem
DEC [1301]) will require in the vicinity of (n− 1)(n!) multiplications. So even for very small
matrices, a computational approach utilizing row operations will have superior run-time.
Tracking, and controlling, the effects of round-off errors is another story, best saved for a
numerical linear algebra course. �
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Subsection DROEM
Determinants, Row Operations, Elementary Matrices

As a final preparation for our two most important theorems about determinants, we prove
a handful of facts about the interplay of row operations and matrix multiplication with
elementary matrices with regard to the determinant. But first, a simple, but crucial, fact
about the identity matrix.

Theorem DIM
Determinant of the Identity Matrix
For every n ≥ 1, det (In) = 1. �

Proof It may be overkill, but this is a good situation to run through a proof by induction
on n (Technique I [2363]). Is the result true when n = 1? Yes,

det (I1) = [I1]11 Definition DM [1291]
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= 1 Definition IM [248]

Now assume the theorem is true for the identity matrix of size n − 1 and investigate the
determinant of the identity matrix of size n with expansion about row 1,

det (In) =
n∑
j=1

(−1)1+j [In]1j det (In (1|j)) Definition DM [1291]

= (−1)1+1 [In]11 det (In (1|1))

+
n∑
j=2

(−1)1+j [In]1j det (In (1|j))

= 1 det (In−1) +
n∑
j=2

(−1)1+j 0 det (In (1|j)) Definition IM [248]
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= 1(1) +
n∑
j=2

0 = 1 Induction Hypothesis

�

Theorem DEM
Determinants of Elementary Matrices
For the three possible versions of an elementary matrix (Definition ELEM [1276]) we have
the determinants,

1. det (Ei,j) = −1

2. det (Ei (α)) = α

3. det (Ei,j (α)) = 1
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�

Proof Swapping rows i and j of the identity matrix will create Ei,j (Definition ELEM
[1276]), so

det (Ei,j) = − det (In) Theorem DRCS [1327]

= −1 Theorem DIM [1342]

Multiplying row i of the identity matrix by α will create Ei (α) (Definition ELEM [1276]),
so

det (Ei (α)) = α det (In) Theorem DRCM [1330]

= α(1) = α Theorem DIM [1342]

Multiplying row i of the identity matrix by α and adding to row j will create Ei (α) j
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(Definition ELEM [1276]), so

det (Ei (α) j) = det (In) Theorem DRCMA [1333]

= 1 Theorem DIM [1342]

�

Theorem DEMMM
Determinants, Elementary Matrices, Matrix Multiplication
Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

det (EA) = det (E) det (A)

�

Proof The proof procedes in three parts, one for each type of elementary matrix, with each
part very similar to the other two. First, let B be the matrix obtained from A by swapping
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rows i and j,

det (Ei,jA) = det (B) Theorem EMDRO [1281]

= − det (A) Theorem DRCS [1327]

= det (Ei,j) det (A) Theorem DEM [1344]

Second, let B be the matrix obtained from A by multiplying row i by α,

det (Ei (α)A) = det (B) Theorem EMDRO [1281]

= α det (A) Theorem DRCM [1330]

= det (Ei (α)) det (A) Theorem DEM [1344]

Third, let B be the matrix obtained from A by multiplying row i by α and adding to row j,

det (Ei,j (α)A) = det (B) Theorem EMDRO [1281]

= det (A) Theorem DRCMA [1333]
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= det (Ei,j (α)) det (A) Theorem DEM [1344]

Since the desired result holds for each variety of elementary matrix individually, we are done.
�

Subsection DNMMM
Determinants, Nonsingular Matrices, Matrix Multiplication

If you asked someone with substantial experience working with matrices about the value of
the determinant, they’d be likely to quote the following theorem as the first thing to come
to mind.

Theorem SMZD
Singular Matrices have Zero Determinants

Version 2.11



Subsection PDM.DNMMM Determinants, Nonsingular Matrices, Matrix Multiplication 1355

Let A be a square matrix. Then A is singular if and only if det (A) = 0. �

Proof Rather than jumping into the two halves of the equivalence, we first establish a
few items. Let B be the unique square matrix that is row-equivalent to A and in reduced
row-echelon form (Theorem REMEF [94], Theorem RREFU [101]). For each of the row
operations that converts B into A, there is an elementary matrix Ei which effects the row
operation by matrix multiplication (Theorem EMDRO [1281]). Repeated applications of
Theorem EMDRO [1281] allow us to write

A = EsEs−1 . . . E2E1B

Then

det (A) = det (EsEs−1 . . . E2E1B)

= det (Es) det (Es−1) . . . det (E2) det (E1) det (B) Theorem DEMMM [1346]

From Theorem DEM [1344] we can infer that the determinant of an elementary matrix is
never zero (note the ban on α = 0 for Ei (α) in Definition ELEM [1276]). So the product
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on the right is composed of nonzero scalars, with the possible exception of det (B). More
precisely, we can argue that det (A) = 0 if and only if det (B) = 0. With this established,
we can take up the two halves of the equivalence.

(⇒) If A is singular, then by Theorem NMRRI [250], B cannot be the identity matrix.
Because (1) the number of pivot columns is equal to the number of nonzero rows, (2) not
every column is a pivot column, and (3) B is square, we see that B must have a zero row.
By Theorem DZRC [1326] the determinant of B is zero, and by the above, we conclude that
the determinant of A is zero.

(⇐) We will prove the contrapositive (Technique CP [2352]). So assume A is nonsin-
gular, then by Theorem NMRRI [250], B is the identity matrix and Theorem DIM [1342]
tells us that det (B) = 1 6= 0. With the argument above, we conclude that the determinant
of A is nonzero as well. �

For the case of 2 × 2 matrices you might compare the application of Theorem SMZD
[1348] with the combination of the results stated in Theorem DMST [1294] and Theorem
TTMI [732].
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Example ZNDAB
Zero and nonzero determinant, Archetypes A and B
The coefficient matrix in Archetype A [2378] has a zero determinant (check this!) while the
coefficient matrix Archetype B [2392] has a nonzero determinant (check this, too). These
matrices are singular and nonsingular, respectively. This is exactly what Theorem SMZD
[1348] says, and continues our list of contrasts between these two archetypes. �

Since Theorem SMZD [1348] is an equivalence (Technique E [2348]) we can expand on
our growing list of equivalences about nonsingular matrices. The addition of the condition
det (A) 6= 0 is one of the best motivations for learning about determinants.

Theorem NME7
Nonsingular Matrix Equivalences, Round 7
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.
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3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.
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�

Proof Theorem SMZD [1348] says A is singular if and only if det (A) = 0. If we negate each
of these statements, we arrive at two contrapositives that we can combine as the equivalence,
A is nonsingular if and only if det (A) 6= 0. This allows us to add a new statement to the
list found in Theorem NME6 [1205]. �

Computationally, row-reducing a matrix is the most efficient way to determine if a matrix
is nonsingular, though the effect of using division in a computer can lead to round-off errors
that confuse small quantities with critical zero quantities. Conceptually, the determinant
may seem the most efficient way to determine if a matrix is nonsingular. The definition
of a determinant uses just addition, subtraction and multiplication, so division is never a
problem. And the final test is easy: is the determinant zero or not? However, the number
of operations involved in computing a determinant by the definition very quickly becomes
so excessive as to be impractical.

Now for the coup de grâce. We will generalize Theorem DEMMM [1346] to the case of
any two square matrices. You may recall thinking that matrix multiplication was defined in a
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needlessly complicated manner. For sure, the definition of a determinant seems even stranger.
(Though Theorem SMZD [1348] might be forcing you to reconsider.) Read the statement of
the next theorem and contemplate how nicely matrix multiplication and determinants play
with each other.

Theorem DRMM
Determinant Respects Matrix Multiplication
Suppose that A and B are square matrices of the same size. Then det (AB) = det (A) det (B).

�

Proof This proof is constructed in two cases. First, suppose that A is singular. Then
det (A) = 0 by Theorem SMZD [1348]. By the contrapositive of Theorem NPNT [775],
AB is singular as well. So by a second application ofTheorem SMZD [1348], det (AB) = 0.
Putting it all together

det (AB) = 0 = 0 det (B) = det (A) det (B)

as desired.
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For the second case, suppose that A is nonsingular. By Theorem NMPEM [1289] there
are elementary matrices E1, E2, E3, . . . , Es such that A = E1E2E3 . . . Es. Then

det (AB) = det (E1E2E3 . . . EsB)

= det (E1) det (E2) det (E3) . . . det (Es) det (B) Theorem DEMMM [1346]

= det (E1E2E3 . . . Es) det (B) Theorem DEMMM [1346]

= det (A) det (B)

�

It is amazing that matrix multiplication and the determinant interact this way. Might it
also be true that det (A+B) = det (A) + det (B)? (See Exercise PDM.M30 [1357].)
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Subsection READ
Reading Questions

1. Consider the two matrices below, and suppose you already have computed det (A) =
−120. What is det (B)? Why?

A =


0 8 3 −4
−1 2 −2 5
−2 8 4 3
0 −4 2 −3

 B =


0 8 3 −4
0 −4 2 −3
−2 8 4 3
−1 2 −2 5


2. State the theorem that allows us to make yet another extension to our NMEx series of

theorems.

3. What is amazing about the interaction between matrix multiplication and the determi-
nant?
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Subsection EXC
Exercises

C30 Each of the archetypes below is a system of equations with a square coefficient matrix,
or is a square matrix itself. Compute the determinant of each matrix, noting how Theorem
SMZD [1348] indicates when the matrix is singular or nonsingular.
Archetype A [2378]
Archetype B [2392]
Archetype F [2443]
Archetype K [2515]
Archetype L [2527]

Contributed by Robert Beezer

M20 Construct a 3 × 3 nonsingular matrix and call it A. Then, for each entry of the
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matrix, compute the corresponding cofactor, and create a new 3 × 3 matrix full of these
cofactors by placing the cofactor of an entry in the same location as the entry it was based
on. Once complete, call this matrix C. Compute ACt. Any observations? Repeat with a
new matrix, or perhaps with a 4× 4 matrix.
Contributed by Robert Beezer Solution [1359]

M30 Construct an example to show that the following statement is not true for all square
matrices A and B of the same size: det (A+B) = det (A) + det (B).
Contributed by Robert Beezer

T10 Theorem NPNT [775] says that if the product of square matrices AB is nonsingular,
then the individual matrices A and B are nonsingular also. Construct a new proof of this
result making use of theorems about determinants of matrices.
Contributed by Robert Beezer

T15 Use Theorem DRCM [1330] to prove Theorem DZRC [1326] as a corollary. (See
Technique LC [2369].)
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Contributed by Robert Beezer

T20 Suppose that A is a square matrix of size n and α ∈ C is a scalar. Prove that
det (αA) = αn det (A).
Contributed by Robert Beezer

T25 Employ Theorem DT [1299] to construct the second half of the proof of Theorem
DRCM [1330] (the portion about a multiple of a column).
Contributed by Robert Beezer
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Subsection SOL
Solutions

M20 Contributed by Robert Beezer Statement [1356]
The result of these computations should be a matrix with the value of det (A) in the diagonal
entries and zeros elsewhere. The suggestion of using a nonsingular matrix was partially so
that it was obvious that the value of the determinant appears on the diagonal.

This result (which is true in general) provides a method for computing the inverse of
a nonsingular matrix. Since ACt = det (A) In, we can multiply by the reciprocal of the
determinant (which is nonzero!) and the inverse of A (it exists!) to arrive at an expression
for the matrix inverse:

A−1 =
1

det (A)
Ct

Version 2.11



Annotated Acronyms PDM.D Determinants 1367

Annotated Acronyms D
Determinants

Theorem EMDRO [1281]

The main purpose of elementary matrices is to provide a more formal foundation for row
operations. With this theorem we can convert the notion of “doing a row operation” into
the slightly more precise, and tractable, operation of matrix multiplication by an elementary
matrix. The other big results in this chapter are made possible by this connection and our
previous understanding of the behavior of matrix multiplication (such as results in Section
MM [660]).

Theorem DER [1295]

We define the determinant by expansion about the first row and then prove you can expand
about any row (and with Theorem DEC [1301], about any column). Amazing. If the deter-
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minant seems contrived, these results might begin to convince you that maybe something
interesting is going on.

Theorem DRMM [1353]

Theorem EMDRO [1281] connects elementary matrices with matrix multiplication. Now we
connect determinants with matrix multiplication. If you thought the definition of matrix
multiplication (as exemplified by Theorem EMP [676]) was as outlandish as the definition
of the determinant, then no more. They seem to play together quite nicely.

Theorem SMZD [1348]

This theorem provides a simple test for nonsingularity, even though it is stated and titled as a
theorem about singularity. It’ll be helpful, especially in concert with Theorem DRMM [1353],
in establishing upcoming results about nonsingular matrices or creating alternative proofs
of earlier results. You might even use this theorem as an indicator of how often a matrix
is singular. Create a square matrix at random — what are the odds it is singular? This
theorem says the determinant has to be zero, which we might suspect is a rare occurrence.
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Of course, we have to be a lot more careful about words like “random,” “odds,” and “rare”
if we want precise answers to this question.
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Chapter E
Eigenvalues

When we have a square matrix of size n, A, and we multiply it by a vector x from Cn to
form the matrix-vector product (Definition MVP [661]), the result is another vector in Cn.
So we can adopt a functional view of this computation — the act of multiplying by a square
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matrix is a function that converts one vector (x) into another one (Ax) of the same size. For
some vectors, this seemingly complicated computation is really no more complicated than
scalar multiplication. The vectors vary according to the choice of A, so the question is to
determine, for an individual choice of A, if there are any such vectors, and if so, which ones.
It happens in a variety of situations that these vectors (and the scalars that go along with
them) are of special interest.

We will be solving polynomial equations in this chapter, which raises the specter of roots
that are complex numbers. This distinct possibility is our main reason for entertaining the
complex numbers throughout the course. You might be moved to revisit Section CNO [2313]
and Section O [565].
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Section EE

Eigenvalues and Eigenvectors

We start with the principal definition for this chapter.

Subsection EEM
Eigenvalues and Eigenvectors of a Matrix

Definition EEM
Eigenvalues and Eigenvectors of a Matrix
Suppose that A is a square matrix of size n, x 6= 0 is a vector in Cn, and λ is a scalar in C.
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Then we say x is an eigenvector of A with eigenvalue λ if

Ax = λx

4
Before going any further, perhaps we should convince you that such things ever happen

at all. Understand the next example, but do not concern yourself with where the pieces come
from. We will have methods soon enough to be able to discover these eigenvectors ourselves.

Example SEE
Some eigenvalues and eigenvectors
Consider the matrix

A =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28
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and the vectors

x =


1
−1
2
5

 y =


−3
4
−10

4

 z =


−3
7
0
8

 w =


1
−1
4
0


Then

Ax =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28




1
−1
2
5

 =


4
−4
8
20

 = 4


1
−1
2
5

 = 4x

so x is an eigenvector of A with eigenvalue λ = 4. Also,

Ay =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28



−3
4
−10

4

 =


0
0
0
0

 = 0


−3
4
−10

4

 = 0y
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so y is an eigenvector of A with eigenvalue λ = 0. Also,

Az =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28



−3
7
0
8

 =


−6
14
0
16

 = 2


−3
7
0
8

 = 2z

so z is an eigenvector of A with eigenvalue λ = 2. Also,

Aw =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28




1
−1
4
0

 =


2
−2
8
0

 = 2


1
−1
4
0

 = 2w

so w is an eigenvector of A with eigenvalue λ = 2.
So we have demonstrated four eigenvectors of A. Are there more? Yes, any nonzero

scalar multiple of an eigenvector is again an eigenvector. In this example, set u = 30x. Then

Au = A(30x)

Version 2.11



Subsection EE.EEM Eigenvalues and Eigenvectors of a Matrix 1376

= 30Ax Theorem MMSMM [685]

= 30(4x) x an eigenvector of A

= 4(30x) Property SMAM [619]

= 4u

so that u is also an eigenvector of A for the same eigenvalue, λ = 4.
The vectors z and w are both eigenvectors of A for the same eigenvalue λ = 2, yet this

is not as simple as the two vectors just being scalar multiples of each other (they aren’t).
Look what happens when we add them together, to form v = z + w, and multiply by A,

Av = A(z + w)

= Az + Aw Theorem MMDAA [684]

= 2z + 2w z, w eigenvectors of A

= 2(z + w) Property DVAC [296]

= 2v
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so that v is also an eigenvector of A for the eigenvalue λ = 2. So it would appear that the set
of eigenvectors that are associated with a fixed eigenvalue is closed under the vector space
operations of Cn. Hmmm.

The vector y is an eigenvector of A for the eigenvalue λ = 0, so we can use Theorem
ZSSM [979] to write Ay = 0y = 0. But this also means that y ∈ N (A). There would appear
to be a connection here also. �

Example SEE [1366] hints at a number of intriguing properties, and there are many
more. We will explore the general properties of eigenvalues and eigenvectors in Section PEE
[1445], but in this section we will concern ourselves with the question of actually computing
eigenvalues and eigenvectors. First we need a bit of background material on polynomials
and matrices.
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Subsection PM
Polynomials and Matrices

A polynomial is a combination of powers, multiplication by scalar coefficients, and addition
(with subtraction just being the inverse of addition). We never have occasion to divide when
computing the value of a polynomial. So it is with matrices. We can add and subtract
matrices, we can multiply matrices by scalars, and we can form powers of square matrices
by repeated applications of matrix multiplication. We do not normally divide matrices
(though sometimes we can multiply by an inverse). If a matrix is square, all the operations
constituting a polynomial will preserve the size of the matrix. So it is natural to consider
evaluating a polynomial with a matrix, effectively replacing the variable of the polynomial
by a matrix. We’ll demonstrate with an example,

Example PM
Polynomial of a matrix
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Let

p(x) = 14 + 19x− 3x2 − 7x3 + x4 D =

−1 3 2
1 0 −2
−3 1 1


and we will compute p(D). First, the necessary powers of D. Notice that D0 is defined to
be the multiplicative identity, I3, as will be the case in general.

D0 = I3 =

1 0 0
0 1 0
0 0 1


D1 = D =

−1 3 2
1 0 −2
−3 1 1


D2 = DD1 =

−1 3 2
1 0 −2
−3 1 1

−1 3 2
1 0 −2
−3 1 1

 =

−2 −1 −6
5 1 0
1 −8 −7
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D3 = DD2 =

−1 3 2
1 0 −2
−3 1 1

−2 −1 −6
5 1 0
1 −8 −7

 =

19 −12 −8
−4 15 8
12 −4 11


D4 = DD3 =

−1 3 2
1 0 −2
−3 1 1

19 −12 −8
−4 15 8
12 −4 11

 =

 −7 49 54
−5 −4 −30
−49 47 43



Then

p(D) = 14 + 19D − 3D2 − 7D3 +D4

= 14

1 0 0
0 1 0
0 0 1

+ 19

−1 3 2
1 0 −2
−3 1 1

− 3

−2 −1 −6
5 1 0
1 −8 −7
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− 7

19 −12 −8
−4 15 8
12 −4 11

+

 −7 49 54
−5 −4 −30
−49 47 43


=

−139 193 166
27 −98 −124
−193 118 20


Notice that p(x) factors as

p(x) = 14 + 19x− 3x2 − 7x3 + x4 = (x− 2)(x− 7)(x+ 1)2

Because D commutes with itself (DD = DD), we can use distributivity of matrix multipli-
cation across matrix addition (Theorem MMDAA [684]) without being careful with any of
the matrix products, and just as easily evaluate p(D) using the factored form of p(x),

p(D) = 14 + 19D − 3D2 − 7D3 +D4 = (D − 2I3)(D − 7I3)(D + I3)
2
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=

−3 3 2
1 −2 −2
−3 1 −1

 −8 3 2
1 −7 −2
−3 1 −6

  0 3 2
1 1 −2
−3 1 2

2

=

−139 193 166
27 −98 −124
−193 118 20



This example is not meant to be too profound. It is meant to show you that it is natural
to evaluate a polynomial with a matrix, and that the factored form of the polynomial is
as good as (or maybe better than) the expanded form. And do not forget that constant
terms in polynomials are really multiples of the identity matrix when we are evaluating the
polynomial with a matrix. �
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Subsection EEE
Existence of Eigenvalues and Eigenvectors

Before we embark on computing eigenvalues and eigenvectors, we will prove that every matrix
has at least one eigenvalue (and an eigenvector to go with it). Later, in Theorem MNEM
[1471], we will determine the maximum number of eigenvalues a matrix may have.

The determinant (Definition D [1177]) will be a powerful tool in Subsection EE.CEE
[1387] when it comes time to compute eigenvalues. However, it is possible, with some more
advanced machinery, to compute eigenvalues without ever making use of the determinant.
Sheldon Axler does just that in his book, Linear Algebra Done Right. Here and now, we
give Axler’s “determinant-free” proof that every matrix has an eigenvalue. The result is not
too startling, but the proof is most enjoyable.

Theorem EMHE
Every Matrix Has an Eigenvalue
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Suppose A is a square matrix. Then A has at least one eigenvalue. �

Proof Suppose that A has size n, and choose x as any nonzero vector from Cn. (Notice
how much latitude we have in our choice of x. Only the zero vector is off-limits.) Consider
the set

S =
{
x, Ax, A2x, A3x, . . . , Anx

}
This is a set of n+1 vectors from Cn, so by Theorem MVSLD [475], S is linearly dependent.
Let a0, a1, a2, . . . , an be a collection of n + 1 scalars from C, not all zero, that provide a
relation of linear dependence on S. In other words,

a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ anA
nx = 0

Some of the ai are nonzero. Suppose that just a0 6= 0, and a1 = a2 = a3 = · · · = an = 0.
Then a0x = 0 and by Theorem SMEZV [982], either a0 = 0 or x = 0, which are both
contradictions. So ai 6= 0 for some i ≥ 1. Let m be the largest integer such that am 6= 0.
From this discussion we know that m ≥ 1. We can also assume that am = 1, for if not,
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replace each ai by ai/am to obtain scalars that serve equally well in providing a relation of
linear dependence on S.

Define the polynomial

p(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ amx
m

Because we have consistently used C as our set of scalars (rather than R), we know that we
can factor p(x) into linear factors of the form (x − bi), where bi ∈ C. So there are scalars,
b1, b2, b3, . . . , bm, from C so that,

p(x) = (x− bm)(x− bm−1) · · · (x− b3)(x− b2)(x− b1)
Put it all together and

0 = a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ anA
nx

= a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ amA
mx ai = 0 for i > m

=
(
a0In + a1A+ a2A

2 + a3A
3 + · · ·+ amA

m
)
x Theorem MMDAA [684]
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= p(A)x Definition of p(x)

= (A− bmIn)(A− bm−1In) · · · (A− b3In)(A− b2In)(A− b1In)x

Let k be the smallest integer such that

(A− bkIn)(A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x = 0.

From the preceding equation, we know that k ≤ m. Define the vector z by

z = (A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x

Notice that by the definition of k, the vector z must be nonzero. In the case where k = 1,
we understand that z is defined by z = x, and z is still nonzero. Now

(A− bkIn)z = (A− bkIn)(A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x = 0

which allows us to write

Az = (A+O)z Property ZM [618]
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= (A− bkIn + bkIn)z Property AIM [619]

= (A− bkIn)z + bkInz Theorem MMDAA [684]

= 0 + bkInz Defining property of z

= bkInz Property ZM [618]

= bkz Theorem MMIM [682]

Since z 6= 0, this equation says that z is an eigenvector of A for the eigenvalue λ = bk
(Definition EEM [1365]), so we have shown that any square matrix A does have at least one
eigenvalue. �

The proof of Theorem EMHE [1376] is constructive (it contains an unambiguous proce-
dure that leads to an eigenvalue), but it is not meant to be practical. We will illustrate the
theorem with an example, the purpose being to provide a companion for studying the proof
and not to suggest this is the best procedure for computing an eigenvalue.

Example CAEHW
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Computing an eigenvalue the hard way
This example illustrates the proof of Theorem EMHE [1376], so will employ the same notation
as the proof — look there for full explanations. It is not meant to be an example of a
reasonable computational approach to finding eigenvalues and eigenvectors. OK, warnings
in place, here we go.

Let

A =


−7 −1 11 0 −4
4 1 0 2 0
−10 −1 14 0 −4

8 2 −15 −1 5
−10 −1 16 0 −6


Version 2.11



Subsection EE.EEE Existence of Eigenvalues and Eigenvectors 1389

and choose

x =


3
0
3
−5
4


It is important to notice that the choice of x could be anything, so long as it is not the zero
vector. We have not chosen x totally at random, but so as to make our illustration of the
theorem as general as possible. You could replicate this example with your own choice and
the computations are guaranteed to be reasonable, provided you have a computational tool
that will factor a fifth degree polynomial for you.

The set

S =
{
x, Ax, A2x, A3x, A4x, A5x

}
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=




3
0
3
−5
4

 ,

−4
2
−4
4
−6

 ,


6
−6
6
−2
10

 ,

−10
14
−10
−2
−18

 ,


18
−30
18
10
34

 ,

−34
62
−34
−26
−66




is guaranteed to be linearly dependent, as it has six vectors from C5 (Theorem MVSLD [475]).
We will search for a non-trivial relation of linear dependence by solving a homogeneous
system of equations whose coefficient matrix has the vectors of S as columns through row
operations,

3 −4 6 −10 18 −34
0 2 −6 14 −30 62
3 −4 6 −10 18 −34
−5 4 −2 −2 10 −26
4 −6 10 −18 34 −66

 RREF−−−→


1 0 −2 6 −14 30

0 1 −3 7 −15 31
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


There are four free variables for describing solutions to this homogeneous system, so we have

Version 2.11



Subsection EE.EEE Existence of Eigenvalues and Eigenvectors 1391

our pick of solutions. The most expedient choice would be to set x3 = 1 and x4 = x5 =
x6 = 0. However, we will again opt to maximize the generality of our illustration of Theorem
EMHE [1376] and choose x3 = −8, x4 = −3, x5 = 1 and x6 = 0. The leads to a solution
with x1 = 16 and x2 = 12.

This relation of linear dependence then says that

0 = 16x + 12Ax− 8A2x− 3A3x + A4x + 0A5x

0 =
(
16 + 12A− 8A2 − 3A3 + A4

)
x

So we define p(x) = 16 + 12x − 8x2 − 3x3 + x4, and as advertised in the proof of Theorem
EMHE [1376], we have a polynomial of degree m = 4 > 1 such that p(A)x = 0. Now we
need to factor p(x) over C. If you made your own choice of x at the start, this is where you
might have a fifth degree polynomial, and where you might need to use a computational tool
to find roots and factors. We have

p(x) = 16 + 12x− 8x2 − 3x3 + x4 = (x− 4)(x+ 2)(x− 2)(x+ 1)
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So we know that

0 = p(A)x = (A− 4I5)(A+ 2I5)(A− 2I5)(A+ 1I5)x

We apply one factor at a time, until we get the zero vector, so as to determine the value of
k described in the proof of Theorem EMHE [1376],

(A+ 1I5)x =


−6 −1 11 0 −4
4 2 0 2 0
−10 −1 15 0 −4

8 2 −15 0 5
−10 −1 16 0 −5




3
0
3
−5
4

 =


−1
2
−1
−1
−2



(A− 2I5)(A+ 1I5)x =


−9 −1 11 0 −4
4 −1 0 2 0
−10 −1 12 0 −4

8 2 −15 −3 5
−10 −1 16 0 −8



−1
2
−1
−1
−2

 =


4
−8
4
4
8
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(A+ 2I5)(A− 2I5)(A+ 1I5)x =


−5 −1 11 0 −4
4 3 0 2 0
−10 −1 16 0 −4

8 2 −15 1 5
−10 −1 16 0 −4




4
−8
4
4
8

 =


0
0
0
0
0



So k = 3 and

z = (A− 2I5)(A+ 1I5)x =


4
−8
4
4
8


is an eigenvector of A for the eigenvalue λ = −2, as you can check by doing the computation
Az. If you work through this example with your own choice of the vector x (strongly
recommended) then the eigenvalue you will find may be different, but will be in the set
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{3, 0, 1, −1, −2}. See Exercise EE.M60 [1427] for a suggested starting vector. �

Subsection CEE
Computing Eigenvalues and Eigenvectors

Fortunately, we need not rely on the procedure of Theorem EMHE [1376] each time we need
an eigenvalue. It is the determinant, and specifically Theorem SMZD [1348], that provides
the main tool for computing eigenvalues. Here is an informal sequence of equivalences that
is the key to determining the eigenvalues and eigenvectors of a matrix,

Ax = λx ⇐⇒ Ax− λInx = 0 ⇐⇒ (A− λIn) x = 0

So, for an eigenvalue λ and associated eigenvector x 6= 0, the vector x will be a nonzero
element of the null space of A − λIn, while the matrix A − λIn will be singular and there-
fore have zero determinant. These ideas are made precise in Theorem EMRCP [1390] and
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Theorem EMNS [1394], but for now this brief discussion should suffice as motivation for the
following definition and example.

Definition CP
Characteristic Polynomial
Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is
the polynomial pA (x) defined by

pA (x) = det (A− xIn)

4
Example CPMS3
Characteristic polynomial of a matrix, size 3
Consider

F =

−13 −8 −4
12 7 4
24 16 7
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Then

pF (x) = det (F − xI3)

=

∣∣∣∣∣∣
−13− x −8 −4

12 7− x 4
24 16 7− x

∣∣∣∣∣∣ Definition CP [1388]

= (−13− x)

∣∣∣∣7− x 4
16 7− x

∣∣∣∣+ (−8)(−1)

∣∣∣∣12 4
24 7− x

∣∣∣∣ Definition DM [1291]

+ (−4)

∣∣∣∣12 7− x
24 16

∣∣∣∣
= (−13− x)((7− x)(7− x)− 4(16)) Theorem DMST [1294]

+ (−8)(−1)(12(7− x)− 4(24))

+ (−4)(12(16)− (7− x)(24))

= 3 + 5x+ x2 − x3
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= −(x− 3)(x+ 1)2

�

The characteristic polynomial is our main computational tool for finding eigenvalues, and
will sometimes be used to aid us in determining the properties of eigenvalues.

Theorem EMRCP
Eigenvalues of a Matrix are Roots of Characteristic Polynomials
Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if pA (λ) = 0. �

Proof Suppose A has size n.

λ is an eigenvalue of A

⇐⇒ there exists x 6= 0 so that Ax = λx Definition EEM [1365]

⇐⇒ there exists x 6= 0 so that Ax− λx = 0

⇐⇒ there exists x 6= 0 so that Ax− λInx = 0 Theorem MMIM [682]

⇐⇒ there exists x 6= 0 so that (A− λIn)x = 0 Theorem MMDAA [684]
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⇐⇒ A− λIn is singular Definition NM [246]

⇐⇒ det (A− λIn) = 0 Theorem SMZD [1348]

⇐⇒ pA (λ) = 0 Definition CP [1388]

�

Example EMS3
Eigenvalues of a matrix, size 3
In Example CPMS3 [1388] we found the characteristic polynomial of

F =

−13 −8 −4
12 7 4
24 16 7


to be pF (x) = −(x− 3)(x+ 1)2. Factored, we can find all of its roots easily, they are x = 3
and x = −1. By Theorem EMRCP [1390], λ = 3 and λ = −1 are both eigenvalues of F , and
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these are the only eigenvalues of F . We’ve found them all. �

Let us now turn our attention to the computation of eigenvectors.

Definition EM
Eigenspace of a Matrix
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A
for λ, EA (λ), is the set of all the eigenvectors of A for λ, together with the inclusion of the
zero vector. 4

Example SEE [1366] hinted that the set of eigenvectors for a single eigenvalue might have
some closure properties, and with the addition of the non-eigenvector, 0, we indeed get a
whole subspace.

Theorem EMS
Eigenspace for a Matrix is a Subspace
Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace
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EA (λ) is a subspace of the vector space Cn. �

Proof We will check the three conditions of Theorem TSS [1008]. First, Definition EM
[1392] explicitly includes the zero vector in EA (λ), so the set is non-empty.

Suppose that x, y ∈ EA (λ), that is, x and y are two eigenvectors of A for λ. Then

A (x + y) = Ax + Ay Theorem MMDAA [684]

= λx + λy x, y eigenvectors of A

= λ (x + y) Property DVAC [296]

So either x + y = 0, or x + y is an eigenvector of A for λ (Definition EEM [1365]). So, in
either event, x + y ∈ EA (λ), and we have additive closure.

Suppose that α ∈ C, and that x ∈ EA (λ), that is, x is an eigenvector of A for λ. Then

A (αx) = α (Ax) Theorem MMSMM [685]

= αλx x an eigenvector of A

= λ (αx) Property SMAC [296]
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So either αx = 0, or αx is an eigenvector of A for λ (Definition EEM [1365]). So, in either
event, αx ∈ EA (λ), and we have scalar closure.

With the three conditions of Theorem TSS [1008] met, we know EA (λ) is a subspace. �

Theorem EMS [1392] tells us that an eigenspace is a subspace (and hence a vector space
in its own right). Our next theorem tells us how to quickly construct this subspace.

Theorem EMNS
Eigenspace of a Matrix is a Null Space
Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

EA (λ) = N (A− λIn)

�

Proof The conclusion of this theorem is an equality of sets, so normally we would follow
the advice of Definition SE [2327]. However, in this case we can construct a sequence of
equivalences which will together provide the two subset inclusions we need. First, notice
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that 0 ∈ EA (λ) by Definition EM [1392] and 0 ∈ N (A− λIn) by Theorem HSC [208]. Now
consider any nonzero vector x ∈ Cn,

x ∈ EA (λ) ⇐⇒ Ax = λx Definition EM [1392]

⇐⇒ Ax− λx = 0

⇐⇒ Ax− λInx = 0 Theorem MMIM [682]

⇐⇒ (A− λIn) x = 0 Theorem MMDAA [684]

⇐⇒ x ∈ N (A− λIn) Definition NSM [216]

�

You might notice the close parallels (and differences) between the proofs of Theorem
EMRCP [1390] and Theorem EMNS [1394]. Since Theorem EMNS [1394] describes the set
of all the eigenvectors of A as a null space we can use techniques such as Theorem BNS [484]
to provide concise descriptions of eigenspaces. Theorem EMNS [1394] also provides a trivial
proof for Theorem EMS [1392].
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Example ESMS3
Eigenspaces of a matrix, size 3
Example CPMS3 [1388] and Example EMS3 [1391] describe the characteristic polynomial
and eigenvalues of the 3× 3 matrix

F =

−13 −8 −4
12 7 4
24 16 7


We will now take the each eigenvalue in turn and compute its eigenspace. To do this, we
row-reduce the matrix F − λI3 in order to determine solutions to the homogeneous system
LS(F − λI3, 0) and then express the eigenspace as the null space of F − λI3 (Theorem
EMNS [1394]). Theorem BNS [484] then tells us how to write the null space as the span of
a basis.

λ = 3 F − 3I3 =

−16 −8 −4
12 4 4
24 16 4

 RREF−−−→
 1 0 1

2

0 1 −1
2

0 0 0
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EF (3) = N (F − 3I3) =

〈
−1

2
1
2

1


〉

=

〈
−1

1
2


〉

λ = −1 F + 1I3 =

−12 −8 −4
12 8 4
24 16 8

 RREF−−−→
 1 2

3
1
3

0 0 0
0 0 0


EF (−1) = N (F + 1I3) =

〈
−2

3

1
0

 ,
−1

3

0
1


〉

=

〈
−2

3
0

 ,
−1

0
3


〉

Eigenspaces in hand, we can easily compute eigenvectors by forming nontrivial linear com-
binations of the basis vectors describing each eigenspace. In particular, notice that we can
“pretty up” our basis vectors by using scalar multiples to clear out fractions. More powerful
scientific calculators, and most every mathematical software package, will compute eigenval-
ues of a matrix along with basis vectors of the eigenspaces. Be sure to understand how your
device outputs complex numbers, since they are likely to occur. Also, the basis vectors will
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not necessarily look like the results of an application of Theorem BNS [484]. Duplicating
the results of the next section (Subsection EE.ECEE [1398]) with your device would be very
good practice. See: Computation E.SAGE [2309] �

Subsection ECEE
Examples of Computing Eigenvalues and Eigenvectors

No theorems in this section, just a selection of examples meant to illustrate the range of
possibilities for the eigenvalues and eigenvectors of a matrix. These examples can all be
done by hand, though the computation of the characteristic polynomial would be very time-
consuming and error-prone. It can also be difficult to factor an arbitrary polynomial, though
if we were to suggest that most of our eigenvalues are going to be integers, then it can be
easier to hunt for roots. These examples are meant to look similar to a concatenation of
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Example CPMS3 [1388], Example EMS3 [1391] and Example ESMS3 [1396]. First, we will
sneak in a pair of definitions so we can illustrate them throughout this sequence of examples.

Definition AME
Algebraic Multiplicity of an Eigenvalue
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multi-
plicity of λ, αA (λ), is the highest power of (x−λ) that divides the characteristic polynomial,
pA (x).
(This definition contains Notation AME.) 4

Since an eigenvalue λ is a root of the characteristic polynomial, there is always a factor
of (x− λ), and the algebraic multiplicity is just the power of this factor in a factorization of
pA (x). So in particular, αA (λ) ≥ 1. Compare the definition of algebraic multiplicity with
the next definition.

Definition GME
Geometric Multiplicity of an Eigenvalue
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric
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multiplicity of λ, γA (λ), is the dimension of the eigenspace EA (λ).

(This definition contains Notation GME.) 4
Since every eigenvalue must have at least one eigenvector, the associated eigenspace

cannot be trivial, and so γA (λ) ≥ 1.

Example EMMS4
Eigenvalue multiplicities, matrix of size 4
Consider the matrix

B =


−2 1 −2 −4
12 1 4 9
6 5 −2 −4
3 −4 5 10


then

pB (x) = 8− 20x+ 18x2 − 7x3 + x4 = (x− 1)(x− 2)3

So the eigenvalues are λ = 1, 2 with algebraic multiplicities αB (1) = 1 and αB (2) = 3.
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Computing eigenvectors,

λ = 1 B − 1I4 =


−3 1 −2 −4
12 0 4 9
6 5 −3 −4
3 −4 5 9

 RREF−−−→


1 0 1

3
0

0 1 −1 0

0 0 0 1
0 0 0 0



EB (1) = N (B − 1I4) =

〈

−1

3

1
1
0



〉

=

〈

−1
3
3
0



〉

λ = 2 B − 2I4 =


−4 1 −2 −4
12 −1 4 9
6 5 −4 −4
3 −4 5 8

 RREF−−−→


1 0 0 1/2

0 1 0 −1

0 0 1 1/2
0 0 0 0
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EB (2) = N (B − 2I4) =

〈

−1

2

1
−1

2

1



〉

=

〈

−1
2
−1
2



〉

So each eigenspace has dimension 1 and so γB (1) = 1 and γB (2) = 1. This example is of
interest because of the discrepancy between the two multiplicities for λ = 2. In many of our
examples the algebraic and geometric multiplicities will be equal for all of the eigenvalues
(as it was for λ = 1 in this example), so keep this example in mind. We will have some
explanations for this phenomenon later (see Example NDMS4 [1511]). �

Example ESMS4
Eigenvalues, symmetric matrix of size 4
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Consider the matrix

C =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


then

pC (x) = −3 + 4x+ 2x2 − 4x3 + x4 = (x− 3)(x− 1)2(x+ 1)

So the eigenvalues are λ = 3, 1, −1 with algebraic multiplicities αC (3) = 1, αC (1) = 2 and
αC (−1) = 1.

Computing eigenvectors,

λ = 3 C − 3I4 =


−2 0 1 1
0 −2 1 1
1 1 −2 0
1 1 0 −2

 RREF−−−→


1 0 0 −1

0 1 0 −1

0 0 1 −1
0 0 0 0
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EC (3) = N (C − 3I4) =

〈


1
1
1
1



〉

λ = 1 C − 1I4 =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 RREF−−−→


1 1 0 0

0 0 1 1
0 0 0 0
0 0 0 0



EC (1) = N (C − 1I4) =

〈

−1
1
0
0

 ,


0
0
−1
1



〉
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λ = −1 C + 1I4 =


2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2

 RREF−−−→


1 0 0 1

0 1 0 1

0 0 1 −1
0 0 0 0



EC (−1) = N (C + 1I4) =

〈

−1
−1
1
1



〉

So the eigenspace dimensions yield geometric multiplicities γC (3) = 1, γC (1) = 2 and
γC (−1) = 1, the same as for the algebraic multiplicities. This example is of interest because
A is a symmetric matrix, and will be the subject of Theorem HMRE [1473]. �

Example HMEM5
High multiplicity eigenvalues, matrix of size 5
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Consider the matrix

E =


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8

7 4 3 1 −3


then

pE (x) = −16 + 16x+ 8x2 − 16x3 + 7x4 − x5 = −(x− 2)4(x+ 1)

So the eigenvalues are λ = 2, −1 with algebraic multiplicities αE (2) = 4 and αE (−1) = 1.
Computing eigenvectors,

λ = 2 E − 2I5 =


27 14 2 6 −9
−47 −24 −1 −11 13
19 10 3 4 −8
−19 −10 −3 −4 8

7 4 3 1 −5

 RREF−−−→


1 0 0 1 0

0 1 0 −3
2
−1

2

0 0 1 0 −1
0 0 0 0 0
0 0 0 0 0
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EE (2) = N (E − 2I5) =

〈


−1
3
2

0
1
0

 ,


0
1
2

1
0
1



〉

=

〈


−2
3
0
2
0

 ,


0
1
2
0
2



〉

λ = −1 E + 1I5 =


30 14 2 6 −9
−47 −21 −1 −11 13
19 10 6 4 −8
−19 −10 −3 −1 8

7 4 3 1 −2

 RREF−−−→


1 0 0 2 0

0 1 0 −4 0

0 0 1 1 0

0 0 0 0 1
0 0 0 0 0



EE (−1) = N (E + 1I5) =

〈


−2
4
−1
1
0



〉
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So the eigenspace dimensions yield geometric multiplicities γE (2) = 2 and γE (−1) = 1.
This example is of interest because λ = 2 has such a large algebraic multiplicity, which is
also not equal to its geometric multiplicity. �

Example CEMS6
Complex eigenvalues, matrix of size 6
Consider the matrix

F =


−59 −34 41 12 25 30

1 7 −46 −36 −11 −29
−233 −119 58 −35 75 54
157 81 −43 21 −51 −39
−91 −48 32 −5 32 26
209 107 −55 28 −69 −50
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then

pF (x) = −50 + 55x+ 13x2 − 50x3 + 32x4 − 9x5 + x6

= (x− 2)(x+ 1)(x2 − 4x+ 5)2

= (x− 2)(x+ 1)((x− (2 + i))(x− (2− i)))2

= (x− 2)(x+ 1)(x− (2 + i))2(x− (2− i))2

So the eigenvalues are λ = 2, −1, 2 + i, 2 − i with algebraic multiplicities αF (2) = 1,
αF (−1) = 1, αF (2 + i) = 2 and αF (2− i) = 2.

Computing eigenvectors,

λ = 2
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F − 2I6 =


−61 −34 41 12 25 30

1 5 −46 −36 −11 −29
−233 −119 56 −35 75 54
157 81 −43 19 −51 −39
−91 −48 32 −5 30 26
209 107 −55 28 −69 −52


RREF−−−→



1 0 0 0 0 1
5

0 1 0 0 0 0

0 0 1 0 0 3
5

0 0 0 1 0 −1
5

0 0 0 0 1 4
5

0 0 0 0 0 0



EF (2) = N (F − 2I6) =

〈



−1

5

0
−3

5
1
5−4
5

1




〉

=

〈



−1
0
−3
1
−4
5




〉

λ = −1
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F + 1I6 =


−58 −34 41 12 25 30

1 8 −46 −36 −11 −29
−233 −119 59 −35 75 54
157 81 −43 22 −51 −39
−91 −48 32 −5 33 26
209 107 −55 28 −69 −49


RREF−−−→



1 0 0 0 0 1
2

0 1 0 0 0 −3
2

0 0 1 0 0 1
2

0 0 0 1 0 0

0 0 0 0 1 −1
2

0 0 0 0 0 0



EF (−1) = N (F + I6) =

〈



−1

2
3
2−1
2

0
1
2

1




〉

=

〈



−1
3
−1
0
1
2




〉

λ = 2 + i
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F − (2 + i)I6 =


−61− i −34 41 12 25 30

1 5− i −46 −36 −11 −29
−233 −119 56− i −35 75 54
157 81 −43 19− i −51 −39
−91 −48 32 −5 30− i 26
209 107 −55 28 −69 −52− i



RREF−−−→



1 0 0 0 0 1
5
(7 + i)

0 1 0 0 0 1
5
(−9− 2i)

0 0 1 0 0 1

0 0 0 1 0 −1

0 0 0 0 1 1
0 0 0 0 0 0
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EF (2 + i) = N (F − (2 + i)I6) =

〈



−1

5
(7 + i)

1
5
(9 + 2i)
−1
1
−1
1




〉

=

〈



−7− i
9 + 2i
−5
5
−5
5




〉

λ = 2− i

F − (2− i)I6 =


−61 + i −34 41 12 25 30

1 5 + i −46 −36 −11 −29
−233 −119 56 + i −35 75 54
157 81 −43 19 + i −51 −39
−91 −48 32 −5 30 + i 26
209 107 −55 28 −69 −52 + i
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RREF−−−→



1 0 0 0 0 1
5
(7− i)

0 1 0 0 0 1
5
(−9 + 2i)

0 0 1 0 0 1

0 0 0 1 0 −1

0 0 0 0 1 1
0 0 0 0 0 0



EF (2− i) = N (F − (2− i)I6) =

〈




1
5
(−7 + i)

1
5
(9− 2i)
−1
1
−1
1




〉

=

〈



−7 + i
9− 2i
−5
5
−5
5




〉

So the eigenspace dimensions yield geometric multiplicities γF (2) = 1, γF (−1) = 1, γF (2 + i) =
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1 and γF (2− i) = 1. This example demonstrates some of the possibilities for the appearance
of complex eigenvalues, even when all the entries of the matrix are real. Notice how all the
numbers in the analysis of λ = 2 − i are conjugates of the corresponding number in the
analysis of λ = 2 + i. This is the content of the upcoming Theorem ERMCP [1461]. �

Example DEMS5
Distinct eigenvalues, matrix of size 5
Consider the matrix

H =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10


then

pH (x) = −6x+ x2 + 7x3 − x4 − x5 = x(x− 2)(x− 1)(x+ 1)(x+ 3)
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So the eigenvalues are λ = 2, 1, 0, −1, −3 with algebraic multiplicities αH (2) = 1, αH (1) =
1, αH (0) = 1, αH (−1) = 1 and αH (−3) = 1.

Computing eigenvectors,

λ = 2 H − 2I5 =


13 18 −8 6 −5
5 1 1 −1 −3
0 −4 3 −4 −2
−43 −46 17 −16 15
26 30 −12 8 −12

 RREF−−−→


1 0 0 0 −1

0 1 0 0 1

0 0 1 0 2

0 0 0 1 1
0 0 0 0 0



EH (2) = N (H − 2I5) =

〈


1
−1
−2
−1
1



〉
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λ = 1 H − 1I5 =


14 18 −8 6 −5
5 2 1 −1 −3
0 −4 4 −4 −2
−43 −46 17 −15 15
26 30 −12 8 −11

 RREF−−−→


1 0 0 0 −1

2

0 1 0 0 0

0 0 1 0 1
2

0 0 0 1 1
0 0 0 0 0



EH (1) = N (H − 1I5) =

〈


1
2

0
−1

2−1
1



〉

=

〈


1
0
−1
−2
2



〉
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λ = 0 H − 0I5 =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10

 RREF−−−→


1 0 0 0 1

0 1 0 0 −2

0 0 1 0 −2

0 0 0 1 0
0 0 0 0 0



EH (0) = N (H − 0I5) =

〈


−1
2
2
0
1



〉
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λ = −1 H + 1I5 =


16 18 −8 6 −5
5 4 1 −1 −3
0 −4 6 −4 −2
−43 −46 17 −13 15
26 30 −12 8 −9

 RREF−−−→


1 0 0 0 −1/2

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1/2
0 0 0 0 0



EH (−1) = N (H + 1I5) =

〈


1
2

0
0
−1

2

1



〉

=

〈


1
0
0
−1
2



〉
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λ = −3 H + 3I5 =


18 18 −8 6 −5
5 6 1 −1 −3
0 −4 8 −4 −2
−43 −46 17 −11 15
26 30 −12 8 −7

 RREF−−−→


1 0 0 0 −1

0 1 0 0 1
2

0 0 1 0 1

0 0 0 1 2
0 0 0 0 0



EH (−3) = N (H + 3I5) =

〈


1
−1

2−1
−2
1



〉

=

〈


−2
1
2
4
−2



〉

So the eigenspace dimensions yield geometric multiplicities γH (2) = 1, γH (1) = 1, γH (0) =
1, γH (−1) = 1 and γH (−3) = 1, identical to the algebraic multiplicities. This example is of
interest for two reasons. First, λ = 0 is an eigenvalue, illustrating the upcoming Theorem
SMZE [1448]. Second, all the eigenvalues are distinct, yielding algebraic and geometric
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multiplicities of 1 for each eigenvalue, illustrating Theorem DED [1513]. �

Subsection READ
Reading Questions

Suppose A is the 2× 2 matrix

A =

[−5 8
−4 7

]
1. Find the eigenvalues of A.

2. Find the eigenspaces of A.

3. For the polynomial p(x) = 3x2 − x+ 2, compute p(A).
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Subsection EXC
Exercises

C10 Find the characteristic polynomial of the matrix A =

[
1 2
3 4

]
.

Contributed by Chris Black Solution [1429]

C11 Find the characteristic polynomial of the matrix A =

3 2 1
0 1 1
1 2 0

.

Contributed by Chris Black Solution [1429]
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C12 Find the characteristic polynomial of the matrix A =


1 2 1 0
1 0 1 0
2 1 1 0
3 1 0 1

.

Contributed by Chris Black Solution [1429]

C19 Find the eigenvalues, eigenspaces, algebraic multiplicities and geometric multiplicities
for the matrix below. It is possible to do all these computations by hand, and it would be
instructive to do so.

C =

[−1 2
−6 6

]

Contributed by Robert Beezer Solution [1429]

C20 Find the eigenvalues, eigenspaces, algebraic multiplicities and geometric multiplicities
for the matrix below. It is possible to do all these computations by hand, and it would be
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instructive to do so.

B =

[−12 30
−5 13

]

Contributed by Robert Beezer Solution [1431]

C21 The matrix A below has λ = 2 as an eigenvalue. Find the geometric multiplicity of
λ = 2 using your calculator only for row-reducing matrices.

A =


18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4


Contributed by Robert Beezer Solution [1433]
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C22 Without using a calculator, find the eigenvalues of the matrix B.

B =

[
2 −1
1 1

]

Contributed by Robert Beezer Solution [1433]

C23 Find the eigenvalues, eigenspaces, algebraic and geometric multiplicities for A =[
1 1
1 1

]
.

Contributed by Chris Black Solution [1435]

C24 Find the eigenvalues, eigenspaces, algebraic and geometric multiplicities for A = 1 −1 1
−1 1 −1
1 −1 1

.

Contributed by Chris Black Solution [1435]
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C25 Find the eigenvalues, eigenspaces, algebraic and geometric multiplicities for the 3× 3
identity matrix I3. Do your results make sense?
Contributed by Chris Black Solution [1435]

C26 For matrix A =

2 1 1
1 2 1
1 1 2

, the characteristic polynomial of A is pA (λ) = (4−x)(1−

x)2. Find the eigenvalues and corresponding eigenspaces of A.
Contributed by Chris Black Solution [1436]

C27 For matrix A =


0 4 −1 1
−2 6 −1 1
−2 8 −1 −1
−2 8 −3 1

, the characteristic polynomial of A is

pA(λ) = (x+ 2)(x− 2)2(x− 4).

Find the eigenvalues and corresponding eigenspaces of A.
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Contributed by Chris Black Solution [1437]

M60 Repeat Example CAEHW [1381] by choosing x =


0
8
2
1
2

 and then arrive at an eigen-

value and eigenvector of the matrix A. The hard way.
Contributed by Robert Beezer Solution [1438]

T10 A matrix A is idempotent if A2 = A. Show that the only possible eigenvalues of
an idempotent matrix are λ = 0 and λ = 1. Then give an example of a matrix that is
idempotent and has both of these two values as eigenvalues.
Contributed by Robert Beezer Solution [1441]

T20 Suppose that λ and ρ are two different eigenvalues of the square matrix A. Prove
that the intersection of the eigenspaces for these two eigenvalues is trivial. That is, EA (λ)∩
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EA (ρ) = {0}.
Contributed by Robert Beezer Solution [1443]

Version 2.11



Subsection EE.SOL Solutions 1436

Subsection SOL
Solutions

C10 Contributed by Chris Black Statement [1422]
Answer: pA (x) = −2− 5x+ x2

C11 Contributed by Chris Black Statement [1422]
Answer: pA (x) = −5 + 4x2 − x3.

C12 Contributed by Chris Black Statement [1423]
Answer: pA (x) = 2 + 2x− 2x2 − 3x3 + x4.

C19 Contributed by Robert Beezer Statement [1423]
First compute the characteristic polynomial,

pC (x) = det (C − xI2) Definition CP [1388]
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=

∣∣∣∣−1− x 2
−6 6− x

∣∣∣∣
= (−1− x)(6− x)− (2)(−6)

= x2 − 5x+ 6

= (x− 3)(x− 2)

So the eigenvalues of C are the solutions to pC (x) = 0, namely, λ = 2 and λ = 3.
To obtain the eigenspaces, construct the appropriate singular matrices and find expres-

sions for the null spaces of these matrices.

λ = 2

C − (2)I2 =

[−3 2
−6 4

]
RREF−−−→

[
1 −2

3

0 0

]
EC (2) = N (C − (2)I2) =

〈{[
2
3

1

]}〉
=

〈{[
2
3

]}〉
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λ = 3

C − (3)I2 =

[−4 2
−6 3

]
RREF−−−→

[
1 −1

2

0 0

]
EC (3) = N (C − (3)I2) =

〈{[
1
2

1

]}〉
=

〈{[
1
2

]}〉
C20 Contributed by Robert Beezer Statement [1423]
The characteristic polynomial of B is

pB (x) = det (B − xI2) Definition CP [1388]

=

∣∣∣∣−12− x 30
−5 13− x

∣∣∣∣
= (−12− x)(13− x)− (30)(−5) Theorem DMST [1294]

= x2 − x− 6

= (x− 3)(x+ 2)
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From this we find eigenvalues λ = 3, −2 with algebraic multiplicities αB (3) = 1 and
αB (−2) = 1.

For eigenvectors and geometric multiplicities, we study the null spaces of B − λI2 (The-
orem EMNS [1394]).

λ = 3 B − 3I2 =

[−15 30
−5 10

]
RREF−−−→

[
1 −2
0 0

]
EB (3) = N (B − 3I2) =

〈{[
2
1

]}〉

λ = −2 B + 2I2 =

[−10 30
−5 15

]
RREF−−−→

[
1 −3
0 0

]
EB (−2) = N (B + 2I2) =

〈{[
3
1

]}〉
Each eigenspace has dimension one, so we have geometric multiplicities γB (3) = 1 and
γB (−2) = 1.
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C21 Contributed by Robert Beezer Statement [1424]
If λ = 2 is an eigenvalue of A, the matrix A− 2I4 will be singular, and its null space will be
the eigenspace of A. So we form this matrix and row-reduce,

A− 2I4 =


16 −15 33 −15
−4 6 −6 6
−9 9 −18 9
5 −6 9 −6

 RREF−−−→


1 0 3 0

0 1 1 1
0 0 0 0
0 0 0 0


With two free variables, we know a basis of the null space (Theorem BNS [484]) will contain
two vectors. Thus the null space of A − 2I4 has dimension two, and so the eigenspace of
λ = 2 has dimension two also (Theorem EMNS [1394]), γA (2) = 2.

C22 Contributed by Robert Beezer Statement [1425]
The characteristic polynomial (Definition CP [1388]) is

pB (x) = det (B − xI2)
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=

∣∣∣∣2− x −1
1 1− x

∣∣∣∣
= (2− x)(1− x)− (1)(−1) Theorem DMST [1294]

= x2 − 3x+ 3

=

(
x− 3 +

√
3i

2

)(
x− 3−√3i

2

)

where the factorization can be obtained by finding the roots of pB (x) = 0 with the quadratic
equation. By Theorem EMRCP [1390] the eigenvalues of B are the complex numbers λ1 =
3+
√

3i
2

and λ2 = 3−
√

3i
2

.

C23 Contributed by Chris Black Statement [1425]
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Eigenvalues Eigenspaces Algebraic Multiplicity Geometric Multiplicity

λ = 0 EA (0) =

〈[−1
1

]〉
αA (0) = 1 γA (0) = 1

λ = 2 EA (2) =

〈[
1
1

]〉
αA (2) = 1 γA (2) = 1

C24 Contributed by Chris Black Statement [1425]
Eigenvalues Eigenspaces Algebraic Multiplicity Geometric Multiplicity

λ = 0 EA (0) =

〈1
1
0

 ,
−1

0
1

〉 αA (0) = 2 γA (0) = 2

λ = 3 EA (3) =

〈 1
1
−1

〉 αA (3) = 1 γA (3) = 1

C25 Contributed by Chris Black Statement [1426]
The characteristic polynomial for A = I3 is pI3 (x) = (1 − x)3, which has eigenvalue λ = 1
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with algebraic multiplicity αA (1) = 3. Looking for eigenvectors, we find that A − λI =0 0 0
0 0 0
0 0 0

. The nullspace of this matrix is all of C3, so that the eigenspace is EI3 (1) =

〈1
0
0

 ,
0

1
0

 ,
0

0
1

〉, and the geometric multiplicity is γA(1) = 3.

Does this make sense? Yes! Every vector x is a solution to I3x = 1x, so every nonzero vector
is an eigenvector with eigenvalue 1. Since every vector is unchanged when multiplied by I3,
it makes sense that λ = 1 is the only eigenvalue.

C26 Contributed by Chris Black Statement [1426]
Since we are given that the characteristic polynomial of A is pA (x) = (4 − x)(1 − x)2, we
see that the eigenvalues are λ = 4 with algebraic multiplicity αA (4) = 1 and λ = 1 with
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algebraic multiplicity αA (1) = 2. The corresponding eigenspaces are

EA (4) =

〈1
1
1

〉 EA (1) =

〈 1
−1
0

 ,
 1

0
−1

〉

C27 Contributed by Chris Black Statement [1426]
Since we are given that the characteristic polynomial of A is pA (x) = (x+ 2)(x− 2)2(x− 4),
we see that the eigenvalues are λ = −2, λ = 2 and λ = 4. The eigenspaces are

EA (−2) =

〈
0
0
1
1


〉
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EA (2) =

〈
1
1
2
0

 ,


3
1
0
2


〉

EA (4) =

〈
1
1
1
1


〉

M60 Contributed by Robert Beezer Statement [1427]
Form the matrix C whose columns are x, Ax, A2x, A3x, A4x, A5x and row-reduce the ma-
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trix, 
0 6 32 102 320 966
8 10 24 58 168 490
2 12 50 156 482 1452
1 −5 −47 −149 −479 −1445
2 12 50 156 482 1452

 RREF−−−→


1 0 0 −3 −9 −30

0 1 0 1 0 1

0 0 1 3 10 30
0 0 0 0 0 0
0 0 0 0 0 0


The simplest possible relation of linear dependence on the columns of C comes from using
scalars α4 = 1 and α5 = α6 = 0 for the free variables in a solution to LS(C, 0). The
remainder of this solution is α1 = 3, α2 = −1, α3 = −3. This solution gives rise to the
polynomial

p(x) = 3− x− 3x2 + x3 = (x− 3)(x− 1)(x+ 1)

which then has the property that p(A)x = 0.
No matter how you choose to order the factors of p(x), the value of k (in the language

of Theorem EMHE [1376] and Example CAEHW [1381]) is k = 2. For each of the three
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possibilities, we list the resulting eigenvector and the associated eigenvalue:

(C − 3I5)(C − I5)z =


8
8
8
−24

8

 λ = −1

(C − 3I5)(C + I5)z =


20
−20
20
−40
20

 λ = 1
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(C + I5)(C − I5)z =


32
16
48
−48
48

 λ = 3

Note that each of these eigenvectors can be simplified by an appropriate scalar multiple, but
we have shown here the actual vector obtained by the product specified in the theorem.

T10 Contributed by Robert Beezer Statement [1427]
Suppose that λ is an eigenvalue of A. Then there is an eigenvector x, such that Ax = λx.
We have,

λx = Ax x eigenvector of A

= A2x A is idempotent

= A(Ax)

= A(λx) x eigenvector of A
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= λ(Ax) Theorem MMSMM [685]

= λ(λx) x eigenvector of A

= λ2x

From this we get

0 = λ2x− λx

= (λ2 − λ)x Property DSAC [296]

Since x is an eigenvector, it is nonzero, and Theorem SMEZV [982] leaves us with the
conclusion that λ2−λ = 0, and the solutions to this quadratic polynomial equation in λ are
λ = 0 and λ = 1.

The matrix [
1 0
0 0

]
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is idempotent (check this!) and since it is a diagonal matrix, its eigenvalues are the diagonal
entries, λ = 0 and λ = 1, so each of these possible values for an eigenvalue of an idempotent
matrix actually occurs as an eigenvalue of some idempotent matrix. So we cannot state any
stronger conclusion about the eigenvalues of an idempotent matrix, and we can say that this
theorem is the “best possible.”

T20 Contributed by Robert Beezer Statement [1427]
This problem asks you to prove that two sets are equal, so use Definition SE [2327].

First show that {0} ⊆ EA (λ) ∩ EA (ρ). Choose x ∈ {0}. Then x = 0. Eigenspaces are
subspaces (Theorem EMS [1392]), so both EA (λ) and EA (ρ) contain the zero vector, and
therefore x ∈ EA (λ) ∩ EA (ρ) (Definition SI [2332]).

To show that EA (λ) ∩ EA (ρ) ⊆ {0}, suppose that x ∈ EA (λ) ∩ EA (ρ). Then x is an
eigenvector of A for both λ and ρ (Definition SI [2332]) and so

x = 1x Property O [958]

=
1

λ− ρ (λ− ρ) x λ 6= ρ, λ− ρ 6= 0
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=
1

λ− ρ (λx− ρx) Property DSAC [296]

=
1

λ− ρ (Ax− Ax) x eigenvector of A for λ, ρ

=
1

λ− ρ (0)

= 0 Theorem ZVSM [980]

So x = 0, and trivially, x ∈ {0}.
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Section PEE

Properties of Eigenvalues and Eigenvectors

The previous section introduced eigenvalues and eigenvectors, and concentrated on their
existence and determination. This section will be more about theorems, and the various
properties eigenvalues and eigenvectors enjoy. Like a good 4 × 100 meter relay, we will
lead-off with one of our better theorems and save the very best for the anchor leg.

Theorem EDELI
Eigenvectors with Distinct Eigenvalues are Linearly Independent
Suppose that A is an n×n square matrix and S = {x1, x2, x3, . . . , xp} is a set of eigenvectors
with eigenvalues λ1, λ2, λ3, . . . , λp such that λi 6= λj whenever i 6= j. Then S is a linearly
independent set. �

Proof If p = 1, then the set S = {x1} is linearly independent since eigenvectors are nonzero

Version 2.11



Section PEE Properties of Eigenvalues and Eigenvectors 1453

(Definition EEM [1365]), so assume for the remainder that p ≥ 2.
We will prove this result by contradiction (Technique CD [2354]). Suppose to the

contrary that S is a linearly dependent set. Define Si = {x1, x2, x3, . . . , xi} and let k
be an integer such that Sk−1 = {x1, x2, x3, . . . , xk−1} is linearly independent and Sk =
{x1, x2, x3, . . . , xk} is linearly dependent. We have to ask if there is even such an integer
k? First, since eigenvectors are nonzero, the set {x1} is linearly independent. Since we are
assuming that S = Sp is linearly dependent, there must be an integer k, 2 ≤ k ≤ p, where
the sets Si transition from linear independence to linear dependence (and stay that way).
In other words, xk is the vector with the smallest index that is a linear combination of just
vectors with smaller indices.

Since {x1, x2, x3, . . . , xk} is linearly dependent there are scalars, a1, a2, a3, . . . , ak, some
non-zero (Definition LI [1061]), so that

0 = a1x1 + a2x2 + a3x3 + · · ·+ akxk

Then,

0 = (A− λkIn) 0 Theorem ZVSM [980]
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= (A− λkIn) (a1x1 + a2x2 + a3x3 + · · ·+ akxk) Definition RLD [1061]

= (A− λkIn) a1x1 + (A− λkIn) a2x2 + · · ·+ (A− λkIn) akxk Theorem MMDAA [684]

= a1 (A− λkIn) x1 + a2 (A− λkIn) x2 + · · ·+ ak (A− λkIn) xk Theorem MMSMM [685]

= a1 (Ax1 − λkInx1) + a2 (Ax2 − λkInx2) + · · ·+ ak (Axk − λkInxk) Theorem MMDAA [684]

= a1 (Ax1 − λkx1) + a2 (Ax2 − λkx2) + · · ·+ ak (Axk − λkxk) Theorem MMIM [682]

= a1 (λ1x1 − λkx1) + a2 (λ2x2 − λkx2) + · · ·+ ak (λkxk − λkxk) Definition EEM [1365]

= a1 (λ1 − λk) x1 + a2 (λ2 − λk) x2 + · · ·+ ak (λk − λk) xk Theorem MMDAA [684]

= a1 (λ1 − λk) x1 + a2 (λ2 − λk) x2 + · · ·+ ak (0) xk Property AICN [2318]

= a1 (λ1 − λk) x1 + a2 (λ2 − λk) x2 + · · ·+ ak−1 (λk−1 − λk) xk−1 + 0 Theorem ZSSM [979]

= a1 (λ1 − λk) x1 + a2 (λ2 − λk) x2 + · · ·+ ak−1 (λk−1 − λk) xk−1 Property Z [957]

This is a relation of linear dependence on the linearly independent set {x1, x2, x3, . . . , xk−1},
so the scalars must all be zero. That is, ai (λi − λk) = 0 for 1 ≤ i ≤ k−1. However, we have
the hypothesis that the eigenvalues are distinct, so λi 6= λk for 1 ≤ i ≤ k − 1. Thus ai = 0
for 1 ≤ i ≤ k − 1.
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This reduces the original relation of linear dependence on {x1, x2, x3, . . . , xk} to the
simpler equation akxk = 0. By Theorem SMEZV [982] we conclude that ak = 0 or xk = 0.
Eigenvectors are never the zero vector (Definition EEM [1365]), so ak = 0. So all of the scalars
ai, 1 ≤ i ≤ k are zero, contradicting their introduction as the scalars creating a nontrivial
relation of linear dependence on the set {x1, x2, x3, . . . , xk}. With a contradiction in hand,
we conclude that S must be linearly independent. �

There is a simple connection between the eigenvalues of a matrix and whether or not the
matrix is nonsingular.

Theorem SMZE
Singular Matrices have Zero Eigenvalues
Suppose A is a square matrix. Then A is singular if and only if λ = 0 is an eigenvalue of A.

�

Proof We have the following equivalences:

A is singular ⇐⇒ there exists x 6= 0, Ax = 0 Definition NSM [216]
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⇐⇒ there exists x 6= 0, Ax = 0x Theorem ZSSM [979]

⇐⇒ λ = 0 is an eigenvalue of A Definition EEM [1365]

�

With an equivalence about singular matrices we can update our list of equivalences about
nonsingular matrices.

Theorem NME8
Nonsingular Matrix Equivalences, Round 8
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.
4. The linear system LS(A, b) has a unique solution for every possible choice of b.
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5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

�
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Proof The equivalence of the first and last statements is the contrapositive of Theorem
SMZE [1448], so we are able to improve on Theorem NME7 [1351]. �

Certain changes to a matrix change its eigenvalues in a predictable way.

Theorem ESMM
Eigenvalues of a Scalar Multiple of a Matrix
Suppose A is a square matrix and λ is an eigenvalue of A. Then αλ is an eigenvalue of αA.

�

Proof Let x 6= 0 be one eigenvector of A for λ. Then

(αA) x = α (Ax) Theorem MMSMM [685]

= α (λx) x eigenvector of A

= (αλ) x Property SMAC [296]

So x 6= 0 is an eigenvector of αA for the eigenvalue αλ. �

Unfortunately, there are not parallel theorems about the sum or product of arbitrary
matrices. But we can prove a similar result for powers of a matrix.
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Theorem EOMP
Eigenvalues Of Matrix Powers
Suppose A is a square matrix, λ is an eigenvalue of A, and s ≥ 0 is an integer. Then λs is
an eigenvalue of As. �

Proof Let x 6= 0 be one eigenvector of A for λ. Suppose A has size n. Then we proceed
by induction on s (Technique I [2363]). First, for s = 0,

Asx = A0x

= Inx

= x Theorem MMIM [682]

= 1x Property OC [296]

= λ0x

= λsx
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so λs is an eigenvalue of As in this special case. If we assume the theorem is true for s, then
we find

As+1x = AsAx

= As (λx) x eigenvector of A for λ

= λ (Asx) Theorem MMSMM [685]

= λ (λsx) Induction hypothesis

= (λλs) x Property SMAC [296]

= λs+1x

So x 6= 0 is an eigenvector of As+1 for λs+1, and induction tells us the theorem is true for all
s ≥ 0. �

While we cannot prove that the sum of two arbitrary matrices behaves in any reasonable
way with regard to eigenvalues, we can work with the sum of dissimilar powers of the same
matrix. We have already seen two connections between eigenvalues and polynomials, in the
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proof of Theorem EMHE [1376] and the characteristic polynomial (Definition CP [1388]).
Our next theorem strengthens this connection.

Theorem EPM
Eigenvalues of the Polynomial of a Matrix
Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the
variable x. Then q(λ) is an eigenvalue of the matrix q(A). �

Proof Let x 6= 0 be one eigenvector of A for λ, and write q(x) = a0+a1x+a2x
2+· · ·+amxm.

Then

q(A)x =
(
a0A

0 + a1A
1 + a2A

2 + · · ·+ amA
m
)

x

= (a0A
0)x + (a1A

1)x + (a2A
2)x + · · ·+ (amA

m)x Theorem MMDAA [684]

= a0(A
0x) + a1(A

1x) + a2(A
2x) + · · ·+ am(Amx) Theorem MMSMM [685]

= a0(λ
0x) + a1(λ

1x) + a2(λ
2x) + · · ·+ am(λmx) Theorem EOMP [1452]

= (a0λ
0)x + (a1λ

1)x + (a2λ
2)x + · · ·+ (amλ

m)x Property SMAC [296]

=
(
a0λ

0 + a1λ
1 + a2λ

2 + · · ·+ amλ
m
)

x Property DSAC [296]

Version 2.11



Section PEE Properties of Eigenvalues and Eigenvectors 1462

= q(λ)x

So x 6= 0 is an eigenvector of q(A) for the eigenvalue q(λ). �

Example BDE
Building desired eigenvalues
In Example ESMS4 [1402] the 4× 4 symmetric matrix

C =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


is shown to have the three eigenvalues λ = 3, 1, −1. Suppose we wanted a 4× 4 matrix that
has the three eigenvalues λ = 4, 0, −2. We can employ Theorem EPM [1454] by finding
a polynomial that converts 3 to 4, 1 to 0, and −1 to −2. Such a polynomial is called an
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interpolating polynomial, and in this example we can use

r(x) =
1

4
x2 + x− 5

4

We will not discuss how to concoct this polynomial, but a text on numerical analysis should
provide the details or see Section CF [2808]. For now, simply verify that r(3) = 4, r(1) = 0
and r(−1) = −2.

Now compute

r(C) =
1

4
C2 + C − 5

4
I4

=
1

4


3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

+


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

− 5

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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=
1

2


1 1 3 3
1 1 3 3
3 3 1 1
3 3 1 1


Theorem EPM [1454] tells us that if r(x) transforms the eigenvalues in the desired manner,
then r(C) will have the desired eigenvalues. You can check this by computing the eigenvalues
of r(C) directly. Furthermore, notice that the multiplicities are the same, and the eigenspaces
of C and r(C) are identical. �

Inverses and transposes also behave predictably with regard to their eigenvalues.

Theorem EIM
Eigenvalues of the Inverse of a Matrix
Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then 1

λ
is an eigenvalue

of the matrix A−1. �

Proof Notice that since A is assumed nonsingular, A−1 exists by Theorem NI [781], but
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more importantly, 1
λ

does not involve division by zero since Theorem SMZE [1448] prohibits
this possibility.

Let x 6= 0 be one eigenvector of A for λ. Suppose A has size n. Then

A−1x = A−1(1x) Property OC [296]

= A−1(
1

λ
λx) Property MICN [2318]

=
1

λ
A−1(λx) Theorem MMSMM [685]

=
1

λ
A−1(Ax) Definition EEM [1365]

=
1

λ
(A−1A)x Theorem MMA [687]

=
1

λ
Inx Definition MI [727]

=
1

λ
x Theorem MMIM [682]
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So x 6= 0 is an eigenvector of A−1 for the eigenvalue 1
λ
. �

The theorems above have a similar style to them, a style you should consider using when
confronted with a need to prove a theorem about eigenvalues and eigenvectors. So far we
have been able to reserve the characteristic polynomial for strictly computational purposes.
However, the next theorem, whose statement resembles the preceding theorems, has an easier
proof if we employ the characteristic polynomial and results about determinants.

Theorem ETM
Eigenvalues of the Transpose of a Matrix
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the
matrix At. �

Proof Suppose A has size n. Then

pA (x) = det (A− xIn) Definition CP [1388]

= det
(
(A− xIn)t

)
Theorem DT [1299]

= det
(
At − (xIn)t

)
Theorem TMA [626]
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= det
(
At − xI tn

)
Theorem TMSM [627]

= det
(
At − xIn

)
Definition IM [248]

= pAt (x) Definition CP [1388]

So A and At have the same characteristic polynomial, and by Theorem EMRCP [1390], their
eigenvalues are identical and have equal algebraic multiplicities. Notice that what we have
proved here is a bit stronger than the stated conclusion in the theorem. �

If a matrix has only real entries, then the computation of the characteristic polynomial
(Definition CP [1388]) will result in a polynomial with coefficients that are real numbers.
Complex numbers could result as roots of this polynomial, but they are roots of quadratic
factors with real coefficients, and as such, come in conjugate pairs. The next theorem proves
this, and a bit more, without mentioning the characteristic polynomial.

Theorem ERMCP
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Eigenvalues of Real Matrices come in Conjugate Pairs
Suppose A is a square matrix with real entries and x is an eigenvector of A for the eigenvalue
λ. Then x is an eigenvector of A for the eigenvalue λ. �

Proof

Ax = Ax A has real entries

= Ax Theorem MMCC [691]

= λx x eigenvector of A

= λx Theorem CRSM [568]

So x is an eigenvector of A for the eigenvalue λ. �

This phenomenon is amply illustrated in Example CEMS6 [1408], where the four complex
eigenvalues come in two pairs, and the two basis vectors of the eigenspaces are complex conju-
gates of each other. Theorem ERMCP [1461] can be a time-saver for computing eigenvalues
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and eigenvectors of real matrices with complex eigenvalues, since the conjugate eigenvalue
and eigenspace can be inferred from the theorem rather than computed.

Subsection ME
Multiplicities of Eigenvalues

A polynomial of degree n will have exactly n roots. From this fact about polynomial equa-
tions we can say more about the algebraic multiplicities of eigenvalues.

Theorem DCP
Degree of the Characteristic Polynomial
Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, pA (x),
has degree n. �

Proof We will prove a more general result by induction (Technique I [2363]). Then the
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theorem will be true as a special case. We will carefully state this result as a proposition
indexed by m, m ≥ 1.

P (m): Suppose that A is an m×m matrix whose entries are complex numbers or linear
polynomials in the variable x of the form c − x, where c is a complex number. Suppose
further that there are exactly k entries that contain x and that no row or column contains
more than one such entry. Then, when k = m, det (A) is a polynomial in x of degree m,
with leading coefficient ±1, and when k < m, det (A) is a polynomial in x of degree k or
less.

Base Case: Suppose A is a 1× 1 matrix. Then its determinant is equal to the lone entry
(Definition DM [1291]). When k = m = 1, the entry is of the form c − x, a polynomial in
x of degree m = 1 with leading coefficient −1. When k < m, then k = 0 and the entry is
simply a complex number, a polynomial of degree 0 ≤ k. So P (1) is true.

Induction Step: Assume P (m) is true, and that A is an (m + 1)× (m + 1) matrix with
k entries of the form c− x. There are two cases to consider.

Suppose k = m+ 1. Then every row and every column will contain an entry of the form
c − x. Suppose that for the first row, this entry is in column t. Compute the determinant
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of A by an expansion about this first row (Definition DM [1291]). The term associated with
entry t of this row will be of the form

(c− x)(−1)1+t det (A (1|t))

The submatrix A (1|t) is an m×m matrix with k = m terms of the form c−x, no more than
one per row or column. By the induction hypothesis, det (A (1|t)) will be a polynomial in x
of degree m with coefficient ±1. So this entire term is then a polynomial of degree m + 1
with leading coefficient ±1.

The remaining terms (which constitute the sum that is the determinant of A) are products
of complex numbers from the first row with cofactors built from submatrices that lack the
first row of A and lack some column of A, other than column t. As such, these submatrices
are m×m matrices with k = m−1 < m entries of the form c−x, no more than one per row
or column. Applying the induction hypothesis, we see that these terms are polynomials in
x of degree m− 1 or less. Adding the single term from the entry in column t with all these
others, we see that det (A) is a polynomial in x of degree m+ 1 and leading coefficient ±1.
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The second case occurs when k < m+ 1. Now there is a row of A that does not contain
an entry of the form c− x. We consider the determinant of A by expanding about this row
(Theorem DER [1295]), whose entries are all complex numbers. The cofactors employed are
built from submatrices that are m×m matrices with either k or k−1 entries of the form c−x,
no more than one per row or column. In either case, k ≤ m, and we can apply the induction
hypothesis to see that the determinants computed for the cofactors are all polynomials of
degree k or less. Summing these contributions to the determinant of A yields a polynomial
in x of degree k or less, as desired.

Definition CP [1388] tells us that the characteristic polynomial of an n× n matrix is the
determinant of a matrix having exactly n entries of the form c − x, no more than one per
row or column. As such we can apply P (n) to see that the characteristic polynomial has
degree n. �

Theorem NEM
Number of Eigenvalues of a Matrix
Suppose that A is a square matrix of size n with distinct eigenvalues λ1, λ2, λ3, . . . , λk.
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Then
k∑
i=1

αA (λi) = n

�

Proof By the definition of the algebraic multiplicity (Definition AME [1399]), we can factor
the characteristic polynomial as

pA (x) = c(x− λ1)
αA(λ1)(x− λ2)

αA(λ2)(x− λ3)
αA(λ3) · · · (x− λk)αA(λk)

where c is a nonzero constant. (We could prove that c = (−1)n, but we do not need that
specificity right now. See Exercise PEE.T30 [1479]) The left-hand side is a polynomial
of degree n by Theorem DCP [1462] and the right-hand side is a polynomial of degree∑k

i=1 αA (λi). So the equality of the polynomials’ degrees gives the equality
∑k

i=1 αA (λi) = n.
�

Theorem ME
Multiplicities of an Eigenvalue
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Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

1 ≤ γA (λ) ≤ αA (λ) ≤ n

�

Proof Since λ is an eigenvalue of A, there is an eigenvector of A for λ, x. Then x ∈ EA (λ),
so γA (λ) ≥ 1, since we can extend {x} into a basis of EA (λ) (Theorem ELIS [1226]).

To show that γA (λ) ≤ αA (λ) is the most involved portion of this proof. To this end, let
g = γA (λ) and let x1, x2, x3, . . . , xg be a basis for the eigenspace of λ, EA (λ). Construct
another n− g vectors, y1, y2, y3, . . . , yn−g, so that

{x1, x2, x3, . . . , xg, y1, y2, y3, . . . , yn−g}
is a basis of Cn. This can be done by repeated applications of Theorem ELIS [1226]. Finally,
define a matrix S by

S = [x1|x2|x3| . . . |xg|y1|y2|y3| . . . |yn−g] = [x1|x2|x3| . . . |xg|R]
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where R is an n × (n − g) matrix whose columns are y1, y2, y3, . . . , yn−g. The columns
of S are linearly independent by design, so S is nonsingular (Theorem NMLIC [478]) and
therefore invertible (Theorem NI [781]). Then,

[e1|e2|e3| . . . |en] = In

= S−1S

= S−1[x1|x2|x3| . . . |xg|R]

= [S−1x1|S−1x2|S−1x3| . . . |S−1xg|S−1R]

So

S−1xi = ei 1 ≤ i ≤ g (∗)
Preparations in place, we compute the characteristic polynomial of A,

pA (x) = det (A− xIn) Definition CP [1388]

= 1 det (A− xIn) Property OCN [2318]
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= det (In) det (A− xIn) Definition DM [1291]

= det
(
S−1S

)
det (A− xIn) Definition MI [727]

= det
(
S−1

)
det (S) det (A− xIn) Theorem DRMM [1353]

= det
(
S−1

)
det (A− xIn) det (S) Property CMCN [2317]

= det
(
S−1 (A− xIn)S

)
Theorem DRMM [1353]

= det
(
S−1AS − S−1xInS

)
Theorem MMDAA [684]

= det
(
S−1AS − xS−1InS

)
Theorem MMSMM [685]

= det
(
S−1AS − xS−1S

)
Theorem MMIM [682]

= det
(
S−1AS − xIn

)
Definition MI [727]

= pS−1AS (x) Definition CP [1388]

What can we learn then about the matrix S−1AS?

S−1AS = S−1A[x1|x2|x3| . . . |xg|R]
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= S−1[Ax1|Ax2|Ax3| . . . |Axg|AR] Definition MM [672]

= S−1[λx1|λx2|λx3| . . . |λxg|AR] Definition EEM [1365]

= [S−1λx1|S−1λx2|S−1λx3| . . . |S−1λxg|S−1AR] Definition MM [672]

= [λS−1x1|λS−1x2|λS−1x3| . . . |λS−1xg|S−1AR] Theorem MMSMM [685]

= [λe1|λe2|λe3| . . . |λeg|S−1AR] S−1S = In, ((∗) above)

Now imagine computing the characteristic polynomial of A by computing the characteristic
polynomial of S−1AS using the form just obtained. The first g columns of S−1AS are all
zero, save for a λ on the diagonal. So if we compute the determinant by expanding about
the first column, successively, we will get successive factors of (λ− x). More precisely, let T
be the square matrix of size n − g that is formed from the last n − g rows and last n − g
columns of S−1AR. Then

pA (x) = pS−1AS (x) = (λ− x)gpT (x) .

This says that (x − λ) is a factor of the characteristic polynomial at least g times, so the
algebraic multiplicity of λ as an eigenvalue of A is greater than or equal to g (Definition
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AME [1399]). In other words,
γA (λ) = g ≤ αA (λ)

as desired.
Theorem NEM [1465] says that the sum of the algebraic multiplicities for all the eigen-

values of A is equal to n. Since the algebraic multiplicity is a positive quantity, no single
algebraic multiplicity can exceed n without the sum of all of the algebraic multiplicities doing
the same. �

Theorem MNEM
Maximum Number of Eigenvalues of a Matrix
Suppose that A is a square matrix of size n. Then A cannot have more than n distinct
eigenvalues. �

Proof Suppose that A has k distinct eigenvalues, λ1, λ2, λ3, . . . , λk. Then

k =
k∑
i=1

1

Version 2.11



Subsection PEE.EHM Eigenvalues of Hermitian Matrices 1479

≤
k∑
i=1

αA (λi) Theorem ME [1466]

= n Theorem NEM [1465]

�

Subsection EHM
Eigenvalues of Hermitian Matrices

Recall that a matrix is Hermitian (or self-adjoint) if A = A∗ (Definition HM [698]). In the
case where A is a matrix whose entries are all real numbers, being Hermitian is identical
to being symmetric (Definition SYM [624]). Keep this in mind as you read the next two
theorems. Their hypotheses could be changed to “suppose A is a real symmetric matrix.”
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Theorem HMRE
Hermitian Matrices have Real Eigenvalues
Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then λ ∈ R. �

Proof Let x 6= 0 be one eigenvector of A for the eigenvalue λ. Then by Theorem PIP [582]
we know 〈x, x〉 6= 0. So

λ =
1

〈x, x〉λ 〈x, x〉 Property MICN [2318]

=
1

〈x, x〉 〈λx, x〉 Theorem IPSM [574]

=
1

〈x, x〉 〈Ax, x〉 Definition EEM [1365]

=
1

〈x, x〉 〈x, Ax〉 Theorem HMIP [698]

=
1

〈x, x〉 〈x, λx〉 Definition EEM [1365]
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=
1

〈x, x〉λ 〈x, x〉 Theorem IPSM [574]

= λ Property MICN [2318]

If a complex number is equal to its conjugate, then it has a complex part equal to zero, and
therefore is a real number. �

Notice the appealing symmetry to the justifications given for the steps of this proof. In
the center is the ability to pitch a Hermitian matrix from one side of the inner product to
the other.

Look back and compare Example ESMS4 [1402] and Example CEMS6 [1408]. In Example
CEMS6 [1408] the matrix has only real entries, yet the characteristic polynomial has roots
that are complex numbers, and so the matrix has complex eigenvalues. However, in Example
ESMS4 [1402], the matrix has only real entries, but is also symmetric, and hence Hermitian.
So by Theorem HMRE [1473], we were guaranteed eigenvalues that are real numbers.

In many physical problems, a matrix of interest will be real and symmetric, or Hermitian.
Then if the eigenvalues are to represent physical quantities of interest, Theorem HMRE [1473]
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guarantees that these values will not be complex numbers.
The eigenvectors of a Hermitian matrix also enjoy a pleasing property that we will exploit

later.

Theorem HMOE
Hermitian Matrices have Orthogonal Eigenvectors
Suppose that A is a Hermitian matrix and x and y are two eigenvectors of A for different
eigenvalues. Then x and y are orthogonal vectors. �

Proof Let x be an eigenvector of A for λ and let y be an eigenvector of A for a different
eigenvalue ρ. So we have λ− ρ 6= 0. Then

〈x, y〉 =
1

λ− ρ (λ− ρ) 〈x, y〉 Property MICN [2318]

=
1

λ− ρ (λ 〈x, y〉 − ρ 〈x, y〉) Property MICN [2318]

=
1

λ− ρ (〈λx, y〉 − 〈x, ρy〉) Theorem IPSM [574]
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=
1

λ− ρ (〈λx, y〉 − 〈x, ρy〉) Theorem HMRE [1473]

=
1

λ− ρ (〈Ax, y〉 − 〈x, Ay〉) Definition EEM [1365]

=
1

λ− ρ (〈Ax, y〉 − 〈Ax, y〉) Theorem HMIP [698]

=
1

λ− ρ (0) Property AICN [2318]

= 0

This equality says that x and y are orthogonal vectors (Definition OV [584]). �

Notice again how the key step in this proof is the fundamental property of a Hermitian
matrix (Theorem HMIP [698]) — the ability to swap A across the two arguments of the inner
product. We’ll build on these results and continue to see some more interesting properties
in Section OD [2040].
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Subsection READ
Reading Questions

1. How can you identify a nonsingular matrix just by looking at its eigenvalues?

2. How many different eigenvalues may a square matrix of size n have?

3. What is amazing about the eigenvalues of a Hermitian matrix and why is it amazing?
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Subsection EXC
Exercises

T10 Suppose that A is a square matrix. Prove that the constant term of the characteristic
polynomial of A is equal to the determinant of A.
Contributed by Robert Beezer Solution [1480]

T20 Suppose that A is a square matrix. Prove that a single vector may not be an eigen-
vector of A for two different eigenvalues.
Contributed by Robert Beezer Solution [1481]

T22 Suppose that U is a unitary matrix with eigenvalue λ. Prove that λ had modulus 1,
i.e. |λ| = 1. This says that all of the eigenvalues of a unitary matrix lie on the unit circle of
the complex plane.
Contributed by Robert Beezer
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T30 Theorem DCP [1462] tells us that the characteristic polynomial of a square matrix of
size n has degree n. By suitably augmenting the proof of Theorem DCP [1462] prove that
the coefficient of xn in the characteristic polynomial is (−1)n.
Contributed by Robert Beezer

T50 Theorem EIM [1457] says that if λ is an eigenvalue of the nonsingular matrix A, then
1
λ

is an eigenvalue of A−1. Write an alternate proof of this theorem using the characteristic
polynomial and without making reference to an eigenvector of A for λ.
Contributed by Robert Beezer Solution [1481]
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Subsection SOL
Solutions

T10 Contributed by Robert Beezer Statement [1478]
Suppose that the characteristic polynomial of A is

pA (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

Then

a0 = a0 + a1(0) + a2(0)2 + · · ·+ an(0)n

= pA (0)

= det (A− 0In) Definition CP [1388]

= det (A)
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T20 Contributed by Robert Beezer Statement [1478]
Suppose that the vector x 6= 0 is an eigenvector of A for the two eigenvalues λ and ρ, where
λ 6= ρ. Then λ− ρ 6= 0, and we also have

0 = Ax− Ax Property AIC [296]

= λx− ρx Definition EEM [1365]

= (λ− ρ)x Property DSAC [296]

By Theorem SMEZV [982], either λ− ρ = 0 or x = 0, which are both contradictions.

T50 Contributed by Robert Beezer Statement [1479]
Since λ is an eigenvalue of a nonsingular matrix, λ 6= 0 (Theorem SMZE [1448]). A is
invertible (Theorem NI [781]), and so −λA is invertible (Theorem MISM [753]). Thus −λA
is nonsingular (Theorem NI [781]) and det (−λA) 6= 0 (Theorem SMZD [1348]).

pA−1

(
1

λ

)
= det

(
A−1 − 1

λ
In

)
Definition CP [1388]
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= 1 det

(
A−1 − 1

λ
In

)
Property OCN [2318]

=
1

det (−λA)
det (−λA) det

(
A−1 − 1

λ
In

)
Property MICN [2318]

=
1

det (−λA)
det

(
(−λA)

(
A−1 − 1

λ
In

))
Theorem DRMM [1353]

=
1

det (−λA)
det

(
−λAA−1 − (−λA)

1

λ
In

)
Theorem MMDAA [684]

=
1

det (−λA)
det

(
−λIn − (−λA)

1

λ
In

)
Definition MI [727]

=
1

det (−λA)
det

(
−λIn + λ

1

λ
AIn

)
Theorem MMSMM [685]

=
1

det (−λA)
det (−λIn + 1AIn) Property MICN [2318]

Version 2.11



Subsection PEE.SOL Solutions 1490

=
1

det (−λA)
det (−λIn + AIn) Property OCN [2318]

=
1

det (−λA)
det (−λIn + A) Theorem MMIM [682]

=
1

det (−λA)
det (A− λIn) Property ACM [618]

=
1

det (−λA)
pA (λ) Definition CP [1388]

=
1

det (−λA)
0 Theorem EMRCP [1390]

= 0 Property ZCN [2317]

So 1
λ

is a root of the characteristic polynomial of A−1 and so is an eigenvalue of A−1. This
proof is due to Sara Bucht.
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Section SD

Similarity and Diagonalization

This section’s topic will perhaps seem out of place at first, but we will make the connection
soon with eigenvalues and eigenvectors. This is also our first look at one of the central ideas
of Chapter R [1818].
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Subsection SM
Similar Matrices

The notion of matrices being “similar” is a lot like saying two matrices are row-equivalent.
Two similar matrices are not equal, but they share many important properties. This section,
and later sections in Chapter R [1818] will be devoted in part to discovering just what these
common properties are.

First, the main definition for this section.

Definition SIM
Similar Matrices
Suppose A and B are two square matrices of size n. Then A and B are similar if there
exists a nonsingular matrix of size n, S, such that A = S−1BS. 4

We will say “A is similar to B via S” when we want to emphasize the role of S in the
relationship between A and B. Also, it doesn’t matter if we say A is similar to B, or B is
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similar to A. If one statement is true then so is the other, as can be seen by using S−1 in
place of S (see Theorem SER [1490] for the careful proof). Finally, we will refer to S−1BS
as a similarity transformation when we want to emphasize the way S changes B. OK,
enough about language, let’s build a few examples.

Example SMS5
Similar matrices of size 5
If you wondered if there are examples of similar matrices, then it won’t be hard to convince
you they exist. Define

B =


−4 1 −3 −2 2
1 2 −1 3 −2
−4 1 3 2 2
−3 4 −2 −1 −3
3 1 −1 1 −4

 S =


1 2 −1 1 1
0 1 −1 −2 −1
1 3 −1 1 1
−2 −3 3 1 −2
1 3 −1 2 1


Check that S is nonsingular and then compute

A = S−1BS
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=


10 1 0 2 −5
−1 0 1 0 0
3 0 2 1 −3
0 0 −1 0 1
−4 −1 1 −1 1



−4 1 −3 −2 2
1 2 −1 3 −2
−4 1 3 2 2
−3 4 −2 −1 −3
3 1 −1 1 −4




1 2 −1 1 1
0 1 −1 −2 −1
1 3 −1 1 1
−2 −3 3 1 −2
1 3 −1 2 1



=


−10 −27 −29 −80 −25
−2 6 6 10 −2
−3 11 −9 −14 −9
−1 −13 0 −10 −1
11 35 6 49 19


So by this construction, we know that A and B are similar. �

Let’s do that again.

Example SMS3
Similar matrices of size 3
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Define

B =

−13 −8 −4
12 7 4
24 16 7

 S =

 1 1 2
−2 −1 −3
1 −2 0


Check that S is nonsingular and then compute

A = S−1BS

=

−6 −4 −1
−3 −2 −1
5 3 1

−13 −8 −4
12 7 4
24 16 7

 1 1 2
−2 −1 −3
1 −2 0


=

−1 0 0
0 3 0
0 0 −1


So by this construction, we know that A and B are similar. But before we move on, look
at how pleasing the form of A is. Not convinced? Then consider that several computations
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related to A are especially easy. For example, in the spirit of Example DUTM [1305],
det (A) = (−1)(3)(−1) = 3. Similarly, the characteristic polynomial is straightforward to
compute by hand, pA (x) = (−1− x)(3− x)(−1− x) = −(x− 3)(x+ 1)2 and since the result
is already factored, the eigenvalues are transparently λ = 3, −1. Finally, the eigenvectors of
A are just the standard unit vectors (Definition SUV [586]). �

Subsection PSM
Properties of Similar Matrices

Similar matrices share many properties and it is these theorems that justify the choice of the
word “similar.” First we will show that similarity is an equivalence relation. Equivalence
relations are important in the study of various algebras and can always be regarded as a kind
of weak version of equality. Sort of alike, but not quite equal. The notion of two matrices
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being row-equivalent is an example of an equivalence relation we have been working with
since the beginning of the course (see Exercise RREF.T11 [136]). Row-equivalent matrices
are not equal, but they are a lot alike. For example, row-equivalent matrices have the same
rank. Formally, an equivalence relation requires three conditions hold: reflexive, symmetric
and transitive. We will illustrate these as we prove that similarity is an equivalence relation.

Theorem SER
Similarity is an Equivalence Relation
Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)

2. If A is similar to B, then B is similar to A. (Symmetric)

3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

�
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Proof To see that A is similar to A, we need only demonstrate a nonsingular matrix that
effects a similarity transformation of A to A. In is nonsingular (since it row-reduces to the
identity matrix, Theorem NMRRI [250]), and

I−1
n AIn = InAIn = A

If we assume that A is similar to B, then we know there is a nonsingular matrix S so that
A = S−1BS by Definition SIM [1485]. By Theorem MIMI [750], S−1 is invertible, and by
Theorem NI [781] is therefore nonsingular. So

(S−1)−1A(S−1) = SAS−1 Theorem MIMI [750]

= SS−1BSS−1 Definition SIM [1485]

=
(
SS−1

)
B
(
SS−1

)
Theorem MMA [687]

= InBIn Definition MI [727]

= B Theorem MMIM [682]

and we see that B is similar to A.
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Assume that A is similar to B, and B is similar to C. This gives us the existence of
two nonsingular matrices, S and R, such that A = S−1BS and B = R−1CR, by Definition
SIM [1485]. (Notice how we have to assume S 6= R, as will usually be the case.) Since S
and R are invertible, so too RS is invertible by Theorem SS [748] and then nonsingular by
Theorem NI [781]. Now

(RS)−1C(RS) = S−1R−1CRS Theorem SS [748]

= S−1
(
R−1CR

)
S Theorem MMA [687]

= S−1BS Definition SIM [1485]

= A

so A is similar to C via the nonsingular matrix RS. �

Here’s another theorem that tells us exactly what sorts of properties similar matrices
share.

Theorem SMEE
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Similar Matrices have Equal Eigenvalues
Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are
equal, that is, pA (x) = pB (x). �

Proof Let n denote the size of A and B. Since A and B are similar, there exists a
nonsingular matrix S, such that A = S−1BS (Definition SIM [1485]). Then

pA (x) = det (A− xIn) Definition CP [1388]

= det
(
S−1BS − xIn

)
Definition SIM [1485]

= det
(
S−1BS − xS−1InS

)
Theorem MMIM [682]

= det
(
S−1BS − S−1xInS

)
Theorem MMSMM [685]

= det
(
S−1 (B − xIn)S

)
Theorem MMDAA [684]

= det
(
S−1

)
det (B − xIn) det (S) Theorem DRMM [1353]

= det
(
S−1

)
det (S) det (B − xIn) Property CMCN [2317]

= det
(
S−1S

)
det (B − xIn) Theorem DRMM [1353]
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= det (In) det (B − xIn) Definition MI [727]

= 1 det (B − xIn) Definition DM [1291]

= pB (x) Definition CP [1388]

�

So similar matrices not only have the same set of eigenvalues, the algebraic multiplici-
ties of these eigenvalues will also be the same. However, be careful with this theorem. It
is tempting to think the converse is true, and argue that if two matrices have the same
eigenvalues, then they are similar. Not so, as the following example illustrates.

Example EENS
Equal eigenvalues, not similar
Define

A =

[
1 1
0 1

]
B =

[
1 0
0 1

]
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and check that

pA (x) = pB (x) = 1− 2x+ x2 = (x− 1)2

and so A and B have equal characteristic polynomials. If the converse of Theorem SMEE
[1493] were true, then A and B would be similar. Suppose this is the case. More precisely,
suppose there is a nonsingular matrix S so that A = S−1BS. Then

A = S−1BS = S−1I2S = S−1S = I2

Clearly A 6= I2 and this contradiction tells us that the converse of Theorem SMEE [1493] is
false. �
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Subsection D
Diagonalization

Good things happen when a matrix is similar to a diagonal matrix. For example, the
eigenvalues of the matrix are the entries on the diagonal of the diagonal matrix. And it can
be a much simpler matter to compute high powers of the matrix. Diagonalizable matrices
are also of interest in more abstract settings. Here are the relevant definitions, then our main
theorem for this section.

Definition DIM
Diagonal Matrix
Suppose that A is a square matrix. Then A is a diagonal matrix if [A]ij = 0 whenever
i 6= j. 4

Definition DZM

Version 2.11



Subsection SD.D Diagonalization 1504

Diagonalizable Matrix
Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.

4
Example DAB
Diagonalization of Archetype B
Archetype B [2392] has a 3× 3 coefficient matrix

B =

−7 −6 −12
5 5 7
1 0 4


and is similar to a diagonal matrix, as can be seen by the following computation with the
nonsingular matrix S,

S−1BS =

−5 −3 −2
3 2 1
1 1 1

−1 −7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1
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=

−1 −1 −1
2 3 1
−1 −2 1

−7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1


=

−1 0 0
0 1 0
0 0 2


�

Example SMS3 [1487] provides yet another example of a matrix that is subjected to a
similarity transformation and the result is a diagonal matrix. Alright, just how would we find
the magic matrix S that can be used in a similarity transformation to produce a diagonal
matrix? Before you read the statement of the next theorem, you might study the eigenvalues
and eigenvectors of Archetype B [2392] and compute the eigenvalues and eigenvectors of the
matrix in Example SMS3 [1487].

Theorem DC
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Diagonalization Characterization
Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists
a linearly independent set S that contains n eigenvectors of A. �

Proof (⇐) Let S = {x1, x2, x3, . . . , xn} be a linearly independent set of eigenvectors of
A for the eigenvalues λ1, λ2, λ3, . . . , λn. Recall Definition SUV [586] and define

R = [x1|x2|x3| . . . |xn]

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
0 0 0 · · · λn

 = [λ1e1|λ2e2|λ3e3| . . . |λnen]

The columns of R are the vectors of the linearly independent set S and so by Theorem
NMLIC [478] the matrix R is nonsingular. By Theorem NI [781] we know R−1 exists.

R−1AR = R−1A [x1|x2|x3| . . . |xn]
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= R−1[Ax1|Ax2|Ax3| . . . |Axn] Definition MM [672]

= R−1[λ1x1|λ2x2|λ3x3| . . . |λnxn] Definition EEM [1365]

= R−1[λ1Re1|λ2Re2|λ3Re3| . . . |λnRen] Definition MVP [661]

= R−1[R(λ1e1)|R(λ2e2)|R(λ3e3)| . . . |R(λnen)] Theorem MMSMM [685]

= R−1R[λ1e1|λ2e2|λ3e3| . . . |λnen] Definition MM [672]

= InD Definition MI [727]

= D Theorem MMIM [682]

This says that A is similar to the diagonal matrix D via the nonsingular matrix R. Thus A
is diagonalizable (Definition DZM [1497]).

(⇒) Suppose that A is diagonalizable, so there is a nonsingular matrix of size n

T = [y1|y2|y3| . . . |yn]
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and a diagonal matrix (recall Definition SUV [586])

E =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

...
0 0 0 · · · dn

 = [d1e1|d2e2|d3e3| . . . |dnen]

such that T−1AT = E. Then consider,

[Ay1|Ay2|Ay3| . . . |Ayn] = A [y1|y2|y3| . . . |yn] Definition MM [672]

= AT

= InAT Theorem MMIM [682]

= TT−1AT Definition MI [727]

= TE
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= T [d1e1|d2e2|d3e3| . . . |dnen]

= [T (d1e1)|T (d2e2)|T (d3e3)| . . . |T (dnen)] Definition MM [672]

= [d1Te1|d2Te2|d3Te3| . . . |dnTen] Definition MM [672]

= [d1y1|d2y2|d3y3| . . . |dnyn] Definition MVP [661]

This equality of matrices (Definition ME [613]) allows us to conclude that the individual
columns are equal vectors (Definition CVE [286]). That is, Ayi = diyi for 1 ≤ i ≤ n. In
other words, yi is an eigenvector of A for the eigenvalue di, 1 ≤ i ≤ n. (Why can’t yi = 0?).
Because T is nonsingular, the set containing T ’s columns, S = {y1, y2, y3, . . . , yn}, is a
linearly independent set (Theorem NMLIC [478]). So the set S has all the required properties.

�

Notice that the proof of Theorem DC [1499] is constructive. To diagonalize a matrix, we
need only locate n linearly independent eigenvectors. Then we can construct a nonsingular
matrix using the eigenvectors as columns (R) so that R−1AR is a diagonal matrix (D). The
entries on the diagonal of D will be the eigenvalues of the eigenvectors used to create R, in
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the same order as the eigenvectors appear in R. We illustrate this by diagonalizing some
matrices.

Example DMS3
Diagonalizing a matrix of size 3
Consider the matrix

F =

−13 −8 −4
12 7 4
24 16 7


of Example CPMS3 [1388], Example EMS3 [1391] and Example ESMS3 [1396]. F ’s eigen-
values and eigenspaces are

λ = 3 EF (3) =

〈
−1

2
1
2

1


〉
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λ = −1 EF (−1) =

〈
−2

3

1
0

 ,
−1

3

0
1


〉

Define the matrix S to be the 3× 3 matrix whose columns are the three basis vectors in the
eigenspaces for F ,

S =

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


Check that S is nonsingular (row-reduces to the identity matrix, Theorem NMRRI [250]
or has a nonzero determinant, Theorem SMZD [1348]). Then the three columns of S are
a linearly independent set (Theorem NMLIC [478]). By Theorem DC [1499] we now know
that F is diagonalizable. Furthermore, the construction in the proof of Theorem DC [1499]
tells us that if we apply the matrix S to F in a similarity transformation, the result will be
a diagonal matrix with the eigenvalues of F on the diagonal. The eigenvalues appear on the
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diagonal of the matrix in the same order as the eigenvectors appear in S. So,

S−1FS =

−1
2
−2

3
−1

3
1
2

1 0
1 0 1

−1 −13 −8 −4
12 7 4
24 16 7

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


=

 6 4 2
−3 −1 −1
−6 −4 −1

−13 −8 −4
12 7 4
24 16 7

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


=

3 0 0
0 −1 0
0 0 −1


Note that the above computations can be viewed two ways. The proof of Theorem DC [1499]
tells us that the four matrices (F , S, F−1 and the diagonal matrix) will interact the way we
have written the equation. Or as an example, we can actually perform the computations to
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verify what the theorem predicts. �

The dimension of an eigenspace can be no larger than the algebraic multiplicity of the
eigenvalue by Theorem ME [1466]. When every eigenvalue’s eigenspace is this large, then
we can diagonalize the matrix, and only then. Three examples we have seen so far in this
section, Example SMS5 [1486], Example DAB [1497] and Example DMS3 [1503], illustrate
the diagonalization of a matrix, with varying degrees of detail about just how the diagonal-
ization is achieved. However, in each case, you can verify that the geometric and algebraic
multiplicities are equal for every eigenvalue. This is the substance of the next theorem.

Theorem DMFE
Diagonalizable Matrices have Full Eigenspaces
Suppose A is a square matrix. Then A is diagonalizable if and only if γA (λ) = αA (λ) for
every eigenvalue λ of A. �

Proof Suppose A has size n and k distinct eigenvalues, λ1, λ2, λ3, . . . , λk. Let Si ={
xi1, xi2, xi3, . . . , xiγA(λi)

}
, denote a basis for the eigenspace of λi, EA (λi), for 1 ≤ i ≤ k.
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Then

S = S1 ∪ S2 ∪ S3 ∪ · · · ∪ Sk
is a set of eigenvectors for A. A vector cannot be an eigenvector for two different eigenvalues
(see Exercise EE.T20 [1427]) so Si ∩ Sj = ∅ whenever i 6= j. In other words, S is a disjoint
union of Si, 1 ≤ i ≤ k.

(⇐) The size of S is

|S| =
k∑
i=1

γA (λi) S disjoint union of Si

=
k∑
i=1

αA (λi) Hypothesis

= n Theorem NEM [1465]

We next show that S is a linearly independent set. So we will begin with a relation of linear
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dependence on S, using doubly-subscripted scalars and eigenvectors,

0 =
(
a11x11 + a12x12 + · · ·+ a1γA(λ1)x1γA(λ1)

)
+
(
a21x21 + a22x22 + · · ·+ a2γA(λ2)x2γA(λ2)

)
+ · · ·+ (ak1xk1 + ak2xk2 + · · ·+ akγA(λk)xkγA(λk)

)
Define the vectors yi, 1 ≤ i ≤ k by

y1 =
(
a11x11 + a12x12 + a13x13 + · · ·+ aγA(1λ1)x1γA(λ1)

)
y2 =

(
a21x21 + a22x22 + a23x23 + · · ·+ aγA(2λ2)x2γA(λ2)

)
y3 =

(
a31x31 + a32x32 + a33x33 + · · ·+ aγA(3λ3)x3γA(λ3)

)
...

yk =
(
ak1xk1 + ak2xk2 + ak3xk3 + · · ·+ aγA(kλk)xkγA(λk)

)
Then the relation of linear dependence becomes

0 = y1 + y2 + y3 + · · ·+ yk
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Since the eigenspace EA (λi) is closed under vector addition and scalar multiplication, yi ∈
EA (λi), 1 ≤ i ≤ k. Thus, for each i, the vector yi is an eigenvector of A for λi, or is the
zero vector. Recall that sets of eigenvectors whose eigenvalues are distinct form a linearly
independent set by Theorem EDELI [1445]. Should any (or some) yi be nonzero, the previous
equation would provide a nontrivial relation of linear dependence on a set of eigenvectors
with distinct eigenvalues, contradicting Theorem EDELI [1445]. Thus yi = 0, 1 ≤ i ≤ k.

Each of the k equations, yi = 0 is a relation of linear dependence on the corresponding set
Si, a set of basis vectors for the eigenspace EA (λi), which is therefore linearly independent.
From these relations of linear dependence on linearly independent sets we conclude that the
scalars are all zero, more precisely, aij = 0, 1 ≤ j ≤ γA (λi) for 1 ≤ i ≤ k. This establishes
that our original relation of linear dependence on S has only the trivial relation of linear
dependence, and hence S is a linearly independent set.

We have determined that S is a set of n linearly independent eigenvectors for A, and so
by Theorem DC [1499] is diagonalizable.

(⇒) Now we assume that A is diagonalizable. Aiming for a contradiction (Technique CD
[2354]), suppose that there is at least one eigenvalue, say λt, such that γA (λt) 6= αA (λt). By
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Theorem ME [1466] we must have γA (λt) < αA (λt), and γA (λi) ≤ αA (λi) for 1 ≤ i ≤ k,
i 6= t.

Since A is diagonalizable, Theorem DC [1499] guarantees a set of n linearly independent
vectors, all of which are eigenvectors of A. Let ni denote the number of eigenvectors in
S that are eigenvectors for λi, and recall that a vector cannot be an eigenvector for two
different eigenvalues (Exercise EE.T20 [1427]). S is a linearly independent set, so the the
subset Si containing the ni eigenvectors for λi must also be linearly independent. Because the
eigenspace EA (λi) has dimension γA (λi) and Si is a linearly independent subset in EA (λi),
Theorem G [1228] tells us that ni ≤ γA (λi), for 1 ≤ i ≤ k. Putting all these facts together
gives,

n = n1 + n2 + n3 + · · ·+ nt + · · ·+ nk Definition SU [2331]

≤ γA (λ1) + γA (λ2) + γA (λ3) + · · ·+ γA (λt) + · · ·+ γA (λk) Theorem G [1228]

< αA (λ1) + αA (λ2) + αA (λ3) + · · ·+ αA (λt) + · · ·+ αA (λk) Theorem ME [1466]

= n Theorem NEM [1465]
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This is a contradiction (we can’t have n < n!) and so our assumption that some eigenspace
had less than full dimension was false. �

Example SEE [1366], Example CAEHW [1381], Example ESMS3 [1396], Example ESMS4
[1402], Example DEMS5 [1415], Archetype B [2392], Archetype F [2443], Archetype K [2515]
and Archetype L [2527] are all examples of matrices that are diagonalizable and that illus-
trate Theorem DMFE [1506]. While we have provided many examples of matrices that
are diagonalizable, especially among the archetypes, there are many matrices that are not
diagonalizable. Here’s one now.

Example NDMS4
A non-diagonalizable matrix of size 4
In Example EMMS4 [1400] the matrix

B =


−2 1 −2 −4
12 1 4 9
6 5 −2 −4
3 −4 5 10
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was determined to have characteristic polynomial

pB (x) = (x− 1)(x− 2)3

and an eigenspace for λ = 2 of

EB (2) =

〈

−1

2

1
−1

2

1



〉

So the geometric multiplicity of λ = 2 is γB (2) = 1, while the algebraic multiplicity is
αB (2) = 3. By Theorem DMFE [1506], the matrix B is not diagonalizable. �

Archetype A [2378] is the lone archetype with a square matrix that is not diagonalizable,
as the algebraic and geometric multiplicities of the eigenvalue λ = 0 differ. Example HMEM5
[1405] is another example of a matrix that cannot be diagonalized due to the difference
between the geometric and algebraic multiplicities of λ = 2, as is Example CEMS6 [1408]
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which has two complex eigenvalues, each with differing multiplicities. Likewise, Example
EMMS4 [1400] has an eigenvalue with different algebraic and geometric multiplicities and so
cannot be diagonalized.

Theorem DED
Distinct Eigenvalues implies Diagonalizable
Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.

�

Proof Let λ1, λ2, λ3, . . . , λn denote the n distinct eigenvalues of A. Then by Theorem
NEM [1465] we have n =

∑n
i=1 αA (λi), which implies that αA (λi) = 1, 1 ≤ i ≤ n. From

Theorem ME [1466] it follows that γA (λi) = 1, 1 ≤ i ≤ n. So γA (λi) = αA (λi), 1 ≤ i ≤ n
and Theorem DMFE [1506] says A is diagonalizable. �

Example DEHD
Distinct eigenvalues, hence diagonalizable
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In Example DEMS5 [1415] the matrix

H =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10


has characteristic polynomial

pH (x) = x(x− 2)(x− 1)(x+ 1)(x+ 3)

and so is a 5 × 5 matrix with 5 distinct eigenvalues. By Theorem DED [1513] we know
H must be diagonalizable. But just for practice, we exhibit the diagonalization itself. The
matrix S contains eigenvectors of H as columns, one from each eigenspace, guaranteeing
linear independent columns and thus the nonsingularity of S. The diagonal matrix has the
eigenvalues of H in the same order that their respective eigenvectors appear as the columns
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of S. Notice that we are using the versions of the eigenvectors from Example DEMS5 [1415]
that have integer entries.

S−1HS

=


2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1


−1 

15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10




2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1



=


−3 −3 1 −1 1
−1 −2 1 0 1
−5 −4 1 −1 2
10 10 −3 2 −4
−7 −6 1 −1 3




15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10




2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1
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=


−3 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2


�

Archetype B [2392] is another example of a matrix that has as many distinct eigenvalues
as its size, and is hence diagonalizable by Theorem DED [1513].

Powers of a diagonal matrix are easy to compute, and when a matrix is diagonalizable,
it is almost as easy. We could state a theorem here perhaps, but we will settle instead for
an example that makes the point just as well.

Example HPDM
High power of a diagonalizable matrix
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Suppose that

A =


19 0 6 13
−33 −1 −9 −21
21 −4 12 21
−36 2 −14 −28



and we wish to compute A20. Normally this would require 19 matrix multiplications, but
since A is diagonalizable, we can simplify the computations substantially. First, we diago-
nalize A. With

S =


1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0
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we find

D = S−1AS =


−6 1 −3 −6
0 2 −2 −3
3 0 1 2
−1 −1 1 1




19 0 6 13
−33 −1 −9 −21
21 −4 12 21
−36 2 −14 −28




1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0



=


−1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1


Now we find an alternate expression for A20,

A20 = AAA . . . A

= InAInAInAIn . . . InAIn

=
(
SS−1

)
A
(
SS−1

)
A
(
SS−1

)
A
(
SS−1

)
. . .
(
SS−1

)
A
(
SS−1

)
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= S
(
S−1AS

) (
S−1AS

) (
S−1AS

)
. . .
(
S−1AS

)
S−1

= SDDD . . .DS−1

= SD20S−1

and since D is a diagonal matrix, powers are much easier to compute,

= S


−1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1


20

S−1

= S


(−1)20 0 0 0

0 (0)20 0 0
0 0 (2)20 0
0 0 0 (1)20

S−1
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=


1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0




1 0 0 0
0 0 0 0
0 0 1048576 0
0 0 0 1



−6 1 −3 −6
0 2 −2 −3
3 0 1 2
−1 −1 1 1



=


6291451 2 2097148 4194297
−9437175 −5 −3145719 −6291441
9437175 −2 3145728 6291453
−12582900 −2 −4194298 −8388596



Notice how we effectively replaced the twentieth power of A by the twentieth power of D, and
how a high power of a diagonal matrix is just a collection of powers of scalars on the diagonal.
The price we pay for this simplification is the need to diagonalize the matrix (by computing
eigenvalues and eigenvectors) and finding the inverse of the matrix of eigenvectors. And we
still need to do two matrix products. But the higher the power, the greater the savings. �
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Subsection FS
Fibonacci Sequences

Example FSCF
Fibonacci sequence, closed form
The Fibonacci sequence is a sequence of integers defined recursively by

a0 = 0 a1 = 1 an+1 = an + an−1, n ≥ 1

So the initial portion of the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .. In this subsection we
will illustrate an application of eigenvalues and diagonalization through the determination
of a closed-form expression for an arbitrary term of this sequence.

To begin, verify that for any n ≥ 1 the recursive statement above establishes the truth
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of the statement [
an
an+1

]
=

[
0 1
1 1

] [
an−1

an

]
Let A denote this 2 × 2 matrix. Through repeated applications of the statement above we
have [

an
an+1

]
= A

[
an−1

an

]
= A2

[
an−2

an−1

]
= A3

[
an−3

an−2

]
= · · · = An

[
a0

a1

]
In preparation for working with this high power of A, not unlike in Example HPDM [1516],
we will diagonalize A. The characteristic polynomial of A is pA (x) = x2 − x− 1, with roots
(the eigenvalues of A by Theorem EMRCP [1390])

ρ =
1 +
√

5

2
δ =

1−√5

2
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With two distinct eigenvalues, Theorem DED [1513] implies that A is diagonalizable. It
will be easier to compute with these eigenvalues once you confirm the following properties
(all but the last can be derived from the fact that ρ and δ are roots of the characteristic
polynomial, in a factored or unfactored form)

ρ+ δ = 1 ρδ = −1 1 + ρ = ρ2 1 + δ = δ2 ρ− δ =
√

5

Then eigenvectors of A (for ρ and δ, respectively) are[
1
ρ

] [
1
δ

]
which can be easily confirmed, as we demonstrate for the eigenvector for ρ,[

0 1
1 1

] [
1
ρ

]
=

[
ρ

1 + ρ

]
=

[
ρ
ρ2

]
= ρ

[
1
ρ

]
From the proof of Theorem DC [1499] we know A can be diagonalized by a matrix S with
these eigenvectors as columns, giving D = S−1AS. We list S, S−1 and the diagonal matrix
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D,

S =

[
1 1
ρ δ

]
S−1 =

1

ρ− δ
[−δ 1
ρ −1

]
D =

[
ρ 0
0 δ

]
OK, we have everything in place now. The main step in the following is to replace A by
SDS−1. Here we go, [

an
an+1

]
= An

[
a0

a1

]
=
(
SDS−1

)n [a0

a1

]
= SDS−1SDS−1SDS−1 · · ·SDS−1

[
a0

a1

]
= SDDD · · ·DS−1

[
a0

a1

]
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= SDnS−1

[
a0

a1

]
=

[
1 1
ρ δ

] [
ρ 0
0 δ

]n
1

ρ− δ
[−δ 1
ρ −1

] [
a0

a1

]
=

1

ρ− δ
[
1 1
ρ δ

] [
ρn 0
0 δn

] [−δ 1
ρ −1

] [
0
1

]
=

1

ρ− δ
[
1 1
ρ δ

] [
ρn 0
0 δn

] [
1
−1

]
=

1

ρ− δ
[
1 1
ρ δ

] [
ρn

−δn
]

=
1

ρ− δ
[

ρn − δn
ρn+1 − δn+1

]

Performing the scalar multiplication and equating the first entries of the two vectors, we
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arrive at the closed form expression

an =
1

ρ− δ (ρn − δn)

=
1√
5

((
1 +
√

5

2

)n

−
(

1−√5

2

)n)
=

1

2n
√

5

((
1 +
√

5
)n
−
(

1−
√

5
)n)

Notice that it does not matter whether we use the equality of the first or second entries of
the vectors, we will arrive at the same formula, once in terms of n and again in terms of
n + 1. Also, our definition clearly describes a sequence that will only contain integers, yet
the presence of the irrational number

√
5 might make us suspicious. But no, our expression

for an will always yield an integer!
The Fibonacci sequence, and generalizations of it, have been extensively studied (Fi-

bonacci lived in the 12th and 13th centuries). There are many ways to derive the closed-form
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expression we just found, and our approach may not be the most efficient route. But it is a
nice demonstration of how diagonalization can be used to solve a problem outside the field
of linear algebra. �

We close this section with a comment about an important upcoming theorem that we
prove in Chapter R [1818]. A consequence of Theorem OD [2062] is that every Hermitian
matrix (Definition HM [698]) is diagonalizable (Definition DZM [1497]), and the similar-
ity transformation that accomplishes the diagonalization uses a unitary matrix (Definition
UM [785]). This means that for every Hermitian matrix of size n there is a basis of Cn

that is composed entirely of eigenvectors for the matrix and also forms an orthonormal set
(Definition ONS [599]). Notice that for matrices with only real entries, we only need the
hypothesis that the matrix is symmetric (Definition SYM [624]) to reach this conclusion
(Example ESMS4 [1402]). Can you imagine a prettier basis for use with a matrix? I can’t.

These results in Section OD [2040] explain much of our recurring interest in orthogonality,
and make the section a high point in your study of linear algebra. A precise statement of
this diagonalization result applies to a slightly broader class of matrices, known as “normal”
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matrices (Definition NRML [2059]), which are matrices that commute with their adjoints.
With this expanded category of matrices, the result becomes an equivalence (Technique E
[2348]). See Theorem OD [2062] and Theorem OBNM [2069] in Section OD [2040] for all
the details.

Subsection READ
Reading Questions

1. What is an equivalence relation?

2. State a condition that is equivalent to a matrix being diagonalizable, but is not the
definition.
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3. Find a diagonal matrix similar to

A =

[−5 8
−4 7

]
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Subsection EXC
Exercises

C20 Consider the matrix A below. First, show that A is diagonalizable by computing the
geometric multiplicities of the eigenvalues and quoting the relevant theorem. Second, find a
diagonal matrix D and a nonsingular matrix S so that S−1AS = D. (See Exercise EE.C20
[1423] for some of the necessary computations.)

A =


18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4


Contributed by Robert Beezer Solution [1534]
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C21 Determine if the matrix A below is diagonalizable. If the matrix is diagonalizable,
then find a diagonal matrix D that is similar to A, and provide the invertible matrix S
that performs the similarity transformation. You should use your calculator to find the
eigenvalues of the matrix, but try only using the row-reducing function of your calculator to
assist with finding eigenvectors.

A =


1 9 9 24
−3 −27 −29 −68
1 11 13 26
1 7 7 18


Contributed by Robert Beezer Solution [1536]

C22 Consider the matrix A below. Find the eigenvalues of A using a calculator and use
these to construct the characteristic polynomial of A, pA (x). State the algebraic multiplicity
of each eigenvalue. Find all of the eigenspaces for A by computing expressions for null spaces,
only using your calculator to row-reduce matrices. State the geometric multiplicity of each
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eigenvalue. Is A diagonalizable? If not, explain why. If so, find a diagonal matrix D that is
similar to A.

A =


19 25 30 5
−23 −30 −35 −5

7 9 10 1
−3 −4 −5 −1


Contributed by Robert Beezer Solution [1540]

T15 Suppose that A and B are similar matrices. Prove that A3 and B3 are similar matrices.
Generalize.
Contributed by Robert Beezer Solution [1542]

T16 Suppose that A and B are similar matrices, with A nonsingular. Prove that B is
nonsingular, and that A−1 is similar to B−1.
Contributed by Robert Beezer Solution [1543]

T17 Suppose that B is a nonsingular matrix. Prove that AB is similar to BA.
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Contributed by Robert Beezer Solution [1544]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [1530]
Using a calculator, we find that A has three distinct eigenvalues, λ = 3, 2, −1, with λ = 2
having algebraic multiplicity two, αA (2) = 2. The eigenvalues λ = 3, −1 have algebraic
multiplicity one, and so by Theorem ME [1466] we can conclude that their geometric mul-
tiplicities are one as well. Together with the computation of the geometric multiplicity of
λ = 2 from Exercise EE.C20 [1423], we know

γA (3) = αA (3) = 1 γA (2) = αA (2) = 2 γA (−1) = αA (−1) = 1

This satisfies the hypotheses of Theorem DMFE [1506], and so we can conclude that A is
diagonalizable.

A calculator will give us four eigenvectors of A, the two for λ = 2 being linearly inde-
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pendent presumably. Or, by hand, we could find basis vectors for the three eigenspaces. For
λ = 3, −1 the eigenspaces have dimension one, and so any eigenvector for these eigenvalues
will be multiples of the ones we use below. For λ = 2 there are many different bases for the
eigenspace, so your answer could vary. Our eigenvectors are the basis vectors we would have
obtained if we had actually constructed a basis in Exercise EE.C20 [1423] rather than just
computing the dimension.

By the construction in the proof of Theorem DC [1499], the required matrix S has
columns that are four linearly independent eigenvectors of A and the diagonal matrix has
the eigenvalues on the diagonal (in the same order as the eigenvectors in S). Here are the
pieces, “doing” the diagonalization,
−1 0 −3 6
−2 −1 −1 0
0 0 1 −3
1 1 0 1


−1 

18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4



−1 0 −3 6
−2 −1 −1 0
0 0 1 −3
1 1 0 1

 =


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −1


C21 Contributed by Robert Beezer Statement [1531]
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A calculator will provide the eigenvalues λ = 2, 2, 1, 0, so we can reconstruct the character-
istic polynomial as

pA (x) = (x− 2)2(x− 1)x

so the algebraic multiplicities of the eigenvalues are

αA (2) = 2 αA (1) = 1 αA (0) = 1

Now compute eigenspaces by hand, obtaining null spaces for each of the three eigenvalues
by constructing the correct singular matrix (Theorem EMNS [1394]),

A− 2I4 =


−1 9 9 24
−3 −29 −29 −68
1 11 11 26
1 7 7 16

 RREF−−−→


1 0 0 −3

2

0 1 1 5
2

0 0 0 0
0 0 0 0
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EA (2) = N (A− 2I4) =

〈


3
2−5
2

0
1

 ,


0
−1
1
0



〉

=

〈


3
−5
0
2

 ,


0
−1
1
0



〉

A− 1I4 =


0 9 9 24
−3 −28 −29 −68
1 11 12 26
1 7 7 17

 RREF−−−→


1 0 0 −5

3

0 1 0 13
3

0 0 1 −5
3

0 0 0 0



EA (1) = N (A− I4) =

〈


5
3−13
3

5
3

1



〉

=

〈


5
−13

5
3



〉
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A− 0I4 =


1 9 9 24
−3 −27 −29 −68
1 11 13 26
1 7 7 18

 RREF−−−→


1 0 0 −3
0 1 0 5
0 0 1 −2
0 0 0 0



EA (0) = N (A− I4) =

〈


3
−5
2
1



〉

From this we can compute the dimensions of the eigenspaces to obtain the geometric multi-
plicities,

γA (2) = 2 γA (1) = 1 γA (0) = 1

For each eigenvalue, the algebraic and geometric multiplicities are equal and so by Theorem
DMFE [1506] we now know that A is diagonalizable. The construction in Theorem DC
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[1499] suggests we form a matrix whose columns are eigenvectors of A

S =


3 0 5 3
−5 −1 −13 −5
0 1 5 2
2 0 3 1


Since det (S) = −1 6= 0, we know that S is nonsingular (Theorem SMZD [1348]), so the
columns of S are a set of 4 linearly independent eigenvectors of A. By the proof of Theorem
SMZD [1348] we know

S−1AS =


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0


a diagonal matrix with the eigenvalues of A along the diagonal, in the same order as the
associated eigenvectors appear as columns of S.
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C22 Contributed by Robert Beezer Statement [1531]
A calculator will report λ = 0 as an eigenvalue of algebraic multiplicity of 2, and λ = −1 as an
eigenvalue of algebraic multiplicity 2 as well. Since eigenvalues are roots of the characteristic
polynomial (Theorem EMRCP [1390]) we have the factored version

pA (x) = (x− 0)2(x− (−1))2 = x2(x2 + 2x+ 1) = x4 + 2x3 + x2

The eigenspaces are then

λ = 0

A− (0)I4 =


19 25 30 5
−23 −30 −35 −5

7 9 10 1
−3 −4 −5 −1

 RREF−−−→


1 0 −5 −5

0 1 5 4
0 0 0 0
0 0 0 0
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EA (0) = N (C − (0)I4) =

〈


5
−5
1
0

 ,


5
−4
0
1



〉

λ = −1

A− (−1)I4 =


20 25 30 5
−23 −29 −35 −5

7 9 11 1
−3 −4 −5 0

 RREF−−−→


1 0 −1 4

0 1 2 −3
0 0 0 0
0 0 0 0



EA (−1) = N (C − (−1)I4) =

〈


1
−2
1
0

 ,

−4
3
0
1



〉

Each eigenspace above is described by a spanning set obtained through an application of
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Theorem BNS [484] and so is a basis for the eigenspace. In each case the dimension, and
therefore the geometric multiplicity, is 2.

For each of the two eigenvalues, the algebraic and geometric multiplicities are equal.
Theorem DMFE [1506] says that in this situation the matrix is diagonalizable. We know
from Theorem DC [1499] that when we diagonalize A the diagonal matrix will have the
eigenvalues of A on the diagonal (in some order). So we can claim that

D =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1


T15 Contributed by Robert Beezer Statement [1532]
By Definition SIM [1485] we know that there is a nonsingular matrix S so that A = S−1BS.
Then

A3 = (S−1BS)3
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= (S−1BS)(S−1BS)(S−1BS)

= S−1B(SS−1)B(SS−1)BS Theorem MMA [687]

= S−1B(I3)B(I3)BS Definition MI [727]

= S−1BBBS Theorem MMIM [682]

= S−1B3S

This equation says that A3 is similar to B3 (via the matrix S).
More generally, if A is similar to B, and m is a non-negative integer, then Am is similar

to Bm. This can be proved using induction (Technique I [2363]).

T16 Contributed by Steve Canfield Statement [1532]
A being similar to B means that there exists an S such that A = S−1BS. So, B = SAS−1

and because S, A, and S−1 are nonsingular, by Theorem NPNT [775], B is nonsingular.

A−1 =
(
S−1BS

)−1
Definition SIM [1485]

= S−1B−1
(
S−1

)−1
Theorem SS [748] = S−1B−1S Theorem MIMI [750]
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Then by Definition SIM [1485], A−1 is similar to B−1.

T17 Contributed by Robert Beezer Statement [1532]
The nonsingular (invertible) matrix B will provide the desired similarity transformation,

B−1 (BA)B =
(
B−1B

)
(AB) Theorem MMA [687]

= InAB Definition MI [727]

= AB Theorem MMIM [682]
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Annotated Acronyms E
Eigenvalues

Theorem EMRCP [1390]

Much of what we know about eigenvalues can be traced to analysis of the characteristic
polynomial. When we first defined eigenvalues, you might have wondered if they were scarce,
or abundant. The characteristic polynomial allows us to answer a question like this with a
result like Theorem NEM [1465] which tells us there are always a few eigenvalues, but never
too many.

Theorem EMNS [1394]

If Theorem EMRCP [1390] allows us to learn about eigenvalues through what we know about
roots of polynomials, then Theorem EMNS [1394] allows us to learn about eigenvectors, and
eigenspaces, from what we already know about null spaces. These two theorems, along with
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Definition EEM [1365], provide the starting points for discerning the properties of eigenvalues
and eigenvectors (to say nothing of actually computing them).

Theorem HMRE [1473]

As we have remarked before, we choose to include all of the complex numbers in our set
of allowed scalars, whereas many introductory texts restrict their attention to just the real
numbers. Here is one of the payoffs to this approach. Begin with a matrix, possibly con-
taining complex entries, and require the matrix to be Hermitian (Definition HM [698]). In
the case of only real entries, this boils down to just requiring the matrix to be symmetric
(Definition SYM [624]). Generally, the roots of a characteristic polynomial, even with all
real coefficients, can have complex numbers as roots. But for a Hermitian matrix, all of the
eigenvalues are real numbers! When somebody tells you mathematics can be beautiful, this
is an example of what they are talking about.

Theorem DC [1499]

Diagonalizing a matrix, or the question of if a matrix is diagonalizable, could be viewed as
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one of a handful of central questions in linear algebra. Here we have an unequivocal answer
to the question of “if,” along with a proof containing a construction for the diagonalization.
So this theorem is of theoretical and computational interest. This topic will be important
again in Chapter R [1818].

Theorem DMFE [1506]

Another unequivocal answer to the question of if a matrix is diagonalizable, with perhaps
a simpler condition to test. The proof also tells us how to construct the necessary set of n
linearly independent eigenvectors — just round up bases for each eigenspace and join them
together. No need to test the linear independence of the combined set.
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Chapter LT
Linear Transformations

In the next linear algebra course you take, the first lecture might be a reminder about what
a vector space is (Definition VS [956]), their ten properties, basic theorems and then some
examples. The second lecture would likely be all about linear transformations. While it may
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seem we have waited a long time to present what must be a central topic, in truth we have
already been working with linear transformations for some time.

Functions are important objects in the study of calculus, but have been absent from this
course until now (well, not really, it just seems that way). In your study of more advanced
mathematics it is nearly impossible to escape the use of functions — they are as fundamental
as sets are.

Section LT

Linear Transformations

Early in Chapter VS [954] we prefaced the definition of a vector space with the comment
that it was “one of the two most important definitions in the entire course.” He comes the
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other. Any capsule summary of linear algebra would have to describe the subject as the
interplay of linear transformations and vector spaces. Here we go.

Subsection LT
Linear Transformations

Definition LT
Linear Transformation
A linear transformation, T : U 7→ V , is a function that carries elements of the vector
space U (called the domain) to the vector space V (called the codomain), and which has
two additional properties

1. T (u1 + u2) = T (u1) + T (u2) for all u1, u2 ∈ U
2. T (αu) = αT (u) for all u ∈ U and all α ∈ C
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(This definition contains Notation LT.) 4

The two defining conditions in the definition of a linear transformation should “feel
linear,” whatever that means. Conversely, these two conditions could be taken as exactly
what it means to be linear. As every vector space property derives from vector addition and
scalar multiplication, so too, every property of a linear transformation derives from these two
defining properties. While these conditions may be reminiscent of how we test subspaces,
they really are quite different, so do not confuse the two.

Here are two diagrams that convey the essence of the two defining properties of a linear
transformation. In each case, begin in the upper left-hand corner, and follow the arrows
around the rectangle to the lower-right hand corner, taking two different routes and doing
the indicated operations labeled on the arrows. There are two results there. For a linear
transformation these two expressions are always equal.
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u1, u2

u1 + u2

T (u1) , T (u2)

T (u1 + u2) = T (u1) + T (u2)

T

T

+ +

Diagram DLTA. Definition of Linear Transformation, Additive

u

αu

T (u)

T (αu) = αT (u)

T

T

α α
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Diagram DLTM. Definition of Linear Transformation, Multiplicative

A couple of words about notation. T is the name of the linear transformation, and should be
used when we want to discuss the function as a whole. T (u) is how we talk about the output
of the function, it is a vector in the vector space V . When we write T (x + y) = T (x)+T (y),
the plus sign on the left is the operation of vector addition in the vector space U , since x
and y are elements of U . The plus sign on the right is the operation of vector addition in
the vector space V , since T (x) and T (y) are elements of the vector space V . These two
instances of vector addition might be wildly different.

Let’s examine several examples and begin to form a catalog of known linear transforma-
tions to work with.

Example ALT
A linear transformation
Define T : C3 7→ C2 by describing the output of the function for a generic input with the
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formula

T

x1

x2

x3

 =

[
2x1 + x3

−4x2

]
and check the two defining properties.

T (x + y) = T

x1

x2

x3

+

y1

y2

y3


= T

x1 + y1

x2 + y2

x3 + y3


=

[
2(x1 + y1) + (x3 + y3)

−4(x2 + y2)

]
=

[
(2x1 + x3) + (2y1 + y3)
−4x2 + (−4)y2

]
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=

[
2x1 + x3

−4x2

]
+

[
2y1 + y3

−4y2

]

= T

x1

x2

x3

+ T

y1

y2

y3


= T (x) + T (y)

and

T (αx) = T

α
x1

x2

x3


= T

αx1

αx2

αx3


Version 2.11



Subsection LT.LT Linear Transformations 1563

=

[
2(αx1) + (αx3)
−4(αx2)

]
=

[
α(2x1 + x3)
α(−4x2)

]
= α

[
2x1 + x3

−4x2

]

= αT

x1

x2

x3


= αT (x)

So by Definition LT [1550], T is a linear transformation. �

It can be just as instructive to look at functions that are not linear transformations. Since
the defining conditions must be true for all vectors and scalars, it is enough to find just one
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situation where the properties fail.

Example NLT
Not a linear transformation
Define S : C3 7→ C3 by

S

x1

x2

x3

 =

 4x1 + 2x2

0
x1 + 3x3 − 2


This function “looks” linear, but consider

3S

1
2
3

 = 3

8
0
8

 =

24
0
24
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while

S

3

1
2
3

 = S

3
6
9

 =

24
0
28



So the second required property fails for the choice of α = 3 and x =

1
2
3

 and by Definition

LT [1550], S is not a linear transformation. It is just about as easy to find an example where
the first defining property fails (try it!). Notice that it is the “-2” in the third component of
the definition of S that prevents the function from being a linear transformation. �

Example LTPM
Linear transformation, polynomials to matrices
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Define a linear transformation T : P3 7→M22 by

T
(
a+ bx+ cx2 + dx3

)
=

[
a+ b a− 2c
d b− d

]
We verify the two defining conditions of a linear transformations.

T (x + y) = T
(
(a1 + b1x+ c1x

2 + d1x
3) + (a2 + b2x+ c2x

2 + d2x
3)
)

= T
(
(a1 + a2) + (b1 + b2)x+ (c1 + c2)x

2 + (d1 + d2)x
3
)

=

[
(a1 + a2) + (b1 + b2) (a1 + a2)− 2(c1 + c2)

d1 + d2 (b1 + b2)− (d1 + d2)

]
=

[
(a1 + b1) + (a2 + b2) (a1 − 2c1) + (a2 − 2c2)

d1 + d2 (b1 − d1) + (b2 − d2)

]
=

[
a1 + b1 a1 − 2c1
d1 b1 − d1

]
+

[
a2 + b2 a2 − 2c2
d2 b2 − d2

]
= T

(
a1 + b1x+ c1x

2 + d1x
3
)

+ T
(
a2 + b2x+ c2x

2 + d2x
3
)
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= T (x) + T (y)

and

T (αx) = T
(
α(a+ bx+ cx2 + dx3)

)
= T

(
(αa) + (αb)x+ (αc)x2 + (αd)x3

)
=

[
(αa) + (αb) (αa)− 2(αc)

αd (αb)− (αd)

]
=

[
α(a+ b) α(a− 2c)
αd α(b− d)

]
= α

[
a+ b a− 2c
d b− d

]
= αT

(
a+ bx+ cx2 + dx3

)
= αT (x)
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So by Definition LT [1550], T is a linear transformation. �

Example LTPP
Linear transformation, polynomials to polynomials
Define a function S : P4 7→ P5 by

S(p(x)) = (x− 2)p(x)

Then

S (p(x) + q(x)) = (x− 2)(p(x) + q(x)) = (x− 2)p(x) + (x− 2)q(x) = S (p(x)) + S (q(x))

S (αp(x)) = (x− 2)(αp(x)) = (x− 2)αp(x) = α(x− 2)p(x) = αS (p(x))

So by Definition LT [1550], S is a linear transformation. �

Linear transformations have many amazing properties, which we will investigate through
the next few sections. However, as a taste of things to come, here is a theorem we can prove
now and put to use immediately.
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Theorem LTTZZ
Linear Transformations Take Zero to Zero
Suppose T : U 7→ V is a linear transformation. Then T (0) = 0. �

Proof The two zero vectors in the conclusion of the theorem are different. The first is from
U while the second is from V . We will subscript the zero vectors in this proof to highlight
the distinction. Think about your objects. (This proof is contributed by Mark Shoemaker).

T (0U) = T (00U) Theorem ZSSM [979] in U

= 0T (0U) Definition LT [1550]

= 0V Theorem ZSSM [979] in V

�

Return to Example NLT [1557] and compute S

0
0
0

 =

 0
0
−2

 to quickly see again that
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S is not a linear transformation, while in Example LTPM [1558] compute S (0 + 0x+ 0x2 + 0x3) =[
0 0
0 0

]
as an example of Theorem LTTZZ [1562] at work.

Subsection LTC
Linear Transformation Cartoons

Throughout this chapter, and Chapter R [1818], we will include drawings of linear transfor-
mations. We will call them “cartoons,” not because they are humorous, but because they
will only expose a portion of the truth. A Bugs Bunny cartoon might give us some insights
on human nature, but the rules of physics and biology are routinely (and grossly) violated.
So it will be with our linear transformation cartoons. Here is our first, followed by a
guide to help you understand how these are meant to describe fundamental truths about
linear transformations, while simultaneously violating other truths.
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U V
T

u v

w

v

0U 0V

x

y

t

Diagram GLT. General Linear Transformation
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Here we picture a linear transformation T : U 7→ V , where this information will be consis-
tently displayed along the bottom edge. The ovals are meant to represent the vector spaces,
in this case U , the domain, on the left and V , the codomain, on the right. Of course, vector
spaces are typically infinite sets, so you’ll have to imagine that characteristic of these sets. A
small dot inside of an oval will represent a vector within that vector space, sometimes with
a name, sometimes not (in this case every vector has a name). The sizes of the ovals are
meant to be proportional to the dimensions of the vector spaces. However, when we make
no assumptions about the dimensions, we will draw the ovals as the same size, as we have
done here (which is not meant to suggest that the dimensions have to be equal).

To convey that the linear transformation associates a certain input with a certain output,
we will draw an arrow from the input to the output. So, for example, in this cartoon we
suggest that T (x) = y. Nothing in the definition of a linear transformation prevents two
different inputs being sent to the same output and we see this in T (u) = v = T (w).
Similarly, an output may not have any input being sent its way, as illustrated by no arrow
pointing at t. In this cartoon, we have captured the essence of our one general theorem about
linear transformations, Theorem LTTZZ [1562], T (0U) = 0V . On occasion we might include
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this basic fact when it is relevant, at other times maybe not. Note that the definition of a
linear transformation requires that it be a function, so every element of the domain should
be associated with some element of the codomain. This will be reflected by never having an
element of the domain without an arrow originating there.

These cartoons are of course no substitute for careful definitions and proofs, but they
can be a handy way to think about the various properties we will be studying.

Subsection MLT
Matrices and Linear Transformations

If you give me a matrix, then I can quickly build you a linear transformation. Always. First
a motivating example and then the theorem.

Example LTM
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Linear transformation from a matrix
Let

A =

3 −1 8 1
2 0 5 −2
1 1 3 −7


and define a function P : C4 7→ C3 by

P (x) = Ax

So we are using an old friend, the matrix-vector product (Definition MVP [661]) as a way to
convert a vector with 4 components into a vector with 3 components. Applying Definition
MVP [661] allows us to write the defining formula for P in a slightly different form,

P (x) = Ax =

3 −1 8 1
2 0 5 −2
1 1 3 −7



x1

x2

x3

x4

 = x1

3
2
1

+ x2

−1
0
1

+ x3

8
5
3

+ x4

 1
−2
−7
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So we recognize the action of the function P as using the components of the vector (x1, x2, x3, x4)
as scalars to form the output of P as a linear combination of the four columns of the matrix
A, which are all members of C3, so the result is a vector in C3. We can rearrange this
expression further, using our definitions of operations in C3 (Section VO [284]).

P (x) = Ax Definition of P

= x1

3
2
1

+ x2

−1
0
1

+ x3

8
5
3

+ x4

 1
−2
−7

 Definition MVP [661]

=

3x1

2x1

x1

+

−x2

0
x2

+

8x3

5x3

3x3

+

 x4

−2x4

−7x4

 Definition CVSM [291]

=

3x1 − x2 + 8x3 + x4

2x1 + 5x3 − 2x4

x1 + x2 + 3x3 − 7x4

 Definition CVA [289]
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You might recognize this final expression as being similar in style to some previous examples
(Example ALT [1553]) and some linear transformations defined in the archetypes (Archetype
M [2540] through Archetype R [2581]). But the expression that says the output of this linear
transformation is a linear combination of the columns of A is probably the most powerful
way of thinking about examples of this type.

Almost forgot — we should verify that P is indeed a linear transformation. This is easy
with two matrix properties from Section MM [660].

P (x + y) = A (x + y) Definition of P

= Ax + Ay Theorem MMDAA [684]

= P (x) + P (y) Definition of P

and

P (αx) = A (αx) Definition of P

= α (Ax) Theorem MMSMM [685]
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= αP (x) Definition of P

So by Definition LT [1550], P is a linear transformation. �

So the multiplication of a vector by a matrix “transforms” the input vector into an
output vector, possibly of a different size, by performing a linear combination. And this
transformation happens in a “linear” fashion. This “functional” view of the matrix-vector
product is the most important shift you can make right now in how you think about linear
algebra. Here’s the theorem, whose proof is very nearly an exact copy of the verification in
the last example.

Theorem MBLT
Matrices Build Linear Transformations
Suppose that A is an m × n matrix. Define a function T : Cn 7→ Cm by T (x) = Ax. Then
T is a linear transformation. �

Proof

T (x + y) = A (x + y) Definition of T
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= Ax + Ay Theorem MMDAA [684]

= T (x) + T (y) Definition of T

and

T (αx) = A (αx) Definition of T

= α (Ax) Theorem MMSMM [685]

= αT (x) Definition of T

So by Definition LT [1550], T is a linear transformation. �

So Theorem MBLT [1570] gives us a rapid way to construct linear transformations. Grab
an m× n matrix A, define T (x) = Ax and Theorem MBLT [1570] tells us that T is a linear
transformation from Cn to Cm, without any further checking.

We can turn Theorem MBLT [1570] around. You give me a linear transformation and I
will give you a matrix.
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Example MFLT
Matrix from a linear transformation
Define the function R : C3 7→ C4 by

R

x1

x2

x3

 =


2x1 − 3x2 + 4x3

x1 + x2 + x3

−x1 + 5x2 − 3x3

x2 − 4x3


You could verify that R is a linear transformation by applying the definition, but we will
instead massage the expression defining a typical output until we recognize the form of a
known class of linear transformations.

R

x1

x2

x3

 =


2x1 − 3x2 + 4x3

x1 + x2 + x3

−x1 + 5x2 − 3x3

x2 − 4x3
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=


2x1

x1

−x1

0

+


−3x2

x2

5x2

x2

+


4x3

x3

−3x3

−4x3

 Definition CVA [289]

= x1


2
1
−1
0

+ x2


−3
1
5
1

+ x3


4
1
−3
−4

 Definition CVSM [291]

=


2 −3 4
1 1 1
−1 5 −3
0 1 −4


x1

x2

x3

 Definition MVP [661]
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So if we define the matrix

B =


2 −3 4
1 1 1
−1 5 −3
0 1 −4


then R (x) = Bx. By Theorem MBLT [1570], we can easily recognize R as a linear trans-
formation since it has the form described in the hypothesis of the theorem. �

Example MFLT [1572] was not accident. Consider any one of the archetypes where both
the domain and codomain are sets of column vectors (Archetype M [2540] through Archetype
R [2581]) and you should be able to mimic the previous example. Here’s the theorem, which
is notable since it is our first occasion to use the full power of the defining properties of a
linear transformation when our hypothesis includes a linear transformation.

Theorem MLTCV
Matrix of a Linear Transformation, Column Vectors
Suppose that T : Cn 7→ Cm is a linear transformation. Then there is an m×n matrix A such
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that T (x) = Ax. �

Proof The conclusion says a certain matrix exists. What better way to prove something
exists than to actually build it? So our proof will be constructive (Technique C [2347]),
and the procedure that we will use abstractly in the proof can be used concretely in specific
examples.

Let e1, e2, e3, . . . , en be the columns of the identity matrix of size n, In (Definition SUV
[586]). Evaluate the linear transformation T with each of these standard unit vectors as an
input, and record the result. In other words, define n vectors in Cm, Ai, 1 ≤ i ≤ n by

Ai = T (ei)

Then package up these vectors as the columns of a matrix

A = [A1|A2|A3| . . . |An]

Does A have the desired properties? First, A is clearly an m× n matrix. Then

T (x) = T (Inx) Theorem MMIM [682]
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= T ([e1|e2|e3| . . . |en] x) Definition SUV [586]

= T ([x]1 e1 + [x]2 e2 + [x]3 e3 + · · ·+ [x]n en) Definition MVP [661]

= T ([x]1 e1) + T ([x]2 e2) + T ([x]3 e3) + · · ·+ T ([x]n en) Definition LT [1550]

= [x]1 T (e1) + [x]2 T (e2) + [x]3 T (e3) + · · ·+ [x]n T (en) Definition LT [1550]

= [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An Definition of Ai

= Ax Definition MVP [661]

as desired. �

So if we were to restrict our study of linear transformations to those where the domain and
codomain are both vector spaces of column vectors (Definition VSCV [285]), every matrix
leads to a linear transformation of this type (Theorem MBLT [1570]), while every such
linear transformation leads to a matrix (Theorem MLTCV [1574]). So matrices and linear
transformations are fundamentally the same. We call the matrix A of Theorem MLTCV
[1574] the matrix representation of T .

We have defined linear transformations for more general vector spaces than just Cm, can
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we extend this correspondence between linear transformations and matrices to more general
linear transformations (more general domains and codomains)? Yes, and this is the main
theme of Chapter R [1818]. Stay tuned. For now, let’s illustrate Theorem MLTCV [1574]
with an example.

Example MOLT
Matrix of a linear transformation
Suppose S : C3 7→ C4 is defined by

S

x1

x2

x3

 =


3x1 − 2x2 + 5x3

x1 + x2 + x3

9x1 − 2x2 + 5x3

4x2
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Then

C1 = S (e1) = S

1
0
0

 =


3
1
9
0



C2 = S (e2) = S

0
1
0

 =


−2
1
−2
4



C3 = S (e3) = S

0
0
1

 =


5
1
5
0
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so define

C = [C1|C2|C3] =


3 −2 5
1 1 1
9 −2 5
0 4 0


and Theorem MLTCV [1574] guarantees that S (x) = Cx.

As an illuminating exercise, let z =

 2
−3
3

 and compute S (z) two different ways. First,

return to the definition of S and evaluate S (z) directly. Then do the matrix-vector product

Cz. In both cases you should obtain the vector S (z) =


27
2
39
−12

. �
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Subsection LTLC
Linear Transformations and Linear Combinations

It is the interaction between linear transformations and linear combinations that lies at
the heart of many of the important theorems of linear algebra. The next theorem distills
the essence of this. The proof is not deep, the result is hardly startling, but it will be
referenced frequently. We have already passed by one occasion to employ it, in the proof
of Theorem MLTCV [1574]. Paraphrasing, this theorem says that we can “push” linear
transformations “down into” linear combinations, or “pull” linear transformations “up out”
of linear combinations. We’ll have opportunities to both push and pull.

Theorem LTLC
Linear Transformations and Linear Combinations
Suppose that T : U 7→ V is a linear transformation, u1, u2, u3, . . . , ut are vectors from U
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and a1, a2, a3, . . . , at are scalars from C. Then

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut)

�

Proof

T (a1u1 + a2u2 + a3u3 + · · ·+ atut)

= T (a1u1) + T (a2u2) + T (a3u3) + · · ·+ T (atut) Definition LT [1550]

= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut) Definition LT [1550]

�

Some authors, especially in more advanced texts, take the conclusion of Theorem LTLC
[1580] as the defining condition of a linear transformation. This has the appeal of being a
single condition, rather than the two-part condition of Definition LT [1550]. (See Exercise
LT.T20 [1618]).
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Our next theorem says, informally, that it is enough to know how a linear transformation
behaves for inputs from any basis of the domain, and all the other outputs are described by
a linear combination of these few values. Again, the statement of the theorem, and its proof,
are not remarkable, but the insight that goes along with it is very fundamental.

Theorem LTDB
Linear Transformation Defined on a Basis
Suppose B = {u1, u2, u3, . . . , un} is a basis for the vector space U and v1, v2, v3, . . . , vn
is a list of vectors from the vector space V (which are not necessarily distinct). Then there
is a unique linear transformation, T : U 7→ V , such that T (ui) = vi, 1 ≤ i ≤ n. �

Proof To prove the existence of T , we construct a function and show that it is a linear
transformation (Technique C [2347]). Suppose w ∈ U is an arbitrary element of the domain.
Then by Theorem VRRB [1090] there are unique scalars a1, a2, a3, . . . , an such that

w = a1u1 + a2u2 + a3u3 + · · ·+ anun
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Then define

T (w) = a1v1 + a2v2 + a3v3 + · · ·+ anvn

It should be clear that T behaves as required for n inputs from B. Since the scalars provided
by Theorem VRRB [1090] are unique, there is no ambiguity in this definition, and T qualifies
as a function with domain U and codomain V (i.e. T is well-defined). But is T a linear
transformation as well?

Let x ∈ U be a second element of the domain, and suppose the scalars provided by
Theorem VRRB [1090] (relative to B) are b1, b2, b3, . . . , bn. Then

T (w + x) = T (a1u1 + a2u2 + · · ·+ anun + b1u1 + b2u2 + · · ·+ bnun)

= T ((a1 + b1) u1 + (a2 + b2) u2 + · · ·+ (an + bn) un) Definition VS [956]

= (a1 + b1) v1 + (a2 + b2) v2 + · · ·+ (an + bn) vn Definition of T

= a1v1 + a2v2 + · · ·+ anvn + b1v1 + b2v2 + · · ·+ bnvn Definition VS [956]

= T (w) + T (x)
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Let α ∈ C be any scalar. Then

T (αw) = T (α (a1u1 + a2u2 + a3u3 + · · ·+ anun))

= T (αa1u1 + αa2u2 + αa3u3 + · · ·+ αanun) Definition VS [956]

= αa1v1 + αa2v2 + αa3v3 + · · ·+ αanvn Definition of T

= α (a1v1 + a2v2 + a3v3 + · · ·+ anvn) Definition VS [956]

= αT (w)

So by Definition LT [1550], T is a linear transformation.
Is T unique (among all linear transformations that take the ui to the vi)? Applying

Technique U [2357], we posit the existence of a second linear transformation, S : U 7→ V
such that S (ui) = vi, 1 ≤ i ≤ n. Again, let w ∈ U represent an arbitrary element of U and
let a1, a2, a3, . . . , an be the scalars provided by Theorem VRRB [1090] (relative to B). We
have,

T (w) = T (a1u1 + a2u2 + a3u3 + · · ·+ anun) Theorem VRRB [1090]
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= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ anT (un) Theorem LTLC [1580]

= a1v1 + a2v2 + a3v3 + · · ·+ anvn Definition of T

= a1S (u1) + a2S (u2) + a3S (u3) + · · ·+ anS (un) Definition of S

= S (a1u1 + a2u2 + a3u3 + · · ·+ anun) Theorem LTLC [1580]

= S (w) Theorem VRRB [1090]

So the output of T and S agree on every input, which means they are equal as functions,
T = S. So T is unique. �

You might recall facts from analytic geometry, such as “any two points determine a
line” and “any three non-collinear points determine a parabola.” Theorem LTDB [1582] has
much of the same feel. By specifying the n outputs for inputs from a basis, an entire linear
transformation is determined. The analogy is not perfect, but the style of these facts are not
very dissimilar from Theorem LTDB [1582].

Notice that the statement of Theorem LTDB [1582] asserts the existence of a linear trans-
formation with certain properties, while the proof shows us exactly how to define the desired
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linear transformation. The next examples how how to work with linear transformations that
we find this way.

Example LTDB1
Linear transformation defined on a basis
Consider the linear transformation T : C3 7→ C2 that is required to have the following three
values,

T

1
0
0

 =

[
2
1

]
T

0
1
0

 =

[−1
4

]
T

0
0
1

 =

[
6
0

]
Because

B =


1

0
0

 ,
0

1
0

 ,
0

0
1


is a basis for C3 (Theorem SUVB [1122]), Theorem LTDB [1582] says there is a unique linear
transformation T that behaves this way. How do we compute other values of T? Consider
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the input

w =

 2
−3
1

 = (2)

1
0
0

+ (−3)

0
1
0

+ (1)

0
0
1


Then

T (w) = (2)

[
2
1

]
+ (−3)

[−1
4

]
+ (1)

[
6
0

]
=

[
13
−10

]
Doing it again,

x =

 5
2
−3

 = (5)

1
0
0

+ (2)

0
1
0

+ (−3)

0
0
1


so

T (x) = (5)

[
2
1

]
+ (2)

[−1
4

]
+ (−3)

[
6
0

]
=

[−10
13

]
Any other value of T could be computed in a similar manner. So rather than being given a
formula for the outputs of T , the requirement that T behave in a certain way for the inputs
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chosen from a basis of the domain, is as sufficient as a formula for computing any value of
the function. You might notice some parallels between this example and Example MOLT
[1577] or Theorem MLTCV [1574]. �

Example LTDB2
Linear transformation defined on a basis
Consider the linear transformation R : C3 7→ C2 with the three values,

R

1
2
1

 =

[
5
−1

]
R

−1
5
1

 =

[
0
4

]
R

3
1
4

 =

[
2
3

]
You can check that

D =


1

2
1

 ,
−1

5
1

 ,
3

1
4


is a basis for C3 (make the vectors the columns of a square matrix and check that the matrix
is nonsingular, Theorem CNMB [1138]). By Theorem LTDB [1582] we know there is a unique
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linear transformation R with the three specified outputs. However, we have to work just a
bit harder to take an input vector and express it as a linear combination of the vectors in
D. For example, consider,

y =

 8
−3
5


Then we must first write y as a linear combination of the vectors in D and solve for the
unknown scalars, to arrive at

y =

 8
−3
5

 = (3)

1
2
1

+ (−2)

−1
5
1

+ (1)

3
1
4


Then the proof of Theorem LTDB [1582] gives us

R (y) = (3)

[
5
−1

]
+ (−2)

[
0
4

]
+ (1)

[
2
3

]
=

[
17
−8

]
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Any other value of R could be computed in a similar manner. �

Here is a third example of a linear transformation defined by its action on a basis, only
with more abstract vector spaces involved.

Example LTDB3
Linear transformation defined on a basis
The set W = {p(x) ∈ P3 | p(1) = 0, p(3) = 0} ⊆ P3 is a subspace of the vector space of
polynomials P3. This subspace has C = {3− 4x+ x2, 12− 13x+ x3} as a basis (check
this!). Suppose we consider the linear transformation S : P3 7→M22 with values

S
(
3− 4x+ x2

)
=

[
1 −3
2 0

]
S
(
12− 13x+ x3

)
=

[
0 1
1 0

]
By Theorem LTDB [1582] we know there is a unique linear transformation with these two
values. To illustrate a sample computation of S, consider q(x) = 9− 6x− 5x2 + 2x3. Verify
that q(x) is an element of W (does it have roots at x = 1 and x = 3?), then find the scalars
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needed to write it as a linear combination of the basis vectors in C. Because

q(x) = 9− 6x− 5x2 + 2x3 = (−5)(3− 4x+ x2) + (2)(12− 13x+ x3)

The proof of Theorem LTDB [1582] gives us

S (q) = (−5)

[
1 −3
2 0

]
+ (2)

[
0 1
1 0

]
=

[−5 17
−8 0

]

And all the other outputs of S could be computed in the same manner. Every output of S
will have a zero in the second row, second column. Can you see why this is so? �

Informally, we can describe Theorem LTDB [1582] by saying “it is enough to know what
a linear transformation does to a basis (of the domain).”

Version 2.11



Subsection LT.PI Pre-Images 1599

Subsection PI
Pre-Images

The definition of a function requires that for each input in the domain there is exactly one
output in the codomain. However, the correspondence does not have to behave the other
way around. A member of the codomain might have many inputs from the domain that
create it, or it may have none at all. To formalize our discussion of this aspect of linear
transformations, we define the pre-image.

Definition PI
Pre-Image
Suppose that T : U 7→ V is a linear transformation. For each v, define the pre-image of v
to be the subset of U given by

T−1 (v) = {u ∈ U | T (u) = v}
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4
In other words, T−1 (v) is the set of all those vectors in the domain U that get “sent” to

the vector v.

Example SPIAS
Sample pre-images, Archetype S
Archetype S [2590] is the linear transformation defined by

T : C3 7→M22, T

ab
c

 =

[
a− b 2a+ 2b+ c

3a+ b+ c −2a− 6b− 2c

]

We could compute a pre-image for every element of the codomain M22. However, even in a
free textbook, we do not have the room to do that, so we will compute just two.

Choose

v =

[
2 1
3 2

]
∈M22
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for no particular reason. What is T−1 (v)? Suppose u =

u1

u2

u3

 ∈ T−1 (v). The condition

that T (u) = v becomes[
2 1
3 2

]
= v = T (u) = T

u1

u2

u3

 =

[
u1 − u2 2u1 + 2u2 + u3

3u1 + u2 + u3 −2u1 − 6u2 − 2u3

]
Using matrix equality (Definition ME [613]), we arrive at a system of four equations in the
three unknowns u1, u2, u3 with an augmented matrix that we can row-reduce in the hunt
for solutions, 

1 −1 0 2
2 2 1 1
3 1 1 3
−2 −6 −2 2

 RREF−−−→


1 0 1

4
5
4

0 1 1
4
−3

4

0 0 0 0
0 0 0 0


We recognize this system as having infinitely many solutions described by the single free
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variable u3. Eventually obtaining the vector form of the solutions (Theorem VFSLS [350]),
we can describe the preimage precisely as,

T−1 (v) =
{
u ∈ C3 | T (u) = v

}
=


u1

u2

u3

 | u1 =
5

4
− 1

4
u3, u2 = −3

4
− 1

4
u3


=


 5

4
− 1

4
u3

−3
4
− 1

4
u3

u3

 | u3 ∈ C3


=


 5

4−3
4

0

+ u3

−1
4−1
4

1

 | u3 ∈ C3
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=

 5
4−3
4

0

+

〈
−1

4−1
4

1


〉

This last line is merely a suggestive way of describing the set on the previous line. You might
create three or four vectors in the preimage, and evaluate T with each. Was the result what
you expected? For a hint of things to come, you might try evaluating T with just the lone
vector in the spanning set above. What was the result? Now take a look back at Theorem
PSPHS [368]. Hmmmm.

OK, let’s compute another preimage, but with a different outcome this time. Choose

v =

[
1 1
2 4

]
∈M22
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What is T−1 (v)? Suppose u =

u1

u2

u3

 ∈ T−1 (v). That T (u) = v becomes

[
1 1
2 4

]
= v = T (u) = T

u1

u2

u3

 =

[
u1 − u2 2u1 + 2u2 + u3

3u1 + u2 + u3 −2u1 − 6u2 − 2u3

]

Using matrix equality (Definition ME [613]), we arrive at a system of four equations in the
three unknowns u1, u2, u3 with an augmented matrix that we can row-reduce in the hunt
for solutions, 

1 −1 0 1
2 2 1 1
3 1 1 2
−2 −6 −2 4

 RREF−−−→


1 0 1

4
0

0 1 1
4

0

0 0 0 1
0 0 0 0


By Theorem RCLS [172] we recognize this system as inconsistent. So no vector u is a member
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of T−1 (v) and so

T−1 (v) = ∅
�

The preimage is just a set, it is almost never a subspace of U (you might think about just
when T−1 (v) is a subspace, see Exercise ILT.T10 [1673]). We will describe its properties
going forward, and it will be central to the main ideas of this chapter.

Subsection NLTFO
New Linear Transformations From Old

We can combine linear transformations in natural ways to create new linear transformations.
So we will define these combinations and then prove that the results really are still linear
transformations. First the sum of two linear transformations.
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Definition LTA
Linear Transformation Addition
Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same
domain and codomain. Then their sum is the function T + S : U 7→ V whose outputs are
defined by

(T + S) (u) = T (u) + S (u)

4
Notice that the first plus sign in the definition is the operation being defined, while the

second one is the vector addition in V . (Vector addition in U will appear just now in the
proof that T +S is a linear transformation.) Definition LTA [1599] only provides a function.
It would be nice to know that when the constituents (T , S) are linear transformations, then
so too is T + S.

Theorem SLTLT
Sum of Linear Transformations is a Linear Transformation
Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same
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domain and codomain. Then T + S : U 7→ V is a linear transformation. �

Proof We simply check the defining properties of a linear transformation (Definition LT
[1550]). This is a good place to consistently ask yourself which objects are being combined
with which operations.

(T + S) (x + y) = T (x + y) + S (x + y) Definition LTA [1599]

= T (x) + T (y) + S (x) + S (y) Definition LT [1550]

= T (x) + S (x) + T (y) + S (y) Property C [957] in V

= (T + S) (x) + (T + S) (y) Definition LTA [1599]

and

(T + S) (αx) = T (αx) + S (αx) Definition LTA [1599]

= αT (x) + αS (x) Definition LT [1550]

= α (T (x) + S (x)) Property DVA [958] in V
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= α(T + S) (x) Definition LTA [1599]

�

Example STLT
Sum of two linear transformations
Suppose that T : C2 7→ C3 and S : C2 7→ C3 are defined by

T

([
x1

x2

])
=

 x1 + 2x2

3x1 − 4x2

5x1 + 2x2

 S

([
x1

x2

])
=

 4x1 − x2

x1 + 3x2

−7x1 + 5x2


Then by Definition LTA [1599], we have

(T +S)

([
x1

x2

])
= T

([
x1

x2

])
+S

([
x1

x2

])
=

 x1 + 2x2

3x1 − 4x2

5x1 + 2x2

+

 4x1 − x2

x1 + 3x2

−7x1 + 5x2

 =

 5x1 + x2

4x1 − x2

−2x1 + 7x2
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and by Theorem SLTLT [1599] we know T + S is also a linear transformation from C2 to
C3. �

Definition LTSM
Linear Transformation Scalar Multiplication
Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then the scalar multiple
is the function αT : U 7→ V whose outputs are defined by

(αT ) (u) = αT (u)

4
Given that T is a linear transformation, it would be nice to know that αT is also a linear

transformation.

Theorem MLTLT
Multiple of a Linear Transformation is a Linear Transformation
Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then (αT ) : U 7→ V is a
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linear transformation. �

Proof We simply check the defining properties of a linear transformation (Definition LT
[1550]). This is another good place to consistently ask yourself which objects are being
combined with which operations.

(αT ) (x + y) = α (T (x + y)) Definition LTSM [1602]

= α (T (x) + T (y)) Definition LT [1550]

= αT (x) + αT (y) Property DVA [958] in V

= (αT ) (x) + (αT ) (y) Definition LTSM [1602]

and

(αT ) (βx) = αT (βx) Definition LTSM [1602]

= α (βT (x)) Definition LT [1550]

= (αβ)T (x) Property SMA [957] in V
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= (βα)T (x) Commutativity in C
= β (αT (x)) Property SMA [957] in V

= β ((αT ) (x)) Definition LTSM [1602]

�

Example SMLT
Scalar multiple of a linear transformation
Suppose that T : C4 7→ C3 is defined by

T



x1

x2

x3

x4


 =

 x1 + 2x2 − x3 + 2x4

x1 + 5x2 − 3x3 + x4

−2x1 + 3x2 − 4x3 + 2x4
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For the sake of an example, choose α = 2, so by Definition LTSM [1602], we have

αT



x1

x2

x3

x4


 = 2T



x1

x2

x3

x4


 = 2

 x1 + 2x2 − x3 + 2x4

x1 + 5x2 − 3x3 + x4

−2x1 + 3x2 − 4x3 + 2x4

 =

 2x1 + 4x2 − 2x3 + 4x4

2x1 + 10x2 − 6x3 + 2x4

−4x1 + 6x2 − 8x3 + 4x4


and by Theorem MLTLT [1602] we know 2T is also a linear transformation from C4 to C3.
�

Now, let’s imagine we have two vector spaces, U and V , and we collect every possible
linear transformation from U to V into one big set, and call it LT (U, V ). Definition LTA
[1599] and Definition LTSM [1602] tell us how we can “add” and “scalar multiply” two
elements of LT (U, V ). Theorem SLTLT [1599] and Theorem MLTLT [1602] tell us that if
we do these operations, then the resulting functions are linear transformations that are also
in LT (U, V ). Hmmmm, sounds like a vector space to me! A set of objects, an addition and
a scalar multiplication. Why not?
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Theorem VSLT
Vector Space of Linear Transformations
Suppose that U and V are vector spaces. Then the set of all linear transformations from
U to V , LT (U, V ) is a vector space when the operations are those given in Definition LTA
[1599] and Definition LTSM [1602]. �

Proof Theorem SLTLT [1599] and Theorem MLTLT [1602] provide two of the ten properties
in Definition VS [956]. However, we still need to verify the remaining eight properties. By
and large, the proofs are straightforward and rely on concocting the obvious object, or by
reducing the question to the same vector space property in the vector space V .

The zero vector is of some interest, though. What linear transformation would we add
to any other linear transformation, so as to keep the second one unchanged? The answer is
Z : U 7→ V defined by Z (u) = 0V for every u ∈ U . Notice how we do not need to know any
of the specifics about U and V to make this definition of Z. �

Definition LTC
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Linear Transformation Composition
Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then the composition
of S and T is the function (S ◦ T ) : U 7→ W whose outputs are defined by

(S ◦ T ) (u) = S (T (u))

4
Given that T and S are linear transformations, it would be nice to know that S ◦ T is

also a linear transformation.

Theorem CLTLT
Composition of Linear Transformations is a Linear Transformation
Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then (S ◦ T ) : U 7→ W
is a linear transformation. �

Proof We simply check the defining properties of a linear transformation (Definition LT
[1550]).

(S ◦ T ) (x + y) = S (T (x + y)) Definition LTC [1606]
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= S (T (x) + T (y)) Definition LT [1550] for T

= S (T (x)) + S (T (y)) Definition LT [1550] for S

= (S ◦ T ) (x) + (S ◦ T ) (y) Definition LTC [1606]

and

(S ◦ T ) (αx) = S (T (αx)) Definition LTC [1606]

= S (αT (x)) Definition LT [1550] for T

= αS (T (x)) Definition LT [1550] for S

= α(S ◦ T ) (x) Definition LTC [1606]

�

Example CTLT
Composition of two linear transformations
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Suppose that T : C2 7→ C4 and S : C4 7→ C3 are defined by

T

([
x1

x2

])
=


x1 + 2x2

3x1 − 4x2

5x1 + 2x2

6x1 − 3x2

 S



x1

x2

x3

x4


 =

 2x1 − x2 + x3 − x4

5x1 − 3x2 + 8x3 − 2x4

−4x1 + 3x2 − 4x3 + 5x4



Then by Definition LTC [1606]

(S ◦ T )

([
x1

x2

])
= S

(
T

([
x1

x2

]))

= S



x1 + 2x2

3x1 − 4x2

5x1 + 2x2

6x1 − 3x2
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=

 2(x1 + 2x2)− (3x1 − 4x2) + (5x1 + 2x2)− (6x1 − 3x2)
5(x1 + 2x2)− 3(3x1 − 4x2) + 8(5x1 + 2x2)− 2(6x1 − 3x2)
−4(x1 + 2x2) + 3(3x1 − 4x2)− 4(5x1 + 2x2) + 5(6x1 − 3x2)


=

−2x1 + 13x2

24x1 + 44x2

15x1 − 43x2


and by Theorem CLTLT [1607] S ◦ T is a linear transformation from C2 to C3. �

Here is an interesting exercise that will presage an important result later. In Example
STLT [1601] compute (via Theorem MLTCV [1574]) the matrix of T , S and T + S. Do you
see a relationship between these three matrices?

In Example SMLT [1604] compute (via Theorem MLTCV [1574]) the matrix of T and
2T . Do you see a relationship between these two matrices?

Here’s the tough one. In Example CTLT [1608] compute (via Theorem MLTCV [1574])
the matrix of T , S and S ◦T . Do you see a relationship between these three matrices???

Version 2.11



Subsection LT.READ Reading Questions 1618

Subsection READ
Reading Questions

1. Is the function below a linear transformation? Why or why not?

T : C3 7→ C2, T

x1

x2

x3

 =

[
3x1 − x2 + x3

8x2 − 6

]

2. Determine the matrix representation of the linear transformation S below.

S : C2 7→ C3, S

([
x1

x2

])
=

3x1 + 5x2

8x1 − 3x2

−4x1
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3. Theorem LTLC [1580] has a fairly simple proof. Yet the result itself is very powerful.
Comment on why we might say this.
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Subsection EXC
Exercises

C15 The archetypes below are all linear transformations whose domains and codomains
are vector spaces of column vectors (Definition VSCV [285]). For each one, compute the
matrix representation described in the proof of Theorem MLTCV [1574].
Archetype M [2540]
Archetype N [2547]
Archetype O [2554]
Archetype P [2562]
Archetype Q [2569]
Archetype R [2581]
Contributed by Robert Beezer
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C16 Find the matrix representation of T : C3 7→ C4 given by T

xy
z

 =


3x+ 2y + z
x+ y + z
x− 3y

2x+ 3y + z

.

Contributed by Chris Black Solution [1619]

C20 Let w =

−3
1
4

. Referring to Example MOLT [1577], compute S (w) two different

ways. First use the definition of S, then compute the matrix-vector product Cw (Definition
MVP [661]).
Contributed by Robert Beezer Solution [1619]

C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
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Verify that T is a linear transformation.
Contributed by Robert Beezer Solution [1620]

C26 Verify that the function below is a linear transformation.

T : P2 7→ C2, T
(
a+ bx+ cx2

)
=

[
2a− b
b+ c

]
Contributed by Robert Beezer Solution [1620]

C30 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Compute the preimages, T−1

([
2
3

])
and T−1

([
4
−8

])
.

Contributed by Robert Beezer Solution [1622]

Version 2.11



Subsection LT.EXC Exercises 1623

C31 For the linear transformation S compute the pre-images.

S : C3 7→ C3, S

ab
c

 =

 a− 2b− c
3a− b+ 2c
a+ b+ 2c



S−1

−2
5
3

 S−1

−5
5
7


Contributed by Robert Beezer Solution [1623]

C40 If T : C2 7→ C2 satisfies T

([
2
1

])
=

[
3
4

]
and T

([
1
1

])
=

[−1
2

]
, find T

([
4
3

])
.

Contributed by Chris Black Solution [1626]
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C41 If T : C2 7→ C3 satisfies T

([
2
3

])
=

2
2
1

 and T

([
3
4

])
=

−1
0
2

, find the matrix

representation of T .
Contributed by Chris Black Solution [1626]

C42 Define T : M2,2 7→ R by T

([
a b
c d

])
= a+ b+ c− d. Find the pre-image T−1 (3).

Contributed by Chris Black Solution [1628]

C43 Define T : P3 7→ P2 by T (a+ bx+ cx2 + dx3) = b + 2cx + 3dx2. Find the pre-image
of 0. Does this linear transformation seem familiar?
Contributed by Chris Black Solution [1628]
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M10 Define two linear transformations, T : C4 7→ C3 and S : C3 7→ C2 by

S

x1

x2

x3

 =

[
x1 − 2x2 + 3x3

5x1 + 4x2 + 2x3

]
T



x1

x2

x3

x4


 =

−x1 + 3x2 + x3 + 9x4

2x1 + x3 + 7x4

4x1 + 2x2 + x3 + 2x4


Using the proof of Theorem MLTCV [1574] compute the matrix representations of the three
linear transformations T , S and S ◦ T . Discover and comment on the relationship between
these three matrices.
Contributed by Robert Beezer Solution [1629]

T20 Use the conclusion of Theorem LTLC [1580] to motivate a new definition of a linear
transformation. Then prove that your new definition is equivalent to Definition LT [1550].
(Technique D [2337] and Technique E [2348] might be helpful if you are not sure what you
are being asked to prove here.)
Contributed by Robert Beezer

Version 2.11



Subsection LT.SOL Solutions 1626

Subsection SOL
Solutions

C16 Contributed by Chris Black Statement [1614]

Answer: AT =


3 2 1
1 1 1
1 −3 0
2 3 1

.

C20 Contributed by Robert Beezer Statement [1614]

In both cases the result will be S (w) =


9
2
−9
4

.

Version 2.11



Subsection LT.SOL Solutions 1627

C25 Contributed by Robert Beezer Statement [1614]
We can rewrite T as follows:

T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
= x1

[
2
−4

]
+x2

[−1
2

]
+x3

[
5
−10

]
=

[
2 −1 5
−4 2 −10

]x1

x2

x3


and Theorem MBLT [1570] tell us that any function of this form is a linear transformation.

C26 Contributed by Robert Beezer Statement [1615]
Check the two conditions of Definition LT [1550].

T (u + v) = T
((
a+ bx+ cx2

)
+
(
d+ ex+ fx2

))
= T

(
(a+ d) + (b+ e)x+ (c+ f)x2

)
=

[
2(a+ d)− (b+ e)
(b+ e) + (c+ f)

]
=

[
(2a− b) + (2d− e)
(b+ c) + (e+ f)

]
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=

[
2a− b
b+ c

]
+

[
2d− e
e+ f

]
= T (u) + T (v)

and

T (αu) = T
(
α
(
a+ bx+ cx2

))
= T

(
(αa) + (αb)x+ (αc)x2

)
=

[
2(αa)− (αb)
(αb) + (αc)

]
=

[
α(2a− b)
α(b+ c)

]
= α

[
2a− b
b+ c

]
= αT (u)
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So T is indeed a linear transformation.

C30 Contributed by Robert Beezer Statement [1615]

For the first pre-image, we want x ∈ C3 such that T (x) =

[
2
3

]
. This becomes,[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
=

[
2
3

]
Vector equality gives a system of two linear equations in three variables, represented by the
augmented matrix [

2 −1 5 2
−4 2 −10 3

]
RREF−−−→

[
1 −1

2
5
2

0

0 0 0 1

]
so the system is inconsistent and the pre-image is the empty set. For the second pre-image
the same procedure leads to an augmented matrix with a different vector of constants[

2 −1 5 4
−4 2 −10 −8

]
RREF−−−→

[
1 −1

2
5
2

2
0 0 0 0

]
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This system is consistent and has infinitely many solutions, as we can see from the presence
of the two free variables (x2 and x3) both to zero. We apply Theorem VFSLS [350] to obtain

T−1

([
4
−8

])
=


2

0
0

+ x2

1
2

1
0

+ x3

−5
2

0
1

 | x2, x3 ∈ C


C31 Contributed by Robert Beezer Statement [1616]
We work from the definition of the pre-image, Definition PI [1592]. Setting

S

ab
c

 =

−2
5
3


we arrive at a system of three equations in three variables, with an augmented matrix that
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we row-reduce in a search for solutions,1 −2 −1 −2
3 −1 2 5
1 1 2 3

 RREF−−−→
 1 0 1 0

0 1 1 0

0 0 0 1


With a leading 1 in the last column, this system is inconsistent (Theorem RCLS [172]), and
there are no values of a, b and c that will create an element of the pre-image. So the preimage
is the empty set.

We work from the definition of the pre-image, Definition PI [1592]. Setting

S

ab
c

 =

−5
5
7


we arrive at a system of three equations in three variables, with an augmented matrix that
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we row-reduce in a search for solutions,1 −2 −1 −5
3 −1 2 5
1 1 2 7

 RREF−−−→
 1 0 1 3

0 1 1 4
0 0 0 0


The solution set to this system, which is also the desired pre-image, can be expressed using
the vector form of the solutions (Theorem VFSLS [350])

S−1

−5
5
7

 =


3

4
0

+ c

−1
−1
1

 | c ∈ C

 =

3
4
0

+

〈
−1
−1
1


〉

Does the final expression for this set remind you of Theorem KPI [1651]?

C40 Contributed by Chris Black Statement [1616]
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Since

[
4
3

]
=

[
2
1

]
+ 2

[
1
1

]
, we have

T

([
4
3

])
= T

([
2
1

]
+ 2

[
1
1

])
= T

([
2
1

])
+ 2T

([
1
1

])
=

[
3
4

]
+ 2

[−1
2

]
=

[
1
8

]
.

C41 Contributed by Chris Black Statement [1617]

First, we need to write the standard basis vectors e1 and e2 as linear combinations of

[
2
3

]
and

[
3
4

]
. Starting with e1, we see that e1 = −4

[
2
3

]
+ 3

[
3
4

]
, so we have

T (e1) = T

(
−4

[
2
3

]
+ 3

[
3
4

])
= −4T

([
2
3

])
+ 3T

([
3
4

])
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= −4

2
2
1

+ 3

−1
0
2

 =

−11
−8
2

 .
Repeating the process for e2, we have e2 = 3

[
2
3

]
− 2

[
3
4

]
, and we then see that

T (e2) = T

(
3

[
2
3

]
− 2

[
3
4

])
= 3T

([
2
3

])
− 2T

([
3
4

])

= 3

2
2
1

− 2

−1
0
2

 =

 8
6
−1

 .

Thus, the matrix representation of T is AT =

−11 8
−8 6
2 −1

.
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C42 Contributed by Chris Black Statement [1617]

The preimage T−1 (3) is the set of all matrices

[
a b
c d

]
so that T

([
a b
c d

])
= 3. A matrix[

a b
c d

]
is in the preimage if a + b + c − d = 3, i.e. d = a + b + c − 3. This is the set. (But

the set is not a vector space. Why not?)

T−1 (3) =

{[
a b
c a+ b+ c− 3

]
| a, b, c ∈ C

}

C43 Contributed by Chris Black Statement [1617]
The preimage T−1 (0) is the set of all polynomials a+bx+cx2+dx3 so that T (a+ bx+ cx2 + dx3) =
0. Thus, b+ 2cx+ 3dx2 = 0, where the 0 represents the zero polynomial. In order to satisfy
this equation, we must have b = 0, c = 0, and d = 0. Thus, T−1 (0) is precisely the set of all
constant polynomials – polynomials of degree 0. Symbolically, this is T−1 (0) = {a | a ∈ C}.
Does this seem familiar? What other operation sends constant functions to 0?
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M10 Contributed by Robert Beezer Statement [1618]

[
1 −2 3
5 4 2

]−1 3 1 9
2 0 1 7
4 2 1 2

 =

[
7 9 2 1
11 19 11 77

]

Version 2.11



Section ILT Injective Linear Transformations 1637

Section ILT

Injective Linear Transformations

Some linear transformations possess one, or both, of two key properties, which go by the
names injective and surjective. We will see that they are closely related to ideas like linear
independence and spanning, and subspaces like the null space and the column space. In
this section we will define an injective linear transformation and analyze the resulting con-
sequences. The next section will do the same for the surjective property. In the final section
of this chapter we will see what happens when we have the two properties simultaneously.

As usual, we lead with a definition.

Definition ILT
Injective Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then T is injective if whenever T (x) =
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T (y), then x = y. 4
Given an arbitrary function, it is possible for two different inputs to yield the same output

(think about the function f(x) = x2 and the inputs x = 3 and x = −3). For an injective
function, this never happens. If we have equal outputs (T (x) = T (y)) then we must have
achieved those equal outputs by employing equal inputs (x = y). Some authors prefer the
term one-to-one where we use injective, and we will sometimes refer to an injective linear
transformation as an injection.

Subsection EILT
Examples of Injective Linear Transformations

It is perhaps most instructive to examine a linear transformation that is not injective first.

Example NIAQ
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Not injective, Archetype Q
Archetype Q [2569] is the linear transformation

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5


Notice that for

x =


1
3
−1
2
4

 y =


4
7
0
5
7
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we have

T




1
3
−1
2
4


 =


4
55
72
77
31

 T




4
7
0
5
7


 =


4
55
72
77
31


So we have two vectors from the domain, x 6= y, yet T (x) = T (y), in violation of Definition
ILT [1630]. This is another example where you should not concern yourself with how x and
y were selected, as this will be explained shortly. However, do understand why these two
vectors provide enough evidence to conclude that T is not injective. �

Here’s a cartoon of a non-injective linear transformation. Notice that the central feature
of this cartoon is that T (u) = v = T (w). Even though this happens again with some
unnamed vectors, it only takes one occurrence to destroy the possibility of injectivity. Note
also that the two vectors displayed in the bottom of V have no bearing, either way, on the
injectivity of T .
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U V
T

u
v

w
v

Diagram NILT. Non-Injective Linear Transformation
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To show that a linear transformation is not injective, it is enough to find a single pair of
inputs that get sent to the identical output, as in Example NIAQ [1632]. However, to show
that a linear transformation is injective we must establish that this coincidence of outputs
never occurs. Here is an example that shows how to establish this.

Example IAR
Injective, Archetype R
Archetype R [2581] is the linear transformation

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5


To establish that R is injective we must begin with the assumption that T (x) = T (y) and
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somehow arrive from this at the conclusion that x = y. Here we go,

T (x) = T (y)

T



x1

x2

x3

x4

x5


 = T



y1

y2

y3

y4

y5





−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5

 =


−65y1 + 128y2 + 10y3 − 262y4 + 40y5

36y1 − 73y2 − y3 + 151y4 − 16y5

−44y1 + 88y2 + 5y3 − 180y4 + 24y5

34y1 − 68y2 − 3y3 + 140y4 − 18y5

12y1 − 24y2 − y3 + 49y4 − 5y5
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−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5

−

−65y1 + 128y2 + 10y3 − 262y4 + 40y5

36y1 − 73y2 − y3 + 151y4 − 16y5

−44y1 + 88y2 + 5y3 − 180y4 + 24y5

34y1 − 68y2 − 3y3 + 140y4 − 18y5

12y1 − 24y2 − y3 + 49y4 − 5y5

 =


0
0
0
0
0



−65(x1 − y1) + 128(x2 − y2) + 10(x3 − y3)− 262(x4 − y4) + 40(x5 − y5)

36(x1 − y1)− 73(x2 − y2)− (x3 − y3) + 151(x4 − y4)− 16(x5 − y5)
−44(x1 − y1) + 88(x2 − y2) + 5(x3 − y3)− 180(x4 − y4) + 24(x5 − y5)
34(x1 − y1)− 68(x2 − y2)− 3(x3 − y3) + 140(x4 − y4)− 18(x5 − y5)

12(x1 − y1)− 24(x2 − y2)− (x3 − y3) + 49(x4 − y4)− 5(x5 − y5)

 =


0
0
0
0
0



−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5



x1 − y1

x2 − y2

x3 − y3

x4 − y4

x5 − y5

 =


0
0
0
0
0
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Now we recognize that we have a homogeneous system of 5 equations in 5 variables (the
terms xi − yi are the variables), so we row-reduce the coefficient matrix to

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


So the only solution is the trivial solution

x1 − y1 = 0 x2 − y2 = 0 x3 − y3 = 0 x4 − y4 = 0 x5 − y5 = 0

and we conclude that indeed x = y. By Definition ILT [1630], T is injective. �

Here’s the cartoon for an injective linear transformation. It is meant to suggest that we
never have two inputs associated with a single output. Again, the two lonely vectors at the
bottom of V have no bearing either way on the injectivity of T .
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U V
T

Diagram ILT. Injective Linear Transformation
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Let’s now examine an injective linear transformation between abstract vector spaces.

Example IAV
Injective, Archetype V
Archetype V [2609] is defined by

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=

[
a+ b a− 2c
d b− d

]
To establish that the linear transformation is injective, begin by supposing that two polyno-
mial inputs yield the same output matrix,

T
(
a1 + b1x+ c1x

2 + d1x
3
)

= T
(
a2 + b2x+ c2x

2 + d2x
3
)

Then

O =

[
0 0
0 0

]
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= T
(
a1 + b1x+ c1x

2 + d1x
3
)− T (a2 + b2x+ c2x

2 + d2x
3
)

Hypothesis

= T
(
(a1 + b1x+ c1x

2 + d1x
3)− (a2 + b2x+ c2x

2 + d2x
3)
)

Definition LT [1550]

= T
(
(a1 − a2) + (b1 − b2)x+ (c1 − c2)x2 + (d1 − d2)x

3
)

Operations in P3

=

[
(a1 − a2) + (b1 − b2) (a1 − a2)− 2(c1 − c2)

(d1 − d2) (b1 − b2)− (d1 − d2)

]
Definition of T

This single matrix equality translates to the homogeneous system of equations in the variables
ai − bi,

(a1 − a2) + (b1 − b2) = 0

(a1 − a2)− 2(c1 − c2) = 0

(d1 − d2) = 0

(b1 − b2)− (d1 − d2) = 0
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This system of equations can be rewritten as the matrix equation
1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0 −1




(a1 − a2)
(b1 − b2)
(c1 − c2)
(d1 − d2)

 =


0
0
0
0


Since the coefficient matrix is nonsingular (check this) the only solution is trivial, i.e.

a1 − a2 = 0 b1 − b2 = 0 c1 − c2 = 0 d1 − d2 = 0

so that

a1 = a2 b1 = b2 c1 = c2 d1 = d2

so the two inputs must be equal polynomials. By Definition ILT [1630], T is injective. �
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Subsection KLT
Kernel of a Linear Transformation

For a linear transformation T : U 7→ V , the kernel is a subset of the domain U . Informally,
it is the set of all inputs that the transformation sends to the zero vector of the codomain.
It will have some natural connections with the null space of a matrix, so we will keep the
same notation, and if you think about your objects, then there should be little confusion.
Here’s the careful definition.

Definition KLT
Kernel of a Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then the kernel of T is the set

K(T ) = {u ∈ U | T (u) = 0}

Version 2.11



Subsection ILT.KLT Kernel of a Linear Transformation 1651

(This definition contains Notation KLT.) 4
Notice that the kernel of T is just the preimage of 0, T−1 (0) (Definition PI [1592]).

Here’s an example.

Example NKAO
Nontrivial kernel, Archetype O
Archetype O [2554] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3


To determine the elements of C3 in K(T ), find those vectors u such that T (u) = 0, that is,

T (u) = 0

Version 2.11



Subsection ILT.KLT Kernel of a Linear Transformation 1652


−u1 + u2 − 3u3

−u1 + 2u2 − 4u3

u1 + u2 + u3

2u1 + 3u2 + u3

u1 + 2u3

 =


0
0
0
0
0


Vector equality (Definition CVE [286]) leads us to a homogeneous system of 5 equations in
the variables ui,

−u1 + u2 − 3u3 = 0

−u1 + 2u2 − 4u3 = 0

u1 + u2 + u3 = 0

2u1 + 3u2 + u3 = 0

u1 + 2u3 = 0
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Row-reducing the coefficient matrix gives
1 0 2

0 1 −1
0 0 0
0 0 0
0 0 0


The kernel of T is the set of solutions to this homogeneous system of equations, which by
Theorem BNS [484] can be expressed as

K(T ) =

〈
−2

1
1


〉

�

We know that the span of a set of vectors is always a subspace (Theorem SSS [1023]), so
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the kernel computed in Example NKAO [1644] is also a subspace. This is no accident, the
kernel of a linear transformation is always a subspace.

Theorem KLTS
Kernel of a Linear Transformation is a Subspace
Suppose that T : U 7→ V is a linear transformation. Then the kernel of T , K(T ), is a subspace
of U . �

Proof We can apply the three-part test of Theorem TSS [1008]. First T (0U) = 0V by
Theorem LTTZZ [1562], so 0U ∈ K(T ) and we know that the kernel is non-empty.

Suppose we assume that x, y ∈ K(T ). Is x + y ∈ K(T )?

T (x + y) = T (x) + T (y) Definition LT [1550]

= 0 + 0 x, y ∈ K(T )

= 0 Property Z [957]

This qualifies x + y for membership in K(T ). So we have additive closure.
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Suppose we assume that α ∈ C and x ∈ K(T ). Is αx ∈ K(T )?

T (αx) = αT (x) Definition LT [1550]

= α0 x ∈ K(T )

= 0 Theorem ZVSM [980]

This qualifies αx for membership in K(T ). So we have scalar closure and Theorem TSS
[1008] tells us that K(T ) is a subspace of U .

�

Let’s compute another kernel, now that we know in advance that it will be a subspace.

Example TKAP
Trivial kernel, Archetype P
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Archetype P [2562] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 + x3

−x1 + 2x2 + 2x3

x1 + x2 + 3x3

2x1 + 3x2 + x3

−2x1 + x2 + 3x3


To determine the elements of C3 in K(T ), find those vectors u such that T (u) = 0, that is,

T (u) = 0
−u1 + u2 + u3

−u1 + 2u2 + 2u3

u1 + u2 + 3u3

2u1 + 3u2 + u3

−2u1 + u2 + 3u3

 =


0
0
0
0
0


Version 2.11



Subsection ILT.KLT Kernel of a Linear Transformation 1657

Vector equality (Definition CVE [286]) leads us to a homogeneous system of 5 equations in
the variables ui,

−u1 + u2 + u3 = 0

−u1 + 2u2 + 2u3 = 0

u1 + u2 + 3u3 = 0

2u1 + 3u2 + u3 = 0

−2u1 + u2 + 3u3 = 0

Row-reducing the coefficient matrix gives
1 0 0

0 1 0

0 0 1
0 0 0
0 0 0
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The kernel of T is the set of solutions to this homogeneous system of equations, which is
simply the trivial solution u = 0, so

K(T ) = {0} = 〈{ }〉
�

Our next theorem says that if a preimage is a non-empty set then we can construct it by
picking any one element and adding on elements of the kernel.

Theorem KPI
Kernel and Pre-Image
Suppose T : U 7→ V is a linear transformation and v ∈ V . If the preimage T−1 (v) is
non-empty, and u ∈ T−1 (v) then

T−1 (v) = {u + z | z ∈ K(T )} = u +K(T )

�

Proof Let M = {u + z | z ∈ K(T )}. First, we show that M ⊆ T−1 (v). Suppose that
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w ∈M , so w has the form w = u + z, where z ∈ K(T ). Then

T (w) = T (u + z)

= T (u) + T (z) Definition LT [1550]

= v + 0 u ∈ T−1 (v) , z ∈ K(T )

= v Property Z [957]

which qualifies w for membership in the preimage of v, w ∈ T−1 (v).
For the opposite inclusion, suppose x ∈ T−1 (v). Then,

T (x− u) = T (x)− T (u) Definition LT [1550]

= v − v x, u ∈ T−1 (v)

= 0

This qualifies x− u for membership in the kernel of T , K(T ). So there is a vector z ∈ K(T )
such that x − u = z. Rearranging this equation gives x = u + z and so x ∈ M . So
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T−1 (v) ⊆M and we see that M = T−1 (v), as desired. �

This theorem, and its proof, should remind you very much of Theorem PSPHS [368].
Additionally, you might go back and review Example SPIAS [1593]. Can you tell now which
is the only preimage to be a subspace?

The next theorem is one we will cite frequently, as it characterizes injections by the size
of the kernel.

Theorem KILT
Kernel of an Injective Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then T is injective if and only if the
kernel of T is trivial, K(T ) = {0}. �

Proof (⇒) We assume T is injective and we need to establish that two sets are equal
(Definition SE [2327]). Since the kernel is a subspace (Theorem KLTS [1647]), {0} ⊆ K(T ).
To establish the opposite inclusion, suppose x ∈ K(T ).

T (x) = 0 Definition KLT [1643]
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= T (0) Theorem LTTZZ [1562]

We can apply Definition ILT [1630] to conclude that x = 0. Therefore K(T ) ⊆ {0} and by
Definition SE [2327], K(T ) = {0}.

(⇐) To establish that T is injective, appeal to Definition ILT [1630] and begin with the
assumption that T (x) = T (y). Then

T (x− y) = T (x)− T (y) Definition LT [1550]

= 0 Hypothesis

So x−y ∈ K(T ) by Definition KLT [1643] and with the hypothesis that the kernel is trivial
we conclude that x− y = 0. Then

y = y + 0 = y + (x− y) = x

thus establishing that T is injective by Definition ILT [1630]. �

Example NIAQR
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Not injective, Archetype Q, revisited
We are now in a position to revisit our first example in this section, Example NIAQ [1632].
In that example, we showed that Archetype Q [2569] is not injective by constructing two
vectors, which when used to evaluate the linear transformation provided the same output,
thus violating Definition ILT [1630]. Just where did those two vectors come from?

The key is the vector

z =


3
4
1
3
3


which you can check is an element of K(T ) for Archetype Q [2569]. Choose a vector x at
random, and then compute y = x + z (verify this computation back in Example NIAQ
[1632]). Then

T (y) = T (x + z)
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= T (x) + T (z) Definition LT [1550]

= T (x) + 0 z ∈ K(T )

= T (x) Property Z [957]

Whenever the kernel of a linear transformation is non-trivial, we can employ this device
and conclude that the linear transformation is not injective. This is another way of viewing
Theorem KILT [1653]. For an injective linear transformation, the kernel is trivial and our
only choice for z is the zero vector, which will not help us create two different inputs for T
that yield identical outputs. For every one of the archetypes that is not injective, there is
an example presented of exactly this form. �

Example NIAO
Not injective, Archetype O
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In Example NKAO [1644] the kernel of Archetype O [2554] was determined to be

〈
−2

1
1


〉

a subspace of C3 with dimension 1. Since the kernel is not trivial, Theorem KILT [1653]
tells us that T is not injective. �

Example IAP
Injective, Archetype P
In Example TKAP [1648] it was shown that the linear transformation in Archetype P [2562]
has a trivial kernel. So by Theorem KILT [1653], T is injective. �
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Subsection ILTLI
Injective Linear Transformations and Linear Independence

There is a connection between injective linear transformations and linearly independent sets
that we will make precise in the next two theorems. However, more informally, we can get a
feel for this connection when we think about how each property is defined. A set of vectors
is linearly independent if the only relation of linear dependence is the trivial one. A linear
transformation is injective if the only way two input vectors can produce the same output
is if the trivial way, when both input vectors are equal.

Theorem ILTLI
Injective Linear Transformations and Linear Independence
Suppose that T : U 7→ V is an injective linear transformation and S = {u1, u2, u3, . . . , ut}
is a linearly independent subset of U . Then R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)} is a
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linearly independent subset of V . �

Proof Begin with a relation of linear dependence on R (Definition RLD [1061], Definition
LI [1061]),

a1T (u1) + a2T (u2) + a3T (u3) + . . .+ atT (ut) = 0

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = 0 Theorem LTLC [1580]

a1u1 + a2u2 + a3u3 + · · ·+ atut ∈ K(T ) Definition KLT [1643]

a1u1 + a2u2 + a3u3 + · · ·+ atut ∈ {0} Theorem KILT [1653]

a1u1 + a2u2 + a3u3 + · · ·+ atut = 0 Definition SET [2324]

Since this is a relation of linear dependence on the linearly independent set S, we can conclude
that

a1 = 0 a2 = 0 a3 = 0 . . . at = 0
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and this establishes that R is a linearly independent set. �

Theorem ILTB
Injective Linear Transformations and Bases
Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a basis
of U . Then T is injective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)} is a
linearly independent subset of V . �

Proof (⇒) Assume T is injective. Since B is a basis, we know B is linearly independent
(Definition B [1121]). Then Theorem ILTLI [1658] says that C is a linearly independent
subset of V .

(⇐) Assume that C is linearly independent. To establish that T is injective, we will
show that the kernel of T is trivial (Theorem KILT [1653]). Suppose that u ∈ K(T ). As an
element of U , we can write u as a linear combination of the basis vectors in B (uniquely).
So there are are scalars, a1, a2, a3, . . . , am, such that

u = a1u1 + a2u2 + a3u3 + · · ·+ amum
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Then,

0 = T (u) Definition KLT [1643]

= T (a1u1 + a2u2 + a3u3 + · · ·+ amum) Definition TSVS [1076]

= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ amT (um) Theorem LTLC [1580]

This is a relation of linear dependence (Definition RLD [1061]) on the linearly independent
set C, so the scalars are all zero: a1 = a2 = a3 = · · · = am = 0. Then

u = a1u1 + a2u2 + a3u3 + · · ·+ amum

= 0u1 + 0u2 + 0u3 + · · ·+ 0um Theorem ZSSM [979]

= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [979]

= 0 Property Z [957]

Since u was chosen as an arbitrary vector from K(T ), we have K(T ) = {0} and Theorem
KILT [1653] tells us that T is injective. �
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Subsection ILTD
Injective Linear Transformations and Dimension

Theorem ILTD
Injective Linear Transformations and Dimension
Suppose that T : U 7→ V is an injective linear transformation. Then dim (U) ≤ dim (V ). �

Proof Suppose to the contrary that m = dim (U) > dim (V ) = t. Let B be a basis of
U , which will then contain m vectors. Apply T to each element of B to form a set C that
is a subset of V . By Theorem ILTB [1660], C is linearly independent and therefore must
contain m distinct vectors. So we have found a set of m linearly independent vectors in V ,
a vector space of dimension t, with m > t. However, this contradicts Theorem G [1228], so
our assumption is false and dim (U) ≤ dim (V ). �

Example NIDAU

Version 2.11



Subsection ILT.ILTD Injective Linear Transformations and Dimension 1670

Not injective by dimension, Archetype U
The linear transformation in Archetype U [2602] is

T : M23 7→ C4, T

([
a b c
d e f

])
=


a+ 2b+ 12c− 3d+ e+ 6f

2a− b− c+ d− 11f
a+ b+ 7c+ 2d+ e− 3f
a+ 2b+ 12c+ 5e− 5f


Since dim (M23) = 6 > 4 = dim (C4), T cannot be injective for then T would violate Theorem
ILTD [1662]. �

Notice that the previous example made no use of the actual formula defining the func-
tion. Merely a comparison of the dimensions of the domain and codomain are enough to
conclude that the linear transformation is not injective. Archetype M [2540] and Archetype
N [2547] are two more examples of linear transformations that have “big” domains and
“small” codomains, resulting in “collisions” of outputs and thus are non-injective linear
transformations.
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Subsection CILT
Composition of Injective Linear Transformations

In Subsection LT.NLTFO [1598] we saw how to combine linear transformations to build new
linear transformations, specifically, how to build the composition of two linear transforma-
tions (Definition LTC [1606]). It will be useful later to know that the composition of injective
linear transformations is again injective, so we prove that here.

Theorem CILTI
Composition of Injective Linear Transformations is Injective
Suppose that T : U 7→ V and S : V 7→ W are injective linear transformations. Then (S ◦
T ) : U 7→ W is an injective linear transformation. �

Proof That the composition is a linear transformation was established in Theorem CLTLT
[1607], so we need only establish that the composition is injective. Applying Definition ILT
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[1630], choose x, y from U . Then if (S ◦ T ) (x) = (S ◦ T ) (y),

⇒ S (T (x)) = S (T (y)) Definition LTC [1606]

⇒ T (x) = T (y) Definition ILT [1630] for S

⇒ x = y Definition ILT [1630] for T

�

Subsection READ
Reading Questions

1. Suppose T : C8 7→ C5 is a linear transformation. Why can’t T be injective?

2. Describe the kernel of an injective linear transformation.
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3. Theorem KPI [1651] should remind you of Theorem PSPHS [368]. Why do we say this?
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Subsection EXC
Exercises

C10 Each archetype below is a linear transformation. Compute the kernel for each.
Archetype M [2540]
Archetype N [2547]
Archetype O [2554]
Archetype P [2562]
Archetype Q [2569]
Archetype R [2581]
Archetype S [2590]
Archetype T [2597]
Archetype U [2602]
Archetype V [2609]
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Archetype W [2615]
Archetype X [2621]

Contributed by Robert Beezer

C20 The linear transformation T : C4 7→ C3 is not injective. Find two inputs x, y ∈ C4

that yield the same output (that is T (x) = T (y)).

T



x1

x2

x3

x4


 =

 2x1 + x2 + x3

−x1 + 3x2 + x3 − x4

3x1 + x2 + 2x3 − 2x4



Contributed by Robert Beezer Solution [1674]
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C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Find a basis for the kernel of T , K(T ). Is T injective?
Contributed by Robert Beezer Solution [1677]

C26 Let A =


1 2 3 1 0
2 −1 1 0 1
1 2 −1 −2 1
1 3 2 1 2

 and let T : C5 7→ C4 be given by T (x) = Ax. Is T

injective? (Hint: No calculation is required.)

Contributed by Chris Black Solution [1678]
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C27 Let T : C3 7→ C3 be given by T

xy
z

 =

2x+ y + z
x− y + 2z
x+ 2y − z

. Find K(T ). Is T injective?

Contributed by Chris Black Solution [1678]

C28 Let A =


1 2 3 1
2 −1 1 0
1 2 −1 −2
1 3 2 1

 and let T : C4 7→ C4 be given by T (x) = Ax. Find K(T ).

Is T injective?
Contributed by Chris Black Solution [1679]

C29 Let A =


1 2 1 1
2 1 1 0
1 2 1 2
1 2 1 1

 and let T : C4 7→ C4 be given by T (x) = Ax. Find K(T ). Is

T injective?
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Contributed by Chris Black Solution [1680]

C30 Let T : M2,2 → P2 be given by T

([
a b
c d

])
= (a + b) + (a + c)x + (a + d)x2. Is T

injective? Find K(T ).
Contributed by Chris Black Solution [1680]

C31 Given that the linear transformation T : C3 7→ C3, T

xy
z

 =

2x+ y
2y + z
x+ 2z

 is injective,

show directly that {T (e1) , T (e2) , T (e3)} is a linearly independent set.
Contributed by Chris Black Solution [1681]

C32 Given that the linear transformation T : C2 7→ C3, T

([
x
y

])
=

 x+ y
2x+ y
x+ 2y

 is injective,

show directly that {T (e1) , T (e2)} is a linearly independent set.
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Contributed by Chris Black Solution [1682]

C33 Given that the linear transformation T : C3 7→ C5, T

xy
z

 =


1 3 2
0 1 1
1 2 1
1 0 1
3 1 2


xy
z

 is

injective, show directly that {T (e1) , T (e2) , T (e3)} is a linearly independent set.
Contributed by Chris Black Solution [1683]

C40 Show that the linear transformation R is not injective by finding two different elements
of the domain, x and y, such that R (x) = R (y). (S22 is the vector space of symmetric 2×2
matrices.)

R : S22 7→ P1 R

([
a b
b c

])
= (2a− b+ c) + (a+ b+ 2c)x

Contributed by Robert Beezer Solution [1684]
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T10 Suppose T : U 7→ V is a linear transformation. For which vectors v ∈ V is T−1 (v) a
subspace of U?
Contributed by Robert Beezer

T15 Suppose that that T : U 7→ V and S : V 7→ W are linear transformations. Prove the
following relationship between null spaces.

K(T ) ⊆ K(S ◦ T )

Contributed by Robert Beezer Solution [1685]

T20 Suppose that A is an m× n matrix. Define the linear transformation T by

T : Cn 7→ Cm, T (x) = Ax

Prove that the kernel of T equals the null space of A, K(T ) = N (A).
Contributed by Andy Zimmer Solution [1686]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [1668]
A linear transformation that is not injective will have a non-trivial kernel (Theorem KILT
[1653]), and this is the key to finding the desired inputs. We need one non-trivial element
of the kernel, so suppose that z ∈ C4 is an element of the kernel,0

0
0

 = 0 = T (z) =

 2z1 + z2 + z3

−z1 + 3z2 + z3 − z4

3z1 + z2 + 2z3 − 2z4


Vector equality Definition CVE [286] leads to the homogeneous system of three equations in
four variables,

2z1 + z2 + z3 = 0
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−z1 + 3z2 + z3 − z4 = 0

3z1 + z2 + 2z3 − 2z4 = 0

The coefficient matrix of this system row-reduces as

 2 1 1 0
−1 3 1 −1
3 1 2 −2

 RREF−−−→
 1 0 0 1

0 1 0 1

0 0 1 −3


From this we can find a solution (we only need one), that is an element of K(T ),

z =


−1
−1
3
1
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Now, we choose a vector x at random and set y = x + z,

x =


2
3
4
−2

 y = x + z =


2
3
4
−2

+


−1
−1
3
1

 =


1
2
7
−1


and you can check that

T (x) =

11
13
21

 = T (y)

A quicker solution is to take two elements of the kernel (in this case, scalar multiples of z)
which both get sent to 0 by T . Quicker yet, take 0 and z as x and y, which also both get
sent to 0 by T .

C25 Contributed by Robert Beezer Statement [1669]
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To find the kernel, we require all x ∈ C3 such that T (x) = 0. This condition is[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
=

[
0
0

]
This leads to a homogeneous system of two linear equations in three variables, whose coeffi-
cient matrix row-reduces to [

1 −1
2

5
2

0 0 0

]
With two free variables Theorem BNS [484] yields the basis for the null space

−5
2

0
1

 ,
1

2

1
0


With n (T ) 6= 0, K(T ) 6= {0}, so Theorem KILT [1653] says T is not injective.
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C26 Contributed by Chris Black Statement [1669]
By Theorem ILTD [1662], if a linear transformation T : U 7→ V is injective, then dim(U) ≤
dim(V ). In this case, T : C5 7→ C4, and 5 = dim (C5) > dim (C4) = 4. Thus, T cannot
possibly be injective.

C27 Contributed by Chris Black Statement [1670]

If T

xy
z

 = 0, then

2x+ y + z
x− y + 2z
x+ 2y − z

 = 0. Thus, we have the system

2x+ y + z = 0

x− y + 2z = 0

x+ 2y − z = 0

. Thus, we are looking for the nullspace of the matrix AT =

2 1 1
1 −1 2
1 2 −1

. Since AT row-
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reduces to

 1 0 1

0 1 −1
0 0 0

, the kernel of T is all vectors where x = −z and y = z. Thus,

K(T ) =

〈
−1

1
1


〉

.

C28 Contributed by Chris Black Statement [1670]
Since T is given by matrix multiplication, K(T ) = N (A). We have

1 2 3 1
2 −1 1 0
1 2 −1 −2
1 3 2 1

 RREF−−−→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


The nullspace of A is {0}, so the kernel of T is also trivial: K(T ) = {0}.
C29 Contributed by Chris Black Statement [1670]
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Since T is given by matrix multiplication, K(T ) = N (A). We have
1 2 1 1
2 1 1 0
1 2 1 2
1 2 1 1

 RREF−−−→


1 0 1/3 0

0 1 1/3 0

0 0 0 1
0 0 0 0



Thus, a basis for the nullspace of A is



−1
−1
3
0


, and the kernel is K(T ) =

〈〈
−1
−1
3
0


〉〉

.

Since the kernel is nontrivial, this linear transformation is not injective.

C30 Contributed by Chris Black Statement [1671]
We can see without computing that T is not injective, since the degree of M2,2 is larger
than the degree of P2. However, that doesn’t address the question of the kernel of T . We

need to find all matrices

[
a b
c d

]
so that (a + b) + (a + c)x + (a + d)x2 = 0. This means
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a + b = 0, a + c = 0, and a + d = 0, or equivalently, b = d = c = −a. Thus, the

kernel is a one-dimensional subspace of M2,2 spanned by

[
1 −1
−1 −1

]
. Symbolically, we have

K(T ) =

〈[
1 −1
−1 −1

]〉
.

C31 Contributed by Chris Black Statement [1671]
We have

T (e1) =

2
0
1

 T (e2) =

1
2
0

 T (e3) =

0
1
2


Let’s put these vectors into a matrix and row reduce to test their linear independence.2 1 0

0 2 1
1 0 2

 RREF−−−→
 1 0 0

0 1 0

0 0 1
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so the set of vectors {T (e1) , T (e1) , T (e1)} is linearly independent.

C32 Contributed by Chris Black Statement [1671]

We have T (e1) =

1
2
1

 and T (e2) =

1
1
2

. Putting these into a matrix as columns and

row-reducing, we have

1 1
2 1
1 2

 RREF−−−→
 1 0

0 1
0 0



Thus, the set of vectors {T (e1) , T (e2)} is linearly independent.

C33 Contributed by Chris Black Statement [1672]
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We have

T (e1) =


1
0
1
1
3

 T (e2) =


3
1
2
0
1

 T (e3) =


2
1
1
1
2


Let’s row reduce the matrix of T to test linear independence.

1 3 2
0 1 1
1 2 1
1 0 1
3 1 2

 RREF−−−→


1 0 0

0 1 0

0 0 1
0 0 0
0 0 0


so the set of vectors {T (e1) , T (e2) , T (e3)} is linearly independent.
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C40 Contributed by Robert Beezer Statement [1672]
We choose x to be any vector we like. A particularly cocky choice would be to choose x = 0,
but we will instead choose

x =

[
2 −1
−1 4

]
Then R (x) = 9+9x. Now compute the kernel of R, which by Theorem KILT [1653] we expect

to be nontrivial. Setting R

([
a b
b c

])
equal to the zero vector, 0 = 0 + 0x, and equating

coefficients leads to a homogeneous system of equations. Row-reducing the coefficient matrix
of this system will allow us to determine the values of a, b and c that create elements of the
null space of R, [

2 −1 1
1 1 2

]
RREF−−−→

[
1 0 1

0 1 1

]
We only need a single element of the null space of this coefficient matrix, so we will not
compute a precise description of the whole null space. Instead, choose the free variable
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c = 2. Then

z =

[−2 −2
−2 2

]
is the corresponding element of the kernel. We compute the desired y as

y = x + z =

[
2 −1
−1 4

]
+

[−2 −2
−2 2

]
=

[
0 −3
−3 6

]
Then check that R (y) = 9 + 9x.

T15 Contributed by Robert Beezer Statement [1673]
We are asked to prove that K(T ) is a subset of K(S ◦ T ). Employing Definition SSET [2325],
choose x ∈ K(T ). Then we know that T (x) = 0. So

(S ◦ T ) (x) = S (T (x)) Definition LTC [1606]

= S (0) x ∈ K(T )

= 0 Theorem LTTZZ [1562]
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This qualifies x for membership in K(S ◦ T ).

T20 Contributed by Andy Zimmer Statement [1673]
This is an equality of sets, so we want to establish two subset conditions (Definition SE
[2327]).

First, show N (A) ⊆ K(T ). Choose x ∈ N (A). Check to see if x ∈ K(T ),

T (x) = Ax Definition of T

= 0 x ∈ N (A)

So by Definition KLT [1643], x ∈ K(T ) and thus N (A) ⊆ N (T ).
Now, show K(T ) ⊆ N (A). Choose x ∈ K(T ). Check to see if x ∈ N (A),

Ax = T (x) Definition of T

= 0 x ∈ K(T )

So by Definition NSM [216], x ∈ N (A) and thus N (T ) ⊆ N (A).
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Section SLT

Surjective Linear Transformations

The companion to an injection is a surjection. Surjective linear transformations are closely
related to spanning sets and ranges. So as you read this section reflect back on Section ILT
[1630] and note the parallels and the contrasts. In the next section, Section IVLT [1749], we
will combine the two properties.

As usual, we lead with a definition.

Definition SLT
Surjective Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then T is surjective if for every v ∈ V
there exists a u ∈ U so that T (u) = v. 4

Given an arbitrary function, it is possible for there to be an element of the codomain
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that is not an output of the function (think about the function y = f(x) = x2 and the
codomain element y = −3). For a surjective function, this never happens. If we choose any
element of the codomain (v ∈ V ) then there must be an input from the domain (u ∈ U)
which will create the output when used to evaluate the linear transformation (T (u) = v).
Some authors prefer the term onto where we use surjective, and we will sometimes refer to
a surjective linear transformation as a surjection.

Subsection ESLT
Examples of Surjective Linear Transformations

It is perhaps most instructive to examine a linear transformation that is not surjective first.

Example NSAQ
Not surjective, Archetype Q
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Archetype Q [2569] is the linear transformation

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5


We will demonstrate that

v =


−1
2
3
−1
4


is an unobtainable element of the codomain. Suppose to the contrary that u is an element
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of the domain such that T (u) = v. Then


−1
2
3
−1
4

 = v = T (u) = T



u1

u2

u3

u4

u5




=


−2u1 + 3u2 + 3u3 − 6u4 + 3u5

−16u1 + 9u2 + 12u3 − 28u4 + 28u5

−19u1 + 7u2 + 14u3 − 32u4 + 37u5

−21u1 + 9u2 + 15u3 − 35u4 + 39u5

−9u1 + 5u2 + 7u3 − 16u4 + 16u5
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=


−2 3 3 −6 3
−16 9 12 −28 28
−19 7 14 −32 37
−21 9 15 −35 39
−9 5 7 −16 16



u1

u2

u3

u4

u5


Now we recognize the appropriate input vector u as a solution to a linear system of equations.
Form the augmented matrix of the system, and row-reduce to

1 0 0 0 −1 0

0 1 0 0 −4
3

0

0 0 1 0 −1
3

0

0 0 0 1 −1 0

0 0 0 0 0 1


With a leading 1 in the last column, Theorem RCLS [172] tells us the system is inconsistent.
From the absence of any solutions we conclude that no such vector u exists, and by Definition
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SLT [1687], T is not surjective.

Again, do not concern yourself with how v was selected, as this will be explained shortly.
However, do understand why this vector provides enough evidence to conclude that T is not
surjective. �

To show that a linear transformation is not surjective, it is enough to find a single element
of the codomain that is never created by any input, as in Example NSAQ [1688]. However,
to show that a linear transformation is surjective we must establish that every element of
the codomain occurs as an output of the linear transformation for some appropriate input.

Example SAR
Surjective, Archetype R
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Archetype R [2581] is the linear transformation

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5


To establish that R is surjective we must begin with a totally arbitrary element of the
codomain, v and somehow find an input vector u such that T (u) = v. We desire,

T (u) = v
−65u1 + 128u2 + 10u3 − 262u4 + 40u5

36u1 − 73u2 − u3 + 151u4 − 16u5

−44u1 + 88u2 + 5u3 − 180u4 + 24u5

34u1 − 68u2 − 3u3 + 140u4 − 18u5

12u1 − 24u2 − u3 + 49u4 − 5u5

 =


v1

v2

v3

v4

v5
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−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5



u1

u2

u3

u4

u5

 =


v1

v2

v3

v4

v5


We recognize this equation as a system of equations in the variables ui, but our vector of
constants contains symbols. In general, we would have to row-reduce the augmented matrix
by hand, due to the symbolic final column. However, in this particular example, the 5 × 5
coefficient matrix is nonsingular and so has an inverse (Theorem NI [781], Definition MI
[727]). 

−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5


−1

=


−47 92 1 −181 −14
27 −55 7

2
221
2

11
−32 64 −1 −126 −12
25 −50 3

2
199
2

9
9 −18 1

2
71
2

4
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so we find that 
u1

u2

u3

u4

u5

 =


−47 92 1 −181 −14
27 −55 7

2
221
2

11
−32 64 −1 −126 −12
25 −50 3

2
199
2

9
9 −18 1

2
71
2

4



v1

v2

v3

v4

v5



=


−47v1 + 92v2 + v3 − 181v4 − 14v5

27v1 − 55v2 + 7
2
v3 + 221

2
v4 + 11v5

−32v1 + 64v2 − v3 − 126v4 − 12v5

25v1 − 50v2 + 3
2
v3 + 199

2
v4 + 9v5

9v1 − 18v2 + 1
2
v3 + 71

2
v4 + 4v5


This establishes that if we are given any output vector v, we can use its components in this
final expression to formulate a vector u such that T (u) = v. So by Definition SLT [1687] we
now know that T is surjective. You might try to verify this condition in its full generality
(i.e. evaluate T with this final expression and see if you get v as the result), or test it more
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specifically for some numerical vector v (see Exercise SLT.C20 [1728]). �

Let’s now examine a surjective linear transformation between abstract vector spaces.

Example SAV
Surjective, Archetype V
Archetype V [2609] is defined by

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=

[
a+ b a− 2c
d b− d

]
To establish that the linear transformation is surjective, begin by choosing an arbitrary
output. In this example, we need to choose an arbitrary 2× 2 matrix, say

v =

[
x y
z w

]
and we would like to find an input polynomial

u = a+ bx+ cx2 + dx3
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so that T (u) = v. So we have,[
x y
z w

]
= v

= T (u)

= T
(
a+ bx+ cx2 + dx3

)
=

[
a+ b a− 2c
d b− d

]
Matrix equality leads us to the system of four equations in the four unknowns, x, y, z, w,

a+ b = x

a− 2c = y

d = z

b− d = w
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which can be rewritten as a matrix equation,


1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0 −1



a
b
c
d

 =


x
y
z
w



The coefficient matrix is nonsingular, hence it has an inverse,


1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0− 1


−1

=


1 0 −1 −1
0 0 1 1
1
2
−1

2
−1

2
−1

2

0 0 1 0
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so we have 
a
b
c
d

 =


1 0 −1 −1
0 0 1 1
1
2
−1

2
−1

2
−1

2

0 0 1 0



x
y
z
w



=


x− z − w
z + w

1
2
(x− y − z − w)

z


So the input polynomial u = (x− z−w) + (z+w)x+ 1

2
(x− y− z−w)x2 + zx3 will yield the

output matrix v, no matter what form v takes. This means by Definition SLT [1687] that
T is surjective. All the same, let’s do a concrete demonstration and evaluate T with u,

T (u) = T

(
(x− z − w) + (z + w)x+

1

2
(x− y − z − w)x2 + zx3

)
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=

[
(x− z − w) + (z + w) (x− z − w)− 2(1

2
(x− y − z − w))

z (z + w)− z
]

=

[
x y
z w

]
= v

�

Subsection RLT
Range of a Linear Transformation

For a linear transformation T : U 7→ V , the range is a subset of the codomain V . Informally,
it is the set of all outputs that the transformation creates when fed every possible input from
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the domain. It will have some natural connections with the column space of a matrix, so we
will keep the same notation, and if you think about your objects, then there should be little
confusion. Here’s the careful definition.

Definition RLT
Range of a Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then the range of T is the set

R(T ) = {T (u) | u ∈ U}

(This definition contains Notation RLT.) 4

Example RAO
Range, Archetype O
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Archetype O [2554] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3


To determine the elements of C5 in R(T ), find those vectors v such that T (u) = v for some
u ∈ C3,

v = T (u)

=


−u1 + u2 − 3u3

−u1 + 2u2 − 4u3

u1 + u2 + u3

2u1 + 3u2 + u3

u1 + 2u3
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=


−u1

−u1

u1

2u1

u1

+


u2

2u2

u2

3u2

0

+


−3u3

−4u3

u3

u3

2u3



= u1


−1
−1
1
2
1

+ u2


1
2
1
3
0

+ u3


−3
−4
1
1
2



This says that every output of T (v) can be written as a linear combination of the three
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vectors 
−1
−1
1
2
1




1
2
1
3
0



−3
−4
1
1
2


using the scalars u1, u2, u3. Furthermore, since u can be any element of C3, every such linear
combination is an output. This means that

R(T ) =

〈


−1
−1
1
2
1

 ,


1
2
1
3
0

 ,

−3
−4
1
1
2



〉

The three vectors in this spanning set for R(T ) form a linearly dependent set (check this!).
So we can find a more economical presentation by any of the various methods from Section
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CRS [808] and Section FS [880]. We will place the vectors into a matrix as rows, row-reduce,
toss out zero rows and appeal to Theorem BRS [843], so we can describe the range of T with
a basis,

R(T ) =

〈


1
0
−3
−7
−2

 ,


0
1
2
5
1



〉

�

We know that the span of a set of vectors is always a subspace (Theorem SSS [1023]),
so the range computed in Example RAO [1701] is also a subspace. This is no accident, the
range of a linear transformation is always a subspace.

Theorem RLTS
Range of a Linear Transformation is a Subspace
Suppose that T : U 7→ V is a linear transformation. Then the range of T , R(T ), is a subspace

Version 2.11



Subsection SLT.RLT Range of a Linear Transformation 1713

of V . �

Proof We can apply the three-part test of Theorem TSS [1008]. First, 0U ∈ U and
T (0U) = 0V by Theorem LTTZZ [1562], so 0V ∈ R(T ) and we know that the range is
non-empty.

Suppose we assume that x, y ∈ R(T ). Is x + y ∈ R(T )? If x, y ∈ R(T ) then we know
there are vectors w, z ∈ U such that T (w) = x and T (z) = y. Because U is a vector space,
additive closure (Property AC [956]) implies that w + z ∈ U . Then

T (w + z) = T (w) + T (z) Definition LT [1550]

= x + y Definition of w and z

So we have found an input, w + z, which when fed into T creates x + y as an output. This
qualifies x + y for membership in R(T ). So we have additive closure.

Suppose we assume that α ∈ C and x ∈ R(T ). Is αx ∈ R(T )? If x ∈ R(T ), then there
is a vector w ∈ U such that T (w) = x. Because U is a vector space, scalar closure implies
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that αw ∈ U . Then

T (αw) = αT (w) Definition LT [1550]

= αx Definition of w

So we have found an input (αw) which when fed into T creates αx as an output. This
qualifies αx for membership in R(T ). So we have scalar closure and Theorem TSS [1008]
tells us that R(T ) is a subspace of V .

�

Let’s compute another range, now that we know in advance that it will be a subspace.

Example FRAN
Full range, Archetype N

Version 2.11



Subsection SLT.RLT Range of a Linear Transformation 1715

Archetype N [2547] is the linear transformation

T : C5 7→ C3, T



x1

x2

x3

x4

x5


 =

2x1 + x2 + 3x3 − 4x4 + 5x5

x1 − 2x2 + 3x3 − 9x4 + 3x5

3x1 + 4x3 − 6x4 + 5x5



To determine the elements of C3 in R(T ), find those vectors v such that T (u) = v for some
u ∈ C5,

v = T (u)

=

2u1 + u2 + 3u3 − 4u4 + 5u5

u1 − 2u2 + 3u3 − 9u4 + 3u5

3u1 + 4u3 − 6u4 + 5u5


Version 2.11



Subsection SLT.RLT Range of a Linear Transformation 1716

=

2u1

u1

3u1

+

 u2

−2u2

0

+

3u3

3u3

4u3

+

−4u4

−9u4

−6u4

+

5u5

3u5

5u5


= u1

2
1
3

+ u2

 1
−2
0

+ u3

3
3
4

+ u4

−4
−9
−6

+ u5

5
3
5



This says that every output of T (v) can be written as a linear combination of the five
vectors 2

1
3

  1
−2
0

 3
3
4

 −4
−9
−6

 5
3
5


using the scalars u1, u2, u3, u4, u5. Furthermore, since u can be any element of C5, every
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such linear combination is an output. This means that

R(T ) =

〈
2

1
3

 ,
 1
−2
0

 ,
3

3
4

 ,
−4
−9
−6

 ,
5

3
5


〉

The five vectors in this spanning set for R(T ) form a linearly dependent set (Theorem
MVSLD [475]). So we can find a more economical presentation by any of the various methods
from Section CRS [808] and Section FS [880]. We will place the vectors into a matrix as
rows, row-reduce, toss out zero rows and appeal to Theorem BRS [843], so we can describe
the range of T with a (nice) basis,

R(T ) =

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

= C3

�

In contrast to injective linear transformations having small (trivial) kernels (Theorem

Version 2.11



Subsection SLT.RLT Range of a Linear Transformation 1718

KILT [1653]), surjective linear transformations have large ranges, as indicated in the next
theorem.

Theorem RSLT
Range of a Surjective Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then T is surjective if and only if the
range of T equals the codomain, R(T ) = V . �

Proof (⇒) By Definition RLT [1701], we know that R(T ) ⊆ V . To establish the reverse
inclusion, assume v ∈ V . Then since T is surjective (Definition SLT [1687]), there exists a
vector u ∈ U so that T (u) = v. However, the existence of u gains v membership in R(T ),
so V ⊆ R(T ). Thus, R(T ) = V .

(⇐) To establish that T is surjective, choose v ∈ V . Since we are assuming that R(T ) =
V , v ∈ R(T ). This says there is a vector u ∈ U so that T (u) = v, i.e. T is surjective. �

Example NSAQR
Not surjective, Archetype Q, revisited
We are now in a position to revisit our first example in this section, Example NSAQ [1688].
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In that example, we showed that Archetype Q [2569] is not surjective by constructing a
vector in the codomain where no element of the domain could be used to evaluate the linear
transformation to create the output, thus violating Definition SLT [1687]. Just where did
this vector come from?

The short answer is that the vector

v =


−1
2
3
−1
4



was constructed to lie outside of the range of T . How was this accomplished? First, the
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range of T is given by

R(T ) =

〈


1
0
0
0
1

 ,


0
1
0
0
−1

 ,


0
0
1
0
−1

 ,


0
0
0
1
2



〉

Suppose an element of the range v∗ has its first 4 components equal to −1, 2, 3,−1, in that
order. Then to be an element of R(T ), we would have

v∗ = (−1)


1
0
0
0
1

+ (2)


0
1
0
0
−1

+ (3)


0
0
1
0
−1

+ (−1)


0
0
0
1
2

 =


−1
2
3
−1
−8


So the only vector in the range with these first four components specified, must have −8 in
the fifth component. To set the fifth component to any other value (say, 4) will result in a
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vector (v in Example NSAQ [1688]) outside of the range. Any attempt to find an input for
T that will produce v as an output will be doomed to failure.

Whenever the range of a linear transformation is not the whole codomain, we can employ
this device and conclude that the linear transformation is not surjective. This is another way
of viewing Theorem RSLT [1710]. For a surjective linear transformation, the range is all of
the codomain and there is no choice for a vector v that lies in V , yet not in the range. For
every one of the archetypes that is not surjective, there is an example presented of exactly
this form. �

Example NSAO
Not surjective, Archetype O
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In Example RAO [1701] the range of Archetype O [2554] was determined to be

R(T ) =

〈


1
0
−3
−7
−2

 ,


0
1
2
5
1



〉

a subspace of dimension 2 in C5. Since R(T ) 6= C5, Theorem RSLT [1710] says T is not
surjective. �

Example SAN
Surjective, Archetype N
The range of Archetype N [2547] was computed in Example FRAN [1707] to be

R(T ) =

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉
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Since the basis for this subspace is the set of standard unit vectors for C3 (Theorem SUVB
[1122]), we have R(T ) = C3 and by Theorem RSLT [1710], T is surjective. �

Subsection SSSLT
Spanning Sets and Surjective Linear Transformations

Just as injective linear transformations are allied with linear independence (Theorem ILTLI
[1658], Theorem ILTB [1660]), surjective linear transformations are allied with spanning sets.

Theorem SSRLT
Spanning Set for Range of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation and S = {u1, u2, u3, . . . , ut} spans U .
Then

R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)}
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spans R(T ). �

Proof We need to establish that R(T ) = 〈R〉, a set equality. First we establish that
R(T ) ⊆ 〈R〉. To this end, choose v ∈ R(T ). Then there exists a vector u ∈ U , such that
T (u) = v (Definition RLT [1701]). Because S spans U there are scalars, a1, a2, a3, . . . , at,
such that

u = a1u1 + a2u2 + a3u3 + · · ·+ atut

Then

v = T (u) Definition RLT [1701]

= T (a1u1 + a2u2 + a3u3 + · · ·+ atut) Definition TSVS [1076]

= a1T (u1) + a2T (u2) + a3T (u3) + . . .+ atT (ut) Theorem LTLC [1580]

which establishes that v ∈ 〈R〉 (Definition SS [1023]). So R(T ) ⊆ 〈R〉.
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To establish the opposite inclusion, choose an element of the span of R, say v ∈ 〈R〉.
Then there are scalars b1, b2, b3, . . . , bt so that

v = b1T (u1) + b2T (u2) + b3T (u3) + · · ·+ btT (ut) Definition SS [1023]

= T (b1u1 + b2u2 + b3u3 + · · ·+ btut) Theorem LTLC [1580]

This demonstrates that v is an output of the linear transformation T , so v ∈ R(T ). Therefore
〈R〉 ⊆ R(T ), so we have the set equality R(T ) = 〈R〉 (Definition SE [2327]). In other words,
R spans R(T ) (Definition TSVS [1076]). �

Theorem SSRLT [1716] provides an easy way to begin the construction of a basis for the
range of a linear transformation, since the construction of a spanning set requires simply
evaluating the linear transformation on a spanning set of the domain. In practice the best
choice for a spanning set of the domain would be as small as possible, in other words, a
basis. The resulting spanning set for the codomain may not be linearly independent, so to
find a basis for the range might require tossing out redundant vectors from the spanning set.
Here’s an example.
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Example BRLT
A basis for the range of a linear transformation
Define the linear transformation T : M22 7→ P2 by

T

([
a b
c d

])
= (a+ 2b+ 8c+ d) + (−3a+ 2b+ 5d)x+ (a+ b+ 5c)x2

A convenient spanning set for M22 is the basis

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
So by Theorem SSRLT [1716], a spanning set for R(T ) is

R =

{
T

([
1 0
0 0

])
, T

([
0 1
0 0

])
, T

([
0 0
1 0

])
, T

([
0 0
0 1

])}
=
{

1− 3x+ x2, 2 + 2x+ x2, 8 + 5x2, 1 + 5x
}
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The set R is not linearly independent, so if we desire a basis for R(T ), we need to eliminate
some redundant vectors. Two particular relations of linear dependence on R are

(−2)(1− 3x+ x2) + (−3)(2 + 2x+ x2) + (8 + 5x2) = 0 + 0x+ 0x2 = 0

(1− 3x+ x2) + (−1)(2 + 2x+ x2) + (1 + 5x) = 0 + 0x+ 0x2 = 0

These, individually, allow us to remove 8 + 5x2 and 1 + 5x from R with out destroying the
property that R spans R(T ). The two remaining vectors are linearly independent (check
this!), so we can write

R(T ) =
〈{

1− 3x+ x2, 2 + 2x+ x2
}〉

and see that dim (R(T )) = 2. �

Elements of the range are precisely those elements of the codomain with non-empty
preimages.

Theorem RPI
Range and Pre-Image
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Suppose that T : U 7→ V is a linear transformation. Then

v ∈ R(T ) if and only if T−1 (v) 6= ∅

�

Proof (⇒) If v ∈ R(T ), then there is a vector u ∈ U such that T (u) = v. This qualifies
u for membership in T−1 (v), and thus the preimage of v is not empty.

(⇐) Suppose the preimage of v is not empty, so we can choose a vector u ∈ U such that
T (u) = v. Then v ∈ R(T ). �

Theorem SLTB
Surjective Linear Transformations and Bases
Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a basis
of U . Then T is surjective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)} is a
spanning set for V . �

Proof (⇒) Assume T is surjective. Since B is a basis, we know B is a spanning set of
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U (Definition B [1121]). Then Theorem SSRLT [1716] says that C spans R(T ). But the
hypothesis that T is surjective means V = R(T ) (Theorem RSLT [1710]), so C spans V .

(⇐) Assume that C spans V . To establish that T is surjective, we will show that every
element of V is an output of T for some input (Definition SLT [1687]). Suppose that v ∈ V .
As an element of V , we can write v as a linear combination of the spanning set C. So there
are are scalars, b1, b2, b3, . . . , bm, such that

v = b1T (u1) + b2T (u2) + b3T (u3) + · · ·+ bmT (um)

Now define the vector u ∈ U by

u = b1u1 + b2u2 + b3u3 + · · ·+ bmum

Then

T (u) = T (b1u1 + b2u2 + b3u3 + · · ·+ bmum)

= b1T (u1) + b2T (u2) + b3T (u3) + · · ·+ bmT (um) Theorem LTLC [1580]
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= v

So, given any choice of a vector v ∈ V , we can design an input u ∈ U to produce v as an
output of T . Thus, by Definition SLT [1687], T is surjective. �

Subsection SLTD
Surjective Linear Transformations and Dimension

Theorem SLTD
Surjective Linear Transformations and Dimension
Suppose that T : U 7→ V is a surjective linear transformation. Then dim (U) ≥ dim (V ). �

Proof Suppose to the contrary that m = dim (U) < dim (V ) = t. Let B be a basis
of U , which will then contain m vectors. Apply T to each element of B to form a set C
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that is a subset of V . By Theorem SLTB [1721], C is spanning set of V with m or fewer
vectors. So we have a set of m or fewer vectors that span V , a vector space of dimension
t, with m < t. However, this contradicts Theorem G [1228], so our assumption is false and
dim (U) ≥ dim (V ). �

Example NSDAT
Not surjective by dimension, Archetype T
The linear transformation in Archetype T [2597] is

T : P4 7→ P5, T (p(x)) = (x− 2)p(x)

Since dim (P4) = 5 < 6 = dim (P5), T cannot be surjective for then it would violate Theorem
SLTD [1722]. �

Notice that the previous example made no use of the actual formula defining the func-
tion. Merely a comparison of the dimensions of the domain and codomain are enough to
conclude that the linear transformation is not surjective. Archetype O [2554] and Archetype
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P [2562] are two more examples of linear transformations that have “small” domains and
“big” codomains, resulting in an inability to create all possible outputs and thus they are
non-surjective linear transformations.

Subsection CSLT
Composition of Surjective Linear Transformations

In Subsection LT.NLTFO [1598] we saw how to combine linear transformations to build
new linear transformations, specifically, how to build the composition of two linear trans-
formations (Definition LTC [1606]). It will be useful later to know that the composition of
surjective linear transformations is again surjective, so we prove that here.

Theorem CSLTS
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Composition of Surjective Linear Transformations is Surjective
Suppose that T : U 7→ V and S : V 7→ W are surjective linear transformations. Then
(S ◦ T ) : U 7→ W is a surjective linear transformation. �

Proof That the composition is a linear transformation was established in Theorem CLTLT
[1607], so we need only establish that the composition is surjective. Applying Definition SLT
[1687], choose w ∈ W .

Because S is surjective, there must be a vector v ∈ V , such that S (v) = w. With
the existence of v established, that T is surjective guarantees a vector u ∈ U such that
T (u) = v. Now,

(S ◦ T ) (u) = S (T (u)) Definition LTC [1606]

= S (v) Definition of u

= w Definition of v

This establishes that any element of the codomain (w) can be created by evaluating S ◦ T
with the right input (u). Thus, by Definition SLT [1687], S ◦ T is surjective. �
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Subsection READ
Reading Questions

1. Suppose T : C5 7→ C8 is a linear transformation. Why can’t T be surjective?

2. What is the relationship between a surjective linear transformation and its range?

3. Compare and contrast injective and surjective linear transformations.
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Subsection EXC
Exercises

C10 Each archetype below is a linear transformation. Compute the range for each.
Archetype M [2540]
Archetype N [2547]
Archetype O [2554]
Archetype P [2562]
Archetype Q [2569]
Archetype R [2581]
Archetype S [2590]
Archetype T [2597]
Archetype U [2602]
Archetype V [2609]
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Archetype W [2615]
Archetype X [2621]

Contributed by Robert Beezer

C20 Example SAR [1692] concludes with an expression for a vector u ∈ C5 that we believe
will create the vector v ∈ C5 when used to evaluate T . That is, T (u) = v. Verify this
assertion by actually evaluating T with u. If you don’t have the patience to push around all
these symbols, try choosing a numerical instance of v, compute u, and then compute T (u),
which should result in v.
Contributed by Robert Beezer

C22 The linear transformation S : C4 7→ C3 is not surjective. Find an output w ∈ C3 that
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has an empty pre-image (that is S−1 (w) = ∅.)

S



x1

x2

x3

x4


 =

2x1 + x2 + 3x3 − 4x4

x1 + 3x2 + 4x3 + 3x4

−x1 + 2x2 + x3 + 7x4


Contributed by Robert Beezer Solution [1735]

C23 Determine whether or not the following linear transformation T : C5 7→ P3 is surjec-
tive:

T



a
b
c
d
e


 = a+ (b+ c)x+ (c+ d)x2 + (d+ e)x4
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Contributed by Chris Black Solution [1737]

C24 Determine whether or not the linear transformation T : P3 7→ C5 below is surjective:

T
(
a+ bx+ cx2 + dx3

)
=


a+ b
b+ c
c+ d
d+ e
a+ e

 .

Contributed by Chris Black Solution [1739]

C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
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Find a basis for the range of T , R(T ). Is T surjective?
Contributed by Robert Beezer Solution [1740]

C26 Let T : C3 7→ C3 be given by T

ab
c

 =

a+ b+ 2c
2c

a+ b+ c

. Find a basis of R(T ). Is T

surjective?
Contributed by Chris Black Solution [1741]

C27 Let T : C3 7→ C4 be given by T

ab
c

 =


a+ b− c
a− b+ c
−a+ b+ c
a+ b+ c

. Find a basis of R(T ). Is T

surjective?
Contributed by Chris Black Solution [1742]
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C28 Let T : C4 7→ M2,2 be given by T



a
b
c
d


 =

[
a+ b a+ b+ c

a+ b+ c a+ d

]
. Find a basis of

R(T ). Is T surjective?
Contributed by Chris Black Solution [1744]

C29 Let T : P2 7→ P4 be given by T (p(x)) = x2p(x). Find a basis ofR(T ). Is T surjective?
Contributed by Chris Black Solution [1745]

C30 Let T : P4 7→ P3 be given by T (p(x)) = p′(x), where p′(x) is the derivative. Find a
basis of R(T ). Is T surjective?
Contributed by Chris Black Solution [1745]

C40 Show that the linear transformation T is not surjective by finding an element of the
codomain, v, such that there is no vector u with T (u) = v. (15 points)
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T : C3 7→ C3, T

ab
c

 =

2a+ 3b− c
2b− 2c
a− b+ 2c


Contributed by Robert Beezer Solution [1745]

T15 Suppose that that T : U 7→ V and S : V 7→ W are linear transformations. Prove the
following relationship between ranges. (15 points)

R(S ◦ T ) ⊆ R(S)

Contributed by Robert Beezer Solution [1747]

T20 Suppose that A is an m× n matrix. Define the linear transformation T by

T : Cn 7→ Cm, T (x) = Ax
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Prove that the range of T equals the column space of A, R(T ) = C(A).
Contributed by Andy Zimmer Solution [1748]
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Subsection SOL
Solutions

C22 Contributed by Robert Beezer Statement [1728]
To find an element of C3 with an empty pre-image, we will compute the range of the linear
transformation R(S) and then find an element outside of this set.

By Theorem SSRLT [1716] we can evaluate S with the elements of a spanning set of the
domain and create a spanning set for the range.

S




1
0
0
0


 =

 2
1
−1

 S




0
1
0
0


 =

1
3
2

 S




0
0
1
0


 =

3
4
1

 S




0
0
0
1


 =

−4
3
7
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So

R(S) =

〈
 2

1
−1

 ,
1

3
2

 ,
3

4
1

 ,
−4

3
7


〉

This spanning set is obviously linearly dependent, so we can reduce it to a basis for R(S)
using Theorem BRS [843], where the elements of the spanning set are placed as the rows of
a matrix. The result is that

R(S) =

〈
 1

0
−1

 ,
0

1
1


〉

Therefore, the unique vector in R(S) with a first slot equal to 6 and a second slot equal to
15 will be the linear combination

6

 1
0
−1

+ 15

0
1
1

 =

 6
15
9
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So, any vector with first two components equal to 6 and 15, but with a third component
different from 9, such as

w =

 6
15
−63


will not be an element of the range of S and will therefore have an empty pre-image. Another
strategy on this problem is to guess. Almost any vector will lie outside the range of T , you
have to be unlucky to randomly choose an element of the range. This is because the codomain
has dimension 3, while the range is “much smaller” at a dimension of 2. You still need to
check that your guess lies outside of the range, which generally will involve solving a system
of equations that turns out to be inconsistent.

C23 Contributed by Chris Black Statement [1729]
The linear transformation T is surjective if for any p(x) = α + βx + γx2 + δx3, there is a
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vector u =


a
b
c
d
e

 in C5 so that T (u) = p(x). We need to be able to solve the system

a = α

b+ c = β

c+ d = γ

d+ e = δ

This system has an infinite number of solutions, one of which is a = α, b = β, c = 0, d = γ
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and e = δ − γ, so that

T




α
β
0
γ

δ − γ


 = α + (β + 0)x+ (0 + γ)x2 + (γ + (δ − γ))x3

= α + βx+ γx2 + δx3

= p(x).

Thus, T is surjective, since for every vector v ∈ P3, there exists a vector u ∈ C5 so that
T (u) = v.

C24 Contributed by Chris Black Statement [1730]
According to Theorem SLTD [1722], if a linear transformation T : U 7→ V is surjective, then
dim (U) ≥ dim (V ). In this example, U = P3 has dimension 4, and V = C5 has dimension
5, so T cannot be surjective. (There is no way T can ‘expand’ the domain P3 to fill the
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codomain C5.)

C25 Contributed by Robert Beezer Statement [1730]
To find the range of T , apply T to the elements of a spanning set for C3 as suggested in
Theorem SSRLT [1716]. We will use the standard basis vectors (Theorem SUVB [1122]).

R(T ) = 〈{T (e1) , T (e2) , T (e3)}〉 =

〈{[
2
−4

]
,

[−1
2

]
,

[
5
−10

]}〉
Each of these vectors is a scalar multiple of the others, so we can toss two of them in reducing
the spanning set to a linearly independent set (or be more careful and apply Theorem BCS
[822] on a matrix with these three vectors as columns). The result is the basis of the range,{[

1
−2

]}
With r (T ) 6= 2, R(T ) 6= C2, so Theorem RSLT [1710] says T is not surjective.
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C26 Contributed by Chris Black Statement [1731]
The range of T is

R(T ) =


a+ b+ 2c

2c
a+ b+ c

 | a, b, c ∈ C


=

a
1

0
1

+ b

1
0
1

+ c

2
2
1

 | a, b, c ∈ C


=

〈1
0
1

 ,
2

2
1

〉

Since the vectors

1
0
1

 and

2
2
1

 are linearly independent (why?), a basis ofR(T ) is


1

0
1

 ,
2

2
1

.
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Since the dimension of the range is 2 and the dimension of the codomain is 3, T is not sur-
jective.

C27 Contributed by Chris Black Statement [1731]
The range of T is

R(T ) =



a+ b− c
a− b+ c
−a+ b+ c
a+ b+ c

 | a, b, c ∈ C


=

a


1
1
−1
1

+ b


1
−1
1
1

+ c


−1
1
1
1

 | a, b, c ∈ C
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=

〈
1
1
−1
1

 ,


1
−1
1
1

 ,

−1
1
1
1


〉

By row reduction (not shown), we can see that the set


1
1
−1
1

 ,


1
−1
1
1

 ,

−1
1
1
1




are linearly independent, so is a basis of R(T ). Since the dimension of the range is 3 and
the dimension of the codomain is 4, T is not surjective. (We should have anticipated that
T was not surjective since the dimension of the domain is smaller than the dimension of the
codomain.)

C28 Contributed by Chris Black Statement [1732]
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The range of T is

R(T ) =

{[
a+ b a+ b+ c

a+ b+ c a+ d

]
| a, b, c, d ∈ C

}
=

{
a

[
1 1
1 1

]
+ b

[
1 1
1 0

]
+ c

[
0 1
1 0

]
+ d

[
0 0
0 1

]
| a, b, c, d ∈ C

}
=

〈[
1 1
1 1

]
,

[
1 1
1 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]〉
=

〈[
1 1
1 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]〉
.

Can you explain the last equality above?

These three matrices are linearly independent, so a basis ofR(T ) is

{[
1 1
1 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.

Thus, T is not surjective, since the range ihas dimension 3 which is shy of dim (M2,2) = 4.
(Notice that the range is actually the subspace of symmetric 2× 2 matrices in M2,2.)
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C29 Contributed by Chris Black Statement [1732]
If we transform the basis of P2, then Theorem SSRLT [1716] guarantees we will have a
spanning set of R(T ). A basis of P2 is {1, x, x2}. If we transform the elements of this set,
we get the set {x2, x3, x4} which is a spanning set for R(T ). These three vectors are linearly
independent, so {x2, x3, x4} is a basis of R(T ).

C30 Contributed by Chris Black Statement [1732]
If we transform the basis of P4, then Theorem SSRLT [1716] guarantees we will have a
spanning set of R(T ). A basis of P4 is {1, x, x2, x3, x4}. If we transform the elements of this
set, we get the set {0, 1, 2x, 3x2, 4x3} which is a spanning set for R(T ). Reducing this to a
linearly independent set, we find that {1, 2x, 3x2, 4x3} is a basis of R(T ). Since R(T ) and
P3 both have dimension 4, T is surjective.

C40 Contributed by Robert Beezer Statement [1732]
We wish to find an output vector v that has no associated input. This is the same as
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requiring that there is no solution to the equality

v = T

ab
c

 =

2a+ 3b− c
2b− 2c
a− b+ 2c

 = a

2
0
1

+ b

 3
2
−1

+ c

−1
−2
2


In other words, we would like to find an element of C3 not in the set

Y =

〈
2

0
1

 ,
 3

2
−1

 ,
−1
−2
2


〉

If we make these vectors the rows of a matrix, and row-reduce, Theorem BRS [843] provides
an alternate description of Y ,

Y =

〈
2

0
1

 ,
 0

4
−5


〉
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If we add these vectors together, and then change the third component of the result, we will

create a vector that lies outside of Y , say v =

2
4
9

.

T15 Contributed by Robert Beezer Statement [1733]
This question asks us to establish that one set (R(S ◦ T )) is a subset of another (R(S)).
Choose an element in the “smaller” set, say w ∈ R(S ◦ T ). Then we know that there is a
vector u ∈ U such that

w = (S ◦ T ) (u) = S (T (u))

Now define v = T (u), so that then

S (v) = S (T (u)) = w

This statement is sufficient to show that w ∈ R(S), so w is an element of the “larger” set,
and R(S ◦ T ) ⊆ R(S).
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T20 Contributed by Andy Zimmer Statement [1733]
This is an equality of sets, so we want to establish two subset conditions (Definition SE
[2327]).

First, show C(A) ⊆ R(T ). Choose y ∈ C(A). Then by Definition CSM [808] and
Definition MVP [661] there is a vector x ∈ Cn such that Ax = y. Then

T (x) = Ax Definition of T

= y

This statement qualifies y as a member of R(T ) (Definition RLT [1701]), so C(A) ⊆ R(T ).
Now, show R(T ) ⊆ C(A). Choose y ∈ R(T ). Then by Definition RLT [1701], there is a

vector x in Cn such that T (x) = y. Then

Ax = T (x) Definition of T

= y

So by Definition CSM [808] and Definition MVP [661], y qualifies for membership in C(A)
and so R(T ) ⊆ C(A).
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Section IVLT

Invertible Linear Transformations

In this section we will conclude our introduction to linear transformations by bringing to-
gether the twin properties of injectivity and surjectivity and consider linear transformations
with both of these properties.

Subsection IVLT
Invertible Linear Transformations

One preliminary definition, and then we will have our main definition for this section.
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Definition IDLT
Identity Linear Transformation
The identity linear transformation on the vector space W is defined as

IW : W 7→ W, IW (w) = w

4
Informally, IW is the “do-nothing” function. You should check that IW is really a linear

transformation, as claimed, and then compute its kernel and range to see that it is both
injective and surjective. All of these facts should be straightforward to verify (Exercise
IVLT.T05 [1800]). With this in hand we can make our main definition.

Definition IVLT
Invertible Linear Transformations
Suppose that T : U 7→ V is a linear transformation. If there is a function S : V 7→ U such
that

S ◦ T = IU T ◦ S = IV
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then T is invertible. In this case, we call S the inverse of T and write S = T−1. 4

Informally, a linear transformation T is invertible if there is a companion linear trans-
formation, S, which “undoes” the action of T . When the two linear transformations are
applied consecutively (composition), in either order, the result is to have no real effect. It is
entirely analogous to squaring a positive number and then taking its (positive) square root.

Here is an example of a linear transformation that is invertible. As usual at the beginning
of a section, do not be concerned with where S came from, just understand how it illustrates
Definition IVLT [1750].

Example AIVLT
An invertible linear transformation
Archetype V [2609] is the linear transformation

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=

[
a+ b a− 2c
d b− d

]
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Define the function S : M22 7→ P3 defined by

S

([
a b
c d

])
= (a− c− d) + (c+ d)x+

1

2
(a− b− c− d)x2 + cx3

Then

(T ◦ S)

([
a b
c d

])
= T

(
S

([
a b
c d

]))
= T

(
(a− c− d) + (c+ d)x+

1

2
(a− b− c− d)x2 + cx3

)
=

[
(a− c− d) + (c+ d) (a− c− d)− 2(1

2
(a− b− c− d))

c (c+ d)− c
]

=

[
a b
c d

]
= IM22

([
a b
c d

])
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And

(S ◦ T )
(
a+ bx+ cx2 + dx3

)
= S

(
T
(
a+ bx+ cx2 + dx3

))
= S

([
a+ b a− 2c
d b− d

])
= ((a+ b)− d− (b− d)) + (d+ (b− d))x

+

(
1

2
((a+ b)− (a− 2c)− d− (b− d))

)
x2 + (d)x3

= a+ bx+ cx2 + dx3

= IP3

(
a+ bx+ cx2 + dx3

)
For now, understand why these computations show that T is invertible, and that S = T−1.
Maybe even be amazed by how S works so perfectly in concert with T ! We will see later
just how to arrive at the correct form of S (when it is possible). �

It can be as instructive to study a linear transformation that is not invertible.
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Example ANILT
A non-invertible linear transformation
Consider the linear transformation T : C3 7→M22 defined by

T

ab
c

 =

[
a− b 2a+ 2b+ c

3a+ b+ c −2a− 6b− 2c

]
Suppose we were to search for an inverse function S : M22 7→ C3.

First verify that the 2× 2 matrix A =

[
5 3
8 2

]
is not in the range of T . This will amount

to finding an input to T ,

ab
c

, such that

a− b = 5

2a+ 2b+ c = 3
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3a+ b+ c = 8

−2a− 6b− 2c = 2

As this system of equations is inconsistent, there is no input column vector, and A 6∈ R(T ).
How should we define S (A)? Note that

T (S (A)) = (T ◦ S) (A) = IM22 (A) = A

So any definition we would provide for S (A) must then be a column vector that T sends to
A and we would have A ∈ R(T ), contrary to the definition of T . This is enough to see that
there is no function S that will allow us to conclude that T is invertible, since we cannot
provide a consistent definition for S (A) if we assume T is invertible.

Even though we now know that T is not invertible, let’s not leave this example just yet.
Check that

T

 1
−2
4

 =

[
3 2
5 2

]
= B T

 0
−3
8

 =

[
3 2
5 2

]
= B
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How would we define S (B)?

S (B) = S

T
 1
−2
4

 = (S ◦ T )

 1
−2
4

 = IC3

 1
−2
4

 =

 1
−2
4


or

S (B) = S

T
 0
−3
8

 = (S ◦ T )

 0
−3
8

 = IC3

 0
−3
8

 =

 0
−3
8


Which definition should we provide for S (B)? Both are necessary. But then S is not a
function. So we have a second reason to know that there is no function S that will allow us
to conclude that T is invertible. It happens that there are infinitely many column vectors
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that S would have to take to B. Construct the kernel of T ,

K(T ) =

〈
−1
−1
4


〉

Now choose either of the two inputs used above for T and add to it a scalar multiple of the
basis vector for the kernel of T . For example,

x =

 1
−2
4

+ (−2)

−1
−1
4

 =

 3
0
−4


then verify that T (x) = B. Practice creating a few more inputs for T that would be sent to
B, and see why it is hopeless to think that we could ever provide a reasonable definition for
S (B)! There is a “whole subspace’s worth” of values that S (B) would have to take on. �

In Example ANILT [1754] you may have noticed that T is not surjective, since the matrix
A was not in the range of T . And T is not injective since there are two different input column
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vectors that T sends to the matrix B. Linear transformations T that are not surjective lead
to putative inverse functions S that are undefined on inputs outside of the range of T .
Linear transformations T that are not injective lead to putative inverse functions S that are
multiply-defined on each of their inputs. We will formalize these ideas in Theorem ILTIS
[1761].

But first notice in Definition IVLT [1750] that we only require the inverse (when it exists)
to be a function. When it does exist, it too is a linear transformation.

Theorem ILTLT
Inverse of a Linear Transformation is a Linear Transformation
Suppose that T : U 7→ V is an invertible linear transformation. Then the function T−1 : V 7→
U is a linear transformation. �

Proof We work through verifying Definition LT [1550] for T−1, using the fact that T is a
linear transformation to obtain the second equality in each half of the proof. To this end,
suppose x, y ∈ V and α ∈ C.

T−1 (x + y) = T−1
(
T
(
T−1 (x)

)
+ T

(
T−1 (y)

))
Definition IVLT [1750]
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= T−1
(
T
(
T−1 (x) + T−1 (y)

))
Definition LT [1550]

= T−1 (x) + T−1 (y) Definition IVLT [1750]

Now check the second defining property of a linear transformation for T−1,

T−1 (αx) = T−1
(
αT
(
T−1 (x)

))
Definition IVLT [1750]

= T−1
(
T
(
αT−1 (x)

))
Definition LT [1550]

= αT−1 (x) Definition IVLT [1750]

�

So T−1 fulfills the requirements of Definition LT [1550] and is therefore a linear transfor-
mation. So when T has an inverse, T−1 is also a linear transformation. Additionally, T−1 is
invertible and its inverse is what you might expect.

Theorem IILT
Inverse of an Invertible Linear Transformation
Suppose that T : U 7→ V is an invertible linear transformation. Then T−1 is an invertible
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linear transformation and (T−1)
−1

= T . �

Proof Because T is invertible, Definition IVLT [1750] tells us there is a function T−1 : V 7→
U such that

T−1 ◦ T = IU T ◦ T−1 = IV

Additionally, Theorem ILTLT [1758] tells us that T−1 is more than just a function, it is a
linear transformation. Now view these two statements as properties of the linear transfor-
mation T−1. In light of Definition IVLT [1750], they together say that T−1 is invertible (let
T play the role of S in the statement of the definition). Furthermore, the inverse of T−1 is
then T , i.e. (T−1)

−1
= T . �
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Subsection IV
Invertibility

We now know what an inverse linear transformation is, but just which linear transformations
have inverses? Here is a theorem we have been preparing for all chapter long.

Theorem ILTIS
Invertible Linear Transformations are Injective and Surjective
Suppose T : U 7→ V is a linear transformation. Then T is invertible if and only if T is
injective and surjective. �

Proof (⇒) Since T is presumed invertible, we can employ its inverse, T−1 (Definition IVLT
[1750]). To see that T is injective, suppose x, y ∈ U and assume that T (x) = T (y),

x = IU (x) Definition IDLT [1750]

=
(
T−1 ◦ T) (x) Definition IVLT [1750]
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= T−1 (T (x)) Definition LTC [1606]

= T−1 (T (y)) Definition ILT [1630]

=
(
T−1 ◦ T) (y) Definition LTC [1606]

= IU (y) Definition IVLT [1750]

= y Definition IDLT [1750]

So by Definition ILT [1630] T is injective. To check that T is surjective, suppose v ∈ V .
Then T−1 (v) is a vector in U . Compute

T
(
T−1 (v)

)
=
(
T ◦ T−1

)
(v) Definition LTC [1606]

= IV (v) Definition IVLT [1750]

= v Definition IDLT [1750]

So there is an element from U , when used as an input to T (namely T−1 (v)) that produces
the desired output, v, and hence T is surjective by Definition SLT [1687].
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(⇐) Now assume that T is both injective and surjective. We will build a function
S : V 7→ U that will establish that T is invertible. To this end, choose any v ∈ V . Since T
is surjective, Theorem RSLT [1710] says R(T ) = V , so we have v ∈ R(T ). Theorem RPI
[1720] says that the pre-image of v, T−1 (v), is nonempty. So we can choose a vector from
the pre-image of v, say u. In other words, there exists u ∈ T−1 (v).

Since T−1 (v) is non-empty, Theorem KPI [1651] then says that

T−1 (v) = {u + z | z ∈ K(T )}
However, because T is injective, by Theorem KILT [1653] the kernel is trivial, K(T ) = {0}.
So the pre-image is a set with just one element, T−1 (v) = {u}. Now we can define S by
S (v) = u. This is the key to this half of this proof. Normally the preimage of a vector from
the codomain might be an empty set, or an infinite set. But surjectivity requires that the
preimage not be empty, and then injectivity limits the preimage to a singleton. Since our
choice of v was arbitrary, we know that every pre-image for T is a set with a single element.
This allows us to construct S as a function. Now that it is defined, verifying that it is the
inverse of T will be easy. Here we go.
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Choose u ∈ U . Define v = T (u). Then T−1 (v) = {u}, so that S (v) = u and,

(S ◦ T ) (u) = S (T (u)) = S (v) = u = IU (u)

and since our choice of u was arbitrary we have function equality, S ◦ T = IU .
Now choose v ∈ V . Define u to be the single vector in the set T−1 (v), in other words,

u = S (v). Then T (u) = v, so

(T ◦ S) (v) = T (S (v)) = T (u) = v = IV (v)

and since our choice of v was arbitrary we have function equality, T ◦ S = IV .
�

When a linear transformation is both injective and surjective, the pre-image of any ele-
ment of the codomain is a set of size one (a “singleton”). This fact allowed us to construct
the inverse linear transformation in one half of the proof of Theorem ILTIS [1761] (see Tech-
nique C [2347]). We can follow this approach to construct the inverse of a specific linear
transformation, as the next example shows.
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Example CIVLT
Computing the Inverse of a Linear Transformations
Consider the linear transformation T : S22 7→ P2 defined by

T

([
a b
b c

])
= (a+ b+ c) + (−a+ 2c)x+ (2a+ 3b+ 6c)x2

T is invertible, which you are able to verify, perhaps by determining that the kernel of T is
empty and the range of T is all of P2. This will be easier once we have Theorem RPNDD
[1781], which appears later in this section.

By Theorem ILTIS [1761] we know T−1 exists, and it will be critical shortly to realize
that T−1 is automatically known to be a linear transformation as well (Theorem ILTLT
[1758]). To determine the complete behavior of T−1 : P2 7→ S22 we can simply determine its
action on a basis for the domain, P2. This is the substance of Theorem LTDB [1582], and
an excellent example of its application. Choose any basis of P2, the simpler the better, such
as B = {1, x, x2}. Values of T−1 for these three basis elements will be the single elements
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of their preimages. In turn, we have

T−1 (1) :

T

([
a b
b c

])
= 1 + 0x+ 0x2 1 1 1 1

−1 0 2 0
2 3 6 0

 RREF−−−→
1 0 0 −6

0 1 0 10
0 0 1 −3


(preimage) T−1 (1) =

{[−6 10
10 −3

]}
(function) T−1 (1) =

[−6 10
10 −3

]
T−1 (x) :

T

([
a b
b c

])
= 0 + 1x+ 0x2
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 1 1 1 0
−1 0 2 1
2 3 6 0

 RREF−−−→
1 0 0 −3

0 1 0 4
0 0 1 −1


(preimage) T−1 (x) =

{[−3 4
4 −1

]}
(function) T−1 (x) =

[−3 4
4 −1

]
T−1

(
x2
)

:

T

([
a b
b c

])
= 0 + 0x+ 1x2 1 1 1 0

−1 0 2 0
2 3 6 1

 RREF−−−→
1 0 0 2

0 1 0 −3
0 0 1 1
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(preimage) T−1
(
x2
)

=

{[
2 −3
−3 1

]}
(function) T−1

(
x2
)

=

[
2 −3
−3 1

]
Theorem LTDB [1582] says, informally, “it is enough to know what a linear transformation
does to a basis.” Formally, we have the outputs of T−1 for a basis, so by Theorem LTDB
[1582] there is a unique linear transformation with these outputs. So we put this information
to work. The key step here is that we can convert any element of P2 into a linear combination
of the elements of the basis B (Theorem VRRB [1090]). We are after a “formula” for the
value of T−1 on a generic element of P2, say p+ qx+ rx2.

T−1
(
p+ qx+ rx2

)
= T−1

(
p(1) + q(x) + r(x2)

)
Theorem VRRB [1090]

= pT−1 (1) + qT−1 (x) + rT−1
(
x2
)

Theorem LTLC [1580]

= p

[−6 10
10 −3

]
+ q

[−3 4
4 −1

]
+ r

[
2 −3
−3 1

]
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=

[−6p− 3q + 2r 10p+ 4q − 3r
10p+ 4q − 3r −3p− q + r

]
Notice how a linear combination in the domain of T−1 has been translated into a linear
combination in the codomain of T−1 since we know T−1 is a linear transformation by Theorem
ILTLT [1758].

Also, notice how the augmented matrices used to determine the three pre-images could
be combined into one calculation of a matrix in extended echelon form, reminiscent of a pro-
cedure we know for computing the inverse of a matrix (see Example CMI [737]). Hmmmm.

�

We will make frequent use of the characterization of invertible linear transformations
provided by Theorem ILTIS [1761]. The next theorem is a good example of this, and we will
use it often, too.

Theorem CIVLT
Composition of Invertible Linear Transformations
Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then the
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composition, (S ◦ T ) : U 7→ W is an invertible linear transformation. �

Proof Since S and T are both linear transformations, S ◦T is also a linear transformation
by Theorem CLTLT [1607]. Since S and T are both invertible, Theorem ILTIS [1761] says
that S and T are both injective and surjective. Then Theorem CILTI [1664] says S ◦ T is
injective, and Theorem CSLTS [1725] says S ◦ T is surjective. Now apply the “other half”
of Theorem ILTIS [1761] and conclude that S ◦ T is invertible. �

When a composition is invertible, the inverse is easy to construct.

Theorem ICLT
Inverse of a Composition of Linear Transformations
Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then S ◦ T
is invertible and (S ◦ T )−1 = T−1 ◦ S−1. �

Proof Compute, for all w ∈ W(
(S ◦ T ) ◦ (T−1 ◦ S−1

))
(w) = S

(
T
(
T−1

(
S−1 (w)

)))
= S

(
IV
(
S−1 (w)

))
Definition IVLT [1750]
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= S
(
S−1 (w)

)
Definition IDLT [1750]

= w Definition IVLT [1750]

= IW (w) Definition IDLT [1750]

so (S ◦ T ) ◦ (T−1 ◦ S−1) = IW and also((
T−1 ◦ S−1

) ◦ (S ◦ T )
)

(u) = T−1
(
S−1 (S (T (u)))

)
= T−1 (IV (T (u))) Definition IVLT [1750]

= T−1 (T (u)) Definition IDLT [1750]

= u Definition IVLT [1750]

= IU (u) Definition IDLT [1750]

so (T−1 ◦ S−1)◦ (S ◦ T ) = IU . By Definition IVLT [1750], S ◦T is invertible and (S ◦ T )−1 =
T−1 ◦ S−1. �

Notice that this theorem not only establishes what the inverse of S◦T is, it also duplicates
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the conclusion of Theorem CIVLT [1769] and also establishes the invertibility of S ◦ T . But
somehow, the proof of Theorem CIVLT [1769] is nicer way to get this property.

Does Theorem ICLT [1770] remind you of the flavor of any theorem we have seen about
matrices? (Hint: Think about getting dressed.) Hmmmm.

Subsection SI
Structure and Isomorphism

A vector space is defined (Definition VS [956]) as a set of objects (“vectors”) endowed with
a definition of vector addition (+) and a definition of scalar multiplication (written with
juxtaposition). Many of our definitions about vector spaces involve linear combinations
(Definition LC [1020]), such as the span of a set (Definition SS [1023]) and linear indepen-
dence (Definition LI [1061]). Other definitions are built up from these ideas, such as bases
(Definition B [1121]) and dimension (Definition D [1177]). The defining properties of a lin-
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ear transformation require that a function “respect” the operations of the two vector spaces
that are the domain and the codomain (Definition LT [1550]). Finally, an invertible linear
transformation is one that can be “undone” — it has a companion that reverses its effect.
In this subsection we are going to begin to roll all these ideas into one.

A vector space has “structure” derived from definitions of the two operations and the
requirement that these operations interact in ways that satisfy the ten properties of Definition
VS [956]. When two different vector spaces have an invertible linear transformation defined
between them, then we can translate questions about linear combinations (spans, linear
independence, bases, dimension) from the first vector space to the second. The answers
obtained in the second vector space can then be translated back, via the inverse linear
transformation, and interpreted in the setting of the first vector space. We say that these
invertible linear transformations “preserve structure.” And we say that the two vector spaces
are “structurally the same.” The precise term is “isomorphic,” from Greek meaning “of the
same form.” Let’s begin to try to understand this important concept.

Definition IVS
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Isomorphic Vector Spaces
Two vector spaces U and V are isomorphic if there exists an invertible linear transformation
T with domain U and codomain V , T : U 7→ V . In this case, we write U ∼= V , and the linear
transformation T is known as an isomorphism between U and V . 4

A few comments on this definition. First, be careful with your language (Technique L
[2341]). Two vector spaces are isomorphic, or not. It is a yes/no situation and the term
only applies to a pair of vector spaces. Any invertible linear transformation can be called an
isomorphism, it is a term that applies to functions. Second, a given pair of vector spaces there
might be several different isomorphisms between the two vector spaces. But it only takes the
existence of one to call the pair isomorphic. Third, U isomorphic to V , or V isomorphic to U?
Doesn’t matter, since the inverse linear transformation will provide the needed isomorphism
in the “opposite” direction. Being “isomorphic to” is an equivalence relation on the set of
all vector spaces (see Theorem SER [1490] for a reminder about equivalence relations).

Example IVSAV
Isomorphic vector spaces, Archetype V
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Archetype V [2609] is a linear transformation from P3 to M22,

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=

[
a+ b a− 2c
d b− d

]
Since it is injective and surjective, Theorem ILTIS [1761] tells us that it is an invertible linear
transformation. By Definition IVS [1774] we say P3 and M22 are isomorphic.

At a basic level, the term “isomorphic” is nothing more than a codeword for the presence
of an invertible linear transformation. However, it is also a description of a powerful idea, and
this power only becomes apparent in the course of studying examples and related theorems.
In this example, we are led to believe that there is nothing “structurally” different about P3

and M22. In a certain sense they are the same. Not equal, but the same. One is as good as
the other. One is just as interesting as the other.

Here is an extremely basic application of this idea. Suppose we want to compute the
following linear combination of polynomials in P3,

5(2 + 3x− 4x2 + 5x3) + (−3)(3− 5x+ 3x2 + x3)
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Rather than doing it straight-away (which is very easy), we will apply the transformation T
to convert into a linear combination of matrices, and then compute in M22 according to the
definitions of the vector space operations there (Example VSM [961]),

T
(
5(2 + 3x− 4x2 + 5x3) + (−3)(3− 5x+ 3x2 + x3)

)
= 5T

(
2 + 3x− 4x2 + 5x3

)
+ (−3)T

(
3− 5x+ 3x2 + x3

)
Theorem LTLC [1580]

= 5

[
5 10
5 −2

]
+ (−3)

[−2 −3
1 −6

]
Definition of T

=

[
31 59
22 8

]
Operations in M22

Now we will translate our answer back to P3 by applying T−1, which we found in Example
AIVLT [1751],

T−1 : M22 7→ P3, T−1

([
a b
c d

])
= (a− c− d) + (c+ d)x+

1

2
(a− b− c− d)x2 + cx3
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We compute,

T−1

([
31 59
22 8

])
= 1 + 30x− 29x2 + 22x3

which is, as expected, exactly what we would have computed for the original linear combi-
nation had we just used the definitions of the operations in P3 (Example VSP [963]). Notice
this is meant only as an illustration and not a suggested route for doing this particular
computation. �

Checking the dimensions of two vector spaces can be a quick way to establish that they
are not isomorphic. Here’s the theorem.

Theorem IVSED
Isomorphic Vector Spaces have Equal Dimension
Suppose U and V are isomorphic vector spaces. Then dim (U) = dim (V ). �

Proof If U and V are isomorphic, there is an invertible linear transformation T : U 7→ V
(Definition IVS [1774]). T is injective by Theorem ILTIS [1761] and so by Theorem ILTD
[1662], dim (U) ≤ dim (V ). Similarly, T is surjective by Theorem ILTIS [1761] and so by
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Theorem SLTD [1722], dim (U) ≥ dim (V ). The net effect of these two inequalities is that
dim (U) = dim (V ). �

The contrapositive of Theorem IVSED [1777] says that if U and V have different dimen-
sions, then they are not isomorphic. Dimension is the simplest “structural” characteristic
that will allow you to distinguish non-isomorphic vector spaces. For example P6 is not iso-
morphic to M34 since their dimensions (7 and 12, respectively) are not equal. With tools
developed in Section VR [1819] we will be able to establish that the converse of Theorem
IVSED [1777] is true. Think about that one for a moment.
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Subsection RNLT
Rank and Nullity of a Linear Transformation

Just as a matrix has a rank and a nullity, so too do linear transformations. And just like
the rank and nullity of a matrix are related (they sum to the number of columns, Theorem
RPNC [1201]) the rank and nullity of a linear transformation are related. Here are the
definitions and theorems, see the Archetypes (Appendix A [2372]) for loads of examples.

Definition ROLT
Rank Of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then the rank of T , r (T ), is the
dimension of the range of T ,

r (T ) = dim (R(T ))
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(This definition contains Notation ROLT.) 4
Definition NOLT
Nullity Of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then the nullity of T , n (T ), is the
dimension of the kernel of T ,

n (T ) = dim (K(T ))

(This definition contains Notation NOLT.) 4
Here are two quick theorems.

Theorem ROSLT
Rank Of a Surjective Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then the rank of T is the dimension of
V , r (T ) = dim (V ), if and only if T is surjective. �

Proof By Theorem RSLT [1710], T is surjective if and only if R(T ) = V . Applying
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Definition ROLT [1779], R(T ) = V if and only if r (T ) = dim (R(T )) = dim (V ). �

Theorem NOILT
Nullity Of an Injective Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then the nullity of T is zero, n (T ) = 0,
if and only if T is injective. �

Proof By Theorem KILT [1653], T is injective if and only if K(T ) = {0}. Applying
Definition NOLT [1780], K(T ) = {0} if and only if n (T ) = 0. �

Just as injectivity and surjectivity come together in invertible linear transformations,
there is a clear relationship between rank and nullity of a linear transformation. If one is
big, the other is small.

Theorem RPNDD
Rank Plus Nullity is Domain Dimension
Suppose that T : U 7→ V is a linear transformation. Then

r (T ) + n (T ) = dim (U)
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�

Proof Let r = r (T ) and s = n (T ). Suppose that R = {v1, v2, v3, . . . , vr} ⊆ V is a basis
of the range of T , R(T ), and S = {u1, u2, u3, . . . , us} ⊆ U is a basis of the kernel of T ,
K(T ). Note that R and S are possibly empty, which means that some of the sums in this
proof are “empty” and are equal to the zero vector.

Because the elements of R are all in the range of T , each must have a non-empty pre-
image by Theorem RPI [1720]. Choose vectors wi ∈ U , 1 ≤ i ≤ r such that wi ∈ T−1 (vi).
So T (wi) = vi, 1 ≤ i ≤ r. Consider the set

B = {u1, u2, u3, . . . , us, w1, w2, w3, . . . , wr}

We claim that B is a basis for U .
To establish linear independence for B, begin with a relation of linear dependence on B.

So suppose there are scalars a1, a2, a3, . . . , as and b1, b2, b3, . . . , br

0 = a1u1 + a2u2 + a3u3 + · · ·+ asus + b1w1 + b2w2 + b3w3 + · · ·+ brwr
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Then

0 = T (0) Theorem LTTZZ [1562]

= T (a1u1 + a2u2 + a3u3 + · · ·+ asus+

b1w1 + b2w2 + b3w3 + · · ·+ brwr) Definition LI [1061]

= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ asT (us) +

b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Theorem LTLC [1580]

= a10 + a20 + a30 + · · ·+ as0+

b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Definition KLT [1643]

= 0 + 0 + 0 + · · ·+ 0+

b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Theorem ZVSM [980]

= b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Property Z [957]

= b1v1 + b2v2 + b3v3 + · · ·+ brvr Definition PI [1592]

This is a relation of linear dependence on R (Definition RLD [1061]), and since R is a linearly
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independent set (Definition LI [1061]), we see that b1 = b2 = b3 = . . . = br = 0. Then the
original relation of linear dependence on B becomes

0 = a1u1 + a2u2 + a3u3 + · · ·+ asus + 0w1 + 0w2 + . . .+ 0wr

= a1u1 + a2u2 + a3u3 + · · ·+ asus + 0 + 0 + . . .+ 0 Theorem ZSSM [979]

= a1u1 + a2u2 + a3u3 + · · ·+ asus Property Z [957]

But this is again a relation of linear independence (Definition RLD [1061]), now on the set S.
Since S is linearly independent (Definition LI [1061]), we have a1 = a2 = a3 = . . . = ar = 0.
Since we now know that all the scalars in the relation of linear dependence on B must be
zero, we have established the linear independence of S through Definition LI [1061].

To now establish that B spans U , choose an arbitrary vector u ∈ U . Then T (u) ∈ R(T ),
so there are scalars c1, c2, c3, . . . , cr such that

T (u) = c1v1 + c2v2 + c3v3 + · · ·+ crvr

Use the scalars c1, c2, c3, . . . , cr to define a vector y ∈ U ,

y = c1w1 + c2w2 + c3w3 + · · ·+ crwr
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Then

T (u− y) = T (u)− T (y) Theorem LTLC [1580]

= T (u)− T (c1w1 + c2w2 + c3w3 + · · ·+ crwr) Substitution

= T (u)− (c1T (w1) + c2T (w2) + · · ·+ crT (wr)) Theorem LTLC [1580]

= T (u)− (c1v1 + c2v2 + c3v3 + · · ·+ crvr) wi ∈ T−1 (vi)

= T (u)− T (u) Substitution

= 0 Property AI [957]

So the vector u − y is sent to the zero vector by T and hence is an element of the kernel
of T . As such it can be written as a linear combination of the basis vectors for K(T ), the
elements of the set S. So there are scalars d1, d2, d3, . . . , ds such that

u− y = d1u1 + d2u2 + d3u3 + · · ·+ dsus

Then

u = (u− y) + y
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= d1u1 + d2u2 + d3u3 + · · ·+ dsus + c1w1 + c2w2 + c3w3 + · · ·+ crwr

This says that for any vector, u, from U , there exist scalars (d1, d2, d3, . . . , ds, c1, c2, c3, . . . , cr)
that form u as a linear combination of the vectors in the set B. In other words, B spans U
(Definition SS [1023]).

So B is a basis (Definition B [1121]) of U with s+ r vectors, and thus

dim (U) = s+ r = n (T ) + r (T )

as desired. �

Theorem RPNC [1201] said that the rank and nullity of a matrix sum to the number of
columns of the matrix. This result is now an easy consequence of Theorem RPNDD [1781]
when we consider the linear transformation T : Cn 7→ Cm defined with the m× n matrix A
by T (x) = Ax. The range and kernel of T are identical to the column space and null space
of the matrix A (Exercise ILT.T20 [1673], Exercise SLT.T20 [1733]), so the rank and nullity
of the matrix A are identical to the rank and nullity of the linear transformation T . The
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dimension of the domain of T is the dimension of Cn, exactly the number of columns for the
matrix A.

This theorem can be especially useful in determining basic properties of linear transfor-
mations. For example, suppose that T : C6 7→ C6 is a linear transformation and you are able
to quickly establish that the kernel is trivial. Then n (T ) = 0. First this means that T is
injective by Theorem NOILT [1781]. Also, Theorem RPNDD [1781] becomes

6 = dim
(
C6
)

= r (T ) + n (T ) = r (T ) + 0 = r (T )

So the rank of T is equal to the rank of the codomain, and by Theorem ROSLT [1780] we
know T is surjective. Finally, we know T is invertible by Theorem ILTIS [1761]. So from the
determination that the kernel is trivial, and consideration of various dimensions, the theorems
of this section allow us to conclude the existence of an inverse linear transformation for T .

Similarly, Theorem RPNDD [1781] can be used to provide alternative proofs for Theorem
ILTD [1662], Theorem SLTD [1722] and Theorem IVSED [1777]. It would be an interesting
exercise to construct these proofs.
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It would be instructive to study the archetypes that are linear transformations and see
how many of their properties can be deduced just from considering only the dimensions of
the domain and codomain. Then add in just knowledge of either the nullity or rank, and so
how much more you can learn about the linear transformation. The table preceding all of
the archetypes (Appendix A [2372]) could be a good place to start this analysis.

Subsection SLELT
Systems of Linear Equations and Linear Transformations

This subsection does not really belong in this section, or any other section, for that matter.
It is just the right time to have a discussion about the connections between the central topic
of linear algebra, linear transformations, and our motivating topic from Chapter SLE [2],
systems of linear equations. We will discuss several theorems we have seen already, but we
will also make some forward-looking statements that will be justified in Chapter R [1818].
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Archetype D [2419] and Archetype E [2431] are ideal examples to illustrate connections
with linear transformations. Both have the same coefficient matrix,

D =

 2 1 7 −7
−3 4 −5 −6
1 1 4 −5


To apply the theory of linear transformations to these two archetypes, employ matrix mul-
tiplication (Definition MM [672]) and define the linear transformation,

T : C4 7→ C3, T (x) = Dx = x1

 2
−3
1

+ x2

1
4
1

+ x3

 7
−5
4

+ x4

−7
−6
−5


Theorem MBLT [1570] tells us that T is indeed a linear transformation. Archetype D [2419]

asks for solutions to LS(D, b), where b =

 8
−12
−4

. In the language of linear transformations
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this is equivalent to asking for T−1 (b). In the language of vectors and matrices it asks for
a linear combination of the four columns of D that will equal b. One solution listed is

w =


7
8
1
3

. With a non-empty preimage, Theorem KPI [1651] tells us that the complete

solution set of the linear system is the preimage of b,

w +K(T ) = {w + z | z ∈ K(T )}
The kernel of the linear transformation T is exactly the null space of the matrix D (see
Exercise ILT.T20 [1673]), so this approach to the solution set should be reminiscent of
Theorem PSPHS [368]. The kernel of the linear transformation is the preimage of the zero
vector, exactly equal to the solution set of the homogeneous system LS(D, 0). Since D has
a null space of dimension two, every preimage (and in particular the preimage of b) is as
“big” as a subspace of dimension two (but is not a subspace).

Archetype E [2431] is identical to Archetype D [2419] but with a different vector of
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constants, d =

2
3
2

. We can use the same linear transformation T to discuss this system

of equations since the coefficient matrix is identical. Now the set of solutions to LS(D, d)
is the pre-image of d, T−1 (d). However, the vector d is not in the range of the linear
transformation (nor is it in the column space of the matrix, since these two sets are equal
by Exercise SLT.T20 [1733]). So the empty pre-image is equivalent to the inconsistency of
the linear system.

These two archetypes each have three equations in four variables, so either the resulting
linear systems are inconsistent, or they are consistent and application of Theorem CMVEI
[182] tells us that the system has infinitely many solutions. Considering these same pa-
rameters for the linear transformation, the dimension of the domain, C4, is four, while the
codomain, C3, has dimension three. Then

n (T ) = dim
(
C4
)− r (T ) Theorem RPNDD [1781]

= 4− dim (R(T )) Definition ROLT [1779]
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≥ 4− 3 R(T ) subspace of C3

= 1

So the kernel of T is nontrivial simply by considering the dimensions of the domain (number of
variables) and the codomain (number of equations). Pre-images of elements of the codomain
that are not in the range of T are empty (inconsistent systems). For elements of the codomain
that are in the range of T (consistent systems), Theorem KPI [1651] tells us that the pre-
images are built from the kernel, and with a non-trivial kernel, these pre-images are infinite
(infinitely many solutions).

When do systems of equations have unique solutions? Consider the system of linear
equations LS(C, f) and the linear transformation S (x) = Cx. If S has a trivial kernel,
then pre-images will either be empty or be finite sets with single elements. Correspondingly,
the coefficient matrix C will have a trivial null space and solution sets will either be empty
(inconsistent) or contain a single solution (unique solution). Should the matrix be square
and have a trivial null space then we recognize the matrix as being nonsingular. A square
matrix means that the corresponding linear transformation, T , has equal-sized domain and

Version 2.11



Subsection IVLT.SLELT Systems of Linear Equations and Linear Transformations 1801

codomain. With a nullity of zero, T is injective, and also Theorem RPNDD [1781] tells us that
rank of T is equal to the dimension of the domain, which in turn is equal to the dimension of
the codomain. In other words, T is surjective. Injective and surjective, and Theorem ILTIS
[1761] tells us that T is invertible. Just as we can use the inverse of the coefficient matrix to
find the unique solution of any linear system with a nonsingular coefficient matrix (Theorem
SNCM [783]), we can use the inverse of the linear transformation to construct the unique
element of any pre-image (proof of Theorem ILTIS [1761]).

The executive summary of this discussion is that to every coefficient matrix of a system
of linear equations we can associate a natural linear transformation. Solution sets for sys-
tems with this coefficient matrix are preimages of elements of the codomain of the linear
transformation. For every theorem about systems of linear equations there is an analogue
about linear transformations. The theory of linear transformations provides all the tools to
recreate the theory of solutions to linear systems of equations.

We will continue this adventure in Chapter R [1818].
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Subsection READ
Reading Questions

1. What conditions allow us to easily determine if a linear transformation is invertible?

2. What does it mean to say two vector spaces are isomorphic? Both technically, and
informally?

3. How do linear transformations relate to systems of linear equations?

Version 2.11



Subsection IVLT.EXC Exercises 1803

Subsection EXC
Exercises

C10 The archetypes below are linear transformations of the form T : U 7→ V that are
invertible. For each, the inverse linear transformation is given explicitly as part of the
archetype’s description. Verify for each linear transformation that

T−1 ◦ T = IU T ◦ T−1 = IV

Archetype R [2581],
Archetype V [2609],
Archetype W [2615]
Contributed by Robert Beezer

C20 Determine if the linear transformation T : P2 7→ M22 is (a) injective, (b) surjective,
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(c) invertible.

T
(
a+ bx+ cx2

)
=

[
a+ 2b− 2c 2a+ 2b
−a+ b− 4c 3a+ 2b+ 2c

]
Contributed by Robert Beezer Solution [1802]

C21 Determine if the linear transformation S : P3 7→ M22 is (a) injective, (b) surjective,
(c) invertible.

S
(
a+ bx+ cx2 + dx3

)
=

[−a+ 4b+ c+ 2d 4a− b+ 6c− d
a+ 5b− 2c+ 2d a+ 2c+ 5d

]

Contributed by Robert Beezer Solution [1803]

C25 For each linear transformation below: (a) Find the matrix representation of T , (b)
Calculate n(T ), (c) Calculate r(T ), (d) Graph the image in either R2 or R3 as appropriate,
(e) How many dimensions are lost?, and (f) How many dimensions are preserved?
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1. T : C3 7→ C3 given by T

xy
z

 =

xx
x



2. T : C3 7→ C3 given by T

xy
z

 =

xy
0



3. T : C3 7→ C2 given by T

xy
z

 =

[
x
x

]

4. T : C3 7→ C2 given by T

xy
z

 =

[
x
y

]
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5. T : C2 7→ C2 given by T

([
x
y

])
=

xy
0



6. T : C2 7→ C3 given by T

([
x
y

])
=

 x
y

x+ y



Contributed by Chris Black

C50 Consider the linear transformation S : M12 7→ P1 from the set of 1× 2 matrices to the
set of polynomials of degree at most 1, defined by

S
([
a b

])
= (3a+ b) + (5a+ 2b)x

Prove that S is invertible. Then show that the linear transformation

R : P1 7→M12, R (r + sx) =
[
(2r − s) (−5r + 3s)

]
Version 2.11



Subsection IVLT.EXC Exercises 1807

is the inverse of S, that is S−1 = R.
Contributed by Robert Beezer Solution [1805]

M30 The linear transformation S below is invertible. Find a formula for the inverse linear
transformation, S−1.

S : P1 7→M1,2, S (a+ bx) =
[
3a+ b 2a+ b

]
Contributed by Robert Beezer Solution [1807]

M31 The linear transformation R : M12 7→ M21 is invertible. Determine a formula for the
inverse linear transformation R−1 : M21 7→M12.

R
([
a b

])
=

[
a+ 3b

4a+ 11b

]
Contributed by Robert Beezer Solution [1809]
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M50 Rework Example CIVLT [1765], only in place of the basis B for P2, choose instead
to use the basis C = {1, 1 + x, 1 + x+ x2}. This will complicate writing a generic element
of the domain of T−1 as a linear combination of the basis elements, and the algebra will be
a bit messier, but in the end you should obtain the same formula for T−1. The inverse linear
transformation is what it is, and the choice of a particular basis should not influence the
outcome.
Contributed by Robert Beezer

T05 Prove that the identity linear transformation (Definition IDLT [1750]) is both injective
and surjective, and hence invertible.
Contributed by Robert Beezer

T15 Suppose that T : U 7→ V is a surjective linear transformation and dim (U) = dim (V ).
Prove that T is injective.
Contributed by Robert Beezer Solution [1811]

T16 Suppose that T : U 7→ V is an injective linear transformation and dim (U) = dim (V ).
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Prove that T is surjective.
Contributed by Robert Beezer

T30 Suppose that U and V are isomorphic vector spaces. Prove that there are infinitely
many isomorphisms between U and V .
Contributed by Robert Beezer Solution [1811]

Version 2.11



Subsection IVLT.SOL Solutions 1810

Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [1795]
(a) We will compute the kernel of T . Suppose that a+ bx+ cx2 ∈ K(T ). Then[

0 0
0 0

]
= T

(
a+ bx+ cx2

)
=

[
a+ 2b− 2c 2a+ 2b
−a+ b− 4c 3a+ 2b+ 2c

]
and matrix equality (Theorem ME [1466]) yields the homogeneous system of four equations
in three variables,

a+ 2b− 2c = 0

2a+ 2b = 0

−a+ b− 4c = 0
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3a+ 2b+ 2c = 0

The coefficient matrix of this system row-reduces as
1 2 −2
2 2 0
−1 1 −4
3 2 2

 RREF−−−→


1 0 2

0 1 −2
0 0 0
0 0 0


From the existence of non-trivial solutions to this system, we can infer non-zero polynomials
in K(T ). By Theorem KILT [1653] we then know that T is not injective.

(b) Since 3 = dim (P2) < dim (M22) = 4, by Theorem SLTD [1722] T is not surjective.
(c) Since T is not surjective, it is not invertible by Theorem ILTIS [1761].

C21 Contributed by Robert Beezer Statement [1796]
(a) To check injectivity, we compute the kernel of S. To this end, suppose that a + bx +
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cx2 + dx3 ∈ K(S), so[
0 0
0 0

]
= S

(
a+ bx+ cx2 + dx3

)
=

[−a+ 4b+ c+ 2d 4a− b+ 6c− d
a+ 5b− 2c+ 2d a+ 2c+ 5d

]
this creates the homogeneous system of four equations in four variables,

−a+ 4b+ c+ 2d = 0

4a− b+ 6c− d = 0

a+ 5b− 2c+ 2d = 0

a+ 2c+ 5d = 0

The coefficient matrix of this system row-reduces as,
−1 4 1 2
4 −1 6 −1
1 5 −2 2
1 0 2 5

 RREF−−−→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Subsection IVLT.SOL Solutions 1813

We recognize the coefficient matrix as being nonsingular, so the only solution to the system
is a = b = c = d = 0, and the kernel of S is trivial, K(S) = {0 + 0x+ 0x2 + 0x3}. By
Theorem KILT [1653], we see that S is injective.

(b) We can establish that S is surjective by considering the rank and nullity of S.

r (S) = dim (P3)− n (S) Theorem RPNDD [1781]

= 4− 0

= dim (M22)

So, R(S) is a subspace of M22 (Theorem RLTS [1705]) whose dimension equals that of M22.
By Theorem EDYES [1237], we gain the set equality R(S) = M22. Theorem RSLT [1710]
then implies that S is surjective.

(c) Since S is both injective and surjective, Theorem ILTIS [1761] says S is invertible.

C50 Contributed by Robert Beezer Statement [1798]
Determine the kernel of S first. The condition that S

([
a b

])
= 0 becomes (3a+ b) + (5a+
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2b)x = 0 + 0x. Equating coefficients of these polynomials yields the system

3a+ b = 0

5a+ 2b = 0

This homogeneous system has a nonsingular coefficient matrix, so the only solution is a = 0,
b = 0 and thus

K(S) =
{[

0 0
]}

By Theorem KILT [1653], we know S is injective. With n (S) = 0 we employ Theorem
RPNDD [1781] to find

r (S) = r (S) + 0 = r (S) + n (S) = dim (M12) = 2 = dim (P1)

Since R(S) ⊆ P1 and dim (R(S)) = dim (P1), we can apply Theorem EDYES [1237] to
obtain the set equality R(S) = P1 and therefore S is surjective.
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One of the two defining conditions of an invertible linear transformation is (Definition
IVLT [1750])

(S ◦R) (a+ bx) = S (R (a+ bx))

= S
([

(2a− b) (−5a+ 3b)
])

= (3(2a− b) + (−5a+ 3b)) + (5(2a− b) + 2(−5a+ 3b))x

= ((6a− 3b) + (−5a+ 3b)) + ((10a− 5b) + (−10a+ 6b))x

= a+ bx

= IP1 (a+ bx)

That (R ◦ S)
([
a b

])
= IM12

([
a b

])
is similar.

M30 Contributed by Robert Beezer Statement [1799]
(Another approach to this solution would follow Example CIVLT [1765].)

Suppose that S−1 : M1,2 7→ P1 has a form given by

S−1
(
z w

)
= (rz + sw) + (pz + qw)x
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where r, s, p, q are unknown scalars. Then

a+ bx = S−1 (S (a+ bx))

= S−1
([

3a+ b 2a+ b
])

= (r(3a+ b) + s(2a+ b)) + (p(3a+ b) + q(2a+ b))x

= ((3r + 2s)a+ (r + s)b) + ((3p+ 2q)a+ (p+ q)b)x

Equating coefficients of these two polynomials, and then equating coefficients on a and b,
gives rise to 4 equations in 4 variables,

3r + 2s = 1

r + s = 0

3p+ 2q = 0

p+ q = 1
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Subsection IVLT.SOL Solutions 1817

This system has a unique solution: r = 1, s = −1, p = −2, q = 3. So the desired inverse
linear transformation is

S−1
(
z w

)
= (z − w) + (−2z + 3w)x

Notice that the system of 4 equations in 4 variables could be split into two systems, each
with two equations in two variables (and identical coefficient matrices). After making this
split, the solution might feel like computing the inverse of a matrix (Theorem CINM [742]).
Hmmmm.

M31 Contributed by Robert Beezer Statement [1799]
(Another approach to this solution would follow Example CIVLT [1765].)

We are given that R is invertible. The inverse linear transformation can be formulated
by considering the pre-image of a generic element of the codomain. With injectivity and
surjectivity, we know that the pre-image of any element will be a set of size one — it is this
lone element that will be the output of the inverse linear transformation.

Suppose that we set v =

[
x
y

]
as a generic element of the codomain, M21. Then if
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Subsection IVLT.SOL Solutions 1818

[
r s

]
= w ∈ R−1 (v), [

x
y

]
= v = R (w)

=

[
r + 3s

4r + 11s

]
So we obtain the system of two equations in the two variables r and s,

r + 3s = x

4r + 11s = y

With a nonsingular coefficient matrix, we can solve the system using the inverse of the
coefficient matrix,

r = −11x+ 3y

s = 4x− y
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Subsection IVLT.SOL Solutions 1819

So we define,

R−1 (v) = R−1

([
x
y

])
= w =

[
r s

]
=
[−11x+ 3y 4x− y]

T15 Contributed by Robert Beezer Statement [1800]
If T is surjective, then Theorem RSLT [1710] says R(T ) = V , so r (T ) = dim (V ). In turn,
the hypothesis gives r (T ) = dim (U). Then, using Theorem RPNDD [1781],

n (T ) = (r (T ) + n (T ))− r (T ) = dim (U)− dim (U) = 0

With a null space of zero dimension, K(T ) = {0}, and by Theorem KILT [1653] we see that
T is injective. T is both injective and surjective so by Theorem ILTIS [1761], T is invertible.

T30 Contributed by Robert Beezer Statement [1801]
Since U and V are isomorphic, there is at least one isomorphism between them (Definition
IVS [1774]), say T : U 7→ V . As such, T is an invertible linear transformation.
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Subsection IVLT.SOL Solutions 1820

For α ∈ C define the linear transformation S : V 7→ V by S (v) = αv. Convince yourself
that when α 6= 0, S is an invertible linear transformation (Definition IVLT [1750]). Then
the composition, S ◦ T : U 7→ V , is an invertible linear transformation by Theorem CIVLT
[1769]. Once convinced that each non-zero value of α gives rise to a different functions for
S ◦ T , then we have constructed infinitely many isomorphisms from U to V .
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Annotated Acronyms LT
Linear Transformations

Theorem MBLT [1570]

You give me an m × n matrix and I’ll give you a linear transformation T : Cn 7→ Cm. This
is our first hint that there is some relationship between linear transformations and matrices.

Theorem MLTCV [1574]

You give me a linear transformation T : Cn 7→ Cm and I’ll give you an m×n matrix. This is
our second hint that there is some relationship between linear transformations and matrices.
Generalizing this relationship to arbitrary vector spaces (i.e. not just Cn and Cm) will be
the most important idea of Chapter R [1818].

Theorem LTLC [1580]
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A simple idea, and as described in Exercise LT.T20 [1618], equivalent to the Definition LT
[1550]. The statement is really just for convenience, as we’ll quote this one often.

Theorem LTDB [1582]

Another simple idea, but a powerful one. “It is enough to know what a linear transformation
does to a basis.” At the outset of Chapter R [1818], Theorem VRRB [1090] will help us
define a very important function, and then Theorem LTDB [1582] will allow us to understand
that this function is also a linear transformation.

Theorem KPI [1651]

The pre-image will be an important construction in this chapter, and this is one of the most
important descriptions of the pre-image. It should remind you of Theorem PSPHS [368],
which is described in Acronyms V [608]. See Theorem RPI [1720], which is also described
below.

Theorem KILT [1653]
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Kernels and injective linear transformations are intimately related. This result is the con-
nection. Compare with Theorem RSLT [1710] below.

Theorem ILTB [1660]

Injective linear transformations and linear independence are intimately related. This result
is the connection. Compare with Theorem SLTB [1721] below.

Theorem RSLT [1710]

Ranges and surjective linear transformations are intimately related. This result is the con-
nection. Compare with Theorem KILT [1653] above.

Theorem SSRLT [1716]

This theorem provides the most direct way of forming the range of a linear transformation.
The resulting spanning set might well be linearly dependent, and beg for some clean-up,
but that doesn’t stop us from having very quickly formed a reasonable description of the
range. If you find the determination of spanning sets or ranges difficult, this is one worth
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remembering. You can view this as the analogue of forming a column space by a direct
application of Definition CSM [808].

Theorem SLTB [1721]

Surjective linear transformations and spanning sets are intimately related. This result is the
connection. Compare with Theorem ILTB [1660] above.

Theorem RPI [1720]

This is the analogue of Theorem KPI [1651]. Membership in the range is equivalent to
nonempty pre-images.

Theorem ILTIS [1761]

Injectivity and surjectivity are independent concepts. You can have one without the other.
But when you have both, you get invertibility, a linear transformation that can be run
“backwards.” This result might explain the entire structure of the four sections in this
chapter.
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Theorem RPNDD [1781]

This is the promised generalization of Theorem RPNC [1201] about matrices. So the number
of columns of a matrix is the analogue of the dimension of the domain. This will become even
more precise in Chapter R [1818]. For now, this can be a powerful result for determining
dimensions of kernels and ranges, and consequently, the injectivity or surjectivity of linear
transformations. Never underestimate a theorem that counts something.
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Chapter R
Representations

Previous work with linear transformations may have convinced you that we can convert
most questions about linear transformations into questions about systems of equations or
properties of subspaces of Cm. In this section we begin to make these vague notions precise.

1826



Section VR Vector Representations 1827

We have used the word “representation” prior, but it will get a heavy workout in this chapter.
In many ways, everything we have studied so far was in preparation for this chapter.

Section VR

Vector Representations

We begin by establishing an invertible linear transformation between any vector space V of
dimension m and Cm. This will allow us to “go back and forth” between the two vector
spaces, no matter how abstract the definition of V might be.

Definition VR
Vector Representation
Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}. Define a function
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Section VR Vector Representations 1828

ρB : V 7→ Cn as follows. For w ∈ V define the column vector ρB (w) ∈ Cn by

w = [ρB (w)]1 v1 + [ρB (w)]2 v2 + [ρB (w)]3 v3 + · · ·+ [ρB (w)]n vn

(This definition contains Notation VR.) 4
This definition looks more complicated that it really is, though the form above will be

useful in proofs. Simply stated, given w ∈ V , we write w as a linear combination of the
basis elements of B. It is key to realize that Theorem VRRB [1090] guarantees that we can
do this for every w, and furthermore this expression as a linear combination is unique. The
resulting scalars are just the entries of the vector ρB (w). This discussion should convince
you that ρB is “well-defined” as a function. We can determine a precise output for any input.
Now we want to establish that ρB is a function with additional properties - it is a linear
transformation.

Theorem VRLT
Vector Representation is a Linear Transformation
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The function ρB (Definition VR [1819]) is a linear transformation. �

Proof We will take a novel approach in this proof. We will construct another function,
which we will easily determine is a linear transformation, and then show that this second
function is really ρB in disguise. Here we go.

Since B is a basis, we can define T : V 7→ Cn to be the unique linear transformation such
that T (vi) = ei, 1 ≤ i ≤ n, as guaranteed by Theorem LTDB [1582], and where the ei are
the standard unit vectors (Definition SUV [586]). Then suppose for an arbitrary w ∈ V we
have,

[T (w)]i =

[
T

(
n∑
j=1

[ρB (w)]j vj

)]
i

Definition VR [1819]

=

[
n∑
j=1

[ρB (w)]j T (vj)

]
i

Theorem LTLC [1580]
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=

[
n∑
j=1

[ρB (w)]j ej

]
i

=
n∑
j=1

[
[ρB (w)]j ej

]
i

Definition CVA [289]

=
n∑
j=1

[ρB (w)]j [ej]i Definition CVSM [291]

= [ρB (w)]i [ei]i +
n∑
j=1
j 6=i

[ρB (w)]j [ej]i Property CC [295]

= [ρB (w)]i (1) +
n∑
j=1
j 6=i

[ρB (w)]j (0) Definition SUV [586]

= [ρB (w)]i
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Section VR Vector Representations 1831

As column vectors, Definition CVE [286] implies that T (w) = ρB (w). Since w was an arbi-
trary element of V , as functions T = ρB. Now, since T is known to be a linear transformation,
it must follow that ρB is also a linear transformation. �

The proof of Theorem VRLT [1820] provides an alternate definition of vector represen-
tation relative to a basis B that we could state as a corollary (Technique LC [2369]): ρB is
the unique linear transformation that takes B to the standard unit basis.

Example VRC4
Vector representation in C4

Consider the vector y ∈ C4

y =


6
14
6
7


We will find several vector representations of y in this example. Notice that y never changes,
but the representations of y do change.
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One basis for C4 is

B = {u1, u2, u3, u4} =



−2
1
2
−3

 ,


3
−6
2
−4

 ,


1
2
0
5

 ,


4
3
1
6




as can be seen by making these vectors the columns of a matrix, checking that the matrix is
nonsingular and applying Theorem CNMB [1138]. To find ρB (y), we need to find scalars,
a1, a2, a3, a4 such that

y = a1u1 + a2u2 + a3u3 + a4u4

By Theorem SLSLC [327] the desired scalars are a solution to the linear system of equations
with a coefficient matrix whose columns are the vectors in B and with a vector of constants
y. With a nonsingular coefficient matrix, the solution is unique, but this is no surprise as
this is the content of Theorem VRRB [1090]. This unique solution is

a1 = 2 a2 = −1 a3 = −3 a4 = 4
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Then by Definition VR [1819], we have

ρB (y) =


2
−1
−3
4


Suppose now that we construct a representation of y relative to another basis of C4,

C =



−15

9
−4
−2

 ,


16
−14

5
2

 ,

−26
14
−6
−3

 ,


14
−13

4
6




As with B, it is easy to check that C is a basis. Writing y as a linear combination of the
vectors in C leads to solving a system of four equations in the four unknown scalars with a
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nonsingular coefficient matrix. The unique solution can be expressed as

y =


6
14
6
7

 = (−28)


−15

9
−4
−2

+ (−8)


16
−14

5
2

+ 11


−26
14
−6
−3

+ 0


14
−13

4
6


so that Definition VR [1819] gives

ρC (y) =


−28
−8
11
0


We often perform representations relative to standard bases, but for vectors in Cm its a little
silly. Let’s find the vector representation of y relative to the standard basis (Theorem SUVB
[1122]),

D = {e1, e2, e3, e4}
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Then, without any computation, we can check that

y =


6
14
6
7

 = 6e1 + 14e2 + 6e3 + 7e4

so by Definition VR [1819],

ρD (y) =


6
14
6
7


which is not very exciting. Notice however that the order in which we place the vectors in
the basis is critical to the representation. Let’s keep the standard unit vectors as our basis,
but rearrange the order we place them in the basis. So a fourth basis is

E = {e3, e4, e2, e1}
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Then,

y =


6
14
6
7

 = 6e3 + 7e4 + 14e2 + 6e1

so by Definition VR [1819],

ρE (y) =


6
7
14
6


So for every possible basis of C4 we could construct a different representation of y. �

Vector representations are most interesting for vector spaces that are not Cm.

Example VRP2
Vector representations in P2

Consider the vector u = 15 + 10x − 6x2 ∈ P2 from the vector space of polynomials with
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degree at most 2 (Example VSP [963]). A nice basis for P2 is

B =
{

1, x, x2
}

so that
u = 15 + 10x− 6x2 = 15(1) + 10(x) + (−6)(x2)

so by Definition VR [1819]

ρB (u) =

15
10
−6


Another nice basis for P2 is

B =
{

1, 1 + x, 1 + x+ x2
}

so that now it takes a bit of computation to determine the scalars for the representation.
We want a1, a2, a3 so that

15 + 10x− 6x2 = a1(1) + a2(1 + x) + a3(1 + x+ x2)
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Performing the operations in P2 on the right-hand side, and equating coefficients, gives the
three equations in the three unknown scalars,

15 = a1 + a2 + a3

10 = a2 + a3

−6 = a3

The coefficient matrix of this sytem is nonsingular, leading to a unique solution (no surprise
there, see Theorem VRRB [1090]),

a1 = 5 a2 = 16 a3 = −6

so by Definition VR [1819]

ρC (u) =

 5
16
−6
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While we often form vector representations relative to “nice” bases, nothing prevents us from
forming representations relative to “nasty” bases. For example, the set

D =
{−2− x+ 3x2, 1− 2x2, 5 + 4x+ x2

}
can be verified as a basis of P2 by checking linear independence with Definition LI [1061] and
then arguing that 3 vectors from P2, a vector space of dimension 3 (Theorem DP [1190]),
must also be a spanning set (Theorem G [1228]). Now we desire scalars a1, a2, a3 so that

15 + 10x− 6x2 = a1(−2− x+ 3x2) + a2(1− 2x2) + a3(5 + 4x+ x2)

Performing the operations in P2 on the right-hand side, and equating coefficients, gives the
three equations in the three unknown scalars,

15 = −2a1 + a2 + 5a3

10 = −a1 + 4a3

−6 = 3a1 − 2a2 + a3
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The coefficient matrix of this sytem is nonsingular, leading to a unique solution (no surprise
there, see Theorem VRRB [1090]),

a1 = −2 a2 = 1 a3 = 2

so by Definition VR [1819]

ρD (u) =

−2
1
2


�

Theorem VRI
Vector Representation is Injective
The function ρB (Definition VR [1819]) is an injective linear transformation. �

Proof We will appeal to Theorem KILT [1653]. Suppose U is a vector space of dimension
n, so vector representation is of the form ρB : U 7→ Cn. Let B = {u1, u2, u3, . . . , un} be

Version 2.11



Section VR Vector Representations 1841

the basis of U used in the definition of ρB. Suppose u ∈ K(ρB). We write u as a linear
combination of the vectors in the basis B where the scalars are the components of the vector
representation, ρB (u).

u = [ρB (u)]1 u1 + [ρB (u)]2 u2 + [ρB (u)]3 u3 + · · ·+ [ρB (u)]n un Definition VR [1819]

= [0]1 u1 + [0]2 u2 + [0]3 u3 + · · ·+ [0]n un Definition KLT [1643]

= 0u1 + 0u2 + 0u3 + · · ·+ 0un Definition ZCV [74]

= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [979]

= 0 Property Z [957]

Thus an arbitrary vector, u, from the kernel ,K(ρB), must equal the zero vector of U . So
K(ρB) = {0} and by Theorem KILT [1653], ρB is injective. �

Theorem VRS
Vector Representation is Surjective
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The function ρB (Definition VR [1819]) is a surjective linear transformation. �

Proof We will appeal to Theorem RSLT [1710]. Suppose U is a vector space of dimension
n, so vector representation is of the form ρB : U 7→ Cn. Let B = {u1, u2, u3, . . . , un} be
the basis of U used in the definition of ρB. Suppose v ∈ Cn. Define the vector u by

u = [v]1 u1 + [v]2 u2 + [v]3 u3 + · · ·+ [v]n un

Then for 1 ≤ i ≤ n

[ρB (u)]i = [ρB ([v]1 u1 + [v]2 u2 + [v]3 u3 + · · ·+ [v]n un)]i
= [v]i Definition VR [1819]

so the entries of vectors ρB (u) and v are equal and Definition CVE [286] yields the vector
equality ρB (u) = v. This demonstrates that v ∈ R(ρB), so Cn ⊆ R(ρB). Since R(ρB) ⊆ Cn

by Definition RLT [1701], we have R(ρB) = Cn and Theorem RSLT [1710] says ρB is
surjective. �

We will have many occasions later to employ the inverse of vector representation, so we
will record the fact that vector representation is an invertible linear transformation.
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Theorem VRILT
Vector Representation is an Invertible Linear Transformation
The function ρB (Definition VR [1819]) is an invertible linear transformation. �

Proof The function ρB (Definition VR [1819]) is a linear transformation (Theorem VRLT
[1820]) that is injective (Theorem VRI [1832]) and surjective (Theorem VRS [1833]) with
domain V and codomain Cn. By Theorem ILTIS [1761] we then know that ρB is an invertible
linear transformation. �

Informally, we will refer to the application of ρB as coordinatizing a vector, while the
application of ρ−1

B will be referred to as un-coordinatizing a vector.
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Subsection CVS
Characterization of Vector Spaces

Limiting our attention to vector spaces with finite dimension, we now describe every possible
vector space. All of them. Really.

Theorem CFDVS
Characterization of Finite Dimensional Vector Spaces
Suppose that V is a vector space with dimension n. Then V is isomorphic to Cn. �

Proof Since V has dimension n we can find a basis of V of size n (Definition D [1177])
which we will call B. The linear transformation ρB is an invertible linear transformation
from V to Cn, so by Definition IVS [1774], we have that V and Cn are isomorphic. �

Theorem CFDVS [1836] is the first of several surprises in this chapter, though it might
be a bit demoralizing too. It says that there really are not all that many different (finite
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dimensional) vector spaces, and none are really any more complicated than Cn. Hmmm.
The following examples should make this point.

Example TIVS
Two isomorphic vector spaces
The vector space of polynomials with degree 8 or less, P8, has dimension 9 (Theorem DP
[1190]). By Theorem CFDVS [1836], P8 is isomorphic to C9. �

Example CVSR
Crazy vector space revealed
The crazy vector space, C of Example CVS [970], has dimension 2 by Example DC [1195].
By Theorem CFDVS [1836], C is isomorphic to C2. Hmmmm. Not really so crazy after all?

�

Example ASC
A subspace characterized
In Example DSP4 [1194] we determined that a certain subspace W of P4 has dimension 4.
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By Theorem CFDVS [1836], W is isomorphic to C4. �

Theorem IFDVS
Isomorphism of Finite Dimensional Vector Spaces
Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic
if and only if dim (U) = dim (V ). �

Proof (⇒) This is just the statement proved in Theorem IVSED [1777].
(⇐) This is the advertised converse of Theorem IVSED [1777]. We will assume U and

V have equal dimension and discover that they are isomorphic vector spaces. Let n be the
common dimension of U and V . Then by Theorem CFDVS [1836] there are isomorphisms
T : U 7→ Cn and S : V 7→ Cn.

T is therefore an invertible linear transformation by Definition IVS [1774]. Similarly,
S is an invertible linear transformation, and so S−1 is an invertible linear transformation
(Theorem IILT [1759]). The composition of invertible linear transformations is again in-
vertible (Theorem CIVLT [1769]) so the composition of S−1 with T is invertible. Then
(S−1 ◦ T ) : U 7→ V is an invertible linear transformation from U to V and Definition IVS
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[1774] says U and V are isomorphic. �

Example MIVS
Multiple isomorphic vector spaces
C10, P9, M2,5 and M5,2 are all vector spaces and each has dimension 10. By Theorem IFDVS
[1838] each is isomorphic to any other.

The subspace of M4,4 that contains all the symmetric matrices (Definition SYM [624])
has dimension 10, so this subspace is also isomorphic to each of the four vector spaces above.

�
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Subsection CP
Coordinatization Principle

With ρB available as an invertible linear transformation, we can translate between vectors
in a vector space U of dimension m and Cm. Furthermore, as a linear transformation,
ρB respects the addition and scalar multiplication in U , while ρ−1

B respects the addition
and scalar multiplication in Cm. Since our definitions of linear independence, spans, bases
and dimension are all built up from linear combinations, we will finally be able to translate
fundamental properties between abstract vector spaces (U) and concrete vector spaces (Cm).

Theorem CLI
Coordinatization and Linear Independence
Suppose that U is a vector space with a basis B of size n. Then S = {u1, u2, u3, . . . , uk} is a
linearly independent subset of U if and only if R = {ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}
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is a linearly independent subset of Cn. �

Proof The linear transformation ρB is an isomorphism between U and Cn (Theorem VRILT
[1835]). As an invertible linear transformation, ρB is an injective linear transformation
(Theorem ILTIS [1761]), and ρ−1

B is also an injective linear transformation (Theorem IILT
[1759], Theorem ILTIS [1761]).

(⇒) Since ρB is an injective linear transformation and S is linearly independent, Theorem
ILTLI [1658] says that R is linearly independent.

(⇐) If we apply ρ−1
B to each element of R, we will create the set S. Since we are assuming

R is linearly independent and ρ−1
B is injective, Theorem ILTLI [1658] says that S is linearly

independent. �

Theorem CSS
Coordinatization and Spanning Sets
Suppose that U is a vector space with a basis B of size n. Then u ∈ 〈{u1, u2, u3, . . . , uk}〉
if and only if ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉. �

Proof (⇒) Suppose u ∈ 〈{u1, u2, u3, . . . , uk}〉. Then there are scalars, a1, a2, a3, . . . , ak,
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such that

u = a1u1 + a2u2 + a3u3 + · · ·+ akuk

Then,

ρB (u) = ρB (a1u1 + a2u2 + a3u3 + · · ·+ akuk)

= a1ρB (u1) + a2ρB (u2) + a3ρB (u3) + · · ·+ akρB (uk) Theorem LTLC [1580]

which says that ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉.
(⇐) Suppose that ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉. Then there are

scalars b1, b2, b3, . . . , bk such that

ρB (u) = b1ρB (u1) + b2ρB (u2) + b3ρB (u3) + · · ·+ bkρB (uk)

Recall that ρB is invertible (Theorem VRILT [1835]), so

u = IU (u) Definition IDLT [1750]
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=
(
ρ−1
B ◦ ρB

)
(u) Definition IVLT [1750]

= ρ−1
B (ρB (u)) Definition LTC [1606]

= ρ−1
B (b1ρB (u1) + b2ρB (u2) + b3ρB (u3) + · · ·+ bkρB (uk))

= b1ρ
−1
B (ρB (u1)) + b2ρ

−1
B (ρB (u2)) + b3ρ

−1
B (ρB (u3))

+ · · ·+ bkρ
−1
B (ρB (uk)) Theorem LTLC [1580]

= b1IU (u1) + b2IU (u2) + b3IU (u3) + · · ·+ bkIU (uk) Definition IVLT [1750]

= b1u1 + b2u2 + b3u3 + · · ·+ bkuk Definition IDLT [1750]

which says that u ∈ 〈{u1, u2, u3, . . . , uk}〉. �

Here’s a fairly simple example that illustrates a very, very important idea.

Example CP2
Coordinatizing in P2

In Example VRP2 [1828] we needed to know that

D =
{−2− x+ 3x2, 1− 2x2, 5 + 4x+ x2

}
Version 2.11



Subsection VR.CP Coordinatization Principle 1852

is a basis for P2. With Theorem CLI [1840] and Theorem CSS [1841] this task is much easier.
First, choose a known basis for P2, a basis that forms vector representations easily. We will
choose

B =
{

1, x, x2
}

Now, form the subset of C3 that is the result of applying ρB to each element of D,

F =
{
ρB
(−2− x+ 3x2

)
, ρB

(
1− 2x2

)
, ρB

(
5 + 4x+ x2

)}
=


−2
−1
3

 ,
 1

0
−2

 ,
5

4
1


and ask if F is a linearly independent spanning set for C3. This is easily seen to be the case
by forming a matrix A whose columns are the vectors of F , row-reducing A to the identity
matrix I3, and then using the nonsingularity of A to assert that F is a basis for C3 (Theorem
CNMB [1138]). Now, since F is a basis for C3, Theorem CLI [1840] and Theorem CSS [1841]
tell us that D is also a basis for P2. �

Example CP2 [1843] illustrates the broad notion that computations in abstract vector
spaces can be reduced to computations in Cm. You may have noticed this phenomenon as you
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worked through examples in Chapter VS [954] or Chapter LT [1548] employing vector spaces
of matrices or polynomials. These computations seemed to invariably result in systems of
equations or the like from Chapter SLE [2], Chapter V [283] and Chapter M [611]. It is
vector representation, ρB, that allows us to make this connection formal and precise.

Knowing that vector representation allows us to translate questions about linear combi-
nations, linear independence and spans from general vector spaces to Cm allows us to prove
a great many theorems about how to translate other properties. Rather than prove these
theorems, each of the same style as the other, we will offer some general guidance about how
to best employ Theorem VRLT [1820], Theorem CLI [1840] and Theorem CSS [1841]. This
comes in the form of a “principle”: a basic truth, but most definitely not a theorem (hence,
no proof).

The Coordinatization Principle Suppose that U is a vector space with a basis B of
size n. Then any question about U , or its elements, which ultimately depends on the vector
addition or scalar multiplication in U , or depends on linear independence or spanning, may
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be translated into the same question in Cn by application of the linear transformation ρB
to the relevant vectors. Once the question is answered in Cn, the answer may be translated
back to U (if necessary) through application of the inverse linear transformation ρ−1

B .

Example CM32
Coordinatization in M32

This is a simple example of the Coordinatization Principle [1845], depending only on the fact
that coordinatizing is an invertible linear transformation (Theorem VRILT [1835]). Suppose
we have a linear combination to perform in M32, the vector space of 3 × 2 matrices, but
we are adverse to doing the operations of M32 (Definition MA [614], Definition MSM [615]).
More specifically, suppose we are faced with the computation

6

 3 7
−2 4
0 −3

+ 2

−1 3
4 8
−2 5
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We choose a nice basis for M32 (or a nasty basis if we are so inclined),

B =


1 0

0 0
0 0

 ,
0 0

1 0
0 0

 ,
0 0

0 0
1 0

 ,
0 1

0 0
0 0

 ,
0 0

0 1
0 0

 ,
0 0

0 0
0 1


and apply ρB to each vector in the linear combination. This gives us a new computation,
now in the vector space C6,

6


3
−2
0
7
4
−3

+ 2


−1
4
−2
3
8
5


which we can compute with the operations of C6 (Definition CVA [289], Definition CVSM
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[291]), to arrive at 
16
−4
−4
48
40
−8


We are after the result of a computation in M32, so we now can apply ρ−1

B to obtain a 3× 2
matrix,

16

1 0
0 0
0 0

+(−4)

0 0
1 0
0 0

+(−4)

0 0
0 0
1 0

+48

0 1
0 0
0 0

+40

0 0
0 1
0 0

+(−8)

0 0
0 0
0 1

 =

16 48
−4 40
−4 −8


which is exactly the matrix we would have computed had we just performed the matrix
operations in the first place. So this was not meant to be an easier way to compute a linear
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combination of two matrices, just a different way. �

Subsection READ
Reading Questions

1. The vector space of 3 × 5 matrices, M3,5 is isomorphic to what fundamental vector
space?

2. A basis for C3 is

B =


 1

2
−1

 ,
 3
−1
2

 ,
1

1
1
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Compute ρB

 5
8
−1

.

3. What is the first “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C10 In the vector space C3, compute the vector representation ρB (v) for the basis B and
vector v below.

B =


 2
−2
2

 ,
1

3
1

 ,
3

5
2

 v =

11
5
8



Contributed by Robert Beezer Solution [1852]

Version 2.11



Subsection VR.EXC Exercises 1860

C20 Rework Example CM32 [1845] replacing the basis B by the basis

C =


−14 −9

10 10
−6 −2

 ,
−7 −4

5 5
−3 −1

 ,
−3 −1

0 −2
1 1

 ,
−7 −4

3 2
−1 0

 ,
 4 2
−3 −3
2 1

 ,
 0 0
−1 −2
1 1


Contributed by Robert Beezer Solution [1853]

M10 Prove that the set S below is a basis for the vector space of 2× 2 matrices, M22. Do
this choosing a natural basis for M22 and coordinatizing the elements of S with respect to this
basis. Examine the resulting set of column vectors from C4 and apply the Coordinatization
Principle [1845].

S =

{[
33 99
78 −9

]
,

[−16 −47
−36 2

]
,

[
10 27
17 3

]
,

[−2 −7
−6 4

]}
Contributed by Andy Zimmer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [1850]
We need to express the vector v as a linear combination of the vectors in B. Theorem VRRB
[1090] tells us we will be able to do this, and do it uniquely. The vector equation

a1

 2
−2
2

+ a2

1
3
1

+ a3

3
5
2

 =

11
5
8


becomes (via Theorem SLSLC [327]) a system of linear equations with augmented matrix, 2 1 3 11

−2 3 5 5
2 1 2 8
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This system has the unique solution a1 = 2, a2 = −2, a3 = 3. So by Definition VR [1819],

ρB (v) = ρB

11
5
8

 = ρB

2

 2
−2
2

+ (−2)

1
3
1

+ 3

3
5
2

 =

 2
−2
3


C20 Contributed by Robert Beezer Statement [1851]
The following computations replicate the computations given in Example CM32 [1845], only
using the basis C.

ρC

 3 7
−2 4
0 −3

 =


−9
12
−6
7
−2
−1

 ρC

−1 3
4 8
−2 5

 =


−11
34
−4
−1
16
5
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6


−9
12
−6
7
−2
−1

+ 2


−11
34
−4
−1
16
5

 =


−76
140
−44
40
20
4

 ρ−1
C




−76
140
−44
40
20
4



 =

16 48
−4 30
−4 −8
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Section MR

Matrix Representations

We have seen that linear transformations whose domain and codomain are vector spaces of
columns vectors have a close relationship with matrices (Theorem MBLT [1570], Theorem
MLTCV [1574]). In this section, we will extend the relationship between matrices and linear
transformations to the setting of linear transformations between abstract vector spaces.

Definition MR
Matrix Representation
Suppose that T : U 7→ V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis for
U of size n, and C is a basis for V of size m. Then the matrix representation of T relative
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to B and C is the m× n matrix,

MT
B,C = [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]

(This definition contains Notation MR.) 4

Example OLTTR
One linear transformation, three representations
Consider the linear transformation

S : P3 7→M22, S
(
a+ bx+ cx2 + dx3

)
=

[
3a+ 7b− 2c− 5d 8a+ 14b− 2c− 11d
−4a− 8b+ 2c+ 6d 12a+ 22b− 4c− 17d

]
First, we build a representation relative to the bases,

B =
{

1 + 2x+ x2 − x3, 1 + 3x+ x2 + x3, −1− 2x+ 2x3, 2 + 3x+ 2x2 − 5x3
}
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C =

{[
1 1
1 2

]
,

[
2 3
2 5

]
,

[−1 −1
0 −2

]
,

[−1 −4
−2 −4

]}

We evaluate S with each element of the basis for the domain, B, and coordinatize the result
relative to the vectors in the basis for the codomain, C.

ρC
(
S
(
1 + 2x+ x2 − x3

))
= ρC

([
20 45
−24 69

])

= ρC

(
(−90)

[
1 1
1 2

]
+ 37

[
2 3
2 5

]
+ (−40)

[−1 −1
0 −2

]
+ 4

[−1 −4
−2 −4

])
=


−90
37
−40

4


ρC
(
S
(
1 + 3x+ x2 + x3

))
= ρC

([
17 37
−20 57

])
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= ρC

(
(−72)

[
1 1
1 2

]
+ 29

[
2 3
2 5

]
+ (−34)

[−1 −1
0 −2

]
+ 3

[−1 −4
−2 −4

])
=


−72
29
−34

3


ρC
(
S
(−1− 2x+ 2x3

))
= ρC

([−27 −58
32 −90

])

= ρC

(
114

[
1 1
1 2

]
+ (−46)

[
2 3
2 5

]
+ 54

[−1 −1
0 −2

]
+ (−5)

[−1 −4
−2 −4

])
=


114
−46
54
−5


ρC
(
S
(
2 + 3x+ 2x2 − 5x3

))
= ρC

([
48 109
−58 167

])
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= ρC

(
(−220)

[
1 1
1 2

]
+ 91

[
2 3
2 5

]
+−96

[−1 −1
0 −2

]
+ 10

[−1 −4
−2 −4

])
=


−220

91
−96
10



Thus, employing Definition MR [1855]

MS
B,C =


−90 −72 114 −220
37 29 −46 91
−40 −34 54 −96

4 3 −5 10


Often we use “nice” bases to build matrix representations and the work involved is much
easier. Suppose we take bases

D =
{

1, x, x2, x3
}

E =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
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The evaluation of S at the elements of D is easy and coordinatization relative to E can be
done on sight,

ρE (S (1)) = ρE

([
3 8
−4 12

])

= ρE

(
3

[
1 0
0 0

]
+ 8

[
0 1
0 0

]
+ (−4)

[
0 0
1 0

]
+ 12

[
0 0
0 1

])
=


3
8
−4
12


ρE (S (x)) = ρE

([
7 14
−8 22

])

= ρE

(
7

[
1 0
0 0

]
+ 14

[
0 1
0 0

]
+ (−8)

[
0 0
1 0

]
+ 22

[
0 0
0 1

])
=


7
14
−8
22
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ρE
(
S
(
x2
))

= ρE

([−2 −2
2 −4

])

= ρE

(
(−2)

[
1 0
0 0

]
+ (−2)

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ (−4)

[
0 0
0 1

])
=


−2
−2
2
−4


ρE
(
S
(
x3
))

= ρE

([−5 −11
6 −17

])

= ρE

(
(−5)

[
1 0
0 0

]
+ (−11)

[
0 1
0 0

]
+ 6

[
0 0
1 0

]
+ (−17)

[
0 0
0 1

])
=


−5
−11

6
−17
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So the matrix representation of S relative to D and E is

MS
D,E =


3 7 −2 −5
8 14 −2 −11
−4 −8 2 6
12 22 −4 −17


One more time, but now let’s use bases

F =
{

1 + x− x2 + 2x3, −1 + 2x+ 2x3, 2 + x− 2x2 + 3x3, 1 + x+ 2x3
}

G =

{[
1 1
−1 2

]
,

[−1 2
0 2

]
,

[
2 1
−2 3

]
,

[
1 1
0 2

]}
and evaluate S with the elements of F , then coordinatize the results relative to G,

ρG
(
S
(
1 + x− x2 + 2x3

))
= ρG

([
2 2
−2 4

])
= ρG

(
2

[
1 1
−1 2

])
=


2
0
0
0
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ρG
(
S
(−1 + 2x+ 2x3

))
= ρG

([
1 −2
0 −2

])
= ρG

(
(−1)

[−1 2
0 2

])
=


0
−1
0
0



ρG
(
S
(
2 + x− 2x2 + 3x3

))
= ρG

([
2 1
−2 3

])
= ρG

([
2 1
−2 3

])
=


0
0
1
0



ρG
(
S
(
1 + x+ 2x3

))
= ρG

([
0 0
0 0

])
= ρG

(
0

[
1 1
0 2

])
=


0
0
0
0
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So we arrive at an especially economical matrix representation,

MS
F,G =


2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0


�

We may choose to use whatever terms we want when we make a definition. Some are
arbitrary, while others make sense, but only in light of subsequent theorems. Matrix rep-
resentation is in the latter category. We begin with a linear transformation and produce a
matrix. So what? Here’s the theorem that justifies the term “matrix representation.”

Theorem FTMR
Fundamental Theorem of Matrix Representation
Suppose that T : U 7→ V is a linear transformation, B is a basis for U , C is a basis for V
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and MT
B,C is the matrix representation of T relative to B and C. Then, for any u ∈ U ,

ρC (T (u)) = MT
B,C (ρB (u))

or equivalently
T (u) = ρ−1

C

(
MT

B,C (ρB (u))
)

�

Proof Let B = {u1, u2, u3, . . . , un} be the basis of U . Since u ∈ U , there are scalars
a1, a2, a3, . . . , an such that

u = a1u1 + a2u2 + a3u3 + · · ·+ anun

Then,

MT
B,CρB (u)

= [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ] ρB (u) Definition MR [1855]
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= [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]


a1

a2

a3
...
an

 Definition VR [1819]

= a1ρC (T (u1)) + a2ρC (T (u2)) + · · ·+ anρC (T (un)) Definition MVP [661]

= ρC (a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ anT (un)) Theorem LTLC [1580]

= ρC (T (a1u1 + a2u2 + a3u3 + · · ·+ anun)) Theorem LTLC [1580]

= ρC (T (u))

The alternative conclusion is obtained as

T (u) = IV (T (u)) Definition IDLT [1750]

=
(
ρ−1
C ◦ ρC

)
(T (u)) Definition IVLT [1750]

= ρ−1
C (ρC (T (u))) Definition LTC [1606]
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= ρ−1
C

(
MT

B,C (ρB (u))
)

�

This theorem says that we can apply T to u and coordinatize the result relative to C in V ,
or we can first coordinatize u relative to B in U , then multiply by the matrix representation.
Either way, the result is the same. So the effect of a linear transformation can always be
accomplished by a matrix-vector product (Definition MVP [661]). That’s important enough
to say again. The effect of a linear transformation is a matrix-vector product.

u

ρB (u)

T (u)

MT
B,CρB (u) = ρC (T (u))

T

MT
B,C

ρB ρC
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Diagram FTMR. Fundamental Theorem of Matrix Representations

The alternative conclusion of this result might be even more striking. It says that to effect
a linear transformation (T ) of a vector (u), coordinatize the input (with ρB), do a matrix-
vector product (with MT

B,C), and un-coordinatize the result (with ρ−1
C ). So, absent some

bookkeeping about vector representations, a linear transformation is a matrix. To adjust the
diagram, we “reverse” the arrow on the right, which means inverting the vector representation
ρC on V . Now we can go directly across the top of the diagram, computing the linear
transformation between the abstract vector spaces. Or, we can around the other three sides,
using vector representation, a matrix-vector product, followed by un-coordinatization.

u

ρB (u)

T (u) = ρ−1
C

(
MT

B,CρB (u)
)

MT
B,CρB (u)

T

MT
B,C

ρB ρ−1
C
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Diagram FTMRA. Fundamental Theorem of Matrix Representations (Alternate)

Here’s an example to illustrate how the “action” of a linear transformation can be effected
by matrix multiplication.

Example ALTMM
A linear transformation as matrix multiplication
In Example OLTTR [1856] we found three representations of the linear transformation S. In
this example, we will compute a single output of S in four different ways. First “normally,”
then three times over using Theorem FTMR [1864].

Choose p(x) = 3 − x + 2x2 − 5x3, for no particular reason. Then the straightforward
application of S to p(x) yields

S (p(x)) = S
(
3− x+ 2x2 − 5x3

)
=

[
3(3) + 7(−1)− 2(2)− 5(−5) 8(3) + 14(−1)− 2(2)− 11(−5)
−4(3)− 8(−1) + 2(2) + 6(−5) 12(3) + 22(−1)− 4(2)− 17(−5)

]
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=

[
23 61
−30 91

]
Now use the representation of S relative to the bases B and C and Theorem FTMR [1864].
Note that we will employ the following linear combination in moving from the second line
to the third,

3− x+ 2x2 − 5x3 = 48(1 + 2x+ x2 − x3) + (−20)(1 + 3x+ x2 + x3)+

(−1)(−1− 2x+ 2x3) + (−13)(2 + 3x+ 2x2 − 5x3)

S (p(x)) = ρ−1
C

(
MS

B,CρB (p(x))
)

= ρ−1
C

(
MS

B,CρB
(
3− x+ 2x2 − 5x3

))
= ρ−1

C

MS
B,C


48
−20
−1
−13
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= ρ−1
C



−90 −72 114 −220
37 29 −46 91
−40 −34 54 −96

4 3 −5 10




48
−20
−1
−13




= ρ−1
C



−134

59
−46

7




= (−134)

[
1 1
1 2

]
+ 59

[
2 3
2 5

]
+ (−46)

[−1 −1
0 −2

]
+ 7

[−1 −4
−2 −4

]
=

[
23 61
−30 91

]
Again, but now with “nice” bases like D and E, and the computations are more transparent.

S (p(x)) = ρ−1
E

(
MS

D,EρD (p(x))
)
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= ρ−1
E

(
MS

D,EρD
(
3− x+ 2x2 − 5x3

))
= ρ−1

E

(
MS

D,EρD
(
3(1) + (−1)(x) + 2(x2) + (−5)(x3)

))
= ρ−1

E

MS
D,E


3
−1
2
−5




= ρ−1
E




3 7 −2 −5
8 14 −2 −11
−4 −8 2 6
12 22 −4 −17




3
−1
2
−5




= ρ−1
E




23
61
−30
91
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= 23

[
1 0
0 0

]
+ 61

[
0 1
0 0

]
+ (−30)

[
0 0
1 0

]
+ 91

[
0 0
0 1

]
=

[
23 61
−30 91

]

OK, last time, now with the bases F and G. The coordinatizations will take some work this
time, but the matrix-vector product (Definition MVP [661]) (which is the actual action of
the linear transformation) will be especially easy, given the diagonal nature of the matrix
representation, MS

F,G. Here we go,

S (p(x)) = ρ−1
G

(
MS

F,GρF (p(x))
)

= ρ−1
G

(
MS

F,GρF
(
3− x+ 2x2 − 5x3

))
= ρ−1

G

(
MS

F,GρF
(
32(1 + x− x2 + 2x3)− 7(−1 + 2x+ 2x3)− 17(2 + x− 2x2 + 3x3)− 2(1 + x+ 2x3)

))
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= ρ−1
G

MS
F,G


32
−7
−17
−2




= ρ−1
G




2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0




32
−7
−17
−2




= ρ−1
G




64
7
−17

0




= 64

[
1 1
−1 2

]
+ 7

[−1 2
0 2

]
+ (−17)

[
2 1
−2 3

]
+ 0

[
1 1
0 2

]
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=

[
23 61
−30 91

]

This example is not meant to necessarily illustrate that any one of these four computations
is simpler than the others. Instead, it is meant to illustrate the many different ways we can
arrive at the same result, with the last three all employing a matrix representation to effect
the linear transformation. �

We will use Theorem FTMR [1864] frequently in the next few sections. A typical appli-
cation will feel like the linear transformation T “commutes” with a vector representation,
ρC , and as it does the transformation morphs into a matrix, MT

B,C , while the vector repre-
sentation changes to a new basis, ρB. Or vice-versa.
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Subsection NRFO
New Representations from Old

In Subsection LT.NLTFO [1598] we built new linear transformations from other linear trans-
formations. Sums, scalar multiples and compositions. These new linear transformations will
have matrix representations as well. How do the new matrix representations relate to the
old matrix representations? Here are the three theorems.

Theorem MRSLT
Matrix Representation of a Sum of Linear Transformations
Suppose that T : U 7→ V and S : U 7→ V are linear transformations, B is a basis of U and C
is a basis of V . Then

MT+S
B,C = MT

B,C +MS
B,C
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�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MT+S
B,C x = MT+S

B,C ρB (u) Substitution

= ρC ((T + S) (u)) Theorem FTMR [1864]

= ρC (T (u) + S (u)) Definition LTA [1599]

= ρC (T (u)) + ρC (S (u)) Definition LT [1550]

= MT
B,C (ρB (u)) +MS

B,C (ρB (u)) Theorem FTMR [1864]

=
(
MT

B,C +MS
B,C

)
ρB (u) Theorem MMDAA [684]

=
(
MT

B,C +MS
B,C

)
x Substitution

Since the matrices MT+S
B,C and MT

B,C + MS
B,C have equal matrix-vector products for every

vector in Cn, by Theorem EMMVP [670] they are equal matrices. (Now would be a good
time to double-back and study the proof of Theorem EMMVP [670]. You did promise to
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come back to this theorem sometime, didn’t you?) �

Theorem MRMLT
Matrix Representation of a Multiple of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation, α ∈ C, B is a basis of U and C is a basis
of V . Then

MαT
B,C = αMT

B,C

�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MαT
B,Cx = MαT

B,CρB (u) Substitution

= ρC ((αT ) (u)) Theorem FTMR [1864]

= ρC (αT (u)) Definition LTSM [1602]

= αρC (T (u)) Definition LT [1550]

= α
(
MT

B,CρB (u)
)

Theorem FTMR [1864]
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=
(
αMT

B,C

)
ρB (u) Theorem MMSMM [685]

=
(
αMT

B,C

)
x Substitution

Since the matrices MαT
B,C and αMT

B,C have equal matrix-vector products for every vector in
Cn, by Theorem EMMVP [670] they are equal matrices. �

The vector space of all linear transformations from U to V is now isomorphic to the
vector space of all m× n matrices.

Theorem MRCLT
Matrix Representation of a Composition of Linear Transformations
Suppose that T : U 7→ V and S : V 7→ W are linear transformations, B is a basis of U , C is
a basis of V , and D is a basis of W . Then

MS◦T
B,D = MS

C,DM
T
B,C
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�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MS◦T
B,Dx = MS◦T

B,DρB (u) Substitution

= ρD ((S ◦ T ) (u)) Theorem FTMR [1864]

= ρD (S (T (u))) Definition LTC [1606]

= MS
C,DρC (T (u)) Theorem FTMR [1864]

= MS
C,D

(
MT

B,CρB (u)
)

Theorem FTMR [1864]

=
(
MS

C,DM
T
B,C

)
ρB (u) Theorem MMA [687]

=
(
MS

C,DM
T
B,C

)
x Substitution

Since the matrices MS◦T
B,D and MS

C,DM
T
B,C have equal matrix-vector products for every vector

in Cn, by Theorem EMMVP [670] they are equal matrices. �

This is the second great surprise of introductory linear algebra. Matrices are linear trans-
formations (functions, really), and matrix multiplication is function composition! We can
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form the composition of two linear transformations, then form the matrix representation of
the result. Or we can form the matrix representation of each linear transformation sepa-
rately, then multiply the two representations together via Definition MM [672]. In either
case, we arrive at the same result.

Example MPMR
Matrix product of matrix representations
Consider the two linear transformations,

T : C2 7→ P2 T

([
a
b

])
= (−a+ 3b) + (2a+ 4b)x+ (a− 2b)x2

S : P2 7→M22 S
(
a+ bx+ cx2

)
=

[
2a+ b+ 2c a+ 4b− c
−a+ 3c 3a+ b+ 2c

]
and bases for C2, P2 and M22 (respectively),

B =

{[
3
1

]
,

[
2
1

]}
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C =
{

1− 2x+ x2, −1 + 3x, 2x+ 3x2
}

D =

{[
1 −2
1 −1

]
,

[
1 −1
1 2

]
,

[−1 2
0 0

]
,

[
2 −3
2 2

]}
Begin by computing the new linear transformation that is the composition of T and S
(Definition LTC [1606], Theorem CLTLT [1607]), (S ◦ T ) : C2 7→M22,

(S ◦ T )

([
a
b

])
= S

(
T

([
a
b

]))
= S

(
(−a+ 3b) + (2a+ 4b)x+ (a− 2b)x2

)
=

[
2(−a+ 3b) + (2a+ 4b) + 2(a− 2b) (−a+ 3b) + 4(2a+ 4b)− (a− 2b)

−(−a+ 3b) + 3(a− 2b) 3(−a+ 3b) + (2a+ 4b) + 2(a− 2b)

]
=

[
2a+ 6b 6a+ 21b
4a− 9b a+ 9b

]
Now compute the matrix representations (Definition MR [1855]) for each of these three linear
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transformations (T , S, S ◦ T ), relative to the appropriate bases. First for T ,

ρC

(
T

([
3
1

]))
= ρC

(
10x+ x2

)
= ρC

(
28(1− 2x+ x2) + 28(−1 + 3x) + (−9)(2x+ 3x2)

)
=

28
28
−9


ρC

(
T

([
2
1

]))
= ρC (1 + 8x)

= ρC
(
33(1− 2x+ x2) + 32(−1 + 3x) + (−11)(2x+ 3x2)

)
=

 33
32
−11
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So we have the matrix representation of T ,

MT
B,C =

28 33
28 32
−9 −11


Now, a representation of S,

ρD
(
S
(
1− 2x+ x2

))
= ρD

([
2 −8
2 3

])
= ρD

(
(−11)

[
1 −2
1 −1

]
+ (−21)

[
1 −1
1 2

]
+ 0

[−1 2
0 0

]
+ (17)

[
2 −3
2 2

])

=


−11
−21

0
17
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ρD (S (−1 + 3x)) = ρD

([
1 11
1 0

])
= ρD

(
26

[
1 −2
1 −1

]
+ 51

[
1 −1
1 2

]
+ 0

[−1 2
0 0

]
+ (−38)

[
2 −3
2 2

])

=


26
51
0
−38


ρD
(
S
(
2x+ 3x2

))
= ρD

([
8 5
9 8

])
= ρD

(
34

[
1 −2
1 −1

]
+ 67

[
1 −1
1 2

]
+ 1

[−1 2
0 0

]
+ (−46)

[
2 −3
2 2

])
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=


34
67
1
−46



So we have the matrix representation of S,

MS
C,D =


−11 26 34
−21 51 67

0 0 1
17 −38 −46


Finally, a representation of S ◦ T ,

ρD

(
(S ◦ T )

([
3
1

]))
= ρD

([
12 39
3 12

])
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= ρD

(
114

[
1 −2
1 −1

]
+ 237

[
1 −1
1 2

]
+ (−9)

[−1 2
0 0

]
+ (−174)

[
2 −3
2 2

])

=


114
237
−9
−174


ρD

(
(S ◦ T )

([
2
1

]))
= ρD

([
10 33
−1 11

])
= ρD

(
95

[
1 −2
1 −1

]
+ 202

[
1 −1
1 2

]
+ (−11)

[−1 2
0 0

]
+ (−149)

[
2 −3
2 2

])

=


95
202
−11
−149
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So we have the matrix representation of S ◦ T ,

MS◦T
B,D =


114 95
237 202
−9 −11
−174 −149


Now, we are all set to verify the conclusion of Theorem MRCLT [1879],

MS
C,DM

T
B,C =


−11 26 34
−21 51 67

0 0 1
17 −38 −46


28 33

28 32
−9 −11
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=


114 95
237 202
−9 −11
−174 −149


= MS◦T

B,D

We have intentionally used non-standard bases. If you were to choose “nice” bases for the
three vector spaces, then the result of the theorem might be rather transparent. But this
would still be a worthwhile exercise — give it a go. �

A diagram, similar to ones we have seen earlier, might make the importance of this
theorem clearer,
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S, T

S ◦ T

MS
C,D, MT

B,C

MS◦T
B,D = MS

C,DMT
B,C

Definition MR

Definition MR

Definition LTC Definition MM

Diagram MRCLT. Matrix Representation and Composition of Linear Transformations

One of our goals in the first part of this book is to make the definition of matrix multipli-
cation (Definition MVP [661], Definition MM [672]) seem as natural as possible. However,
many are brought up with an entry-by-entry description of matrix multiplication (Theorem
ME [1466]) as the definition of matrix multiplication, and then theorems about columns of
matrices and linear combinations follow from that definition. With this unmotivated defini-
tion, the realization that matrix multiplication is function composition is quite remarkable.
It is an interesting exercise to begin with the question, “What is the matrix representation
of the composition of two linear transformations?” and then, without using any theorems
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about matrix multiplication, finally arrive at the entry-by-entry description of matrix mul-
tiplication. Try it yourself (Exercise MR.T80 [1927]).

Subsection PMR
Properties of Matrix Representations

It will not be a surprise to discover that the kernel and range of a linear transformation are
closely related to the null space and column space of the transformation’s matrix represen-
tation. Perhaps this idea has been bouncing around in your head already, even before seeing
the definition of a matrix representation. However, with a formal definition of a matrix
representation (Definition MR [1855]), and a fundamental theorem to go with it (Theorem
FTMR [1864]) we can be formal about the relationship, using the idea of isomorphic vector
spaces (Definition IVS [1774]). Here are the twin theorems.

Version 2.11



Subsection MR.PMR Properties of Matrix Representations 1901

Theorem KNSI
Kernel and Null Space Isomorphism
Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C is a
basis for V . Then the kernel of T is isomorphic to the null space of MT

B,C ,

K(T ) ∼= N (MT
B,C

)
�

Proof To establish that two vector spaces are isomorphic, we must find an isomorphism
between them, an invertible linear transformation (Definition IVS [1774]). The kernel of
the linear transformation T , K(T ), is a subspace of U , while the null space of the matrix
representation, N (MT

B,C

)
is a subspace of Cn. The function ρB is defined as a function from

U to Cn, but we can just as well employ the definition of ρB as a function from K(T ) to
N (MT

B,C

)
.

We must first insure that if we choose an input for ρB from K(T ) that then the output
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will be an element of N (MT
B,C

)
. So suppose that u ∈ K(T ). Then

MT
B,CρB (u) = ρC (T (u)) Theorem FTMR [1864]

= ρC (0) Definition KLT [1643]

= 0 Theorem LTTZZ [1562]

This says that ρB (u) ∈ N (MT
B,C

)
, as desired.

The restriction in the size of the domain and codomain ρB will not affect the fact that
ρB is a linear transformation (Theorem VRLT [1820]), nor will it affect the fact that ρB
is injective (Theorem VRI [1832]). Something must be done though to verify that ρB is
surjective. To this end, appeal to the definition of surjective (Definition SLT [1687]), and
suppose that we have an element of the codomain, x ∈ N (MT

B,C

) ⊆ Cn and we wish to find
an element of the domain with x as its image. We now show that the desired element of the
domain is u = ρ−1

B (x). First, verify that u ∈ K(T ),

T (u) = T
(
ρ−1
B (x)

)
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= ρ−1
C

(
MT

B,C

(
ρB
(
ρ−1
B (x)

)))
Theorem FTMR [1864]

= ρ−1
C

(
MT

B,C (ICn (x))
)

Definition IVLT [1750]

= ρ−1
C

(
MT

B,Cx
)

Definition IDLT [1750]

= ρ−1
C (0Cn) Definition KLT [1643]

= 0V Theorem LTTZZ [1562]

Second, verify that the proposed isomorphism, ρB, takes u to x,

ρB (u) = ρB
(
ρ−1
B (x)

)
Substitution

= ICn (x) Definition IVLT [1750]

= x Definition IDLT [1750]

With ρB demonstrated to be an injective and surjective linear transformation from K(T ) to
N (MT

B,C

)
, Theorem ILTIS [1761] tells us ρB is invertible, and so by Definition IVS [1774],
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we say K(T ) and N (MT
B,C

)
are isomorphic. �

Example KVMR
Kernel via matrix representation
Consider the kernel of the linear transformation

T : M22 7→ P2, T

([
a b
c d

])
= (2a− b+ c− 5d) + (a+ 4b+ 5b+ 2d)x+ (3a− 2b+ c− 8d)x2

We will begin with a matrix representation of T relative to the bases for M22 and P2 (re-
spectively),

B =

{[
1 2
−1 −1

]
,

[
1 3
−1 −4

]
,

[
1 2
0 −2

]
,

[
2 5
−2 −4

]}
C =

{
1 + x+ x2, 2 + 3x, −1− 2x2

}
Then,

ρC

(
T

([
1 2
−1 −1

]))
= ρC

(
4 + 2x+ 6x2

)
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= ρC
(
2(1 + x+ x2) + 0(2 + 3x) + (−2)(−1− 2x2)

)
=

 2
0
−2


ρC

(
T

([
1 3
−1 −4

]))
= ρC

(
18 + 28x2

)
= ρC

(
(−24)(1 + x+ x2) + 8(2 + 3x) + (−26)(−1− 2x2)

)
=

−24
8
−26


ρC

(
T

([
1 2
0 −2

]))
= ρC

(
10 + 5x+ 15x2

)
= ρC

(
5(1 + x+ x2) + 0(2 + 3x) + (−5)(−1− 2x2)

)
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=

 5
0
−5


ρC

(
T

([
2 5
−2 −4

]))
= ρC

(
17 + 4x+ 26x2

)
= ρC

(
(−8)(1 + x+ x2) + (4)(2 + 3x) + (−17)(−1− 2x2)

)
=

 −8
4
−17


So the matrix representation of T (relative to B and C) is

MT
B,C =

 2 −24 5 −8
0 8 0 4
−2 −26 −5 −17


We know from Theorem KNSI [1892] that the kernel of the linear transformation T is iso-

Version 2.11



Subsection MR.PMR Properties of Matrix Representations 1907

morphic to the null space of the matrix representation MT
B,C and by studying the proof of

Theorem KNSI [1892] we learn that ρB is an isomorphism between these null spaces. Rather
than trying to compute the kernel of T using definitions and techniques from Chapter LT
[1548] we will instead analyze the null space of MT

B,C using techniques from way back in
Chapter V [283]. First row-reduce MT

B,C , 2 −24 5 −8
0 8 0 4
−2 −26 −5 −17

 RREF−−−→
 1 0 5

2
2

0 1 0 1
2

0 0 0 0


So, by Theorem BNS [484], a basis for N (MT

B,C

)
is

〈

−5

2

0
1
0

 ,

−2
−1

2

0
1



〉
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We can now convert this basis of N (MT
B,C

)
into a basis of K(T ) by applying ρ−1

B to each
element of the basis,

ρ−1
B



−5

2

0
1
0


 = (−5

2
)

[
1 2
−1 −1

]
+ 0

[
1 3
−1 −4

]
+ 1

[
1 2
0 −2

]
+ 0

[
2 5
−2 −4

]

=

[−3
2
−3

5
2

1
2

]

ρ−1
B



−2
−1

2

0
1


 = (−2)

[
1 2
−1 −1

]
+ (−1

2
)

[
1 3
−1 −4

]
+ 0

[
1 2
0 −2

]
+ 1

[
2 5
−2 −4

]

=

[−1
2
−1

2
1
2

0

]
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So the set {[−3
2
−3

5
2

1
2

]
,

[−1
2
−1

2
1
2

0

]}
is a basis for K(T ) Just for fun, you might evaluate T with each of these two basis vectors
and verify that the output is the zero polynomial (Exercise MR.C10 [1920]). �

An entirely similar result applies to the range of a linear transformation and the column
space of a matrix representation of the linear transformation.

Theorem RCSI
Range and Column Space Isomorphism
Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C is a
basis for V of size m. Then the range of T is isomorphic to the column space of MT

B,C ,

R(T ) ∼= C(MT
B,C

)
�

Proof To establish that two vector spaces are isomorphic, we must find an isomorphism
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between them, an invertible linear transformation (Definition IVS [1774]). The range of the
linear transformation T , R(T ), is a subspace of V , while the column space of the matrix
representation, C(MT

B,C

)
is a subspace of Cm. The function ρC is defined as a function from

V to Cm, but we can just as well employ the definition of ρC as a function from R(T ) to
C(MT

B,C

)
.

We must first insure that if we choose an input for ρC from R(T ) that then the output
will be an element of C(MT

B,C

)
. So suppose that v ∈ R(T ). Then there is a vector u ∈ U ,

such that T (u) = v. Consider

MT
B,CρB (u) = ρC (T (u)) Theorem FTMR [1864]

= ρC (v) Definition RLT [1701]

This says that ρC (v) ∈ C(MT
B,C

)
, as desired.

The restriction in the size of the domain and codomain will not affect the fact that
ρC is a linear transformation (Theorem VRLT [1820]), nor will it affect the fact that ρC
is injective (Theorem VRI [1832]). Something must be done though to verify that ρC is
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surjective. This all gets a bit confusing, since the domain of our isomorphism is the range
of the linear transformation, so think about your objects as you go. To establish that ρC
is surjective, appeal to the definition of a surjective linear transformation (Definition SLT
[1687]), and suppose that we have an element of the codomain, y ∈ C(MT

B,C

) ⊆ Cm and we

wish to find an element of the domain with y as its image. Since y ∈ C(MT
B,C

)
, there exists

a vector, x ∈ Cn with MT
B,Cx = y. We now show that the desired element of the domain is

v = ρ−1
C (y). First, verify that v ∈ R(T ) by applying T to u = ρ−1

B (x),

T (u) = T
(
ρ−1
B (x)

)
= ρ−1

C

(
MT

B,C

(
ρB
(
ρ−1
B (x)

)))
Theorem FTMR [1864]

= ρ−1
C

(
MT

B,C (ICn (x))
)

Definition IVLT [1750]

= ρ−1
C

(
MT

B,Cx
)

Definition IDLT [1750]

= ρ−1
C (y) Definition CSM [808]

= v Substitution
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Second, verify that the proposed isomorphism, ρC , takes v to y,

ρC (v) = ρC
(
ρ−1
C (y)

)
Substitution

= ICm (y) Definition IVLT [1750]

= y Definition IDLT [1750]

With ρC demonstrated to be an injective and surjective linear transformation from R(T ) to
C(MT

B,C

)
, Theorem ILTIS [1761] tells us ρC is invertible, and so by Definition IVS [1774], we

say R(T ) and C(MT
B,C

)
are isomorphic. �

Example RVMR
Range via matrix representation
In this example, we will recycle the linear transformation T and the bases B and C of
Example KVMR [1895] but now we will compute the range of T ,

T : M22 7→ P2, T

([
a b
c d

])
= (2a− b+ c− 5d) + (a+ 4b+ 5b+ 2d)x+ (3a− 2b+ c− 8d)x2
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With bases B and C,

B =

{[
1 2
−1 −1

]
,

[
1 3
−1 −4

]
,

[
1 2
0 −2

]
,

[
2 5
−2 −4

]}
C =

{
1 + x+ x2, 2 + 3x, −1− 2x2

}
we obtain the matrix representation

MT
B,C =

 2 −24 5 −8
0 8 0 4
−2 −26 −5 −17


We know from Theorem RCSI [1900] that the range of the linear transformation T is isomor-
phic to the column space of the matrix representation MT

B,C and by studying the proof of
Theorem RCSI [1900] we learn that ρC is an isomorphism between these subspaces. Notice
that since the range is a subspace of the codomain, we will employ ρC as the isomorphism,
rather than ρB, which was the correct choice for an isomorphism between the null spaces of
Example KVMR [1895].
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Rather than trying to compute the range of T using definitions and techniques from
Chapter LT [1548] we will instead analyze the column space of MT

B,C using techniques from

way back in Chapter M [611]. First row-reduce
(
MT

B,C

)t
,

2 0 −2
−24 8 −26

5 0 −5
−8 4 −17

 RREF−−−→


1 0 −1

0 1 −25
4

0 0 0
0 0 0


Now employ Theorem CSRST [848] and Theorem BRS [843] (there are other methods we
could choose here to compute the column space, such as Theorem BCS [822]) to obtain the
basis for C(MT

B,C

)
, 

 1
0
−1

 ,
 0

1
−25

4


We can now convert this basis of C(MT

B,C

)
into a basis of R(T ) by applying ρ−1

C to each
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element of the basis,

ρ−1
C

 1
0
−1

 = (1 + x+ x2)− (−1− 2x2) = 2 + x+ 3x2

ρ−1
C

 0
1
−25

4

 = (2 + 3x)− 25

4
(−1− 2x2) =

33

4
+ 3x+

31

2
x2

So the set {
2 + 3x+ 3x2,

33

4
+ 3x+

31

2
x2

}
is a basis for R(T ). �

Theorem KNSI [1892] and Theorem RCSI [1900] can be viewed as further formal evidence
for the Coordinatization Principle [1845], though they are not direct consequences.
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Subsection IVLT
Invertible Linear Transformations

We have seen, both in theorems and in examples, that questions about linear transformations
are often equivalent to questions about matrices. It is the matrix representation of a linear
transformation that makes this idea precise. Here’s our final theorem that solidifies this
connection.

Theorem IMR
Invertible Matrix Representations
Suppose that T : U 7→ V is a linear transformation, B is a basis for U and C is a basis for
V . Then T is an invertible linear transformation if and only if the matrix representation of
T relative to B and C, MT

B,C is an invertible matrix. When T is invertible,

MT−1

C,B =
(
MT

B,C

)−1
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�

Proof (⇐) Suppose T is invertible, so the inverse linear transformation T−1 : V 7→ U exists
(Definition IVLT [1750]). Both linear transformations have matrix representations relative
to the bases of U and V , namely MT

B,C and MT−1

C,B (Definition MR [1855]). Then

MT−1

C,BM
T
B,C = MT−1◦T

B,B Theorem MRCLT [1879]

= M IU
B,B Definition IVLT [1750]

= [ρB (IU (u1))| ρB (IU (u2))| . . . |ρB (IU (un)) ] Definition MR [1855]

= [ρB (u1)| ρB (u2)| ρB (u3)| . . . |ρB (un) ] Definition IDLT [1750]

= [e1|e2|e3| . . . |en] Definition VR [1819]

= In Definition IM [248]

and

MT
B,CM

T−1

C,B = MT◦T−1

C,C Theorem MRCLT [1879]
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= M IV
C,C Definition IVLT [1750]

= [ρC (IV (v1))| ρC (IV (v2))| . . . |ρC (IV (vn)) ] Definition MR [1855]

= [ρC (v1)| ρC (v2)| ρC (v3)| . . . |ρC (vn) ] Definition IDLT [1750]

= [e1|e2|e3| . . . |en] Definition VR [1819]

= In Definition IM [248]

These two equations show that MT
B,C and MT−1

C,B are inverse matrices (Definition MI [727])

and establish that when T is invertible, then MT−1

C,B =
(
MT

B,C

)−1
.

(⇐) Suppose now that MT
B,C is an invertible matrix and hence nonsingular (Theorem NI

[781]). We compute the nullity of T ,

n (T ) = dim (K(T )) Definition KLT [1643]

= dim
(N (MT

B,C

))
Theorem KNSI [1892]

= n
(
MT

B,C

)
Definition NOM [1197]

= 0 Theorem RNNM [1204]
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So the kernel of T is trivial, and by Theorem KILT [1653], T is injective.
We now compute the rank of T ,

r (T ) = dim (R(T )) Definition RLT [1701]

= dim
(C(MT

B,C

))
Theorem RCSI [1900]

= r
(
MT

B,C

)
Definition ROM [1197]

= dim (V ) Theorem RNNM [1204]

Since the dimension of the range of T equals the dimension of the codomain V , by Theorem
EDYES [1237], R(T ) = V . Which says that T is surjective by Theorem RSLT [1710].

Because T is both injective and surjective, by Theorem ILTIS [1761], T is invertible. �

By now, the connections between matrices and linear transformations should be starting
to become more transparent, and you may have already recognized the invertibility of a
matrix as being tantamount to the invertibility of the associated matrix representation. The
next example shows how to apply this theorem to the problem of actually building a formula
for the inverse of an invertible linear transformation.
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Example ILTVR
Inverse of a linear transformation via a representation
Consider the linear transformation

R : P3 7→M22, R
(
a+ bx+ cx2 + x3

)
=

[
a+ b− c+ 2d 2a+ 3b− 2c+ 3d
a+ b+ 2d −a+ b+ 2c− 5d

]

If we wish to quickly find a formula for the inverse of R (presuming it exists), then choosing
“nice” bases will work best. So build a matrix representation of R relative to the bases B
and C,

B =
{

1, x, x2, x3
}

C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
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Then,

ρC (R (1)) = ρC

([
1 2
1 −1

])
=


1
2
1
−1



ρC (R (x)) = ρC

([
1 3
1 1

])
=


1
3
1
1



ρC
(
R
(
x2
))

= ρC

([−1 −2
0 2

])
=


−1
−2
0
2
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ρC
(
R
(
x3
))

= ρC

([
2 3
2 −5

])
=


2
3
2
−5


So a representation of R is

MR
B,C =


1 1 −1 2
2 3 −2 3
1 1 0 2
−1 1 2 −5


The matrix MR

B,C is invertible (as you can check) so we know for sure that R is invertible by
Theorem IMR [1907]. Furthermore,

MR−1

C,B =
(
MR

B,C

)−1
=


1 1 −1 2
2 3 −2 3
1 1 0 2
−1 1 2 −5


−1

=


20 −7 −2 3
−8 3 1 −1
−1 0 1 0
−6 2 1 −1
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We can use this representation of the inverse linear transformation, in concert with Theorem
FTMR [1864], to determine an explicit formula for the inverse itself,

R−1

([
a b
c d

])
= ρ−1

B

(
MR−1

C,B ρC

([
a b
c d

]))
Theorem FTMR [1864]

= ρ−1
B

((
MR

B,C

)−1
ρC

([
a b
c d

]))
Theorem IMR [1907]

= ρ−1
B

(MR
B,C

)−1


a
b
c
d


 Definition VR [1819]

= ρ−1
B




20 −7 −2 3
−8 3 1 −1
−1 0 1 0
−6 2 1 −1



a
b
c
d


 Definition MI [727]
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= ρ−1
B




20a− 7b− 2c+ 3d
−8a+ 3b+ c− d

−a+ c
−6a+ 2b+ c− d


 Definition MVP [661]

= (20a− 7b− 2c+ 3d) + (−8a+ 3b+ c− d)x

+ (−a+ c)x2 + (−6a+ 2b+ c− d)x3 Definition VR [1819]

�

You might look back at Example AIVLT [1751], where we first witnessed the inverse of
a linear transformation and recognize that the inverse (S) was built from using the method
of Example ILTVR [1911] with a matrix representation of T .

Theorem IMILT
Invertible Matrices, Invertible Linear Transformation
Suppose that A is a square matrix of size n and T : Cn 7→ Cn is the linear transformation
defined by T (x) = Ax. Then A is invertible matrix if and only if T is an invertible linear

Version 2.11



Subsection MR.IVLT Invertible Linear Transformations 1925

transformation. �

Proof Choose bases B = C = {e1, e2, e3, . . . , en} consisting of the standard unit vectors
as a basis of Cn (Theorem SUVB [1122]) and build a matrix representation of T relative to
B and C. Then

ρC (T (ei)) = ρC (Aei)

= ρC (Ai)

= Ai

So then the matrix representation of T , relative to B and C, is simply MT
B,C = A. with this

observation, the proof becomes a specialization of Theorem IMR [1907],

T is invertible ⇐⇒ MT
B,C is invertible ⇐⇒ A is invertible

�

This theorem may seem gratuitous. Why state such a special case of Theorem IMR
[1907]? Because it adds another condition to our NMEx series of theorems, and in some
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ways it is the most fundamental expression of what it means for a matrix to be nonsingular
— the associated linear transformation is invertible. This is our final update.

Theorem NME9
Nonsingular Matrix Equivalences, Round 9
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.
4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.
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7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

13. The linear transformation T : Cn 7→ Cn defined by T (x) = Ax is invertible.

�

Proof By Theorem IMILT [1915] the new addition to this list is equivalent to the statement
that A is invertible so we can expand Theorem NME8 [1449]. �
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Subsection READ
Reading Questions

1. Why does Theorem FTMR [1864] deserve the moniker “fundamental”?

2. Find the matrix representation, MT
B,C of the linear transformation

T : C2 7→ C2, T

([
x1

x2

])
=

[
2x1 − x2

3x1 + 2x2

]
relative to the bases

B =

{[
2
3

]
,

[−1
2

]}
C =

{[
1
0

]
,

[
1
1

]}
3. What is the second “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C10 Example KVMR [1895] concludes with a basis for the kernel of the linear transforma-
tion T . Compute the value of T for each of these two basis vectors. Did you get what you
expected?
Contributed by Robert Beezer

C20 Compute the matrix representation of T relative to the bases B and C.

T : P3 7→ C3, T
(
a+ bx+ cx2 + dx3

)
=

2a− 3b+ 4c− 2d
a+ b− c+ d
3a+ 2c− 3d
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B =
{

1, x, x2, x3
}

C =


1

0
0

 ,
1

1
0

 ,
1

1
1


Contributed by Robert Beezer Solution [1928]

C21 Find a matrix representation of the linear transformation T relative to the bases B
and C.

T : P2 7→ C2, T (p(x)) =

[
p(1)
p(3)

]
B =

{
2− 5x+ x2, 1 + x− x2, x2

}
C =

{[
3
4

]
,

[
2
3

]}

Contributed by Robert Beezer Solution [1929]
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C22 Let S22 be the vector space of 2× 2 symmetric matrices. Build the matrix represen-
tation of the linear transformation T : P2 7→ S22 relative to the bases B and C and then use
this matrix representation to compute T (3 + 5x− 2x2).

B =
{

1, 1 + x, 1 + x+ x2
}

C =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
T
(
a+ bx+ cx2

)
=

[
2a− b+ c a+ 3b− c
a+ 3b− c a− c

]

Contributed by Robert Beezer Solution [1930]

C25 Use a matrix representation to determine if the linear transformation T : P3 7→ M22

surjective.

T
(
a+ bx+ cx2 + dx3

)
=

[−a+ 4b+ c+ 2d 4a− b+ 6c− d
a+ 5b− 2c+ 2d a+ 2c+ 5d

]
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Contributed by Robert Beezer Solution [1933]

C30 Find bases for the kernel and range of the linear transformation S below.

S : M22 7→ P2, S

([
a b
c d

])
= (a+ 2b+ 5c− 4d) + (3a− b+ 8c+ 2d)x+ (a+ b+ 4c− 2d)x2

Contributed by Robert Beezer Solution [1935]

C40 Let S22 be the set of 2× 2 symmetric matrices. Verify that the linear transformation
R is invertible and find R−1.

R : S22 7→ P2, R

([
a b
b c

])
= (a− b) + (2a− 3b− 2c)x+ (a− b+ c)x2

Contributed by Robert Beezer Solution [1937]
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C41 Prove that the linear transformation S is invertible. Then find a formula for the in-
verse linear transformation, S−1, by employing a matrix inverse. (15 points)

S : P1 7→M1,2, S (a+ bx) =
[
3a+ b 2a+ b

]
Contributed by Robert Beezer Solution [1939]

C42 The linear transformation R : M12 7→ M21 is invertible. Use a matrix representation
to determine a formula for the inverse linear transformation R−1 : M21 7→M12.

R
([
a b

])
=

[
a+ 3b

4a+ 11b

]
Contributed by Robert Beezer Solution [1941]

C50 Use a matrix representation to find a basis for the range of the linear transformation
L. (15 points)
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L : M22 7→ P2, T

([
a b
c d

])
= (a+ 2b+ 4c+ d) + (3a+ c− 2d)x+ (−a+ b+ 3c+ 3d)x2

Contributed by Robert Beezer Solution [1942]

C51 Use a matrix representation to find a basis for the kernel of the linear transformation
L. (15 points)

L : M22 7→ P2, T

([
a b
c d

])
= (a+ 2b+ 4c+ d) + (3a+ c− 2d)x+ (−a+ b+ 3c+ 3d)x2

Contributed by Robert Beezer

C52 Find a basis for the kernel of the linear transformation T : P2 7→M22.

T
(
a+ bx+ cx2

)
=

[
a+ 2b− 2c 2a+ 2b
−a+ b− 4c 3a+ 2b+ 2c

]
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Contributed by Robert Beezer Solution [1944]

M20 The linear transformation D performs differentiation on polynomials. Use a matrix
representation of D to find the rank and nullity of D.

D : Pn 7→ Pn, D (p(x)) = p′(x)

Contributed by Robert Beezer Solution [1947]

T20 Construct a new solution to Exercise B.T50 [1160] along the following outline. From
the n × n matrix A, construct the linear transformation T : Cn 7→ Cn, T (x) = Ax. Use
Theorem NI [781], Theorem IMILT [1915] and Theorem ILTIS [1761] to translate between
the nonsingularity of A and the surjectivity/injectivity of T . Then apply Theorem ILTB
[1660] and Theorem SLTB [1721] to connect these properties with bases.
Contributed by Robert Beezer Solution [1950]
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T60 Create an entirely different proof of Theorem IMILT [1915] that relies on Definition
IVLT [1750] to establish the invertibility of T , and that relies on Definition MI [727] to
establish the invertibility of A.
Contributed by Robert Beezer

T80 Suppose that T : U 7→ V and S : V 7→ W are linear transformations, and that B,
C and D are bases for U , V , and W . Using only Definition MR [1855] define matrix
representations for T and S. Using these two definitions, and Definition MR [1855], derive
a matrix representation for the composition S ◦ T in terms of the entries of the matrices
MT

B,C and MS
C,D. Explain how you would use this result to motivate a definition for matrix

multiplication that is strikingly similar to Theorem EMP [676].
Contributed by Robert Beezer Solution [1951]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [1920]
Apply Definition MR [1855],

ρC (T (1)) = ρC

2
1
3

 = ρC

1

1
0
0

+ (−2)

1
1
0

+ 3

1
1
1

 =

 1
−2
3


ρC (T (x)) = ρC

−3
1
0

 = ρC

(−4)

1
0
0

+ 1

1
1
0

+ 0

1
1
1

 =

−4
1
0
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ρC
(
T
(
x2
))

= ρC

 4
−1
2

 = ρC

5

1
0
0

+ (−3)

1
1
0

+ 2

1
1
1

 =

 5
−3
2


ρC
(
T
(
x3
))

= ρC

−2
1
−3

 = ρC

(−3)

1
0
0

+ 4

1
1
0

+ (−3)

1
1
1

 =

−3
4
−3


These four vectors are the columns of the matrix representation,

MT
B,C =

 1 −4 5 −3
−2 1 −3 4
3 0 2 −3


C21 Contributed by Robert Beezer Statement [1921]
Applying Definition MR [1855],

ρC
(
T
(
2− 5x+ x2

))
= ρC

([−2
−4

])
= ρC

(
2

[
3
4

]
+ (−4)

[
2
3

])
=

[
2
−4

]
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ρC
(
T
(
1 + x− x2

))
= ρC

([
1
−5

])
= ρC

(
13

[
3
4

]
+ (−19)

[
2
3

])
=

[
13
−19

]
ρC
(
T
(
x2
))

= ρC

([
1
9

])
= ρC

(
(−15)

[
3
4

]
+ 23

[
2
3

])
=

[−15
23

]
So the resulting matrix representation is

MT
B,C =

[
2 13 −15
−4 −19 23

]

C22 Contributed by Robert Beezer Statement [1922]
Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([
2 1
1 1

])
= ρC

(
2

[
1 0
0 0

]
+ 1

[
0 1
1 0

]
+ 1

[
0 0
0 1

])
=

2
1
1
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ρC (T (1 + x)) = ρC

([
1 4
4 1

])
= ρC

(
1

[
1 0
0 0

]
+ 4

[
0 1
1 0

]
+ 1

[
0 0
0 1

])
=

1
4
1


ρC
(
T
(
1 + x+ x2

))
= ρC

([
2 3
3 0

])
= ρC

(
2

[
1 0
0 0

]
+ 3

[
0 1
1 0

]
+ 0

[
0 0
0 1

])
=

2
3
0


Applying Definition MR [1855] we have the matrix representation

MT
B,C =

2 1 2
1 4 3
1 1 0


To compute T (3 + 5x− 2x2) employ Theorem FTMR [1864],

T
(
3 + 5x− 2x2

)
= ρ−1

C

(
MT

B,CρB
(
3 + 5x− 2x2

))
= ρ−1

C

(
MT

B,CρB
(
(−2)(1) + 7(1 + x) + (−2)(1 + x+ x2)

))
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= ρ−1
C

2 1 2
1 4 3
1 1 0

−2
7
−2


= ρ−1

C

−1
20
5


= (−1)

[
1 0
0 0

]
+ 20

[
0 1
1 0

]
+ 5

[
0 0
0 1

]
=

[−1 20
20 5

]

You can, of course, check your answer by evaluating T (3 + 5x− 2x2) directly.

C25 Contributed by Robert Beezer Statement [1922]
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Choose bases B and C for the matrix representation,

B =
{

1, x, x2, x3
}

C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([−1 4
1 1

])
= ρC

(
(−1)

[
1 0
0 0

]
+ 4

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 1

[
0 0
0 1

])
=


−1
4
1
1



ρC (T (x)) = ρC

([
4 −1
5 0

])
= ρC

(
4

[
1 0
0 0

]
+ (−1)

[
0 1
0 0

]
+ 5

[
0 0
1 0

]
+ 0

[
0 0
0 1

])
=


4
−1
5
0
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ρC
(
T
(
x2
))

= ρC

([
1 6
−2 2

])
= ρC

(
1

[
1 0
0 0

]
+ 6

[
0 1
0 0

]
+ (−2)

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


1
6
−2
2



ρC
(
T
(
x3
))

= ρC

([
2 −1
2 5

])
= ρC

(
2

[
1 0
0 0

]
+ (−1)

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ 5

[
0 0
0 1

])
=


2
−1
2
5


Applying Definition MR [1855] we have the matrix representation

MT
B,C =


−1 4 1 2
4 −1 6 −1
1 5 −2 2
1 0 2 5


Properties of this matrix representation will translate to properties of the linear transfor-
mation The matrix representation is nonsingular since it row-reduces to the identity matrix
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(Theorem NMRRI [250]) and therefore has a column space equal to C4 (Theorem CNMB
[1138]). The column space of the matrix representation is isomorphic to the range of the
linear transformation (Theorem RCSI [1900]). So the range of T has dimension 4, equal to
the dimension of the codomain M22. By Theorem ROSLT [1780], T is surjective.

C30 Contributed by Robert Beezer Statement [1923]
These subspaces will be easiest to construct by analyzing a matrix representation of S. Since
we can use any matrix representation, we might as well use natural bases that allow us to
construct the matrix representation quickly and easily,

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
then we can practically build the matrix representation on sight,

MS
B,C =

1 2 5 −4
3 −1 8 2
1 1 4 −2
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The first step is to find bases for the null space and column space of the matrix representation.
Row-reducing the matrix representation we find, 1 0 3 0

0 1 1 −2
0 0 0 0


So by Theorem BNS [484] and Theorem BCS [822], we have

N (MS
B,C

)
=

〈

−3
−1
1
0

 ,


0
2
0
1



〉

C(MS
B,C

)
=

〈
1

3
1

 ,
 2
−1
1


〉

Now, the proofs of Theorem KNSI [1892] and Theorem RCSI [1900] tell us that we can apply
ρ−1
B and ρ−1

C (respectively) to “un-coordinatize” and get bases for the kernel and range of
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the linear transformation S itself,

K(S) =

〈{[−3 −1
1 0

]
,

[
0 2
0 1

]}〉
R(S) =

〈{
1 + 3x+ x2, 2− x+ x2

}〉
C40 Contributed by Robert Beezer Statement [1923]
The analysis of R will be easiest if we analyze a matrix representation of R. Since we can
use any matrix representation, we might as well use natural bases that allow us to construct
the matrix representation quickly and easily,

B =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
then we can practically build the matrix representation on sight,

MR
B,C =

1 −1 0
2 −3 −2
1 −1 1
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This matrix representation is invertible (it has a nonzero determinant of −1, Theorem SMZD
[1348], Theorem NI [781]) so Theorem IMR [1907] tells us that the linear transformation S
is also invertible. To find a formula for R−1 we compute,

R−1
(
a+ bx+ cx2

)
= ρ−1

B

(
MR−1

C,B ρC
(
a+ bx+ cx2

))
Theorem FTMR [1864]

= ρ−1
B

((
MR

B,C

)−1
ρC
(
a+ bx+ cx2

))
Theorem IMR [1907]

= ρ−1
B

(MR
B,C

)−1

ab
c

 Definition VR [1819]

= ρ−1
B

 5 −1 −2
4 −1 −2
−1 0 1

ab
c

 Definition MI [727]
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= ρ−1
B

5a− b− 2c
4a− b− 2c
−a+ c

 Definition MVP [661]

=

[
5a− b− 2c 4a− b− 2c
4a− b− 2c −a+ c

]
Definition VR [1819]

C41 Contributed by Robert Beezer Statement [1924]
First, build a matrix representation of S (Definition MR [1855]). We are free to choose
whatever bases we wish, so we should choose ones that are easy to work with, such as

B = {1, x}
C =

{[
1 0

]
,
[
0 1

]}
The resulting matrix representation is then

MT
B,C =

[
3 1
2 1

]
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this matrix is invertible, since it has a nonzero determinant, so by Theorem IMR [1907]
the linear transformation S is invertible. We can use the matrix inverse and Theorem IMR
[1907] to find a formula for the inverse linear transformation,

S−1
([
a b

])
= ρ−1

B

(
MS−1

C,B ρC
([
a b

]))
Theorem FTMR [1864]

= ρ−1
B

((
MS

B,C

)−1
ρC
([
a b

]))
Theorem IMR [1907]

= ρ−1
B

((
MS

B,C

)−1
[
a
b

])
Definition VR [1819]

= ρ−1
B

(([
3 1
2 1

])−1 [
a
b

])

= ρ−1
B

([
1 −1
−2 3

] [
a
b

])
Definition MI [727]

= ρ−1
B

([
a− b
−2a+ 3b

])
Definition MVP [661]
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= (a− b) + (−2a+ 3b)x Definition VR [1819]

C42 Contributed by Robert Beezer Statement [1924]
Choose bases B and C for M12 and M21 (respectively),

B =
{[

1 0
]
,
[
0 1

]}
C =

{[
1
0

]
,

[
0
1

]}
The resulting matrix representation is

MR
B,C =

[
1 3
4 11

]
This matrix is invertible (its determinant is nonzero, Theorem SMZD [1348]), so by The-
orem IMR [1907], we can compute the matrix representation of R−1 with a matrix inverse
(Theorem TTMI [732]),

MR−1

C,B =

[
1 3
4 11

]−1

=

[−11 3
4 −1

]
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To obtain a general formula for R−1, use Theorem FTMR [1864],

R−1

([
x
y

])
= ρ−1

B

(
MR−1

C,B ρC

([
x
y

]))
= ρ−1

B

([−11 3
4 −1

] [
x
y

])
= ρ−1

B

([−11x+ 3y
4x− y

])
=
[−11x+ 3y 4x− y]

C50 Contributed by Robert Beezer Statement [1924]
As usual, build any matrix representation of L, most likely using a “nice” bases, such as

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
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Then the matrix representation (Definition MR [1855]) is,

ML
B,C =

 1 2 4 1
3 0 1 −2
−1 1 3 3


Theorem RCSI [1900] tells us that we can compute the column space of the matrix representa-
tion, then use the isomorphism ρ−1

C to convert the column space of the matrix representation
into the range of the linear transformation. So we first analyze the matrix representation, 1 2 4 1

3 0 1 −2
−1 1 3 3

 RREF−−−→
 1 0 0 −1

0 1 0 −1

0 0 1 1


With three nonzero rows in the reduced row-echelon form of the matrix, we know the column
space has dimension 3. Since P2 has dimension 3 (Theorem DP [1190]), the range must be
all of P2. So any basis of P2 would suffice as a basis for the range. For instance, C itself
would be a correct answer.
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A more laborious approach would be to use Theorem BCS [822] and choose the first three
columns of the matrix representation as a basis for the range of the matrix representation.
These could then be “un-coordinatized” with ρ−1

C to yield a (“not nice”) basis for P2.

C52 Contributed by Robert Beezer Statement [1925]
Choose bases B and C for the matrix representation,

B =
{

1, x, x2
}

C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([
1 2
−1 3

])
= ρC

(
1

[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ (−1)

[
0 0
1 0

]
+ 3

[
0 0
0 1

])
=


1
2
−1
3
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ρC (T (x)) = ρC

([
2 2
1 2

])
= ρC

(
2

[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


2
2
1
2



ρC
(
T
(
x2
))

= ρC

([−2 0
−4 2

])
= ρC

(
(−2)

[
1 0
0 0

]
+ 0

[
0 1
0 0

]
+ (−4)

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


−2
0
−4
2



Applying Definition MR [1855] we have the matrix representation

MT
B,C =


1 2 −2
2 2 0
−1 1 −4
3 2 2
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The null space of the matrix representation is isomorphic (via ρB) to the kernel of the
linear transformation (Theorem KNSI [1892]). So we compute the null space of the matrix
representation by first row-reducing the matrix to,


1 0 2

0 1 −2
0 0 0
0 0 0



Employing Theorem BNS [484] we have

N (MT
B,C

)
=

〈
−2

2
1


〉
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We only need to uncoordinatize this one basis vector to get a basis for K(T ),

K(T ) =

〈ρ−1
B

−2
2
1


〉

=
〈{−2 + 2x+ x2

}〉

M20 Contributed by Robert Beezer Statement [1926]
Build a matrix representation (Definition MR [1855]) with the set

B =
{

1, x, x2, . . . , xn
}
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employed as a basis of both the domain and codomain. Then

ρB (D (1)) = ρB (0) =



0
0
0
...
0
0


ρB (D (x)) = ρB (1) =



1
0
0
...
0
0



ρB
(
D
(
x2
))

= ρB (2x) =



0
2
0
...
0
0


ρB
(
D
(
x3
))

= ρB
(
3x2
)

=



0
0
3
...
0
0


...
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ρB (D (xn)) = ρB
(
nxn−1

)
=



0
0
0
...
n
0



and the resulting matrix representation is

MD
B,B =



0 1 0 0 . . . 0 0
0 0 2 0 . . . 0 0
0 0 0 3 . . . 0 0

...
. . .

...
0 0 0 0 . . . 0 n
0 0 0 0 . . . 0 0
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This (n + 1)× (n + 1) matrix is very close to being in reduced row-echelon form. Multiply
row i by 1

i
, for 1 ≤ i ≤ n, to convert it to reduced row-echelon form. From this we can see

that matrix representation MD
B,B has rank n and nullity 1. Applying Theorem RCSI [1900]

and Theorem KNSI [1892] tells us that the linear transformation D will have the same values
for the rank and nullity, as well.

T20 Contributed by Robert Beezer Statement [1926]
Given the nonsingular n×n matrix A, create the linear transformation T : Cn 7→ Cn defined
by T (x) = Ax. Then

A nonsingular ⇐⇒ A invertible Theorem NI [781]

⇐⇒ T invertible Theorem IMILT [1915]

⇐⇒ T injective and surjective Theorem ILTIS [1761]

⇐⇒ C linearly independent, and Theorem ILTB [1660]

C spans Cn Theorem SLTB [1721]

⇐⇒ C basis for Cn Definition B [1121]
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T80 Contributed by Robert Beezer Statement [1927]
Suppose thatB = {u1, u2, u3, . . . , um}, C = {v1, v2, v3, . . . , vn} andD = {w1, w2, w3, . . . , wp}.
For convenience, set M = MT

B,C , mij = [M ]ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, and similarly, set

N = MS
C,D, nij = [N ]ij, 1 ≤ i ≤ p, 1 ≤ j ≤ n. We want to learn about the matrix represen-

tation of S ◦ T : V 7→ W relative to B and D. We will examine a single (generic) entry of
this representation.

[
MS◦T

B,D

]
ij

= [ρD ((S ◦ T ) (uj))]i Definition MR [1855]

= [ρD (S (T (uj)))]i Definition LTC [1606]

=

[
ρD

(
S

(
n∑
k=1

mkjvk

))]
i

Definition MR [1855]

=

[
ρD

(
n∑
k=1

mkjS (vk)

)]
i

Theorem LTLC [1580]
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=

[
ρD

(
n∑
k=1

mkj

p∑
`=1

n`kw`

)]
i

Definition MR [1855]

=

[
ρD

(
n∑
k=1

p∑
`=1

mkjn`kw`

)]
i

Property DVA [958]

=

[
ρD

(
p∑
`=1

n∑
k=1

mkjn`kw`

)]
i

Property C [957]

=

[
ρD

(
p∑
`=1

(
n∑
k=1

mkjn`k

)
w`

)]
i

Property DSA [958]

=
n∑
k=1

mkjnik Definition VR [1819]

=
n∑
k=1

nikmkj Property CMCN [2317]
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=
n∑
k=1

[
MS

C,D

]
ik

[
MT

B,C

]
kj

Property CMCN [2317]

This formula for the entry of a matrix should remind you of Theorem EMP [676]. However,
while the theorem presumed we knew how to multiply matrices, the solution before us never
uses any understanding of matrix products. It uses the definitions of vector and matrix
representations, properties of linear transformations and vector spaces. So if we began
a course by first discussing vector space, and then linear transformations between vector
spaces, we could carry matrix representations into a motivation for a definition of matrix
multiplication that is grounded in function composition. That is worth saying again — a
definition of matrix representations of linear transformations results in a matrix product
being the representation of a composition of linear transformations.

This exercise is meant to explain why many authors take the formula in Theorem EMP
[676] as their definition of matrix multiplication, and why it is a natural choice when the
proper motivation is in place. If we first defined matrix multiplication in the style of Theorem
EMP [676], then the above argument, followed by a simple application of the definition of
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matrix equality (Definition ME [613]), would yield Theorem MRCLT [1879].
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Section CB

Change of Basis

We have seen in Section MR [1855] that a linear transformation can be represented by a ma-
trix, once we pick bases for the domain and codomain. How does the matrix representation
change if we choose different bases? Which bases lead to especially nice representations?
From the infinite possibilities, what is the best possible representation? This section will
begin to answer these questions. But first we need to define eigenvalues for linear transfor-
mations and the change-of-basis matrix.
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Subsection EELT
Eigenvalues and Eigenvectors of Linear Transformations

We now define the notion of an eigenvalue and eigenvector of a linear transformation. It
should not be too surprising, especially if you remind yourself of the close relationship be-
tween matrices and linear transformations.

Definition EELT
Eigenvalue and Eigenvector of a Linear Transformation
Suppose that T : V 7→ V is a linear transformation. Then a nonzero vector v ∈ V is an
eigenvector of T for the eigenvalue λ if T (v) = λv. 4

We will see shortly the best method for computing the eigenvalues and eigenvectors of a
linear transformation, but for now, here are some examples to verify that such things really
do exist.
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Example ELTBM
Eigenvectors of linear transformation between matrices
Consider the linear transformation T : M22 7→M22 defined by

T

([
a b
c d

])
=

[−17a+ 11b+ 8c− 11d −57a+ 35b+ 24c− 33d
−14a+ 10b+ 6c− 10d −41a+ 25b+ 16c− 23d

]
and the vectors

x1 =

[
0 1
0 1

]
x2 =

[
1 1
1 0

]
x3 =

[
1 3
2 3

]
x4 =

[
2 6
1 4

]
Then compute

T (x1) = T

([
0 1
0 1

])
=

[
0 2
0 2

]
= 2x1

T (x2) = T

([
1 1
1 0

])
=

[
2 2
2 0

]
= 2x2

Version 2.11



Subsection CB.EELT Eigenvalues and Eigenvectors of Linear Transformations 1967

T (x3) = T

([
1 3
2 3

])
=

[−1 −3
−2 −3

]
= (−1)x3

T (x4) = T

([
2 6
1 4

])
=

[−4 −12
−2 −8

]
= (−2)x4

So x1, x2, x3, x4 are eigenvectors of T with eigenvalues (respectively) λ1 = 2, λ2 = 2,
λ3 = −1, λ4 = −2. �

Here’s another.

Example ELTBP
Eigenvectors of linear transformation between polynomials
Consider the linear transformation R : P2 7→ P2 defined by

R
(
a+ bx+ cx2

)
= (15a+ 8b− 4c) + (−12a− 6b+ 3c)x+ (24a+ 14b− 7c)x2
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and the vectors

w1 = 1− x+ x2 w2 = x+ 2x2 w3 = 1 + 4x2

Then compute

R (w1) = R
(
1− x+ x2

)
= 3− 3x+ 3x2 = 3w1

R (w2) = R
(
x+ 2x2

)
= 0 + 0x+ 0x2 = 0w2

R (w3) = R
(
1 + 4x2

)
= −1− 4x2 = (−1)w3

So w1, w2, w3 are eigenvectors of R with eigenvalues (respectively) λ1 = 3, λ2 = 0, λ3 = −1.
Notice how the eigenvalue λ2 = 0 indicates that the eigenvector w2 is a non-trivial element
of the kernel of R, and therefore R is not injective (Exercise CB.T15 [2028]). �

Of course, these examples are meant only to illustrate the definition of eigenvectors
and eigenvalues for linear transformations, and therefore beg the question, “How would I
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find eigenvectors?” We’ll have an answer before we finish this section. We need one more
construction first.

Subsection CBM
Change-of-Basis Matrix

Given a vector space, we know we can usually find many different bases for the vector space,
some nice, some nasty. If we choose a single vector from this vector space, we can build
many different representations of the vector by constructing the representations relative to
different bases. How are these different representations related to each other? A change-of-
basis matrix answers this question.

Definition CBM
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Change-of-Basis Matrix
Suppose that V is a vector space, and IV : V 7→ V is the identity linear transformation on V .
Let B = {v1, v2, v3, . . . , vn} and C be two bases of V . Then the change-of-basis matrix
from B to C is the matrix representation of IV relative to B and C,

CB,C = M IV
B,C

= [ρC (IV (v1))| ρC (IV (v2))| ρC (IV (v3))| . . . |ρC (IV (vn)) ]

= [ρC (v1)| ρC (v2)| ρC (v3)| . . . |ρC (vn) ]

4
Notice that this definition is primarily about a single vector space (V ) and two bases of

V (B, C). The linear transformation (IV ) is necessary but not critical. As you might expect,
this matrix has something to do with changing bases. Here is the theorem that gives the
matrix its name (not the other way around).

Theorem CB
Change-of-Basis
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Suppose that v is a vector in the vector space V and B and C are bases of V . Then

ρC (v) = CB,CρB (v)

�

Proof

ρC (v) = ρC (IV (v)) Definition IDLT [1750]

= M IV
B,CρB (v) Theorem FTMR [1864]

= CB,CρB (v) Definition CBM [1961]

�

So the change-of-basis matrix can be used with matrix multiplication to convert a vector
representation of a vector (v) relative to one basis (ρB (v)) to a representation of the same
vector relative to a second basis (ρC (v)).
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Theorem ICBM
Inverse of Change-of-Basis Matrix
Suppose that V is a vector space, and B and C are bases of V . Then the change-of-basis
matrix CB,C is nonsingular and

C−1
B,C = CC,B

�

Proof The linear transformation IV : V 7→ V is invertible, and its inverse is itself, IV (check
this!). So by Theorem IMR [1907], the matrix M IV

B,C = CB,C is invertible. Theorem NI [781]
says an invertible matrix is nonsingular.

Then

C−1
B,C =

(
M IV

B,C

)−1
Definition CBM [1961]

= M
I−1
V
C,B Theorem IMR [1907]

= M IV
C,B Definition IDLT [1750]
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= CC,B Definition CBM [1961]

�

Example CBP
Change of basis with polynomials
The vector space P4 (Example VSP [963]) has two nice bases (Example BP [1124]),

B =
{

1, x, x2, x3, x4
}

C =
{

1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, 1 + x+ x2 + x3 + x4
}

To build the change-of-basis matrix between B and C, we must first build a vector repre-
sentation of each vector in B relative to C,

ρC (1) = ρC ((1) (1)) =


1
0
0
0
0
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ρC (x) = ρC ((−1) (1) + (1) (1 + x)) =


−1
1
0
0
0



ρC
(
x2
)

= ρC
(
(−1) (1 + x) + (1)

(
1 + x+ x2

))
=


0
−1
1
0
0



ρC
(
x3
)

= ρC
(
(−1)

(
1 + x+ x2

)
+ (1)

(
1 + x+ x2 + x3

))
=


0
0
−1
1
0
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ρC
(
x4
)

= ρC
(
(−1)

(
1 + x+ x2 + x3

)
+ (1)

(
1 + x+ x2 + x3 + x4

))
=


0
0
0
−1
1


Then we package up these vectors as the columns of a matrix,

CB,C =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1


Now, to illustrate Theorem CB [1961], consider the vector u = 5− 3x+ 2x2 + 8x3− 3x4. We
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can build the representation of u relative to B easily,

ρB (u) = ρB
(
5− 3x+ 2x2 + 8x3 − 3x4

)
=


5
−3
2
8
−3


Applying Theorem CB [1961], we obtain a second representation of u, but now relative to
C,

ρC (u) = CB,CρB (u) Theorem CB [1961]

=


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1




5
−3
2
8
−3


Version 2.11



Subsection CB.CBM Change-of-Basis Matrix 1977

=


8
−5
−6
11
−3

 Definition MVP [661]

We can check our work by unraveling this second representation,

u = ρ−1
C (ρC (u)) Definition IVLT [1750]

= ρ−1
C




8
−5
−6
11
−3




= 8(1) + (−5)(1 + x) + (−6)(1 + x+ x2)

+ (11)(1 + x+ x2 + x3) + (−3)(1 + x+ x2 + x3 + x4) Definition VR [1819]
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= 5− 3x+ 2x2 + 8x3 − 3x4

The change-of-basis matrix from C to B is actually easier to build. Grab each vector in the
basis C and form its representation relative to B

ρB (1) = ρB ((1)1) =


1
0
0
0
0



ρB (1 + x) = ρB ((1)1 + (1)x) =


1
1
0
0
0
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ρB
(
1 + x+ x2

)
= ρB

(
(1)1 + (1)x+ (1)x2

)
=


1
1
1
0
0



ρB
(
1 + x+ x2 + x3

)
= ρB

(
(1)1 + (1)x+ (1)x2 + (1)x3

)
=


1
1
1
1
0



ρB
(
1 + x+ x2 + x3 + x4

)
= ρB

(
(1)1 + (1)x+ (1)x2 + (1)x3 + (1)x4

)
=


1
1
1
1
1
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Then we package up these vectors as the columns of a matrix,

CC,B =


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1


We formed two representations of the vector u above, so we can again provide a check on our
computations by converting from the representation of u relative to C to the representation
of u relative to B,

ρB (u) = CC,BρC (u) Theorem CB [1961]
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=


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1




8
−5
−6
11
−3



=


5
−3
2
8
−3

 Definition MVP [661]

One more computation that is either a check on our work, or an illustration of a theorem.
The two change-of-basis matrices, CB,C and CC,B, should be inverses of each other, according
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to Theorem ICBM [1963]. Here we go,

CB,CCC,B =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1




1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


�

The computations of the previous example are not meant to present any labor-saving
devices, but instead are meant to illustrate the utility of the change-of-basis matrix. However,
you might have noticed that CC,B was easier to compute than CB,C . If you needed CB,C ,
then you could first compute CC,B and then compute its inverse, which by Theorem ICBM
[1963], would equal CB,C .

Here’s another illustrative example. We have been concentrating on working with ab-
stract vector spaces, but all of our theorems and techniques apply just as well to Cm, the
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vector space of column vectors. We only need to use more complicated bases than the
standard unit vectors (Theorem SUVB [1122]) to make things interesting.

Example CBCV
Change of basis with column vectors
For the vector space C4 we have the two bases,

B =




1
−2
1
−2

 ,

−1
3
1
1

 ,


2
−3
3
−4

 ,

−1
3
3
0


 C =




1
−6
−4
−1

 ,

−4
8
−5
8

 ,

−5
13
−2
9

 ,


3
−7
3
−6




The change-of-basis matrix from B to C requires writing each vector of B as a linear com-
bination the vectors in C,

ρC




1
−2
1
−2


 = ρC

(1)


1
−6
−4
−1

+ (−2)


−4
8
−5
8

+ (1)


−5
13
−2
9

+ (−1)


3
−7
3
−6


 =


1
−2
1
−1
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ρC



−1
3
1
1


 = ρC

(2)


1
−6
−4
−1

+ (−3)


−4
8
−5
8

+ (3)


−5
13
−2
9

+ (0)


3
−7
3
−6


 =


2
−3
3
0



ρC




2
−3
3
−4


 = ρC

(1)


1
−6
−4
−1

+ (−3)


−4
8
−5
8

+ (1)


−5
13
−2
9

+ (−2)


3
−7
3
−6


 =


1
−3
1
−2



ρC



−1
3
3
0


 = ρC

(2)


1
−6
−4
−1

+ (−2)


−4
8
−5
8

+ (4)


−5
13
−2
9

+ (3)


3
−7
3
−6


 =


2
−2
4
3
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Then we package these vectors up as the change-of-basis matrix,

CB,C =


1 2 1 2
−2 −3 −3 −2
1 3 1 4
−1 0 −2 3



Now consider a single (arbitrary) vector y =


2
6
−3
4

. First, build the vector representation

of y relative to B. This will require writing y as a linear combination of the vectors in B,

ρB (y) = ρB




2
6
−3
4




Version 2.11



Subsection CB.CBM Change-of-Basis Matrix 1986

= ρB

(−21)


1
−2
1
−2

+ (6)


−1
3
1
1

+ (11)


2
−3
3
−4

+ (−7)


−1
3
3
0


 =


−21

6
11
−7


Now, applying Theorem CB [1961] we can convert the representation of y relative to B into
a representation relative to C,

ρC (y) = CB,CρB (y) Theorem CB [1961]

=


1 2 1 2
−2 −3 −3 −2
1 3 1 4
−1 0 −2 3



−21

6
11
−7



=


−12

5
−20
−22

 Definition MVP [661]

Version 2.11



Subsection CB.MRS Matrix Representations and Similarity 1987

We could continue further with this example, perhaps by computing the representation of
y relative to the basis C directly as a check on our work (Exercise CB.C20 [2026]). Or we
could choose another vector to play the role of y and compute two different representations
of this vector relative to the two bases B and C.

�

Subsection MRS
Matrix Representations and Similarity

Here is the main theorem of this section. It looks a bit involved at first glance, but the proof
should make you realize it is not all that complicated. In any event, we are more interested
in a special case.

Theorem MRCB
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Matrix Representation and Change of Basis
Suppose that T : U 7→ V is a linear transformation, B and C are bases for U , and D and E
are bases for V . Then

MT
B,D = CE,DM

T
C,ECB,C

�

Proof

CE,DM
T
C,ECB,C = M IV

E,DM
T
C,EM

IU
B,C Definition CBM [1961]

= M IV
E,DM

T◦IU
B,E Theorem MRCLT [1879]

= M IV
E,DM

T
B,E Definition IDLT [1750]

= M IV ◦T
B,D Theorem MRCLT [1879]

= MT
B,D Definition IDLT [1750]

�

We will be most interested in a special case of this theorem (Theorem SCB [1986]), but
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here’s an example that illustrates the full generality of Theorem MRCB [1979].

Example MRCM
Matrix representations and change-of-basis matrices
Begin with two vector spaces, S2, the subspace of M22 containing all 2×2 symmetric matrices,
and P3 (Example VSP [963]), the vector space of all polynomials of degree 3 or less. Then
define the linear transformation Q : S2 7→ P3 by

Q

([
a b
b c

])
= (5a− 2b+ 6c) + (3a− b+ 2c)x+ (a+ 3b− c)x2 + (−4a+ 2b+ c)x3

Here are two bases for each vector space, one nice, one nasty. First for S2,

B =

{[
5 −3
−3 −2

]
,

[
2 −3
−3 0

]
,

[
1 2
2 4

]}
C =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
and then for P3,

D =
{

2 + x− 2x2 + 3x3, −1− 2x2 + 3x3, −3− x+ x3, −x2 + x3
}

E =
{

1, x, x2, x3
}
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We’ll begin with a matrix representation of Q relative to C and E. We first find vector
representations of the elements of C relative to E,

ρE

(
Q

([
1 0
0 0

]))
= ρE

(
5 + 3x+ x2 − 4x3

)
=


5
3
1
−4



ρE

(
Q

([
0 1
1 0

]))
= ρE

(−2− x+ 3x2 + 2x3
)

=


−2
−1
3
2



ρE

(
Q

([
0 0
0 1

]))
= ρE

(
6 + 2x− x2 + x3

)
=


6
2
−1
1
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So

MQ
C,E =


5 −2 6
3 −1 2
1 3 −1
−4 2 1


Now we construct two change-of-basis matrices. First, CB,C requires vector representations
of the elements of B, relative to C. Since C is a nice basis, this is straightforward,

ρC

([
5 −3
−3 −2

])
= ρC

(
(5)

[
1 0
0 0

]
+ (−3)

[
0 1
1 0

]
+ (−2)

[
0 0
0 1

])
=

 5
−3
−2


ρC

([
2 −3
−3 0

])
= ρC

(
(2)

[
1 0
0 0

]
+ (−3)

[
0 1
1 0

]
+ (0)

[
0 0
0 1

])
=

 2
−3
0
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ρC

([
1 2
2 4

])
= ρC

(
(1)

[
1 0
0 0

]
+ (2)

[
0 1
1 0

]
+ (4)

[
0 0
0 1

])
=

1
2
4


So

CB,C =

 5 2 1
−3 −3 2
−2 0 4


The other change-of-basis matrix we’ll compute is CE,D. However, since E is a nice basis
(and D is not) we’ll turn it around and instead compute CD,E and apply Theorem ICBM
[1963] to use an inverse to compute CE,D.

ρE
(
2 + x− 2x2 + 3x3

)
= ρE

(
(2)1 + (1)x+ (−2)x2 + (3)x3

)
=


2
1
−2
3
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ρE
(−1− 2x2 + 3x3

)
= ρE

(
(−1)1 + (0)x+ (−2)x2 + (3)x3

)
=


−1
0
−2
3



ρE
(−3− x+ x3

)
= ρE

(
(−3)1 + (−1)x+ (0)x2 + (1)x3

)
=


−3
−1
0
1



ρE
(−x2 + x3

)
= ρE

(
(0)1 + (0)x+ (−1)x2 + (1)x3

)
=


0
0
−1
1


So, we can package these column vectors up as a matrix to obtain CD,E and then,

CE,D = (CD,E)−1 Theorem ICBM [1963]
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=


2 −1 −3 0
1 0 −1 0
−2 −2 0 −1
3 3 1 1


−1

=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0


We are now in a position to apply Theorem MRCB [1979]. The matrix representation of Q
relative to B and D can be obtained as follows,

MQ
B,D = CE,DM

Q
C,ECB,C Theorem MRCB [1979]

=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0




5 −2 6
3 −1 2
1 3 −1
−4 2 1


 5 2 1
−3 −3 2
−2 0 4
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=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0




19 16 25
14 9 9
−2 −7 3
−28 −14 4



=


−39 −23 14
62 34 −12
−53 −32 5
−44 −15 −7


Now check our work by computing MQ

B,D directly (Exercise CB.C21 [2026]). �

Here is a special case of the previous theorem, where we choose U and V to be the same
vector space, so the matrix representations and the change-of-basis matrices are all square
of the same size.

Theorem SCB
Similarity and Change of Basis

Version 2.11



Subsection CB.MRS Matrix Representations and Similarity 1996

Suppose that T : V 7→ V is a linear transformation and B and C are bases of V . Then

MT
B,B = C−1

B,CM
T
C,CCB,C

�

Proof In the conclusion of Theorem MRCB [1979], replace D by B, and replace E by C,

MT
B,B = CC,BM

T
C,CCB,C Theorem MRCB [1979]

= C−1
B,CM

T
C,CCB,C Theorem ICBM [1963]

�

This is the third surprise of this chapter. Theorem SCB [1986] considers the special case
where a linear transformation has the same vector space for the domain and codomain (V ).
We build a matrix representation of T using the basis B simultaneously for both the domain
and codomain (MT

B,B), and then we build a second matrix representation of T , now using
the basis C for both the domain and codomain (MT

C,C). Then these two representations
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are related via a similarity transformation (Definition SIM [1485]) using a change-of-basis
matrix (CB,C)!

Example MRBE
Matrix representation with basis of eigenvectors
We return to the linear transformation T : M22 7→ M22 of Example ELTBM [1957] defined
by

T

([
a b
c d

])
=

[−17a+ 11b+ 8c− 11d −57a+ 35b+ 24c− 33d
−14a+ 10b+ 6c− 10d −41a+ 25b+ 16c− 23d

]
In Example ELTBM [1957] we showcased four eigenvectors of T . We will now put these four
vectors in a set,

B = {x1, x2, x3, x4} =

{[
0 1
0 1

]
,

[
1 1
1 0

]
,

[
1 3
2 3

]
,

[
2 6
1 4

]}
Check that B is a basis of M22 by first establishing the linear independence of B and then
employing Theorem G [1228] to get the spanning property easily. Here is a second set of
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2× 2 matrices, which also forms a basis of M22 (Example BM [1125]),

C = {y1, y2, y3, y4} =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
We can build two matrix representations of T , one relative to B and one relative to C. Each is
easy, but for wildly different reasons. In our computation of the matrix representation relative
to B we borrow some of our work in Example ELTBM [1957]. Here are the representations,
then the explanation.

ρB (T (x1)) = ρB (2x1) = ρB (2x1 + 0x2 + 0x3 + 0x4) =


2
0
0
0



ρB (T (x2)) = ρB (2x2) = ρB (0x1 + 2x2 + 0x3 + 0x4) =


0
2
0
0
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ρB (T (x3)) = ρB ((−1)x3) = ρB (0x1 + 0x2 + (−1)x3 + 0x4) =


0
0
−1
0



ρB (T (x4)) = ρB ((−2)x4) = ρB (0x1 + 0x2 + 0x3 + (−2)x4) =


0
0
0
−2


So the resulting representation is

MT
B,B =


2 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −2
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Very pretty. Now for the matrix representation relative to C first compute,

ρC (T (y1)) = ρC

([−17 −57
−14 −41

])

= ρC

(
(−17)

[
1 0
0 0

]
+ (−57)

[
0 1
0 0

]
+ (−14)

[
0 0
1 0

]
+ (−41)

[
0 0
0 1

])
=


−17
−57
−14
−41


ρC (T (y2)) = ρC

([
11 35
10 25

])

= ρC

(
11

[
1 0
0 0

]
+ 35

[
0 1
0 0

]
+ 10

[
0 0
1 0

]
+ 25

[
0 0
0 1

])
=


11
35
10
25


Version 2.11



Subsection CB.MRS Matrix Representations and Similarity 2001

ρC (T (y3)) = ρC

([
8 24
6 16

])

= ρC

(
8

[
1 0
0 0

]
+ 24

[
0 1
0 0

]
+ 6

[
0 0
1 0

]
+ 16

[
0 0
0 1

])
=


8
24
6
16


ρC (T (y4)) = ρC

([−11 −33
−10 −23

])

= ρC

(
(−11)

[
1 0
0 0

]
+ (−33)

[
0 1
0 0

]
+ (−10)

[
0 0
1 0

]
+ (−23)

[
0 0
0 1

])
=


−11
−33
−10
−23
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So the resulting representation is

MT
C,C =


−17 11 8 −11
−57 35 24 −33
−14 10 6 −10
−41 25 16 −23


Not quite as pretty. The purpose of this example is to illustrate Theorem SCB [1986].
This theorem says that the two matrix representations, MT

B,B and MT
C,C , of the one linear

transformation, T , are related by a similarity transformation using the change-of-basis matrix
CB,C . Lets compute this change-of-basis matrix. Notice that since C is such a nice basis,
this is fairly straightforward,

ρC (x1) = ρC

([
0 1
0 1

])
= ρC

(
0

[
1 0
0 0

]
+ 1

[
0 1
0 0

]
+ 0

[
0 0
1 0

]
+ 1

[
0 0
0 1

])
=


0
1
0
1
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ρC (x2) = ρC

([
1 1
1 0

])
= ρC

(
1

[
1 0
0 0

]
+ 1

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 0

[
0 0
0 1

])
=


1
1
1
0



ρC (x3) = ρC

([
1 3
2 3

])
= ρC

(
1

[
1 0
0 0

]
+ 3

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ 3

[
0 0
0 1

])
=


1
3
2
3



ρC (x4) = ρC

([
2 6
1 4

])
= ρC

(
2

[
1 0
0 0

]
+ 6

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 4

[
0 0
0 1

])
=


2
6
1
4
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So we have,

CB,C =


0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


Now, according to Theorem SCB [1986] we can write,

MT
B,B = C−1

B,CM
T
C,CCB,C

2 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −2

 =


0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


−1 
−17 11 8 −11
−57 35 24 −33
−14 10 6 −10
−41 25 16 −23




0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


This should look and feel exactly like the process for diagonalizing a matrix, as was described
in Section SD [1484]. And it is. �

We can now return to the question of computing an eigenvalue or eigenvector of a lin-
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ear transformation. For a linear transformation of the form T : V 7→ V , we know that
representations relative to different bases are similar matrices. We also know that similar
matrices have equal characteristic polynomials by Theorem SMEE [1493]. We will now show
that eigenvalues of a linear transformation T are precisely the eigenvalues of any matrix
representation of T . Since the choice of a different matrix representation leads to a similar
matrix, there will be no “new” eigenvalues obtained from this second representation. Sim-
ilarly, the change-of-basis matrix can be used to show that eigenvectors obtained from one
matrix representation will be precisely those obtained from any other representation. So we
can determine the eigenvalues and eigenvectors of a linear transformation by forming one
matrix representation, using any basis we please, and analyzing the matrix in the manner of
Chapter E [1363].

Theorem EER
Eigenvalues, Eigenvectors, Representations
Suppose that T : V 7→ V is a linear transformation and B is a basis of V . Then v ∈ V is an
eigenvector of T for the eigenvalue λ if and only if ρB (v) is an eigenvector of MT

B,B for the
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eigenvalue λ. �

Proof (⇒) Assume that v ∈ V is an eigenvector of T for the eigenvalue λ. Then

MT
B,BρB (v) = ρB (T (v)) Theorem FTMR [1864]

= ρB (λv) Definition EELT [1956]

= λρB (v) Theorem VRLT [1820]

which by Definition EEM [1365] says that ρB (v) is an eigenvector of the matrix MT
B,B for

the eigenvalue λ.
(⇐) Assume that ρB (v) is an eigenvector of MT

B,B for the eigenvalue λ. Then

T (v) = ρ−1
B (ρB (T (v))) Definition IVLT [1750]

= ρ−1
B

(
MT

B,BρB (v)
)

Theorem FTMR [1864]

= ρ−1
B (λρB (v)) Definition EEM [1365]

= λρ−1
B (ρB (v)) Theorem ILTLT [1758]
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= λv Definition IVLT [1750]

which by Definition EELT [1956] says v is an eigenvector of T for the eigenvalue λ. �

Subsection CELT
Computing Eigenvectors of Linear Transformations

Knowing that the eigenvalues of a linear transformation are the eigenvalues of any repre-
sentation, no matter what the choice of the basis B might be, we could now unambiguously
define items such as the characteristic polynomial of a linear transformation, rather than a
matrix. We’ll say that again — eigenvalues, eigenvectors, and characteristic polynomials are
intrinsic properties of a linear transformation, independent of the choice of a basis used to
construct a matrix representation.
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As a practical matter, how does one compute the eigenvalues and eigenvectors of a
linear transformation of the form T : V 7→ V ? Choose a nice basis B for V , one where the
vector representations of the values of the linear transformations necessary for the matrix
representation are easy to compute. Construct the matrix representation relative to this
basis, and find the eigenvalues and eigenvectors of this matrix using the techniques of Chapter
E [1363]. The resulting eigenvalues of the matrix are precisely the eigenvalues of the linear
transformation. The eigenvectors of the matrix are column vectors that need to be converted
to vectors in V through application of ρ−1

B .

Now consider the case where the matrix representation of a linear transformation is diag-
onalizable. The n linearly independent eigenvectors that must exist for the matrix (Theorem
DC [1499]) can be converted (via ρ−1

B ) into eigenvectors of the linear transformation. A ma-
trix representation of the linear transformation relative to a basis of eigenvectors will be a
diagonal matrix — an especially nice representation! Though we did not know it at the
time, the diagonalizations of Section SD [1484] were really finding especially pleasing matrix
representations of linear transformations.

Here are some examples.
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Example ELTT
Eigenvectors of a linear transformation, twice
Consider the linear transformation S : M22 7→M22 defined by

S

([
a b
c d

])
=

[ −b− c− 3d −14a− 15b− 13c+ d
18a+ 21b+ 19c+ 3d −6a− 7b− 7c− 3d

]

To find the eigenvalues and eigenvectors of S we will build a matrix representation and
analyze the matrix. Since Theorem EER [1996] places no restriction on the choice of the
basis B, we may as well use a basis that is easy to work with. So set

B = {x1, x2, x3, x4} =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
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Then to build the matrix representation of S relative to B compute,

ρB (S (x1)) = ρB

([
0 −14
18 −6

])
= ρB (0x1 + (−14)x2 + 18x3 + (−6)x4) =


0
−14
18
−6



ρB (S (x2)) = ρB

([−1 −15
21 −7

])
= ρB ((−1)x1 + (−15)x2 + 21x3 + (−7)x4) =


−1
−15
21
−7



ρB (S (x3)) = ρB

([−1 −13
19 −7

])
= ρB ((−1)x1 + (−13)x2 + 19x3 + (−7)x4) =


−1
−13
19
−7
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ρB (S (x4)) = ρB

([−3 1
3 −3

])
= ρB ((−3)x1 + 1x2 + 3x3 + (−3)x4) =


−3
1
3
−3


So by Definition MR [1855] we have

M = MS
B,B =


0 −1 −1 −3
−14 −15 −13 1
18 21 19 3
−6 −7 −7 −3


Now compute eigenvalues and eigenvectors of the matrix representation of M with the tech-
niques of Section EE [1365]. First the characteristic polynomial,

pM (x) = det (M − xI4) = x4 − x3 − 10x2 + 4x+ 24 = (x− 3)(x− 2)(x+ 2)2

We could now make statements about the eigenvalues of M , but in light of Theorem EER
[1996] we can refer to the eigenvalues of S and mildly abuse (or extend) our notation for
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multiplicities to write

αS (3) = 1 αS (2) = 1 αS (−2) = 2

Now compute the eigenvectors of M ,

λ = 3 M − 3I4 =


−3 −1 −1 −3
−14 −18 −13 1
18 21 16 3
−6 −7 −7 −6

 RREF−−−→


1 0 0 1

0 1 0 −3

0 0 1 3
0 0 0 0



EM (3) = N (M − 3I4) =

〈

−1
3
−3
1



〉
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λ = 2 M − 2I4 =


−2 −1 −1 −3
−14 −17 −13 1
18 21 17 3
−6 −7 −7 −5

 RREF−−−→


1 0 0 2

0 1 0 −4

0 0 1 3
0 0 0 0



EM (2) = N (M − 2I4) =

〈

−2
4
−3
1



〉

λ = −2 M − (−2)I4 =


2 −1 −1 −3
−14 −13 −13 1
18 21 21 3
−6 −7 −7 −1

 RREF−−−→


1 0 0 −1

0 1 1 1
0 0 0 0
0 0 0 0
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EM (−2) = N (M − (−2)I4) =

〈


0
−1
1
0

 ,


1
−1
0
1



〉

According to Theorem EER [1996] the eigenvectors just listed as basis vectors for the
eigenspaces of M are vector representations (relative to B) of eigenvectors for S. So the
application if the inverse function ρ−1

B will convert these column vectors into elements of the
vector space M22 (2 × 2 matrices) that are eigenvectors of S. Since ρB is an isomorphism
(Theorem VRILT [1835]), so is ρ−1

B . Applying the inverse function will then preserve linear
independence and spanning properties, so with a sweeping application of the Coordinati-
zation Principle [1845] and some extensions of our previous notation for eigenspaces and
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geometric multiplicities, we can write,

ρ−1
B



−1
3
−3
1


 = (−1)x1 + 3x2 + (−3)x3 + 1x4 =

[−1 3
−3 1

]

ρ−1
B



−2
4
−3
1


 = (−2)x1 + 4x2 + (−3)x3 + 1x4 =

[−2 4
−3 1

]

ρ−1
B




0
−1
1
0


 = 0x1 + (−1)x2 + 1x3 + 0x4 =

[
0 −1
1 0

]
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ρ−1
B




1
−1
0
1


 = 1x1 + (−1)x2 + 0x3 + 1x4 =

[
1 −1
0 1

]

So

ES (3) =

〈{[−1 3
−3 1

]}〉
ES (2) =

〈{[−2 4
−3 1

]}〉
ES (−2) =

〈{[
0 −1
1 0

]
,

[
1 −1
0 1

]}〉
with geometric multiplicities given by

γS (3) = 1 γS (2) = 1 γS (−2) = 2
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Suppose we now decided to build another matrix representation of S, only now relative to a
linearly independent set of eigenvectors of S, such as

C =

{[−1 3
−3 1

]
,

[−2 4
−3 1

]
,

[
0 −1
1 0

]
,

[
1 −1
0 1

]}
At this point you should have computed enough matrix representations to predict that the
result of representing S relative to C will be a diagonal matrix. Computing this representa-
tion is an example of how Theorem SCB [1986] generalizes the diagonalizations from Section
SD [1484]. For the record, here is the diagonal representation,

MS
C,C =


3 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 −2


Our interest in this example is not necessarily building nice representations, but instead we
want to demonstrate how eigenvalues and eigenvectors are an intrinsic property of a linear
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transformation, independent of any particular representation. To this end, we will repeat
the foregoing, but replace B by another basis. We will make this basis different, but not
extremely so,

D = {y1, y2, y3, y4} =

{[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]}
Then to build the matrix representation of S relative to D compute,

ρD (S (y1)) = ρD

([
0 −14
18 −6

])
= ρD (14y1 + (−32)y2 + 24y3 + (−6)y4) =


14
−32
24
−6



ρD (S (y2)) = ρD

([−1 −29
39 −13

])
= ρD (28y1 + (−68)y2 + 52y3 + (−13)y4) =


28
−68
52
−13
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ρD (S (y3)) = ρD

([−2 −42
58 −20

])
= ρD (40y1 + (−100)y2 + 78y3 + (−20)y4) =


40
−100

78
−20



ρD (S (y4)) = ρD

([−5 −41
61 −23

])
= ρD (36y1 + (−102)y2 + 84y3 + (−23)y4) =


36
−102

84
−23



So by Definition MR [1855] we have

N = MS
D,D =


14 28 40 36
−32 −68 −100 −102
24 52 78 84
−6 −13 −20 −23
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Now compute eigenvalues and eigenvectors of the matrix representation of N with the tech-
niques of Section EE [1365]. First the characteristic polynomial,

pN (x) = det (N − xI4) = x4 − x3 − 10x2 + 4x+ 24 = (x− 3)(x− 2)(x+ 2)2

Of course this is not news. We now know that M = MS
B,B and N = MS

D,D are similar
matrices (Theorem SCB [1986]). But Theorem SMEE [1493] told us long ago that similar
matrices have identical characteristic polynomials. Now compute eigenvectors for the matrix
representation, which will be different than what we found for M ,

λ = 3 N − 3I4 =


11 28 40 36
−32 −71 −100 −102
24 52 75 84
−6 −13 −20 −26

 RREF−−−→


1 0 0 4
0 1 0 −6
0 0 1 4
0 0 0 0



EN (3) = N (N − 3I4) =

〈

−4
6
−4
1



〉
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λ = 2 N − 2I4 =


12 28 40 36
−32 −70 −100 −102
24 52 76 84
−6 −13 −20 −25

 RREF−−−→


1 0 0 6
0 1 0 −7
0 0 1 4
0 0 0 0



EN (2) = N (N − 2I4) =

〈

−6
7
−4
1



〉

λ = −2 N − (−2)I4 =


16 28 40 36
−32 −66 −100 −102
24 52 80 84
−6 −13 −20 −21

 RREF−−−→


1 0 −1 −3
0 1 2 3
0 0 0 0
0 0 0 0
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EN (−2) = N (N − (−2)I4) =

〈


1
−2
1
0

 ,


3
−3
0
1



〉

Employing Theorem EER [1996] we can apply ρ−1
D to each of the basis vectors of the

eigenspaces of N to obtain eigenvectors for S that also form bases for eigenspaces of S,

ρ−1
D



−4
6
−4
1


 = (−4)y1 + 6y2 + (−4)y3 + 1y4 =

[−1 3
−3 1

]

ρ−1
D



−6
7
−4
1


 = (−6)y1 + 7y2 + (−4)y3 + 1y4 =

[−2 4
−3 1

]
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ρ−1
D




1
−2
1
0


 = 1y1 + (−2)y2 + 1y3 + 0y4 =

[
0 −1
1 0

]

ρ−1
D




3
−3
0
1


 = 3y1 + (−3)y2 + 0y3 + 1y4 =

[
1 −2
1 1

]

The eigenspaces for the eigenvalues of algebraic multiplicity 1 are exactly as before,

ES (3) =

〈{[−1 3
−3 1

]}〉
ES (2) =

〈{[−2 4
−3 1

]}〉
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However, the eigenspace for λ = −2 would at first glance appear to be different. Here are
the two eigenspaces for λ = −2, first the eigenspace obtained from M = MS

B,B, then followed
by the eigenspace obtained from M = MS

D,D.

ES (−2) =

〈{[
0 −1
1 0

]
,

[
1 −1
0 1

]}〉
ES (−2) =

〈{[
0 −1
1 0

]
,

[
1 −2
1 1

]}〉
Subspaces generally have many bases, and that is the situation here. With a careful proof
of set equality, you can show that these two eigenspaces are equal sets. The key observation
to make such a proof go is that[

1 −2
1 1

]
=

[
0 −1
1 0

]
+

[
1 −1
0 1

]
which will establish that the second set is a subset of the first. With equal dimensions,
Theorem EDYES [1237] will finish the task. So the eigenvalues of a linear transformation
are independent of the matrix representation employed to compute them! �

Another example, this time a bit larger and with complex eigenvalues.

Version 2.11



Subsection CB.CELT Computing Eigenvectors of Linear Transformations 2025

Example CELT
Complex eigenvectors of a linear transformation
Consider the linear transformation Q : P4 7→ P4 defined by

Q
(
a+ bx+ cx2 + dx3 + ex4

)
= (−46a− 22b+ 13c+ 5d+ e) + (117a+ 57b− 32c− 15d− 4e)x+

(−69a− 29b+ 21c− 7e)x2 + (159a+ 73b− 44c− 13d+ 2e)x3+

(−195a− 87b+ 55c+ 10d− 13e)x4

Choose a simple basis to compute with, say

B =
{

1, x, x2, x3, x4
}
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Then it should be apparent that the matrix representation of Q relative to B is

M = MQ
B,B =


−46 −22 13 5 1
117 57 −32 −15 −4
−69 −29 21 0 −7
159 73 −44 −13 2
−195 −87 55 10 −13


Compute the characteristic polynomial, eigenvalues and eigenvectors according to the tech-
niques of Section EE [1365],

pQ (x) = −x5 + 6x4 − x3 − 88x2 + 252x− 208

= −(x− 2)2(x+ 4)
(
x2 − 6x+ 13

)
= −(x− 2)2(x+ 4) (x− (3 + 2i)) (x− (3− 2i))

αQ (2) = 2 αQ (−4) = 1 αQ (3 + 2i) = 1 αQ (3− 2i) = 1
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λ = 2

M − (2)I5 =


−48 −22 13 5 1
117 55 −32 −15 −4
−69 −29 19 0 −7
159 73 −44 −15 2
−195 −87 55 10 −15

 RREF−−−→


1 0 0 1

2
−1

2

0 1 0 −5
2
−5

2

0 0 1 −2 −6
0 0 0 0 0
0 0 0 0 0



EM (2) = N (M − (2)I5) =

〈


−1

2
5
2

2
1
0

 ,


1
2
5
2

6
0
1



〉

=

〈


−1
5
4
2
0

 ,


1
5
12
0
2



〉

λ = −4
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M − (−4)I5 =


−42 −22 13 5 1
117 61 −32 −15 −4
−69 −29 25 0 −7
159 73 −44 −9 2
−195 −87 55 10 −9

 RREF−−−→


1 0 0 0 1
0 1 0 0 −3
0 0 1 0 −1
0 0 0 1 −2
0 0 0 0 0



EM (−4) = N (M − (−4)I5) =

〈


−1
3
1
2
1



〉

λ = 3 + 2i
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M − (3 + 2i)I5 =


−49− 2i −22 13 5 1

117 54− 2i −32 −15 −4
−69 −29 18− 2i 0 −7
159 73 −44 −16− 2i 2
−195 −87 55 10 −16− 2i

 RREF−−−→


1 0 0 0 −3

4
+ i

4

0 1 0 0 7
4
− i

4

0 0 1 0 −1
2

+ i
2

0 0 0 1 7
4
− i

4

0 0 0 0 0



EM (3 + 2i) = N (M − (3 + 2i)I5) =

〈


3
4
− i

4−7
4

+ i
4

1
2
− i

2−7
4

+ i
4

1



〉

=

〈


3− i
−7 + i
2− 2i
−7 + i

4



〉

λ = 3− 2i
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M − (3− 2i)I5 =


−49 + 2i −22 13 5 1

117 54 + 2i −32 −15 −4
−69 −29 18 + 2i 0 −7
159 73 −44 −16 + 2i 2
−195 −87 55 10 −16 + 2i

 RREF−−−→


1 0 0 0 −3

4
− i

4

0 1 0 0 7
4

+ i
4

0 0 1 0 −1
2
− i

2

0 0 0 1 7
4

+ i
4

0 0 0 0 0



EM (3− 2i) = N (M − (3− 2i)I5) =

〈


3
4

+ i
4−7

4
− i

4
1
2

+ i
2−7

4
− i

4

1



〉

=

〈


3 + i
−7− i
2 + 2i
−7− i

4



〉

It is straightforward to convert each of these basis vectors for eigenspaces of M back to
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elements of P4 by applying the isomorphism ρ−1
B ,

ρ−1
B



−1
5
4
2
0


 = −1 + 5x+ 4x2 + 2x3

ρ−1
B




1
5
12
0
2


 = 1 + 5x+ 12x2 + 2x4
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ρ−1
B



−1
3
1
2
1


 = −1 + 3x+ x2 + 2x3 + x4

ρ−1
B




3− i
−7 + i
2− 2i
−7 + i

4


 = (3− i) + (−7 + i)x+ (2− 2i)x2 + (−7 + i)x3 + 4x4

ρ−1
B




3 + i
−7− i
2 + 2i
−7− i

4


 = (3 + i) + (−7− i)x+ (2 + 2i)x2 + (−7− i)x3 + 4x4
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So we apply Theorem EER [1996] and the Coordinatization Principle [1845] to get the
eigenspaces for Q,

EQ (2) =
〈{−1 + 5x+ 4x2 + 2x3, 1 + 5x+ 12x2 + 2x4

}〉
EQ (−4) =

〈{−1 + 3x+ x2 + 2x3 + x4
}〉

EQ (3 + 2i) =
〈{

(3− i) + (−7 + i)x+ (2− 2i)x2 + (−7 + i)x3 + 4x4
}〉

EQ (3− 2i) =
〈{

(3 + i) + (−7− i)x+ (2 + 2i)x2 + (−7− i)x3 + 4x4
}〉

with geometric multiplicities

γQ (2) = 2 γQ (−4) = 1 γQ (3 + 2i) = 1 γQ (3− 2i) = 1

�
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Subsection READ
Reading Questions

1. The change-of-basis matrix is a matrix representation of which linear transformation?

2. Find the change-of-basis matrix, CB,C , for the two bases of C2

B =

{[
2
3

]
,

[−1
2

]}
C =

{[
1
0

]
,

[
1
1

]}
3. What is the third “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C20 In Example CBCV [1974] we computed the vector representation of y relative to C,
ρC (y), as an example of Theorem CB [1961]. Compute this same representation directly. In
other words, apply Definition VR [1819] rather than Theorem CB [1961].
Contributed by Robert Beezer

C21 Perform a check on Example MRCM [1980] by computing MQ
B,D directly. In other

words, apply Definition MR [1855] rather than Theorem MRCB [1979].
Contributed by Robert Beezer Solution [2029]

C30 Find a basis for the vector space P3 composed of eigenvectors of the linear transfor-
mation T . Then find a matrix representation of T relative to this basis.

T : P3 7→ P3, T
(
a+ bx+ cx2 + dx3

)
= (a+c+d)+(b+c+d)x+(a+b+c)x2 +(a+b+d)x3
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Contributed by Robert Beezer Solution [2031]

C40 Let S22 be the vector space of 2× 2 symmetric matrices. Find a basis B for S22 that
yields a diagonal matrix representation of the linear transformation R. (15 points)

R : S22 7→ S22, R

([
a b
b c

])
=

[ −5a+ 2b− 3c −12a+ 5b− 6c
−12a+ 5b− 6c 6a− 2b+ 4c

]

Contributed by Robert Beezer Solution [2033]

C41 Let S22 be the vector space of 2×2 symmetric matrices. Find a basis for S22 composed
of eigenvectors of the linear transformation Q : S22 7→ S22. (15 points)

Q

([
a b
b c

])
=

[
25a+ 18b+ 30c −16a− 11b− 20c
−16a− 11b− 20c −11a− 9b− 12c

]
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Contributed by Robert Beezer Solution [2036]

T10 Suppose that T : V 7→ V is an invertible linear transformation with a nonzero eigen-

value λ. Prove that
1

λ
is an eigenvalue of T−1.

Contributed by Robert Beezer Solution [2038]

T15 Suppose that V is a vector space and T : V 7→ V is a linear transformation. Prove
that T is injective if and only if λ = 0 is not an eigenvalue of T .
Contributed by Robert Beezer
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer Statement [2026]
Apply Definition MR [1855],

ρD

(
Q

([
5 −3
−3 −2

]))
= ρD

(
19 + 14x− 2x2 − 28x3

)
= ρD

(
(−39)(2 + x− 2x2 + 3x3) + 62(−1− 2x2 + 3x3) + (−53)(−3− x+ x3) + (−44)(−x2 + x3)

)
=


−39
62
−53
−44
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ρD

(
Q

([
2 −3
−3 0

]))
= ρD

(
16 + 9x− 7x2 − 14x3

)
= ρD

(
(−23)(2 + x− 2x2 + 3x3) + (34)(−1− 2x2 + 3x3) + (−32)(−3− x+ x3) + (−15)(−x2 + x3)

)
=


−23
34
−32
−15


ρD

(
Q

([
1 2
2 4

]))
= ρD

(
25 + 9x+ 3x2 + 4x3

)
= ρD

(
(14)(2 + x− 2x2 + 3x3) + (−12)(−1− 2x2 + 3x3) + 5(−3− x+ x3) + (−7)(−x2 + x3)

)
=


14
−12

5
−7
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These three vectors are the columns of the matrix representation,

MQ
B,D =


−39 −23 14
62 34 −12
−53 −32 5
−44 −15 −7


which coincides with the result obtained in Example MRCM [1980].

C30 Contributed by Robert Beezer Statement [2026]
With the domain and codomain being identical, we will build a matrix representation using
the same basis for both the domain and codomain. The eigenvalues of the matrix representa-
tion will be the eigenvalues of the linear transformation, and we can obtain the eigenvectors
of the linear transformation by un-coordinatizing (Theorem EER [1996]). Since the method
does not depend on which basis we choose, we can choose a natural basis for ease of compu-
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tation, say,

B =
{

1, x, x2, x3
}

The matrix representation is then,

MT
B,B =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


The eigenvalues and eigenvectors of this matrix were computed in Example ESMS4 [1402].
A basis for C4, composed of eigenvectors of the matrix representation is,

C =




1
1
1
1

 ,

−1
1
0
0

 ,


0
0
−1
1

 ,

−1
−1
1
1
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Applying ρ−1
B to each vector of this set, yields a basis of P3 composed of eigenvectors of T ,

D =
{

1 + x+ x2 + x3,−1 + x, −x2 + x3, −1− x+ x2 + x3
}

The matrix representation of T relative to the basis D will be a diagonal matrix with the
corresponding eigenvalues along the diagonal, so in this case we get

MT
D,D =


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


C40 Contributed by Robert Beezer Statement [2027]
Begin with a matrix representation of R, any matrix representation, but use the same ba-
sis for both instances of S22. We’ll choose a basis that makes it easy to compute vector
representations in S22.

B =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
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Then the resulting matrix representation of R (Definition MR [1855]) is

MR
B,B =

 −5 2 −3
−12 5 −6

6 −2 4


Now, compute the eigenvalues and eigenvectors of this matrix, with the goal of diagonalizing
the matrix (Theorem DC [1499]),

λ = 2 EMR
B,B

(2) =

〈
−1
−2
1


〉

λ = 1 EMR
B,B

(1) =

〈
−1

0
2

 ,
1

3
0


〉
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The three vectors that occur as basis elements for these eigenspaces will together form a
linearly independent set (check this!). So these column vectors may be employed in a matrix
that will diagonalize the matrix representation. If we “un-coordinatize” these three column
vectors relative to the basis B, we will find three linearly independent elements of S22 that are
eigenvectors of the linear transformation R (Theorem EER [1996]). A matrix representation
relative to this basis of eigenvectors will be diagonal, with the eigenvalues (λ = 2, 1) as the
diagonal elements. Here we go,

ρ−1
B

−1
−2
1

 = (−1)

[
1 0
0 0

]
+ (−2)

[
0 1
1 0

]
+ 1

[
0 0
0 1

]
=

[−1 −2
−2 1

]

ρ−1
B

−1
0
2

 = (−1)

[
1 0
0 0

]
+ 0

[
0 1
1 0

]
+ 2

[
0 0
0 1

]
=

[−1 0
0 2

]
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ρ−1
B

1
3
0

 = 1

[
1 0
0 0

]
+ 3

[
0 1
1 0

]
+ 0

[
0 0
0 1

]
=

[
1 3
3 0

]

So the requested basis of S22, yielding a diagonal matrix representation of R, is{[−1 −2
−2 1

] [−1 0
0 2

]
,

[
1 3
3 0

]}

C41 Contributed by Robert Beezer Statement [2027]
Use a single basis for both the domain and codomain, since they are equal.

B =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
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The matrix representation of Q relative to B is

M = MQ
B,B =

 25 18 30
−16 −11 −20
−11 −9 −12


We can analyze this matrix with the techniques of Section EE [1365] and then apply Theorem
EER [1996]. The eigenvalues of this matrix are λ = −2, 1, 3 with eigenspaces

EM (−2) =

〈
−6

4
3


〉

EM (1) =

〈
−2

1
1


〉

EM (3) =

〈
−3

2
1


〉

Because the three eigenvalues are distinct, the three basis vectors from the three eigenspaces
for a linearly independent set (Theorem EDELI [1445]). Theorem EER [1996] says we can
uncoordinatize these eigenvectors to obtain eigenvectors of Q. By Theorem ILTLI [1658] the
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resulting set will remain linearly independent. Set

C =

ρ−1
B

−6
4
3

 , ρ−1
B

−2
1
1

 , ρ−1
B

−3
2
1

 =

{[−6 4
4 3

]
,

[−2 1
1 1

]
,

[−3 2
2 1

]}

Then C is a linearly independent set of size 3 in the vector space M22, which has dimension
3 as well. By Theorem G [1228], C is a basis of M22.

T10 Contributed by Robert Beezer Statement [2028]
Let v be an eigenvector of T for the eigenvalue λ. Then,

T−1 (v) =
1

λ
λT−1 (v) λ 6= 0

=
1

λ
T−1 (λv) Theorem ILTLT [1758]

=
1

λ
T−1 (T (v)) v eigenvector of T
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=
1

λ
IV (v) Definition IVLT [1750]

=
1

λ
v Definition IDLT [1750]

which says that
1

λ
is an eigenvalue of T−1 with eigenvector v. Note that it is possible to prove

that any eigenvalue of an invertible linear transformation is never zero. So the hypothesis
that λ be nonzero is just a convenience for this problem.
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Section OD

Orthonormal Diagonalization

This section is in draft form
Theorems & definitions are complete, needs examples

We have seen in Section SD [1484] that under the right conditions a square matrix is
similar to a diagonal matrix. We recognize now, via Theorem SCB [1986], that a similarity
transformation is a change of basis on a matrix representation. So we can now discuss the
choice of a basis used to build a matrix representation, and decide if some bases are better
than others for this purpose. This will be the tone of this section. We will also see that
every matrix has a reasonably useful matrix representation, and we will discover a new class
of diagonalizable linear transformations. First we need some basic facts about triangular
matrices.
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Subsection TM
Triangular Matrices

An upper, or lower, triangular matrix is exactly what it sounds like it should be, but here
are the two relevant definitions.

Definition UTM
Upper Triangular Matrix
The n× n square matrix A is upper triangular if [A]ij = 0 whenever i > j. 4
Definition LTM
Lower Triangular Matrix
The n× n square matrix A is lower triangular if [A]ij = 0 whenever i < j. 4

Obviously, properties of a lower triangular matrices will have analogues for upper trian-
gular matrices. Rather than stating two very similar theorems, we will say that matrices are
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“triangular of the same type” as a convenient shorthand to cover both possibilities and then
give a proof for just one type.

Theorem PTMT
Product of Triangular Matrices is Triangular
Suppose that A and B are square matrices of size n that are triangular of the same type.
Then AB is also triangular of that type. �

Proof We prove this for lower triangular matrices and leave the proof for upper triangular
matrices to you. Suppose that A and B are both lower triangular. We need only establish
that certain entries of the product AB are zero. Suppose that i < j, then

[AB]ij =
n∑
k=1

[A]ik [B]kj Theorem EMP [676]

=

j−1∑
k=1

[A]ik [B]kj +
n∑
k=j

[A]ik [B]kj Property AACN [2317]
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=

j−1∑
k=1

[A]ik 0 +
n∑
k=j

[A]ik [B]kj k < j, Definition LTM [2041]

=

j−1∑
k=1

[A]ik 0 +
n∑
k=j

0 [B]kj i < j ≤ k, Definition LTM [2041]

=

j−1∑
k=1

0 +
n∑
k=j

0

= 0

Since [AB]ij = 0 whenever i < j, by Definition LTM [2041], AB is lower triangular. �

The inverse of a triangular matrix is triangular, of the same type.

Theorem ITMT
Inverse of a Triangular Matrix is Triangular
Suppose that A is a nonsingular matrix of size n that is triangular. Then the inverse of
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A, A−1, is triangular of the same type. Furthermore, the diagonal entries of A−1 are the
reciprocals of the corresponding diagonal entries of A. More precisely, [A−1]ii = [A]−1

ii . �

Proof We give the proof for the case when A is lower triangular, and leave the case when
A is upper triangular for you. Consider the process for computing the inverse of a matrix
that is outlined in the proof of Theorem CINM [742]. We augment A with the size n identity
matrix, In, and row-reduce the n×2n matrix to reduced row-echelon form via the algorithm
in Theorem REMEF [94]. The proof involves tracking the peculiarities of this process in the
case of a lower triangular matrix. Let M = [A | In].

First, none of the diagonal elements of A are zero. By repeated expansion about the
first row, the determinant of a lower triangular matrix can be seen to be the product of the
diagonal entries (Theorem DER [1295]). If just one of these diagonal elements was zero, then
the determinant of A is zero and A is singular by Theorem SMZD [1348]. Slightly violating
the exact algorithm for row reduction we can form a matrix, M ′, that is row-equivalent to
M , by multiplying row i by the nonzero scalar [A]−1

ii , for 1 ≤ i ≤ n. This sets [M ′]ii = 1 and
[M ′]i,n+1 = [A]−1

ii , and leaves every zero entry of M unchanged.
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Let Mj denote the matrix obtained form M ′ after converting column j to a pivot column.
We can convert column j of Mj−1 into a pivot column with a set of n−j−1 row operations of
the form αRj +Rk with j+ 1 ≤ k ≤ n. The key observation here is that we add multiples of
row j only to higher-numbered rows. This means that none of the entries in rows 1 through
j − 1 is changed, and since row j has zeros in columns j + 1 through n, none of the entries
in rows j + 1 through n is changed in columns j + 1 through n. The first n columns of M ′

form a lower triangular matrix with 1’s on the diagonal. In its conversion to the identity
matrix through this sequence of row operations, it remains lower triangular with 1’s on the
diagonal.

What happens in columns n + 1 through 2n of M ′? These columns began in M as the
identity matrix, and in M ′ each diagonal entry was scaled to a reciprocal of the corresponding
diagonal entry of A. Notice that trivially, these final n columns of M ′ form a lower triangular
matrix. Just as we argued for the first n columns, the row operations that convert Mj−1

into Mj will preserve the lower triangular form in the final n columns and preserve the exact
values of the diagonal entries. By Theorem CINM [742], the final n columns of Mn is the
inverse of A, and this matrix has the necessary properties advertised in the conclusion of
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this theorem. �

Subsection UTMR
Upper Triangular Matrix Representation

Not every matrix is diagonalizable, but every linear transformation has a matrix represen-
tation that is an upper triangular matrix, and the basis that achieves this representation is
especially pleasing. Here’s the theorem.

Theorem UTMR
Upper Triangular Matrix Representation
Suppose that T : V 7→ V is a linear transformation. Then there is a basis B for V such that
the matrix representation of T relative to B, MT

B,B, is an upper triangular matrix. Each
diagonal entry is an eigenvalue of T , and if λ is an eigenvalue of T , then λ occurs αT (λ)
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times on the diagonal. �

Proof We begin with a proof by induction (Technique I [2363]) of the first statement in
the conclusion of the theorem. We use induction on the dimension of V to show that if
T : V 7→ V is a linear transformation, then there is a basis B for V such that the matrix
representation of T relative to B, MT

B,B, is an upper triangular matrix.

To start suppose that dim (V ) = 1. Choose any nonzero vector v ∈ V and realize that
V = 〈{v}〉. Then we can determine T uniquely by T (v) = βv for some β ∈ C (Theorem
LTDB [1582]). This description of T also gives us a matrix representation relative to the
basis B = {v} as the 1×1 matrix with lone entry equal to β. And this matrix representation
is upper triangular (Definition UTM [2041]).

For the induction step let dim (V ) = m, and assume the theorem is true for every linear
transformation defined on a vector space of dimension less than m. By Theorem EMHE
[1376] (suitably converted to the setting of a linear transformation), T has at least one
eigenvalue, and we denote this eigenvalue as λ. (We will remark later about how critical this
step is.) We now consider properties of the linear transformation T − λIV : V 7→ V .
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Let x be an eigenvector of T for λ. By definition x 6= 0. Then

(T − λIV ) (x) = T (x)− λIV (x) Theorem VSLT [1606]

= T (x)− λx Definition IDLT [1750]

= λx− λx Definition EELT [1956]

= 0 Property AI [957]

So T − λIV is not injective, as it has a nontrivial kernel (Theorem KILT [1653]). With an
application of Theorem RPNDD [1781] we bound the rank of T − λIV ,

r (T − λIV ) = dim (V )− n (T − λIV ) ≤ m− 1

Define W to be the subspace of V that is the range of T −λIV , W = R(T − λIV ). We define
a new linear transformation S, on W ,

S : W 7→ W S (w) = T (w)
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This does not look we have accomplished much, since the action of S is identical to the
action of T . For our purposes this will be a good thing. What is different is the domain
and codomain. S is defined on W , a vector space with dimension less than m, and so is
susceptible to our induction hypothesis. Verifying that S is really a linear transformation is
almost entirely routine, with one exception. Employing T in our definition of S raises the
possibility that the outputs of S will not be contained within W (but instead will lie inside
V , but outside W ). To examine this possibility, suppose that w ∈ W .

S (w) = T (w)

= T (w) + 0 Property Z [957]

= T (w) + (λIV (w)− λIV (w)) Property AI [957]

= (T (w)− λIV (w)) + λIV (w) Property AA [957]

= (T (w)− λIV (w)) + λw Definition IDLT [1750]

= (T − λIV ) (w) + λw Theorem VSLT [1606]

Since W is the range of T − λIV , (T − λIV ) (w) ∈ W . And by Property SC [957], λw ∈ W .
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Finally, applying Property AC [956] we see by closure that the sum is in W and so we
conclude that S (w) ∈ W . This argument convinces us that it is legitimate to define S as
we did with W as the codomain.

S is a linear transformation defined on a vector space with dimension less than m, so we
can apply the induction hypothesis and conclude thatW has a basis, C = {w1, w2, w3, . . . , wk},
such that the matrix representation of S relative to C is an upper triangular matrix.

By Theorem DSFOS [1250] there exists a second subspace of V , which we will call U , so
that V is a direct sum of W and U , V = W ⊕ U . Choose a basis D = {u1, u2, u3, . . . , u`}
for U . So m = k+` by Theorem DSD [1257], and B = C∪D is basis for V by Theorem DSLI
[1255] and Theorem G [1228]. B is the basis we desire. What does a matrix representation
of T look like, relative to B?

Since the definition of T and S agree on W , the first k columns of MT
B,B will have the

upper triangular matrix representation of S in the first k rows. The remaining ` = m − k
rows of these first k columns will be all zeros since the outputs of T on C are all contained
in W . The situation for T on D is not quite as pretty, but it is close.
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For 1 ≤ i ≤ `, consider

ρB (T (ui)) = ρB (T (ui) + 0) Property Z [957]

= ρB (T (ui) + (λIV (ui)− λIV (ui))) Property AI [957]

= ρB ((T (ui)− λIV (ui)) + λIV (ui)) Property AA [957]

= ρB ((T (ui)− λIV (ui)) + λui) Definition IDLT [1750]

= ρB ((T − λIV ) (ui) + λui) Theorem VSLT [1606]

= ρB (a1w1 + a2w2 + a3w3 + · · ·+ akwk + λui) Definition RLT [1701]
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=



a1

a2
...
ak
0
...
0
λ
0
...
0



Definition VR [1819]

In the penultimate step of this proof, we have rewritten an element of the range of T − λIV
as a linear combination of the basis vectors, C, for the range of T −λIV , W , using the scalars
a1, a2, a3, . . . , ak. If we incorporate these ` column vectors into the matrix representation
MT

B,B we find ` occurrences of λ on the diagonal, and any nonzero entries lying only in the
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first k rows. Together with the k× k upper triangular representation in the upper left-hand
corner, the entire matrix representation is now clearly upper triangular. This completes
the induction step, so for any linear transformation there is a basis that creates an upper
triangular matrix representation.

We have one more statement in the conclusion of the theorem to verify. The eigenvalues
of T , and their multiplicities, can be computed with the techniques of Chapter E [1363]
relative to any matrix representation (Theorem EER [1996]). We take this approach with
our upper triangular matrix representation MT

B,B. Let di be the diagonal entry of MT
B,B

in row i and column i. Then the characteristic polynomial, computed as a determinant
(Definition CP [1388]) with repeated expansions about the first column, is

pMT
B,B

(x) = (d1 − x) (d2 − x) (d3 − x) · · · (dm − x)

The roots of the polynomial equation pMT
B,B

(x) = 0 are the eigenvalues of the linear transfor-

mation (Theorem EMRCP [1390]). So each diagonal entry is an eigenvalue, and is repeated
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on the diagonal exactly αT (λ) times (Definition AME [1399]). �

A key step in this proof was the construction of the subspace W with dimension strictly
less than that of V . This required an eigenvalue/eigenvector pair, which was guaranteed to
us by Theorem EMHE [1376]. Digging deeper, the proof of Theorem EMHE [1376] requires
that we can factor polynomials completely, into linear factors. This will not always happen if
our set of scalars is the reals, R. So this is our final explanation of our choice of the complex
numbers, C, as our set of scalars. In C polynomials factor completely, so every matrix has
at least one eigenvalue, and an inductive argument will get us to upper triangular matrix
representations.

In the case of linear transformations defined on Cm, we can use the inner product (Def-
inition IP [569]) profitably to fine-tune the basis that yields an upper triangular matrix
representation. Recall that the adjoint of matrix A (Definition A [636]) is written as A∗.

Theorem OBUTR
Orthonormal Basis for Upper Triangular Representation
Suppose that A is a square matrix. Then there is a unitary matrix U , and an upper triangular
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matrix T , such that

U∗AU = T

and T has the eigenvalues of A as the entries of the diagonal. �

Proof This theorem is a statement about matrices and similarity. We can convert it to
a statement about linear transformations, matrix representations and bases (Theorem SCB
[1986]). Suppose that A is an n×n matrix, and define the linear transformation S : Cn 7→ Cn

by S (x) = Ax. Then Theorem UTMR [2046] gives us a basis B = {v1, v2, v3, . . . , vn} for
Cn such that a matrix representation of S relative to B, MS

B,B, is upper triangular.
Now convert the basis B into an orthogonal basis, C, by an application of the Gram-

Schmidt procedure (Theorem GSP [593]). This is a messy business computationally, but
here we have an excellent illustration of the power of the Gram-Schmidt procedure. We
need only be sure that B is linearly independent and spans Cn, and then we know that
C is linearly independent, spans Cn and is also an orthogonal set. We will now consider
the matrix representation of S relative to C (rather than B). Write the new basis as C =
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{y1, y2, y3, . . . , yn}. The application of the Gram-Schmidt procedure creates each vector
of C, say yj, as the difference of vj and a linear combination of y1, y2, y3, . . . , yj−1. We
are not concerned here with the actual values of the scalars in this linear combination, so we
will write

yj = vj −
j−1∑
k=1

bjkyk

where the bjk are shorthand for the scalars. The equation above is in a form useful for creating
the basis C from B. To better understand the relationship between B and C convert it to
read

vj = yj +

j−1∑
k=1

bjkyk

In this form, we recognize that the change-of-basis matrix CB,C = M ICn
B,C (Definition CBM
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[1961]) is an upper triangular matrix. By Theorem SCB [1986] we have

MS
C,C = CB,CM

S
B,BC

−1
B,C

The inverse of an upper triangular matrix is upper triangular (Theorem ITMT [2043]), and
the product of two upper triangular matrices is again upper triangular (Theorem PTMT
[2042]). So MS

C,C is an upper triangular matrix.

Now, multiply each vector of C by a nonzero scalar, so that the result has norm 1. In
this way we create a new basis D which is an orthonormal set (Definition ONS [599]). Note
that the change-of-basis matrix CC,D is a diagonal matrix with nonzero entries equal to the
norms of the vectors in C.

Now we can convert our results into the language of matrices. Let E be the basis
of Cn formed with the standard unit vectors (Definition SUV [586]). Then the matrix
representation of S relative to E is simply A, A = MS

E,E. The change-of-basis matrix CD,E
has columns that are simply the vectors in D, the orthonormal basis. As such, Theorem
CUMOS [788] tells us that CD,E is a unitary matrix, and by Definition UM [785] has an
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inverse equal to its adjoint. Write U = CD,E. We have

U∗AU = U−1AU Theorem UMI [787]

= C−1
D,EM

S
E,ECD,E

= MS
D,D Theorem SCB [1986]

= CC,DM
S
C,CC

−1
C,D Theorem SCB [1986]

The inverse of a diagonal matrix is also a diagonal matrix, and so this final expression is
the product of three upper triangular matrices, and so is again upper triangular (Theorem
PTMT [2042]). Thus the desired upper triangular matrix, T , is the matrix representation of
S relative to the orthonormal basis D, MS

D,D. �
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Subsection NM
Normal Matrices

Normal matrices comprise a broad class of interesting matrices, many of which we have
met already. But they are most interesting since they define exactly which matrices we can
diagonalize via a unitary matrix. This is the upcoming Theorem OD [2062]. Here’s the
definition.

Definition NRML
Normal Matrix
The square matrix A is normal if A∗A = AA∗. 4

So a normal matrix commutes with its adjoint. Part of the beauty of this definition is
that it includes many other types of matrices. A diagonal matrix will commute with its
adjoint, since the adjoint is again diagonal and the entries are just conjugates of the entries
of the original diagonal matrix. A Hermitian (self-adjoint) matrix (Definition HM [698]) will
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trivially commute with its adjoint, since the two matrices are the same. A real, symmetric
matrix is Hermitian, so these matrices are also normal. A unitary matrix (Definition UM
[785]) has its adjoint as its inverse, and inverses commute (Theorem OSIS [779]), so unitary
matrices are normal. Another class of normal matrices is the skew-symmetric matrices.
However, these broad descriptions still do not capture all of the normal matrices, as the next
example shows.

Example ANM
A normal matrix
Let

A =

[
1 −1
1 1

]
Then [

1 −1
1 1

] [
1 1
−1 1

]
=

[
2 0
0 2

]
=

[
1 1
−1 1

] [
1 −1
1 1

]
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so we see by Definition NRML [2059] that A is normal. However, A is not symmetric (hence,
as a real matrix, not Hermitian), not unitary, and not skew-symmetric. �

Subsection OD
Orthonormal Diagonalization

A diagonal matrix is very easy to work with in matrix multiplication (Example HPDM
[1516]) and an orthonormal basis also has many advantages (Theorem COB [1144]). How
about converting a matrix to a diagonal matrix through a similarity transformation using
a unitary matrix (i.e. build a diagonal matrix representation with an orthonormal matrix)?
That’d be fantastic! When can we do this? We can always accomplish this feat when the
matrix is normal, and normal matrices are the only ones that behave this way. Here’s the
theorem.
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Theorem OD
Orthonormal Diagonalization
Suppose that A is a square matrix. Then there is a unitary matrix U and a diagonal matrix
D, with diagonal entries equal to the eigenvalues of A, such that U∗AU = D if and only if
A is a normal matrix. �

Proof (⇒) Suppose there is a unitary matrix U that diagonalizes A, resulting in D, i.e.
U∗AU = D. We check the normality of A,

A∗A = InA
∗InAIn Theorem MMIM [682]

= UU∗A∗UU∗AUU∗ Definition UM [785]

= UU∗A∗UDU∗

= UU∗A∗ (U∗)∗DU∗ Theorem AA [638]

= U (U∗AU)∗DU∗ Adjoint of a product

= UD∗DU∗

= U
(
D
)t
DU∗ Definition A [636]
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= UDDU∗ Diagonal matrix

= UDDU∗ Property CMCN [2317]

= UD
(
D
)t
U∗ Diagonal matrix

= UDD∗U∗ Definition A [636]

= UD (U∗AU)∗ U∗

= UDU∗A∗ (U∗)∗ U∗ Adjoint of a product

= UDU∗A∗UU∗ Theorem AA [638]

= UU∗AUU∗A∗UU∗

= InAInA
∗In Definition UM [785]

= AA∗ Theorem MMIM [682]

So by Definition NRML [2059], A is a normal matrix.

(⇐) For the converse, suppose that A is a normal matrix. Whether or not A is normal,
Theorem OBUTR [2054] provides a unitary matrix U and an upper triangular matrix T ,
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whose diagonal entries are the eigenvalues of A, and such that U∗AU = T . With the added
condition that A is normal, we will determine that the entries of T above the diagonal must
be all zero. Here we go. First we show that T is normal.

T ∗T = (U∗AU)∗ U∗AU

= U∗A∗ (U∗)∗ U∗AU Adjoint of a product

= U∗A∗UU∗AU Theorem AA [638]

= U∗A∗InAU Definition UM [785]

= U∗A∗AU Theorem MMIM [682]

= U∗AA∗U Definition NRML [2059]

= U∗AInA
∗U Theorem MMIM [682]

= U∗AUU∗A∗U Definition UM [785]

= U∗AUU∗A∗ (U∗)∗ Theorem AA [638]

= U∗AU (U∗AU)∗ Adjoint of a product
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= TT ∗

So by Definition NRML [2059], T is a normal matrix.
We can translate the normality of T into the statement TT ∗ − T ∗T = O. We now

establish an equality we will use repeatedly. For 1 ≤ i ≤ n,

0 = [O]ii Definition ZM [621]

= [TT ∗ − T ∗T ]ii Definition NRML [2059]

= [TT ∗]ii − [T ∗T ]ii Definition MA [614]

=
n∑
k=1

[T ]ik [T ∗]ki −
n∑
k=1

[T ∗]ik [T ]ki Theorem EMP [676]

=
n∑
k=1

[T ]ik [T ]ik −
n∑
k=1

[T ]ki [T ]ki Definition A [636]

=
n∑
k=i

[T ]ik [T ]ik −
i∑

k=1

[T ]ki [T ]ki Definition UTM [2041]
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=
n∑
k=i

|[T ]ik|2 −
i∑

k=1

|[T ]ki|2 Definition MCN [2322]

To conclude, we use the above equality repeatedly, beginning with i = 1, and discover, row
by row, that the entries above the diagonal of T are all zero. The key observation is that a
sum of squares can only equal zero when each term of the sum is zero. For i = 1 we have

0 =
n∑
k=1

|[T ]1k|2 −
1∑

k=1

|[T ]k1|2 =
n∑
k=2

|[T ]1k|2

which forces the conclusions

[T ]12 = 0 [T ]13 = 0 [T ]14 = 0 · · · [T ]1n = 0

For i = 2 we use the same equality, but also incorporate the portion of the above conclusions
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that says [T ]12 = 0,

0 =
n∑
k=2

|[T ]2k|2 −
2∑

k=1

|[T ]k2|2 =
n∑
k=2

|[T ]2k|2 −
2∑

k=2

|[T ]k2|2 =
n∑
k=3

|[T ]2k|2

which forces the conclusions

[T ]23 = 0 [T ]24 = 0 [T ]25 = 0 · · · [T ]2n = 0

We can repeat this process for the subsequent values of i = 3, 4, 5 . . . , n − 1. Notice that
it is critical we do this in order, since we need to employ portions of each of the previous
conclusions about rows having zero entries in order to successfully get the same conclusion
for later rows. Eventually, we conclude that all of the nondiagonal entries of T are zero, so
the extra assumption of normality forces T to be diagonal. �

We can rearrange the conclusion of this theorem to read A = UDU∗. Recall that a
unitary matrix can be viewed as a geometry-preserving transformation (isometry), or more
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loosely as a rotation of sorts. Then a matrix-vector product, Ax, can be viewed instead as a
sequence of three transformations. U∗ is unitary, so is a rotation. Since D is diagonal, it just
multiplies each entry of a vector by a scalar. Diagonal entries that are positive or negative,
with absolute values bigger or smaller than 1 evoke descriptions like reflection, expansion
and contraction. Generally we can say that D “stretches” a vector in each component. Final
multiplication by U undoes (inverts) the rotation performed by U∗. So a normal matrix is a
rotation-stretch-rotation transformation.

The orthonormal basis formed from the columns of U can be viewed as a system of
mutually perpendicular axes. The rotation by U∗ allows the transformation by A to be
replaced by the simple transformation D along these axes, and then D brings the result
back to the original coordinate system. For this reason Theorem OD [2062] is known as the
Principal Axis Theorem.

The columns of the unitary matrix in Theorem OD [2062] create an especially nice basis
for use with the normal matrix. We record this observation as a theorem.

Theorem OBNM
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Orthonormal Bases and Normal Matrices
Suppose that A is a normal matrix of size n. Then there is an orthonormal basis of Cn

composed of eigenvectors of A. �

Proof Let U be the unitary matrix promised by Theorem OD [2062] and let D be the
resulting diagonal matrix. The desired set of vectors is formed by collecting the columns of
U into a set. Theorem CUMOS [788] says this set of columns is orthonormal. Since U is
nonsingular (Theorem UMI [787]), Theorem CNMB [1138] says the set is a basis.

Since A is diagonalized by U , the diagonal entries of the matrix D are the eigenvalues of
A. An argument exactly like the second half of the proof of Theorem DC [1499] shows that
each vector of the basis is an eigenvector of A. �

In a vague way Theorem OBNM [2069] is an improvement on Theorem HMOE [1475]
which said that eigenvectors of a Hermitian matrix for different eigenvalues are always or-
thogonal. Hermitian matrices are normal and we see that we can find at least one basis
where every pair of eigenvectors is orthogonal. Notice that this is not a generalization, since
Theorem HMOE [1475] states a weak result which applies to many (but not all) pairs of
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eigenvectors, while Theorem OBNM [2069] is a seemingly stronger result, but only asserts
that there is one collection of eigenvectors with the stronger property.
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Section NLT

Nilpotent Linear Transformations

This section is in draft form
Nearly complete

We have seen that some matrices are diagonalizable and some are not. Some authors
refer to a non-diagonalizable matrix as defective, but we will study them carefully anyway.
Examples of such matrices include Example EMMS4 [1400], Example HMEM5 [1405], and
Example CEMS6 [1408]. Each of these matrices has at least one eigenvalue with geometric
multiplicity strictly less than its algebraic multiplicity, and therefore Theorem DMFE [1506]
tells us these matrices are not diagonalizable.

Given a square matrix A, it is likely similar to many, many other matrices. Of all these
possibilities, which is the best? “Best” is a subjective term, but we might agree that a
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diagonal matrix is certainly a very nice choice. Unfortunately, as we have seen, this will
not always be possible. What form of a matrix is “next-best”? Our goal, which will take
us several sections to reach, is to show that every matrix is similar to a matrix that is
“nearly-diagonal” (Section JCF [2189]). More precisely, every matrix is similar to a matrix
with elements on the diagonal, and zeros and ones on the diagonal just above the main
diagonal (the “super diagonal”), with zeros everywhere else. In the language of equivalence
relations (see Theorem SER [1490]), we are determining a systematic representative for each
equivalence class. Such a representative for a set of similar matrices is called a canonical
form.

We have just discussed the determination of a canonical form as a question about ma-
trices. However, we know that every square matrix creates a natural linear transforma-
tion (Theorem MBLT [1570]) and every linear transformation with identical domain and
codomain has a square matrix representation for each choice of a basis, with a change of ba-
sis creating a similarity transformation (Theorem SCB [1986]). So we will state, and prove,
theorems using the language of linear transformations on abstract vector spaces, while most
of our examples will work with square matrices. You can, and should, mentally translate
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between the two settings frequently and easily.

Subsection NLT
Nilpotent Linear Transformations

We will discover that nilpotent linear transformations are the essential obstacle in a non-
diagonalizable linear transformation. So we will study them carefully first, both as an object
of inherent mathematical interest, but also as the object at the heart of the argument that
leads to a pleasing canonical form for any linear transformation. Once we understand these
linear transformations thoroughly, we will be able to easily analyze the structure of any
linear transformation.

Definition NLT
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Nilpotent Linear Transformation
Suppose that T : V 7→ V is a linear transformation such that there is an integer p > 0 such
that T p (v) = 0 for every v ∈ V . The smallest p for which this condition is met is called the
index of T . 4

Of course, the linear transformation T defined by T (v) = 0 will qualify as nilpotent of
index 1. But are there others?

Example NM64
Nilpotent matrix, size 6, index 4
Recall that our definitions and theorems are being stated for linear transformations on ab-
stract vector spaces, while our examples will work with square matrices (and use the same
terms interchangeably). In this case, to demonstrate the existence of nontrivial nilpotent
linear transformations, we desire a matrix such that some power of the matrix is the zero
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matrix. Consider

A =


−3 3 −2 5 0 −5
−3 5 −3 4 3 −9
−3 4 −2 6 −4 −3
−3 3 −2 5 0 −5
−3 3 −2 4 2 −6
−2 3 −2 2 4 −7


and compute powers of A,

A2 =


1 −2 1 0 −3 4
0 −2 1 1 −3 4
3 0 0 −3 0 0
1 −2 1 0 −3 4
0 −2 1 1 −3 4
−1 −2 1 2 −3 4
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A3 =


1 0 0 −1 0 0
1 0 0 −1 0 0
0 0 0 0 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0



A4 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Thus we can say that A is nilpotent of index 4.
Because it will presage some upcoming theorems, we will record some extra information
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about the eigenvalues and eigenvectors of A here. A has just one eigenvalue, λ = 0, with
algebraic multiplicity 6 and geometric multiplicity 2. The eigenspace for this eigenvalue is

EA (0) =

〈


2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1


〉

If there were degrees of singularity, we might say this matrix was very singular, since zero is
an eigenvalue with maximum algebraic multiplicity (Theorem SMZE [1448], Theorem ME
[1466]). Notice too that A is “far” from being diagonalizable (Theorem DMFE [1506]). �

Another example.

Example NM62
Nilpotent matrix, size 6, index 2
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Consider the matrix

B =


−1 1 −1 4 −3 −1
1 1 −1 2 −3 −1
−9 10 −5 9 5 −15
−1 1 −1 4 −3 −1
1 −1 0 2 −4 2
4 −3 1 −1 −5 5


and compute the second power of B,

B2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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So B is nilpotent of index 2. Again, the only eigenvalue of B is zero, with algebraic multi-
plicity 6. The geometric multiplicity of the eigenvalue is 3, as seen in the eigenspace,

EB (0) =

〈


1
3
6
1
0
0

 ,


0
−4
−7
0
1
0

 ,


0
2
1
0
0
1


〉

Again, Theorem DMFE [1506] tells us that B is far from being diagonalizable. �

On a first encounter with the definition of a nilpotent matrix, you might wonder if such
a thing was possible at all. That a high power of a nonzero object could be zero is so very
different from our experience with scalars that it seems very unnatural. Hopefully the two
previous examples were somewhat surprising. But we have seen that matrix algebra does not

Version 2.11



Subsection NLT.NLT Nilpotent Linear Transformations 2089

always behave the way we expect (Example MMNC [674]), and we also now recognize matrix
products not just as arithmetic, but as function composition (Theorem MRCLT [1879]). We
will now turn to some examples of nilpotent matrices which might be more transparent.

Definition JB
Jordan Block
Given the scalar λ ∈ C, the Jordan block Jn (λ) is the n× n matrix defined by

[Jn (λ)]ij =


λ i = j

1 j = i+ 1

0 otherwise

(This definition contains Notation JB.) 4

Example JB4
Jordan block, size 4
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A simple example of a Jordan block,

J4 (5) =


5 1 0 0
0 5 1 0
0 0 5 1
0 0 0 5


�

We will return to general Jordan blocks later, but in this section we are just interested in
Jordan blocks where λ = 0. Here’s an example of why we are specializing in these matrices
now.

Example NJB5
Nilpotent Jordan block, size 5
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Consider

J5 (0) =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


and compute powers,

(J5 (0))2 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
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(J5 (0))3 =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(J5 (0))4 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(J5 (0))5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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So J5 (0) is nilpotent of index 5. As before, we record some information about the eigenvalues
and eigenvectors of this matrix. The only eigenvalue is zero, with algebraic multiplicity 5,
the maximum possible (Theorem ME [1466]). The geometric multiplicity of this eigenvalue
is just 1, the minimum possible (Theorem ME [1466]), as seen in the eigenspace,

EJ5(0) (0) =

〈
1
0
0
0
0


〉

There should not be any real surprises in this example. We can watch the ones in the powers
of J5 (0) slowly march off to the upper-right hand corner of the powers. In some vague way,
the eigenvalues and eigenvectors of this matrix are equally extreme. �

We can form combinations of Jordan blocks to build a variety of nilpotent matrices.
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Simply place Jordan blocks on the diagonal of a matrix with zeros everywhere else, to create
a block diagonal matrix.

Example NM83
Nilpotent matrix, size 8, index 3
Consider the matrix

C =

J3 (0) O O
O J3 (0) O
O O J2 (0)

 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
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and compute powers,

C2 =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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C3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


So C is nilpotent of index 3. You should notice how block diagonal matrices behave in prod-
ucts (much like diagonal matrices) and that it was the largest Jordan block that determined
the index of this combination. All eight eigenvalues are zero, and each of the three Jordan
blocks contributes one eigenvector to a basis for the eigenspace, resulting in zero having a
geometric multiplicity of 3. �

It would appear that nilpotent matrices only have zero as an eigenvalue, so the algebraic
multiplicity will be the maximum possible. However, by creating block diagonal matrices
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with Jordan blocks on the diagonal you should be able to attain any desired geometric
multiplicity for this lone eigenvalue. Likewise, the size of the largest Jordan block employed
will determine the index of the matrix. So nilpotent matrices with various combinations of
index and geometric multiplicities are easy to manufacture. The predictable properties of
block diagonal matrices in matrix products and eigenvector computations, along with the
next theorem, make this possible. You might find Example NJB5 [2081] a useful companion
to this proof.

Theorem NJB
Nilpotent Jordan Blocks
The Jordan block Jn (0) is nilpotent of index n. �

Proof While not phrased as an if-then statement, the statement in the theorem is un-
derstood to mean that if we have a specific matrix (Jn (0)) then we need to establish it is
nilpotent of a specified index. The first column of Jn (0) is the zero vector, and the remain-
ing n − 1 columns are the standard unit vectors ei, 1 ≤ i ≤ n − 1 (Definition SUV [586]),
which are also the first n− 1 columns of the size n identity matrix In. As shorthand, write
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J = Jn (0).

J = [0 |e1 |e2 |e3 |. . . |en−1 ]

We will use the definition of matrix multiplication (Definition MM [672]), together with a
proof by induction (Technique I [2363]), to study the powers of J . Our claim is that

Jk = [0 |0 |. . . |0 |e1 |e2 |. . . |en−k ]

for 1 ≤ k ≤ n. For the base case, k = 1, and the definition of J1 = Jn (0) establishes the
claim. For the induction step, first note that Je1 = 0 and Jei = ei−1 for 2 ≤ i ≤ n. Then,
assuming the claim is true for k, we examine the k + 1 case,

Jk+1 = JJk

= J [0 |0 |. . . |0 |e1 |e2 |. . . |en−k ] Induction Hypothesis

= [J0 |J0 |. . . |J0 |Je1 |Je2 |. . . |Jen−k ] Definition MM [672]

= [0 |0 |. . . |0 |0 |e1 |e2 |. . . |en−k−1 ] Definition MVP [661]
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=
[
0 |0 |. . . |0 |e1 |e2 |. . .

∣∣en−(k+1)

]
This concludes the induction. So Jk has a nonzero entry (a one) in row n − k and column
n, for 1 ≤ k ≤ n − 1, and is therefore a nonzero matrix. However, Jn = [0 |0 |. . . |0 ] = O.
By Definition NLT [2074], J is nilpotent of index n. �

Subsection PNLT
Properties of Nilpotent Linear Transformations

In this subsection we collect some basic properties of nilpotent linear transformations. After
studying the examples in the previous section, some of these will be no surprise.

Theorem ENLT
Eigenvalues of Nilpotent Linear Transformations
Suppose that T : V 7→ V is a nilpotent linear transformation and λ is an eigenvalue of T .
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Then λ = 0. �

Proof Let x be an eigenvector of T for the eigenvalue λ, and suppose that T is nilpotent
with index p. Then

0 = T p (x) Definition NLT [2074]

= λpx Theorem EOMP [1452]

Because x is an eigenvector, it is nonzero, and therefore Theorem SMEZV [982] tells us that
λp = 0 and so λ = 0. �

Paraphrasing, all of the eigenvalues of a nilpotent linear transformation are zero. So in
particular, the characteristic polynomial of a nilpotent linear transformation, T , on a vector
space of dimension n, is simply pT (x) = xn.

The next theorem is not critical for what follows, but it will explain our interest in nilpo-
tent linear transformations. More specifically, it is the first step in backing up the assertion
that nilpotent linear transformations are the essential obstacle in a non-diagonalizable linear
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transformation. While it is not obvious from the statement of the theorem, it says that a
nilpotent linear transformation is not diagonalizable, unless it is trivially so.

Theorem DNLT
Diagonalizable Nilpotent Linear Transformations
Suppose the linear transformation T : V 7→ V is nilpotent. Then T is diagonalizable if and
only T is the zero linear transformation. �

Proof We start with the easy direction. Let n = dim (V ).

(⇐) The linear transformation Z : V 7→ V defined by Z (v) = 0 for all v ∈ V is
nilpotent of index p = 1 and a matrix representation relative to any basis of V is the n× n
zero matrix, O. Quite obviously, the zero matrix is a diagonal matrix (Definition DIM [1496])
and hence Z is diagonalizable (Definition DZM [1497]).

(⇒) Assume now that T is diagonalizable, so γT (λ) = αT (λ) for every eigenvalue
λ (Theorem DMFE [1506]). By Theorem ENLT [2090], T has only one eigenvalue (zero),
which therefore must have algebraic multiplicity n (Theorem NEM [1465]). So the geometric
multiplicity of zero will be n as well, γT (0) = n.
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Let B be a basis for the eigenspace ET (0). Then B is a linearly independent subset of V
of size n, and by Theorem G [1228] will be a basis for V . For any x ∈ B we have

T (x) = 0x Definition EM [1392]

= 0 Theorem ZSSM [979]

So T is identically zero on a basis for B, and since the action of a linear transformation on
a basis determines all of the values of the linear transformation (Theorem LTDB [1582]), it
is easy to see that T (v) = 0 for every v ∈ V . �

So, other than one trivial case (the zero matrix), every nilpotent linear transformation
is not diagonalizable. It remains to see what is so “essential” about this broad class of
non-diagonalizable linear transformations. For this we now turn to a discussion of kernels
of powers of nilpotent linear transformations, beginning with a result about general linear
transformations that may not necessarily be nilpotent.

Theorem KPLT
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Kernels of Powers of Linear Transformations
Suppose T : V 7→ V is a linear transformation, where dim (V ) = n. Then there is an integer
m, 0 ≤ m ≤ n, such that

{0} = K(T 0
)

( K(T 1
)

( K(T 2
)

( · · · ( K(Tm) = K(Tm+1
)

= K(Tm+2
)

= · · ·

�

Proof There are several items to verify in the conclusion as stated. First, we show that
K(T k) ⊆ K(T k+1

)
for any k. Choose z ∈ K(T k). Then

T k+1 (z) = T
(
T k (z)

)
Definition LTC [1606]

= T (0) Definition KLT [1643]

= 0 Theorem LTTZZ [1562]

So by Definition KLT [1643], z ∈ K(T k+1
)

and by Definition SSET [2325] we have K(T k) ⊆
K(T k+1

)
.
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Second, we demonstrate the existence of a power m where consecutive powers result in
equal kernels. A by-product will be the condition that m can be chosen so that m ≤ n. To
the contrary, suppose that

{0} = K(T 0
)

( K(T 1
)

( K(T 2
)

( · · · ( K(T n−1
)

( K(T n) ( K(T n+1
)

( · · ·

SinceK(T k) ( K(T k+1
)
, Theorem PSSD [1236] implies that dim

(K(T k+1
)) ≥ dim

(K(T k))+
1. Repeated application of this observation yields

dim
(K(T n+1

)) ≥ dim (K(T n)) + 1

≥ dim
(K(T n−1

))
+ 2

...

≥ dim
(K(T 0

))
+ (n+ 1)

= dim ({0}) + n+ 1

= n+ 1
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Thus, K(T n+1) has a basis of size at least n + 1, which is a linearly independent set of size
greater than n in the vector space V of dimension n. This contradicts Theorem G [1228].

This contradiction yields the existence of an integer k such that K(T k) = K(T k+1
)
, so

we can define m to be smallest such integer with this property. From the argument above
about dimensions resulting from a strictly increasing chain of subspaces, it should be clear
that m ≤ n.

It remains to show that once two consecutive kernels are equal, then all of the remaining
kernels are equal. More formally, if K(Tm) = K(Tm+1), then K(Tm) = K(Tm+j) for all
j ≥ 1. We will give a proof by induction on j (Technique I [2363]). The base case (j = 1) is
precisely our defining property for m.

In the induction step, we assume that K(Tm) = K(Tm+j) and endeavor to show that
K(Tm) = K(Tm+j+1). At the outset of this proof we established that K(Tm) ⊆ K(Tm+j+1).
So Definition SE [2327] requires only that we establish the subset inclusion in the opposite
direction. To wit, choose z ∈ K(Tm+j+1). Then

0 = Tm+j+1 (z) Definition KLT [1643]
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= Tm+j (T (z)) Definition LTC [1606]

= Tm (T (z)) Induction Hypothesis

= Tm+1 (z) Definition LTC [1606]

= Tm (z) Base Case

So by Definition KLT [1643], z ∈ K(Tm) as desired. �

We now specialize Theorem KPLT [2094] to the case of nilpotent linear transformations,
which buys us just a bit more precision in the conclusion.

Theorem KPNLT
Kernels of Powers of Nilpotent Linear Transformations
Suppose T : V 7→ V is a nilpotent linear transformation with index p and dim (V ) = n. Then
0 ≤ p ≤ n and

{0} = K(T 0
)

( K(T 1
)

( K(T 2
)

( · · · ( K(T p) = K(T p+1
)

= · · · = V
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�

Proof Since T p = 0 it follows that T p+j = 0 for all j ≥ 0 and thus K(T p+j) = V for j ≥ 0.
So the value of m guaranteed by Theorem KPLT [2094] is at most p. The only remaining
aspect of our conclusion that does not follow from Theorem KPLT [2094] is that m = p. To
see this we must show that K(T k) ( K(T k+1

)
for 0 ≤ k ≤ p − 1. If K(T k) = K(T k+1

)
for

some k < p, then K(T k) = K(T p) = V . This implies that T k = 0, violating the fact that T
has index p. So the smallest value of m is indeed p, and we learn that p < n. �

The structure of the kernels of powers of nilpotent linear transformations will be crucial
to what follows. But immediately we can see a practical benefit. Suppose we are confronted
with the question of whether or not an n × n matrix, A, is nilpotent or not. If we don’t
quickly find a low power that equals the zero matrix, when do we stop trying higher and
higher powers? Theorem KPNLT [2097] gives us the answer: if we don’t see a zero matrix
by the time we finish computing An, then it is not going to ever happen. We’ll now take a
look at one example of Theorem KPNLT [2097] in action.

Example KPNLT
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Kernels of powers of a nilpotent linear transformation
We will recycle the nilpotent matrix A of index 4 from Example NM64 [2074]. We now know
that would have only needed to look at the first 6 powers of A if the matrix had not been
nilpotent. We list bases for the null spaces of the powers of A. (Notice how we are using
null spaces for matrices interchangeably with kernels of linear transformations, see Theorem
KNSI [1892] for justification.)

N (A) = N




−3 3 −2 5 0 −5
−3 5 −3 4 3 −9
−3 4 −2 6 −4 −3
−3 3 −2 5 0 −5
−3 3 −2 4 2 −6
−2 3 −2 2 4 −7



 =

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1




〉
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N (A2
)

= N




1 −2 1 0 −3 4
0 −2 1 1 −3 4
3 0 0 −3 0 0
1 −2 1 0 −3 4
0 −2 1 1 −3 4
−1 −2 1 2 −3 4



 =

〈



0
1
2
0
0
0

 ,


2
1
0
2
0
0

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1




〉

N (A3
)

= N




1 0 0 −1 0 0
1 0 0 −1 0 0
0 0 0 0 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0



 =

〈



0
1
0
0
0
0

 ,


0
0
1
0
0
0

 ,


1
0
0
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




〉
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N (A4
)

= N




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



 =

〈



1
0
0
0
0
0

 ,


0
1
0
0
0
0

 ,


0
0
1
0
0
0

 ,


0
0
0
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




〉

With the exception of some convenience scaling of the basis vectors in N (A2) these are
exactly the basis vectors described in Theorem BNS [484]. We can see that the dimension
of N (A) equals the geometric multiplicity of the zero eigenvalue. Why is this not an acci-
dent? We can see the dimensions of the kernels consistently increasing, and we can see that
N (A4) = C6. But Theorem KPNLT [2097] says a little more. Each successive kernel should
be a superset of the previous one. We ought to be able to begin with a basis of N (A) and
extend it to a basis of N (A2). Then we should be able to extend a basis of N (A2) into a
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basis of N (A3), all with repeated applications of Theorem ELIS [1226]. Verify the following,

N (A) =

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1




〉

N (A2
)

=

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1




〉
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N (A3
)

=

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1

 ,


0
0
0
0
0
1




〉

N (A4
)

=

〈



2
2
5
2
1
0

 ,

−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1

 ,


0
0
0
0
0
1

 ,


0
0
0
1
0
0




〉

Do not be concerned at the moment about how these bases were constructed since we are
not describing the applications of Theorem ELIS [1226] here. Do verify carefully for each
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alleged basis that, (1) it is a superset of the basis for the previous kernel, (2) the basis
vectors really are members of the kernel of the right power of A, (3) the basis is a linearly
independent set, (4) the size of the basis is equal to the size of the basis found previously for
each kernel. With these verifications, Theorem G [1228] will tell us that we have successfully
demonstrated what Theorem KPNLT [2097] guarantees. �

Subsection CFNLT
Canonical Form for Nilpotent Linear Transformations

Our main purpose in this section is to find a basis so that a nilpotent linear transformation
will have a pleasing, nearly-diagonal matrix representation. Of course, we will not have a
definition for “pleasing,” nor for “nearly-diagonal.” But the short answer is that our preferred
matrix representation will be built up from Jordan blocks, Jn (0). Here’s the theorem. You
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will find Example CFNLT [2119] helpful as you study this proof, since it uses the same
notation, and is large enough to (barely) illustrate the full generality of the theorem (see ).

Theorem CFNLT
Canonical Form for Nilpotent Linear Transformations
Suppose that T : V 7→ V is a nilpotent linear transformation of index p. Then there is a
basis for V so that the matrix representation, MT

B,B, is block diagonal with each block being
a Jordan block, Jn (0). The size of the largest block is the index p, and the total number of
blocks is the nullity of T , n (T ). �

Proof We will explicitly construct the desired basis, so the proof is constructive (Technique
C [2347]), and can be used in practice. As we begin, the basis vectors will not be in the
proper order, but we will rearrange them at the end of the proof. For convenience, define
ni = n (T i), so for example, n0 = 0, n1 = n (T ) and np = n (T p) = dim (V ). Define
si = ni − ni−1, for 1 ≤ i ≤ p, so we can think of si as “how much bigger” K(T i) is than
K(T i−1). In particular, Theorem KPNLT [2097] implies that si > 0 for 1 ≤ i ≤ p.

We are going to build a set of vectors zi,j, 1 ≤ i ≤ p, 1 ≤ j ≤ si. Each zi,j will be
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an element of K(T i) and not an element of K(T i−1). In total, we will obtain a linearly
independent set of

∑p
i=1 si =

∑p
i=1 ni − ni−1 = np − n0 = dim (V ) vectors that form a basis

of V . We construct this set in pieces, starting at the “wrong” end. Our procedure will
build a series of subspaces, Zi, each lying in between K(T i−1) and K(T i), having bases zi,j,
1 ≤ j ≤ si, and which together equal V as a direct sum. Now would be a good time to
review the results on direct sums collected in Subsection PD.DS [1245]. OK, here we go.

We build the subspace Zp first (this is what we meant by “starting at the wrong end”).
K(T p−1) is a proper subspace of K(T p) = V (Theorem KPNLT [2097]). Theorem DSFOS
[1250] says that there is a subspace of V that will pair with the subspace K(T p−1) to form
a direct sum of V . Call this subspace Zp, and choose vectors zp,j, 1 ≤ j ≤ sp as a basis
of Zp, which we will denote as Bp. Note that we have a fair amount of freedom in how to
choose these first basis vectors. Several observations will be useful in the next step. First
V = K(T p−1) ⊕ Zp. The basis Bp =

{
zp,1, zp,2, zp,3, . . . , zp,sp

}
is linearly independent. For

1 ≤ j ≤ sp, zp,j ∈ K(T p) = V . Since the two subspaces of a direct sum have no nonzero
vectors in common (Theorem DSZI [1253]), for 1 ≤ j ≤ sp, zp,j 6∈ K(T p−1). That was
comparably easy.

Version 2.11



Subsection NLT.CFNLT Canonical Form for Nilpotent Linear Transformations 2116

If obtaining Zp was easy, getting Zp−1 will be harder. We will repeat the next step
p − 1 times, and so will do it carefully the first time. Eventually, Zp−1 will have dimension
sp−1. However, the first sp vectors of a basis are straightforward. Define zp−1,j = T (zp,j),
1 ≤ j ≤ sp. Notice that we have no choice in creating these vectors, they are a consequence
of our choices for zp,j. In retrospect (i.e. on a second reading of this proof), you will recognize
this as the key step in realizing a matrix representation of a nilpotent linear transformation
with Jordan blocks. We need to know that this set of vectors in linearly independent, so
start with a relation of linear dependence (Definition RLD [1061]), and massage it,

0 = a1zp−1,1 + a2zp−1,2 + a3zp−1,3 + · · ·+ aspzp−1,sp

= a1T (zp,1) + a2T (zp,2) + a3T (zp,3) + · · ·+ aspT
(
zp,sp

)
= T

(
a1zp,1 + a2zp,2 + a3zp,3 + · · ·+ aspzp,sp

)
Theorem LTLC [1580]

Define x = a1zp,1 + a2zp,2 + a3zp,3 + · · · + aspzp,sp . The statement just above means that
x ∈ K(T ) ⊆ K(T p−1) (Definition KLT [1643], Theorem KPNLT [2097]). As defined, x is a
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linear combination of the basis vectors Bp, and therefore x ∈ Zp. Thus x ∈ K(T p−1) ∩ Zp
(Definition SI [2332]). Because V = K(T p−1)⊕Zp, Theorem DSZI [1253] tells us that x = 0.
Now we recognize the definition of x as a relation of linear dependence on the linearly
independent set Bp, and therefore a1 = a2 = · · · = asp = 0 (Definition LI [1061]). This
establishes the linear independence of zp−1,j, 1 ≤ j ≤ sp (Definition LI [1061]).

We also need to know where the vectors zp−1,j, 1 ≤ j ≤ sp live. First we demonstrate
that they are members of K(T p−1).

T p−1 (zp−1,j) = T p−1 (T (zp,j))

= T p (zp,j)

= 0

So zp−1,j ∈ K(T p−1), 1 ≤ j ≤ sp. However, we now show that these vectors are not elements
of K(T p−2). Suppose to the contrary (Technique CD [2354]) that zp−1,j ∈ K(T p−2). Then

0 = T p−2 (zp−1,j)
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= T p−2 (T (zp,j))

= T p−1 (zp,j)

which contradicts the earlier statement that zp,j 6∈ K(T p−1). So zp−1,j 6∈ K(T p−2), 1 ≤ j ≤ sp.
Now choose a basis Cp−2 =

{
u1, u2, u3, . . . , unp−2

}
for K(T p−2). We want to extend this

basis by adding in the zp−1,j to span a subspace of K(T p−1). But first we want to know that
this set is linearly independent. Let ak, 1 ≤ k ≤ np−2 and bj, 1 ≤ j ≤ sp be the scalars in a
relation of linear dependence,

0 = a1u1 + a2u2 + · · ·+ anp−2unp−2 + b1zp−1,1 + b2zp−1,2 + · · ·+ bspzp−1,sp

Then,

0 = T p−2 (0)

= T p−2
(
a1u1 + a2u2 + · · ·+ anp−2unp−2 + b1zp−1,1 + b2zp−1,2 + · · ·+ bspzp−1,sp

)
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= a1T
p−2 (u1) + a2T

p−2 (u2) + · · ·+ anp−2T
p−2
(
unp−2

)
+

b1T
p−2 (zp−1,1) + b2T

p−2 (zp−1,2) + · · ·+ bspT
p−2
(
zp−1,sp

)
= a10 + a20 + · · ·+ anp−20 + b1T

p−2 (zp−1,1) + b2T
p−2 (zp−1,2) + · · ·+ bspT

p−2
(
zp−1,sp

)
= b1T

p−2 (zp−1,1) + b2T
p−2 (zp−1,2) + · · ·+ bspT

p−2
(
zp−1,sp

)
= b1T

p−2 (T (zp,1)) + b2T
p−2 (T (zp,2)) + · · ·+ bspT

p−2
(
T
(
zp,sp

))
= b1T

p−1 (zp,1) + b2T
p−1 (zp,2) + · · ·+ bspT

p−1
(
zp,sp

)
= T p−1

(
b1zp,1 + b2zp,2 + · · ·+ bspzp,sp

)
Define y = b1zp,1 + b2zp,2 + · · ·+ bspzp,sp . The statement just above means that y ∈ K(T p−1)
(Definition KLT [1643]). As defined, y is a linear combination of the basis vectors Bp, and
therefore y ∈ Zp. Thus y ∈ K(T p−1)∩Zp. Because V = K(T p−1)⊕Zp, Theorem DSZI [1253]
tells us that y = 0. Now we recognize the definition of y as a relation of linear dependence on
the linearly independent set Bp, and therefore b1 = b2 = · · · = bsp = 0 (Definition LI [1061]).
Return to the full relation of linear dependence with both sets of scalars (the ai and bj).
Now that we know that bj = 0 for 1 ≤ j ≤ sp, this relation of linear dependence simplifies
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to a relation of linear dependence on just the basis Cp−1. Therefore, ai = 0, 1 ≤ ai ≤ np−1

and we have the desired linear independence.
Define a new subspace of K(T p−1) as

Qp−1 =
〈{

u1, u2, u3, . . . , unp−1 , zp−1,1, zp−1,2, zp−1,3, . . . , zp−1,sp

}〉
By Theorem DSFOS [1250] there exists a subspace of K(T p−1) which will pair with Qp−1 to
form a direct sum. Call this subspace Rp−1, so by definition, K(T p−1) = Qp−1 ⊕ Rp−1. We
are interested in the dimension of Rp−1. Note first, that since the spanning set of Qp−1 is
linearly independent, dim (Qp−1) = np−2 + sp. Then

dim (Rp−1) = dim
(K(T p−1

))− dim (Qp−1) Theorem DSD [1257]

= np−1 − (np−2 + sp)

= (np−1 − np−2)− sp
= sp−1 − sp

Notice that if sp−1 = sp, then Rp−1 is trivial. Now choose a basis of Rp−1, and denote these
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sp−1 − sp vectors as zp−1,sp+1, zp−1,sp+2, zp−1,sp+3, . . . , zp−1,sp−1 . This is another occassion to
notice that we have some freedom in this choice.

We now have K(T p−1) = Qp−1 ⊕Rp−1, and we have bases for each of the two subspaces.
The union of these two bases will therefore be a linearly independent set in K(T p−1) with
size

(np−2 + sp) + (sp−1 − sp) = np−2 + sp−1

= np−2 + np−1 − np−2

= np−1 = dim
(K(T p−1

))
So, by Theorem G [1228], the following set is a basis of K(T p−1),{

u1, u2, u3, . . . , unp−2 , zp−1,1, zp−1,2, . . . , zp−1,sp , zp−1,sp+1, zp−1,sp+2, . . . , zp−1,sp−1

}
We built up this basis in three parts, we will now split it in half. Define the subspace Zp−1

by

Zp−1 = 〈Bp−1〉 =
〈{

zp−1,1, zp−1,2, . . . , zp−1,sp−1

}〉
Version 2.11



Subsection NLT.CFNLT Canonical Form for Nilpotent Linear Transformations 2122

where we have implicitly denoted the basis as Bp−1. Then Theorem DSFB [1248] allows us
to split up the basis for K(T p−1) as Cp−1 ∪Bp−1 and write

K(T p−1
)

= K(T p−2
)⊕ Zp−1

Whew! This is a good place to recap what we have achieved. The vectors zi,j form bases for
the subspaces Zi and right now

V = K(T p−1
)⊕ Zp = K(T p−2

)⊕ Zp−1 ⊕ Zp
The key feature of this decomposition of V is that the first sp vectors in the basis for Zp−1

are outputs of the linear transformation T using the basis vectors of Zp as inputs.
Now we want to further decompose K(T p−2) (into K(T p−3) and Zp−2). The procedure is

the same as above, so we will only sketch the key steps. Checking the details proceeds in
the same manner as above. Technically, we could have set up the preceding as the induction
step in a proof by induction (Technique I [2363]), but this probably would make the proof
harder to understand.
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Hit each element of Bp−1 with T , to create vectors zp−2,j, 1 ≤ j ≤ sp−1. These vectors
form a linearly independent set, and each is an element of K(T p−2), but not an element
of K(T p−3). Grab a basis Cp−3 of K(T p−3) and tack on the newly-created vectors zp−2,j,
1 ≤ j ≤ sp−1. This expanded set is linearly independent, and we can define a subspace Qp−2

using it as a basis. Theorem DSFOS [1250] gives us a subspace Rp−2 such that K(T p−2) =
Qp−2 ⊕ Rp−2. Vectors zp−2,j, sp−1 + 1 ≤ j ≤ sp−2 are chosen as a basis for Rp−2 once the
relevant dimensions have been verified. The union of Cp−3 and zp−2,j, 1 ≤ j ≤ sp−2 then
form a basis of K(T p−2), which can be split into two parts to yield the decomposition

K(T p−2
)

= K(T p−3
)⊕ Zp−2

Here Zp−2 is the subspace of K(T p−2) with basis Bp−2 = {zp−2,j | 1 ≤ j ≤ sp−2}. Finally,

V = K(T p−1
)⊕ Zp = K(T p−2

)⊕ Zp−1 ⊕ Zp = K(T p−3
)⊕ Zp−2 ⊕ Zp−1 ⊕ Zp

Again, the key feature of this decomposition is that the first vectors in the basis of Zp−2 are
outputs of T using vectors from the basis Zp−1 as inputs (and in turn, some of these inputs
are outputs of T derived from inputs in Zp).
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Now assume we repeat this procedure until we decompose K(T 2) into subspaces K(T )
and Z2. Finally, decompose K(T ) into subspaces K(T 0) = K(In) = {0} and Z1, so that we
recognize the vectors z1,j, 1 ≤ j ≤ s1 = n1 as elements of K(T ). The set

B = B1 ∪B2 ∪B3 ∪ · · · ∪Bp = {zi,j | 1 ≤ i ≤ p, 1 ≤ j ≤ si}
is linearly independent by Theorem DSLI [1255] and has size

p∑
i=1

si =

p∑
i=1

ni − ni−1 = np − n0 = dim (V )

So by Theorem G [1228], B is a basis of V . We desire a matrix representation of T relative
to B (Definition MR [1855]), but first we will reorder the elements of B. The following
display lists the elements of B in the desired order, when read across the rows right-to-left
in the usual way. Notice that we arrived at these vectors column-by-column, beginning on
the right.

z1,1 z2,1 z3,1 · · · zd,1

Version 2.11



Subsection NLT.CFNLT Canonical Form for Nilpotent Linear Transformations 2125

z1,2 z2,2 z3,2 · · · zd,2
...

...

z1,sd z2,sd z3,sd · · · zd,sd
z1,sd+1 z2,sd+1 z3,sd+1 · · ·

...
...

z1,s3 z2,s3 z3,s3

...

z1,s2 z2,s2

...

z1,s1

It is difficult to layout this table with the notation we have been using, nor would it be
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especially useful to invent some notation to overcome the difficulty. (One approach would be
to define something like the inverse of the nonincreasing function, i → si.) Do notice that
there are s1 = n1 rows and d columns. Column i is the basis Bi. The vectors in the first
column are elements of K(T ). Each row is the same length, or shorter, than the one above
it. If we apply T to any vector in the table, other than those in the first column, the output
is the preceding vector in the row.

Now contemplate the matrix representation of T relative to B as we read across the rows
of the table above. In the first row, T (z1,1) = 0, so the first column of the representation is
the zero column. Next, T (z2,1) = z1,1, so the second column of the representation is a vector
with a single one in the first entry, and zeros elsewhere. Next, T (z3,1) = z2,1, so column 3
of the representation is a zero, then a one, then all zeros. Continuing in this vein, we obtain
the first d columns of the representation, which is the Jordan block Jd (0) followed by rows
of zeros.

When we apply T to the basis vectors of the second row, what happens? Applying T
to the first vector, the result is the zero vector, so the representation gets a zero column.
Applying T to the second vector in the row, the output is simply the first vector in that row,
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making the next column of the representation all zeros plus a lone one, sitting just above
the diagonal. Continuing, we create a Jordan block, sitting on the diagonal of the matrix
representation. It is not possible in general to state the size of this block, but since the
second row is no longer than the first, it cannot have size larger than d.

Since there are as many rows as the dimension of K(T ), the representation contains as
many Jordan blocks as the nullity of T , n (T ). Each successive block is smaller than the
preceding one, with the first, and largest, having size d. The blocks are Jordan blocks since
the basis vectors zi,j were often defined as the result of applying T to other elements of
the basis already determined, and then we rearranged the basis into an order that placed
outputs of T just before their inputs, excepting the start of each row, which was an element
of K(T ). �

The proof of Theorem CFNLT [2105] is constructive (Technique C [2347]), so we can
use it to create bases of nilpotent linear transformations with pleasing matrix representa-
tions. Recall that Theorem DNLT [2092] told us that nilpotent linear transformations are
almost never diagonalizable, so this is progress. As we have hinted before, with a nice rep-
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resentation of nilpotent matrices, it will not be difficult to build up representations of other
non-diagonalizable matrices. Here is the promised example which illustrates the previous
theorem. It is a useful companion to your study of the proof of Theorem CFNLT [2105].

Example CFNLT
Canonical form for a nilpotent linear transformation
The 6× 6 matrix, A, of Example NM64 [2074] is nilpotent of index p = 4. If we define the
linear transformation T : C6 7→ C6 by T (x) = Ax, then T is nilpotent of index 4 and we can
seek a basis of C6 that yields a matrix representation with Jordan blocks on the diagonal.
The nullity of T is 2, so from Theorem CFNLT [2105] we can expect the largest Jordan block
to be J4 (0), and there will be just two blocks. This only leaves enough room for the second
block to have size 2.

We will recycle the bases for the null spaces of the powers of A from Example KPNLT
[2099] rather than recomputing them here. We will also use the same notation used in the
proof of Theorem CFNLT [2105].

To begin, s4 = n4 − n3 = 6 − 5 = 1, so we need one vector of K(T 4) = C6, that is not
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in K(T 3), to be a basis for Z4. We have a lot of latitude in this choice, and we have not
described any sure-fire method for constructing a vector outside of a subspace. Looking at
the basis for K(T 3) we see that if a vector is in this subspace, and has a nonzero value in
the first entry, then it must also have a nonzero value in the fourth entry. So the vector

z4,1 =


1
0
0
0
0
0


will not be an element of K(T 3) (notice that many other choices could be made here, so our
basis will not be unique). This completes the determination of Zp = Z4.

Next, s3 = n3 − n2 = 5 − 4 = 1, so we again need just a single basis vector for Z3. We
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start by evaluating T with each basis vector of Z4,

z3,1 = T (z4,1) = Az4,1 =


−3
−3
−3
−3
−3
−2



Since s3 = s4, the subspace R3 is trivial, and there is nothing left to do, z3,1 is the lone basis
vector of Z3.

Now s2 = n2 − n1 = 4 − 2 = 2, so the construction of Z2 will not be as simple as the
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construction of Z3. We first apply T to the basis vector of Z2,

z2,1 = T (z3,1) = Az3,1 =


1
0
3
1
0
−1


The two basis vectors ofK(T 1), together with z2,1, form a basis forQ2. Because dim (K(T 2))−
dim (Q2) = 4− 3 = 1 we need only find a single basis vector for R2. This vector must be an
element of K(T 2), but not an element of Q2. Again, there is a variety of vectors that fit this
description, and we have no precise algorithm for finding them. Since they are plentiful, they
are not too hard to find. We add up the four basis vectors of K(T 2), ensuring an element of
K(T 2). Then we check to see if the vector is a linear combination of three vectors: the two
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basis vectors of K(T 1) and z2,1. Having passed the tests, we have chosen

z2,2 =


2
1
2
2
2
1



Thus, Z2 = 〈{z2,1, z2,2}〉.

Lastly, s1 = n1−n0 = 2− 0 = 2. Since s2 = s1, we again have a trivial R1 and need only
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complete our basis by evaluating the basis vectors of Z2 with T ,

z1,1 = T (z2,1) = Az2,1 =


1
1
0
1
1
1



z1,2 = T (z2,2) = Az2,2 =


−2
−2
−5
−2
−1
0
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Now we reorder these vectors as the desired basis,

B = {z1,1, z2,1, z3,1, z4,1, z1,2, z2,2}
We now apply Definition MR [1855] to build a matrix representation of T relative to B,

ρB (T (z1,1)) = ρB (Az1,1) = ρB (0) =


0
0
0
0
0
0



ρB (T (z2,1)) = ρB (Az2,1) = ρB (z1,1) =


1
0
0
0
0
0


Version 2.11



Subsection NLT.CFNLT Canonical Form for Nilpotent Linear Transformations 2135

ρB (T (z3,1)) = ρB (Az3,1) = ρB (z2,1) =


0
1
0
0
0
0



ρB (T (z4,1)) = ρB (Az4,1) = ρB (z3,1) =


0
0
1
0
0
0
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ρB (T (z1,2)) = ρB (Az1,2) = ρB (0) =


0
0
0
0
0
0



ρB (T (z2,2)) = ρB (Az2,2) = ρB (z1,2) =


0
0
0
0
1
0
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Installing these vectors as the columns of the matrix representation we have

MT
B,B =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


which is a block diagonal matrix with Jordan blocks J4 (0) and J2 (0). If we constructed
the matrix S having the vectors of B as columns, then Theorem SCB [1986] tells us that
a similarity transformation with S relates the original matrix representation of T with the
matrix representation consisting of Jordan blocks., i.e. S−1AS = MT

B,B. �

Notice that constructing interesting examples of matrix representations requires domains
with dimensions bigger than just two or three. Going forward we will see several more big
examples.
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Section IS

Invariant Subspaces

This section is in draft form
Nearly complete

We have seen in Section NLT [2071] that nilpotent linear transformations are almost
never diagonalizable (Theorem DNLT [2092]), yet have matrix representations that are very
nearly diagonal (Theorem CFNLT [2105]). Our goal in this section, and the next (Section
JCF [2189]), is to obtain a matrix representation of any linear transformation that is very
nearly diagonal. A key step in reaching this goal is an understanding of invariant subspaces,
and a particular type of invariant subspace that contains vectors known as “generalized
eigenvectors.”

Version 2.11



Subsection IS.IS Invariant Subspaces 2139

Subsection IS
Invariant Subspaces

As is often the case, we start with a definition.

Definition IS
Invariant Subspace
Suppose that T : V 7→ V is a linear transformation and W is a subspace of V . Suppose
further that T (w) ∈ W for every w ∈ W . Then W is an invariant subspace of V relative
to T . 4

We do not have any special notation for an invariant subspace, so it is important to
recognize that an invariant subspace is always relative to both a superspace (V ) and a
linear transformation (T ), which will sometimes not be mentioned, yet will be clear from the
context. Note also that the linear transformation involved must have an equal domain and
codomain — the definition would not make much sense if our outputs were not of the same
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type as our inputs.

As usual, we begin with an example that demonstrates the existence of invariant sub-
spaces. We will return later to understand how this example was constructed, but for now,
just understand how we check the existence of the invariant subspaces.

Example TIS
Two invariant subspaces
Consider the linear transformation T : C4 7→ C4 defined by T (x) = Ax where A is given by

A =


−8 6 −15 9
−8 14 −10 18
1 1 3 0
3 −8 2 −11
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Define (with zero motivation),

w1 =


−7
−2
3
0

 w2 =


−1
−2
0
1


and set W = 〈{w1, w2}〉. We verify that W is an invariant subspace of C4 with respect to
T . By the definition of W , any vector chosen from W can be written as a linear combination
of w1 and w2. Suppose that w ∈ W , and then check the details of the following verification,

T (w) = T (a1w1 + a2w2) Definition SS [1023]

= a1T (w1) + a2T (w2) Theorem LTLC [1580]

= a1


−1
−2
0
1

+ a2


5
−2
−3
2


Version 2.11



Subsection IS.IS Invariant Subspaces 2142

= a1w2 + a2 ((−1)w1 + 2w2)

= (−a2)w1 + (a1 + 2a2)w2

∈ W Definition SS [1023]

So, by Definition IS [2130], W is an invariant subspace of C4 relative to T . In an entirely
similar manner we construct another invariant subspace of T .

With zero motivation, define

x1 =


−3
−1
1
0

 x2 =


0
−1
0
1


and set X = 〈{x1, x2}〉. We verify that X is an invariant subspace of C4 with respect to T .
By the definition of X, any vector chosen from X can be written as a linear combination of
x1 and x2. Suppose that x ∈ X, and then check the details of the following verification,

T (x) = T (b1x1 + b2x2) Definition SS [1023]
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= b1T (x1) + b2T (x2) Theorem LTLC [1580]

= b1


3
0
−1
1

+ b2


3
4
−1
−3


= b1 ((−1)x1 + x2) + b2 ((−1)x1 + (−3)x2)

= (−b1 − b2)x1 + (b1 − 3b2)x2

∈ X Definition SS [1023]

So, by Definition IS [2130], X is an invariant subspace of C4 relative to T .

There is a bit of magic in each of these verifications where the two outputs of T happen to
equal linear combinations of the two inputs. But this is the essential nature of an invariant
subspace. We’ll have a peek under the hood later, and it won’t look so magical after all.

As a hint of things to come, verify that B = {w1, w2, x1, x2} is a basis of C4. Splitting
this basis in half, Theorem DSFB [1248], tells us that C4 = W ⊕ X. To see why a de-
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composition of a vector space into a direct sum of invariant subspaces might be interesting,
construct the matrix representation of T relative to B, MT

B,B. Hmmmmmm. �

Example TIS [2131] is a bit mysterious at this stage. Do we know any other examples of
invariant subspaces? Yes, as it turns out, we have already seen quite a few. We’ll give some
examples now, and in more general situations, describe broad classes of invariant subspaces
with theorems. First up is eigenspaces.

Theorem EIS
Eigenspaces are Invariant Subspaces
Suppose that T : V 7→ V is a linear transformation with eigenvalue λ and associated

eigenspace ET (λ). Let W be any subspace of ET (λ). Then W is an invariant subspace
of V relative to T . �

Proof Choose w ∈ W . Then

T (w) = λw Definition EELT [1956]

∈ W Property SC [957]
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So by Definition IS [2130], W is an invariant subspace of V relative to T . �

Theorem EIS [2135] is general enough to determine that an entire eigenspace is an in-
variant subspace, or that simply the span of a single eigenvector is an invariant subspace.
It is not always the case that any subspace of an invariant subspace is again an invariant
subspace, but eigenspaces do have this property. Here is an example of the theorem, which
also allows us to very quickly build several several invariant (4x4, 2 evs, 1 2x2 jordan, 1 2x2
diag)

Example EIS
Eigenspaces as invariant subspaces
Define the linear transformation S : M22 7→M22 by

S

([
a b
c d

])
=

[−2a+ 19b− 33c+ 21d −3a+ 16b− 24c+ 15d
−2a+ 9b− 13c+ 9d −a+ 4b− 6c+ 5d

]
Build a matrix representation of S relative to the standard basis (Definition MR [1855],
Example BM [1125]) and compute eigenvalues and eigenspaces of S with the computational
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techniques of Chapter E [1363] in concert with Theorem EER [1996]. Then

ES (1) =

〈{[
4 3
2 1

]}〉
ES (2) =

〈{[
6 3
1 0

]
,

[−9 −3
0 1

]}〉
So by Theorem EIS [2135], both ES (1) and ES (2) are invariant subspaces of M22 relative
to S. However, Theorem EIS [2135] provides even more invariant subspaces. Since ES (1)
has dimension 1, it has no interesting subspaces, however ES (2) has dimension 2 and has a
plethora of subspaces. For example, set

u = 2

[
6 3
1 0

]
+ 3

[−9 −3
0 1

]
=

[−6 −3
2 3

]
and define U = 〈{u}〉. Then since U is a subspace of ES (2), Theorem EIS [2135] says that
U is an invariant subspace of M22 (or we could check this claim directly based simply on the
fact that u is an eigenvector of S). �

For every linear transformation there are some obvious, trivial invariant subspaces. Sup-
pose that T : V 7→ V is a linear transformation. Then simply because T is a function
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(Definition LT [1550]), the subspace V is an invariant subspace of T . In only a minor twist
on this theme, the range of T , R(T ), is an invariant subspace of T by Definition RLT
[1701]. Finally, Theorem LTTZZ [1562] provides the justification for claiming that {0} is an
invariant subspace of T .

That the trivial subspace is always an invariant subspace is a special case of the next
theorem. As an easy exercise before reading the next theorem, prove that the kernel of a
linear transformation (Definition KLT [1643]), K(T ), is an invariant subspace. We’ll wait.

Theorem KPIS
Kernels of Powers are Invariant Subspaces
Suppose that T : V 7→ V is a linear transformation. Then K(T k) is an invariant subspace of
V . �

Proof Suppose that z ∈ K(T k). Then

T k (T (z)) = T k+1 (z) Definition LTC [1606]

= T
(
T k (z)

)
Definition LTC [1606]
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= T (0) Definition KLT [1643]

= 0 Theorem LTTZZ [1562]

So by Definition KLT [1643], we see that T (z) ∈ K(T k). Thus K(T k) is an invariant
subspace of V relative to T (Definition IS [2130]). �

Two interesting special cases of Theorem KPIS [2138] occur when choose k = 0 and
k = 1. Rather than give an example of this theorem, we will refer you back to Example
KPNLT [2099] where we work with null spaces of the first four powers of a nilpotent matrix.
By Theorem KPIS [2138] each of these null spaces is an invariant subspace of the associated
linear transformation.

Here’s one more example of invariant subspaces we have encountered previously.

Example ISJB
Invariant subspaces and Jordan blocks
Refer back to Example CFNLT [2119]. We decomposed the vector space C6 into a direct
sum of the subspaces Z1, Z2, Z3, Z4. The union of the basis vectors for these subspaces is

Version 2.11



Subsection IS.IS Invariant Subspaces 2149

a basis of C6, which we reordered prior to building a matrix representation of the linear
transformation T . A principal reason for this reordering was to create invariant subspaces
(though it was not obvious then).

Define

X1 = 〈{z1,1, z2,1, z3,1, z4,1}〉 =

〈



1
1
0
1
1
1

 ,


1
0
3
1
0
−1

 ,

−3
−3
−3
−3
−3
−2

 ,


1
0
0
0
0
0




〉
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X2 = 〈{z1,2, z2,2}〉 =

〈



−2
−2
−5
−2
−1
0

 ,


2
1
2
2
2
1




〉

Recall from the proof of Theorem CFNLT [2105] or the computations in Example CFNLT
[2119] that first elements of X1 and X2 are in the kernel of T , K(T ), and each element of
X1 and X2 is the output of T when evaluated with the subsequent element of the set. This
was by design, and it is this feature of these basis vectors that leads to the nearly diagonal
matrix representation with Jordan blocks. However, we also recognize now that this property
of these basis vectors allow us to conclude easily that X1 and X2 are invariant subspaces of
C6 relative to T .

Furthermore, C6 = X1 ⊕X2 (Theorem DSFB [1248]). So the domain of T is the direct
sum of invariant subspaces and the resulting matrix representation has a block diagonal
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form. Hmmmmm. �

Subsection GEE
Generalized Eigenvectors and Eigenspaces

We now define a new type of invariant subspace and explore its key properties. This gen-
eralization of eigenvalues and eigenspaces will allow us to move from diagonal matrix repre-
sentations of diagonalizable matrices to nearly diagonal matrix representations of arbitrary
matrices. Here are the definitions.

Definition GEV
Generalized Eigenvector
Suppose that T : V 7→ V is a linear transformation. Suppose further that for x 6= 0,
(T − λIV )k (x) = 0 for some k > 0. Then x is a generalized eigenvector of T with
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eigenvalue λ. 4
Definition GES
Generalized Eigenspace
Suppose that T : V 7→ V is a linear transformation. Define the generalized eigenspace of
T for λ as

GT (λ) =
{

x | (T − λIV )k (x) = 0 for some k ≥ 0
}

(This definition contains Notation GES.) 4
So the generalized eigenspace is composed of generalized eigenvectors, plus the zero vec-

tor. As the name implies, the generalized eigenspace is a subspace of V . But more topically,
it is an invariant subspace of V relative to T .

Theorem GESIS
Generalized Eigenspace is an Invariant Subspace
Suppose that T : V 7→ V is a linear transformation. Then the generalized eigenspace GT (λ)
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is an invariant subspace of V relative to T . �

Proof First we establish that GT (λ) is a subspace of V . First (T − λIV )1 (0) = 0 by
Theorem LTTZZ [1562], so 0 ∈ GT (λ).

Suppose that x, y ∈ GT (λ). Then there are integers k, ` such that (T − λIV )k (x) = 0
and (T − λIV )` (y) = 0. Set m = k + `,

(T − λIV )m (x + y) = (T − λIV )m (x) + (T − λIV )m (y) Definition LT [1550]

= (T − λIV )k+` (x) + (T − λIV )k+` (y)

= (T − λIV )`
(

(T − λIV )k (x)
)

+

(T − λIV )k
(

(T − λIV )` (y)
)

Definition LTC [1606]

= (T − λIV )` (0) + (T − λIV )k (0) Definition GES [2143]

= 0 + 0 Theorem LTTZZ [1562]

= 0 Property Z [957]
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So x + y ∈ GT (λ).
Suppose that x ∈ GT (λ) and α ∈ C. Then there is an integer k such that (T − λIV )k (x) =

0.

(T − λIV )k (αx) = α (T − λIV )k (x) Definition LT [1550]

= α0 Definition GES [2143]

= 0 Theorem ZVSM [980]

So αx ∈ GT (λ). By Theorem TSS [1008], GT (λ) is a subspace of V .
Now we show that GT (λ) is invariant relative to T . Suppose that x ∈ GT (λ). Then by

Definition GES [2143] there is an integer k such that (T − λIV )k (x) = 0. The following
argument is due to Zoltan Toth.

(T − λIV )k (T (x)) = (T − λIV )k (T (x))− 0 Property Z [957]

= (T − λIV )k (T (x))− λ0 Theorem ZVSM [980]

= (T − λIV )k (T (x))− λ (T − λIV )k (x) Definition GES [2143]
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= (T − λIV )k (T (x))− (T − λIV )k (λx) Definition LT [1550]

= (T − λIV )k (T (x)− λx) Definition LT [1550]

= (T − λIV )k ((T − λIV ) (x)) Definition LTA [1599]

= (T − λIV )k+1 (x) Definition LTC [1606]

= (T − λIV )
(

(T − λIV )k (x)
)

Definition LTC [1606]

= (T − λIV ) (0) Definition GES [2143]

= 0 Theorem LTTZZ [1562]

This qualifies T (x) for membership in GT (λ), so by Definition GES [2143], GT (λ) is invariant
relative to T . �

Before we compute some generalized eigenspaces, we state and prove one theorem that
will make it much easier to create a generalized eigenspace, since it will allow us to use tools
we already know well, and will remove some the ambiguity of the clause “for some k” in the
definition.
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Theorem GEK
Generalized Eigenspace as a Kernel
Suppose that T : V 7→ V is a linear transformation, dim (V ) = n, and λ is an eigenvalue of
T . Then GT (λ) = K((T − λIV )n). �

Proof The conclusion of this theorem is a set equality, so we will apply Definition SE [2327]
by establishing two set inclusions. First, suppose that x ∈ GT (λ). Then there is an integer k

such that (T − λIV )k (x) = 0. This is equivalent to the statement that x ∈ K
(

(T − λIV )k
)

.

No matter what the value of k is, Theorem KPLT [2094] gives

x ∈ K
(

(T − λIV )k
)
⊆ K((T − λIV )n)

So, GT (λ) ⊆ K((T − λIV )n). For the opposite inclusion, suppose y ∈ K((T − λIV )n). Then
(T − λIV )n (y) = 0, so y ∈ GT (λ) and thus K((T − λIV )n) ⊆ GT (λ). By Definition SE
[2327] we have the desired equality of sets. �

Theorem GEK [2147] allows us to compute generalized eigenspaces as a single kernel (or
null space of a matrix representation) with tools like Theorem KNSI [1892] and Theorem
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BNS [484]. Also, we do not need to consider all possible powers k and can simply consider
the case where k = n. It is worth noting that the “regular” eigenspace is a subspace of the
generalized eigenspace since

ET (λ) = K((T − λIV )1) ⊆ K((T − λIV )n) = GT (λ)

where the subset inclusion is a consequence of Theorem KPLT [2094]. Also, there is no such
thing as a “generalized eigenvalue.” If λ is not an eigenvalue of T , then the kernel of T −λIV
is trivial and therefore subsequent powers of T − λIV also have trivial kernels (Theorem
KPLT [2094]). So the generalized eigenspace of a scalar that is not already an eigenvalue
would be trivial. Alright, we know enough now to compute some generalized eigenspaces.
We will record some information about algebraic and geometric multiplicities of eigenvalues
(Definition AME [1399], Definition GME [1399]) as we go, since these observations will be
of interest in light of some future theorems.

Example GE4
Generalized eigenspaces, dimension 4 domain
In Example TIS [2131] we presented two invariant subspaces of C4. There was some mystery
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about just how these were constructed, but we can now reveal that they are generalized
eigenspaces. Example TIS [2131] featured T : C4 7→ C4 defined by T (x) = Ax with A given
by

A =


−8 6 −15 9
−8 14 −10 18
1 1 3 0
3 −8 2 −11


A matrix representation of T relative to the standard basis (Definition SUV [586]) will equal
A. So we can analyze A with the techniques of Chapter E [1363]. Doing so, we find two
eigenvalues, λ = 1, −2, with multiplicities,

αT (1) = 2 γT (1) = 1

αT (−2) = 2 γT (−2) = 1
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To apply Theorem GEK [2147] we subtract each eigenvalue from the diagonal entries of A,
raise the result to the power dim (C4) = 4, and compute a basis for the null space.

λ = −2 (A− (−2)I4)
4 =


648 −1215 729 −1215
−324 486 −486 486
−405 729 −486 729
297 −486 405 −486

 RREF−−−→


1 0 3 0
0 1 1 1
0 0 0 0
0 0 0 0



GT (−2) =

〈

−3
−1
1
0

 ,


0
−1
0
1



〉

λ = 1 (A− (1)I4)
4 =


81 −405 −81 −729
−108 −189 −378 −486
−27 135 27 243
135 54 351 243

 RREF−−−→


1 0 7

3
1

0 1 2
3

2
0 0 0 0
0 0 0 0
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GT (1) =

〈

−7
−2
3
0

 ,

−1
−2
0
1



〉

In Example TIS [2131] we concluded that these two invariant subspaces formed a direct sum
of C4, only at that time, they were called X and W . Now we can write

C4 = GT (1)⊕ GT (−2)

This is no accident. Notice that the dimension of each of these invariant subspaces is equal
to the algebraic multiplicity of the associated eigenvalue. Not an accident either. (See the
upcoming Theorem GESD [2191].) �

Example GE6
Generalized eigenspaces, dimension 6 domain
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Define the linear transformation S : C6 7→ C6 by S (x) = Bx where
2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7


Then B will be the matrix representation of S relative to the standard basis (Definition SUV
[586]) and we can use the techniques of Chapter E [1363] applied to B in order to find the
eigenvalues of S.

αS (3) = 2 γS (3) = 1

αS (−1) = 4 γS (−1) = 2
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To find the generalized eigenspaces of S we need to subtract an eigenvalue from the diagonal
elements of B, raise the result to the power dim (C6) = 6 and compute the null space. Here
are the results for the two eigenvalues of S,

λ = 3 (B − 3I6)
6 =


64000 −152576 −59904 26112 −95744 133632
15872 −39936 −11776 8704 −29184 36352
12032 −30208 −9984 6400 −20736 26368
−1536 11264 −23040 17920 −17920 −1536
−9728 27648 −6656 9728 −1536 −17920
−7936 17920 5888 1792 4352 −14080



RREF−−−→


1 0 0 0 −4 5
0 1 0 0 −1 1
0 0 1 0 −1 1
0 0 0 1 −2 1
0 0 0 0 0 0
0 0 0 0 0 0
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GS (3) =

〈



4
1
1
2
1
0

 ,

−5
−1
−1
−1
0
1




〉

λ = −1 (B − (−1)I6)
6 =


6144 −16384 18432 −36864 57344 −18432
4096 −8192 4096 −16384 24576 −4096
4096 −8192 4096 −16384 24576 −4096
18432 −32768 6144 −61440 90112 −6144
14336 −24576 2048 −45056 65536 −2048
10240 −16384 −2048 −28672 40960 2048
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RREF−−−→


1 0 −5 2 −4 5
0 1 −3 3 −5 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



GS (−1) =

〈



5
3
1
0
0
0

 ,

−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,

−5
−3
0
0
0
1




〉

If we take the union of the two bases for these two invariant subspaces we obtain the set

C = {v1, v2, v3, v4, v5, v6}
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=




4
1
1
2
1
0

 ,

−5
−1
−1
−1
0
1

 ,


5
3
1
0
0
0

 ,

−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,

−5
−3
0
0
0
1




You can check that this set is linearly independent (right now we have no guarantee this will
happen). Once this is verified, we have a linearly independent set of size 6 inside a vector
space of dimension 6, so by Theorem G [1228], the set C is a basis for C6. This is enough to
apply Theorem DSFB [1248] and conclude that

C6 = GS (3)⊕ GS (−1)

This is no accident. Notice that the dimension of each of these invariant subspaces is equal
to the algebraic multiplicity of the associated eigenvalue. Not an accident either. (See the
upcoming Theorem GESD [2191].) �
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Subsection RLT
Restrictions of Linear Transformations

Generalized eigenspaces will prove to be an important type of invariant subspace. A second
reason for our interest in invariant subspaces is they provide us with another method for
creating new linear transformations from old ones.

Definition LTR
Linear Transformation Restriction
Suppose that T : V 7→ V is a linear transformation, and U is an invariant subspace of V
relative to T . Define the restriction of T to U by

T |U : U 7→ U T |U (u) = T (u)
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(This definition contains Notation LTR.) 4
It might appear that this definition has not accomplished anything, as T |U would appear

to take on exactly the same values as T . And this is true. However, T |U differs from T
in the choice of domain and codomain. We tend to give little attention to the domain and
codomain of functions, while their defining rules get the spotlight. But the restriction of a
linear transformation is all about the choice of domain and codomain. We are restricting
the rule of the function to a smaller subspace. Notice the importance of only using this
construction with an invariant subspace, since otherwise we cannot be assured that the
outputs of the function are even contained in the codomain. Maybe this observation should
be the key step in the proof of a theorem saying that T |U is also a linear transformation,
but we won’t bother.

Example LTRGE
Linear transformation restriction on generalized eigenspace
In order to gain some experience with restrictions of linear transformations, we construct
one and then also construct a matrix representation for the restriction. Furthermore, we will
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use a generalized eigenspace as the invariant subspace for the construction of the restriction.
Consider the linear transformation T : C5 7→ C5 defined by T (x) = Ax, where

A =


−22 −24 −24 −24 −46

3 2 6 0 11
−12 −16 −6 −14 −17

6 8 4 10 8
11 14 8 13 18


One of the eigenvalues of A is λ = 2, with geometric multiplicity γT (2) = 1, and algebraic
multiplicity αT (2) = 3. We get the generalized eigenspace in the usual manner,

W = GT (2) = K((T − 2IC5)5) =

〈


−2
1
1
0
0

 ,


0
−1
0
1
0

 ,

−4
2
0
0
1



〉

= 〈{w1, w2, w3}〉

Version 2.11



Subsection IS.RLT Restrictions of Linear Transformations 2169

By Theorem GESIS [2143], we know W is invariant relative to T , so we can employ Definition
LTR [2157] to form the restriction, T |W : W 7→ W .

To better understand exactly what a restriction is (and isn’t), we’ll form a matrix repre-
sentation of T |W . This will also be a skill we will use in subsequent examples. For a basis of
W we will use C = {w1, w2, w3}. Notice that dim (W ) = 3, so our matrix representation
will be a square matrix of size 3. Applying Definition MR [1855], we compute

ρC (T (w1)) = ρC (Aw1) = ρC



−4
2
2
0
0


 = ρC

2


−2
1
1
0
0

+ 0


0
−1
0
1
0

+ 0


−4
2
0
0
1


 =

2
0
0
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ρC (T (w2)) = ρC (Aw2) = ρC




0
−2
2
2
−1


 = ρC

2


−2
1
1
0
0

+ 2


0
−1
0
1
0

+ (−1)


−4
2
0
0
1


 =

 2
2
−1



ρC (T (w3)) = ρC (Aw3) = ρC



−6
3
−1
0
2


 = ρC

(−1)


−2
1
1
0
0

+ 0


0
−1
0
1
0

+ 2


−4
2
0
0
1


 =

−1
0
2



So the matrix representation of T |W relative to C is

M
T |W
C,C =

2 2 −1
0 2 0
0 −1 2
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The question arises: how do we use a 3 × 3 matrix to compute with vectors from C5? To
answer this question, consider the randomly chosen vector

w =


−4
4
4
−2
−1


First check that w ∈ GT (2). There are two ways to do this, first verify that

(T − 2IC5)5 (w) = (A− 2I5)
5 w = 0

meeting Definition GES [2143] (with k = 5). Or, express w as a linear combination of the
basis C for W , to wit, w = 4w1−2w2−w3. Now compute T |W (w) directly using Definition
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LTR [2157],

T |W (w) = T (w) = Aw =


−10

9
5
−4
0


It was necessary to verify that w ∈ GT (2), and if we trust our work so far, then this output
will also be an element of W , but it would be wise to check this anyway (using either of the
methods we used for w). We’ll wait.

Now we will repeat this sample computation, but instead using the matrix representation
of T |W relative to C.

T |W (w) = ρ−1
C

(
M

T |W
C,C ρC (w)

)
Theorem FTMR [1864]

= ρ−1
C

(
M

T |W
C,C ρC (4w1 − 2w2 −w3)

)
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= ρ−1
C

2 2 −1
0 2 0
0 −1 2

 4
−2
−1

 Definition VR [1819]

= ρ−1
C

 5
−4
0

 Definition MVP [661]

= 5w1 − 4w2 + 0w3 Definition VR [1819]

= 5


−2
1
1
0
0

+ (−4)


0
−1
0
1
0

+ 0


−4
2
0
0
1
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=


−10

9
5
−4
0


which matches the previous computation. Notice how the “action” of T |W is accomplished
by a 3 × 3 matrix multiplying a column vector of size 3. If you would like more practice
with these sorts of computations, mimic the above using the other eigenvalue of T , which is
λ = −2. The generalized eigenspace has dimension 2, so the matrix representation of the
restriction to the generalized eigenspace will be a 2× 2 matrix. �

Suppose that T : V 7→ V is a linear transformation and we can find a decomposition of V
as a direct sum, say V = U1⊕U2⊕U3⊕· · ·⊕Um where each Ui is an invariant subspace of V
relative to T . Then, for any v ∈ V there is a unique decomposition v = u1+u2+u3+· · ·+um
with ui ∈ Ui, 1 ≤ i ≤ m and furthermore

T (v) = T (u1 + u2 + u3 + · · ·+ um) Definition DS [1246]
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= T (u1) + T (u2) + T (u3) + · · ·+ T (um) Theorem LTLC [1580]

= T |U1 (u1) + T |U2 (u2) + T |U3 (u3) + · · ·+ T |Um (um)

So in a very real sense, we obtain a decomposition of the linear transformation T into the
restrictions T |Ui , 1 ≤ i ≤ m. If we wanted to be more careful, we could extend each
restriction to a linear transformation defined on V by setting the output of T |Ui to be the
zero vector for inputs outside of Ui. Then T would be exactly equal to the sum (Definition
LTA [1599]) of these extended restrictions. However, the irony of extending our restrictions
is more than we could handle right now.

Our real interest is in the matrix representation of a linear transformation when the
domain decomposes as a direct sum of invariant subspaces. Consider forming a basis B of
V as the union of bases Bi from the individual Ui, i.e. B = ∪mi=1Bi. Now form the matrix
representation of T relative to B. The result will be block diagonal, where each block is the

matrix representation of a restriction T |Ui relative to a basis Bi, M
T |Ui
Bi,Bi

. Though we did
not have the definitions to describe it then, this is exactly what was going on in the latter
portion of the proof of Theorem CFNLT [2105]. Two examples should help to clarify these
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ideas.

Example ISMR4
Invariant subspaces, matrix representation, dimension 4 domain
Example TIS [2131] and Example GE4 [2148] describe a basis of C4 which is derived from
bases for two invariant subspaces (both generalized eigenspaces). In this example we will con-
struct a matrix representation of the linear transformation T relative to this basis. Recycling
the notation from Example TIS [2131], we work with the basis,

B = {w1, w2, x1, x2} =



−7
−2
3
0

 ,

−1
−2
0
1

 ,

−3
−1
1
0

 ,


0
−1
0
1




Now we compute the matrix representation of T relative to B, borrowing some computations
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from Example TIS [2131],

ρB (T (w1)) = ρB



−1
−2
0
1


 = ρB ((0)w1 + (1)w2) =


0
1
0
0



ρB (T (w2)) = ρB




5
−2
−3
2


 = ρB ((−1)w1 + (2)w2) =


−1
2
0
0



ρB (T (x1)) = ρB




3
0
−1
1


 = ρB ((−1)x1 + (1)x2) =


0
0
−1
1
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ρB (T (x2)) = ρB




3
4
−1
−3


 = ρB ((−1)x1 + (−3)x2) =


0
0
−1
−3


Applying Definition MR [1855], we have

MT
B,B =


0 −1 0 0
1 2 0 0
0 0 −1 −1
0 0 1 −3


The interesting feature of this representation is the two 2 × 2 blocks on the diagonal that
arise from the decomposition of C4 into a direct sum (of generalized eigenspaces). Or maybe
the interesting feature of this matrix is the two 2×2 submatrices in the “other” corners that
are all zero. You decide. �

Example ISMR6
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Invariant subspaces, matrix representation, dimension 6 domain
In Example GE6 [2151] we computed the generalized eigenspaces of the linear transformation
S : C6 7→ C6 by S (x) = Bx where


2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7



From this we found the basis

C = {v1, v2, v3, v4, v5, v6}
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=




4
1
1
2
1
0

 ,

−5
−1
−1
−1
0
1

 ,


5
3
1
0
0
0

 ,

−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,

−5
−3
0
0
0
1




of C6 where {v1, v2} is a basis of GS (3) and {v3, v4, v5, v6} is a basis of GS (−1). We can
employ C in the construction of a matrix representation of S (Definition MR [1855]). Here
are the computations,

ρC (S (v1)) = ρC




11
3
3
7
4
1



 = ρC (4v1 + 1v2) =


4
1
0
0
0
0
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ρC (S (v2)) = ρC




−14
−3
−3
−4
−1
2



 = ρC ((−1)v1 + 2v2) =


−1
2
0
0
0
0



ρC (S (v3)) = ρC




23
5
5
2
−2
−2



 = ρC (5v3 + 2v4 + (−2)v5 + (−2)v6) =


0
0
5
2
−2
−2
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ρC (S (v4)) = ρC




−46
−11
−10
−2
5
4



 = ρC ((−10)v3 + (−2)v4 + 5v5 + 4v6) =


0
0
−10
−2
5
4



ρC (S (v5)) = ρC




78
19
17
1
−10
−7



 = ρC (17v3 + 1v4 + (−10)v5 + (−7)v6) =


0
0
17
1
−10
−7
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ρC (S (v6)) = ρC




−35
−9
−8
2
6
3



 = ρC ((−8)v3 + 2v4 + 6v5 + 3v6) =


0
0
−8
2
6
3


These column vectors are the columns of the matrix representation, so we obtain

MS
C,C =


4 −1 0 0 0 0
1 2 0 0 0 0
0 0 5 −10 17 −8
0 0 2 −2 1 2
0 0 −2 5 −10 6
0 0 −2 4 −7 3


As before, the key feature of this representation is the 2 × 2 and 4 × 4 blocks on the di-
agonal. We will discover in the final theorem of this section (Theorem RGEN [2176]) that
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we already understand these blocks fairly well. For now, we recognize them as arising from
generalized eigenspaces and suspect that their sizes are equal to the algebraic multiplicities
of the eigenvalues. �

The paragraph prior to these last two examples is worth repeating. A basis derived from
a direct sum decomposition into invariant subspaces will provide a matrix representation of
a linear transformation with a block diagonal form.

Diagonalizing a linear transformation is the most extreme example of decomposing a
vector space into invariant subspaces. When a linear transformation is diagonalizable, then
there is a basis composed of eigenvectors (Theorem DC [1499]). Each of these basis vectors
can be used individually as the lone element of a spanning set for an invariant subspace (The-
orem EIS [2135]). So the domain decomposes into a direct sum of one-dimensional invariant
subspaces (Theorem DSFB [1248]). The corresponding matrix representation is then block
diagonal with all the blocks of size 1, i.e. the matrix is diagonal. Section NLT [2071], Sec-
tion IS [2129] and Section JCF [2189] are all devoted to generalizing this extreme situation
when there are not enough eigenvectors available to make such a complete decomposition
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and arrive at such an elegant matrix representation.
One last theorem will roll up much of this section and Section NLT [2071] into one nice,

neat package.

Theorem RGEN
Restriction to Generalized Eigenspace is Nilpotent
Suppose T : V 7→ V is a linear transformation with eigenvalue λ. Then the linear transfor-
mation T |GT (λ) − λIGT (λ) is nilpotent. �

Proof Notice first that every subspace of V is invariant with respect to IV , so IGT (λ) =
IV |GT (λ). Let n = dim (V ) and choose v ∈ GT (λ). Then(

T |GT (λ) − λIGT (λ)

)n
(v) = (T − λIV )n (v) Definition LTR [2157]

= 0 Theorem GEK [2147]

So by Definition NLT [2074], T |GT (λ) − λIGT (λ) is nilpotent. �

The proof of Theorem RGEN [2176] indicates that the index of the nilpotent linear
transformation is less than or equal to the dimension of V . In practice, it will be less than or

Version 2.11



Subsection IS.RLT Restrictions of Linear Transformations 2186

equal to the dimension of the domain of the linear transformation, GT (λ). In any event, the
exact value of this index will be of some interest, so we define it now. Notice that this is a
property of the eigenvalue λ, similar to the algebraic and geometric multiplicities (Definition
AME [1399], Definition GME [1399]).

Definition IE
Index of an Eigenvalue
Suppose T : V 7→ V is a linear transformation with eigenvalue λ. Then the index of λ,
ιT (λ), is the index of the nilpotent linear transformation T |GT (λ) − λIGT (λ).

(This definition contains Notation IE.) 4

Example GENR6
Generalized eigenspaces and nilpotent restrictions, dimension 6 domain
In Example GE6 [2151] we computed the generalized eigenspaces of the linear transformation
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S : C6 7→ C6 defined by S (x) = Bx where


2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7



The generalized eigenspace, GS (3), has dimension 2, while GS (−1), has dimension 4. We’ll
investigate each thoroughly in turn, with the intent being to illustrate Theorem RGEN
[2176]. Much of our computations will be repeats of those done in Example ISMR6 [2170].

For U = GS (3) we compute a matrix representation of S|U using the basis found in
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Example GE6 [2151],

B = {u1, u2} =




4
1
1
2
1
0

 ,

−5
−1
−1
−1
0
1




Since B has size 2, we obtain a 2× 2 matrix representation (Definition MR [1855]) from

ρB (S|U (u1)) = ρB




11
3
3
7
4
1



 = ρB (4u1 + u2) =

[
4
1

]
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ρB (S|U (u2)) = ρB




−14
−3
−3
−4
−1
2



 = ρB ((−1)u1 + 2u2) =

[−1
2

]

Thus

M = M
S|U
U,U =

[
4 −1
1 2

]
Now we can illustrate Theorem RGEN [2176] with powers of the matrix representation
(rather than the restriction itself),

M − 3I2 =

[
1 −1
1 −1

]
(M − 3I2)

2 =

[
0 0
0 0

]
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So M − 3I2 is a nilpotent matrix of index 2 (meaning that S|U − 3IU is a nilpotent linear
transformation of index 2) and according to Definition IE [2177] we say ιS (3) = 2.

For W = GS (−1) we compute a matrix representation of S|W using the basis found in
Example GE6 [2151],

C = {w1, w2, w3, w4} =




5
3
1
0
0
0

 ,

−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,

−5
−3
0
0
0
1
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Since C has size 4, we obtain a 4× 4 matrix representation (Definition MR [1855]) from

ρC (S|W (w1)) = ρC




23
5
5
2
−2
−2



 = ρC (5w1 + 2w2 + (−2)w3 + (−2)w4) =


5
2
−2
−2



ρC (S|W (w2)) = ρC




−46
−11
−10
−2
5
4



 = ρC ((−10)w1 + (−2)w2 + 5w3 + 4w4) =


−10
−2
5
4
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ρC (S|W (w3)) = ρC




78
19
17
1
−10
−7



 = ρC (17w1 + w2 + (−10)w3 + (−7)w4) =


17
1
−10
−7



ρC (S|W (w4)) = ρC




−35
−9
−8
2
6
3



 = ρC ((−8)w1 + 2w2 + 6w3 + 3w4) =


−8
2
6
3
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Thus

N = M
S|W
W,W =


5 −10 17 −8
2 −2 1 2
−2 5 −10 6
−2 4 −7 3


Now we can illustrate Theorem RGEN [2176] with powers of the matrix representation
(rather than the restriction itself),

N − (−1)I4 =


6 −10 17 −8
2 −1 1 2
−2 5 −9 6
−2 4 −7 4



(N − (−1)I4)
2 =


−2 3 −5 2
4 −6 10 −4
4 −6 10 −4
2 −3 5 −2
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(N − (−1)I4)
3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


So N − (−1)I4 is a nilpotent matrix of index 3 (meaning that S|W − (−1)IW is a nilpotent
linear transformation of index 3) and according to Definition IE [2177] we say ιS (−1) = 3.

Notice that if we were to take the union of the two bases of the generalized eigenspaces,
we would have a basis for C6. Then a matrix representation of S relative to this basis
would be the same block diagonal matrix we found in Example ISMR6 [2170], only we now
understand each of these blocks as being very close to being a nilpotent matrix. �

Invariant subspaces, and restrictions of linear transformations, are topics you will see
again and again if you continue with further study of linear algebra. Our reasons for dis-
cussing them now is to arrive at a nice matrix representation of the restriction of a linear
transformation to one of its generalized eigenspaces. Here’s the theorem.

Theorem MRRGE
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Matrix Representation of a Restriction to a Generalized Eigenspace
Suppose that T : V 7→ V is a linear transformation with eigenvalue λ. Then there is a basis
of the the generalized eigenspace GT (λ) such that the restriction T |GT (λ) : GT (λ) 7→ GT (λ)
has a matrix representation that is block diagonal where each block is a Jordan block of the
form Jn (λ). �

Proof Theorem RGEN [2176] tells us that T |GT (λ) − λIGT (λ) is a nilpotent linear transfor-
mation. Theorem CFNLT [2105] tells us that a nilpotent linear transformation has a basis
for its domain that yields a matrix representation that is block diagonal where the blocks
are Jordan blocks of the form Jn (0). Let B be a basis of GT (λ) that yields such a matrix
representation for T |GT (λ) − λIGT (λ).

By Definition LTA [1599], we can write

T |GT (λ) =
(
T |GT (λ) − λIGT (λ)

)
+ λIGT (λ)

The matrix representation of λIGT (λ) relative to the basis B is then simply the diagonal
matrix λIm, where m = dim (GT (λ)). By Theorem MRSLT [1876] we have the rather
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unwieldy expression,

M
T |GT (λ)

B,B = M
(T |GT (λ)−λIGT (λ))+λIGT (λ)

B,B

= M
T |GT (λ)−λIGT (λ)

B,B +M
IGT (λ)

B,B

The first of these matrix representations has Jordan blocks with zero in every diagonal entry,
while the second matrix representation has λ in every diagonal entry. The result of adding
the two representations is to convert the Jordan blocks from the form Jn (0) to the form
Jn (λ). �

Of course, Theorem CFNLT [2105] provides some extra information on the sizes of the
Jordan blocks in a representation and we could carry over this information to Theorem
MRRGE [2186], but will save that for a subsequent application of this result.
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Subsection EXC
Exercises

T10 Suppose that T : V 7→ V is linear transformation, and p(x) is a polynomial. Then de-
fine the new linear transformation p(T ) : V 7→ V by interpreting the coefficients of the terms
of the polynomial as scalar mutliples of linear transformations (Definition LTSM [1602]),
addition of terms as the sum of linear transformations (Definition LTA [1599]), and pow-
ers as repeated composition of linear transformations (Definition LTC [1606]). Prove that
T ◦ p(T ) = p(T ) ◦ T .

Use this observation to give a shorter argument for the proof of the invariance of the
generalized eigenspace in Theorem GESIS [2143].
Contributed by Robert Beezer
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Section JCF

Jordan Canonical Form

This section is in draft form
Needs examples near beginning

We have seen in Section IS [2129] that generalized eigenspaces are invariant subspaces that
in every instance have led to a direct sum decomposition of the domain of the associated linear
transformation. This allows us to create a block diagonal matrix representation (Example
ISMR4 [2167], Example ISMR6 [2170]). We also know from Theorem RGEN [2176] that the
restriction of a linear transformation to a generalized eigenspace is almost a nilpotent linear
transformation. Of course, we understand nilpotent linear transformations very well from
Section NLT [2071] and we have carefully determined a nice matrix representation for them.

So here is the game plan for the final push. Prove that the domain of a linear transfor-
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mation always decomposes into a direct sum of generalized eigenspaces. We have unravelled
Theorem RGEN [2176] at Theorem MRRGE [2186] so that we can formulate the matrix
representations of the restrictions on the generalized eigenspaces using our storehouse of re-
sults about nilpotent linear transformations. Arrive at a matrix representation of any linear
transformation that is block diagonal with each block being a Jordan block.

Subsection GESD
Generalized Eigenspace Decomposition

In Theorem UTMR [2046] we were able to show that any linear transformation from V to V
has an upper triangular matrix representation (Definition UTM [2041]). We will now show
that we can improve on the basis yielding this representation by massaging the basis so that
the matrix representation is also block diagonal. The subspaces associated with each block
will be generalized eigenspaces, so the most general result will be a decomposition of the
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domain of a linear transformation into a direct sum of generalized eigenspaces.

Theorem GESD
Generalized Eigenspace Decomposition
Suppose that T (V )V is a linear transformation with distinct eigenvalues λ1, λ2, λ3, . . . , λm.
Then

V = GT (λ1)⊕ GT (λ2)⊕ GT (λ3)⊕ · · · ⊕ GT (λm)

�

Proof Suppose that dim (V ) = n and the n (not necessarily distinct) eigenvalues of T
are ρ1, ρ2, ρ3, . . . , ρn. We begin with a basis of V that yields an upper triangular matrix
representation, as guaranteed by Theorem UTMR [2046], B = {x1, x2, x3, . . . , xn}. Since
the matrix representation is upper triangular, and the eigenvalues of the linear transformation
are the diagonal elements we can choose this basis so that there are then scalars aij, 1 ≤ j ≤
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n, 1 ≤ i ≤ j − 1 such that

T (xj) =

j−1∑
i=1

aijxi + ρjxj

We now define a new basis for V which is just a slight variation in the basis B. Choose any
k and ` such that 1 ≤ k < ` ≤ n and ρk 6= ρ`. Define the scalar α = akl/ (ρ` − ρk). The new
basis is C = {y1, y2, y3, . . . , yn} where

yj = xj, j 6= `, 1 ≤ j ≤ n y` = x` + αxk

We now compute the values of the linear transformation T with inputs from C, noting
carefully the changed scalars in the linear combinations of C describing the outputs. These
changes will translate to minor changes in the matrix representation built using the basis C.
There are three cases to consider, depending on which column of the matrix representation
we are examining. First, assume j < `. Then

T (yj) = T (xj)
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=

j−1∑
i=1

aijxi + ρjxj

=

j−1∑
i=1

aijyi + ρjyj

That seems a bit pointless. The first `−1 columns of the matrix representations of T relative
to B and C are identical. OK, if that was too easy, here’s the main act. Assume j = `.
Then

T (y`) = T (x` + αxk)

= T (x`) + αT (xk)

=

(
`−1∑
i=1

ai`xi + ρ`x`

)
+ α

(
k−1∑
i=1

aikxi + ρkxk

)
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=
`−1∑
i=1

ai`xi + ρ`x` +
k−1∑
i=1

αaikxi + αρkxk

=
`−1∑
i=1

ai`xi +
k−1∑
i=1

αaikxi + αρkxk + ρ`x`

=
`−1∑
i=1
i 6=k

ai`xi +
k−1∑
i=1

αaikxi + aklxk + αρkxk + ρ`x`

=
`−1∑
i=1
i 6=k

ai`xi +
k−1∑
i=1

αaikxi + aklxk + αρkxk − ρ`αxk + ρ`αxk + ρ`x`

=
`−1∑
i=1
i 6=k

ai`xi +
k−1∑
i=1

αaikxi + (akl + αρk − ρ`α) xk + ρ` (αxk + x`)
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=
`−1∑
i=1
i 6=k

ai`xi +
k−1∑
i=1

αaikxi + (akl + α (ρk − ρ`)) xk + ρ` (x` + αxk)

=
`−1∑
i=1
i 6=k

ai`yi +
k−1∑
i=1

αaikyi + (akl + α (ρk − ρ`)) yk + ρ`y`

So how different are the matrix representations relative to B and C in column `? For i > k,
the coefficient of yi is aij, as in the representation relative to B. It is a different story for
i ≤ k, where the coefficients of yi may be very different. We are especially interested in the
coefficient of yk. In fact, this whole first part of this proof is about this particular entry of
the matrix representation. The coefficient of yk is

akl + α (ρk − ρ`) = akl +
akl

ρ` − ρk (ρk − ρ`)
= akl + (−1)akl

= 0
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If the definition of α was a mystery, then no more. In the matrix representation of T relative
to C, the entry in column `, row k is a zero. Nice. The only price we pay is that other entries
in column `, specifically rows 1 through k − 1, may also change in a way we can’t control.

One more case to consider. Assume j > `. Then

T (yj) = T (xj)

=

j−1∑
i=1

aijxi + ρjxj

=

j−1∑
i=1
i 6=`,k

aijxi + a`jx` + akjxk + ρjxj

=

j−1∑
i=1
i 6=`,k

aijxi + a`jx` + αa`jxk − αa`jxk + akjxk + ρjxj
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=

j−1∑
i=1
i 6=`,k

aijxi + a`j (x` + αxk) + (akj − αa`j) xk + ρjxj

=

j−1∑
i=1
i 6=`,k

aijyi + a`jy` + (akj − αa`j) yk + ρjyj

As before, we ask: how different are the matrix representations relative to B and C in column
j? Only yk has a coefficient different from the corresponding coefficient when the basis is B.
So in the matrix representations, the only entries to change are in row k, for columns `+ 1
through n.

What have we accomplished? With a change of basis, we can place a zero in a desired
entry (row k, column `) of the matrix representation, leaving most of the entries untouched.
The only entries to possibly change are above the new zero entry, or to the right of the new
zero entry. S Suppose we repeat this procedure, starting by “zeroing out” the entry above the
diagonal in the second column and first wow. Then we move right to the third column, and
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zero out the element just above the diagonal in the second row. Next we zero out the element
in the third column and first row. Then tackle the fourth column, work upwards from the
diagonal, zeroing out elements as we go. Entries above, and to the right will repeatedly
change, but newly created zeros will never get wrecked, since they are below, or just to the
left of the entry we are working on. Similarly the values on the diagonal do not change
either. This entire argument can be retooled in the language of change-of-basis matrices and
similarity transformations, and this is the approach taken by Noble in his Applied Linear
Algebra. It is interesting to concoct the change-of-basis matrix between the matrices B and
C and compute the inverse.

Perhaps you have noticed that we have to be just a bit more careful than the previous
paragraph suggests. The definition of α has a denominator that cannot be zero, which
restricts our maneuvers to zeroing out entries in row k and column ` only when ρk 6= ρ`. So
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we do not necessarily arrive at a diagonal matrix. More carefully we can write

T (yj) =

j−1∑
i=1

i: ρi=ρj

bijyi + ρjyj

where the bij are our new coefficients after repeated changes, the yj are the new basis
vectors, and the condition “i : ρi = ρj” means that we only have terms in the sum involving
vectors whose final coefficients are identical diagonal values (the eigenvalues). Now reorder
the basis vectors carefully. Group together vectors that have equal diagonal entries in the
matrix representation, but within each group preserve the order of the precursor basis. This
grouping will create a block diagonal structure for the matrix representation, while otherwise
preserving the order of the basis will retain the upper triangular form of the representation.
So we can arrive at a basis that yields a matrix representation that is upper triangular and
block diagonal, with the diagonal entries of each block all equal to a common eigenvalue of
the linear transformation.
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More carefully, employing the distinct eigenvalues of T , λi, 1 ≤ i ≤ m, we can assert
there is a set of basis vectors for V , uij, 1 ≤ i ≤ m, 1 ≤ j ≤ αT (λi), such that

T (uij) =

j−1∑
k=1

bijkuik + λiuij

So the subspace Ui = 〈{uij | 1 ≤ j ≤ αT (λi)}〉, 1 ≤ i ≤ m is an invariant subspace of V
relative to T and the restriction T |Ui has an upper triangular matrix representation relative
to the basis {uij | 1 ≤ j ≤ αT (λi)} where the diagonal entries are all equal to λi. Notice too
that with this definition,

V = U1 ⊕ U2 ⊕ U3 ⊕ · · · ⊕ Um
Whew. This is a good place to take a break, grab a cup of coffee, use the toilet, or go for a
short stroll, before we show that Ui is a subspace of the generalized eigenspace GT (λi). This
will follow if we can prove that each of the basis vectors for Ui is a generalized eigenvector of
T for λi (Definition GEV [2142]). We need some power of T −λiIV that takes uij to the zero
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vector. We prove by induction on j (Technique I [2363]) the claim that (T − λiIV )j (uij) = 0.
For j = 1 we have,

(T − λiIV ) (ui1) = T (ui1)− λiIV (ui1)

= T (ui1)− λiui1
= λiui1 − λiui1
= 0

For the induction step, assume that if k < j, then (T − λiIV )k takes uik to the zero vector.
Then

(T − λiIV )j (uij) = (T − λiIV )j−1 ((T − λiIV ) (uij))

= (T − λiIV )j−1 (T (uij)− λiIV (uij))

= (T − λiIV )j−1 (T (uij)− λiuij)
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= (T − λiIV )j−1

(
j−1∑
k=1

bijkuik + λiuij − λiuij
)

= (T − λiIV )j−1

(
j−1∑
k=1

bijkuik

)

=

j−1∑
k=1

bijk (T − λiIV )j−1 (uik)

=

j−1∑
k=1

bijk (T − λiIV )j−1−k
(

(T − λiIV )k (uik)
)

=

j−1∑
k=1

bijk (T − λiIV )j−1−k (0)
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=

j−1∑
k=1

bijk0

= 0

This completes the induction step. Since every vector of the spanning set for Ui is an element
of the subspace GT (λi), Property AC [956] and Property SC [957] allow us to conclude
that Ui ⊆ GT (λi). Then by Definition S [1002], Ui is a subspace of GT (λi). Notice that
this inductive proof could be interpreted to say that every element of Ui is a generalized
eigenvector of T for λi, and the algebraic multiplicity of λi is a sufficiently high power to
demonstrate this via the definition for each vector.

We are now prepared for our final argument in this long proof. We wish to establish
that the dimension of the subspace GT (λi) is the algebraic multiplicity of λi. This will be
enough to show that Ui and GT (λi) are equal, and will finally provide the desired direct sum
decomposition.

We will prove by induction (Technique I [2363]) the following claim. Suppose that
T : V 7→ V is a linear transformation and B is a basis for V that provides an upper tri-
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angular matrix representation of T . The number of times any eigenvalue λ occurs on the
diagonal of the representation is greater than or equal to the dimension of the generalized
eigenspace GT (λ).

We will use the symbol m for the dimension of V so as to avoid confusion with our
notation for the nullity. So dimV = m and our proof will proced by induction on m. Use
the notation #T (λ) to count the number of times λ occurs on the diagonal of a matrix
representation of T . We want to show that

#T (λ) ≥ dim (GT (λ))

= dim (K((T − λ)m)) Theorem GEK [2147]

= n ((T − λ)m) Definition NOLT [1780]

For the base case, dimV = 1. Every matrix representation of T is an upper triangular
matrix with the lone eigenvalue of T , λ, as the diagonal entry. So #T (λ) = 1. The generalized
eigenspace of λ is not trivial (since by Theorem GEK [2147] it equals the regular eigenspace),
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and is a subspace of V . With Theorem PSSD [1236] we see that dim (GT (λ)) = 1.

Now for the induction step, assume the claim is true for any linear transformation defined
on a vector space with dimension m − 1 or less. Suppose that B = {v1, v2, v3, . . . , vm}
is a basis for V that yields a diagonal matrix representation for T with diagonal entries
λ1, λ2, λ3, . . . , λm. Then U = 〈{v1, v2, v3, . . . , vm−1}〉 is a subspace of V that is invari-
ant relative to T . The restriction T |U : U 7→ U is then a linear transformation defined on
U , a vector space of dimension m − 1. A matrix representation of T |U relative to the ba-
sis C = {v1, v2, v3, . . . , vm−1} will be an upper triangular matrix with diagonal entries
λ1, λ2, λ3, . . . , λm−1. We can therefore apply the induction hypothesis to T |U and its rep-
resentation relative to C.

Suppose that λ is any eigenvalue of T . Then suppose that v ∈ K((T − λV )m). As an
element of V , we can write v as a linear combination of the basis elements of B, or more
compactly, there is a vector u ∈ U and a scalar α such that v = u + αvm. Then,

α (λm − λ)m vm

= α (T − λIV )m (vm) Theorem EOMP [1452]
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= 0 + α (T − λIV )m (vm) Property Z [957]

= − (T − λIV )m (u) + (T − λIV )m (u) + α (T − λIV )m (vm) Property AI [957]

= − (T − λIV )m (u) + (T − λIV )m (u + αvm) Theorem LTLC [1580]

= − (T − λIV )m (u) + (T − λIV )m (v) Theorem LTLC [1580]

= − (T − λIV )m (u) + 0 Definition KLT [1643]

= − (T − λIV )m (u) Property Z [957]

The final expression in this string of equalities is an element of U since U is invariant relative
to both T and IV . The expression at the beginning is a scalar multiple of vm, and as such
cannot be a nonzero element of U without violating the linear independence of B. So

α (λm − λ)m vm = 0

The vector vm is nonzero since B is linearly independent, so Theorem SMEZV [982] tells us
that α (λm − λ)m = 0. From the properties of scalar multiplication, we are confronted with
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two possibilities.
Our first case is that λ 6= λm. Notice then that λ occurs the same number of times

along the diagonal in the representations of T |U and T . Now α = 0 and v = u + 0vm = u.
Since v was chosen as an arbitrary element of K((T − λIV )m), Definition SSET [2325] says
that K((T − λIV )m) ⊆ U . It is always the case that K((T |U − λIU)m) ⊆ K((T − λIV )m).
However, we can also see that in this case, the opposite set inclusion is true as well. By
Definition SE [2327] we have K((T |U − λIU)m) = K((T − λIV )m). Then

#T (λ) = #T |U (λ)

≥ dim
(GT |U (λ)

)
Induction Hypothesis

= dim
(K((T |U − λIU)m−1)) Theorem GEK [2147]

= dim (K((T |U − λIU)m)) Theorem KPLT [2094]

= dim (K((T − λIV )m))

= dim (GT (λ)) Theorem GEK [2147]
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The second case is that λ = λm. Notice then that λ occurs one more time along the diagonal
in the representation of T compared to the representation of T |U . Then

(T |U − λIU)m (u) = (T − λIV )m (u)

= (T − λIV )m (u) + 0 Property Z [957]

= (T − λIV )m (u) + α(λm − λ)mvm Theorem ZSSM [979]

= (T − λIV )m (u) + α (T − λIV )m (vm) Theorem EOMP [1452]

= (T − λIV )m (u + αvm) Theorem LTLC [1580]

= (T − λIV )m (v)

= 0 Definition KLT [1643]

So u ∈ K(T |U − λIU). The vector v is an arbitrary member of K((T − λIV )m) and is also
equal to an element of K(T |U − λIU) (u) plus a scalar multiple of the vector vm. This
observation yields

dim (K((T − λIV )m)) ≤ dim (K(T |U − λIU)) + 1
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Now count eigenvalues on the diagonal,

#T (λ) = #T |U (λ) + 1

≥ dim
(GT |U (λ)

)
+ 1 Induction Hypothesis

= dim
(K((T |U − λIU)m−1))+ 1 Theorem GEK [2147]

= dim (K((T |U − λIU)m)) + 1 Theorem KPLT [2094]

≥ dim (K((T − λIV )m))

= dim (GT (λ)) Theorem GEK [2147]

In Theorem UTMR [2046] we constructed an upper triangular matrix representation of T
where each eigenvalue occurred αT (λ) times on the diagonal. So

αT (λi) = #T (λi) Theorem UTMR [2046]

≥ dim (GT (λi))
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≥ dim (Ui) Theorem PSSD [1236]

= αT (λi) Theorem PSSD [1236]

Thus, dim (GT (λi)) = αT (λi) and by Theorem EDYES [1237], Ui = GT (λi) and we can write

V = U1 ⊕ U2 ⊕ U3 ⊕ · · · ⊕ Um
= GT (λ1)⊕ GT (λ2)⊕ GT (λ3)⊕ · · · ⊕ GT (λm)

�

Besides a nice decomposition into invariant subspaces, this proof has a bonus for us.

Theorem DGES
Dimension of Generalized Eigenspaces
Suppose T : V 7→ V is a linear transformation with eigenvalue λ. Then the dimension of the
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generalized eigenspace for λ is the algebraic multiplicity of λ, dim (GT (λi)) = αT (λi). �

Proof At the very end of the proof of Theorem GESD [2191] we obtain the inequalities

αT (λi) ≤ dim (GT (λi)) ≤ αT (λi)

which establishes the desired equality. �

Subsection JCF
Jordan Canonical Form

Now we are in a position to define what we (and others) regard as an especially nice matrix
representation. The word “canonical” has at its root, the word “canon,” which has various
meanings. One is the set of laws established by a church council. Another is a set of writings
that are authentic, important or representative. Here we take to to mean the accepted, or
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best, representative among a variety of choices. Every linear transformation admits a variety
of representations, and will declare one as the best. Hopefully you will agree.

Definition JCF
Jordan Canonical Form
A square matrix is in Jordan canonical form if it meets the following requirements:

1. The matrix is block diagonal.

2. Each block is a Jordan block.

3. If ρ < λ then the block Jk (ρ) occupies rows with indices greater than the indices of the
rows occupied by J` (λ).

4. If ρ = λ and ` < k, then the block J` (λ) occupies rows with indices greater than the
indices of the rows occupied by Jk (λ).

4
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Theorem JCFLT
Jordan Canonical Form for a Linear Transformation
Suppose T : V 7→ V is a linear transformation. Then there is a basis B for V such that the
matrix representation of T with the following properties:

1. The matrix representation is in Jordan canonical form.

2. If Jk (λ) is one of the Jordan blocks, then λ is an eigenvalue of T .

3. For a fixed value of λ, the largest block of the form Jk (λ) has size equal to the index
of λ, ιT (λ).

4. For a fixed value of λ, the number of blocks of the form Jk (λ) is the geometric multi-
plicity of λ, γT (λ).

5. For a fixed value of λ, the number of rows occupied by blocks of the form Jk (λ) is the
algebraic multiplicity of λ, αT (λ).
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�

Proof This theorem is really just the consequence of applying to T , consecutively Theorem
GESD [2191], Theorem MRRGE [2186] and Theorem CFNLT [2105].

Theorem GESD [2191] gives us a decomposition of V into generalized eigenspaces, one for
each distinct eigenvalue. Since these generalized eigenspaces ar invariant relative to T , this
provides a block diagonal matrix representation where each block is the matrix representation
of the restriction of T to the generalized eigenspace.

Restricting T to a generalized eigenspace results in a “nearly nilpotent” linear transfor-
mation, as stated more precisely in Theorem RGEN [2176]. We unravel Theorem RGEN
[2176] in the proof of Theorem MRRGE [2186] so that we can apply Theorem CFNLT [2105]
about representations of nilpotent linear transformations.

We know the dimension of a generalized eigenspace is the algebraic multiplicity of the
eigenvalue (Theorem DGES [2210]), so the blocks associated with the generalized eigenspaces
are square with a size equal to the algebraic multiplicity. In refining the basis for this block,
and producing Jordan blocks the results of Theorem CFNLT [2105] apply. The total number
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of blocks will be the nullity of T |GT (λ) − λIGT (λ), which is the geometric multiplicity of λ as
an eigenvalue of T (Definition GME [1399]). The largest of the Jordan blocks will have size
equal to the index of the nilpotent linear transformation T |GT (λ) − λIGT (λ), which is exactly
the definition of the index of the eigenvalue λ (Definition IE [2177]). �

Before we do some examples of this result, notice how close Jordan canonical form is
to a diagonal matrix. Or, equivalently, notice how close we have come to diagonalizing
a matrix (Definition DZM [1497]). We have a matrix representation which has diagonal
entries that are the eigenvalues of a matrix. Each occurs on the diagonal as many times as
the algebraic multiplicity. However, when the geometric multiplicity is strictly less than the
algebraic multiplicity, we have some entries in the representation just above the diagonal
(the “superdiagonal”). Furthermore, we have some idea how often this happens if we know
the geometric multiplicity and the index of the eigenvalue.

We now recognize just how simple a diagonalizable linear transformation really is. For
each eigenvalue, the generalized eigenspace is just the regular eigenspace, and it decomposes
into a direct sum of one-dimensional subspaces, each spanned by a different eigenvector
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chosen from a basis of eigenvectors for the eigenspace.

Some authors create matrix representations of nilpotent linear transformations where the
Jordan block has the ones just below the diagonal (the “subdiagonal”). No matter, it is really
the same, just different. We have also defined Jordan canonical form to place blocks for the
larger eigenvalues earlier, and for blocks with the same eigenvalue, we place the bigger ones
earlier. This is fairly standard, but there is no reason we couldn’t order the blocks differently.
It’d be the same, just different. The reason for choosing some ordering is to be assured that
there is just one canonical matrix representation for each linear transformation.

Example JCF10
Jordan canonical form, size 10
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Suppose that T : C10 7→ C10 is the linear transformation defined by T (x) = Ax where

A =



−6 9 −7 −5 5 12 −22 14 8 21
−3 5 −3 −1 2 7 −12 9 1 12
8 −9 8 6 0 −14 25 −13 −4 −26
−7 9 −7 −5 0 13 −23 13 2 24
0 −1 0 −1 −3 −2 3 −4 −2 −3
3 2 1 2 9 −1 1 5 5 −5
−1 3 −3 −2 4 3 −6 4 4 3
3 −4 3 2 1 −5 9 −5 1 −9
0 2 0 0 2 2 −4 4 2 4
−4 4 −5 −4 −1 6 −11 4 1 10


We’ll find a basis for C10 that will yield a matrix representation of T in Jordan canonical
form. First we find the eigenvalues, and their multiplicities, with the techniques of Chapter
E [1363].

λ = 2 αT (2) = 2 γT (2) = 2
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λ = 0 αT (0) = 3 γT (−1) = 2

λ = −1 αT (−1) = 5 γT (−1) = 2

For each eigenvalue, we can compute a generalized eigenspace. By Theorem GESD [2191]
we know that C10 will decompose into a direct sum of these eigenspaces, and we can restrict
T to each part of this decomposition. At this stage we know that the Jordan canonical
form will be block diagonal with blocks of size 2, 3 and 5, since the dimensions of the
generalized eigenspaces are equal to the algebraic multiplicities of the eigenvalues (Theorem
DGES [2210]). The geometric multiplicities tell us how many Jordan blocks occupy each of
the three larger blocks, but we will discuss this as we analyze each eigenvalue. We do not
yet know the index of each eigenvalue (though we can easily infer it for λ = 2) and even if
we did have this information, it only determines the size of the largest Jordan block (per
eigenvalue). We will press ahead, considering each eigenvalue one at a time.

The eigenvalue λ = 2 has “full” geometric multiplicity, and is not an impediment to
diagonalizing T . We will treat it in full generality anyway. First we compute the generalized
eigenspace. Since Theorem GEK [2147] says that GT (2) = K((T − 2IC10)10) we can compute
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this generalized eigenspace as a null space derived from the matrix A,

(A− 2I10)
10 RREF−−−→



1 0 0 0 0 0 0 0 −2 −1

0 1 0 0 0 0 0 0 −1 −1

0 0 1 0 0 0 0 0 1 2

0 0 0 1 0 0 0 0 −1 −2

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 −2 1

0 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
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GT (2) = K((A− 2I10)
10) =

〈




2
1
−1
1
−1
2
1
0
1
0


,



1
1
−2
2
0
−1
0
−1
0
1





〉

The restriction of T to GT (2) relative to the two basis vectors above has a matrix represen-
tation that is a 2× 2 diagonal matrix with the eigenvalue λ = 2 as the diagonal entries. So
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these two vectors will be the first two vectors in our basis for C10,

v1 =



2
1
−1
1
−1
2
1
0
1
0


v2 =



1
1
−2
2
0
−1
0
−1
0
1


Notice that it was not strictly necessary to compute the 10-th power of A − 2I10. With
αT (2) = γT (2) the null space of the matrix A − 2I10 contains all of the generalized eigen-
vectors of T for the eigenvalue λ = 2. But there was no harm in computing the 10-th
power either. This discussion is equivalent to the observation that the linear transformation
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T |GT (2) : GT (2) 7→ GT (2) is nilpotent of index 1. In other words, ιT (2) = 1.
The eigenvalue λ = 0 will not be quite as simple, since the geometric multiplicity is

strictly less than the geometric multiplicity. As before, we first compute the generalized
eigenspace. Since Theorem GEK [2147] says that GT (0) = K((T − 0IC10)10) we can compute
this generalized eigenspace as a null space derived from the matrix A,

(A− 0I10)
10 RREF−−−→



1 0 0 0 0 0 0 0 −1 −1

0 1 0 0 0 0 −1 0 −1 0

0 0 1 0 0 0 0 0 1 2

0 0 0 1 0 0 0 0 −2 −1

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 −1 0 −1 2

0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
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GT (0) = K((A− 0I10)
10) =

〈




0
1
0
0
0
1
1
0
0
0


,



1
1
−1
2
−1
1
0
−1
1
0


,



1
0
−2
1
0
−2
0
0
0
1





〉
= 〈F 〉

So dim (GT (0)) = 3 = αT (0), as expected. We will use these three basis vectors for the
generalized eigenspace to construct a matrix representation of T |GT (0), where F is being
defined implicitly as the basis of GT (0). We construct this representation as usual, applying
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Definition MR [1855],

ρF


T |GT (0)





0
1
0
0
0
1
1
0
0
0






= ρF





−1
0
2
−1
0
2
0
0
0
−1




= ρF


(−1)



1
0
−2
1
0
−2
0
0
0
1




=

 0
0
−1
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ρF


T |GT (0)





1
1
−1
2
−1
1
0
−1
1
0






= ρF





1
0
−2
1
0
−2
0
0
0
1




= ρF


(1)



1
0
−2
1
0
−2
0
0
0
1




=

0
0
1
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ρF


T |GT (0)





1
0
−2
1
0
−2
0
0
0
1






= ρF





0
0
0
0
0
0
0
0
0
0




=

0
0
0



So we have the matrix representation

M = M
T |GT (0)

F,F =

 0 0 0
0 0 0
−1 1 0


By Theorem RGEN [2176] we can obtain a nilpotent matrix from this matrix representation
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by subtracting the eigenvalue from the diagonal elements, and then we can apply Theorem
CFNLT [2105] to M − (0)I3. First check that (M − (0)I3)

2 = O, so we know that the index
of M − (0)I3 as a nilpotent matrix, and that therefore λ = 0 is an eigenvalue of T with index
2, ιT (0) = 2. To determine a basis of C3 that converts M − (0)I3 to canonical form, we need
the null spaces of the powers of M − (0)I3. For convenience, set N = M − (0)I3.

N (N1
)

=

〈
1

1
0

 ,
0

0
1


〉

N (N2
)

=

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

= C3

Then we choose a vector from N (N2) that is not an element of N (N1). Any vector with
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unequal first two entries will fit the bill, say

z2,1 =

1
0
0


where we are employing the notation in Theorem CFNLT [2105]. The next step is to multiply
this vector by N to get part of the basis for N (N1),

z1,1 = Nz2,1 =

 0 0 0
0 0 0
−1 1 0

1
0
0

 =

 0
0
−1


We need a vector to pair with z1,1 that will make a basis for the two-dimensional subspace
N (N1). Examining the basis for N (N1) we see that a vector with its first two entries equal
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will do the job.

z1,2 =

1
1
0


Reordering, we find the basis,

C = {z1,1, z2,1, z1,2} =


 0

0
−1

 ,
1

0
0

 ,
1

1
0


From this basis, we can get a matrix representation of N (when viewed as a linear transfor-
mation) relative to the basis C for C3,0 1 0

0 0 0
0 0 0

 =

[
J2 (0) O
O J1 (0)

]
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Now we add back the eigenvalue λ = 0 to the representation of N to obtain a representation
for M . Of course, with an eigenvalue of zero, the change is not apparent, so we won’t display
the same matrix again. This is the second block of the Jordan canonical form for T . However,
the three vectors in C will not suffice as basis vectors for the domain of T — they have the
wrong size! The vectors in C are vectors in the domain of a linear transformation defined
by the matrix M . But M was a matrix representation of T |GT (0) − 0IGT (0) relative to the
basis F for GT (0). We need to “uncoordinatize” each of the basis vectors in C to produce
a linear combination of vectors in F that will be an element of the generalized eigenspace
GT (0). These will be the next three vectors of our final answer, a basis for C10 that has a
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pleasing matrix representation.

v3 = ρ−1
F

 0
0
−1

 = 0



0
1
0
0
0
1
1
0
0
0


+ 0



1
1
−1
2
−1
1
0
−1
1
0


+ (−1)



1
0
−2
1
0
−2
0
0
0
1


=



−1
0
2
−1
0
2
0
0
0
−1
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v4 = ρ−1
F

1
0
0

 = 1



0
1
0
0
0
1
1
0
0
0


+ 0



1
1
−1
2
−1
1
0
−1
1
0


+ 0



1
0
−2
1
0
−2
0
0
0
1


=



0
1
0
0
0
1
1
0
0
0
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v5 = ρ−1
F

1
1
0

 = 1



0
1
0
0
0
1
1
0
0
0


+ 1



1
1
−1
2
−1
1
0
−1
1
0


+ 0



1
0
−2
1
0
−2
0
0
0
1


=



1
2
−1
2
−1
2
1
−1
1
0



Five down, five to go. Basis vectors, that is. λ = −1 is the smallest eigenvalue, but it will
require the most computation. First we compute the generalized eigenspace. Since Theorem
GEK [2147] says that GT (−1) = K((T − (−1)IC10)10) we can compute this generalized
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eigenspace as a null space derived from the matrix A,

(A− (−1)I10)
10 RREF−−−→



1 0 1 0 1 0 −1 1 0 1

0 1 0 0 1 0 0 1 0 0

0 0 0 1 1 0 1 0 0 −2

0 0 0 0 0 1 −2 1 0 2

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
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GT (−1) = K((A− (−1)I10)
10) =

〈




−1
0
1
0
0
0
0
0
0
0


,



−1
−1
0
−1
1
0
0
0
0
0


,



1
0
0
−1
0
2
1
0
0
0


,



−1
−1
0
0
0
−1
0
1
0
0


,



−1
0
0
2
0
−2
0
0
0
1





〉
= 〈F 〉

So dim (GT (−1)) = 5 = αT (−1), as expected. We will use these five basis vectors for
the generalized eigenspace to construct a matrix representation of T |GT (−1), where F is being
recycled and defined now implicitly as the basis of GT (−1). We construct this representation
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as usual, applying Definition MR [1855],

ρF


T |GT (−1)





−1
0
1
0
0
0
0
0
0
0






= ρF





−1
0
0
0
0
−2
−2
0
0
−1
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= ρF


0



−1
0
1
0
0
0
0
0
0
0


+ 0



−1
−1
0
−1
1
0
0
0
0
0


+ (−2)



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ (−1)



−1
0
0
2
0
−2
0
0
0
1




=


0
0
−2
0
−1
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ρF


T |GT (−1)





−1
−1
0
−1
1
0
0
0
0
0






= ρF





7
1
−5
3
−1
2
4
0
0
3
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= ρF


(−5)



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ 4



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ 3



−1
0
0
2
0
−2
0
0
0
1




=


−5
−1
4
0
3
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ρF


T |GT (−1)





1
0
0
−1
0
2
1
0
0
0






= ρF





1
0
−1
1
0
0
1
0
0
1
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= ρF


(−1)



−1
0
1
0
0
0
0
0
0
0


+ 0



−1
−1
0
−1
1
0
0
0
0
0


+ 1



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1




=


−1
0
1
0
1
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ρF


T |GT (−1)





−1
−1
0
0
0
−1
0
1
0
0






= ρF





−1
0
2
−2
−1
1
−1
1
0
−2
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= ρF


2



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ (−1)



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ (−2)



−1
0
0
2
0
−2
0
0
0
1




=


2
−1
−1
1
−2
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ρF


T |GT (−1)





−1
0
0
2
0
−2
0
0
0
1






= ρF





−7
−1
6
−5
−1
−2
−6
2
0
−6
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= ρF


6



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ (−6)



1
0
0
−1
0
2
1
0
0
0


+ 2



−1
−1
0
0
0
−1
0
1
0
0


+ (−6)



−1
0
0
2
0
−2
0
0
0
1




=


6
−1
−6
2
−6



So we have the matrix representation of the restriction of T (again recycling and redefining
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the matrix M)

M = M
T |GT (−1)

F,F =


0 −5 −1 2 6
0 −1 0 −1 −1
−2 4 1 −1 −6
0 0 0 1 2
−1 3 1 −2 −6



By Theorem RGEN [2176] we can obtain a nilpotent matrix from this matrix representation
by subtracting the eigenvalue from the diagonal elements, and then we can apply Theorem
CFNLT [2105] to M − (−1)I5. First check that (M − (−1)I5)

3 = O, so we know that the
index of M − (−1)I5 as a nilpotent matrix, and that therefore λ = −1 is an eigenvalue of T
with index 3, ιT (−1) = 3. To determine a basis of C5 that converts M− (−1)I5 to canonical
form, we need the null spaces of the powers of M − (−1)I5. Again, for convenience, set
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N = M − (−1)I5.

N (N1
)

=

〈


1
0
1
0
0

 ,

−3
1
0
−2
2



〉

N (N2
)

=

〈


3
1
0
0
0

 ,


1
0
1
0
0

 ,


0
0
0
1
0

 ,

−3
0
0
0
1



〉
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N (N3
)

=

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

= C5

Then we choose a vector from N (N3) that is not an element of N (N2). The sum of the four
basis vectors for N (N2) sum to a vector with all five entries equal to 1. We will mess with
the first entry to create a vector not in N (N2),

z3,1 =


0
1
1
1
1


where we are employing the notation in Theorem CFNLT [2105]. The next step is to multiply
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this vector by N to get a portion of the basis for N (N2),

z2,1 = Nz3,1 =


1 −5 −1 2 6
0 0 0 −1 −1
−2 4 2 −1 −6
0 0 0 2 2
−1 3 1 −2 −5




0
1
1
1
1

 =


2
−2
−1
4
−3


We have a basis for the two-dimensional subspace N (N1) and we can add to that the vector
z2,1 and we have three of four basis vectors for N (N2). These three vectors span the subspace
we call Q2. We need a fourth vector outside of Q2 to complete a basis of the four-dimensional
subspace N (N2). Check that the vector

z2,2 =


3
1
3
1
1
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is an element of N (N2) that lies outside of the subspace Q2. This vector was constructed by
getting a nice basis for Q2 and forming a linear combination of this basis that specifies three
of the five entries of the result. Of the remaining two entries, one was changed to move the
vector outside of Q2 and this was followed by a change to the remaining entry to place the
vector into N (N2). The vector z2,2 is the lone basis vector for the subspace we call R2.

The remaining two basis vectors are easy to come by. They are the result of applying N
to each of the two most recently determined basis vectors,

z1,1 = Nz2,1 =


3
−1
0
2
−2

 z1,2 = Nz2,2 =


3
−2
−3
4
−4
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Now we reorder these basis vectors, to arrive at the basis

C = {z1,1, z2,1, z3,1, z1,2, z2,2} =




3
−1
0
2
−2

 ,


2
−2
−1
4
−3

 ,


0
1
1
1
1

 ,


3
−2
−3
4
−4

 ,


3
1
3
1
1




A matrix representation of N relative to C is
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 =

[
J3 (0) O
O J2 (0)

]

To obtain a matrix representation of M , we add back in the matrix (−1)I5, placing the
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eigenvalue back along the diagonal, and slightly modifying the Jordan blocks,


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 0 0
0 0 0 −1 1
0 0 0 0 −1

 =

[
J3 (−1) O
O J2 (−1)

]

The basis C yields a pleasant matrix representation for the restriction of the linear transfor-
mation T − (−1)I to the generalized eigenspace GT (−1). However, we must remember that
these vectors in C5 are representations of vectors in C10 relative to the basis F . Each needs
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to be “un-coordinatized” before joining our final basis. Here we go,

v6 = ρ−1
F




3
−1
0
2
−2


 = 3



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ 0



1
0
0
−1
0
2
1
0
0
0


+ 2



−1
−1
0
0
0
−1
0
1
0
0


+ (−2)



−1
0
0
2
0
−2
0
0
0
1


=



−2
−1
3
−3
−1
2
0
2
0
−2
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v7 = ρ−1
F




2
−2
−1
4
−3


 = 2



−1
0
1
0
0
0
0
0
0
0


+ (−2)



−1
−1
0
−1
1
0
0
0
0
0


+ (−1)



1
0
0
−1
0
2
1
0
0
0


+ 4



−1
−1
0
0
0
−1
0
1
0
0


+ (−3)



−1
0
0
2
0
−2
0
0
0
1


=



−2
−2
2
−3
−2
0
−1
4
0
−3
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v8 = ρ−1
F




0
1
1
1
1


 = 0



−1
0
1
0
0
0
0
0
0
0


+ 1



−1
−1
0
−1
1
0
0
0
0
0


+ 1



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1


=



−2
−2
0
0
1
−1
1
1
0
1
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v9 = ρ−1
F




3
−2
−3
4
−4


 = 3



−1
0
1
0
0
0
0
0
0
0


+ (−2)



−1
−1
0
−1
1
0
0
0
0
0


+ (−3)



1
0
0
−1
0
2
1
0
0
0


+ 4



−1
−1
0
0
0
−1
0
1
0
0


+ (−4)



−1
0
0
2
0
−2
0
0
0
1


=



−4
−2
3
−3
−2
−2
−3
4
0
−4
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v10 = ρ−1
F




3
1
3
1
1


 = 3



−1
0
1
0
0
0
0
0
0
0


+ 1



−1
−1
0
−1
1
0
0
0
0
0


+ 3



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1


=



−3
−2
3
−2
1
3
3
1
0
1
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To summarize, we list the entire basis B = {v1, v2, v3, . . . , v10},

v1 =



2
1
−1
1
−1
2
1
0
1
0


v2 =



1
1
−2
2
0
−1
0
−1
0
1


v3 =



−1
0
2
−1
0
2
0
0
0
−1


v4 =



0
1
0
0
0
1
1
0
0
0


v5 =



1
2
−1
2
−1
2
1
−1
1
0
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v6 =



−2
−1
3
−3
−1
2
0
2
0
−2


v7 =



−2
−2
2
−3
−2
0
−1
4
0
−3


v8 =



−2
−2
0
0
1
−1
1
1
0
1


v9 =



−4
−2
3
−3
−2
−2
−3
4
0
−4


v10 =



−3
−2
3
−2
1
3
3
1
0
1
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The resulting matrix representation is

MT
B,B =



2 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 −1


If you are not inclined to check all of these computations, here are a few that should convince
you of the amazing properties of the basis B. Compute the matrix-vector products Avi,
1 ≤ i ≤ 10. In each case the result will be a vector of the form λvi + δvi−1, where λ is one
of the eigenvalues (you should be able to predict ahead of time which one) and δ ∈ {0, 1}.
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Alternatively, if we can write inputs to the linear transformation T as linear combinations
of the vectors in B (which we can do uniquely since B is a basis, Theorem VRRB [1090]),
then the “action” of T is reduced to a matrix-vector product with the exceedingly simple
matrix that is the Jordan canonical form. Wow! �

Subsection CHT
Cayley-Hamilton Theorem

Jordan was a French mathematician who was active in the late 1800’s. Cayley and Hamilton
were 19th-century contemporaries of Jordan from Britain. The theorem that bears their
names is perhaps one of the most celebrated in basic linear algebra. While our result applies
only to vector spaces and linear transformations with scalars from the set of complex num-
bers, C, the result is equally true if we restrict our scalars to the real numbers, R. It says
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that every matrix satisfies its own characteristic polynomial.

Theorem CHT
Cayley-Hamilton Theorem
Suppose A is a square matrix with characteristic polynomial pA (x). Then pA (A) = O. �

Proof Suppose B and C are similar matrices via the matrix S, B = S−1CS, and q(x) is
any polynomial. Then q (B) is similar to q (C) via S, q (B) = S−1q (C)S. (See Example
HPDM [1516] for hints on how to convince yourself of this.)

By Theorem JCFLT [2213] and Theorem SCB [1986] we know A is similar to a matrix,
J , in Jordan canonical form. Suppose λ1, λ2, λ3, . . . , λm are the distinct eigenvalues of A
(and are therefore the eigenvalues and diagonal entries of J). Then by Theorem EMRCP
[1390] and Definition AME [1399], we can factor the characteristic polynomial as

pA (x) = (x− λ1)
αA(λ1) (x− λ2)

αA(λ2) (x− λ3)
αA(λ3) · · · (x− λm)αA(λm)

On substituting the matrix J we have

pA (J) = (J − λ1I)αA(λ1) (J − λ2I)αA(λ2) (J − λ3I)αA(λ3) · · · (J − λmI)αA(λm)
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The matrix J − λkI will be block diagonal, and the block arising from the generalized
eigenspace for λk will have zeros along the diagonal. Suitably adjusted for matrices (rather
than linear transformations), Theorem RGEN [2176] tells us this matrix is nilpotent. Since
the size of this nilpotent matrix is equal to the algebraic multiplicity of λk, the power
(J − λkI)αA(λk) will be a zero matrix (Theorem KPNLT [2097]) in the location of this block.

Repeating this argument for each of the m eigenvalues will place a zero block in some
term of the product at every location on the diagonal. The entire product will then be zero
blocks on the diagonal, and zero off the diagonal. In other words, it will be the zero matrix.
Since A and J are similar, pA (A) = pA (J) = O. �
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Annotated Acronyms R
Representations

Definition VR [1819]

Matrix representations build on vector representations, so this is the definition that gets
us started. A representation depends on the choice of a single basis for the vector space.
Theorem VRRB [1090] is what tells us this idea might be useful.

Theorem VRILT [1835]

As an invertible linear transformation, vector representation allows us to translate, back and
forth, between abstract vector spaces (V ) and concrete vector spaces (Cn). This is key to
all our notions of representations in this chapter.

Theorem CFDVS [1836]
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Every vector space with finite dimension “looks like” a vector space of column vectors. Vector
representation is the isomorphism that establishes that these vector spaces are isomorphic.

Definition MR [1855]

Building on the definition of a vector representation, we define a representation of a linear
transformation, determined by a choice of two bases, one for the domain and one for the
codomain. Notice that vectors are represented by columnar lists of scalars, while linear trans-
formations are represented by rectangular tables of scalars. Building a matrix representation
is as important a skill as row-reducing a matrix.

Theorem FTMR [1864]

Definition MR [1855] is not really very interesting until we have this theorem. The second
form tells us that we can compute outputs of linear transformations via matrix multiplication,
along with some bookkeeping for vector representations. Searching forward through the text
on “FTMR” is an interesting exercise. You will find reference to this result buried inside
many key proofs at critical points, and it also appears in numerous examples and solutions
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to exercises.

Theorem MRCLT [1879]

Turns out that matrix multiplication is really a very natural operation, it is just the chaining
together (composition) of functions (linear transformations). Beautiful. Even if you don’t
try to work the problem, study Solution MR.T80 [1951] for more insight.

Theorem KNSI [1892]

Kernels “are” null spaces. For this reason you’ll see these terms used interchangeably.

Theorem RCSI [1900]

Ranges “are” column spaces. For this reason you’ll see these terms used interchangeably.

Theorem IMR [1907]

Invertible linear transformations are represented by invertible (nonsingular) matrices.
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Theorem NME9 [1917]

The NMEx series has always been important, but we’ve held off saying so until now. This
is the end of the line for this one, so it is a good time to contemplate all that it means.

Theorem SCB [1986]

Diagonalization back in Section SD [1484] was really a change of basis to achieve a diagonal
matrix repesentation. Maybe we should be highlighting the more general Theorem MRCB
[1979] here, but its overly technical description just isn’t as appealing. However, it will be
important in some of the matrix decompostions in Chapter MD [2731].

Theorem EER [1996]

This theorem, with the companion definition, Definition EELT [1956], tells us that eigen-
values, and eigenvectors, are fundamentally a characteristic of linear transformations (not
matrices). If you study matrix decompositions in Chapter MD [2731] you will come to appre-
ciate that almost all of a matrix’s secrets can be unlocked with knowledge of the eigenvalues
and eigenvectors.
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Theorem OD [2062]

Can you imagine anything nicer than an orthonormal diagonalization? A basis of pairwise
orthogonal, unit norm, eigenvectors that provide a diagonal representation for a matrix?
Here we learn just when this can happen — precisely when a matrix is normal, which is a
disarmingly simple property to define.

Theorem CFNLT [2105]

Nilpotent linear transformations are the fundamental obstacle to a matrix (or linear trans-
formation) being diagonalizable. This specialized representation theorem is the fundamental
expression of just how close we can come to surmounting the obstacle, i.e. how close we can
come to a diagonal representation.

Theorem DGES [2210]

This theorem is a long time in coming, but perhaps it best explains our interest in generalized
eigenspaces. When the dimension of a “regular” eigenspace (the geometic multiplicity) does
not meet the algebraic multiplicity of the corresponding eigenvalue, then a matrix is not
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diagonalizable (Theorem DMFE [1506]). However, if we generalize the idea of an eigenspace
(Definition GES [2143]), then we arrive at invariant subspaces that together give a complete
decomposition of the domain as a direct sum. And these subspaces have dimensions equal
to the corresponding algebraic multiplicities.

Theorem JCFLT [2213]

If you can’t diagonalize, just how close can you come? This is an answer (there are others,
like rational canonical form). “Canonicalism” is in the eye of the beholder. But this is a
good place to conclude our study of a widely accepted canonical form that is possible for
every matrix or linear transformation.
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Section MMA Mathematica 2280

Section MMA

Mathematica

Computation Note ME.MMA
Matrix Entry

Matrices are input as lists of lists, since a list is a basic data structure in Mathematica. A
matrix is a list of rows, with each row entered as a list. Mathematica uses braces (({ , }))
to delimit lists. So the input

a = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}
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would create a 3× 4 matrix named a that is equal to1 2 3 4
5 6 7 8
9 10 11 12


To display a matrix named a “nicely” in Mathematica, type MatrixForm[a] , and the
output will be displayed with rows and columns. If you just type a , then you will get a list
of lists, like how you input the matrix in the first place.

Computation Note RR.MMA
Row Reduce

If a is the name of a matrix in Mathematica, then the command RowReduce[a] will
output the reduced row-echelon form of the matrix.
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Computation Note LS.MMA
Linear Solve

Mathematica will solve a linear system of equations using the LinearSolve[ ] command.
The inputs are a matrix with the coefficients of the variables (but not the column of con-
stants), and a list containing the constant terms of each equation. This will look a bit odd,
since the lists in the matrix are rows, but the column of constants is also input as a list and
so looks like a row rather than a column. The result will be a single solution (even if there
are infinitely many), reported as a list, or the statement that there is no solution. When
there are infinitely many, the single solution reported is exactly that solution used in the
proof of Theorem RCLS [172], where the free variables are all set to zero, and the dependent
variables come along with values from the final column of the row-reduced matrix.

As an example, Archetype A [2378] is

x1 − x2 + 2x3 = 1
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2x1 + x2 + x3 = 8

x1 + x2 = 5

To ask Mathematica for a solution, enter

LinearSolve[ {{1, −1, 2}, {2, 1, 1}, {1, 1, 0}}, {1, 8, 5} ]

and you will get back the single solution

{3, 2, 0}

We will see later how to coax Mathematica into giving us infinitely many solutions for this
system (Computation VFSS.MMA [2278]).
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Computation Note VLC.MMA
Vector Linear Combinations

Contributed by Robert Beezer
Vectors in Mathematica are represented as lists, written and displayed horizontally. For
example, the vector

v =


1
2
3
4


would be entered and named via the command

v = {1, 2, 3, 4}
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Vector addition and scalar multiplication are then very natural. If u and v are two lists
of equal length, then

2u + (−3)v

will compute the correct vector and return it as a list. If u and v have different sizes,
then Mathematica will complain about “objects of unequal length.”

Computation Note NS.MMA
Null Space

Given a matrix A, Mathematica will compute a set of column vectors whose span is the null
space of the matrix with the NullSpace[ ] command. Perhaps not coincidentally, this set
is exactly {zj | 1 ≤ j ≤ n− r}. However, Mathematica prefers to output the vectors in the
opposite order than one we have chosen. Here’s a small example.
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Begin with the 3× 4 matrix A, and its row-reduced version B,

A =

 1 2 −1 0
3 4 1 −2
−1 1 −5 3

 RREF−−−→ B =

 1 0 3 −2

0 1 −2 1
0 0 0 0


We could extract entries from B to build the vectors z1 and z2 according to Theorem SSNS
[409] and describe N (A) as a span of the set {z1, z2}. Instead, if a has been set to A, then
executing the command NullSpace[a] yields the list of lists (column vectors),

{{2,−1, 0, 1}, {−3, 2, 1, 0}}
Notice how our z1 is second in the list. To “correct” this we can use a list-processing
command from Mathematica, Reverse[ ] , as follows,

Reverse[NullSpace[a]]

and receive the output in our preferred order. Give it a try yourself.
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Computation Note VFSS.MMA
Vector Form of Solution Set

Suppose that A is an m× n matrix and b ∈ Cm is a column vector. We might wish to find
all of the solutions to the linear system LS(A, b). Mathematica’s LinearSolve[A, b] will
return at most one solution (Computation LS.MMA [2273]). However, when the system is
consistent, then this one solution reported is exactly the vector c, described in the statement
of Theorem VFSLS [350].

The vectors uj, 1 ≤ j ≤ n − r of Theorem VFSLS [350] are exactly the output of
Mathematica’s NullSpace[ ] command, though Mathematica lists them in the opposite
order from the order we have chosen. These are the same vectors listed as zj, 1 ≤ j ≤ n− r
in Theorem SSNS [409]. With c produced from the LinearSolve[ ] command, and the uj
coming from the NullSpace[ ] command we can use Mathematica’s symbolic manipulation
commands to create an expression that describes all of the solutions.
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Begin with the system LS(A, b). Row-reduce A (Computation RR.MMA [2272]) and
identify the free variables by determining the non-pivot columns. Suppose, for the sake of
argument, that we have the three free variables x3, x7 and x8. Then the following command
will build an expression for an arbitrary solution:

LinearSolve[A, b]+{x8, x7, x3}.NullSpace[A]

Be sure to include the “dot” right before the NullSpace[ ] command — it has the effect of
creating a linear combination of the vectors in the null space, using scalars that are symbols
reminiscent of the variables.

A concrete example should help here. Suppose we want a solution set for the linear
system with coefficient matrix A and vector of constants b,

A =

1 2 3 −5 1 −1 2
2 4 0 8 −4 1 −8
3 6 4 0 −2 5 7

 b =

 8
1
−5
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If we were to apply Theorem VFSLS [350], we would extract the components of c and uj from
the row-reduced version of the augmented matrix of the system (obtained with Mathematica,
Computation RR.MMA [2272]),

 1 2 0 4 −2 0 −5 2

0 0 1 −3 1 0 3 1

0 0 0 0 0 1 2 −3


Instead, we will use this augmented matrix in reduced row-echelon form only to identify the
free variables. In this example, we locate the non-pivot columns and see that x2, x4, x5 and
x7 are free. If we have set a to the coefficient matrix and b to the vector of constants, then
we execute the Mathematica command,

LinearSolve[a, b]+{x7, x5, x4, x2}.NullSpace[a]
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As output we obtain the column vector (list),



2− 2 x2 − 4 x4 + 2 x5 + 5 x7

x2

1 + 3 x4 − x5 − 3 x7

x4

x5

−3− 2 x7

x7
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Computation Note GSP.MMA
Gram-Schmidt Procedure

Mathematica has a built-in routine that will do the Gram-Schmidt procedure (Theorem GSP
[593]). The input is a set of vectors, which must be linearly independent. This is written
as a list, containing lists that are the vectors. Let a be such a list of lists, containing the
vectors vi, 1 ≤ i ≤ p from the statement of the theorem. You will need to first load the right
Mathematica package — execute <<LinearAlgebra‘Orthogonalization‘ to make this
happen. Then execute GramSchmidt[a] . The output will be another list of lists containing
the vectors ui, 1 ≤ i ≤ p from the statement of the theorem. Mathematica will complain if
you do not provide a linearly independent set as input (try it!).
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An example. Suppose our linearly independent set (check this!) is

S =




−1
4
1
0
3

 ,


0
3
0
3
−3

 ,

−1
2
0
−1
−2

 ,

−1
−2
−3
1
4

 ,


1
6
−1
4
6




The output of the GramSchmidt[ ] command will be the set,

T =




− 1

3
√

3
4

3
√

3
1

3
√

3

0
1√
3

 ,


1
12
√

15
23

12
√

15

− 1
12
√

15
3
√

3
5

4

−
√

5
3

2

 ,

− 37

4
√

685
29

4
√

685

− 3
4
√

685

− 79
4
√

685

−5
√

5
137

2

 ,

− 337

2
√

120423

− 37
6
√

120423

− 1763
6
√

120423
337

6
√

120423
50√

120423

 ,


23√
879
26

3
√

879

− 44
3
√

879

− 23
3
√

879
1√
879
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Ugly, but true. At this stage, you might just as well be encouraged to think of the Gram-
Schmidt procedure as a computational black box, linearly independent set in, orthogonal
span-preserving set out.

To check that the output set is orthogonal, we can easily check the orthogonality of indi-
vidual pairs of vectors. Suppose the output was set equal to b (say via b=GramSchmidt[a]

). We can extract the individual vectors of c as “parts” with syntax like c[[3]] , which
would return the third vector in the set. When our vectors have only real number entries,
we can accomplish an innerproduct with a “dot.” So, for example, you should discover that
c[[3]].c[[5]] will return zero. Try it yourself with another pair of vectors.
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Computation Note TM.MMA
Transpose of a Matrix

Contributed by Robert Beezer
Suppose a is the name of a matrix stored in Mathematica. Then Transpose[a] will
create the transpose of a .

Computation Note MM.MMA
Matrix Multiplication

If A and B are matrices defined in Mathematica, then A.B will return the product of the
two matrices (notice the dot between the matrices). If A is a matrix and v is a vector, then
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A.v will return the vector that is the matrix-vector product of A and v. In every case the
sizes of the matrices and vectors need to be correct.

Some examples:

{{1, 2}, {3, 4}}.{{5, 6, 7}, {8, 9, 10}} = {{21, 24, 27}, {47, 54, 61}}
{{1, 2}, {3, 4}}.{{5}, {6}} = {{17}, {39}}

{{1, 2}, {3, 4}}.{5, 6} = {17, 39}

Understanding the difference between the last two examples will go a long way to explaining
how some Mathematica constructs work.
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Computation Note MI.MMA
Matrix Inverse

If A is a matrix defined in Mathematica, then Inverse[A] will return the inverse of A,
should it exist. In the case where A does not have an inverse Mathematica will tell you the
matrix is singular (see Theorem NI [781]).
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Section TI86

Texas Instruments 86

Computation Note ME.TI86
Matrix Entry

On the TI-86, press the MATRX key (Yellow-7) . Press the second menu key over, F2

, to bring up the EDIT screen. Give your matrix a name, one letter or many, then press
ENTER . You can then change the size of the matrix (rows, then columns) and begin editing
individual entries (which are initially zero). ENTER will move you from entry to entry, or
the down arrow key will move you to the next row. A menu gives you extra options for
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editing.

Matrices may also be entered on the home screen as follows. Use brackets ([ , ]) to enclose
rows with elements separated by commas. Group rows, in order, into a final set of brackets
(with no commas between rows). This can then be stored in a name with the STO key. So,
for example,

[[1, 2, 3, 4] [5, 6, 7, 8] [9, 10, 11, 12]]→ A

will create a matrix named A that is equal to

1 2 3 4
5 6 7 8
9 10 11 12
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Computation Note RR.TI86
Row Reduce

If A is the name of a matrix stored in the TI-86, then the command rref A will return
the reduced row-echelon form of the matrix. This command can also be found by pressing
the MATRX key, then F4 for OPS , and finally, F5 for rref .

Note that this command will not work for a matrix with more rows than columns. (Ed.
Not sure just why this is!) A work-around is to pad the matrix with extra columns of zeros
until the matrix is square.
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Computation Note VLC.TI86
Vector Linear Combinations

Contributed by Robert Beezer
Vector operations on the TI-86 can be accessed via the VECTR key, which is Yellow-8 .
The EDIT tool appears when the F2 key is pressed. After providing a name and giving a
“dimension” (the size) then you can enter the individual entries, one at a time. Vectors can
also be entered on the home screen using brackets ( [ , ] ). To create the vector

v =


1
2
3
4
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use brackets and the store key ( STO ),

[1, 2, 3, 4]→ v

Vector addition and scalar multiplication are then very natural. If u and v are two vectors
of equal size, then

2 ∗ u + (−3) ∗ v
will compute the correct vector and display the result as a vector.

Computation Note TM.TI86
Transpose of a Matrix

Contributed by Eric Fickenscher
Suppose A is the name of a matrix stored in the TI-86. Use the command AT to transpose
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A . This command can be found by pressing the MATRX key, then F3 for MATH , then F2

for T.

Section TI83

Texas Instruments 83

Computation Note ME.TI83
Matrix Entry

Contributed by Douglas Phelps
On the TI-83, press the MATRX key. Press the right arrow key twice so that EDIT is
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highlighted. Move the cursor down so that it is over the desired letter of the matrix and
press ENTER . For example, let’s call our matrix B , so press the down arrow once and press
ENTER . To enter a 2× 3 matrix, press 2 ENTER 3 ENTER . To create the matrix[

1 2 3
4 5 6

]
press 1 ENTER 2 ENTER 3 ENTER 4 ENTER 5 ENTER 6 ENTER .

Computation Note RR.TI83
Row Reduce

Contributed by Douglas Phelps
Suppose B is the name of a matrix stored in the TI-83. Press the MATRX key. Press the
right arrow key once so that MATH is highlighted. Press the down arrow eleven times so that
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rref ( is highlighted, then press ENTER . to choose the matrix B , press MATRX , then the
down arrow once followed by ENTER . Supply a right parenthesis ( ) ) and press ENTER .

Note that this command will not work for a matrix with more rows than columns. (Ed.
Not sure just why this is!) A work-around is to pad the matrix with extra columns of zeros
until the matrix is square.

Computation Note VLC.TI83
Vector Linear Combinations

Contributed by Douglas Phelps
Entering a vector on the TI-83 is the same process as entering a matrix. You press 4 ENTER

3 ENTER for a 4× 3 matrix. Likewise, you press 4 ENTER 1 ENTER for a vector of size 4.
To multiply a vector by 8, press the number 8, then press the MATRX key, then scroll down
to the letter you named your vector (A, B, C, etc) and press ENTER .
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To add vectors A and B for example, press the MATRX key, then ENTER . Then press
the + key. Then press the MATRX key, then the down arrow once, then ENTER . [A] +

[B] will appear on the screen. Press ENTER .
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Section SAGE

SAGE: Open Source Mathematics Software

Computation Note R.SAGE
Rings

Contributed by Steve Canfield
SAGE uses different rings to denote the type of an object. The rings are as follows:

ZZ: The set of integers

QQ: The set of rational numbers
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RR: The real numbers

CC: The complex numbers

Most objects in SAGE will tell you which they are using with the base ring() command.
Keep this in mind, especially when row reducing or factoring. Here’s a quick example of
where you might go wrong.

m = matrix([[2, 3], [4, 7]])

m.base ring()

IntegerRing

m.echelon form()[
2 0
0 1

]
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As you can clearly see, m isn’t even in reduced row-echelon form. This is because m is
defined over the ZZ. You have to create matrices with the correct ring or you will get this
type of odd result. This problem comes up in more places than just calculating the reduced
row-echelon form, so unless you are specifically working with integers take note.

Computation Note ME.SAGE
Matrix Entry

Contributed by Steve Canfield
A matrix in SAGE can be made a few ways. The first is simply to define the matrix as an
array of rows. SAGE uses brackets ([ , ]) to delimit arrays. So the input

a = matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
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would create a 3× 4 matrix named a that is equal to1 2 3 4
5 6 7 8
9 10 11 12


SAGE will guess what type of matrix you are working with based on the inputs. If all the
entries are integers, you will get back an integer matrix. If your matrix contains an entry
in the R or Cspace, the matrix will be of those types. This can cause problems as integers
cannot become fractions, which is an issue when calculating reduced row-echelon form. We
therefore recommend using the following construction to make your matrices,

a = matrix(QQ, [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

This gives you a matrix over the rational numbers which will be sufficient for most of the
course. If your matrix has entries that are complex numbers you would replace the QQ with
CC .
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To display a matrix named a , type a , and the output will be displayed with rows and
columns. If you type latex(a) you will get LATEX code to display the matrix. Very
handy.

Computation Note RR.SAGE
Row Reduce

Contributed by Steve Canfield and Robert Beezer
Row-reducing a matrix is a simple operation in SAGE. However, because of Sage’s flexibility
with different types of numbers (integers, rationals, reals, complexes), we need to be a bit
more careful.

If a is a matrix entered in in SAGE (see Computation ME.SAGE [2299]) then a.echelon form()

will return a new matrix that is the reduced row-echelon form of a (Definition RREF [91]).
If your matrix has only integer entries (as is the case with many examples and exercises
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in this book), then row operations might introduce rational numbers (“fractions”). So when
you enter your matrix, you need to tell SAGE that rational numbers are allowable in its
calculations. This is the advice in Computation R.SAGE [2297] to use the ring QQ . As an
illustration create

a = matrix(QQ, [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

and issue the command a.echelon form() . The result is1 0 −1 −2
0 1 2 3
0 0 0 0


However, if we adjust the entry by neglecting to specify QQ , then SAGE assumes that we
only want to work with integers, since every entry of the matrix is an integer. So as an
experiment, enter

b = matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
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and issue the command b.echelon form() . The result is1 2 3 4
0 4 8 12
0 0 0 0


You can now clearly see Sage’s reluctance to multiply row 2 by 1

4
.

The ring QQ will of course suffice if your matrix has rational numbers for entries. Decimal
entries are another place to be careful. If an entry of your matrix is the real number 2.17,
you are free to enter it as the rational number 217

100
and keep the ring QQ in the specification

of your matrix. If you want to consider your entries as real numbers, then you might as
well just specify your ring as the complex numbers CC . This advice also applies if you have
complex numbers as entries.

If you allow SAGE to work with real or complex numbers, then the problem of round-off
error becomes relevant. Computer arithmetic with real numbers is, of necessity, subject to
minor inaccuracies and errors. This becomes problematic when row-reducing a matrix. If a
zero entry is computed instead as an extremely small number, such as 1.287 × 10−18, then
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an incorrect sequence of row operations will follow (with further incorrect results). So if you
use CC be on the lookout for these kinds of potential pitfalls.

So, in summary, remember to always specify the ring you will be using for your matrices,
and most matrices can be handled with a choice of QQ or CC .

When you need to do significant scientific computing with SAGE, there are extra facilities
that will help you work with these subtleties.

Finally, you can also use a command of the form a.echelonize() to replace a with
its reduced row-echelon form.

Computation Note LS.SAGE
Linear Solve

SAGE can solve a variety of systems of equations with the solve( ) command, even when
the equations are not linear (see Exercise SSLE.M70 [58]). But we can afford to specialize
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here to just linear systems. First, you must specify your variables in advance, so for example,
var(’x1,x2,x3’) might precede a system with three equations. Equations are then written
just as you might expect, except that equality is written as == , since computer programs
have traditionally reserved = to assign values to variables. And remember to use a * to
indicate that a coefficient multiplies a variable.

The example below illustrates the use of the command and the possibilities for results.
Each system would be preceded by establishing the variables with the command var(’x,y’)

. In the case of an infinite solution set, free variables are denoted as rx where x is an
integer that increases throughout a session. The style of this description of a solution set
is reminiscent of the style we used in Chapter SLE [2] before we were accustomed to using
linear combinations of vectors (Theorem VFSLS [350]).

System Solution Set Result
solve([2*x+y==5, 3*x+2*y==15], x, y) Unique [[x == -5, y == 15]]

solve([2*x+y==5, 6*x+3*y==15], x, y) Infinite [[x == (5 - r1)/2, y == r1]]

solve([2*x+y==5, 6*x+3*y==10], x, y) Empty ValueError: Unable to solve...
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Notice how the output contains equations written a format that might be suitable as input
for further use within SAGE.

Computation Note VLC.SAGE
Vector Linear Combinations

Contributed by Robert Beezer
Vectors in SAGE are constructed from lists, and are displayed horizontally. For example,
the vector

v =


1
2
3
4
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would be entered and named via the command

v = vector(QQ, [1, 2, 3, 4])

See the notes about rings (Computation R.SAGE [2297]) and matrix entry (Computation
ME.SAGE [2299]) for reminders about specifying the relevant ring.

Vector addition and scalar multiplication are then very natural. If u and v are two
vectors of the same size, then

2 ∗ u + (−3) ∗ v

will compute the correct vector. The result can be assigned to a variable (which will then
contain a vector), or be printed. If printed, it will be written horizontally with parentheses
for grouping. If u and v have different sizes, then SAGE will complain about “unsupported
operand(s).”

Version 2.11



Computation Note SAGE.MI.SAGE Matrix Inverse 2317

Computation Note MI.SAGE
Matrix Inverse

Contributed by Steve Canfield
If a is a matrix defined in SAGE, then a.inverse() will return the inverse of a, should it
exist. In the case where a does not have an inverse SAGE will tell you the matrix must be
nonsingular (see Theorem NI [781]).
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Computation Note TM.SAGE
Transpose of a Matrix

Suppose a is the name of a matrix stored in SAGE. Then a.transpose() will return the
transpose of a .

Computation Note E.SAGE
Eigenspaces

Contributed by Steve Canfield
SAGE can compute eigenspaces and eigenvalues for you. If you have a matrix named a and
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you type
a.eigenspaces()

you will get a listing of the eigenvalues and the eigenspace for each. Let’s do an example.
Your output may be formatted slightly different from what we have here.

m = matrix(QQ, [[−13,−8,−4], [12, 7, 4], [24, 16, 7]])

m.eigenspaces()

[(3, [(1, 2/3, 1/3)]), (−1, [(1, 0, 1/2), (0, 1,−1/2)])]

Whew, that looks like a mess. At the top level, eigenspaces() returns a dictionary whose
keys are the eigenvalues. So in this case we have eigenvalues 3 and -1. Each eigenvalue has
an array after it that forms the basis of the eigenspace. In our example, there is 1 vector for
λ = 3 and 2 vectors for λ = −1. Finally, the vectors SAGE spits out may not be the nicest
ones to work with. In particular, we might want to scale the vectors to get rid of fractions.

Version 2.11



Appendix P
Preliminaries

This appendix contains important ideas about complex numbers, sets, and the logic and
techniques of forming proofs. It is not meant to be read straight through, but you should
head here when you need to review these ideas.
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We choose to expand the set of scalars from the real numbers, R, to the set of complex
numbers, C. So basic operations with complex numbers (like addition and division) will be
necessary. This can be safely postponed until your arrival in Section O [565], and a refresher
before Chapter E [1363] would be a good idea as well.

Sets are extremely important in all of mathematics, but maybe you have not had much
exposure to the basic operations. Check out Section SET [2324]. The text will send you
here frequently as well. Visit often.

This book is as much about doing mathematics as it is about linear algebra. The “Proof
Techniques” are vignettes about logic, types of theorems, structure of proofs, or just plain
old-fashioned advice about how to do advanced mathematics. The text will frequently point
to one of these techniques in advance of their first use, and for specific instructions there
will be additional references. If you find constructing proofs difficult (we all did once), then
head back here and browse through the advice for second or third readings.
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Section CNO

Complex Number Operations

In this section we review of the basics of working with complex numbers.

Subsection CNA
Arithmetic with complex numbers

A complex number is a linear combination of 1 and i =
√−1, typically written in the form

a+ bi. Complex numbers can be added, subtracted, multiplied and divided, just like we are
used to doing with real numbers, including the restriction on division by zero. We will not
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define these operations carefully, but instead illustrate with examples.

Example ACN
Arithmetic of complex numbers

(2 + 5i) + (6− 4i) = (2 + 6) + (5 + (−4))i = 8 + i

(2 + 5i)− (6− 4i) = (2− 6) + (5− (−4))i = −4 + 9i

(2 + 5i)(6− 4i) = (2)(6) + (5i)(6) + (2)(−4i) + (5i)(−4i) = 12 + 30i− 8i− 20i2

= 12 + 22i− 20(−1) = 32 + 22i

Division takes just a bit more care. We multiply the denominator by a complex number
chosen to produce a real number and then we can produce a complex number as a result.

2 + 5i

6− 4i
=

2 + 5i

6− 4i

6 + 4i

6 + 4i
=
−8 + 38i

52
= − 8

52
+

38

52
i = − 2

13
+

19

26
i
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�

In this example, we used 6+4i to convert the denominator in the fraction to a real number.
This number is known as the conjugate, which we define in the next section. We will often
exploit the basic properties of complex number addition, subtraction, multiplication and
division, so we will carefully define the two basic operations, together with a definition of
equality, and then collect nine basic properties in a theorem.

Definition CNE
Complex Number Equality
The complex numbers α = a + bi and β = c + di are equal, denoted α = β, if a = c and
b = d.
(This definition contains Notation CNE.) 4
Definition CNA
Complex Number Addition
The sum of the complex numbers α = a+bi and β = c+di , denoted α+β, is (a+c)+(b+d)i.
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(This definition contains Notation CNA.) 4
Definition CNM
Complex Number Multiplication
The product of the complex numbers α = a+ bi and β = c+di , denoted αβ, is (ac− bd) +
(ad+ bc)i.
(This definition contains Notation CNM.) 4
Theorem PCNA
Properties of Complex Number Arithmetic
The operations of addition and multiplication of complex numbers have the following prop-
erties.

• ACCN Additive Closure, Complex Numbers
If α, β ∈ C, then α + β ∈ C.

• MCCN Multiplicative Closure, Complex Numbers
If α, β ∈ C, then αβ ∈ C.
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• CACN Commutativity of Addition, Complex Numbers
For any α, β ∈ C, α + β = β + α.

• CMCN Commutativity of Multiplication, Complex Numbers
For any α, β ∈ C, αβ = βα.

• AACN Additive Associativity, Complex Numbers
For any α, β, γ ∈ C, α + (β + γ) = (α + β) + γ.

• MACN Multiplicative Associativity, Complex Numbers
For any α, β, γ ∈ C, α (βγ) = (αβ) γ.

• DCN Distributivity, Complex Numbers
For any α, β, γ ∈ C, α(β + γ) = αβ + αγ.

• ZCN Zero, Complex Numbers
There is a complex number 0 = 0 + 0i so that for any α ∈ C, 0 + α = α.
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• OCN One, Complex Numbers
There is a complex number 1 = 1 + 0i so that for any α ∈ C, 1α = α.

• AICN Additive Inverse, Complex Numbers
For every α ∈ C there exists −α ∈ C so that α + (−α) = 0.

• MICN Multiplicative Inverse, Complex Numbers
For every α ∈ C, α 6= 0 there exists 1

α
∈ C so that α

(
1
α

)
= 1.

�

Proof We could derive each of these properties of complex numbers with a proof that
builds on the identical properties of the real numbers. The only proof that might be at
all interesting would be to show Property MICN [2318] since we would need to trot out a
conjugate. For this property, and especially for the others, we might be tempted to construct
proofs of the identical properties for the reals. This would take us way too far afield, so we
will draw a line in the sand right here and just agree that these nine fundamental behaviors
are true. OK?
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Mostly we have stated these nine properties carefully so that we can make reference to
them later in other proofs. So we will be linking back here often. �

Subsection CCN
Conjugates of Complex Numbers

Definition CCN
Conjugate of a Complex Number
The conjugate of the complex number α = a+ bi ∈ C is the complex number α = a− bi.
(This definition contains Notation CCN.) 4

Example CSCN
Conjugate of some complex numbers
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2 + 3i = 2− 3i 5− 4i = 5 + 4i −3 + 0i = −3 + 0i 0 + 0i = 0 + 0i

�

Notice how the conjugate of a real number leaves the number unchanged. The conjugate
enjoys some basic properties that are useful when we work with linear expressions involving
addition and multiplication.

Theorem CCRA
Complex Conjugation Respects Addition
Suppose that α and β are complex numbers. Then α + β = α + β. �

Proof Let α = a+ bi and β = r + si. Then

α + β = (a+ r) + (b+ s)i = (a+ r)− (b+ s)i = (a− bi) + (r − si) = α + β
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�

Theorem CCRM
Complex Conjugation Respects Multiplication
Suppose that α and β are complex numbers. Then αβ = αβ. �

Proof Let α = a+ bi and β = r + si. Then

αβ = (ar − bs) + (as+ br)i = (ar − bs)− (as+ br)i

= (ar − (−b)(−s)) + (a(−s) + (−b)r)i = (a− bi)(r − si) = αβ

�

Theorem CCT
Complex Conjugation Twice
Suppose that α is a complex number. Then α = α. �

Proof Let α = a+ bi. Then

α = a− bi = a− (−bi) = a+ bi = α
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�

Subsection MCN
Modulus of a Complex Number

We define one more operation with complex numbers that may be new to you.

Definition MCN
Modulus of a Complex Number
The modulus of the complex number α = a+ bi ∈ C, is the nonnegative real number

|α| =
√
αα =

√
a2 + b2.

4
Example MSCN
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Modulus of some complex numbers

|2 + 3i| =
√

13 |5− 4i| =
√

41 |−3 + 0i| = 3 |0 + 0i| = 0

�

The modulus can be interpreted as a version of the absolute value for complex numbers,
as is suggested by the notation employed. You can see this in how |−3| = |−3 + 0i| = 3.
Notice too how the modulus of the complex zero, 0 + 0i, has value 0.
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Section SET

Sets

Definition SET
Set
A set is an unordered collection of objects. If S is a set and x is an object that is in the set
S, we write x ∈ S. If x is not in S, then we write x 6∈ S. We refer to the objects in a set as
its elements.
(This definition contains Notation SETM.) 4

Hard to get much more basic than that. Notice that the objects in a set can be anything,
and there is no notion of order among the elements of the set. A set can be finite as well as
infinite. A set can contain other sets as its objects. At a primitive level, a set is just a way
to break up some class of objects into two groupings: those objects in the set, and those
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objects not in the set.

Example SETM
Set membership
From the set of all possible symbols, construct the following set of three symbols,

S = {�, �, F}
Then the statement � ∈ S is true, while the statement N ∈ S is false. However, then the
statement N 6∈ S is true. �

A portion of a set is known as a subset. Notice how the following definition uses an
implication (if whenever. . . then. . . ). Note too how the definition of a subset relies on the
definition of a set through the idea of set membership.

Definition SSET
Subset
If S and T are two sets, then S is a subset of T , written S ⊆ T if whenever x ∈ S then
x ∈ T .
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(This definition contains Notation SSET.) 4
If we want to disallow the possibility that S is the same as T , we use the notation S ⊂ T

and we say that S is a proper subset of T . We’ll do an example, but first we’ll define a
special set.

Definition ES
Empty Set
The empty set is the set with no elements. Its is denoted by ∅.
(This definition contains Notation ES.) 4

Example SSET
Subset
If S = {�, �, F}, T = {F, �}, R = {N, F}, then

T ⊆ S R 6⊆ T ∅ ⊆ S

T ⊂ S S ⊆ S S 6⊂ S
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�

What does it mean for two sets to be equal? They must be the same. Well, that
explanation is not really too helpful, is it? How about: If A ⊆ B and B ⊆ A, then A equals
B. This gives us something to work with, if A is a subset of B, and vice versa, then they
must really be the same set. We will now make the symbol “=” do double-duty and extend
its use to statements like A = B, where A and B are sets. Here’s the definition, which we
will reference often.

Definition SE
Set Equality
Two sets, S and T , are equal, if S ⊆ T and T ⊆ S. In this case, we write S = T .
(This definition contains Notation SE.) 4

Sets are typically written inside of braces, as { }, as we have seen above. However, when
sets have more than a few elements, a description will typically have two components. The
first is a description of the general type of objects contained in a set, while the second is
some sort of restriction on the properties the objects have. Every object in the set must be
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of the type described in the first part and it must satisfy the restrictions in the second part.
Conversely, any object of the proper type for the first part, that also meets the conditions
of the second part, will be in the set. These two parts are set off from each other somehow,
often with a vertical bar (|) or a colon (:).

I like to think of sets as clubs. The first part is some description of the type of people
who might belong to the club, the basic objects. For example, a bicycle club would describe
its members as being people who like to ride bicycles. The second part is like a membership
committee, it restricts the people who are allowed in the club. Continuing with our bicycle
club analogy, we might decide to limit ourselves to “serious” riders and only have members
who can document having ridden 100 kilometers or more in a single day at least one time.

The restrictions on membership can migrate around some between the first and second
part, and there may be several ways to describe the same set of objects. Here’s a more
mathematical example, employing the set of all integers, Z, to describe the set of even
integers.

E = {x ∈ Z | x is an even number}
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= {x ∈ Z | 2 divides x evenly}
= {2k | k ∈ Z}

Notice how this set tells us that its objects are integer numbers (not, say, matrices or func-
tions, for example) and just those that are even. So we can write that 10 ∈ E, while 17 6∈ E
once we check the membership criteria. We also recognize the question

[
1 −3 5
2 0 3

]
∈ E?

as being simply ridiculous.
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Subsection SC
Set Cardinality

On occasion, we will be interested in the number of elements in a finite set. Here’s the
definition and the associated notation.

Definition C
Cardinality
Suppose S is a finite set. Then the number of elements in S is called the cardinality or
size of S, and is denoted |S|.
(This definition contains Notation C.) 4
Example CS
Cardinality and Size
If S = {�, F, �}, then |S| = 3. �

Version 2.11



Subsection SET.SO Set Operations 2340

Subsection SO
Set Operations

In this subsection we define and illustrate the three most common basic ways to manipulate
sets to create other sets. Since much of linear algebra is about sets, we will use these often.

Definition SU
Set Union
Suppose S and T are sets. Then the union of S and T , denoted S ∪ T , is the set whose
elements are those that are elements of S or of T , or both. More formally,

x ∈ S ∪ T if and only if x ∈ S or x ∈ T

(This definition contains Notation SU.) 4
Notice that the use of the word “or” in this definition is meant to be non-exclusive. That
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is, it allows for x to be an element of both S and T and still qualify for membership in S∪T .

Example SU
Set union
If S = {�, F, �} and T = {�, F, N} then S ∪ T = {�, F, �, N}. �

Definition SI
Set Intersection
Suppose S and T are sets. Then the intersection of S and T , denoted S ∩ T , is the set
whose elements are only those that are elements of S and of T . More formally,

x ∈ S ∩ T if and only if x ∈ S and x ∈ T

(This definition contains Notation SI.) 4
Example SI
Set intersection
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If S = {�, F, �} and T = {�, F, N} then S ∩ T = {�, F}. �

The union and intersection of sets are operations that begin with two sets and produce a
third, new, set. Our final operation is the set complement, which we usually think of as an
operation that takes a single set and creates a second, new, set. However, if you study the
definition carefully, you will see that it needs to be computed relative to some “universal”
set.

Definition SC
Set Complement
Suppose S is a set that is a subset of a universal set U . Then the complement of S, denoted
S, is the set whose elements are those that are elements of U and not elements of S. More
formally,

x ∈ S if and only if x ∈ U and x 6∈ S
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(This definition contains Notation SC.) 4
Notice that there is nothing at all special about the universal set. This is simply a term

that suggests that U contains all of the possible objects we are considering. Often this set
will be clear from the context, and we won’t think much about it, nor reference it in our
notation. In other cases (rarely in our work in this course) the exact nature of the universal
set must be made explicit, and reference to it will possibly be carried through in our choice
of notation.

Example SC
Set complement
If U = {�, F, �, N} and S = {�, F, �} then S = {N}. �

There are many more natural operations that can be performed on sets, such as an
exclusive-or and the symmetric difference. Many of these can be defined in terms of the
union, intersection and complement. We will not have much need of them in this course,
and so we will not give precise descriptions here in this preliminary section.

There is also an interesting variety of basic results that describe the interplay of these
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operations with each other. We mention just two as an example, these are known as De-
Morgan’s Laws.

(S ∪ T ) = S ∩ T
(S ∩ T ) = S ∪ T

Besides having an appealing symmetry, we mention these two facts, since constructing the
proofs of each is a useful exercise that will require a solid understanding of all but one of the
definitions presented in this section. Give it a try.
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Section PT

Proof Techniques

In this section we collect many short essays designed to help you understand how to read,
understand and construct proofs. Some are very factual, while others consist of advice. They
appear in the order that they are first needed (or advisable) in the text, and are meant to
be self-contained. So you should not think of reading through this section in one sitting as
you begin this course. But be sure to head back here for a first reading whenever the text
suggests it. Also think about returning to browse at various points during the course, and
especially as you struggle with becoming an accomplished mathematician who is comfortable
with the difficult process of designing new proofs.
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Proof Technique D
Definitions

A definition is a made-up term, used as a kind of shortcut for some typically more complicated
idea. For example, we say a whole number is even as a shortcut for saying that when we
divide the number by two we get a remainder of zero. With a precise definition, we can
answer certain questions unambiguously. For example, did you ever wonder if zero was an
even number? Now the answer should be clear since we have a precise definition of what we
mean by the term even.

A single term might have several possible definitions. For example, we could say that the
whole number n is even if there is another whole number k such that n = 2k. We say this is
an equivalent definition since it categorizes even numbers the same way our first definition
does.

Definitions are like two-way streets — we can use a definition to replace something
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rather complicated by its definition (if it fits) and we can replace a definition by its more
complicated description. A definition is usually written as some form of an implication, such
as “If something-nice-happens, then blatzo.” However, this also means that “If blatzo, then
something-nice-happens,” even though this may not be formally stated. This is what we
mean when we say a definition is a two-way street — it is really two implications, going in
opposite “directions.”

Anybody (including you) can make up a definition, so long as it is unambiguous, but the
real test of a definition’s utility is whether or not it is useful for describing interesting or
frequent situations.

We will talk about theorems later (and especially equivalences). For now, be sure not to
confuse the notion of a definition with that of a theorem.

In this book, we will display every new definition carefully set-off from the text, and the
term being defined will be written thus: definition. Additionally, there is a full list of all
the definitions, in order of their appearance located at the front of the book (Definitions [ix]).
Finally, the acronym for each definition can be found in the index (Index [??]). Definitions
are critical to doing mathematics and proving theorems, so we’ve given you lots of ways to
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locate a definition should you forget its. . . uh, well, . . . definition.
Can you formulate a precise definition for what it means for a number to be odd? (Don’t

just say it is the opposite of even. Act as if you don’t have a definition for even yet.) Can
you formulate your definition a second, equivalent, way? Can you employ your definition to
test an odd and an even number for “odd-ness”?

Proof Technique T
Theorems

Higher mathematics is about understanding theorems. Reading them, understanding them,
applying them, proving them. Every theorem is a shortcut — we prove something in general,
and then whenever we find a specific instance covered by the theorem we can immediately
say that we know something else about the situation by applying the theorem. In many
cases, this new information can be gained with much less effort than if we did not know the
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theorem.

The first step in understanding a theorem is to realize that the statement of every theo-
rem can be rewritten using statements of the form “If something-happens, then something-
else-happens.” The “something-happens” part is the hypothesis and the “something-else-
happens” is the conclusion. To understand a theorem, it helps to rewrite its statement using
this construction. To apply a theorem, we verify that “something-happens” in a particular
instance and immediately conclude that “something-else-happens.” To prove a theorem, we
must argue based on the assumption that the hypothesis is true, and arrive through the
process of logic that the conclusion must then also be true.
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Proof Technique L
Language

Like any science, the language of math must be understood before further study
can continue.

Erin Wilson, Student
September, 2004

Mathematics is a language. It is a way to express complicated ideas clearly, precisely, and
unambiguously. Because of this, it can be difficult to read. Read slowly, and have pencil
and paper at hand. It will usually be necessary to read something several times. While
reading can be difficult, it is even harder to speak mathematics, and so that is the topic of
this technique.
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“Natural” language, in the present case English, is fraught with ambiguity. Consider the
possible meanings of the sentence: The fish is ready to eat. One fish, or two fish? Are the
fish hungry, or will the fish be eaten? (See Exercise SSLE.M10 [55], Exercise SSLE.M11 [56],
Exercise SSLE.M12 [56], Exercise SSLE.M13 [56].) In your daily interactions with others,
give some thought to how many mis-understandings arise from the ambiguity of pronouns,
modifiers and objects.

I am going to suggest a simple modification to the way you use language that will make
it much, much easier to become proficient at speaking mathematics and eventually it will
become second nature. Think of it as a training aid or practice drill you might use when
learning to become skilled at a sport.

First, eliminate pronouns from your vocabulary when discussing linear algebra, in class
or with your colleagues. Do not use: it, that, those, their or similar sources of confusion.
This is the single easiest step you can take to make your oral expression of mathematics
clearer to others, and in turn, it will greatly help your own understanding.

Now rid yourself of the word “thing” (or variants like “something”). When you are
tempted to use this word realize that there is some object you want to discuss, and we
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likely have a definition for that object (see the discussion at Technique D [2337]). Always
“think about your objects” and many aspects of the study of mathematics will get easier.
Ask yourself: “Am I working with a set, a number, a function, an operation, a differential
equation, or what?” Knowing what an object is will allow you to narrow down the procedures
you may apply to it. If you have studied an object-oriented computer programming language,
then you will already have experience identifying objects and thinking carefully about what
procedures are allowed to be applied to them.

Third, eliminate the verb “works” (as in “the equation works”) from your vocabulary.
This term is used as a substitute when we are not sure just what we are trying to accomplish.
Usually we are trying to say that some object fulfills some condition. The condition might
even have a definition associated with it, making it even easier to describe.

Last, speak slooooowly and thoughtfully as you try to get by without all these lazy
words. It is hard at first, but you will get better with practice. Especially in class, when the
pressure is on and all eyes are on you, don’t succumb to the temptation to use these weak
words. Slow down, we’d all rather wait for a slow, well-formed question or answer than a
fast, sloppy, incomprehensible one.

Version 2.11



Proof Technique PT.L Language 2353

You will find the improvement in your ability to speak clearly about complicated ideas
will greatly improve your ability to think clearly about complicated ideas. And I believe
that you cannot think clearly about complicated ideas if you cannot formulate questions or
answers clearly in the correct language. This is as applicable to the study of law, economics
or philosophy as it is to the study of science or mathematics.

In this spirit, Dupont Hubert has contributed the following quotation, which is widely
used in French mathematics courses (and which might be construed as the contrapositive of
Technique CP [2352])

Ce que l’on concoit bien s’enonce clairement,
Et les mots pour le dire arrivent aisement.

— Nicolas Boileau, L’art poétique, Chant I, 1674

which translates as

Whatever is well conceived is clearly said,
And the words to say it flow with ease.
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So when you come to class, check your pronouns at the door, along with other weak
words. And when studying with friends, you might make a game of catching one another
using pronouns, “thing,” or “works.” I know I’ll be calling you on it!

Proof Technique GS
Getting Started

“I don’t know how to get started!” is often the lament of the novice proof-builder. Here are
a few pieces of advice.

1. As mentioned in Technique T [2339], rewrite the statement of the theorem in an “if-
then” form. This will simplify identifying the hypothesis and conclusion, which are
referenced in the next few items.

2. Ask yourself what kind of statement you are trying to prove. This is always part of
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your conclusion. Are you being asked to conclude that two numbers are equal, that
a function is differentiable or a set is a subset of another? You cannot bring other
techniques to bear if you do not know what type of conclusion you have.

3. Write down reformulations of your hypotheses. Interpret and translate each definition
properly.

4. Write your hypothesis at the top of a sheet of paper and your conclusion at the bottom.
See if you can formulate a statement that precedes the conclusion and also implies it.
Work down from your hypothesis, and up from your conclusion, and see if you can
meet in the middle. When you are finished, rewrite the proof nicely, from hypothesis
to conclusion, with verifiable implications giving each subsequent statement.

5. As you work through your proof, think about what kinds of objects your symbols
represent. For example, suppose A is a set and f(x) is a real-valued function. Then
the expression A + f might make no sense if we have not defined what it means to
“add” a set to a function, so we can stop at that point and adjust accordingly. On
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the other hand we might understand 2f to be the function whose rule is described by
(2f)(x) = 2f(x). “Think about your objects” means to always verify that your objects
and operations are compatible.

Proof Technique C
Constructive Proofs

Conclusions of proofs come in a variety of types. Often a theorem will simply assert that
something exists. The best way, but not the only way, to show something exists is to actually
build it. Such a proof is called constructive. The thing to realize about constructive proofs
is that the proof itself will contain a procedure that might be used computationally to
construct the desired object. If the procedure is not too cumbersome, then the proof itself
is as useful as the statement of the theorem.
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Proof Technique E
Equivalences

When a theorem uses the phrase “if and only if” (or the abbreviation “iff”) it is a shorthand
way of saying that two if-then statements are true. So if a theorem says “P if and only if
Q,” then it is true that “if P, then Q” while it is also true that “if Q, then P.” For example,
it may be a theorem that “I wear bright yellow knee-high plastic boots if and only if it is
raining.” This means that I never forget to wear my super-duper yellow boots when it is
raining and I wouldn’t be seen in such silly boots unless it was raining. You never have one
without the other. I’ve got my boots on and it is raining or I don’t have my boots on and
it is dry.

The upshot for proving such theorems is that it is like a 2-for-1 sale, we get to do two
proofs. Assume P and conclude Q, then start over and assume Q and conclude P . For this
reason, “if and only if” is sometimes abbreviated by ⇐⇒ , while proofs indicate which of the
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two implications is being proved by prefacing each with ⇒ or ⇐. A carefully written proof
will remind the reader which statement is being used as the hypothesis, a quicker version will
let the reader deduce it from the direction of the arrow. Tradition dictates we do the “easy”
half first, but that’s hard for a student to know until you’ve finished doing both halves! Oh
well, if you rewrite your proofs (a good habit), you can then choose to put the easy half first.

Theorems of this type are called “equivalences” or “characterizations,” and they are some
of the most pleasing results in mathematics. They say that two objects, or two situations,
are really the same. You don’t have one without the other, like rain and my yellow boots.
The more different P and Q seem to be, the more pleasing it is to discover they are really
equivalent. And if P describes a very mysterious solution or involves a tough computation,
while Q is transparent or involves easy computations, then we’ve found a great shortcut
for better understanding or faster computation. Remember that every theorem really is a
shortcut in some form. You will also discover that if proving P ⇒ Q is very easy, then proving
Q ⇒ P is likely to be proportionately harder. Sometimes the two halves are about equally
hard. And in rare cases, you can string together a whole sequence of other equivalences
to form the one you’re after and you don’t even need to do two halves. In this case, the
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argument of one half is just the argument of the other half, but in reverse.
One last thing about equivalences. If you see a statement of a theorem that says two

things are “equivalent,” translate it first into an “if and only if” statement.

Proof Technique N
Negation

When we construct the contrapositive of a theorem (Technique CP [2352]), we need to
negate the two statements in the implication. And when we construct a proof by contra-
diction (Technique CD [2354]), we need to negate the conclusion of the theorem. One way
to construct a converse (Technique CV [2353]) is to simultaneously negate the hypothesis
and conclusion of an implication (but remember that this is not guaranteed to be a true
statement). So we often have the need to negate statements, and in some situations it can
be tricky.
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If a statement says that a set is empty, then its negation is the statement that the set is
nonempty. That’s straightforward. Suppose a statement says “something-happens” for all
i, or every i, or any i. Then the negation is that “something-doesn’t-happen” for at least
one value of i. If a statement says that there exists at least one “thing,” then the negation
is the statement that there is no “thing.” If a statement says that a “thing” is unique, then
the negation is that there is zero, or more than one, of the “thing.”

We are not covering all of the possibilities, but we wish to make the point that logical
qualifiers like “there exists” or “for every” must be handled with care when negating state-
ments. Studying the proofs which employ contradiction (as listed in Technique CD [2354])
is a good first step towards understanding the range of possibilities.
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Proof Technique CP
Contrapositives

The contrapositive of an implication P ⇒ Q is the implication not(Q) ⇒ not(P ), where
“not” means the logical negation, or opposite. An implication is true if and only if its
contrapositive is true. In symbols, (P ⇒ Q) ⇐⇒ (not(Q) ⇒ not(P )) is a theorem. Such
statements about logic, that are always true, are known as tautologies.

For example, it is a theorem that “if a vehicle is a fire truck, then it has big tires and
has a siren.” (Yes, I’m sure you can conjure up a counterexample, but play along with me
anyway.) The contrapositive is “if a vehicle does not have big tires or does not have a siren,
then it is not a fire truck.” Notice how the “and” became an “or” when we negated the
conclusion of the original theorem.

It will frequently happen that it is easier to construct a proof of the contrapositive than of
the original implication. If you are having difficulty formulating a proof of some implication,
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see if the contrapositive is easier for you. The trick is to construct the negation of complicated
statements accurately. More on that later.

Proof Technique CV
Converses

The converse of the implication P ⇒ Q is the implication Q ⇒ P . There is no guarantee
that the truth of these two statements are related. In particular, if an implication has been
proven to be a theorem, then do not try to use its converse too, as if it were a theorem.
Sometimes the converse is true (and we have an equivalence, see Technique E [2348]). But
more likely the converse is false, especially if it wasn’t included in the statement of the
original theorem.

For example, we have the theorem, “if a vehicle is a fire truck, then it is has big tires
and has a siren.” The converse is false. The statement that “if a vehicle has big tires and a

Version 2.11



Proof Technique PT.CD Contradiction 2363

siren, then it is a fire truck” is false. A police vehicle for use on a sandy public beach would
have big tires and a siren, yet is not equipped to fight fires.

We bring this up now, because Theorem CSRN [176] has a tempting converse. Does this
theorem say that if r < n, then the system is consistent? Definitely not, as Archetype E [2431]
has r = 3 < 4 = n, yet is inconsistent. This example is then said to be a counterexample
to the converse. Whenever you think a theorem that is an implication might actually be an
equivalence, it is good to hunt around for a counterexample that shows the converse to be
false (the archetypes, Appendix A [2372], can be a good hunting ground).

Proof Technique CD
Contradiction

Another proof technique is known as “proof by contradiction” and it can be a powerful (and
satisfying) approach. Simply put, suppose you wish to prove the implication, “If A, then
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B.” As usual, we assume that A is true, but we also make the additional assumption that
B is false. If our original implication is true, then these twin assumptions should lead us to
a logical inconsistency. In practice we assume the negation of B to be true (see Technique
N [2350]). So we argue from the assumptions A and not(B) looking for some obviously false
conclusion such as 1 = 6, or a set is simultaneously empty and nonempty, or a matrix is
both nonsingular and singular.

You should be careful about formulating proofs that look like proofs by contradiction, but
really aren’t. This happens when you assume A and not(B) and proceed to give a “normal”
and direct proof that B is true by only using the assumption that A is true. Your last step
is to then claim that B is true and you then appeal to the assumption that not(B) is true,
thus getting the desired contradiction. Instead, you could have avoided the overhead of a
proof by contradiction and just run with the direct proof. This stylistic flaw is known, quite
graphically, as “setting up the strawman to knock him down.”

Here is a simple example of a proof by contradiction. There are direct proofs that are
just about as easy, but this will demonstrate the point, while narrowly avoiding knocking
down the straw man.
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Theorem: If a and b are odd integers, then their product, ab, is odd.

Proof: To begin a proof by contradiction, assume the hypothesis, that a and b are odd.
Also assume the negation of the conclusion, in this case, that ab is even. Then there are
integers, j, k, ` so that a = 2j + 1, b = 2k + 1, ab = 2`. Then

0 = ab− ab
= (2j + 1)(2k + 1)− (2`)

= 4jk + 2j + 2k − 2`+ 1

= 2 (2jk + j + k − `) + 1

Notice how we used both our hypothesis and the negation of the conclusion in the second
line. Now divide the integer on each end of this string of equalities by 2. On the left we get
a remainder of 0, while on the right we see that the remainder will be 1. Both remainders
cannot be correct, so this is our desired contradiction. Thus, the conclusion (that ab is odd)
is true.
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Again, we do not offer this example as the best proof of this fact about even and odd
numbers, but rather it is a simple illustration of a proof by contradiction. You can find
examples of proofs by contradiction in Theorem RREFU [101], Theorem NMUS [256], Theo-
rem NPNT [775], Theorem TTMI [732], Theorem GSP [593], Theorem ELIS [1226], Theorem
EDYES [1237], Theorem EMHE [1376], Theorem EDELI [1445], and Theorem DMFE [1506],
in addition to several examples and solutions to exercises.

Proof Technique U
Uniqueness

A theorem will sometimes claim that some object, having some desirable property, is unique.
In other words, there should be only one such object. To prove this, a standard technique
is to assume there are two such objects and proceed to analyze the consequences. The end
result may be a contradiction (Technique CD [2354]), or the conclusion that the two allegedly

Version 2.11



Proof Technique PT.ME Multiple Equivalences 2367

different objects really are equal.

Proof Technique ME
Multiple Equivalences

A very specialized form of a theorem begins with the statement “The following are equiva-
lent. . . ,” which is then followed by a list of statements. Informally, this lead-in sometimes
gets abbreviated by “TFAE.” This formulation means that any two of the statements on
the list can be connected with an “if and only if” to form a theorem. So if the list has
n statements then, there are n(n−1)

2
possible equivalences that can be constructed (and are

claimed to be true).
Suppose a theorem of this form has statements denoted as A, B, C,. . .Z. To prove the

entire theorem, we can prove A ⇒ B, B ⇒ C, C ⇒ D,. . . , Y ⇒ Z and finally, Z ⇒ A.
This circular chain of n equivalences would allow us, logically, if not practically, to form any
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one of the n(n−1)
2

possible equivalences by chasing the equivalences around the circle as far
as required.

Proof Technique PI
Proving Identities

Many theorems have conclusions that say two objects are equal. Perhaps one object is hard to
compute or understand, while the other is easy to compute or understand. This would make
for a pleasing theorem. Whether the result is pleasing or not, we take the same approach
to formulate a proof. Sometimes we need to employ specialized notions of equality, such as
Definition SE [2327] or Definition CVE [286], but in other cases we can string together a list
of equalities.

The wrong way to prove an identity is to begin by writing it down and then beating on it
until it reduces to an obvious identity. The first flaw is that you would be writing down the
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statement you wish to prove, as if you already believed it to be true. But more dangerous
is the possibility that some of your maneuvers are not reversible. Here’s an example. Let’s
prove that 3 = −3.

3 = −3 (This is a bad start)

32 = (−3)2 Square both sides

9 = 9

0 = 0 Subtract 9 from both sides

So because 0 = 0 is a true statement, does it follow that 3 = −3 is a true statement? Nope.
Of course, we didn’t really expect a legitimate proof of 3 = −3, but this attempt should
illustrate the dangers of this (incorrect) approach.

What you have just seen in the proof of Theorem VSPCV [295], and what you will see
consistently throughout this text, is proofs of the following form. To prove that A = D we
write

A = B Theorem, Definition or Hypothesis justifying A = B
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= C Theorem, Definition or Hypothesis justifying B = C

= D Theorem, Definition or Hypothesis justifying C = D

In your scratch work exploring possible approaches to proving a theorem you may massage a
variety of expressions, sometimes making connections to various bits and pieces, while some
parts get abandoned. Once you see a line of attack, rewrite your proof carefully mimicking
this style.

Proof Technique DC
Decompositions

Much of your mathematical upbringing, especially once you began a study of algebra, re-
volved around simplifying expressions — combining like terms, obtaining common denomi-
nators so as to add fractions, factoring in order to solve polynomial equations. However, as
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often as not, we will do the opposite. Many theorems and techniques will revolve around
taking some object and “decomposing” it into some combination of other objects, ostensibly
in a more complicated fashion. When we say something can “be written as” something else,
we mean that the one object can be decomposed into some combination of other objects.
This may seem unnatural at first, but results of this type will give us insight into the struc-
ture of the original object by exposing its inner workings. An appropriate analogy might
be stripping the wallboards away from the interior of a building to expose the structural
members supporting the whole building.

Perhaps you have studied integral calculus, or a pre-calculus course, where you learned
about partial fractions. This is a technique where a fraction of two polynomials is decomposed
(written as, expressed as) a sum of simpler fractions. The purpose in calculus is to make
finding an anitderivative simpler. For example, you can verify the truth of the expression

12x5 + 2x4 − 20x3 + 66x2 − 294x+ 308

x6 + x5 − 3x4 + 21x3 − 52x2 + 20x− 48
=

5x+ 2

x2 − x+ 6
+

3x− 7

x2 + 1
+

3

x+ 4
+

1

x− 2

In an early course in algebra, you might be expected to combine the four terms on the right
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over a common denominator to create the “simpler” expression on the left. Going the other
way, the partial fraction technique would allow you to systematically decompose the fraction
of polynomials on the left into the sum of the four (arguably) simpler fractions of polynomials
on the right.

This is a major shift in thinking, so come back here often, especially when we say “can
be written as”, or “can be expressed as,” or “can be decomposed as.”

Proof Technique I
Induction

“Induction” or “mathematical induction” is a framework for proving statements that are
indexed by integers. In other words, suppose you have a statement to prove that is really
multiple statements, one for n = 1, another for n = 2, a third for n = 3, and so on. If there
is enough similarity between the statements, then you can use a script (the framework) to
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prove them all at once.

For example, consider the theorem

Theorem 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
for n ≥ 1.

This is shorthand for the many statements 1 = 1(1+1)
2

, 1 + 2 = 2(2+1)
2

, 1 + 2 + 3 = 3(3+1)
2

,

1 + 2 + 3 + 4 = 4(4+1)
2

, and so on. Forever. You can do the calculations in each of these
statements and verify that all four are true. We might not be surprised to learn that the
fifth statement is true as well (go ahead and check). However, do we think the theorem is
true for n = 872? Or n = 1, 234, 529?

To see that these questions are not so ridiculous, consider the following example from
Rotman’s Journey into Mathematics. The statement “n2−n+41 is prime” is true for integers
1 ≤ n ≤ 40 (check a few). However, when we check n = 41 we find 412 − 41 + 41 = 412,
which is not prime.

So how do we prove infinitely many statements all at once? More formally, lets denote
our statements as P (n). Then, if we can prove the two assertions
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1. P (1) is true.

2. If P (k) is true, then P (k + 1) is true.

then it follows that P (n) is true for all n ≥ 1. To understand this, I liken the process to
climbing an infinitely long ladder with equally spaced rungs. Confronted with such a ladder,
suppose I tell you that you are able to step up onto the first rung, and if you are on any
particular rung, then you are capable of stepping up to the next rung. It follows that you can
climb the ladder as far up as you wish. The first formal assertion above is akin to stepping
onto the first rung, and the second formal assertion is akin to assuming that if you are on
any one rung then you can always reach the next rung.

In practice, establishing that P (1) is true is called the “base case” and in most cases is
straightforward. Establishing that P (k) ⇒ P (k + 1) is referred to as the “induction step,”
or in this book (and elsewhere) we will typically refer to the assumption of P (k) as the
“induction hypothesis.” This is perhaps the most mysterious part of a proof by induction,
since it looks like you are assuming (P (k)) what you are trying to prove (P (n)). Sometimes
it is even worse, since as you get more comfortable with induction, we often don’t bother
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to use a different letter (k) for the index (n) in the induction step. Notice that the second
formal assertion never says that P (k) is true, it simply says that if P (k) were true, what
might logically follow. We can establish statements like “If I lived on the moon, then I could
pole-vault over a bar 12 meters high.” This may be a true statement, but it does not say we
live on the moon, and indeed we may never live there.

Enough generalities. Let’s work an example and prove the theorem above about sums of

integers. Formally, our statement is P (n) : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Proof: Base Case. P (1) is the statement 1 = 1(1+1)
2

, which we see simplifies to the true
statement 1 = 1.

Induction Step: We will assume P (k) is true, and will try to prove P (k+ 1). Given what
we want to accomplish, it is natural to begin by examining the sum of the first k+1 integers.

1 + 2 + 3 + · · ·+ (k + 1)

= (1 + 2 + 3 + · · ·+ k) + (k + 1)
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=
k(k + 1)

2
+ (k + 1) Induction Hypothesis

=
k2 + k

2
=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
=

(k + 1)((k + 1) + 1)

2

We then recognize the two ends of this chain of equalities as P (k+ 1). So, by mathematical
induction, the theorem is true for all n.

How do you recognize when to use induction? The first clue is a statement that is
really many statements, one for each integer. The second clue would be that you begin a
more standard proof and you find yourself using words like “and so on” (as above!) or lots
of ellipses (dots) to establish patterns that you are convinced continue on and on forever.
However, there are many minor instances where induction might be warranted but we don’t
bother.

Induction is important enough, and used often enough, that it appears in various vari-
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ations. The base case sometimes begins with n = 0, or perhaps an integer greater than n.
Some formulate the induction step as P (k − 1) ⇒ P (k). There is also a “strong form” of
induction where we assume all of P (1), P (2), P (3), . . .P (k) as a hypothesis for showing the
conclusion P (k + 1).
You can find examples of induction in the proofs of Theorem GSP [593], Theorem DER
[1295], Theorem DT [1299], Theorem DIM [1342], Theorem EOMP [1452], Theorem DCP
[1462], and Theorem KPLT [2094].

Proof Technique P
Practice

Here is a technique used by many practicing mathematicians when they are teaching them-
selves new mathematics. As they read a textbook, monograph or research article, they
attempt to prove each new theorem themselves, before reading the proof. Often the proofs
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can be very difficult, so it is wise not to spend too much time on each. Maybe limit your
losses and try each proof for 10 or 15 minutes. Even if the proof is not found, it is time
well-spent. You become more familiar with the definitions involved, and the hypothesis and
conclusion of the theorem. When you do work through the proof, it might make more sense,
and you will gain added insight about just how to construct a proof.

Proof Technique LC
Lemmas and Corollaries

Theorems often go by different titles. Two of the most popular being “lemma” and “corol-
lary.” Before we describe the fine distinctions, be aware that lemmas, corollaries, proposi-
tions, claims and facts are all just theorems. And every theorem can be rephrased as an
“if-then” statement, or perhaps a pair of “if-then” statements expressed as an equivalence
(Technique E [2348]).
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A lemma is a theorem that is not too interesting in its own right, but is important for
proving other theorems. It might be a generalization or abstraction of a key step of several
different proofs. For this reason you often hear the phrase “technical lemma” though some
might argue that the adjective “technical” is redundant.

A corollary is a theorem that follows very easily from another theorem. For this reason,
corollaries frequently do not have proofs. You are expected to easily and quickly see how a
previous theorem implies the corollary.

A proposition or fact is really just a codeword for a theorem. A claim might be similar,
but some authors like to use claims within a proof to organize key steps. In a similar manner,
some long proofs are organized as a series of lemmas.

In order to not confuse the novice, we have just called all our theorems theorems. It
is also an organizational convenience. With only theorems and definitions, the theoretical
backbone of the course is laid bare in the two lists of Definitions [ix] and Theorems [x].
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Appendix A
Archetypes

WordNet (an open-source lexical database) gives the following definition of “archetype”:
something that serves as a model or a basis for making copies.

Our archetypes are typical examples of systems of equations, matrices and linear trans-
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formations. They have been designed to demonstrate the range of possibilities, allowing
you to compare and contrast them. Several are of a size and complexity that is usually not
presented in a textbook, but should do a better job of being “typical.”

We have made frequent reference to many of these throughout the text, such as the
frequent comparisons between Archetype A [2378] and Archetype B [2392]. Some we have
left for you to investigate, such as Archetype J [2498], which parallels Archetype I [2485].

How should you use the archetypes? First, consult the description of each one as it is
mentioned in the text. See how other facts about the example might illuminate whatever
property or construction is being described in the example. Second, each property has a
short description that usually includes references to the relevant theorems. Perform the
computations and understand the connections to the listed theorems. Third, each property
has a small checkbox in front of it. Use the archetypes like a workbook and chart your
progress by “checking-off” those properties that you understand.

The next page has a chart that summarizes some (but not all) of the properties described
for each archetype. Notice that while there are several types of objects, there are fundamental
connections between them. That some lines of the table do double-duty is meant to convey
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some of these connections. Consult this table when you wish to quickly find an example of
a certain phenomenon.
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Archetype A

Summary Linear system of three equations, three unknowns. Singular coefficient matrix
with dimension 1 null space. Integer eigenvalues and a degenerate eigenspace for coefficient
matrix.

A system of linear equations (Definition SLE [25]):

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5
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Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 2, x2 = 3, x3 = 1

x1 = 3, x2 = 2, x3 = 0

Augmented matrix of the linear system of equations (Definition AM [81]):

1 −1 2 1
2 1 1 8
1 1 0 5
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 1 3

0 1 −1 2
0 0 0 0



Analysis of the augmented matrix (Notation RREFA [92]):

r = 2 D = {1, 2} F = {3, 4}

Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
Notice the relationship between the free variables and the set F above. Also, notice the
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pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.x1

x2

x3

 =

3
2
0

+ x3

−1
1
1



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
properties of the original system.

x1 − x2 + 2x3 = 0

2x1 + x2 + x3 = 0

x1 + x2 = 0
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Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0, x3 = 0

x1 = −1, x2 = 1, x3 = 1

x1 = −5, x2 = 5, x3 = 5

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain

Version 2.11



Archetype A 2392

zeros: 1 0 1 0

0 1 −1 0
0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 2 D = {1, 2} F = {3, 4}

Coefficient matrix of original system of equations, and of associated homogenous system.
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This matrix will be the subject of further analysis, rather than the systems of equations.1 −1 2
2 1 1
1 1 0



Matrix brought to reduced row-echelon form: 1 0 1

0 1 −1
0 0 0



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 2 D = {1, 2} F = {3}
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Archetype A 2394

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [250]) at the
same time, examine the size of the set F above.Notice that this property does not apply to
matrices that are not square.

Singular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.
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〈
−1

1
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])〈

1
2
1

 ,
−1

1
1


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
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the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[
1 −2 3

]
〈

−3
0
1

 ,
2

1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈
 1

0
−1

3

 ,
0

1
2
3


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])〈

1
0
1

 ,
 0

1
−1


〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [727],
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Theorem NI [781])

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 3 Rank: 2 Nullity: 1

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [1348]). (Product of
all eigenvalues?)
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Determinant = 0

Eigenvalues, and bases for eigenspaces. (Definition EEM [1365],Definition EM [1392])

λ = 0 EA (0) =

〈
−1

1
1


〉

λ = 2 EA (2) =

〈
1

5
3


〉

Geometric and algebraic multiplicities. (Definition GME [1399]Definition AME [1399])
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γA (0) = 1 αA (0) = 2

γA (2) = 1 αA (2) = 1

Diagonalizable? (Definition DZM [1497])

No, γA (0) 6= αB (0), Theorem DMFE [1506].
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Archetype B

Summary System with three equations, three unknowns. Nonsingular coefficient matrix.
Distinct integer eigenvalues for coefficient matrix.

A system of linear equations (Definition SLE [25]):

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

Version 2.11



Archetype B 2402

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −3, x2 = 5, x3 = 2

Augmented matrix of the linear system of equations (Definition AM [81]):

−7 −6 −12 −33
5 5 7 24
1 0 4 5
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 0 −3

0 1 0 5

0 0 1 2



Analysis of the augmented matrix (Notation RREFA [92]):

r = 3 D = {1, 2, 3} F = {4}

Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
Notice the relationship between the free variables and the set F above. Also, notice the
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pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.x1

x2

x3

 =

−3
5
2



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
properties of the original system.

−11x1 + 2x2 − 14x3 = 0

23x1 − 6x2 + 33x3 = 0

14x1 − 2x2 + 17x3 = 0
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Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0, x3 = 0

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros:

 1 0 0 0

0 1 0 0

0 0 1 0
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Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 3 D = {1, 2, 3} F = {4}

Coefficient matrix of original system of equations, and of associated homogenous system.
This matrix will be the subject of further analysis, rather than the systems of equations.−7 −6 −12

5 5 7
1 0 4
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Matrix brought to reduced row-echelon form: 1 0 0

0 1 0

0 0 1



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 3 D = {1, 2, 3} F = { }

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [250]) at the
same time, examine the size of the set F above.Notice that this property does not apply to
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matrices that are not square.

Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])
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〈
−7

5
1

 ,
−6

5
0

 ,
−12

7
4


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[]
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〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])〈

1
0
0

 ,
0

1
0

 ,
0

0
1


〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [727],
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Theorem NI [781])−10 −12 −9
13
2

8 11
2

5
2

3 5
2



Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 3 Rank: 3 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [1348]). (Product of
all eigenvalues?)
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Determinant = −2

Eigenvalues, and bases for eigenspaces. (Definition EEM [1365],Definition EM [1392])

λ = −1 EB (−1) =

〈
−5

3
1


〉

λ = 1 EB (1) =

〈
−3

2
1


〉

λ = 2 EB (2) =

〈
−2

1
1


〉
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Geometric and algebraic multiplicities. (Definition GME [1399]Definition AME [1399])

γB (−1) = 1 αB (−1) = 1

γB (1) = 1 αB (1) = 1

γB (2) = 1 αB (2) = 1

Diagonalizable? (Definition DZM [1497])
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Yes, distinct eigenvalues, Theorem DED [1513].

The diagonalization. (Theorem DC [1499])−1 −1 −1
2 3 1
−1 −2 1

−7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1


=

−1 0 0
0 1 0
0 0 2
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Archetype C

Summary System with three equations, four variables. Consistent. Null space of coeffi-
cient matrix has dimension 1.

A system of linear equations (Definition SLE [25]):

2x1 − 3x2 + x3 − 6x4 = −7

4x1 + x2 + 2x3 + 9x4 = −7

3x1 + x2 + x3 + 8x4 = −8

Version 2.11



Archetype C 2417

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −7, x2 = −2, x3 = 7, x4 = 1

x1 = −1, x2 = 7, x3 = 4, x4 = −2

Augmented matrix of the linear system of equations (Definition AM [81]):

2 −3 1 −6 −7
4 1 2 9 −7
3 1 1 8 −8
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 0 2 −5

0 1 0 3 1

0 0 1 −1 6



Analysis of the augmented matrix (Notation RREFA [92]):

r = 3 D = {1, 2, 3} F = {4, 5}

Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
Notice the relationship between the free variables and the set F above. Also, notice the
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pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.
x1

x2

x3

x4

 =


−5
1
6
0

+ x4


−2
−3
1
1



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
properties of the original system.

2x1 − 3x2 + x3 − 6x4 = 0

4x1 + x2 + 2x3 + 9x4 = 0
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3x1 + x2 + x3 + 8x4 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = −2, x2 = −3, x3 = 1, x4 = 1

x1 = −4, x2 = −6, x3 = 2, x4 = 2

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
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zeros: 1 0 0 2 0

0 1 0 3 0

0 0 1 −1 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 3 D = {1, 2, 3} F = {4, 5}

Coefficient matrix of original system of equations, and of associated homogenous system.
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This matrix will be the subject of further analysis, rather than the systems of equations.2 −3 1 −6
4 1 2 9
3 1 1 8



Matrix brought to reduced row-echelon form: 1 0 0 2

0 1 0 3

0 0 1 −1



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 3 D = {1, 2, 3} F = {4}
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This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.

〈

−2
−3
1
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
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(Theorem BCS [822])〈
2

4
3

 ,
−3

1
1

 ,
1

2
1


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[ ]
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〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])

〈


1
0
0
2

 ,


0
1
0
3

 ,


0
0
1
−1



〉

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
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ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 4 Rank: 3 Nullity: 1
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Archetype D

Summary System with three equations, four variables. Consistent. Null space of coeffi-
cient matrix has dimension 2. Coefficient matrix identical to that of Archetype E, vector of
constants is different.

A system of linear equations (Definition SLE [25]):

2x1 + x2 + 7x3 − 7x4 = 8

−3x1 + 4x2 − 5x3 − 6x4 = −12

x1 + x2 + 4x3 − 5x4 = 4
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Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 0, x2 = 1, x3 = 2, x4 = 1

x1 = 4, x2 = 0, x3 = 0, x4 = 0

x1 = 7, x2 = 8, x3 = 1, x4 = 3

Augmented matrix of the linear system of equations (Definition AM [81]): 2 1 7 −7 8
−3 4 −5 −6 −12
1 1 4 −5 4
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 3 −2 4

0 1 1 −3 0
0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [92]):

r = 2 D = {1, 2} F = {3, 4, 5}

Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
Notice the relationship between the free variables and the set F above. Also, notice the
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pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.
x1

x2

x3

x4

 =


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
properties of the original system.

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0
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x1 + x2 + 4x3 − 5x4 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = −3, x2 = −1, x3 = 1, x4 = 0

x1 = 2, x2 = 3, x3 = 0, x4 = 1

x1 = −1, x2 = 2, x3 = 1, x4 = 1

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
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zeros: 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 2 D = {1, 2} F = {3, 4, 5}

Coefficient matrix of original system of equations, and of associated homogenous system.

Version 2.11



Archetype D 2434

This matrix will be the subject of further analysis, rather than the systems of equations. 2 1 7 −7
−3 4 −5 −6
1 1 4 −5



Matrix brought to reduced row-echelon form: 1 0 3 −2

0 1 1 −3
0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 2 D = {1, 2} F = {3, 4}
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This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.

〈

−3
−1
1
0

 ,


2
3
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
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(Theorem BCS [822])〈
 2
−3
1

 ,
1

4
1


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[
1 1

7
−11

7

]
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〈
11

7

0
1

 ,
−1

7

1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈
 1

0
7
11

 ,
 0

1
1
11


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])

〈


1
0
3
−2

 ,


0
1
1
−3



〉

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
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ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 4 Rank: 2 Nullity: 2
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Archetype E

Summary System with three equations, four variables. Inconsistent. Null space of coeffi-
cient matrix has dimension 2. Coefficient matrix identical to that of Archetype D, constant
vector is different.

A system of linear equations (Definition SLE [25]):

2x1 + x2 + 7x3 − 7x4 = 2

−3x1 + 4x2 − 5x3 − 6x4 = 3

x1 + x2 + 4x3 − 5x4 = 2
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Some solutions to the system of linear equations (not necessarily exhaustive):

None. (Why?)

Augmented matrix of the linear system of equations (Definition AM [81]):

 2 1 7 −7 2
−3 4 −5 −6 3
1 1 4 −5 2
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 3 −2 0

0 1 1 −3 0

0 0 0 0 1



Analysis of the augmented matrix (Notation RREFA [92]):

r = 3 D = {1, 2, 5} F = {3, 4}

Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
Notice the relationship between the free variables and the set F above. Also, notice the
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pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.

Inconsistent system, no solutions exist.

Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
properties of the original system.

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0
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Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = 4, x2 = 13, x3 = 2, x4 = 5

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros: 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0
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Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 2 D = {1, 2} F = {3, 4, 5}

Coefficient matrix of original system of equations, and of associated homogenous system.
This matrix will be the subject of further analysis, rather than the systems of equations. 2 1 7 −7
−3 4 −5 −6
1 1 4 −5
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Matrix brought to reduced row-echelon form: 1 0 3 −2

0 1 1 −3
0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 2 D = {1, 2} F = {3, 4}

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
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SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.

〈

−3
−1
1
0

 ,


2
3
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])
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〈
 2
−3
1

 ,
1

4
1


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[
1 1

7
−11

7

]
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〈
11

7

0
1

 ,
−1

7

1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈
 1

0
7
11

 ,
 0

1
1
11


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])

〈


1
0
3
−2

 ,


0
1
1
−3



〉

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
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ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 4 Rank: 2 Nullity: 2
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Archetype F

Summary System with four equations, four variables. Nonsingular coefficient matrix.
Integer eigenvalues, one has “high” multiplicity.

A system of linear equations (Definition SLE [25]):

33x1 − 16x2 + 10x3 − 2x4 = −27

99x1 − 47x2 + 27x3 − 7x4 = −77

78x1 − 36x2 + 17x3 − 6x4 = −52

−9x1 + 2x2 + 3x3 + 4x4 = 5
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Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 1, x2 = 2, x3 = −2, x4 = 4

Augmented matrix of the linear system of equations (Definition AM [81]):


33 −16 10 −2 −27
99 −47 27 −7 −77
78 −36 17 −6 −52
−9 2 3 4 5
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 0 0 0 1

0 1 0 0 2

0 0 1 0 −2

0 0 0 1 4



Analysis of the augmented matrix (Notation RREFA [92]):

r = 4 D = {1, 2, 3, 4} F = {5}

Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
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Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.
x1

x2

x3

x4

 =


1
2
−2
4



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
properties of the original system.

33x1 − 16x2 + 10x3 − 2x4 = 0

99x1 − 47x2 + 27x3 − 7x4 = 0
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78x1 − 36x2 + 17x3 − 6x4 = 0

−9x1 + 2x2 + 3x3 + 4x4 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
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zeros:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 4 D = {1, 2, 3, 4} F = {5}

Coefficient matrix of original system of equations, and of associated homogenous system.
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This matrix will be the subject of further analysis, rather than the systems of equations.
33 −16 10 −2
99 −47 27 −7
78 −36 17 −6
−9 2 3 4



Matrix brought to reduced row-echelon form:


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 4 D = {1, 2, 3, 4} F = { }

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [250]) at the
same time, examine the size of the set F above.Notice that this property does not apply to
matrices that are not square.

Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
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SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])
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〈


33
99
78
−9

 ,

−16
−47
−36

2

 ,


10
27
17
3

 ,

−2
−7
−6
4



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[]
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〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])
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〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [727],
Theorem NI [781])
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− (86

3

)
38
3
− (11

3

)
7
3

− (129
2

)
86
3
− (17

2

)
31
6−13 6 −2 1

− (45
2

)
29
3
− (5

2

)
13
6



Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 4 Rank: 4 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [1348]). (Product of
all eigenvalues?)
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Determinant = −18

Eigenvalues, and bases for eigenspaces. (Definition EEM [1365],Definition EM [1392])

λ = −1 EF (−1) =

〈


1
2
0
1



〉

λ = 2 EF (2) =

〈


2
5
2
1



〉
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λ = 3 EF (3) =

〈


1
1
0
7

 ,


17
45
21
0



〉

Geometric and algebraic multiplicities. (Definition GME [1399]Definition AME [1399])

γF (−1) = 1 αF (−1) = 1

γF (2) = 1 αF (2) = 1

γF (3) = 2 αF (3) = 2

Diagonalizable? (Definition DZM [1497])
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Yes, full eigenspaces, Theorem DMFE [1506].

The diagonalization. (Theorem DC [1499])
12 −5 1 −1
−39 18 −7 3

27
7
−13

7
6
7
−1

7
26
7
−12

7
5
7
−2

7




33 −16 10 −2
99 −47 27 −7
78 −36 17 −6
−9 2 3 4




1 2 1 17
2 5 1 45
0 2 0 21
1 1 7 0



=


−1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3
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Archetype G

Summary System with five equations, two variables. Consistent. Null space of coefficient
matrix has dimension 0. Coefficient matrix identical to that of Archetype H, constant vector
is different.

A system of linear equations (Definition SLE [25]):

2x1 + 3x2 = 6

−x1 + 4x2 = −14

3x1 + 10x2 = −2
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3x1 − x2 = 20

6x1 + 9x2 = 18

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 6, x2 = −2

Augmented matrix of the linear system of equations (Definition AM [81]):
2 3 6
−1 4 −14
3 10 −2
3 −1 20
6 9 18
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 0 6

0 1 −2
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix (Notation RREFA [92]):

r = 2 D = {1, 2} F = {3}
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Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.[
x1

x2

]
=

[
6
−2

]

Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
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properties of the original system.

2x1 + 3x2 = 0

−x1 + 4x2 = 0

3x1 + 10x2 = 0

3x1 − x2 = 0

6x1 + 9x2 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
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zeros:
1 0 0

0 1 0
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 2 D = {1, 2} F = {3}

Coefficient matrix of original system of equations, and of associated homogenous system.

Version 2.11



Archetype G 2475

This matrix will be the subject of further analysis, rather than the systems of equations.
2 3
−1 4
3 10
3 −1
6 9



Matrix brought to reduced row-echelon form:
1 0

0 1
0 0
0 0
0 0
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Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 2 D = {1, 2} F = { }

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.
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〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])

〈


2
−1
3
3
6

 ,


3
4
10
−1
9



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
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the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =

1 0 0 0 −1
3

0 1 0 1− 1
3

0 0 1 1 −1


〈


1
3
1
3

1
0
1

 ,


0
−1
−1
1
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
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These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.

〈


1
0
2
1
3

 ,


0
1
1
−1
0



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])
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〈{[
1
0

]
,

[
0
1

]}〉

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 2 Rank: 2 Nullity: 0
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Archetype H

Summary System with five equations, two variables. Inconsistent, overdetermined. Null
space of coefficient matrix has dimension 0. Coefficient matrix identical to that of Archetype
G, constant vector is different.

A system of linear equations (Definition SLE [25]):

2x1 + 3x2 = 5

−x1 + 4x2 = 6

3x1 + 10x2 = 2
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3x1 − x2 = −1

6x1 + 9x2 = 3

Some solutions to the system of linear equations (not necessarily exhaustive):

None. (Why?)

Augmented matrix of the linear system of equations (Definition AM [81]):
2 3 5
−1 4 6
3 10 2
3 −1 −1
6 9 3
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 0 0

0 1 0

0 0 1
0 0 0
0 0 0



Analysis of the augmented matrix (Notation RREFA [92]):

r = 3 D = {1, 2, 3} F = { }
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Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.

Inconsistent system, no solutions exist.

Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
properties of the original system.

2x1 + 3x2 = 0
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−x1 + 4x2 = 0

3x1 + 10x2 = 0

3x1 − x2 = 0

6x1 + 9x2 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
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zeros:
1 0 0

0 1 0
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 2 D = {1, 2} F = {3}

Coefficient matrix of original system of equations, and of associated homogenous system.
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This matrix will be the subject of further analysis, rather than the systems of equations.
2 3
−1 4
3 10
3 −1
6 9



Matrix brought to reduced row-echelon form:
1 0

0 1
0 0
0 0
0 0
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Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 2 D = {1, 2} F = { }

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.
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〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])

〈


2
−1
3
3
6

 ,


3
4
10
−1
9



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
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the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[]

〈


1
3
1
3

1
0
1

 ,


0
−1
−1
1
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
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vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.

〈


1
0
2
1
3

 ,


0
1
1
−1
0



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.
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L =

1 0 0 0 −1
3

0 1 0 1− 1
3

0 0 1 1 −1


〈


1
3
1
3

1
0
1

 ,


0
−1
−1
1
0



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])
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〈{[
1
0

]
,

[
0
1

]}〉

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 2 Rank: 2 Nullity: 0
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Archetype I

Summary System with four equations, seven variables. Consistent. Null space of coeffi-
cient matrix has dimension 4.

A system of linear equations (Definition SLE [25]):

x1 + 4x2 − x4 + 7x6 − 9x7 = 3

2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 9

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 1

−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 4
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Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −25, x2 = 4, x3 = 22, x4 = 29, x5 = 1, x6 = 2, x7 = −3

x1 = −7, x2 = 5, x3 = 7, x4 = 15, x5 = −4, x6 = 2, x7 = 1

x1 = 4, x2 = 0, x3 = 2, x4 = 1, x5 = 0, x6 = 0, x7 = 0

Augmented matrix of the linear system of equations (Definition AM [81]):
1 4 0 −1 0 7 −9 3
2 8 −1 3 9 −13 7 9
0 0 2 −3 −4 12 −8 1
−1 −4 2 4 8 −31 37 4
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 4 0 0 2 1 −3 4

0 0 1 0 1 −3 5 2

0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [92]):

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7, 8}

Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
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Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.

x1

x2

x3

x4

x5

x6

x7


=



4
0
2
1
0
0
0


+ x2



−4
1
0
0
0
0
0


+ x5



−2
0
−1
−2
1
0
0


+ x6



−1
0
3
6
0
1
0


+ x7



3
0
−5
−6
0
0
1



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
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properties of the original system.

x1 + 4x2 − x4 + 7x6 − 9x7 = 0

2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 0

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 0

−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0

x1 = 3, x2 = 0, x3 = −5, x4 = −6, x5 = 0, x6 = 0, x7 = 1

x1 = −1, x2 = 0, x3 = 3, x4 = 6, x5 = 0, x6 = 1, x7 = 0
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x1 = −2, x2 = 0, x3 = −1, x4 = −2, x5 = 1, x6 = 0, x7 = 0

x1 = −4, x2 = 1, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0

x1 = −4, x2 = 1, x3 = −3, x4 = −2, x5 = 1, x6 = 1, x7 = 1

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros:


1 4 0 0 2 1 −3 0

0 0 1 0 1 −3 5 0

0 0 0 1 2 −6 6 0
0 0 0 0 0 0 0 0
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Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
system was consistent:

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7, 8}

Coefficient matrix of original system of equations, and of associated homogenous system.
This matrix will be the subject of further analysis, rather than the systems of equations.

1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37
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Matrix brought to reduced row-echelon form:
1 4 0 0 2 1 −3

0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7}

This is the null space of the matrix. The set of vectors used in the span construction is a
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linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.

〈




−4
1
0
0
0
0
0


,



−2
0
−1
−2
1
0
0


,



−1
0
3
6
0
1
0


,



3
0
−5
−6
0
0
1





〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
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(Theorem BCS [822])

〈


1
2
0
−1

 ,


0
−1
2
2

 ,

−1
3
−3
4



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[
1 −12

31
−13

31
7
31

]
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〈

− 7

31

0
0
1

 ,


13
31

0
1
0

 ,


12
31

1
0
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈


1
0
0
−31

7

 ,


0
1
0
12
7

 ,


0
0
1
13
7



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])
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〈




1
4
0
0
2
1
−3


,



0
0
1
0
1
−3
5


,



0
0
0
1
2
−6
6





〉

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 7 Rank: 3 Nullity: 4
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Archetype J

Summary System with six equations, nine variables. Consistent. Null space of coefficient
matrix has dimension 5.

A system of linear equations (Definition SLE [25]):

x1 + 2x2 − 2x3 + 9x4 + 3x5 − 5x6 − 2x7 + x8 + 27x9 = −5

2x1 + 4x2 + 3x3 + 4x4 − x5 + 4x6 + 10x7 + 2x8 − 23x9 = 18

x1 + 2x2 + x3 + 3x4 + x5 + x6 + 5x7 + 2x8 − 7x9 = 6

2x1 + 4x2 + 3x3 + 4x4 − 7x5 + 2x6 + 4x7 − 11x9 = 20

Version 2.11



Archetype J 2508

x1 + 2x2 + 5x4 + 2x5 − 4x6 + 3x7 + 8x8 + 13x9 = −4

−3x1 − 6x2 − x3 − 13x4 + 2x5 − 5x6 − 4x7 + 13x8 + 10x9 = −29

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 6, x2 = 0, x3 = −1, x4 = 0, x5 = −1, x6 = 2, x7 = 0, x8 = 0, x9 = 0

x1 = 4, x2 = 1, x3 = −1, x4 = 0, x5 = −1, x6 = 2, x7 = 0, x8 = 0, x9 = 0

x1 = −17, x2 = 7, x3 = 3, x4 = 2, x5 = −1, x6 = 14, x7 = −1, x8 = 3, x9 = 2
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x1 = −11, x2 = −6, x3 = 1, x4 = 5, x5 = −4, x6 = 7, x7 = 3, x8 = 1, x9 = 1

Augmented matrix of the linear system of equations (Definition AM [81]):


1 2 −2 9 3 −5 −2 1 27 −5
2 4 3 4 −1 4 10 2 −23 18
1 2 1 3 1 1 5 2 −7 6
2 4 3 4 −7 2 4 0 −11 20
1 2 0 5 2 −4 3 8 13 −4
−3 −6 −1 −13 2 −5 −4 13 10 −29
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Matrix in reduced row-echelon form, row-equivalent to augmented matrix:

1 2 0 5 0 0 1 −2 3 6

0 0 1 −2 0 0 3 5 −6 −1

0 0 0 0 1 0 1 1 −1 −1

0 0 0 0 0 1 0 −2 −3 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [92]):

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9, 10}
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Vector form of the solution set to the system of equations (Theorem VFSLS [350]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set F for
the larger examples.
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x1

x2

x3

x4

x5

x6

x7

x8

x9


=



6
0
−1
0
−1
2
0
0
0


+ x2



−2
1
0
0
0
0
0
0
0


+ x4



−5
0
2
1
0
0
0
0
0


+ x7



−1
0
−3
0
−1
0
1
0
0


+ x8



2
0
−5
0
−1
2
0
1
0


+ x9



−3
0
6
0
1
3
0
0
1



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [207]) by converting the constant terms to zeros and retaining the coefficients
of the variables. Properties of this new system will have precise relationships with various
properties of the original system.

x1 + 2x2 − 2x3 + 9x4 + 3x5 − 5x6 − 2x7 + x8 + 27x9 = 0
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2x1 + 4x2 + 3x3 + 4x4 − x5 + 4x6 + 10x7 + 2x8 − 23x9 = 0

x1 + 2x2 + x3 + 3x4 + x5 + x6 + 5x7 + 2x8 − 7x9 = 0

2x1 + 4x2 + 3x3 + 4x4 − 7x5 + 2x6 + 4x7 − 11x9 = 0

x1 + 2x2 + +5x4 + 2x5 − 4x6 + 3x7 + 8x8 + 13x9 = 0

−3x1 − 6x2 − x3 − 13x4 + 2x5 − 5x6 − 4x7 + 13x8 + 10x9 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily
exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0

x1 = −2, x2 = 1, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0

x1 = −23, x2 = 7, x3 = 4, x4 = 2, x5 = 0, x6 = 12, x7 = −1, x8 = 3, x9 = 2
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x1 = −17, x2 = −6, x3 = 2, x4 = 5, x5 = −3, x6 = 5, x7 = 3, x8 = 1, x9 = 1

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros:

1 2 0 5 0 0 1 −2 3 0

0 0 1 −2 0 0 3 5 −6 0

0 0 0 0 1 0 1 1 −1 0

0 0 0 0 0 1 0 −2 −3 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [92]).
Notice the slight variation for the same analysis of the original system only when the original
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system was consistent:

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9, 10}

Coefficient matrix of original system of equations, and of associated homogenous system.
This matrix will be the subject of further analysis, rather than the systems of equations.


1 2 −2 9 3 −5 −2 1 27
2 4 3 4 −1 4 10 2 −23
1 2 1 3 1 1 5 2 −7
2 4 3 4 −7 2 4 0 −11
1 2 0 5 2 −4 3 8 13
−3 −6 −1 −13 2 −5 −4 13 10
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Matrix brought to reduced row-echelon form:

1 2 0 5 0 0 1 −2 3

0 0 1 −2 0 0 3 5 −6

0 0 0 0 1 0 1 1 −1

0 0 0 0 0 1 0 −2 −3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9}
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This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.
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〈




−2
1
0
0
0
0
0
0
0


,



−5
0
2
1
0
0
0
0
0


,



−1
0
−3
0
−1
0
1
0
0


,



2
0
−5
0
−1
2
0
1
0


,



−3
0
6
0
1
3
0
0
1





〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])
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〈



1
2
1
2
1
−3

 ,

−2
3
1
3
0
−1

 ,


3
−1
1
−7
2
2

 ,

−5
4
1
2
−4
−5




〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =

[
1 0 186

131
51
131

−188
131

77
131

0 1 −272
131
− 45

131
58
131

− 14
131

]
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〈



− 77

131
14
131

0
0
0
1

 ,


188
131− 58
131

0
0
1
0

 ,

− 51

131
45
131

0
1
0
0

 ,

−186

131
272
131

1
0
0
0




〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈



1
0
0
0
−1
−29

7

 ,


0
1
0
0
−11

2−94
7

 ,


0
0
1
0
10
22

 ,


0
0
0
1
3
2

3




〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])
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〈




1
2
0
5
0
0
1
−2
3


,



0
0
1
−2
0
0
3
5
−6


,



0
0
0
0
1
0
1
1
−1


,



0
0
0
0
0
1
0
−2
−3





〉

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 9 Rank: 4 Nullity: 5
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Archetype K

Summary Square matrix of size 5. Nonsingular. 3 distinct eigenvalues, 2 of multiplicity
2.

A matrix:
10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20
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Matrix brought to reduced row-echelon form:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 5 D = {1, 2, 3, 4, 5} F = { }

Version 2.11



Archetype K 2526

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [250]) at the
same time, examine the size of the set F above.Notice that this property does not apply to
matrices that are not square.

Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.
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〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])

〈


10
12
−30
27
18

 ,


18
−2
−21
30
24

 ,


24
−6
−23
36
30

 ,


24
0
−30
37
30

 ,

−12
−18
39
−30
−20



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
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the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =
[]

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
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vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])
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〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [727],
Theorem NI [781])
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1 − (9

4

) − (3
2

)
3 −6

21
2

43
4

21
2

9 −9
−15 − (21

2

) −11 −15 39
2

9 15
4

9
2

10 −15
9
2

3
4

3
2

6 − (19
2

)



Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 5 Rank: 5 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [1348]). (Product of
all eigenvalues?)
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Determinant = 16

Eigenvalues, and bases for eigenspaces. (Definition EEM [1365],Definition EM [1392])

λ = −2 EK (−2) =

〈


2
−2
1
0
1

 ,

−1
2
−2
1
0



〉

λ = 1 EK (1) =

〈


4
−10

7
0
2

 ,

−4
18
−17

5
0



〉
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λ = 4 EK (4) =

〈


1
−1
0
1
1



〉

Geometric and algebraic multiplicities. (Definition GME [1399]Definition AME [1399])

γK (−2) = 2 αK (−2) = 2

γK (1) = 2 αK (1) = 2

γK (4) = 1 αK (4) = 1
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Diagonalizable? (Definition DZM [1497])

Yes, full eigenspaces, Theorem DMFE [1506].

The diagonalization. (Theorem DC [1499])


−4 −3 −4 −6 7
−7 −5 −6 −8 10
1 −1 −1 1 −3
1 0 0 1 −2
2 5 6 4 0




10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20




2 −1 4 −4 1
−2 2 −10 18 −1
1 −2 7 −17 0
0 1 0 5 1
1 0 2 0 1
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=


−2 0 0 0 0
0 −2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 4
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Archetype L

Summary Square matrix of size 5. Singular, nullity 2. 2 distinct eigenvalues, each of
“high” multiplicity.

A matrix:
−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6
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Matrix brought to reduced row-echelon form:
1 0 0 1 −2

0 1 0 −2 2

0 0 1 2 −1
0 0 0 0 0
0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [92]):

r = 5 D = {1, 2, 3} F = {4, 5}
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Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [250]) at the
same time, examine the size of the set F above.Notice that this property does not apply to
matrices that are not square.

Singular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem
SSNS [409], Theorem BNS [484]). Solve the homogenous system with this matrix as the
coefficient matrix and write the solutions in vector form (Theorem VFSLS [350]) to see
these vectors arise.
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〈


−1
2
−2
1
0

 ,


2
−2
1
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors
that are also columns of the matrix. These columns have indices that form the set D above.
(Theorem BCS [822])
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〈


−2
−6
10
−7
−4

 ,

−1
−5
7
−5
−3

 ,

−2
−4
7
−6
−4



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [894]. This is followed by
the column space described by a set of linearly independent vectors that span the null space
of L, computed as according to Theorem FS [902] and Theorem BNS [484]. When r = m,
the matrix L has no rows and the column space is all of Cm.

L =

[
1 0 −2 −6 5
0 1 4 10 −9

]
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〈


−5
9
0
0
1

 ,


6
−10

0
1
0

 ,


2
−4
1
0
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-
echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column
vectors. By Theorem CSRST [848] and Theorem BRS [843], and in the style of Example
CSROI [849], this yields a linearly independent set of vectors that span the column space.
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〈


1
0
0
9
4
5
2

 ,


0
1
0
5
4
3
2

 ,


0
0
1
1
2

1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (The-
orem BRS [843])
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〈


1
0
0
1
−2

 ,


0
1
0
−2
2

 ,


0
0
1
2
−1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [727],
Theorem NI [781])

Subspace dimensions associated with the matrix. (Definition NOM [1197], Definition
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ROM [1197]) Verify Theorem RPNC [1201]

Matrix columns: 5 Rank: 3 Nullity: 2

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [1348]). (Product of
all eigenvalues?)

Determinant = 0

Eigenvalues, and bases for eigenspaces. (Definition EEM [1365],Definition EM [1392])
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λ = −1 EL (−1) =

〈


−5
9
0
0
1

 ,


6
−10

0
1
0

 ,


2
−4
1
0
0



〉

λ = 0 EL (0) =

〈


2
−2
1
0
1

 ,

−1
2
−2
1
0



〉

Geometric and algebraic multiplicities. (Definition GME [1399]Definition AME [1399])
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γL (−1) = 3 αL (−1) = 3

γL (0) = 2 αL (0) = 2

Diagonalizable? (Definition DZM [1497])
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Yes, full eigenspaces, Theorem DMFE [1506].

The diagonalization. (Theorem DC [1499])


4 3 4 6 −6
7 5 6 9 −10
−10 −7 −7 −10 13
−4 −3 −4 −6 7
−7 −5 −6 −8 10



−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6



−5 6 2 2 −1
9 −10 −4 −2 2
0 0 1 1 −2
0 1 0 0 1
1 0 0 1 0



=


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0
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Archetype M

Summary Linear transformation with bigger domain than codomain, so it is guaranteed
to not be injective. Happens to not be surjective.

A linear transformation: (Definition LT [1550])

T : C5 7→ C3, T



x1

x2

x3

x4

x5


 =

x1 + 2x2 + 3x3 + 4x4 + 4x5

3x1 + x2 + 4x3 − 3x4 + 7x5

x1 − x2 − 5x4 + x5
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A basis for the null space of the linear transformation: (Definition KLT [1643])




−2
−1
0
0
1

 ,


2
−3
0
1
0

 ,

−1
−1
1
0
0




Injective: No. (Definition ILT [1630])

Since the kernel is nontrivial Theorem KILT [1653] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity
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of at least 2, just from checking dimensions of the domain and the codomain. In particular,
verify that

T




1
2
−1
4
5


 =

 38
24
−16

 T




0
−3
0
5
6


 =

 38
24
−16



This demonstration that T is not injective is constructed with the observation that
0
−3
0
5
6

 =


1
2
−1
4
5

+


−1
−5
1
1
1
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and

z =


−1
−5
1
1
1

 ∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):
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1

3
1

 ,
 2

1
−1

 ,
3

4
0

 ,
 4
−3
−5

 ,
4

7
1


If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:

 1
0
−4

5

 ,
0

1
3
5



Surjective: No. (Definition SLT [1687])
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Notice that the range is not all of C3 since its dimension 2, not 3. In particular, verify that3
4
5

 6∈ R(T ), by setting the output equal to this vector and seeing that the resulting system

of linear equations has no solution, i.e. is inconsistent. So the preimage, T−1

3
4
5

, is

empty. This alone is sufficient to see that the linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with
earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 5 Rank: 2 Nullity: 3

Invertible: No.
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Not injective or surjective.

Matrix representation (Theorem MLTCV [1574]):

T : C5 7→ C3, T (x) = Ax, A =

1 2 3 4 4
3 1 4 −3 7
1 −1 0 −5 1
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Archetype N

Summary Linear transformation with domain larger than its codomain, so it is guaran-
teed to not be injective. Happens to be onto.

A linear transformation: (Definition LT [1550])

T : C5 7→ C3, T



x1

x2

x3

x4

x5


 =

2x1 + x2 + 3x3 − 4x4 + 5x5

x1 − 2x2 + 3x3 − 9x4 + 3x5

3x1 + 4x3 − 6x4 + 5x5
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A basis for the null space of the linear transformation: (Definition KLT [1643])




1
−1
−2
0
1

 ,

−2
−1
3
1
0




Injective: No. (Definition ILT [1630])

Since the kernel is nontrivial Theorem KILT [1653] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity
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of at least 2, just from checking dimensions of the domain and the codomain. In particular,
verify that

T



−3
1
−2
−3
1


 =

 6
19
6

 T



−4
−4
−2
−1
4


 =

 6
19
6



This demonstration that T is not injective is constructed with the observation that
−4
−4
−2
−1
4

 =


−3
1
−2
−3
1

+


−1
−5
0
2
3
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and

z =


−1
−5
0
2
3

 ∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):
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2

1
3

 ,
 1
−2
0

 ,
3

3
4

 ,
−4
−9
−6

 ,
5

3
5


If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:

1
0
0

 ,
0

1
0

 ,
0

0
1



Surjective: Yes. (Definition SLT [1687])
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Notice that the basis for the range above is the standard basis for C3. So the range is all of
C3 and thus the linear transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with
earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 5 Rank: 3 Nullity: 2

Invertible: No.

Not surjective, and the relative sizes of the domain and codomain mean the linear transfor-
mation cannot be injective. (Theorem ILTIS [1761])

Matrix representation (Theorem MLTCV [1574]):
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T : C5 7→ C3, T (x) = Ax, A =

2 1 3 −4 5
1 −2 3 −9 3
3 0 4 −6 5



Version 2.11



Archetype O 2563

Archetype O

Summary Linear transformation with a domain smaller than the codomain, so it is
guaranteed to not be onto. Happens to not be one-to-one.

A linear transformation: (Definition LT [1550])

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3
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A basis for the null space of the linear transformation: (Definition KLT [1643])


−2

1
1



Injective: No. (Definition ILT [1630])

Since the kernel is nontrivial Theorem KILT [1653] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity
of at least 2, just from checking dimensions of the domain and the codomain. In particular,

Version 2.11



Archetype O 2565

verify that

T

 5
−1
3

 =


−15
−19

7
10
11

 T

1
1
5

 =


−15
−19

7
10
11


This demonstration that T is not injective is constructed with the observation that1

1
5

 =

 5
−1
3

+

−4
2
2


and

z =

−4
2
2

 ∈ K(T )
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so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):




−1
−1
1
2
1

 ,


1
2
1
3
0

 ,

−3
−4
1
1
2




If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
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basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:


1
0
−3
−7
−2

 ,


0
1
2
5
1




Subspace dimensions associated with the linear transformation. Examine parallels with
earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 3 Rank: 2 Nullity: 1
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Surjective: No. (Definition SLT [1687])

The dimension of the range is 2, and the codomain (C5) has dimension 5. So the transfor-
mation is not onto. Notice too that since the domain C3 has dimension 3, it is impossible
for the range to have a dimension greater than 3, and no matter what the actual definition
of the function, it cannot possibly be onto.

To be more precise, verify that


2
3
1
1
1

 6∈ R(T ), by setting the output equal to this vector

and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent.
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So the preimage, T−1




2
3
1
1
1


, is empty. This alone is sufficient to see that the linear

transformation is not onto.

Invertible: No.

Not injective, and the relative dimensions of the domain and codomain prohibit any possi-
bility of being surjective.

Matrix representation (Theorem MLTCV [1574]):
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T : C3 7→ C5, T (x) = Ax, A =


−1 1 −3
−1 2 −4
1 1 1
2 3 1
1 0 2
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Archetype P

Summary Linear transformation with a domain smaller that its codomain, so it is guar-
anteed to not be surjective. Happens to be injective.

A linear transformation: (Definition LT [1550])

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 + x3

−x1 + 2x2 + 2x3

x1 + x2 + 3x3

2x1 + 3x2 + x3

−2x1 + x2 + 3x3
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A basis for the null space of the linear transformation: (Definition KLT [1643])

{ }

Injective: Yes. (Definition ILT [1630])

Since K(T ) = {0}, Theorem KILT [1653] tells us that T is injective.

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
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(Theorem SSRLT [1716]):




−1
−1
1
2
−2

 ,


1
2
1
3
1

 ,


1
2
3
1
3




If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
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un-coordinatizing. A basis for the range is:


1
0
0
−10

6

 ,


0
1
0
7
−3

 ,


0
0
1
−1
1




Surjective: No. (Definition SLT [1687])

The dimension of the range is 3, and the codomain (C5) has dimension 5. So the transforma-
tion is not surjective. Notice too that since the domain C3 has dimension 3, it is impossible
for the range to have a dimension greater than 3, and no matter what the actual definition
of the function, it cannot possibly be surjective in this situation.
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To be more precise, verify that


2
1
−3
2
6

 6∈ R(T ), by setting the output equal to this vector

and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent.

So the preimage, T−1




2
1
−3
2
6


, is empty. This alone is sufficient to see that the linear

transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with
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earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 3 Rank: 3 Nullity: 0

Invertible: No.

The relative dimensions of the domain and codomain prohibit any possibility of being sur-
jective, so apply Theorem ILTIS [1761].

Matrix representation (Theorem MLTCV [1574]):
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T : C3 7→ C5, T (x) = Ax, A =


−1 1 1
−1 2 2
1 1 3
2 3 1
−2 1 3
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Archetype Q

Summary Linear transformation with equal-sized domain and codomain, so it has the
potential to be invertible, but in this case is not. Neither injective nor surjective. Diagonal-
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izable, though.

A linear transformation: (Definition LT [1550])

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5



A basis for the null space of the linear transformation: (Definition KLT [1643])
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3
4
1
3
3




Injective: No. (Definition ILT [1630])

Since the kernel is nontrivial Theorem KILT [1653] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity
of at least 2, just from checking dimensions of the domain and the codomain. In particular,
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verify that

T




1
3
−1
2
4


 =


4
55
72
77
31

 T




4
7
0
5
7


 =


4
55
72
77
31


This demonstration that T is not injective is constructed with the observation that


4
7
0
5
7

 =


1
3
−1
2
4

+


3
4
1
3
3
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and

z =


3
4
1
3
3

 ∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):
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−2
−16
−19
−21
−9

 ,


3
9
7
9
5

 ,


3
12
14
15
7

 ,

−6
−28
−32
−35
−16

 ,


3
28
37
39
16




If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:


1
0
0
0
1

 ,


0
1
0
0
−1

 ,


0
0
1
0
−1

 ,


0
0
0
1
2
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Surjective: No. (Definition SLT [1687])

The dimension of the range is 4, and the codomain (C5) has dimension 5. So R(T ) 6= C5

and by Theorem RSLT [1710] the transformation is not surjective.

To be more precise, verify that


−1
2
3
−1
4

 6∈ R(T ), by setting the output equal to this vector

and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent.
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So the preimage, T−1



−1
2
3
−1
4


, is empty. This alone is sufficient to see that the linear

transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with
earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 5 Rank: 4 Nullity: 1

Invertible: No.

Neither injective nor surjective. Notice that since the domain and codomain have the same
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dimension, either the transformation is both onto and one-to-one (making it invertible) or
else it is both not onto and not one-to-one (as in this case) by Theorem RPNDD [1781].

Matrix representation (Theorem MLTCV [1574]):

T : C5 7→ C5, T (x) = Ax, A =


−2 3 3 −6 3
−16 9 12 −28 28
−19 7 14 −32 37
−21 9 15 −35 39
−9 5 7 −16 16



Eigenvalues and eigenvectors (Definition EELT [1956], Theorem EER [1996]):
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λ = −1 ET (−1) =

〈


0
2
3
3
1



〉

λ = 0 ET (0) =

〈


3
4
1
3
3



〉
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λ = 1 ET (1) =

〈


5
3
0
0
2

 ,

−3
1
0
2
0

 ,


1
−1
2
0
0



〉

Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

B =




0
2
3
3
1

 ,


3
4
1
3
3

 ,


5
3
0
0
2

 ,

−3
1
0
2
0

 ,


1
−1
2
0
0
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MT
B,B =


−1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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Archetype R

Summary Linear transformation with equal-sized domain and codomain. Injective, sur-
jective, invertible, diagonalizable, the works.

A linear transformation: (Definition LT [1550])

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5
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A basis for the null space of the linear transformation: (Definition KLT [1643])

{ }

Injective: Yes. (Definition ILT [1630])

Since the kernel is trivial Theorem KILT [1653] tells us that the linear transformation is
injective.

A basis for the range of the linear transformation: (Definition RLT [1701])
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Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):




−65
36
−44
34
12

 ,


128
−73
88
−68
−24

 ,


10
−1
5
−3
−1

 ,

−262
151
−180
140
49

 ,


40
−16
24
−18
−5




If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
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un-coordinatizing. A basis for the range is:


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1




Surjective: Yes. (Definition SLT [1687])

A basis for the range is the standard basis of C5, so R(T ) = C5 and Theorem RSLT [1710]
tells us T is surjective. Or, the dimension of the range is 5, and the codomain (C5) has
dimension 5. So the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with
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earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 5 Rank: 5 Nullity: 0

Invertible: Yes.

Both injective and surjective (Theorem ILTIS [1761]). Notice that since the domain and
codomain have the same dimension, either the transformation is both injective and surjective
(making it invertible, as in this case) or else it is both not injective and not surjective.

Matrix representation (Theorem MLTCV [1574]):
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T : C5 7→ C5, T (x) = Ax, A =


−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5



The inverse linear transformation (Definition IVLT [1750]):

T−1 : C5 → C5, T−1



x1

x2

x3

x4

x5


 =


−47x1 + 92x2 + x3 − 181x4 − 14x5

27x1 − 55x2 + 7
2
x3 + 221

2
x4 + 11x5

−32x1 + 64x2 − x3 − 126x4 − 12x5

25x1 − 50x2 + 3
2
x3 + 199

2
x4 + 9x5

9x1 − 18x2 + 1
2
x3 + 71

2
x4 + 4x5


Verify that T (T−1 (x)) = x and T (T−1 (x)) = x, and notice that the representations of
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the transformation and its inverse are matrix inverses (Theorem IMR [1907], Definition MI
[727]).

Eigenvalues and eigenvectors (Definition EELT [1956], Theorem EER [1996]):

λ = −1 ET (−1) =

〈


−57

0
−18
14
5

 ,


2
1
0
0
0



〉
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λ = 1 ET (1) =

〈


−10
−5
−6
0
1

 ,


2
3
1
1
0



〉

λ = 2 ET (2) =

〈


−6
3
−4
3
1



〉
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Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

B =




−57

0
−18
14
5

 ,


2
1
0
0
0

 ,

−10
−5
−6
0
1

 ,


2
3
1
1
0

 ,

−6
3
−4
3
1




MT
B,B =


−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2
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Archetype S

Summary Domain is column vectors, codomain is matrices. Domain is dimension 3 and
codomain is dimension 4. Not injective, not surjective.

A linear transformation: (Definition LT [1550])

T : C3 7→M22, T

ab
c

 =

[
a− b 2a+ 2b+ c

3a+ b+ c −2a− 6b− 2c

]
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A basis for the null space of the linear transformation: (Definition KLT [1643])


−1
−1
4



Injective: No. (Definition ILT [1630])

Since the kernel is nontrivial Theorem KILT [1653] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity
of at least 1, just from checking dimensions of the domain and the codomain. In particular,
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verify that

T

2
1
3

 =

[
1 9
10 −16

]
T

 0
−1
11

 =

[
1 9
10 −16

]

This demonstration that T is not injective is constructed with the observation that 0
−1
11

 =

2
1
3

+

−2
−2
8


and

z =

−2
−2
8

 ∈ K(T )
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so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):

{[
1 2
3 −2

]
,

[−1 2
1 −6

]
,

[
0 1
1 −2

]}

If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
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un-coordinatizing. A basis for the range is:{[
1 0
1 2

]
,

[
0 1
1 −2

]}

Surjective: No. (Definition SLT [1687])

The dimension of the range is 2, and the codomain (M22) has dimension 4. So the trans-
formation is not surjective. Notice too that since the domain C3 has dimension 3, it is
impossible for the range to have a dimension greater than 3, and no matter what the actual
definition of the function, it cannot possibly be surjective in this situation.

To be more precise, verify that

[
2 −1
1 3

]
6∈ R(T ), by setting the output of T equal to

this matrix and seeing that the resulting system of linear equations has no solution, i.e. is

inconsistent. So the preimage, T−1

([
2 −1
1 3

])
, is empty. This alone is sufficient to see that
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the linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with
earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 3 Rank: 2 Nullity: 1

Invertible: No.

Not injective (Theorem ILTIS [1761]), and the relative dimensions of the domain and codomain
prohibit any possibility of being surjective.

Matrix representation (Definition MR [1855]):
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B =


1

0
0

 ,
0

1
0

 ,
0

0
1


C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

MT
B,C =


1 −1 0
2 2 1
3 1 1
−2 −6 −2
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Archetype T

Summary Domain and codomain are polynomials. Domain has dimension 5, while
codomain has dimension 6. Is injective, can’t be surjective.

A linear transformation: (Definition LT [1550])

T : P4 7→ P5, T (p(x)) = (x− 2)p(x)

A basis for the null space of the linear transformation: (Definition KLT [1643])
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{ }

Injective: Yes. (Definition ILT [1630])

Since the kernel is trivial Theorem KILT [1653] tells us that the linear transformation is
injective.

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):

{
x− 2, x2 − 2x, x3 − 2x2, x4 − 2x3, x5 − 2x4, x6 − 2x5

}
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If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:{

− 1

32
x5 + 1, − 1

16
x5 + x, −1

8
x5 + x2, −1

4
x5 + x3, −1

2
x5 + x4

}

Surjective: No. (Definition SLT [1687])

The dimension of the range is 5, and the codomain (P5) has dimension 6. So the transforma-
tion is not surjective. Notice too that since the domain P4 has dimension 5, it is impossible
for the range to have a dimension greater than 5, and no matter what the actual definition
of the function, it cannot possibly be surjective in this situation.
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To be more precise, verify that 1 + x + x2 + x3 + x4 6∈ R(T ), by setting the output
equal to this vector and seeing that the resulting system of linear equations has no solution,
i.e. is inconsistent. So the preimage, T−1 (1 + x+ x2 + x3 + x4), is nonempty. This alone is
sufficient to see that the linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with
earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 5 Rank: 5 Nullity: 0

Invertible: No.

The relative dimensions of the domain and codomain prohibit any possibility of being sur-

Version 2.11



Archetype T 2611

jective, so apply Theorem ILTIS [1761].

Matrix representation (Definition MR [1855]):

B =
{

1, x, x2, x3, x4
}

C =
{

1, x, x2, x3, x4, x5
}

MT
B,C =


−2 0 0 0 0
1 −2 0 0 0
0 1 −2 0 0
0 0 1 −2 0
0 0 0 1 −2
0 0 0 0 1
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Archetype U

Summary Domain is matrices, codomain is column vectors. Domain has dimension 6,
while codomain has dimension 4. Can’t be injective, is surjective.

A linear transformation: (Definition LT [1550])

T : M23 7→ C4, T

([
a b c
d e f

])
=


a+ 2b+ 12c− 3d+ e+ 6f

2a− b− c+ d− 11f
a+ b+ 7c+ 2d+ e− 3f
a+ 2b+ 12c+ 5e− 5f
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A basis for the null space of the linear transformation: (Definition KLT [1643])

{[
3 −4 0
1 2 1

]
,

[−2 −5 1
0 0 0

]}

Injective: No. (Definition ILT [1630])

Since the kernel is nontrivial Theorem KILT [1653] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 4, we are guaranteed to have a nullity
of at least 2, just from checking dimensions of the domain and the codomain. In particular,
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verify that

T

([
1 10 −2
3 −1 1

])
=


−7
−14
−1
−13

 T

([
5 −3 −1
5 3 3

])
=


−7
−14
−1
−13


This demonstration that T is not injective is constructed with the observation that[

5 −3 −1
5 3 3

]
=

[
1 10 −2
3 −1 1

]
+

[
4 −13 1
2 4 2

]
and

z =

[
4 −13 1
2 4 2

]
∈ K(T )
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so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):


1
2
1
1

 ,


2
−1
1
2

 ,


12
−1
7
12

 ,

−3
1
2
0

 ,


1
0
1
5

 ,


6
−11
−3
−5


If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
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tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




Surjective: Yes. (Definition SLT [1687])

A basis for the range is the standard basis of C4, so R(T ) = C4 and Theorem RSLT [1710]
tells us T is surjective. Or, the dimension of the range is 4, and the codomain (C4) has
dimension 4. So the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with
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earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 6 Rank: 4 Nullity: 2

Invertible: No.

The relative sizes of the domain and codomain mean the linear transformation cannot be
injective. (Theorem ILTIS [1761])

Matrix representation (Definition MR [1855]):

B =

{[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 1
0 0 0

]
,

[
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]}
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C =




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




MT
B,C =


1 2 12 −3 1 6
2 −1 −1 1 0 −11
1 1 7 2 1 −3
1 2 12 0 5 −5
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Archetype V

Summary Domain is polynomials, codomain is matrices. Domain and codomain both
have dimension 4. Injective, surjective, invertible. Square matrix representation, but domain
and codomain are unequal, so no eigenvalue information.

A linear transformation: (Definition LT [1550])

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=

[
a+ b a− 2c
d b− d

]
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A basis for the null space of the linear transformation: (Definition KLT [1643])

{ }

Injective: Yes. (Definition ILT [1630])

Since the kernel is trivial Theorem KILT [1653] tells us that the linear transformation is
injective.

A basis for the range of the linear transformation: (Definition RLT [1701])

Version 2.11



Archetype V 2621

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):

{[
1 1
0 0

]
,

[
1 0
0 1

]
,

[
0 −2
0 0

]
,

[
0 0
1 −1

]}
If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Surjective: Yes. (Definition SLT [1687])
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A basis for the range is the standard basis of M22, so R(T ) = M22 and Theorem RSLT [1710]
tells us T is surjective. Or, the dimension of the range is 4, and the codomain (M22) has
dimension 4. So the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with
earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 4 Rank: 4 Nullity: 0

Invertible: Yes.

Both injective and surjective (Theorem ILTIS [1761]). Notice that since the domain and
codomain have the same dimension, either the transformation is both injective and surjective
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(making it invertible, as in this case) or else it is both not injective and not surjective.

Matrix representation (Definition MR [1855]):

B =
{

1, x, x2, x3
}

C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

MT
B,C =


1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0 −1
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Since invertible, the inverse linear transformation. (Definition IVLT [1750])

T−1 : M22 7→ P3, T−1

([
a b
c d

])
= (a− c− d) + (c+ d)x+

1

2
(a− b− c− d)x2 + cx3
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Archetype W

Summary Domain is polynomials, codomain is polynomials. Domain and codomain both
have dimension 3. Injective, surjective, invertible, 3 distinct eigenvalues, diagonalizable.

A linear transformation: (Definition LT [1550])

T : P2 7→ P2, T
(
a+ bx+ cx2

)
= (19a+ 6b− 4c) + (−24a− 7b+ 4c) + (36a+ 12b− 9c)

A basis for the null space of the linear transformation: (Definition KLT [1643])
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{ }

Injective: Yes. (Definition ILT [1630])

Since the kernel is trivial Theorem KILT [1653] tells us that the linear transformation is
injective.

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):

{
19− 24x+ 36x2, 6− 7x+ 12x2, −4 + 4x− 9x2

}
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If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:{

1, x, x2
}

Surjective: Yes. (Definition SLT [1687])

A basis for the range is the standard basis of C5, so R(T ) = C5 and Theorem RSLT [1710]
tells us T is surjective. Or, the dimension of the range is 5, and the codomain (C5) has
dimension 5. So the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with
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earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 3 Rank: 3 Nullity: 0

Invertible: Yes.

Both injective and surjective (Theorem ILTIS [1761]). Notice that since the domain and
codomain have the same dimension, either the transformation is both injective and surjective
(making it invertible, as in this case) or else it is both not injective and not surjective.

Matrix representation (Definition MR [1855]):

B =
{

1, x, x2
}

C =
{

1, x, x2
}
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MT
B,C =

 19 6 −4
−24 −7 4
36 12 −9



Since invertible, the inverse linear transformation. (Definition IVLT [1750])

T−1 : P2 7→ P2, T−1
(
a+ bx+ cx2

)
= (−5a−2b+

4

3
c)+(24a+9b−20

3
c)x+(12a+4b−11

3
c)x2

Eigenvalues and eigenvectors (Definition EELT [1956], Theorem EER [1996]):

λ = −1 ET (−1) =
〈{

2x+ 3x2
}〉
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λ = 1 ET (1) = 〈{−1 + 3x}〉
λ = 3 ET (3) =

〈{
1− 2x+ x2

}〉
Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

B =
{

2x+ 3x2, −1 + 3x, 1− 2x+ x2
}

MT
B,B =

−1 0 0
0 1 0
0 0 3
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Archetype X

Summary Domain and codomain are square matrices. Domain and codomain both have
dimension 4. Not injective, not surjective, not invertible, 3 distinct eigenvalues, diagonaliz-
able.

A linear transformation: (Definition LT [1550])

T : M22 7→M22, T

([
a b
c d

])
=

[−2a+ 15b+ 3c+ 27d 10b+ 6c+ 18d
a− 5b− 9d −a− 4b− 5c− 8d

]
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A basis for the null space of the linear transformation: (Definition KLT [1643])

{[−6 −3
2 1

]}

Injective: No. (Definition ILT [1630])

Since the kernel is nontrivial Theorem KILT [1653] tells us that the linear transformation is
not injective. In particular, verify that

T

([−2 0
1 −4

])
=

[
115 78
−38 −35

]
T

([
4 3
−1 3

])
=

[
115 78
−38 −35

]
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This demonstration that T is not injective is constructed with the observation that[
4 3
−1 3

]
=

[−2 0
1 −4

]
+

[
6 3
−2 −1

]
and

z =

[
6 3
−2 −1

]
∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [1701])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [1716]):
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{[−2 0
1 −1

]
,

[
15 10
−5 −4

]
,

[
3 6
0 −5

]
,

[
27 18
−9 −8

]}
If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [1658]). This spanning set may be converted to a “nice”
basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesen-
tation), row-reducing, and retaining the nonzero rows (Theorem BRS [843]), and perhaps
un-coordinatizing. A basis for the range is:{[

1 0
−1

2
0

]
,

[
0 1
1
4

0

]
,

[
0 0
0 1

]}

Surjective: No. (Definition SLT [1687])

The dimension of the range is 3, and the codomain (M22) has dimension 5. So R(T ) 6= M22

and by Theorem RSLT [1710] the transformation is not surjective.
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To be more precise, verify that

[
2 4
3 1

]
6∈ R(T ), by setting the output of T equal to

this matrix and seeing that the resulting system of linear equations has no solution, i.e. is

inconsistent. So the preimage, T−1

([
2 4
3 1

])
, is empty. This alone is sufficient to see that

the linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with
earlier results for matrices. Verify Theorem RPNDD [1781].

Domain dimension: 4 Rank: 3 Nullity: 1

Invertible: No.

Neither injective nor surjective (Theorem ILTIS [1761]). Notice that since the domain and
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codomain have the same dimension, either the transformation is both injective and surjective
or else it is both not injective and not surjective (making it not invertible, as in this case).

Matrix representation (Definition MR [1855]):

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

MT
B,C =


−2 15 3 27
0 10 6 18
1 −5 0 −9
−1 −4 −5 −8
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Eigenvalues and eigenvectors (Definition EELT [1956], Theorem EER [1996]):

λ = 0 ET (0) =

〈{[−6 −3
2 1

]}〉
λ = 1 ET (1) =

〈{[−7 −2
3 0

]
,

[−1 −2
0 1

]}〉
λ = 3 ET (3) =

〈{[−3 −2
1 1

]}〉
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Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

B =

{[−6 −3
2 1

]
,

[−7 −2
3 0

]
,

[−1 −2
0 1

]
,

[−3 −2
1 1

]}

MT
B,B =


0 0 0 0
0 1 0 0
0 0 3 0
0 0 0 3
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Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
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can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into another
language.
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A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

Version 2.11



Appendix GFDL GNU Free Documentation License 2643

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for
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output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning of
the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Pre-
serve the Title” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the

Version 2.11



Appendix GFDL GNU Free Documentation License 2645

meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add
no other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires Cover
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Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you use the latter option,
you must take reasonably prudent steps, when you begin distribution of Opaque copies in
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quantity, to ensure that this Transparent copy will remain thus accessible at the stated lo-
cation until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
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listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
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in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
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years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the con-
tributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.
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The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.
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In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS
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A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
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requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
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However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.
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ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:
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with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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Section F

Fields

Draft: This Section Complete, But Subject To Change

We have chosen to present introductory linear algebra in the Core (Part C [2]) using
scalars from the set of complex numbers, C. We could have instead chosen to use scalars
from the set of real numbers, R. This would have presented certain difficulties when we
encountered characteristic polynomials with complex roots (Definition CP [1388]) or when
we needed to be sure every matrix had at least one eigenvalue (Theorem EMHE [1376]).
However, much of the basics would be unchanged. The definition of a vector space would
not change, nor would the ideas of linear independence, spanning, or bases. Linear trans-
formations would still behave the same and we would still obtain matrix representations,
though our ideas about canonical forms would have to be adjusted slightly.
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The real numbers and the complex numbers are both examples of what are called fields,
and we can “do” linear algebra in just a bit more generality by letting our scalars take values
from some unspecified field. So in this section we will describe exactly what constitutes a
field, give some finite examples, and discuss another connection between fields and vector
spaces. Vector spaces over finite fields are very important in certain applications, so this is
partially background for other topics. As such, we will not prove every claim we make.

Subsection F
Fields

Like a vector space, a field is a set along with two binary operations. The distinction is that
both operations accept two elements of the set, and then produce a new element of the set.
In a vector space we have two sets — the vectors and the scalars, and scalar multiplication
mixes one of each to produce a vector. Here is the careful definition of a field.
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Definition F
Field
Suppose that F is a set upon which we have defined two operations: (1) addition, which
combines two elements of F and is denoted by “+”, and (2) multiplication, which combines
two elements of F and is denoted by juxtaposition. Then F , along with the two operations,
is a field if the following properties hold.

• ACF Additive Closure, Field
If α, β ∈ F , then α + β ∈ F .

• MCF Multiplicative Closure, Field
If α, β ∈ F , then αβ ∈ F .

• CAF Commutativity of Addition, Field
If α, β ∈ F , then α + β = β + α.

• CMF Commutativity of Multiplication, Field
If α, β ∈ F , then αβ = βα.
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• AAF Additive Associativity, Field
If α, β, γ ∈ F , then α + (β + γ) = (α + β) + γ.

• MAF Multiplicative Associativity, Field
If α, β, γ ∈ F , then α (βγ) = (αβ) γ.

• DF Distributivity, Field
If α, β, γ ∈ F , then α(β + γ) = αβ + αγ.

• ZF Zero, Field
There is an element, 0 ∈ F , called zero, such that α + 0 = α for all α ∈ F .

• OF One, Field
There is an element, 1 ∈ F , called one, such that α(1) = α for all α ∈ F .

• AIF Additive Inverse, Field
If α ∈ F , then there exists −α ∈ F so that α + (−α) = 0.
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• MIF Multiplicative Inverse, Field
If α ∈ F , α 6= 0, then there exists 1

α
∈ F so that α

(
1
α

)
= 1.

4
Mostly this definition says that all the good things you might expect, really do happen

in a field. The one technicality is that the special element, 0, the additive identity element,
does not have a multiplicative inverse. In other words, no dividing by zero.

This definition should remind you of Theorem PCNA [2316], and indeed, Theorem PCNA
[2316] provides the justification for the statement that the complex numbers form a field.
Another example of field is the set of rational numbers

Q =

{
p

q
| p, q are integers, q 6= 0

}
Of course, the real numbers, R, also form a field. It is this field that you probably studied for
many years. You began studying the integers (“counting”), then the rationals (“fractions”),
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then the reals (“algebra”), along with some excursions in the complex numbers (“imaginary
numbers”). So you should have seen three fields already in your previous studies.

Our first observation about fields is that we can go back to our definition of a vector space
(Definition VS [956]) and replace every occurrence of C by some general, unspecified field,
F , and all our subsequent definitions and theorems are still true, so long as we avoid roots
of polynomials (or equivalently, factoring polynomials). So if you consult more advanced
texts on linear algebra, you will see this sort of approach. You might study some of the first
theorems we proved about vector spaces in Subsection VS.VSP [975] and work through their
proofs in the more general setting of an arbitrary field. This exercise should convince you
that very little changes when we move from C to an arbitrary field F . (See Exercise F.T10
[2671].)
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Subsection FF
Finite Fields

It may sound odd at first, but there exist finite fields, and even finite vector spaces. We
will find certain of these important in subsequent applications, so we collect some ideas and
properties here.

Definition IMP
Integers Modulo a Prime
Suppose that p is a prime number. Let Zp = {0, 1, 2, . . . , p− 1}. Add and multiply elements
of Zp as integers, but whenever a result lies outside of the set Zp, find its remainder after
division by p and replace the result by this remainder. 4

We have defined a set, and two binary operations. The result is a field.

Theorem FIMP
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Field of Integers Modulo a Prime
The set of integers modulo a prime p, Zp, is a field. �

Example IM11
Integers mod 11
Z11 is a field by Theorem FIMP [2657]. Here we provide some sample calculations.

8 + 5 = 2 −8 = 3 5− 9 = 7

5(7) = 2
1

7
= 8

6

5
= 10

25 = 10 −1 = 10
1

0
= ?

�

We can now “do” linear algebra using scalars from a finite field.

Example VSIM5
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Vector space over integers mod 5
Let (Z5)

3 be the set of all column vectors of length 3 with entries from Z5. Use Z5 as the
set of scalars. Define addition and multiplication the usual way. We exhibit a few sample
calculations. 2

3
4

+

4
1
3

 =

1
4
2

 3

2
0
4

 =

1
0
2


We can, of course, build linear combinations, such as

2

1
3
0

− 4

2
1
1

+

1
2
4

 =

0
4
0


which almost looks like a relation of linear dependence. The set

1
3
1

 ,
2

2
0
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is linearly independent, while the set
1

3
1

 ,
2

2
0

 ,
4

3
2


is linearly dependent, as can be seen from the relation of linear dependence formed by the
scalars a1 = 2, a2 = 1 and a3 = 4. To find these scalars, one would take the same approach
as Example LDS [459], but in performing row operations to solve a homogeneous system, you
would need to take care that all scalar (field) operations are performed over Z5, especially
when multiplying a row by a scalar to make a leading entry equal to 1. One more observation
about this example — the set 

1
0
0

 ,
1

1
0

 ,
1

1
1
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is a basis for (Z5)
3, since it is both linearly independent and spans (Z5)

3. �

In applications to computer science or electrical engineering, Z2 is the most important
field, since it can be used to describe the binary nature of logic, circuitry, communications
and their intertwined relationships. The vector space of column vectors with entries from
Z2, (Z2)

n, with scalars taken from Z2 is the natural extension of this idea. Notice that Z2

has the minimum number of elements to be a field, since any field must contain a zero and
a one (Property ZF [2653], Property OF [2653]).

Example SM2Z7
Symmetric matrices of size 2 over Z7

We can employ the field of integers modulo a prime to build other examples of vector spaces
with novel fields of scalars. Define

S22 (Z7) =

{[
a b
b c

]
| a, b, c ∈ Z7

}
which is the set of all 2× 2 symmetric matrices with entries from Z7. Use the field Z7 as the
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set of scalars, and define vector addition and scalar multiplication in the natural way. The
result will be a vector space.

Notice that the field of scalars is finite, as is the vector space, since there are 73 = 343
matrices in S22 (Z7). The set {[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
is a basis, so dim (S22 (Z7)) = 3. �

In a more advanced algebra course it is possible to prove that the number of elements in
a finite field must be of the form pn, where p is a prime. We can’t go so far afield as to prove
this here, but we can demonstrate an example.

Example FF8
Finite field of size 8
Define the set F as F = {a+ bt+ ct2 | a, b, c ∈ Z2}. Add and multiply these quantities as
polynomials in the variable t, but replace any occurrence of t3 by t+ 1.
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This defines a set, and the two operations on elements of that set. Do not be concerned
with what t “is,” because it isn’t. t is just a handy device that makes the example a field.
We’ll say a bit more about t when we finish. But first, some examples. Remember that
1 + 1 = 0 in Z2. Addition is quite simple, for example,(

1 + t+ t2
)

+
(
1 + t2

)
= (1 + 1) + (1 + 0)t+ (1 + 1)t2 = t

Multiplication gets more involved, for example,(
1 + t+ t2

) (
1 + t2

)
= 1 + t2 + t+ t3 + t2 + t4

= 1 + t+ (1 + 1)t2 + t3 (1 + t)

= 1 + t+ (1 + t) (1 + t)

= 1 + t+ 1 + t+ t+ t2

= (1 + 1) + (1 + 1 + 1)t+ t2

= t+ t2

Version 2.11



Subsection F.FF Finite Fields 2673

Every element has a multiplicative inverse (Property MIF [2654]). What is the inverse of
t+ t2? Check that (

t+ t2
)

(1 + t) = t+ t2 + t2 + t3

= t+ (1 + 1)t2 + (1 + t)

= t+ 1 + t

= 1 + (1 + 1)t

= 1

So we can write 1
t+t2

= 1 + t. So that you may experiment, we give you the complete
addition and multiplication tables for this field. Addition is simple, while multiplication
is more interesting, so verify a few entries of each table. Because of the commutativity
of addition and multiplication (Property CAF [2652], Property CMF [2652]), we have just
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listed half of each table.

+ 0 1 t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1
0 0 1 t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1
1 0 t+ 1 t2 + 1 t t2 + t+ 1 t2 + t t2

t 0 t2 + t 1 t2 t2 + 1 t2 + t+ 1
t2 0 t2 + t+ 1 t t+ 1 1
t+ 1 0 t2 + 1 t2 t2 + t
t2 + t 0 1 t+ 1
t2 + t+ 1 0 t
t2 + 1 0
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· 0 1 t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1
0 0 0 0 0 0 0 0 0
1 1 t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1
t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1 1
t2 t2 + t t2 + t+ 1 t2 + 1 1 t
t+ 1 t2 + 1 1 t t2

t2 + t t t2 t+ 1
t2 + t+ 1 1 + t t2 + t
t2 + 1 t2 + t+ 1

Note that every element of F is a linear combination (with scalars from Z2) of the polynomials
1, t, t2. So B = {1, t, t2} is a spanning set for F . Further, B is linearly independent since
there is no nontrivial relation of linear dependence, and B is a basis. So dim (F ) = 3. Of
course, this paragraph presumes that F is also a vector space over Z2 (which it is). �

The defining relation for t (t3 = t+ 1) in Example FF8 [2661] arises from the polynomial
t3 + t + 1, which has no factorization with coefficients from Z2. This is an example of an
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irreducible polynomial, which involves considerable theory to fully understand. In the
exercises, we provide you with a few more irreducible polynomials to experiment with. See
the suggested readings if you would like to learn more.

Trivially, every field (finite or otherwise) is a vector space. Suppose we begin with a field
F . From this we know F has two binary operations defined on it. We need to somehow
create a vector space from F , in a general way. First we need a set of vectors. That’ll be F .
We also need a set of scalars. That’ll be F as well. How do we define the addition of two
vectors? By the same rule that we use to add them when they are in the field. How do we
define scalar multiplication? Since a scalar is an element of F , and a vector is an element of
F , we can define scalar multiplication to be the same rule that we use to multiply the two
elements as members of the field. With these definitions, F will be a vector space (Exercise
F.T20 [2671]). This is something of a trivial situation, since the set of vectors and the set of
scalars are identical. In particular, do not confuse this with Example FF8 [2661] where the
set of vectors has eight elements, and the set of scalars has just two elements.
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Further Reading
Robert J. McEliece, Finite Fields for Scientists and Engineers. Kluwer Academic Publishers,
1987.

Rudolpf Lidl, Harald Niederreiter, Introduction to Finite Fields and Their Applications,
Revised Edition. Cambridge University Press, 1994.
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Subsection EXC
Exercises

C60 Consider the vector space (Z5)
4 composed of column vectors of size 4 with entries

from Z5. The matrix A is a square matrix composed of four such column vectors.

A =


3 3 0 3
1 2 3 0
1 1 0 2
4 2 2 1
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Find the inverse of A. Use this to find a solution to LS(A, b) when

b =


3
3
2
0


Contributed by Robert Beezer Solution [2672]

M10 Suppose we relax the restriction in Definition IMP [2656] to allow p to not be a prime.
Will the construction given still be a field? Is Z6 a field? Can you generalize?
Contributed by Robert Beezer

M40 Construct a finite field with 9 elements using the set

F = {a+ bt | a, b ∈ Z3}
where t2 is consistently replaced by 2t+ 1 in any intermediate results obtained with polyno-
mial multiplication. Compute the first nine powers of t (t0 through t8). Use this information
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to aid you in the construction of the multiplication table for this field. What is the multi-
plicative inverse of 2t?
Contributed by Robert Beezer

M45 Construct a finite field with 25 elements using the set

F = {a+ bt | a, b ∈ Z5}
where t2 is consistently replaced by t+3 in any intermediate results obtained with polynomial
multiplication. Compute the first 25 powers of t (t0 through t24). Use this information to
aid you in computing in this field. What is the multiplicative inverse of 2t? What is the
multiplicative inverse of 4? What is the multiplicative inverse of 1 + 4t?

Find a basis for F as a vector space with Z5 used as the set of scalars.
Contributed by Robert Beezer

M50 Construct a finite field with 16 elements using the set

F =
{
a+ bt+ ct2 + dt3 | a, b, c, d ∈ Z2

}
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where t4 is consistently replaced by t+1 in any intermediate results obtained with polynomial
multiplication. Compute the first 16 powers of t (t0 through t15). Consider the set G =
{0, 1, t5, t10}. Then G will also be a finite field, a subfield of F . Construct the addition and
multiplication tables for G. Notice that since both G and F are vector spaces over Z2, and
G ⊆ F , by Definition S [1002], G is a subspace of F .
Contributed by Robert Beezer

T10 Give a new proof of Theorem ZVSM [980] for a vector space whose scalars come from
an arbitrary field F .
Contributed by Robert Beezer

T20 By applying Definition VS [956], prove that every field is also a vector space. (See
the construction at the end of this section.)
Contributed by Robert Beezer
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Subsection SOL
Solutions

C60 Contributed by Robert Beezer Statement [2668]
Remember that every computation must be done with arithmetic in the field, reducing any
intermediate number outside of {0, 1, 2, 3, 4} to its remainder after division by 5.

The matrix inverse can be found with Theorem CINM [742] (and we discover along the
way that A is nonsingular). The inverse is

A−1 =


1 1 3 1
3 4 1 4
1 4 0 2
3 0 1 0
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Then by an application of Theorem SNCM [783] the (unique) solution to the system will be

A−1b =


1 1 3 1
3 4 1 4
1 4 0 2
3 0 1 0




3
3
2
0

 =


2
3
0
1
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Section T

Trace

This section contributed by Andy Zimmer.

The matrix trace is a function that sends square matrices to scalars. In some ways it is
reminiscent of the determinant. And like the determinant, it has many useful and surprising
properties.

Definition T
Trace
Suppose A is a square matrix of size n. Then the trace of A, t (A), is the sum of the diagonal
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entries of A. Symbolically,

t (A) =
n∑
i=1

[A]ii

(This definition contains Notation T.) 4
The next three proofs make for excellent practice. In some books they would be left as

exercises for the reader as they are all “trivial” in the sense they do not rely on anything
but the definition of the matrix trace.

Theorem TL
Trace is Linear
Suppose A and B are square matrices of size n. Then t (A+B) = t (A)+t (B). Furthermore,
if α ∈ C, then t (αA) = αt (A). �

Proof These properties are exactly those required for a linear transformation. To prove
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these results we just manipulate sums,

t (A+B) =
n∑
k=1

[A+B]ii Definition T [2674]

=
n∑
i=1

[A]ii + [B]ii Definition MA [614]

=
n∑
i=1

[A]ii +
n∑
i=1

[B]ii Property CACN [2317]

= t (A) + t (B) Definition T [2674]

The second part is as straightforward as the first,

t (αA) =
n∑
i=1

[αA]ii Definition T [2674]
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=
n∑
i=1

α [A]ii Definition MSM [615]

= α
n∑
i=1

[A]ii Property DCN [2317]

= αt (A) Definition T [2674]

�

Theorem TSRM
Trace is Symmetric with Respect to Multiplication
Suppose A and B are square matrices of size n. Then t (AB) = t (BA). �

Proof

t (AB) =
n∑
k=1

[AB]kk Definition T [2674]
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=
n∑
k=1

n∑
`=1

[A]k` [B]`k Theorem EMP [676]

=
n∑
`=1

n∑
k=1

[A]k` [B]`k Property CACN [2317]

=
n∑
`=1

n∑
k=1

[B]`k [A]k` Property CMCN [2317]

=
n∑
`=1

[BA]`` Theorem EMP [676]

= t (BA) Definition T [2674]

�

Theorem TIST
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Trace is Invariant Under Similarity Transformations
Suppose A and S are square matrices of size n and S is invertible. Then t (S−1AS) = t (A).

�

Proof Invariant means constant under some operation. In this case the operation is a
similarity transformation. A lengthy exercise (but possibly a educational one) would be to
prove this result without referencing Theorem TSRM [2677]. But here we will,

t
(
S−1AS

)
= t
((
S−1A

)
S
)

Theorem MMA [687]

= t
(
S
(
S−1A

))
Theorem TSRM [2677]

= t
((
SS−1

)
A
)

Theorem MMA [687]

= t (A) Definition MI [727]

�

Now we could define the trace of a linear transformation as the trace of any matrix
representation of the transformation. Would this definition be well-defined? That is, will
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two different representations of the same linear transformation always have the same trace?
Why? (Think Theorem SCB [1986].) We will now prove one of the most interesting and
surprising results about the trace.

Theorem TSE
Trace is the Sum of the Eigenvalues
Suppose that A is a square matrix of size n with distinct eigenvalues λ1, λ2, λ3, . . . , λk.
Then

t (A) =
k∑
i=1

αA (λi)λi

�

Proof It is amazing that the eigenvalues would have anything to do with the sum of the
diagonal entries. Our proof will rely on double counting. We will demonstrate two different
ways of counting the same thing therefore proving equality. Our object of interest is the
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coefficient of xn−1 in the characteristic polynomial of A (Definition CP [1388]), which will
be denoted αn−1. From the proof of Theorem NEM [1465] we have,

pA (x) = (−1)n(x− λ1)
αA(λ1)(x− λ2)

αA(λ2)(x− λ3)
αA(λ3) · · · (x− λk)αA(λk)

First we want to prove that αn−1 is equal to (−1)n+1
∑k

i=1 αA (λi)λi and to do this we will
use a straight forward counting argument. Induction can be used here as well (try it), but
the intuitive approach is a much stronger technique. Let’s imagine creating each term one
by one from the extended product. How do we do this? From each (x − λi) we pick either
a x or a λi. But we are only interested in the terms that result in x to the power n− 1. As∑k

i=1 αA (λi) = n, we have n factors of the form (x − λi). Then to get terms with xn−1 we
need to pick x’s in every (x−λi), except one. Since we have n linear factors there are n ways
to do this, namely each eigenvalue represented as many times as it’s algebraic multiplicity.
Now we have to take into account the sign of each term. As we pick n − 1 x’s and one λi
(which has a negative sign in the linear factor) we get a factor of −1. Then we have to
take into account the (−1)n in the characteristic polynomial. Thus αn−1 is the sum of these
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terms,

αn−1 = (−1)n+1

k∑
i=1

αA (λi)λi

Now we will now show that αn−1 is also equal to (−1)n−1t (A). For this we will proceed by
induction on the size of A. If A is a 1 × 1 square matrix then pA (x) = det (A− xIn) =
([A]11 − x) and (−1)1−1t (A) = [A]11. With our base case in hand let’s assume A is a square
matrix of size n. By Definition CP [1388]

pA (x) = det (A− xIn)

= [A− xIn]11 det ((A− xIn) (1|1))− [A− xIn]12 det ((A− xIn) (1|2)) +

[A− xIn]13 det ((A− xInn) (1|3))− · · ·+ (−1)n+1 [A− xIn]1n det ((A− xIn) (1|n))

First let’s consider the maximum degree of [A− xIn]1i det ((A− xIn) (1|i)) when i 6= 1. For
polynomials, the degree of f , denoted d(f), is the highest power of x in the expression f(x).
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A well known result of this definition is: if f(x) = g(x)h(x) then d(f) = d(g)+d(h) (can you
prove this?). Now [A− xIn]1i has degree zero when i 6= 1. Furthermore (A − xIn) (1|i) has
n− 1 rows, one of which has all of its entries of degree zero, since column i is removed. The
other n− 2 rows have one entry with degree one and the remainder of degree zero. Then by
Exercise T.T30 [2686], the maximum degree of [A− xIn]1i det ((A− xIn) (1|i)) is n− 2. So
these terms will not affect the coefficient of xn−1. Now we are free to focus all of our attention
on the term [A− xIn]11 det ((A− xIn) (1|1)). As A (1|1) is a (n − 1) × (n − 1) matrix the
induction hypothesis tells us that det ((A− xIn) (1|1)) has a coefficient of (−1)n−2t (A (1|1))
for xn−2. We also note that the proof of Theorem NEM [1465] tells us that the leading
coefficient of det ((A− xIn) (1|1)) is (−1)n−1. Then,

[A− xIn]11 det ((A− xIn) (1|1)) = ([A]11 − x)
(
(−1)n−1xn−1 + (−1)n−2t (A (1|1))xn−2 + . . .

)
Expanding the product shows αn−1 (the coefficient of xn−1) to be

αn−1 = (−1)n−1 [A]11 + (−1)n−1t (A (1|1))
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= (−1)n−1 [A]11 + (−1)n−1

n−1∑
k=1

[A (1|1)]kk Definition T [2674]

= (−1)n−1
(

[A]11 +
n−1∑
k=1

[A (1|1)]kk

)
Property DCN [2317]

= (−1)n−1
(

[A]11 +
n∑
k=2

[A]kk

)
Definition SM [1290]

= (−1)n−1t (A) Definition T [2674]

With two expressions for αn−1, we have our result,

t (A) = (−1)n+1(−1)n−1t (A)

= (−1)n+1αn−1

= (−1)n+1(−1)n+1

k∑
i=1

αA (λi)λi
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=
k∑
i=1

αA (λi)λi

�
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Subsection EXC
Exercises

T10 Prove there are no square matrices A and B such that AB −BA = In.
Contributed by Andy Zimmer

T12 Assume A is a square matrix of size n matrix. Prove t (A) = t (At).
Contributed by Andy Zimmer

T20 If Tn = {M ∈Mnn | t (M) = 0} then prove Tn is a subspace of Mnn and determine
it’s dimension.
Contributed by Andy Zimmer

T30 Assume A is a n × n matrix with polynomial entries. Define md(A, i) to be the
maximum degree of the entries in row i. Then d(det (A)) ≤ md(A, 1) + md(A, 2) + . . . +
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md(A, n). (Hint: If f(x) = h(x) + g(x), then d(f) ≤ max{d(h), d(g)}.)
Contributed by Andy Zimmer Solution [2688]

T40 If A is a square matrix, the matrix exponential is defined as

eA =
∞∑
i=0

Ai

i!

Prove that det
(
eA
)

= et(A). (You might want to give some thought to the convergence of
the infinite sum as well.)
Contributed by Andy Zimmer
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Subsection SOL
Solutions

T30 Contributed by Andy Zimmer Statement [2686]
We will proceed by induction. If A is a square matrix of size 1, then clearly d(det (A)) ≤
md(A, 1). Now assume A is a square matrix of size n then by Theorem DER [1295],

det (A) = (−1)2 [A]1,1 det (A (1|1)) + (−1)3 [A]1,2 det (A (1|2))

+ (−1)4 [A]1,3 det (A (1|3)) + · · ·+ (−1)n+1 [A]1,n det (A (1|n))

Let’s consider the degree of term j, (−1)1+j [A]1,j det (A (1|j)). By definition of the function
md, d([A]1,j) ≤ md(A, j). We use our induction hypothesis to examine the other part of the
product which tells us that

d (det (A (1|j))) ≤ md(A (1|j) , 1) +md(A (1|j) , 2) + · · ·+md(A (1|j) , n− 1)
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Furthermore by definition of A (1|j) (Definition SM [1290]) row i of matrix A contains all
the entries of the corresponding row in A (1|j) then,

md(A (1|j) , 1) ≤ md(A, 1)

md(A (1|j) , 2) ≤ md(A, 2)

...

md(A (1|j) , j − 1) ≤ md(A, j − 1)

md(A (1|j) , j) ≤ md(A, j + 1)

...

md(A (1|j) , n− 1) ≤ md(A, n)

So,

d (det (A (1|j))) ≤ md(A (1|j) , 1) +md(A (1|j) , 2) + · · ·+md(A (1|j) , n− 1)
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≤ md(A, 1) +md(A, 2) + · · ·+md(A, j − 1) +md(A, j + 1) + · · ·+md(A, n− 1)

Then using the property that if f(x) = g(x)h(x) then d(f) = d(g) + d(h),

d
(

(−1)1+j [A]1,j det (A (1|j))
)

= d
(

[A]1,j

)
+ d (det (A (1|j)))

≤ md(A, j) +md(A, 1) +md(A, 2) + · · ·+
md(A, j − 1) +md(A, j + 1) + · · ·+md(A, n)

= md(A, 1) +md(A, 2) + · · ·+md(A, n)

As j is arbitrary the degree of all terms in the determinant are so bounded. Finally using
the fact that if f(x) = g(x) + h(x) then d(f) ≤ max{d(h), d(g)} we have

d(det (A)) ≤ md(A, 1) +md(A, 2) + · · ·+md(A, n)
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Section HP

Hadamard Product

This section is contributed by Elizabeth Million.
You may have once thought that the natural definition for matrix multiplication would be

entrywise multiplication, much in the same way that a young child might say, “I writed my
name.” The mistake is understandable, but it still makes us cringe. Unlike poor grammar,
however, entrywise matrix multiplication has reason to be studied; it has nice properties in
matrix analysis and additionally plays a role with relative gain arrays in chemical engineering,
covariance matrices in probability and serves as an inertia preserver for Hermitian matrices
in physics. Here we will only explore the properties of the Hadamard product in matrix
analysis.

Definition HP
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Hadamard Product
Let A and B be m × n matrices. The Hadamard Product of A and B is defined by
[A ◦B]ij = [A]ij [B]ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(This definition contains Notation HP.) 4
As we can see, the Hadamard product is simply “entrywise multiplication”. Because of

this, the Hadamard product inherits the same benefits (and restrictions) of multiplication in
C. Note also that both A and B need to be the same size, but not necessarily square. To
avoid confusion, juxtaposition of matrices will imply the “usual” matrix multiplication, and
we will use “◦” for the Hadamard product.

Example HP
Hadamard Product
Consider

A =

[
1 0 6
3 π 5

]
B =

[
3 13 i
1
3

2 4

]
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Then

A ◦B =

[
(1)(3) (0)(13) (6)(i)
3(1

3
) (π)(2) (5)(4)

]
=

[
3 0 6i
1 2π 20

]
.

�

Now we will explore some basics properties of the Hadamard Product.

Theorem HPC
Hadamard Product is Commutative
If A and B are m× n matrices then A ◦B = B ◦ A. �

Proof The proof follows directly from the fact that multiplication in C is commutative.
Let A and B be m× n matrices. Then

[A ◦B]ij = [A]ij [B]ij Definition HP [2692]
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= [B]ij [A]ij Property CMCN [2317]

= [B ◦ A]ij Definition HP [2692]

With equality of each entry of the matrices being equal we know by Definition ME [613] that
the two matrices are equal. �

Definition HID
Hadamard Identity
The Hadamard identity is the m×n matrix Jmn defined by [Jmn]ij = 1 for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.

(This definition contains Notation HID.) 4

Theorem HPHID
Hadamard Product with the Hadamard Identity
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Suppose A is an m× n matrix. Then A ◦ Jmn = Jmn ◦ A = A. �

Proof

[A ◦ Jmn]ij = [Jmn ◦ A]ij Theorem HPC [2693]

= [Jmn]ij [A]ij Definition HP [2692]

= (1) [A]ij Definition HID [2694]

= [A]ij Property OCN [2318]

With equality of each entry of the matrices being equal we know by Definition ME [613] that
the two matrices are equal. �

Definition HI
Hadamard Inverse
Let A be an m × n matrix and suppose [A]ij 6= 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then the

Hadamard Inverse, Â , is given by
[
Â
]
ij

= ([A]ij)
−1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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(This definition contains Notation HI.) 4

Theorem HPHI
Hadamard Product with Hadamard Inverses
Let A be an m × n matrix such that [A]ij 6= 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then

A ◦ Â = Â ◦ A = Jmn. �

Proof [
A ◦ Â

]
ij

=
[
Â ◦ A

]
ij

Theorem HPC [2693]

=
[
Â
]
ij

[A]ij Definition HP [2692]

= ([A]ij)
−1 [A]ij Definition HI [2695], [A]ij 6= 0

= 1 Property MICN [2318]

= [Jmn]ij Definition HID [2694]
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With equality of each entry of the matrices being equal we know by Definition ME [613] that
the two matrices are equal. �

Since matrices have a different inverse and identity under the Hadamard product, we
have used special notation to distinguish them from what we have been using with “normal”
matrix multiplication. That is, compare “usual” matrix inverse, A−1, with the Hadamard
inverse Â, and the “usual” matrix identity, In, with the Hadamard identity, Jmn. The
Hadamard identity matrix and the Hadamard inverse are both more limiting than helpful,
so we will not explore their use further. One last fun fact for those of you who may be
familiar with group theory: the set of m× n matrices with nonzero entries form an abelian
(commutative) group under the Hadamard product (prove this!).

Theorem HPDAA
Hadamard Product Distributes Across Addition
Suppose A, B and C are m× n matrices. Then C ◦ (A+B) = C ◦ A+ C ◦B. �

Proof

[C ◦ (A+B)]ij = [C]ij [A+B]ij Definition HP [2692]
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= [C]ij ([A]ij + [B]ij) Definition MA [614]

= [C]ij [A]ij + [C]ij [B]ij Property DCN [2317]

= [C ◦ A]ij + [C ◦B]ij Definition HP [2692]

= [C ◦ A+ C ◦B]ij Definition MA [614]

With equality of each entry of the matrices being equal we know by Definition ME [613] that
the two matrices are equal. �

Theorem HPSMM
Hadamard Product and Scalar Matrix Multiplication
Suppose α ∈ C, and A and B are m× n matrices. Then α(A ◦B) = (αA) ◦B = A ◦ (αB).
�

Proof

[αA ◦B]ij = α [A ◦B]ij Definition MSM [615]
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= α [A]ij [B]ij Definition HP [2692]

= [αA]ij [B]ij Definition MSM [615]

= [(αA) ◦B]ij Definition HP [2692]

= α [A]ij [B]ij Definition MSM [615]

= [A]ij α [B]ij Property CMCN [2317]

= [A]ij [αB]ij Definition MSM [615]

= [A ◦ (αB)]ij Definition HP [2692]

With equality of each entry of the matrices being equal we know by Definition ME [613] that
the two matrices are equal. �
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Subsection DMHP
Diagonal Matrices and the Hadamard Product

We can relate the Hadamard product with matrix multiplication by considering diagonal
matrices, since A ◦ B = AB if and only if both A and B are diagonal (Citation!!!). For
example, a simple calculation reveals that the Hadamard product relates the diagonal values
of a diagonalizable matrix A with its eigenvalues:

Theorem DMHP
Diagonalizable Matrices and the Hadamard Product
Let A be a diagonalizable matrix of size n with eigenvalues λ1, λ2, λ3, . . . , λn. Let D be a
diagonal matrix from the diagonalization of A, A = SDS−1, and d be a vector such that
[D]ii =[d]i= λi for all 1 ≤ i ≤ n. Then

[A]ii =
[
S ◦ (S−1)td

]
i

for all 1 ≤ i ≤ n.
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That is, 
[A]11

[A]22

[A]33
...

[A]nn

 = S ◦ (S−1)t


λ1

λ2

λ3
...
λn


�

Proof

[
S ◦ (S−1)td

]
i

=
n∑
k=1

[
S ◦ (S−1)t

]
ik

[d]k Definition MVP [661]

=
n∑
k=1

[
S ◦ (S−1)t

]
ik
λk Definition of d
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=
n∑
k=1

[S]ik
[
(S−1)t

]
ik
λk Definition HP [2692]

=
n∑
k=1

[S]ik
[
S−1

]
ki
λk Definition TM [622]

=
n∑
k=1

[S]ik λk
[
S−1

]
ki

Property CMCN [2317]

=
n∑
k=1

[S]ik [D]kk
[
S−1

]
ki

Definition of D

=
n∑
j=1

n∑
k=1

[S]ik [D]kj
[
S−1

]
ji

[D]kj = 0 for all k 6= j

=
n∑
j=1

[SD]ij
[
S−1

]
ji

Theorem EMP [676]
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=
[
SDS−1

]
ii

Theorem EMP [676]

= [A]ii Definition ME [613]

With equality of each entry of the matrices being equal we know by Definition ME [613] that
the two matrices are equal. �

We obtain a similar result when we look at the singular value decomposition of square
matrices (see exercises).

Theorem DMMP
Diagonal Matrices and Matrix Products
Suppose A, B are m × n matrices, and D and E are diagonal matrices of size m and n,
respectively. Then,

D(A ◦B)E = (DAE) ◦B = (DA) ◦ (BE)
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�

Proof

[D(A ◦B)E]ij =
m∑
k=1

[D]ik [(A ◦B)E]kj Theorem EMP [676]

=
m∑
k=1

n∑
l=1

[D]ik [A ◦B]kl [E]lj Theorem EMP [676]

=
m∑
k=1

n∑
l=1

[D]ik [A]kl [B]kl [E]lj Definition HP [2692]

=
m∑
k=1

[D]ik [A]kj [B]kj [E]jj [E]lj = 0 for all l 6= j

= [D]ii [A]ij [B]ij [E]jj [D]ik = 0 for all i 6= k

= [D]ii [A]ij [E]jj [B]ij Property CMCN [2317]
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= [D]ii (
n∑
l=1

[A]il [E]lj) [B]ij [E]lj = 0 for all l 6= j

= [D]ii [AE]ij [B]ij Theorem EMP [676]

= (
m∑
k=1

[D]ik [AE]kj) [B]ij [D]ik = 0 for all i 6= k

= [DAE]ij [B]ij Theorem EMP [676]

= [(DAE) ◦B]ij Definition HP [2692]

With equality of each entry of the matrices being equal we know by Definition ME [613] that
the two matrices are equal.

Also,

[(DAE) ◦B]ij = [DAE]ij [B]ij Definition HP [2692]

= (
n∑
k=1

[DA]ik [E]kj) [B]ij Theorem EMP [676]
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= [DA]ij [E]jj [B]ij [E]kj = 0 for all k 6= j

= [DA]ij [B]ij [E]jj Property CMCN [2317]

= [DA]ij (
n∑
k=1

[B]ik [E]kj) [E]kj = 0 for all k 6= j

= [DA]ij [BE]ij Theorem EMP [676]

= [(DA) ◦ (BE)]ij Definition HP [2692]

With equality of each entry of the matrices being equal we know by Definition ME [613] that
the two matrices are equal. �
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Subsection EXC
Exercises

T10 Prove that A ◦B = AB if and only if both A and B are diagonal matrices.
Contributed by Elizabeth Million

T20 Suppose A, B are m× n matrices, and D and E are diagonal matrices of size m and
n, respectively. Prove both parts of the following equality hold:

D(A ◦B)E = (AE) ◦ (DB) = A ◦ (DBE)

Contributed by Elizabeth Million

T30 Let A be a square matrix of size n with singular values σ1, σ2, σ3, . . . , σn. Let D be
a diagonal matrix from the singular value decomposition of A, A = UDV ∗ (Theorem SVD
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[2786]). Define the vector d by [d]i = [D]ii = σi, 1 ≤ i ≤ n. Prove the following equality,

[A]ii =
[
(U ◦ V )d

]
i

Contributed by Elizabeth Million

T40 Suppose A, B and C are m× n matrices. Prove that for all 1 ≤ i ≤ m,[
(A ◦B)Ct

]
ii

=
[
(A ◦ C)Bt

]
ii

Contributed by Elizabeth Million

T50 Define the diagonal matrix D of size n with entries from a vector x ∈ Cn by

[D]ij =

{
[x]i if i = j

0 otherwise
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Furthermore, suppose A, B are m × n matrices. Prove that [ADBt]ii = [(A ◦B)x]i for all
1 ≤ i ≤ m.
Contributed by Elizabeth Million
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Section VM

Vandermonde Matrix

This Section is a Draft, Subject to Changes

Alexandre-Théophile Vandermonde was a French mathematician in the 1700’s who was
among the first to write about basic properties of the determinant (such as the effect of
swapping two rows). However, the determinant that bears his name (Theorem DVM [2712])
does not appear in any of his four published mathematical papers.

Definition VM
Vandermonde Matrix
An square matrix of size n, A, is a Vandermonde matrix if there are scalars, x1, x2, x3, . . . , xn

Version 2.11



Section VM Vandermonde Matrix 2721

such that [A]ij = xj−1
i , 1 ≤ i ≤ n, 1 ≤ j ≤ n. 4

Example VM4
Vandermonde matrix of size 4

A =


1 2 4 8
1 −3 9 −27
1 1 1 1
1 4 16 64


is a Vandermonde matrix since it meets the definition with x1 = 2, x2 = −3, x3 = 1, x4 = 4.

�

Vandermonde matrices are not very interesting as numerical matrices, but instead ap-
pear more often in proofs and applications where the scalars xi are carried as symbols. Two
such applications are in the sections on secret-sharing (Section SAS [2820]) and curve-fitting
(Section CF [2808]). Principally, we would like to know when Vandermonde matrices are
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nonsingular, and the most convenient way to check this is by determining when the deter-
minant is nonzero (Theorem SMZD [1348]). As a bonus, the determinant of a Vandermonde
matrix has an especially pleasing formula.

Theorem DVM
Determinant of a Vandermonde Matrix
Suppose that A is a Vandermonde matrix of size n built with the scalars x1, x2, x3, . . . , xn.
Then

det (A) =
∏

1≤i<j≤n

(xj − xi)

�

Proof The proof is by induction (Technique I [2363]) on n, the size of the matrix. An
empty product for a 1 × 1 matrix might make a good base case, but we’ll start at n = 2
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instead. For a 2× 2 Vandermonde matrix, we have

det (A) =

∣∣∣∣1 x1

1 x2

∣∣∣∣ = x2 − x1 =
∏

1≤i<j≤2

(xj − xi)

For the induction step we will perform row operations on A to obtain the determinant of A
as multiple of the determinant of an (n− 1)× (n− 1) Vandermonde matrix. the notation in
this theorem tens to obscure your intuition about the changes effected by various row and
column manipulations. Construct a 4 × 4 Vandermonde matrix with four symbols as the
scalars (x1, x2, x2, x4, or perhaps a, b, c, d) and play along with the example as you study
the proof.

First we convert most of the first column to zeros. Subtract row n from each of the other
n− 1 rows to form a matrix B. By Theorem DRCMA [1333], B has the same determinant
as A. The entries of B, in the first n− 1 rows, i.e. for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, are

[B]ij = xj−1
i − xj−1

n = (xi − xn)

j−2∑
k=0

xj−2−k
i xkn
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As the elements of row i, 1 ≤ i ≤ n − 1, have the common factor (xi − xn), we form the
new matrix C that differs from B by the removal of this factor from each of the first n− 1
rows. This will change the determinant, as we will track carefully in a moment. We also
have a first column with zeros in each location, except row n, so we can use it for a column
expansion computation of the determinant. We now know,

det (A) = det (B) Theorem DRCMA [1333]

= (x1 − xn)(x2 − xn) · · · (xn−1 − xn) det (C) Theorem DRCM [1330]

= (x1 − xn)(x2 − xn) · · · (xn−1 − xn)(1)(−1)n+1 det (C (n− 1|1)) Theorem DEC [1301]

= (x1 − xn)(x2 − xn) · · · (xn−1 − xn)(−1)n−1 det (C (n− 1|1))

= (xn − x1)(xn − x2) · · · (xn − xn−1) det (C (n− 1|1))

For convenience, denote D = C (n− 1|1). Entries of this matrix are similar to those of B,
but the factors used to build C are gone, and since the first column is gone, there is a slight
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re-indexing relative to the columns. For 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1,

[D]ij =

j−1∑
k=0

xj−1−k
i xkn

We will perform many column operations on the matrix D, always of the type where we mul-
tiply a column by a scalar and add the result to another column. As such, Theorem DRCM
[1330] insures that the determinant will remain constant. We will work column by column,
left to right, to convert D into a Vandermonde matrix with scalars x1, x2, x3, . . . , xn−1.
More precisely, we will build a sequence of matrices D = D1, D2, . . . , Dn−1, where each
obtainable from the previous by a sequence of determinant-preserving column operations
and the first ` columns of D` are the first ` columns of a Vandermonde matrix with scalars
x1, x2, x3, . . . , xn−1. We could establish this claim by induction (Technique I [2363]) on `
if we were to expand the claim to specify the exact values of the final n− 1− ` columns as
well. Since the claim is that matrices with certain properties exist, we will instead establish
the claim by constructing the desired matrices one-by-one procedurally. The extension to
an inductive proof should be clear, but not especially illuminating.
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Set D1 = D to begin, and note that the entries of the first column of D1 are, for
1 ≤ i ≤ n− 1,

[D1]i1 =
1−1∑
k=0

x1−1−k
i xkn = 1 = x1−1

i

So the first column of D1 has the properties we desire. We will use this column of all 1’s
to remove the highest power of xn from each of the remaining columns and so build D2.
Precisely, perform the n − 2 column operations where column 1 is multiplied by xj−1

n and
subtracted from column j, for 2 ≤ j ≤ n− 1. Call the result D2, and examine its entries in
columns 2 through n− 1. For 1 ≤ i ≤ n− 1, 2 ≤ j ≤ n− 1,

[D2]ij = −xj−1
n [D1]i1 + [D1]ij

= −xj−1
n (1) +

j−1∑
k=0

xj−1−k
i xkn

Version 2.11



Section VM Vandermonde Matrix 2727

= −xj−1
n + x

j−1−(j−1)
i xj−1

n +

j−2∑
k=0

xj−1−k
i xkn

=

j−2∑
k=0

xj−1−k
i xkn

In particular, we examine column 2 of D2. For 1 ≤ i ≤ n− 1,

[D2]i2 =
2−2∑
k=0

x2−1−k
i xkn = x1

i = x2−1
i

Now, form D3. Perform the n− 3 column operations where column 2 of D2 is multiplied by
xj−2
n and subtracted from column j, for 3 ≤ j ≤ n − 1. The result is D3, whose entries we

now compute. For 1 ≤ i ≤ n− 1,

[D3]ij = −xj−2
n [D2]i2 + [D2]ij

Version 2.11



Section VM Vandermonde Matrix 2728

= −xj−2
n x1

i +

j−2∑
k=0

xj−1−k
i xkn

= −xj−2
n x1

i + x
j−1−(j−2)
i xj−2

n +

j−3∑
k=0

xj−1−k
i xkn

=

j−3∑
k=0

xj−1−k
i xkn

Specifically, we examine column 3 of D3. For 1 ≤ i ≤ n− 1,

[D3]i3 =
3−3∑
k=0

x3−1−k
i xkn = x2

i = x3−1
i

We could continue this procedure n − 4 more times, eventually totaling 1
2

(n2 − 3n+ 2)
column operations, and arriving at Dn−1, the Vandermonde matrix of size n− 1 built from

Version 2.11



Section VM Vandermonde Matrix 2729

the scalars x1, x2, x3, . . . , xn−1. Informally, we chop off the last term of every sum, until
a single term is left in a column, and it is of the right form for the Vandermonde matrix.
This desired column is then used in the next iteration to chop off some more final terms
for columns to the right. Now we can apply our induction hypothesis to the determinant of
Dn−1 and arrive at an expression for detA,

det (A) = det (C)

=
n−1∏
k=1

(xn − xk) det (D)

=
n−1∏
k=1

(xn − xk) det (Dn−1)

=
n−1∏
k=1

(xn − xk)
∏

1≤i<j≤n−1

(xj − xi)
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=
∏

1≤i<j≤n

(xj − xi)

which is the desired result. �

Before we had Theorem DVM [2712] we could see that if two of the scalar values were
equal, then the Vandermonde matrix would have two equal rows and hence be singular (The-
orem DERC [1331], Theorem SMZD [1348]). But with this expression for the determinant,
we can establish the converse.

Theorem NVM
Nonsingular Vandermonde Matrix
A Vandermonde matrix of size n with scalars x1, x2, x3, . . . , xn is nonsingular if and only if
the scalars are all different. �

Proof Let A denote the Vandermonde matrix with scalars x1, x2, x3, . . . , xn. By Theorem
SMZD [1348], A is nonsingular if and only if the determinant of A is nonzero. The determi-
nant is given by Theorem DVM [2712], and this product is nonzero if and only if each term
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of the product is nonzero. This condition translates to xi − xj 6= 0 whenever i 6= j. In other
words, the matrix is nonsingular if and only if the scalars are all different. �
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Section PSM

Positive Semi-definite Matrices

This Section is a Draft, Subject to Changes
Needs Numerical Examples

Positive semi-definite matrices (and their cousins, positive definite matrices) are square
matrices which in many ways behave like non-negative (respectively, positive) real numbers.
Results given here are employed in the decompositions of Section SVD [2772], Section SR
[2789] and Section PD [1225].
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Subsection PSM
Positive Semi-Definite Matrices

Definition PSM
Positive Semi-Definite Matrix
A square matrix A of size n is positive semi-definite if A is Hermitian and for all x ∈ Cn,
〈Ax, x〉 ≥ 0. 4

For a definition of positive definite replace the inequality in the definition with a strict
inequality, and exclude the zero vector from the vectors x required to meet the condition.
Similar variations allow definitions of negative definite and negative semi-definite. Our
first theorem in this section gives us an easy way to build positive semi-definite matrices.

Theorem CPSM
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Creating Positive Semi-Definite Matrices
Suppose that A is any m × n matrix. Then the matrices A∗A and AA∗ are positive semi-
definite matrices. �

Proof We will give the proof for the first matrix, the proof for the second is entirely similar.
First we check that A∗A is Hermitian,

(A∗A)∗ = A∗ (A∗)∗ Theorem MMAD [694]

= A∗A Theorem AA [638]

so by Definition HM [698], the matrix A∗A is Hermitian. Second, for any x ∈ Cn,

〈A∗Ax, x〉 = 〈Ax, (A∗)∗ x〉 Theorem AIP [696]

= 〈Ax, Ax〉 Theorem AA [638]

≥ 0 Theorem PIP [582]

which is the second criteria in the definition of a positive semi-definite matrix (Definition
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PSM [2723]). �

A statement very similar to the converse of this theorem is also true. Any positive semi-
definite matrix can be realized as the product of a square matrix, B, with its adjoint, B∗.
(See Exercise PSM.T20 [2730] after studying this entire section.) The matrices A∗A and
AA∗ will be important later when we define singular values (Section SVD [2772]).

Positive semi-definite matrices can also be characterized by their eigenvalues, without
any mention of inner products. This next result further reinforces the notion that positive
semi-definite matrices behave like non-negative real numbers.

Theorem EPSM
Eigenvalues of Positive Semi-definite Matrices
Suppose that A is a Hermitian matrix. Then A is positive semi-definite matrix if and only
if whenever λ is an eigenvalue of A, then λ ≥ 0. �

Proof Notice first that since we are considering only Hermitian matrices in this theorem,
it is always possible to compare eigenvalues with the real number zero, since eigenvalues of
Hermitian matrices are all real numbers (Theorem HMRE [1473]). Let n denote the size of
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A.
(⇒) Let x 6= 0 be an eigenvector of A for λ. Then by Theorem PIP [582] we know

〈x, x〉 6= 0. So

λ =
1

〈x, x〉λ 〈x, x〉 Property MICN [2318]

=
1

〈x, x〉 〈λx, x〉 Theorem IPSM [574]

=
1

〈x, x〉 〈Ax, x〉 Definition EEM [1365]

By Theorem PIP [582], 〈x, x〉 > 0 and by Definition PSM [2723] we have 〈Ax, x〉 ≥ 0. With
λ expressed as the product of these two quantities, we have λ ≥ 0.

(⇐) Suppose now that λ1, λ2, λ3, . . . , λn are the (not necessarily distinct) eigenvalues
of the Hermitian matrix A, each of which is non-negative. Let B = {x1, x2, x3, . . . , xn} be
a set of associated eigenvectors for these eigenvalues. Since a Hermitian matrix is normal
(Definition HM [698], Definition NM [246]), Theorem OBNM [2069] allows us to choose this
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set of eigenvectors to also be an orthonormal basis of Cn. Choose any x ∈ Cn and let
a1, a2, a3, . . . , an be the scalars guaranteed by the spanning property of the basis B such
that

x = a1x1 + a2x2 + a3x3 + · · ·+ anxn =
n∑
i=1

aixi

Since we have presumed A is Hermitian, we need only check the other defining property,

〈Ax, x〉 =

〈
A

n∑
i=1

aixi,
n∑
j=1

ajxj

〉
Definition TSVS [1076]

=

〈
n∑
i=1

Aaixi,
n∑
j=1

ajxj

〉
Theorem MMDAA [684]

=

〈
n∑
i=1

aiAxi,
n∑
j=1

ajxj

〉
Theorem MMSMM [685]
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=

〈
n∑
i=1

aiλixi,
n∑
j=1

ajxj

〉
Definition EEM [1365]

=
n∑
i=1

n∑
j=1

〈aiλixi, ajxj〉 Theorem IPVA [572]

=
n∑
i=1

n∑
j=1

aiλiaj 〈xi, xj〉 Theorem IPSM [574]

=
n∑
i=1

aiλiai 〈xi, xi〉+
n∑
i=1

n∑
j=1
j 6=i

aiλiaj 〈xi, xj〉 Property CACN [2317]

=
n∑
i=1

aiλiai(1) +
n∑
i=1

n∑
j=1
j 6=i

aiλiaj(0) Definition ONS [599]
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=
n∑
i=1

aiλiai

=
n∑
i=1

λi |ai|2 Definition MCN [2322]

With non-negative values for each eigenvalue λi, 1 ≤ i ≤ n, and each modulus squared, it
should be clear that this sum is non-negative. Which is exactly what is required by Definition
PSM [2723] to establish that A is positive semi-definite. �

As positive semi-definite matrices are defined to be Hermitian, they are then normal and
subject to orthonormal diagonalization (Theorem OD [2062]). Now consider the interpreta-
tion of orthonormal diagonalization as a rotation to principal axes, a stretch by a diagonal
matrix and a rotation back (Subsection OD.OD [2061]). For a positive semi-definite matrix,
the diagonal matrix has diagonal entries that are the non-negative eigenvalues of the original
positive semi-definite matrix. So the “stretching” along each axis is never a reflection.
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Subsection EXC
Exercises

T20 Suppose that A is a positive semi-definite matrix of size n. Prove that there is a
square matix B of size n such that A = BB∗.
Contributed by Robert Beezer
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Chapter MD
Matrix Decompositions

This chapter is about breaking up a matrix A into pieces that somehow combine to recreate
A. Usually the pieces are again matrices, and usually they are then combined via matrix
multiplication (Definition MM [672]). In some cases, the decomposition will be valid for any
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matrix, but often we might need extra conditions on A, such as being square (Definition SQM
[245]), nonsingular (Definition NM [246]) or diagonalizable (Definition DZM [1497]) before
we can guarantee the decomposition. If you are comfortable with topics like decomposing a
solution vector into linear combinations (Subsection LC.VFSS [331]) or decomposing vector
spaces into direct sums (Subsection PD.DS [1245]), then we will be doing similar things in
this chapter. If not, review these ideas and take another look at Technique DC [2361] on
decompositions.

We have studied one matrix decomposition already, so we will review that here in this
introduction, both as a way of previewing the topic in a familiar setting, but also since it
does not deserve another section all of its own.

A diagonalizable matrix (Definition DZM [1497]) is defined to be a square matrix A such
that there is an invertible matrix S and a diagonal matrix D where S−1AS = D. We can
re-write this as A = SDS−1. Here we have a decomposition of A into three matrices, S, D
and S−1, which recombine through matrix multiplication to recreate A. We also know that
the diagonal entries of D are the eigenvalues of A. We cannot form this decomposition for
just any matrix — A must be square and we know from Theorem DC [1499] that a matrix of
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size n is diagonalizable if and only if there is a basis for Cn composed entirely of eigenvectors
of A, or by Theorem DMFE [1506] we know that A is diagonalizable if and only if each
eigenvalue of A has a geometric multiplicity equal to its algebraic multiplicity. Some authors
prefer to call this an eigen decomposition of A rather than a matrix diagonalization.

Another decomposition, which is similar in flavor to matrix diagonalization, is orthonor-
mal diagonalization (Theorem OD [2062]). Here we require the matrix A to be normal and
we get the decomposition A = UDU∗, where D is a diagonal matrix with the eigenvalues
of A on the diagonal, and U is unitary. The hypothesis that A is normal guarantees the
decomposition and we get the extra information that U is unitary.

Each section of this chapter features a different matrix decomposition, with the exception
of Section PSM [2722], which presents background information on positive semi-definite
matrices required for singular value decompositions, square roots and polar decompositions.
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Section ROD

Rank One Decomposition

This Section is a Draft, Subject to Changes

Our first decomposition applies only to diagonalizable (Definition DZM [1497]) matrices,
and yields a decomposition into a sum of very simple matrices.

Theorem ROD
Rank One Decomposition
Suppose that A is a diagonalizable matrix of size n and rank r. Then there are r square
matrices A1, A2, A3, . . . , Ar, each of size n and rank 1 such that

A = A1 + A2 + A3 + · · ·+ Ar
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Furthermore, if λ1, λ2, λ3, . . . , λr are the nonzero eigenvalues of A, then there are two sets
of r linearly independent vectors from Cn,

X = {x1, x2, x3, . . . , xr} Y = {y1, y2, y3, . . . , yr}

such that Ak = λkxky
t
k, 1 ≤ k ≤ r. �

Proof The proof is constructive. Generally, we will diagonalize A, creating a nonsingular
matrix S and a diagonal matrix D. Then we split up the diagonal matrix into a sum of
matrices with a single nonzero entry (on the diagonal). This fundamentally creates the
decomposition in the statement of the theorem, the remainder is just bookkeeping. The
vectors in X and Y will result from the columns of S and the rows of S−1.

Let λ1, λ2, λ3, . . . , λn be the eigenvalues of A (repeated according to their algebraic
multiplicity). If A has rank r, then dim (N (A)) = n− r (Theorem RPNC [1201]). The null
space of A is the eigenspace of the eigenvalue λ = 0 (Theorem EMNS [1394]), so it follows
that the algebraic multiplicity of λ = 0 is n− r, αA (0) = n− r. Presume that the complete
list of eigenvalues is ordered so that λk = 0 for r + 1 ≤ k ≤ n.
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Since A is hypothesized to be diagonalizable, there exists a diagonal matrix D and an
invertible matrix S, such that D = S−1AS. We can rearrange tis equation to read, A =
SDS−1. Also, the proof of Theorem DC [1499] says that the diagonal elements of D are
the eigenvalues of A and we have the flexibility to assume they lie on the diagonal in the
same order as we have specified above. Now, let X∗ = {x1, x2, x3, . . . , xn} be the columns
of S, and let Y ∗ = {y1, y2, y3, . . . , yn} be the rows of S−1 converted to column vectors.
With little motivation other than the statement of the theorem, define size n matrices Ak,
1 ≤ k ≤ n by Ak = λkxky

t
k. Finally, let Dk be the size n matrix that is totally zero, other

than having λk in row k and column k.

With everything in place, we compute entry-by-entry,

[A]ij =
[
SDS−1

]
ij

Definition DZM [1497]

=

[
S

(
n∑
k=1

Dk

)
S−1

]
ij

Definition MA [614]
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=

[
S

(
n∑
k=1

DkS
−1

)]
ij

Theorem MMDAA [684]

=

[
n∑
k=1

SDkS
−1

]
ij

Theorem MMDAA [684]

=
n∑
k=1

[
SDkS

−1
]
ij

Definition MA [614]

=
n∑
k=1

n∑
`=1

[SDk]i`
[
S−1

]
`j

Theorem EMP [676]

=
n∑
k=1

n∑
`=1

n∑
p=1

[S]ip [Dk]p`
[
S−1

]
`j

Theorem EMP [676]

=
n∑
k=1

[S]ik [Dk]kk
[
S−1

]
kj

[Dk]p` = 0 if p 6= k, or ` 6= k
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=
n∑
k=1

[S]ik λk
[
S−1

]
kj

[Dk]kk = λk

=
n∑
k=1

λk [S]ik
[
S−1

]
kj

Property CMCN [2317]

=
n∑
k=1

λk [xk]i1
[
ytk
]
1j

Definition of X∗, Y ∗

=
n∑
k=1

λk

1∑
q=1

[xk]iq
[
ytk
]
qj

=
n∑
k=1

λk
[
xky

t
k

]
ij

Theorem EMP [676]

=
n∑
k=1

[
λkxky

t
k

]
ij

Definition MSM [615]
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=
n∑
k=1

[Ak]ij Definition of Ak

=

[
n∑
k=1

Ak

]
ij

Definition MA [614]

So by Definition ME [613] we have the desired equality of matrices. The careful reader will
have noted that Ak = O, r + 1 ≤ k ≤ n, since λk = 0 in these instances. To get the sets
X and Y from X∗ and Y ∗, simply discard the last n − r vectors. We can safely ignore (or
remove) Ar+1, Ar+2, . . . , An from the summation just derived.

One last assertion to check. What is the rank of Ak, 1 ≤ k ≤ r? Every row of Ak is
a scalar multiple of ytk, row k of the nonsingular matrix S−1 (Theorem MIMI [750]). As a
row of a nonsingular matrix, ytk cannot be all zeros. In particular, row i of Ak is obtained
as a scalar multiple of ytk by the scalar αk [xk]i. We have restricted ourselves to the nonzero
eigenvalues of A, and as S is nonsingular, some entry of xk is nonzero. This all implies that
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some row of Ak will be nonzero. Now consider row-reducing Ak. Swap the nonzero row up
into row 1. Use scalar multiples of this row to zero out every other row. This leaves a single
nonzero row in the reduced row-echelon form, so Ak has rank one. �

We record two observations that was not stated in our theorem above. First, the vectors
in X, chosen as columns of S, are eigenvectors of A. Second, the product of two vectors from
X and Y in the opposite order, by which we mean ytixj, is the entry in row i and column j
of the matrix product S−1S = In (Theorem EMP [676]). In particular,

ytixj =

{
1 if i = j

0 if i 6= j

We give two computational examples. One small, one a bit bigger.

Example ROD2
Rank one decomposition, size 2
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Consider the 2× 2 matrix,

A =

[−16 −6
45 17

]
By the techniques of Chapter E [1363] we find the eigenvalues and eigenspaces,

λ1 = 2 EA (2) =

〈{[−1
3

]}〉
λ2 = −1 EA (−1) =

〈{[−2
5

]}〉
With n = 2 distinct eigenvalues, Theorem DED [1513] tells us that A is diagonalizable,
and with no zero eigenvalues we see that A has full rank. Theorem DC [1499] says we can
construct the nonsingular matrix S with eigenvectors of A as columns, so we have

S =

[−1 −2
3 5

]
S−1 =

[
5 2
−3 −1

]
From these matrices we obtain the sets of vectors

X =

{[−1
3

]
,

[−2
5

]}
Y =

{[
5
2

]
,

[−3
−1

]}
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And we have the matrices,

A1 = 2

[−1
3

] [
5
2

]t
= 2

[−5 −2
15 6

]
=

[−10 −4
30 12

]
A2 = (−1)

[−2
5

] [−3
−1

]t
= (−1)

[
6 2
−15 −5

]
=

[−6 −2
15 5

]
And you can easily verify that A = A1 + A2. �

Here’s a slightly larger example, and the matrix does not have full rank.

Example ROD4
Rank one decomposition, size 4
Consider the 4× 4 matrix,

B =


34 18 −1 −6
−44 −24 −1 9
36 18 −3 −6
36 18 −6 −3
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By the techniques of Chapter E [1363] we find the eigenvalues and eigenvectors,

λ1 = 3 EB (3) =

〈


1
−2
1
−1

 ,


1
−1
1
2



〉

λ2 = −2 EB (−2) =

〈

−1
2
0
0



〉

λ3 = 0 EA (0) =

〈


2
−3
2
2



〉

The algebraic and geometric multiplicities of each eigenvalue are equal, so Theorem DMFE
[1506] tells us that A is diagonalizable. With a single zero eigenvalue we see that A has
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rank 4 − 1 = 3. Theorem DC [1499] says we can construct the nonsingular matrix S with
eigenvectors of A as columns, so we have

S =


1 1 −1 2
−2 −1 2 −3
1 1 0 2
−1 2 0 2

 S−1 =


4 2 0 −1
8 4 −1 −1
−1 0 1 0
−6 −3 1 1


Since r = 3, we need only collect three vectors from each of these matrices,

X =




1
−2
1
−1

 ,


1
−1
1
2

 ,

−1
2
0
0


 Y =




4
2
0
−1

 ,


8
4
−1
−1

 ,

−1
0
1
0
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And we obtain the matrices,

B1 = 3


1
−2
1
−1




4
2
0
−1


t

= 3


4 2 0 −1
−8 −4 0 2
4 2 0 −1
−4 −2 0 1

 =


12 6 0 −3
−24 −12 0 6
12 6 0 −3
−12 −6 0 3



B2 = 3


1
−1
1
2




8
4
−1
−1


t

= 3


8 4 −1 −1
−8 −4 1 1
8 4 −1 −1
16 8 −2 −2

 =


24 12 −3 −3
−24 −12 3 3
24 12 −3 −3
48 24 −6 −6



B3 = (−2)


−1
2
0
0



−1
0
1
0


t

= (−2)


1 0 −1 0
−2 0 2 0
0 0 0 0
0 0 0 0

 =


−2 0 2 0
4 0 −4 0
0 0 0 0
0 0 0 0
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Then we verify that

B = B1 +B2 +B3

=


12 6 0 −3
−24 −12 0 6
12 6 0 −3
−12 −6 0 3

+


24 12 −3 −3
−24 −12 3 3
24 12 −3 −3
48 24 −6 −6

+


−2 0 2 0
4 0 −4 0
0 0 0 0
0 0 0 0



=


34 18 −1 −6
−44 −24 −1 9
36 18 −3 −6
36 18 −6 −3


�
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Section TD

Triangular Decomposition

This Section is a Draft, Subject to Changes

Our next decomposition will break a square matrix into a product of two matrices, one
lower triangular and the other upper triangular. So we will write A = LU , and hence many
refer to this as LU decomposition. We will see that this decomposition is very easy to
compute and that it has a direct application to solving systems of equations. Since this
section is about triangular matrices you might want to review the definitions and a couple
of basic theorems back in Subsection OD.TM [2041].
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Subsection TD
Triangular Decomposition

With a slight condition on the nonsingularity of certain submatrices, we can split a matrix
into a product of two triangular matrices.

Theorem TD
Triangular Decomposition
Suppose A is a square matrix of size n. Let Ak be the k×k matrix formed from A by taking
the first k rows and the first k columns. Suppose that Ak is nonsingular for all 1 ≤ k ≤ n.
Then there is a lower triangular matrix L with all of its diagonal entries equal to 1 and an
upper triangular matrix U such that A = LU . Furthermore, this decomposition is unique.
�

Proof We will row reduce A to a row-equivalent upper triangular matrix through a series
of row operations, forming intermediate matrices A′j, 1 ≤ j ≤ n, that denote the state of
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the conversion after working on column j. First, the lone entry of A1 is [A]11 and this scalar
must be nonzero if A1 is nonsingular (Theorem SMZD [1348]). We can use row operations
Definition RO [84] of the form αR1 + Rk, 2 ≤ k ≤ n, where α = − [A]1k / [A]11 to place
zeros in the first column below the diagonal. The first two rows and columns of A′1 are a
2 × 2 upper triangular matrix whose determinant is equal to the determinant of A2, since
the matrices are row-equivalent through a sequence of row operations strictly of the third
type (Theorem DRCMA [1333]). As such the diagonal entries of this 2 × 2 submatrix of
A′1 are nonzero. We can employ this nonzero diagonal element with row operations of the
form αR2 +Rk, 3 ≤ k ≤ n to place zeros below the diagonal in the second column. We can
continue this process, column by column. The key observations are that our hypothesis on
the nonsingularity of the Ak will guarantee a nonzero diagonal entry for each column when
we need it, that the row operations employed are always of the third type using a multiple
of a row to transform another row with a greater row index, and that the final result will be
a nonsingular upper triangular matrix. This is the desired matrix U .

Each row operation described in the previous paragraph can be accomplished with matrix
multiplication by the appropriate elementary matrix (Theorem EMDRO [1281]). Since every
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row operation employed is adding a multiple of a row to a subsequent row these elementary
matrices are of the form Ej,k (α) with j < k. By Definition ELEM [1276], these matrices are
lower triangular with every diagonal entry equal to 1. We know that the product of two such
matrices will again be lower triangular (Theorem PTMT [2042]), but also, as you can also
easily check using a proof with a style similar to one above, that the product maintains all 1’s
on the diagonal. Let E1, E2, E3, . . . , Em denote the elementary matrices for this sequence
of row operations. Then

U = EmEm−1 . . . E3E2E1A = L′A

where L′ is the product of the elementary matrices, and we know L′ is lower triangular with
all 1’s on the diagonal. Our desired matrix L is then L = (L′)−1. By Theorem ITMT [2043],
L is lower triangular with all 1’s on the diagonal and A = LU , as desired.

The process just described is deterministic. That is, the proof is constructive, with no
freedom for each of us to walk through it differently. But could there be other matrices
with the same properties as L and U that give such a decomposition of A. In other words,
is the decomposition unique (Technique U [2357])? Suppose that we have two triangular
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decompositions, A = L1U1 and A = L2U2. Since A is nonsingular, two applications of
Theorem NPNT [775] imply that L1, L2, U1, U2 are all nonsingular. We have

L−1
2 L1 = L−1

2 InL1 Theorem MMIM [682]

= L−1
2 AA−1L1 Definition MI [727]

= L−1
2 L2U2 (L1U1)

−1 L1

= L−1
2 L2U2U

−1
1 L−1

1 L1 Theorem SS [748]

= InU2U
−1
1 In Definition MI [727]

= U2U
−1
1 Theorem MMIM [682]

Theorem ITMT [2043] tells us that L−1
2 is lower triangular and has 1’s as the diagonal

entries. By Theorem PTMT [2042], the product L−1
2 L1 is again lower triangular, and it is

simple to check (as before) that the diagonal entries of the product are again all 1’s. By
the entirely similar process we can conclude that the product U2U

−1
1 is upper triangular.

Because these two products are equal, their common value is a matrix that is both lower
triangular and upper triangular, with all 1’s on the diagonal. The only matrix meeting these
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three requirements is the identity matrix (Definition IM [248]). So, we have,

In = L−1
2 L1 ⇒ L2 = L1 In = U2U

−1
1 ⇒ U1 = U2

which establishes the uniqueness of the decomposition. �

Studying the proofs of some previous theorems will perhaps give you an idea for an
approach to computing a triangular decomposition. In the proof of Theorem CINM [742] we
augmented a nonsingular matrix with an identity matrix of the same size, and row-reduced
until the original matrix became the identity matrix (as we knew in advance would happen,
since we knew Theorem NMRRI [250]). Theorem PEEF [897] tells us about properties of
extended echelon form, and in particular, that B = JA, where A is the matrix that begins
on the left, and B is the reduced row-echelon form of A. The matrix J is the result on the
right side of the augmented matrix, which is the result of applying the same row operations
to the identity matrix. We should recognize now that J is just the product of the elementary
matrices (Subsection DM.EM [1276]) that perform these row operations. Theorem ITMT
[2043] used the extended echelon form to discern properties of the inverse of a triangular
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matrix. Theorem TD [2748] proves the existence of a triangular decomposition by applying
specific row operations, and tracking the relevant elementary row operations. It is not a
great leap to combine these observations into a computational procedure.

To find the triangular decomposition of A, augment A with the identity matrix of the
same size and call this new 2n × n matrix, M . Perform row operations on M that convert
the first n columns to an upper triangular matrix. Do this using only row operations that
add a scalar multiple of one row to another row with higher index (i.e. lower down). In this
way, the last n columns of M will be converted into a lower triangular matrix with 1’s on
the diagonal (since M has 1’s in these locations initially). We could think of this process as
doing about half of the work required to compute the inverse of A. Take the first n columns
of the row-equivalent version of M and call this matrix U . Take the final n columns of the
row-equivalent version of M and call this matrix L′. Then by a proof employing elementary
matrices, or a proof similar in spirit to the one used to prove Theorem PEEF [897], we
arrive at a result similar to the second assertion of Theorem PEEF [897]. Namely, U = L′A.
Multiplication on the left, by the inverse of L′, will give us a decomposition of A (which we
know to be unique). Ready? Lets try it.
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Example TD4
Triangular decomposition, size 4
In this example, we will illustrate the process for computing a triangular decomposition, as
described in the previous paragraphs. Consider the nonsingular square matrix A of size 4,

A =


−2 6 −8 7
−4 16 −14 15
−6 22 −23 26
−6 26 −18 17


We form M by augmenting A with the size 4 identity matrix I4. We will perform the allowed
operations, column by column, only reporting intermediate results as we finish converting
each column. It is easy to determine exactly which row operations we perform, since the
final four columns contain a record of each such operation. We will not verify our hypotheses
about the nonsingularity of the Ak, since if we do not have these conditions, we will reach a
stage where a diagonal entry is zero and we cannot create the row operations we need to zero
out the bottom portion of the associated column. In other words, we can boldly proceed
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and the necessity of our hypotheses will become apparent.

M =


−2 6 −8 7 1 0 0 0
−4 16 −14 15 0 1 0 0
−6 22 −23 26 0 0 1 0
−6 26 −18 17 0 0 0 1



→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 4 1 5 −3 0 1 0
0 8 6 −4 −3 0 0 1



→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 0 −1 4 −1 −1 1 0
0 0 2 −6 1 −2 0 1
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→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 0 −1 4 −1 −1 1 0
0 0 0 2 −1 −4 2 1


So at this point, we have U and L′,

U =


−2 6 −8 7
0 4 2 1
0 0 −1 4
0 0 0 2

 L′ =


1 0 0 0
−2 1 0 0
−1 −1 1 0
−1 −4 2 1


Then by whatever procedure we like (such as Theorem CINM [742]), we find

L = (L′)
−1

=


1 0 0 0
2 1 0 0
3 1 1 0
3 2 −2 1
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It is instructive to verify that indeed LU = A. �

Subsection TDSSE
Triangular Decomposition and Solving Systems of Equations

In this section we give an explanation of why you might be interested in a triangular decom-
position for a matrix. Many of the computational problems in linear algebra revolve around
solving large systems of equations, or nearly equivalently, finding inverses of large matrices.
Suppose we have a system of equations with coefficient matrix A and vector of constants b,
and suppose further that A has the triangular decomposition A = LU .

Let y be the solution to the linear system LS(L, b), so that by Theorem SLEMM [663],
we have Ly = b. Notice that since L is nonsingular, this solution is unique, and the form of
L makes it trivial to solve the system. The first component of y is determined easily, and we
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can continue on through determining the components of y, without even ever dividing. Now,
with y in hand, consider the linear system, LS(U, y). Let x be the unique solution to this
system, so by Theorem SLEMM [663] we have Ux = y. Notice that a system of equations
with U as a coefficient matrix is also straightforward to solve, though we will compute the
bottom entries of x first, and we will need to divide. The upshot of all this is that x is a
solution to LS(A, b), as we now show,

Ax = LUx = L (Ux) = Ly = b

An application of Theorem SLEMM [663] demonstrates that x is a solution to LS(A, b).

Example TDSSE
Triangular decomposition solves a system of equations
Here we illustrate the previous discussion, recycling the decomposition found previously in
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Example TD4 [2754]. Consider the linear system LS(A, b) with

A =


−2 6 −8 7
−4 16 −14 15
−6 22 −23 26
−6 26 −18 17

 b =


−10
−2
−1
−8


First we solve the system LS(L, b) (see Example TD4 [2754] for L),

y1 = −10

2y1 + y2 = −2

3y1 + y2 + y3 = −1

3y1 + 2y2 − 2y3 + y4 = −8

Then

y1 = −10
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y2 = −2− 2y1 = −2− 2(−10) = 18

y3 = −1− 3y1 − y2 = −1− 3(−10)− 18 = 11

y4 = −8− 3y1 − 2y2 + 2y3 = −8− 3(−10)− 2(18) + 2(11) = 8

so

y =


−10
18
11
8


Then we solve the system LS(U, y) (see Example TD4 [2754] for U),

−2x1 + 6x2 − 8x3 + 7x4 = −10

4x2 + 2x3 + x4 = 18

−x3 + 4x4 = 11
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2x4 = 8

Then

x4 = 8/2 = 4

x3 = (11− 4x4) /(−1) = (11− 4(4)) /(−1) = 5

x2 = (18− 2x3 − x4) /4 = (18− 2(5)− 4) /4 = 1

x1 = (−10− 6x2 + 8x3 − 7x4) /(−2) = (−10− 6(1) + 8(5)− 7(4)) /(−2) = 2

And so

x =


4
5
1
2


is the solution to LS(U, y) and consequently is the unique solution to LS(A, b), as you can
easily verify. �
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Subsection CTD
Computing Triangular Decompositions

It would be a simple matter to adjust the algorithm for converting a matrix to reduced row-
echelon form and obtain an algorithm to compute the triangular decomposition of the matrix,
along the lines of Example TD4 [2754] and the discussion preceding this example. However,
it is possible to obtain relatively simple formulas for the entries of the decomposition, and if
computed in the proper order, an implementation will be straightforward. We will state the
result as a theorem and then give an example of its use.

Theorem TDEE
Triangular Decomposition, Entry by Entry
Suppose that A is a squarematrix of size n with a triangular decomposition A = LU , where
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L is lower triangular with diagonal entries all equal to 1, and U is upper triangular. Then

[U ]ij = [A]ij −
i−1∑
k=1

[L]ik [U ]kj 1 ≤ i ≤ j ≤ n

[L]ij =
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj

)
1 ≤ j < i ≤ n

�

Proof Consider a single scalar product of an entry of L with an entry of U of the form
[L]ik [U ]kj. By Definition LTM [2041], if k > i then [L]ik = 0, while Definition UTM [2041],
says that if k > j then [U ]kj = 0. So we can combine these two facts to assert that if
k > min(i, j), [L]ik [U ]kj = 0 since at least one term of the product will be zero. Employing
this observation,

[A]ij =
n∑
k=1

[L]ik [U ]kj Theorem EMP [676]
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=

min(i, j)∑
k=1

[L]ik [U ]kj

Now, assume that 1 ≤ i ≤ j ≤ n,

[U ]ij = [A]ij − [A]ij + [U ]ij

= [A]ij −
min(i, j)∑
k=1

[L]ik [U ]kj + [U ]ij

= [A]ij −
i∑

k=1

[L]ik [U ]kj + [U ]ij

= [A]ij −
i−1∑
k=1

[L]ik [U ]kj − [L]ii [U ]ij + [U ]ij
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= [A]ij −
i−1∑
k=1

[L]ik [U ]kj − [U ]ij + [U ]ij

= [A]ij −
i−1∑
k=1

[L]ik [U ]kj

And for 1 ≤ j < i ≤ n,

[L]ij =
1

[U ]jj

(
[L]ij [U ]jj

)
=

1

[U ]jj

(
[A]ij − [A]ij + [L]ij [U ]jj

)
=

1

[U ]jj

[A]ij −
min(i, j)∑
k=1

[L]ik [U ]kj + [L]ij [U ]jj
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=
1

[U ]jj

(
[A]ij −

j∑
k=1

[L]ik [U ]kj + [L]ij [U ]jj

)

=
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj − [L]ij [U ]jj + [L]ij [U ]jj

)

=
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj

)
�

At first glance, these formulas may look exceedingly complex. Upon closer examination,
it looks even worse. We have expressions for entries of U that depend on other entries of U
and also on entries of L. But then the formula for entries of L depend on entries from L and
entries from U . Do these formula have circular dependencies? Or perhaps equivalently, how
do we get started? The key is to be organized about the computations and employ these two
(similar) formulas in a specific order. First compute the first row of L, followed by the first
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column of U . Then the second row of L, followed by the second column of U . And so on.
In this way, all of the values required for each new entry will have already been computed
previously.

Of course, the formula for entries of L require division by diagonal entries of U . These
entries might be zero, but in this case A is nonsingular and does not have a triangular decom-
position. So we need not check the hypothesis carefully and can launch into the arithmetic
dictated by the formulas, confident that we will be reminded when a decomposition is not
possible. Note that these formula give us all of the values that we need for the decomposi-
tion, since we require that L has 1’s on the diagonal. If we replace the 1’s on the diagonal
of L by zeros, and add the matrix U , we get an n× n matrix containing all the information
we need to resurrect the triangular decomposition. This is mostly a notational convenience,
but it is a frequent way of presenting the information. We’ll employ it in the next example.

Example TDEE6
Triangular decomposition, entry by entry, size 6
We illustrate the application of the formulas in Theorem TDEE [2762] for the 6× 6 matrix
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A.

A =


3 3 −3 −2 −1 0
−6 −4 5 2 4 2
9 9 −7 −7 0 1
−6 −10 8 10 −1 −7
6 4 −9 −2 −10 1
9 3 −12 −3 −21 −2



Using the notational convenience of packaging the two triangular matrices into one matrix,
and using the ordering of the computations mentioned above, we display the results after
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computing a single row and column of each of the two triangular matrices.


3 3 −3 −2 −1 0
−2
3
−2
2
3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0
−2 −2
2 −1
3 −3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0
2 −1 −2
3 −3 −3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1
3 −3 −3 −3
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3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1 1 2
3 −3 −3 −3 0




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1 1 2
3 −3 −3 −3 0 −2


Splitting out the pieces of this matrix, we have the decomposition,

L =


1 0 0 0 0 0
−2 1 0 0 0 0
3 0 1 0 0 0
−2 −2 0 1 0 0
2 −1 −2 −1 1 0
3 −3 −3 −3 0 1

 U =


3 3 −3 −2 −1 0
0 2 −1 −2 2 2
0 0 2 −1 3 1
0 0 0 2 1 −3
0 0 0 0 1 2
0 0 0 0 0 −2


�

The hypotheses of Theorem TD [2748] can be weakened slightly to include matrices where
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not every Ak is nonsingular. The introduces a rearrangement of the rows and columns of A
to force as many as possible of the smaller submatrices to be nonsingular. Then permutation
matrices also enter into the decomposition. We will not present the details here, but instead
suggest consulting a more advanced text on matrix analysis.
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Section SVD

Singular Value Decomposition

This Section is a Draft, Subject to Changes
Needs Numerical Examples

The singular value decomposition is one of the more useful ways to represent any matrix,
even rectangular ones. We can also view the singular values of a (rectangular) matrix as
analogues of the eigenvalues of a square matrix. Our definitions and theorems in this section
rely heavily on the properties of the matrix-adjoint products (A∗A and AA∗), which we
first met in Theorem CPSM [2724]. We start by examining some of the basic properties
of these two matrices. Now would be a good time to review the basic facts about positive
semi-definite matrices in Section PSM [2722].
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Subsection MAP
Matrix-Adjoint Product

Theorem EEMAP
Eigenvalues and Eigenvectors of Matrix-Adjoint Product
Suppose that A is an m×n matrix and A∗A has rank r. Let λ1, λ2, λ3, . . . , λp be the nonzero
distinct eigenvalues of A∗A and let ρ1, ρ2, ρ3, . . . , ρq be the nonzero distinct eigenvalues of
AA∗. Then,

1. p = q.

2. The distinct nonzero eigenvalues can be ordered such that λi = ρi, 1 ≤ i ≤ p.

3. Properly ordered, αA∗A (λi) = αAA∗ (ρi), 1 ≤ i ≤ p.

4. The rank of A∗A is equal to the rank of AA∗.
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5. There is an orthonormal basis, {x1, x2, x3, . . . , xn} of Cn composed of eigenvectors of
A∗A and an orthonormal basis, {y1, y2, y3, . . . , ym} of Cm composed of eigenvectors of
AA∗ with the following properties. Order the eigenvectors so that xi, r+ 1 ≤ i ≤ n are
the eigenvectors of A∗A for the zero eigenvalue. Let δi, 1 ≤ i ≤ r denote the nonzero
eigenvalues of A∗A. Then Axi =

√
δiyi, 1 ≤ i ≤ r and Axi = 0, r + 1 ≤ i ≤ n. Finally,

yi, r + 1 ≤ i ≤ m, are eigenvectors of AA∗ for the zero eigenvalue.

�

Proof Suppose that x ∈ Cn is any eigenvector of A∗A for a nonzero eigenvalue λ. We will
show that Ax is an eigenvector of AA∗ for the same eigenvalue, λ. First, we ascertain that
Ax is not the zero vector.

〈Ax, Ax〉 = 〈Ax, (A∗)∗ x〉 Theorem AA [638]

= 〈A∗Ax, x〉 Theorem AIP [696]

= 〈λx, x〉 Definition EEM [1365]

= λ 〈x, x〉 Theorem IPSM [574]
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Since x is an eigenvector, x 6= 0, and by Theorem PIP [582], 〈x, x〉 6= 0. As λ was assumed
to be nonzero, we see that 〈Ax, Ax〉 6= 0. Again, Theorem PIP [582] tells us that Ax 6= 0.

Much of the sequel turns on the following simple computation. If you ever wonder what
all the fuss is about adjoints, Hermitian matrices, square roots, and singular values, return to
this brief computation, as it holds the key. There is much more to do in this proof, but after
this it is mostly bookkeeping. Here we go. We check that Ax functions as an eigenvector of
AA∗ for the eigenvalue λ,

(AA∗)Ax = A (A∗A) x Theorem MMA [687]

= Aλx Definition EEM [1365]

= λ (Ax) Theorem MMSMM [685]

That’s it. If x is an eigenvector of A∗A (for a nonzero eigenvalue), then Ax is an eigenvector
for AA∗ for the same eigenvalue. Let’s see what this buys us.

A∗A and AA∗ are Hermitian matrices (Definition HM [698]), and hence are normal (Def-
inition NRML [2059]). This provides the existence of orthonormal bases of eigenvectors for
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each matrix by Theorem OBNM [2069]. Also, since each matrix is diagonalizable (Definition
DZM [1497]) by Theorem OD [2062] we can interchange algebraic and geometric multiplici-
ties by Theorem DMFE [1506].

Our first step is to establish that an eigenvalue λ has the same geometric multiplicity for
both A∗A and AA∗. Suppose {x1, x2, x3, . . . , xs} is an orthonormal basis of eigenvectors of
A∗A for the eigenspace EA∗A (λ). Then for 1 ≤ i < j ≤ s, note

〈Axi, Axj〉 = 〈Axi, (A∗)∗ xj〉 Theorem AA [638]

= 〈A∗Axi, xj〉 Theorem AIP [696]

= 〈λxi, xj〉 Definition EEM [1365]

= λ 〈xi, xj〉 Theorem IPSM [574]

= λ(0) Definition ONS [599]

= 0 Property ZCN [2317]

Then the set E = {Ax1, Ax2, Ax3, . . . , Axs} is an orthogonal set of nonzero eigenvectors
of AA∗ for the eigenvalue λ. By Theorem OSLI [589], the set E is linearly independent and
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so the geometric multiplicity of λ as an eigenvalue of AA∗ is s or greater. We have

αA∗A (λ) = γA∗A (λ) ≤ γAA∗ (λ) = αAA∗ (λ)

This inequality applies to any matrix, so long as the eigenvalue is nonzero. We now apply it
to the matrix A∗,

αAA∗ (λ) = α(A∗)∗A∗ (λ) ≤ αA∗(A∗)∗ (λ) = αA∗A (λ)

So for a nonzero eigenvalue, its algebraic multiplicities as an eigenvalue of A∗A and AA∗ are
equal. This is enough to establish that p = q and the eigenvalues can be ordered such that
λi = ρi for 1 ≤ i ≤ p.

For any matrix B, the null space is identical to the eigenspace of the zero eigenvalue,
N (B) = EB (0), and thus the nullity of the matrix is equal to the geometric multiplicity of
the zero eigenvalue. With this, we can examine the ranks of A∗A and AA∗.

r (A∗A) = n− n (A∗A) Theorem RPNC [1201]

Version 2.11



Subsection SVD.MAP Matrix-Adjoint Product 2788

=

(
αA∗A (0) +

p∑
i=1

αA∗A (λi)

)
− n (A∗A) Theorem NEM [1465]

=

(
αA∗A (0) +

p∑
i=1

αA∗A (λi)

)
− γA∗A (0) Definition GME [1399]

=

(
αA∗A (0) +

p∑
i=1

αA∗A (λi)

)
− αA∗A (0) Theorem DMFE [1506]

=

p∑
i=1

αA∗A (λi)

=

p∑
i=1

αAA∗ (λi)

=

(
αAA∗ (0) +

p∑
i=1

αAA∗ (λi)

)
− αAA∗ (0)
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=

(
αAA∗ (0) +

p∑
i=1

αAA∗ (λi)

)
− γAA∗ (0) Theorem DMFE [1506]

=

(
αAA∗ (0) +

p∑
i=1

αAA∗ (λi)

)
− n (AA∗) Definition GME [1399]

= m− n (AA∗) Theorem NEM [1465]

= r (AA∗) Theorem RPNC [1201]

When A is rectangular, the square matrices A∗A and AA∗ have different sizes. With equal
algebraic and geometric multiplicities for their common nonzero eigenvalues, the difference in
their sizes is manifest in different algebraic multiplicities for the zero eigenvalue and different
nullities. Specifically,

n (A∗A) = n− r n (AA∗) = m− r
Suppose that x1, x2, x3, . . . , xn is an orthonormal basis of Cn composed of eigenvectors of
A∗A and ordered so that xi, r + 1 ≤ i ≤ n are eigenvectors of AA∗ for the zero eigenvalue.
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Denote the associated nonzero eigenvalues of A∗A for these eigenvectors by δi, 1 ≤ i ≤ r.
Then define

yi =
1√
δi
Axi 1 ≤ i ≤ r

Let yr+1, yr+2, yr+2, . . . , ym be an orthonormal basis for the eigenspace EAA∗ (0), whose
existence is guaranteed by Theorem GSP [593]. As scalar multiples of demonstrated eigen-
vectors of AA∗, yi, 1 ≤ i ≤ r are also eigenvectors of AA∗, and yi, r + 1 ≤ i ≤ n have been
chosen as eigenvectors of AA∗. These eigenvectors also have norm 1, as we now show. For
1 ≤ i ≤ r,

‖yi‖ =

∥∥∥∥ 1√
δi
Axi

∥∥∥∥
=

√〈
1√
δi
Axi,

1√
δi
Axi

〉
Theorem IPN [580]
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=

√
1√
δi

1√
δi
〈Axi, Axi〉 Theorem IPSM [574]

=

√
1√
δi

1√
δi
〈Axi, Axi〉 Theorem HMRE [1473]

=
1√
δi

√
〈Axi, Axi〉

=
1√
δi

√
〈Axi, (A∗)∗ xi〉 Theorem AA [638]

=
1√
δi

√
〈A∗Axi, xi〉 Theorem AIP [696]

=
1√
δi

√
〈δixi, xi〉 Definition EEM [1365]

=
1√
δi

√
δi 〈xi, xi〉 Theorem IPSM [574]
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=
1√
δi

√
δi(1) Definition ONS [599]

= 1

For r + 1 ≤ i ≤ n, the yi have been chosen to have norm 1.

Finally we check orthogonality. Consider two eigenvectors yi and yj with 1 ≤ i < j ≤ m.
If these two vectors have different eigenvalues, then Theorem HMOE [1475] establishes that
the two eigenvectors are orthogonal. If the two eigenvectors have a zero eigenvalue, then they
are orthogonal by the choice of the orthonormal basis of EAA∗ (0). If the two eigenvectors
have identical, nonzero, eigenvalues, then

〈yi, yj〉 =

〈
1√
δi
Axi,

1√
δj
Axj

〉

=
1√
δi

1√
δj
〈Axi, Axj〉 Theorem IPSM [574]
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=
1√
δiδj
〈Axi, Axj〉 Theorem HMRE [1473]

=
1√
δiδj
〈Axi, (A∗)∗ xj〉 Theorem AA [638]

=
1√
δiδj
〈A∗Axi, xj〉 Theorem AIP [696]

=
1√
δiδj
〈δixi, xj〉 Definition EEM [1365]

=
δi√
δiδj
〈xi, xj〉 Theorem IPSM [574]

=
δi√
δiδj

(0) Definition ONS [599]

= 0

So {y1, y2, y3, . . . , ym} is an orthonormal set of eigenvectors for AA∗. The critical relation-
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ship between these two orthonormal bases is present by design. For 1 ≤ i ≤ r,

Axi =
√
δi

1√
δi
Axi =

√
δiyi

For r + 1 ≤ i ≤ n we have

〈Axi, Axi〉 = 〈Axi, (A∗)∗ xi〉 Theorem AA [638]

= 〈A∗Axi, xi〉 Theorem AIP [696]

= 〈0, xi〉 Definition EEM [1365]

= 0 Definition IP [569]

So by Theorem PIP [582], Axi = 0. �
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Subsection SVD
Singular Value Decomposition

The square roots of the eigenvalues of A∗A (or almost equivalently, AA∗!) are known as the
singular values of A. Here is the definition.

Definition SV
Singular Values
Suppose A is an m × n matrix. If the eigenvalues of A∗A are δ1, δ2, δ3, . . . , δn, then the
singular values of A are

√
δ1,
√
δ2,
√
δ3, . . . ,

√
δn. 4

Theorem EEMAP [2773] is a total setup for the singular value decomposition. This
remarkable theorem says that any matrix can be broken into a product of three matrices.
Two are square, and unitary. In light of Theorem UMPIP [792], we can view these matrices
as transforming vectors or coordinates in a rotational fashion. The middle matrix of this
decomposition is rectangular, but is as close to being diagonal as a rectangular matrix can
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be. Viewed as a transformation, this matrix effects, reflections, contractions or expansions
along axes — it stretches vectors. So any matrix, viewed as a transformation is the product
of a rotation, a stretch and a rotation.

The singular value theorem can also be viewed as an application of our most general
statement about matrix representations of linear transformations relative to different bases.
Theorem MRCB [1979] concerns linear transformations T : U 7→ V where U and V are
possibly different vector spaces. When U and V have different dimensions, the resulting
matrix representation will be rectangular. In Section CB [1955] we quickly specialized to the
case where U = V and the matrix representations are square with one of our most central
results, Theorem SCB [1986]. Theorem SVD [2786] is an application of the full generality of
Theorem MRCB [1979] where the relevant bases are now orthonormal sets.

Theorem SVD
Singular Value Decomposition
Suppose A is an m×n matrix of rank r with nonzero singular values s1, s2, s3, . . . , sr. Then
A = UDV ∗ where U is a unitary matrix of size m, V is a unitary matrix of size n and D is
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an m× n matrix given by

[D]ij =

{
si if 1 ≤ i = j ≤ r

0 otherwise

�

Proof Let x1, x2, x3, . . . , xn and y1, y2, y3, . . . , ym be the orthonormal bases described
by the conclusion of Theorem EEMAP [2773]. Define U to be the m × m matrix whose
columns are yi, 1 ≤ i ≤ m, and define V to be the n × n matrix whose columns are xi,
1 ≤ i ≤ n. With orthonormal sets of columns, by Theorem CUMOS [788] both U and V are
unitary matrices.

Then for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[AV ]ij = [Axj]i Definition MM [672]

=
[√

δjyj

]
i

Theorem EEMAP [2773]
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= [sjyj]i Definition SV [2785]

= [yj]i sj Definition CVSM [291]

= [U ]ij [D]jj

=
m∑
k=1

[U ]ik [D]kj

= [UD]ij Theorem EMP [676]

So by Theorem ME [1466], AV = UD and thus

A = AIn = AV V ∗ = UDV ∗

�
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Section SR

Square Roots

This Section is a Draft, Subject to Changes
Needs Numerical Examples

With all our results about Hermitian matrices, their eigenvalues and their diagonal-
izations, it will be a nearly trivial matter to now construct a “square root” of a positive
semi-definite matrix. We will describe the square root of a matrix A as a matrix S such that
A = S2. In general, a matrix A might have many such square roots. But with a few results
in hand we will be able to impose an extra condition on S that will make a unique S such
that A = S2. At that point we can define the square root of A formally.
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Subsection SRM
Square Root of a Matrix

Theorem PSMSR
Positive Semi-Definite Matrices and Square Roots
Suppose A is a square matrix. There is a positive semi-definite matrix S such that A = S2

if and only if A is positive semi-definite. �

Proof Let n denote the size of A.
(⇐) Suppose that A is positive semi-definite. Since A is Hermitian (Definition PSM

[2723]) we know A is normal (Definition NRML [2059]) and so by Theorem OD [2062] there
is a unitary matrix U and a diagonal matrix D, whose diagonal entries are the eigenvalues of
A, such that D = U∗AU . The eigenvalues of A are all non-negative (Theorem EPSM [2725]),
which allows us to define a diagonal matrix E whose diagonal entries are the positive square
roots of the eigenvalues of A, in the same order as they appear in D. More precisely, define
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E to be the diagonal matrix with non-negative diagonal entries such that E2 = D. Set
S = UEU∗, and compute

S2 = UEU∗UEU∗

= UEInEU
∗ Definition UM [785]

= UEEU∗ Theorem MMIM [682]

= UDU∗

= UU∗AUU∗ Theorem OD [2062]

= InAIn Definition UM [785]

= A Theorem MMIM [682]

We need to first verify that S is Hermitian.

S∗ = (UEU∗)∗

= (UEU∗)∗
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= (U∗)∗E∗U∗ Theorem MMAD [694]

= UE∗U∗ Theorem AA [638]

= U
(
E
)t
U∗ Definition A [636]

= UEtU∗ Theorem HMRE [1473]

= UEU∗ Diagonal matrix

= S

And finally, we want to check the use of S in an inner product. Notice that E is Hermitian
since it is a diagonal matrix with real entries. Furthermore, as a diagonal matrix, the
eigenvalues of E are precisely the diagonal entries, and since these were chosen to be positive,
an application of Theorem EPSM [2725] tells us that E is positive semi-definite. Now, for
any x ∈ Cn,

〈Sx, x〉 = 〈UEU∗x, x〉
= 〈EU∗x, U∗x〉 Theorem AIP [696]
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= 〈E (U∗x) , U∗x〉
≥ 0 Definition PSM [2723]

So, according to Definition PSM [2723], S is positive semi-definite.
(⇒) Assume that A = S2, with S positive semi-definite. Then S is Hermitian, and we

check that A is Hermitian.

A∗ = (SS)∗

= S∗S∗ Theorem MMAD [694]

= SS Definition HM [698]

= A

Now for the use of A in an inner product. For any x ∈ Cn,

〈Ax, x〉 =
〈
S2x, x

〉
= 〈Sx, S∗x〉 Theorem AIP [696]

Version 2.11



Subsection SR.SRM Square Root of a Matrix 2804

= 〈Sx, Sx〉 Definition HM [698]

≥ 0 Theorem PIP [582]

So by Definition PSM [2723], A is positive semi-definite. �

There is a very close relationship between the eigenvalues and eigenspaces of a positive
semi-definite matrix and its positive semi-definite square root. The next theorem is interest-
ing in its own right, but is also an important technical step in some other important results,
such as the upcoming uniqueness of the square root (Theorem USR [2799]).

Theorem EESR
Eigenvalues and Eigenspaces of a Square Root
Suppose that A is a positive semi-definite matrix and S is a positive semi-definite matrix
such that A = S2. If λ1, λ2, λ3, . . . , λp are the distinct eigenvalues of A, then the distinct
eigenvalues of S are

√
λ1,
√
λ2,
√
λ3, . . . ,

√
λp, and ES

(√
λi
)

= EA (λi) for 1 ≤ i ≤ p. �

Proof Let x be an eigenvector of S for an eigenvalue ρ. Then, in the style of Theorem
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EPM [1454],

Ax = S2x = S (Sx) = S (ρx) = ρSx = ρ2x

so ρ2 is an eigenvalue of A and must equal some λi. Furthermore, because S is positive
semi-definite, Theorem EPSM [2725] tells us that ρ ≥ 0. The impact for us here is that
we cannot have two different eigenvalues of S whose squares equal the same eigenvalue of
A, so we can pair each eigenvalue of S with a different eigenvalue of A, equal to its square.
(A good exercise is to track through the rest of this proof in the situation where S is not
assumed to be positive semi-definite and we do not have this condition on the eigenvalues.
Where does the proof then break down?) Let ρi, 1 ≤ i ≤ q denote the q distinct eigenvalues
of S. The discussion above implies that we can order the eigenvalues of A and S so that
λi = ρ2

i for 1 ≤ i ≤ q. Notice that at this point we know that q ≤ p, though we will be
showing that q = p.

Additionally, the equation above tells us that every eigenvector of S for ρi is again an
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eigenvector of A for ρ2
i . So for 1 ≤ i ≤ q, the relevant eigenspaces are related by

ES
(√

λi

)
= ES (ρi) ⊆ EA

(
ρ2
i

)
= EA (λi)

So the eigenspaces of S are subsets of the eigenspaces of A, for the related eigenvalues.
However, we will be showing that these sets are indeed equal to each other.

Both A and S are positive semi-definite, hence Hermitian and therefore normal. The-
orem OD [2062] then tells us that each is diagonalizable (Definition DZM [1497]). Then
Theorem DMFE [1506] says that the algebraic multiplicity and geometric multiplicity of
each eigenvalue are equal. Then, if we let n denote the size of A,

n =

q∑
i=1

αS

(√
λi

)
Theorem NEM [1465]

=

q∑
i=1

γS

(√
λi

)
Theorem DMFE [1506]
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=

q∑
i=1

dim
(
ES
(√

λi

))
Definition GME [1399]

≤
q∑
i=1

dim (EA (λi)) Theorem PSSD [1236]

≤
p∑
i=1

dim (EA (λi)) Definition D [1177]

=

p∑
i=1

γA (λi) Definition GME [1399]

=

p∑
i=1

αA (λi) Theorem DMFE [1506]

= n Theorem NEM [1465]

With equal values at the two ends of this chain of equalities and inequalities, we know that
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the two inequalities are forced to actually be equalities. In particular, the second inequality
implies that p = q and the first, in conjunction with Theorem EDYES [1237], implies that
ES
(√

λi
)

= EA (λi) for 1 ≤ i ≤ p. �

Notice that we defined the singular values of a matrix A as the square roots of the
eigenvalues of A∗A (Definition SV [2785]). With Theorem EESR [2794] in hand we recognize
the singular values of A as simply the eigenvalues of A∗A1/2. Indeed, many authors take this
as the definition of singular values, since it is equivalent to our definition. We have chosen not
to wait for a discussion of square roots before making a definition of singular values, allowing
us to present the singular value decomposition (Theorem SVD [2786]) all the sooner.

In the first half of the proof of Theorem PSMSR [2790] we could have chosen the matrix
E (which was the essential component of the desired matrix S) in a variety of ways. Any
collection of diagonal entries of E could be replaced by their negatives and we would maintain
the property that E2 = D. However, if we decide to enforce the entries of E as non-negative
quantities then E is positive semi-definite, and then S follows along as a positive semi-definite
matrix. We now show that of all the possible square roots of a positive semi-definite matrix,
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only one is itself again positive semi-definite. In other words, the S of Theorem PSMSR
[2790] is unique.

Theorem USR
Unique Square Root
Suppose A is a positive semi-definite matrix. Then there is a unique positive semi-definite
matrix S such that A = S2. �

Proof Theorem PSMSR [2790] gives us the existence of at least one positive semi-definite
matrix S such that A = S2. As usual, we will assume that S1 and S2 are positive semi-definite
matrices such that A = S2

1 = S2
2 (Technique U [2357]).

As A is diagonalizable, there is a basis of Cn composed entirely of eigenvectors of A (The-
orem DC [1499]), say B = {x1, x2, x3, . . . , xn}. Let δ1, δ2, δ3, . . . , δn denote the associated
eigenvalues. Theorem EESR [2794] allows to conclude that EA (δi) = ES1

(√
δi
)

= ES2

(√
δi
)
.

So S1xi =
√
δixi = S2xi for 1 ≤ i ≤ n.

Choose any x ∈ Cn. The spanning property of B allows us to conclude the existence of a
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set of scalars, a1, a2, a3, . . . , an, yielding x as a linear combination of the vectors in B. So,

S1x = S1

n∑
i=1

aixi =
n∑
i=1

aiS1xi =
n∑
i=1

ai
√
δixi =

n∑
i=1

aiS2xi = S2

n∑
i=1

aixi = S2x

Since S1 and S2 have the same action on every vector, Theorem EMMVP [670] yields the
conclusion that S1 = S2. �

With a criteria that distinguishes one square root from all the rest (positive semi-
definiteness) we can now define the square root of a positive semi-definite matrix.

Definition SRM
Square Root of a Matrix
Suppose A is a positive semi-definite matrix and S is the positive semi-definite matrix such
that S2 = SS = A. Then S is the square root of A and we write S = A1/2.
(This definition contains Notation SRM.) 4
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Section POD

Polar Decomposition

This Section is a Draft, Subject to Changes
Needs Numerical Examples

The polar decomposition of a matrix writes any matrix as the product of a unitary matrix
(Definition UM [785])and a positive semi-definite matrix (Definition PSM [2723]). It takes
its name from a special way to write complex numbers. If you’ve had a basic course in
complex analysis, the next paragraph will help explain the name. If the next paragraph
makes no sense to you, there’s no harm in skipping it.

Any complex number z ∈ C can be written as z = reiθ where r is a positive number
(computed as a square root of a function of the real amd imaginary parts of z) and θ is an
angle of rotation that converts 1 to the complex number eiθ = cos(θ) + i sin(θ). The polar
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form of a square matrix is a product of a positive semi-definite matrix that is a square root
of a function of the matrix together with a unitary matrix, which can be viewed as achieving
a rotation (Theorem UMPIP [792]).

OK, enough preliminaries. We have all the tools in place to jump straight to our main
theorem.

Theorem PDM
Polar Decomposition of a Matrix
Suppose that A is a square matrix. Then there is a unitary matrix U such that A =
(AA∗)1/2 U . �

Proof This theorem only claims the existence of a unitary matrix U that does a certain
job. We will manufacture U and check that it meets the requirements.

Suppose A has size n and rank r. We begin by applying Theorem EEMAP [2773] to
A. Let B = {x1, x2, x3, . . . , xn} be the orthonormal basis of Cn composed of eigenvectors
for A∗A, and let C = {y1, y2, y3, . . . , yn} be the orthonormal basis of Cn composed of
eigenvectors for AA∗. We have Axi =

√
δixi, 1 ≤ i ≤ r, and Axi = 0, r + 1 ≤ i ≤ n, where
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δi, 1 ≤ i ≤ r are the distinct nonzero eigenvalues of A∗A.
Define T : Cn 7→ Cn to be the unique linear transformation such that T (xi) = yi, 1 ≤

i ≤ n, as guaranteed by Theorem LTDB [1582]. Let E be the basis of standard unit vectors
for Cn (Definition SUV [586]), and define U to be the matrix representation (Definition MR
[1855]) of T with respect to E, more carefully U = MT

E,E. This is the matrix we are after.
Notice that

Uxi = MT
E,EρE (xi) Definition VR [1819]

= ρE (T (xi)) Theorem FTMR [1864]

= ρE (yi) Theorem FTMR [1864]

= yi Definition VR [1819]

Since B and C are orthonormal bases, and C is the result of multiplying the vectors of B
by U , we conclude that U is unitary by Theorem UMCOB [1151]. So once again, Theorem
EEMAP [2773] is a big part of the setup for a decomposition.

Let x ∈ Cn be any vector. Since B is a basis of Cn, there are scalars a1, a2, a3, . . . , an
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expressing x as a linear combination of the vectors in B. then

(AA∗)1/2 Ux = (AA∗)1/2 U
n∑
i=1

aixi Definition B [1121]

=
n∑
i=1

(AA∗)1/2 Uaixi Theorem MMDAA [684]

=
n∑
i=1

ai (AA
∗)1/2 Uxi Theorem MMSMM [685]

=
n∑
i=1

ai (AA
∗)1/2 yi

=
r∑
i=1

ai (AA
∗)1/2 yi +

n∑
i=r+1

ai (AA
∗)1/2 yi Property AAC [295]
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=
r∑
i=1

ai
√
δiyi +

n∑
i=r+1

ai(0)yi Theorem EESR [2794]

=
r∑
i=1

ai
√
δiyi +

n∑
i=r+1

ai0 Theorem ZSSM [979]

=
r∑
i=1

aiAxi +
n∑

i=r+1

aiAxi Theorem EEMAP [2773]

=
n∑
i=1

aiAxi Property AAC [295]

=
n∑
i=1

Aaixi Theorem MMSMM [685]

= A
n∑
i=1

aixi Theorem MMDAA [684]

Version 2.11



Section POD Polar Decomposition 2816

= Ax

So by Theorem EMMVP [670] we have the matrix equality (AA∗)1/2 U = A. �
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Section CF

Curve Fitting

This Section is Incomplete

Given two points in the plane, there is a unique line through them. Given three points
in the plane, and not in a line, there is a unique parabola through them. Given four points
in the plane, there is a unique polynomial, of degree 3 or less, passing through them. And
so on. We can prove this result, and give a procedure for finding the polynomial with the
help of Vandermonde matrices (Section VM [2710]).

Theorem IP
Interpolating Polynomial
Suppose {(xi, yi) | 1 ≤ i ≤ n+ 1} is a set of n+1 points in the plane where the x-coordinates
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are all different. Then there is a unique polynomial of degree n or less, p(x), such that
p(xi) = yi, 1 ≤ i ≤ n+ 1. �

Proof Write p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n. To meet the conclusion of the theorem,
we desire,

yi = p(xi) = a0 + a1xi + a2x
2
i + · · ·+ anx

n
i 1 ≤ i ≤ n+ 1

This is a system of n + 1 linear equations in the n + 1 variables a0, a1, a2, . . . , an. The
vector of constants in this system is the vector containing the y-coordinates of the points.
More importantly, the coefficient matrix is a Vandermonde matrix (Definition VM [2710])
built from the x-coordinates x1, x2, x3, . . . , xn+1. Since we have required that these scalars
all be different, Theorem NVM [2720] tells us that the coefficient matrix is nonsingular and
Theorem NMUS [256] says the solution for the coefficients of the polynomial exists, and is
unique. As a practical matter, Theorem SNCM [783] provides an expression for the solution.

�

Example PTFP

Version 2.11



Section CF Curve Fitting 2820

Polynomial through five points
Suppose we have the following 5 points in the plane and we wish to pass a degree 4 polynomial
through them.

i 1 2 3 4 5
xi -3 -1 2 3 6
yi 276 16 31 144 2319

The required system of equations has a coefficient matrix that is the Vandermonde matrix
where row i is successive powers of xi

A =


1 −3 9 −27 81
1 −1 1 −1 1
1 2 4 8 16
1 3 9 27 81
1 6 36 216 1296
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Theorem NMUS [256] provides a solution as


a0

a1

a2

a3

a4

 = A−1


276
16
31
144
2319

 =


− 1

15
9
14

9
10

−1
2

1
42

0 −3
7

3
4

−1
3

1
84

5
108

− 1
56
−1

4
17
72

− 11
756− 1

54
1
21

− 1
12

1
18

− 1
756

1
540

− 1
168

1
60

− 1
72

1
756




276
16
31
144
2319

 =


3
−4
5
−2
2



So the polynomial is p(x) = 3− 4x+ 5x2 − 2x3 + 2x4. �

The unique polynomial passing through a set of points is known as the interpolating
polynomial and it has many uses. Unfortunately, when confronted with data from an
experiment the situation may not be so simple or clear cut. Read on.
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Subsection DF
Data Fitting

Suppose that we have n real variables, x1, x2, x3, . . . , xn, that we can measure in an ex-
periment. We believe that these variables combine, in a linear fashion, to equal another
real variable, y. In other words, we have reason to believe from our understanding of the
experiment, that

y = a1x1 + a2x2 + a3x3 + · · ·+ anxn

where the scalars a1, a2, a3, . . . , an are not known to us, but are instead desirable. We would
call this our model of the situation. Then we run the experiment m times, collecting sets of
values for the variables of the experiment. For run number k we might denote these values
as yk, xk1, xk2, xk3, . . . , xkn. If we substitute these values into the model equation, we get
m linear equations in the unknown coefficients a1, a2, a3, . . . , an. If m = n, then we have
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a square coefficient matrix of the system which might happen to be nonsingular and there
would be a unique solution.

However, more likely m > n (the more data we collect, the greater our confidence in
the results) and the resulting system is inconsistent. It may be that our model is only an
approximate understanding of the relationship between the xi and y, or our measurements
are not completely accurate. Still we would like to understand the situation we are studying,
and would like some best answer for a1, a2, a3, . . . , an.

Let y denote the vector with [y]i = yi, 1 ≤ i ≤ m, let a denote the vector with [a]j = aj,
1 ≤ j ≤ n, and let X denote the m×n matrix with [X]ij = xij, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then
the model equation, evaluated with each run of the experiment, translates to Xa = y. With
the presumption that this system has no solution, we can try to minimize the difference
between the two side of the equation y − Xa. As a vector, it is hard to imagine what the
minimum might be, so we instead minimize the square of its norm

S = (y −Xa)t (y −Xa)

To keep the logical flow accurate, we will define the minimizing value and then give the proof
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that it behaves as desired.

Definition LSS
Least Squares Solution
Given the equation Xa = y, where X is an m × n matrix of rank n, the least squares
solution for a is (X tX)

−1
X ty. 4

Theorem LSMR
Least Squares Minimizes Residuals
Suppose that X is an m × n matrix of rank n. The least squares solution of Xa = y,
a′ = (X tX)

−1
X ty, minimizes the expression

S = (y −Xa)t (y −Xa)

�

Proof We begin by finding the critical points of S. In preparation, let Xj denote column j
of X, for 1 ≤ j ≤ n and compute partial derivatives with respect to aj, 1 ≤ j ≤ n. A matrix
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product of the form xty is a sum of products, so a derivative is a sum of applications of the
product rule,

∂

∂aj
S =

∂

∂aj

(
(y −Xa)t (y −Xa)

)
=

m∑
i=1

∂

∂aj
([y −Xa]i) [y −Xa]i + [y −Xa]i

∂

∂aj
([y −Xa]i)

= 2
m∑
i=1

∂

∂aj
([y −Xa]i) [y −Xa]i

= 2
m∑
i=1

∂

∂aj

(
[y]i −

n∑
k=1

[X]ik [a]k

)
[y −Xa]i

= 2
m∑
i=1

− [X]ij [y −Xa]i
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= −2 (Xj)
t (y −Xa)

The first partial derivatives will allow us to find critical points, while second partial deriva-
tives will be needed to confirm that a critical point will yield a minimum. Return to the
next-to-last expression for the first partial derivative of S,

∂

∂a`aj
S =

∂

∂a`
2

m∑
i=1

− [X]ij [y −Xa]i

= −2
m∑
i=1

∂

∂a`
[X]ij [y −Xa]i

= −2
m∑
i=1

[X]ij
∂

∂a`

(
[y]i −

n∑
k=1

[X]ik [a]k

)
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= −2
m∑
i=1

[X]ij (− [X]i`)

= 2
m∑
i=1

[X]ij [X]i`

= 2
m∑
i=1

[
X t
]
ji

[X]i`

= 2
[
X tX

]
j`

For 1 ≤ j ≤ n, set ∂
∂aj
S = 0. This results in the n scalar equations

(Xj)
tXa = (Xj)

t y 1 ≤ j ≤ n

These n vector equations can be summarized in the single vector equation,

X tXa = X ty
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X tX is an n× n matrix and since we have assumed that X has rank n, X tX will also have
rank n. Since X tX is invertible, we have a critical point at

a′ =
(
X tX

)−1
X ty

Is this lone critical point really a minimum? The matrix of second partial derivatives is
constant, and a positive multiple of X tX. Theorem CPSM [2724] tells us that this matrix
is positive semi-definite. In an advanced course on multivariable calculus, it is shown that
a minimum occurs exactly where the matrix of second partial derivatives is positive semi-
definite. You may have seen this in the two-variable case, where a check on the positive semi-
definiteness is disguised with a determinant of the 2× 2 matrix of second partial derivatives.

�
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Subsection EXC
Exercises

T20 Theorem IP [2808] constructs a unique polynomial through a set of n + 1 points in
the plane, {(xi, yi) | 1 ≤ i ≤ n+ 1}, where the x-coordinates are all different. Prove that
the expression below is the same polynomial and include an explanation of the necessity of
the hypothesis that the x-coordinates are all different.

p(x) =
n+1∑
i=1

yi

n+1∏
j=1
j 6=i

x− xj
xi − xj

This is known as the Lagrange form of the interpolating polynomial.
Contributed by Robert Beezer
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Section SAS

Sharing A Secret

This Section is a Draft, Subject to Changes

In this section we will see how to use solutions to systems of equations to share a secret
among a group of people. We will be able to break a secret up into, say 10 pieces, so as to
distribute the secret among 10 people. But rather than requiring all 10 people to collaborate
on restoring the secret, we can design the split so that any smaller group, of say just 4 of these
people, can collaborate and restore the secret. The numbers 10 and 4 here are arbitrary, we
can choose them to be anything.

Suppose we have a secret, S. This could be the combination to a lock, a password on an
account, or a recipe for chocolate chip cookies. If the secret is text, we will assume that the
characters have been translated into integers (say with the ASCII code), and these numbers
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have been rolled up into one grand positive integer (perhaps by concatenating binary strings
for the ASCII code numbers, and interpreting the longer string as one big base 2 integer).
So we will assume S is some positive integer.

Suppose you wish to give parts of your secret to n people, and you wish to require that
any group of m (or more) of these people should be able to combine their parts and recover
the secret. Perhaps you are President and CEO of a small company and only you know the
password that authorizes large transfers of money among the company’s bank accounts. If
you were to die or become incapacitated, it would perhaps hamper the company’s ability to
function if they couldn’t quickly rearrange their assets, especially since they are also without
a CEO. So you might wish to give this secret to six of your trusted Vice-Presidents. But you
don’t trust them that much and you certainly don’t want any one of these people to be able
to access the company’s accounts all by themselves without anybody else in the company
knowing about it. Simultaneously, you know that in an emergency, it might not be possible
to get all six Vice-Presidents together and maybe even one or two of them have met the
same unfortunate fate you did. So you would like any group of three Vice-Presidents to be
able to combine their parts and recover S. So you would choose n = 6 and m = 3.

Version 2.11



Section SAS Sharing A Secret 2832

We will describe the split, with no motivation. The explanation of how the secret recovery
is handled will explain our choices here. Choose a large prime number, p, bigger than any
possible secret. For a single number in a combination lock, p could be small. For a one-page
recipe, p would need to be huge. All of our subsequent arithmetic will be modulo p, so
consult Subsection F.FF [2656] for a brief description of how we do linear algebra when our
field is Zp. Build a polynomial, r(x), of degree m − 1 as follows. Set the constant term to
S, and choose the other m− 1 coefficients at random from Zp. The quality of your random
generator will ultimately affect the quality of how hidden your secret remains.

Compute the pairs (i, r(i)), 1 ≤ i ≤ n. To person i, of the n persons you will give
a part of your secret, present the pair (i, r(i)), and instruct them to keep this secret, for
all 1 ≤ i ≤ n. They could perhaps encrypt their pairs with AES (Advanced Encryption
Standard) using a password known only to them individually. Or you could do this for each
of them in advance and tell them the chose password orally, in private. At any rate, each
person gets a pair of integers, an input to the polynomial, and the output of evaluating the
polynomial, and they keep this information secret. They do not know the polynomial itself,
and certainly not the constant term S, so the secret is still safe.
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Now suppose that m of these people get together, in the event you are unable to act,
or perhaps without your permission. Suppose they pool all of their pairs, or even just turn
them over to one member of the group. What do they now know collectively? Suppose that

r(x) = a0 + a1x+ a2x
2 + · · ·+ am−1x

m−1

where, of course, a0 = S is the secret. A single pair, (i, r(i)), results in a linear equation
whose unknowns are the m coefficients of r(x). With m pairs revealed, we now have m equa-
tions in m variables. Furthermore, the coefficient matrix of this system is a Vandermonde
matrix (Definition VM [2710]). With our inputs to the polynomial all different (we used
1, 2, 3, . . . , n), the Vandermonde matrix is nonsingular (Theorem NVM [2720]). Thus by
Theorem NMUS [256] there is a unique solution for the coefficients of r(x). We only desire
the constant term — the other coefficients (the randomly chosen ones) are of no interest,
they were used to mask the secret as it was split into parts.

A few practical considerations. If certain individuals in your group are more important,
or more trustworthy, you can give them more than one part. You could split a secret into
30 parts, giving 5 Vice-Presidents each 4 parts and give 10 department heads each 1 part.
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Then you might require 12 parts to be present. This way three Vice-Presidents could recover
the secret, or 4 department heads could stand-in for a Vice-President. Furthermore, the 10
department heads could not recover the secret without having at least one Vice-President
present.

The inputs do not have to be consecutive integers, starting at 1. Any set of different
integers will suffice. Why make it any easier for an attacker? Mix it up and choose the
inputs randomly as well, just keep them different.

Why do all this arithmetic over Zp? If we worked with polynomials having real number
coefficients, properties of polynomials as continuous functions might give an attacker the
ability to compute the secret with a reasonable amount of computing time. For example,
the magnitude of the output is going to dominated by the term of r(x) having degree m− 1.
Suppose an attacker had a few of the pairs, but not a full set of m of them. Or even worse,
suppose some group of fewer than m of your trusted acquaintances were to conspire against
you. It might be possible to guess a limited range of values for the coefficient of the largest
term. With a limited range of values here, the next term might fall to a similar analysis.
And so on. However, modular arithmetic is in some ways very unpredictable looking and as
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high powers “wrap-around” this sort of analysis will be frustrated. And we know it is no
harder to do linear algebra in Zp than in C.

OK, here’s a non-trivial example.

Example SS6W
Sharing a secret 6 ways
Let’s return to the CEO and his six Vice-Presidents. Suppose the password for the company’s
accounts is a sequence of 5 two-digit numbers, which we will concatenate into a 10-digit
number, in this case S = 0603725962. For a prime p we choose the 11-digit prime number
p = 22801761379. From the requirement that m = 3 Vice-Presidents are needed to recover
the secret, we need a second-degree polynomial and so need two more coefficients, which we
will construct at random between 1 and p. The resulting polynomial is

r(x) = 603725962 + 22561982919x+ 8844088338x2

We will now build six pairs of inputs and outputs, where we will choose the inputs at random
(not allowing duplicates) and we do all our arithmetic modulo p,
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VP x r(x)
Finance 20220406046 7205699654
Human Resources 8862377358 17357568951
Marketing 13747127957 18503158079
Legal 15835120319 14060705999
Research 6530855859 5628836054
Manufacturing 9222703664 2608052019

The two numbers of each row of the table are then given to the indicated Vice-President.
Done. The secret has been split six ways, and any three VP’s can jointly recover the secret.

Let’s test the recovery process, especially since it contains the relevant linear algebra.
Suppose we write the unknown polynomial as r(x) = a0 + a1x + a2x

2 and the VP’s for
Finance, Marketing and Legal all get together to recover the secret. The equations we arrive
at are,

Finance 7205699654 = r(20220406046)

= a0 + a1(20220406046) + a2(20220406046)2
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= a0 + 20220406046a1 + 7793596215a2

Marketing 18503158079 = r(13747127957)

= a0 + a1(13747127957) + a2(13747127957)2

= a0 + 13747127957a1 + 18840301370a2

Legal 14060705999 = r(15835120319)

= a0 + a1(15835120319) + a2(15835120319)2

= a0 + 15835120319a1 + 8874412999a2

So they have a linear system, LS(A, b) with

A =

1 20220406046 7793596215
1 13747127957 18840301370
1 15835120319 8874412999

 b =

 7205699654
18503158079
14060705999


With a Vandermonde matrix as the coefficient matrix, they know there is a solution, and it
is unique. By Theorem SNCM [783] (or through row-reducing the augmented matrix) they
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arrive at the solution,

A−1b =

 5716900879 9234437646 7850422855
20952200747 16452595922 8198726089
17286943796 18018241597 10298337365

 7205699654
18503158079
14060705999

 =

 603725962
22561982919
8844088338


So the CEO’s password is the secret S = a0 = 603725962 = 0603725962 (as expected). �
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ACC (Property), 295
ACCN (Property), 2316
ACF (Property), 2652
ACM (Property), 618
ACN (example), 2314
additive associativity

column vectors
Property AAC, 295

complex numbers
Property AACN, 2317

matrices
Property AAM, 618

vectors
Property AA, 957

additive closure
column vectors

Property ACC, 295
complex numbers

Property ACCN, 2316
field

Property ACF, 2652
matrices

Property ACM, 618
vectors

Property AC, 956
additive commutativity

complex numbers
Property CACN, 2317

additive inverse
complex numbers

Property AICN, 2318
from scalar multiplication
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theorem AISM, 981
additive inverses

column vectors
Property AIC, 296

matrices
Property AIM, 619

unique
theorem AIU, 977

vectors
Property AI, 957

adjoint
definition A, 636
inner product

theorem AIP, 696
notation, 636
of a matrix sum

theorem AMA, 636
of an adjoint

theorem AA, 638
of matrix scalar multiplication

theorem AMSM, 637
AHSAC (example), 207
AI (Property), 957
AIC (Property), 296
AICN (Property), 2318
AIF (Property), 2653
AIM (Property), 619
AIP (theorem), 696
AISM (theorem), 981
AIU (theorem), 977
AIVLT (example), 1751
ALT (example), 1553
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ALTMM (example), 1869
AM (definition), 81
AM (example), 72
AM (notation), 81
AM (subsection, section MO), 635
AMA (theorem), 636
AMAA (example), 82
AME (definition), 1399
AME (notation), 1399
AMSM (theorem), 637
ANILT (example), 1754
ANM (example), 2060
AOS (example), 588
Archetype A

column space, 827
linearly dependent columns, 476

singular matrix, 247
solving homogeneous system, 211
system as linear combination, 324

archetype A
augmented matrix

example AMAA, 82
Archetype B

column space, 829
inverse

example CMIAB, 744
linearly independent columns, 477
nonsingular matrix, 247
not invertible

example MWIAA, 728
solutions via inverse

example SABMI, 723
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solving homogeneous system, 210
system as linear combination, 321
vector equality, 288

archetype B
solutions

example SAB, 113
Archetype C

homogeneous system, 207
Archetype D

column space, original columns, 824
solving homogeneous system, 212
vector form of solutions, 332

Archetype I
column space from row operations, 849
null space, 217
row space, 834

vector form of solutions, 357
Archetype I:casting out vectors, 530
Archetype L

null space span, linearly independent, 487
vector form of solutions, 362

ASC (example), 1837
augmented matrix

notation, 81
AVR (example), 1088

B (archetype), 2392
B (definition), 1121
B (section), 1120
B (subsection, section B), 1120
basis

columns nonsingular matrix
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example CABAK, 1139
common size

theorem BIS, 1188
crazy vector apace

example BC, 1130
definition B, 1121
matrices

example BM, 1125
example BSM22, 1128

polynomials
example BP, 1124
example BPR, 1231
example BSP4, 1126
example SVP4, 1235

subspace of matrices
example BDM22, 1232

BC (example), 1130
BCS (theorem), 822
BDE (example), 1455
BDM22 (example), 1232
best cities

money magazine
example MBC, 665

BIS (theorem), 1188
BM (example), 1125
BNM (subsection, section B), 1138
BNS (theorem), 484
BP (example), 1124
BPR (example), 1231
BRLT (example), 1718
BRS (theorem), 843
BS (theorem), 539
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BSCV (subsection, section B), 1132
BSM22 (example), 1128
BSP4 (example), 1126

C (archetype), 2407
C (definition), 2330
C (notation), 2330
C (part), 2
C (Property), 957
C (technique, section PT), 2347
CABAK (example), 1139
CACN (Property), 2317
CAEHW (example), 1381
CAF (Property), 2652
canonical form

nilpotent linear transformation

example CFNLT, 2119
theorem CFNLT, 2105

CAV (subsection, section O), 566
Cayley-Hamilton

theorem CHT, 2262
CB (section), 1955
CB (theorem), 1961
CBCV (example), 1974
CBM (definition), 1961
CBM (subsection, section CB), 1960
CBP (example), 1964
CC (Property), 295
CCCV (definition), 566
CCCV (notation), 566
CCM (definition), 630
CCM (example), 631
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CCM (notation), 630
CCM (theorem), 633
CCN (definition), 2319
CCN (notation), 2319
CCN (subsection, section CNO), 2319
CCRA (theorem), 2320
CCRM (theorem), 2321
CCT (theorem), 2321
CD (subsection, section DM), 1295
CD (technique, section PT), 2354
CEE (subsection, section EE), 1387
CELT (example), 2016
CELT (subsection, section CB), 1998
CEMS6 (example), 1408
CF (section), 2808
CFDVS (theorem), 1836

CFNLT (example), 2119
CFNLT (subsection, section NLT), 2104
CFNLT (theorem), 2105
CFV (example), 178
change of basis

between polynomials
example CBP, 1964

change-of-basis
between column vectors

example CBCV, 1974
matrix representation

theorem MRCB, 1979
similarity

theorem SCB, 1986
theorem CB, 1961

change-of-basis matrix
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definition CBM, 1961
inverse

theorem ICBM, 1963
characteristic polynomial

definition CP, 1388
degree

theorem DCP, 1462
size 3 matrix

example CPMS3, 1388
CHT (subsection, section JCF), 2261
CHT (theorem), 2262
CILT (subsection, section ILT), 1664
CILTI (theorem), 1664
CIM (subsection, section MISLE), 732
CINM (theorem), 742
CIVLT (example), 1765

CIVLT (theorem), 1769
CLI (theorem), 1840
CLTLT (theorem), 1607
CM (definition), 75
CM (Property), 618
CM32 (example), 1845
CMCN (Property), 2317
CMF (Property), 2652
CMI (example), 737
CMIAB (example), 744
CMVEI (theorem), 182
CN (appendix), 2270
CNA (definition), 2315
CNA (notation), 2315
CNA (subsection, section CNO), 2313
CNE (definition), 2315
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CNE (notation), 2315
CNM (definition), 2316
CNM (notation), 2316
CNMB (theorem), 1138
CNO (section), 2313
CNS1 (example), 218
CNS2 (example), 220
CNSV (example), 579
COB (theorem), 1144
coefficient matrix

definition CM, 75
nonsingular

theorem SNCM, 783
column space

as null space
theorem FS, 902

Archetype A
example CSAA, 827

Archetype B
example CSAB, 829

as null space
example CSANS, 885

as null space, Archetype G
example FSAG, 923

as row space
theorem CSRST, 848

basis
theorem BCS, 822

consistent system
theorem CSCS, 812

consistent systems
example CSMCS, 809
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isomorphic to range, 1900
matrix, 808
nonsingular matrix

theorem CSNM, 830
notation, 808
original columns, Archetype D

example CSOCD, 824
row operations, Archetype I

example CSROI, 849
subspace

theorem CSMS, 1037
testing membership

example MCSM, 814
two computations

example CSTW, 819
column vector addition

notation, 289
column vector scalar multiplication

notation, 292
commutativity

column vectors
Property CC, 295

matrices
Property CM, 618

vectors
Property C, 957

complex m-space
example VSCV, 961

complex arithmetic
example ACN, 2314

complex number
conjugate
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example CSCN, 2319
modulus

example MSCN, 2323
complex number

conjugate
definition CCN, 2319

modulus
definition MCN, 2322

complex numbers
addition

definition CNA, 2315
notation, 2315

arithmetic properties
theorem PCNA, 2316

equality
definition CNE, 2315

notation, 2315
multiplication

definition CNM, 2316
notation, 2316

complex vector space
dimension

theorem DCM, 1190
composition

injective linear transformations
theorem CILTI, 1664

surjective linear transformations
theorem CSLTS, 1725

conjugate
addition

theorem CCRA, 2320
column vector
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definition CCCV, 566
matrix

definition CCM, 630
notation, 630

multiplication
theorem CCRM, 2321

notation, 2319
of conjugate of a matrix

theorem CCM, 633
scalar multiplication

theorem CRSM, 568
twice

theorem CCT, 2321
vector addition

theorem CRVA, 567
conjugate of a vector

notation, 566
conjugation

matrix addition
theorem CRMA, 631

matrix scalar multiplication
theorem CRMSM, 632

matrix transpose
theorem MCT, 634

consistent linear system, 172
consistent linear systems

theorem CSRN, 176
consistent system

definition CS, 161
constructive proofs

technique C, 2347
contradiction
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technique CD, 2354
contrapositive

technique CP, 2352
converse

technique CV, 2353
coordinates

orthonormal basis
theorem COB, 1144

coordinatization
linear combination of matrices

example CM32, 1845
linear independence

theorem CLI, 1840
orthonormal basis

example CROB3, 1149
example CROB4, 1146

spanning sets
theorem CSS, 1841

coordinatization principle, 1845
coordinatizing

polynomials
example CP2, 1843

COV (example), 530
COV (subsection, section LDS), 529
CP (definition), 1388
CP (subsection, section VR), 1839
CP (technique, section PT), 2352
CP2 (example), 1843
CPMS3 (example), 1388
CPSM (theorem), 2724
crazy vector space

example CVSR, 1837
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properties
example PCVS, 984

CRMA (theorem), 631
CRMSM (theorem), 632
CRN (theorem), 1200
CROB3 (example), 1149
CROB4 (example), 1146
CRS (section), 808
CRS (subsection, section FS), 884
CRSM (theorem), 568
CRVA (theorem), 567
CS (definition), 161
CS (example), 2330
CS (subsection, section TSS), 161
CSAA (example), 827
CSAB (example), 829

CSANS (example), 885
CSCN (example), 2319
CSCS (theorem), 812
CSIP (example), 570
CSLT (subsection, section SLT), 1724
CSLTS (theorem), 1725
CSM (definition), 808
CSM (notation), 808
CSMCS (example), 809
CSMS (theorem), 1037
CSNM (subsection, section CRS), 827
CSNM (theorem), 830
CSOCD (example), 824
CSRN (theorem), 176
CSROI (example), 849
CSRST (diagram), 928
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CSRST (theorem), 848
CSS (theorem), 1841
CSSE (subsection, section CRS), 809
CSSOC (subsection, section CRS), 819
CSTW (example), 819
CTD (subsection, section TD), 2762
CTLT (example), 1608
CUMOS (theorem), 788
curve fitting

polynomial through 5 points
example PTFP, 2810

CV (definition), 73
CV (notation), 74
CV (technique, section PT), 2353
CVA (definition), 289
CVA (notation), 289

CVC (notation), 74
CVE (definition), 286
CVE (notation), 286
CVS (example), 970
CVS (subsection, section VR), 1836
CVSM (definition), 291
CVSM (example), 293
CVSM (notation), 292
CVSR (example), 1837

D (acronyms, section PDM), 1360
D (archetype), 2419
D (chapter), 1274
D (definition), 1177
D (notation), 1177
D (section), 1176
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D (subsection, section D), 1177
D (subsection, section SD), 1496
D (technique, section PT), 2337
D33M (example), 1292
DAB (example), 1497
DC (example), 1195
DC (technique, section PT), 2361
DC (theorem), 1499
DCM (theorem), 1190
DCN (Property), 2317
DCP (theorem), 1462
DD (subsection, section DM), 1290
DEC (theorem), 1301
decomposition

technique DC, 2361
DED (theorem), 1513

definition
A, 636
AM, 81
AME, 1399
B, 1121
C, 2330
CBM, 1961
CCCV, 566
CCM, 630
CCN, 2319
CM, 75
CNA, 2315
CNE, 2315
CNM, 2316
CP, 1388
CS, 161

Version 2.11



INDEX 2856

CSM, 808
CV, 73
CVA, 289
CVE, 286
CVSM, 291
D, 1177
DIM, 1496
DM, 1291
DS, 1246
DZM, 1497
EEF, 894
EELT, 1956
EEM, 1365
ELEM, 1276
EM, 1392
EO, 32

ES, 2326
ESYS, 31
F, 2652
GES, 2143
GEV, 2142
GME, 1399
HI, 2695
HID, 2694
HM, 698
HP, 2692
HS, 207
IDLT, 1750
IDV, 169
IE, 2177
ILT, 1630
IM, 248
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IMP, 2656
IP, 569
IS, 2130
IVLT, 1750
IVS, 1774
JB, 2080
JCF, 2212
KLT, 1643
LC, 1020
LCCV, 316
LI, 1061
LICV, 458
LNS, 881
LSS, 2814
LT, 1550
LTA, 1599

LTC, 1606
LTM, 2041
LTR, 2157
LTSM, 1602
M, 71
MA, 614
MCN, 2322
ME, 613
MI, 727
MM, 672
MR, 1855
MRLS, 79
MSM, 615
MVP, 661
NLT, 2074
NM, 246
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NOLT, 1780
NOM, 1197
NRML, 2059
NSM, 216
NV, 578
ONS, 599
OSV, 586
OV, 584
PI, 1592
PSM, 2723
REM, 85
RLD, 1061
RLDCV, 458
RLT, 1701
RO, 84
ROLT, 1779

ROM, 1197
RR, 122
RREF, 91
RSM, 833
S, 1002
SC, 2333
SE, 2327
SET, 2324
SI, 2332
SIM, 1485
SLE, 25
SLT, 1687
SM, 1290
SOLV, 78
SQM, 245
SRM, 2800
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SS, 1023
SSCV, 390
SSET, 2325
SU, 2331
SUV, 586
SV, 2785
SYM, 624
T, 2674
technique D, 2337
TM, 622
TS, 1016
TSHSE, 209
TSVS, 1076
UM, 785
UTM, 2041
VM, 2710

VOC, 76
VR, 1819
VS, 956
VSCV, 285
VSM, 612
ZCV, 74
ZM, 621

DEHD (example), 1513
DEM (theorem), 1344
DEMMM (theorem), 1346
DEMS5 (example), 1415
DER (theorem), 1295
DERC (theorem), 1331
determinant

computed two ways
example TCSD, 1303
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definition DM, 1291
equal rows or columns

theorem DERC, 1331
expansion, columns

theorem DEC, 1301
expansion, rows

theorem DER, 1295
identity matrix

theorem DIM, 1342
matrix multiplication

theorem DRMM, 1353
nonsingular matrix, 1348
notation, 1292
row or column multiple

theorem DRCM, 1330
row or column swap

theorem DRCS, 1327
size 2 matrix

theorem DMST, 1294
size 3 matrix

example D33M, 1292
transpose

theorem DT, 1299
via row operations

example DRO, 1335
zero

theorem SMZD, 1348
zero row or column

theorem DZRC, 1326
zero versus nonzero

example ZNDAB, 1350
determinant, upper triangular matrix
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example DUTM, 1305
determinants

elementary matrices
theorem DEMMM, 1346

DF (Property), 2653
DF (subsection, section CF), 2812
DFS (subsection, section PD), 1242
DFS (theorem), 1242
DGES (theorem), 2210
diagonal matrix

definition DIM, 1496
diagonalizable

definition DZM, 1497
distinct eigenvalues

example DEHD, 1513
theorem DED, 1513

full eigenspaces
theorem DMFE, 1506

not
example NDMS4, 1511

diagonalizable matrix
high power

example HPDM, 1516
diagonalization

Archetype B
example DAB, 1497

criteria
theorem DC, 1499

example DMS3, 1503
diagram

CSRST, 928
DLTA, 1551
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DLTM, 1552
DTSLS, 180
FTMR, 1867
FTMRA, 1868
GLT, 1563
ILT, 1638
MRCLT, 1889
NILT, 1633

DIM (definition), 1496
DIM (theorem), 1342
dimension

crazy vector space
example DC, 1195

definition D, 1177
notation, 1177
polynomial subspace

example DSP4, 1194
proper subspaces

theorem PSSD, 1236
subspace

example DSM22, 1191
direct sum

decomposing zero vector
theorem DSZV, 1251

definition DS, 1246
dimension

theorem DSD, 1257
example SDS, 1247
from a basis

theorem DSFB, 1248
from one subspace

theorem DSFOS, 1250
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notation, 1246
zero intersection

theorem DSZI, 1253
direct sums

linear independence
theorem DSLI, 1255

repeated
theorem RDS, 1259

distributivity
complex numbers

Property DCN, 2317
field

Property DF, 2653
distributivity, matrix addition

matrices
Property DMAM, 619

distributivity, scalar addition
column vectors

Property DSAC, 296
matrices

Property DSAM, 619
vectors

Property DSA, 958
distributivity, vector addition

column vectors
Property DVAC, 296

vectors
Property DVA, 958

DLDS (theorem), 522
DLTA (diagram), 1551
DLTM (diagram), 1552
DM (definition), 1291
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DM (notation), 1292
DM (section), 1275
DM (theorem), 1191
DMAM (Property), 619
DMFE (theorem), 1506
DMHP (subsection, section HP), 2700
DMHP (theorem), 2700
DMMP (theorem), 2703
DMS3 (example), 1503
DMST (theorem), 1294
DNLT (theorem), 2092
DNMMM (subsection, section PDM), 1348
DP (theorem), 1190
DRCM (theorem), 1330
DRCMA (theorem), 1333
DRCS (theorem), 1327

DRMM (theorem), 1353
DRO (example), 1335
DRO (subsection, section PDM), 1326
DROEM (subsection, section PDM), 1342
DS (definition), 1246
DS (notation), 1246
DS (subsection, section PD), 1245
DSA (Property), 958
DSAC (Property), 296
DSAM (Property), 619
DSD (theorem), 1257
DSFB (theorem), 1248
DSFOS (theorem), 1250
DSLI (theorem), 1255
DSM22 (example), 1191
DSP4 (example), 1194
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DSZI (theorem), 1253
DSZV (theorem), 1251
DT (theorem), 1299
DTSLS (diagram), 180
DUTM (example), 1305
DVA (Property), 958
DVAC (Property), 296
DVM (theorem), 2712
DVS (subsection, section D), 1190
DZM (definition), 1497
DZRC (theorem), 1326

E (acronyms, section SD), 1545
E (archetype), 2431
E (chapter), 1363
E (technique, section PT), 2348

E.SAGE (computation, section SAGE), 2309
ECEE (subsection, section EE), 1398
EDELI (theorem), 1445
EDYES (theorem), 1237
EE (section), 1365
EEE (subsection, section EE), 1376
EEF (definition), 894
EEF (subsection, section FS), 893
EELT (definition), 1956
EELT (subsection, section CB), 1956
EEM (definition), 1365
EEM (subsection, section EE), 1365
EEMAP (theorem), 2773
EENS (example), 1494
EER (theorem), 1996
EESR (theorem), 2794
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EHM (subsection, section PEE), 1472
eigenspace

as null space
theorem EMNS, 1394

definition EM, 1392
invariant subspace

theorem EIS, 2135
subspace

theorem EMS, 1392
eigenspaces

sage, 2309
eigenvalue

algebraic multiplicity
definition AME, 1399
notation, 1399

complex

example CEMS6, 1408
definition EEM, 1365
existence

example CAEHW, 1381
theorem EMHE, 1376

geometric multiplicity
definition GME, 1399
notation, 1400

index, 2177
linear transformation

definition EELT, 1956
multiplicities

example EMMS4, 1400
power

theorem EOMP, 1452
root of characteristic polynomial
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theorem EMRCP, 1390
scalar multiple

theorem ESMM, 1451
symmetric matrix

example ESMS4, 1402
zero

theorem SMZE, 1448
eigenvalues

building desired
example BDE, 1455

complex, of a linear transformation
example CELT, 2016

conjugate pairs
theorem ERMCP, 1461

distinct
example DEMS5, 1415

example SEE, 1366
Hermitian matrices

theorem HMRE, 1473
inverse

theorem EIM, 1457
maximum number

theorem MNEM, 1471
multiplicities

example HMEM5, 1405
theorem ME, 1466

number
theorem NEM, 1465

of a polynomial
theorem EPM, 1454

size 3 matrix
example EMS3, 1391
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example ESMS3, 1396
transpose

theorem ETM, 1459
eigenvalues, eigenvectors

vector, matrix representations
theorem EER, 1996

eigenvector, 1365
linear transformation, 1956

eigenvectors, 1366
conjugate pairs, 1461
Hermitian matrices

theorem HMOE, 1475
linear transformation

example ELTBM, 1957
example ELTBP, 1958

linearly independent

theorem EDELI, 1445
of a linear transformation

example ELTT, 2000
EILT (subsection, section ILT), 1631
EIM (theorem), 1457
EIS (example), 2136
EIS (theorem), 2135
ELEM (definition), 1276
ELEM (notation), 1278
elementary matrices

definition ELEM, 1276
determinants

theorem DEM, 1344
nonsingular

theorem EMN, 1288
notation, 1278
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row operations
example EMRO, 1279
theorem EMDRO, 1281

ELIS (theorem), 1226
ELTBM (example), 1957
ELTBP (example), 1958
ELTT (example), 2000
EM (definition), 1392
EM (subsection, section DM), 1276
EMDRO (theorem), 1281
EMHE (theorem), 1376
EMMS4 (example), 1400
EMMVP (theorem), 670
EMN (theorem), 1288
EMNS (theorem), 1394
EMP (theorem), 676

empty set, 2326
notation, 2326

EMRCP (theorem), 1390
EMRO (example), 1279
EMS (theorem), 1392
EMS3 (example), 1391
ENLT (theorem), 2090
EO (definition), 32
EOMP (theorem), 1452
EOPSS (theorem), 34
EPM (theorem), 1454
EPSM (theorem), 2725
equal matrices

via equal matrix-vector products
theorem EMMVP, 670

equation operations
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definition EO, 32
theorem EOPSS, 34

equivalence statements
technique E, 2348

equivalences
technique ME, 2358

equivalent systems
definition ESYS, 31

ERMCP (theorem), 1461
ES (definition), 2326
ES (notation), 2326
ESEO (subsection, section SSLE), 31
ESLT (subsection, section SLT), 1688
ESMM (theorem), 1451
ESMS3 (example), 1396
ESMS4 (example), 1402

ESYS (definition), 31
ETM (theorem), 1459
EVS (subsection, section VS), 960
example

AALC, 323
ABLC, 321
ABS, 391
ACN, 2314
AHSAC, 207
AIVLT, 1751
ALT, 1553
ALTMM, 1869
AM, 72
AMAA, 82
ANILT, 1754
ANM, 2060
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AOS, 588
ASC, 1837
AVR, 1088
BC, 1130
BDE, 1455
BDM22, 1232
BM, 1125
BP, 1124
BPR, 1231
BRLT, 1718
BSM22, 1128
BSP4, 1126
CABAK, 1139
CAEHW, 1381
CBCV, 1974
CBP, 1964

CCM, 631
CELT, 2016
CEMS6, 1408
CFNLT, 2119
CFV, 178
CIVLT, 1765
CM32, 1845
CMI, 737
CMIAB, 744
CNS1, 218
CNS2, 220
CNSV, 579
COV, 530
CP2, 1843
CPMS3, 1388
CROB3, 1149
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CROB4, 1146
CS, 2330
CSAA, 827
CSAB, 829
CSANS, 885
CSCN, 2319
CSIP, 570
CSMCS, 809
CSOCD, 824
CSROI, 849
CSTW, 819
CTLT, 1608
CVS, 970
CVSM, 293
CVSR, 1837
D33M, 1292

DAB, 1497
DC, 1195
DEHD, 1513
DEMS5, 1415
DMS3, 1503
DRO, 1335
DSM22, 1191
DSP4, 1194
DUTM, 1305
EENS, 1494
EIS, 2136
ELTBM, 1957
ELTBP, 1958
ELTT, 2000
EMMS4, 1400
EMRO, 1279
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EMS3, 1391
ESMS3, 1396
ESMS4, 1402
FDV, 169
FF8, 2661
FRAN, 1707
FS1, 915
FS2, 918
FSAG, 923
FSCF, 1521
GE4, 2148
GE6, 2151
GENR6, 2177
GSTV, 598
HISAA, 210
HISAD, 212

HMEM5, 1405
HP, 2692
HPDM, 1516
HUSAB, 209
IAP, 1657
IAR, 1635
IAS, 845
IAV, 1640
ILTVR, 1911
IM, 249
IM11, 2657
IS, 43
ISJB, 2139
ISMR4, 2167
ISMR6, 2170
ISSI, 164
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IVSAV, 1774
JB4, 2080
JCF10, 2216
KPNLT, 2099
KVMR, 1895
LCM, 1021
LDCAA, 476
LDHS, 468
LDP4, 1187
LDRN, 472
LDS, 459
LIC, 1073
LICAB, 477
LIHS, 466
LIM32, 1066
LINSB, 481

LIP4, 1062
LIS, 462
LLDS, 473
LNS, 882
LTDB1, 1586
LTDB2, 1588
LTDB3, 1590
LTM, 1567
LTPM, 1558
LTPP, 1561
LTRGE, 2158
MA, 614
MBC, 665
MCSM, 814
MFLT, 1572
MI, 729
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MIVS, 1839
MMNC, 674
MNSLE, 664
MOLT, 1577
MPMR, 1881
MRBE, 1988
MRCM, 1980
MSCN, 2323
MSM, 616
MTV, 662
MWIAA, 728
NDMS4, 1511
NIAO, 1656
NIAQ, 1632
NIAQR, 1655
NIDAU, 1663

NJB5, 2081
NKAO, 1644
NLT, 1557
NM, 247
NM62, 2077
NM64, 2074
NM83, 2085
NRREF, 93
NSAO, 1714
NSAQ, 1688
NSAQR, 1711
NSC2A, 1014
NSC2S, 1015
NSC2Z, 1013
NSDAT, 1723
NSDS, 415
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NSE, 26
NSEAI, 217
NSLE, 80
NSLIL, 487
NSNM, 254
NSR, 252
NSS, 253
OLTTR, 1856
ONFV, 601
ONTV, 600
OSGMD, 183
OSMC, 790
PCVS, 984
PM, 1371
PSHS, 371
PTFP, 2810

PTM, 673
PTMEE, 678
RAO, 1701
RES, 546
RNM, 1198
RNSM, 1202
ROD2, 2740
ROD4, 2742
RREF, 92
RREFN, 162
RRTI, 1240
RS, 1135
RSAI, 834
RSB, 1132
RSC4, 544
RSC5, 525
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RSNS, 1018
RSREM, 842
RVMR, 1903
S, 247
SAA, 116
SAB, 113
SABMI, 723
SAE, 119
SAN, 1714
SAR, 1692
SAV, 1696
SC, 2334
SC3, 1003
SCAA, 398
SCAB, 403
SCAD, 419

SDS, 1247
SEE, 1366
SEEF, 895
SETM, 2325
SI, 2332
SM2Z7, 2660
SM32, 1030
SMLT, 1604
SMS3, 1487
SMS5, 1486
SP4, 1011
SPIAS, 1593
SRR, 251
SS, 1291
SS6W, 2825
SSC, 1084
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SSET, 2326
SSM22, 1081
SSNS, 411
SSP, 1026
SSP4, 1077
STLT, 1601
STNE, 23
SU, 2332
SUVOS, 587
SVP4, 1235
SYM, 624
TCSD, 1303
TD4, 2754
TDEE6, 2767
TDSSE, 2758
TIS, 2131

TIVS, 1837
TKAP, 1648
TLC, 317
TM, 623
TMP, 7
TOV, 584
TREM, 85
TTS, 28
UM3, 785
UPM, 786
US, 40
USR, 88
VA, 290
VESE, 287
VFS, 338
VFSAD, 332
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VFSAI, 357
VFSAL, 362
VM4, 2711
VRC4, 1823
VRP2, 1828
VSCV, 961
VSF, 967
VSIM5, 2658
VSIS, 966
VSM, 961
VSP, 963
VSPUD, 1195
VSS, 968
ZNDAB, 1350

EXC (subsection, section B), 1157
EXC (subsection, section CB), 2026

EXC (subsection, section CF), 2819
EXC (subsection, section CRS), 855
EXC (subsection, section D), 1208
EXC (subsection, section DM), 1309
EXC (subsection, section EE), 1422
EXC (subsection, section F), 2668
EXC (subsection, section FS), 932
EXC (subsection, section HP), 2707
EXC (subsection, section HSE), 224
EXC (subsection, section ILT), 1667
EXC (subsection, section IS), 2188
EXC (subsection, section IVLT), 1795
EXC (subsection, section LC), 378
EXC (subsection, section LDS), 553
EXC (subsection, section LI), 491
EXC (subsection, section LISS), 1095
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EXC (subsection, section LT), 1613
EXC (subsection, section MINM), 798
EXC (subsection, section MISLE), 756
EXC (subsection, section MM), 703
EXC (subsection, section MO), 641
EXC (subsection, section MR), 1920
EXC (subsection, section NM), 262
EXC (subsection, section O), 605
EXC (subsection, section PD), 1263
EXC (subsection, section PDM), 1356
EXC (subsection, section PEE), 1478
EXC (subsection, section PSM), 2730
EXC (subsection, section RREF), 126
EXC (subsection, section S), 1041
EXC (subsection, section SD), 1530
EXC (subsection, section SLT), 1727

EXC (subsection, section SS), 426
EXC (subsection, section SSLE), 50
EXC (subsection, section T), 2686
EXC (subsection, section TSS), 187
EXC (subsection, section VO), 300
EXC (subsection, section VR), 1850
EXC (subsection, section VS), 989
EXC (subsection, section WILA), 19
extended echelon form

submatrices
example SEEF, 895

extended reduced row-echelon form
properties

theorem PEEF, 897

F (archetype), 2443
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F (definition), 2652
F (section), 2650
F (subsection, section F), 2651
FDV (example), 169
FF (subsection, section F), 2656
FF8 (example), 2661
Fibonacci sequence

example FSCF, 1521
field

definition F, 2652
FIMP (theorem), 2657
finite field

size 8
example FF8, 2661

four subsets
example FS1, 915

example FS2, 918
four subspaces

dimension
theorem DFS, 1242

FRAN (example), 1707
free variables

example CFV, 178
free variables, number

theorem FVCS, 178
free, independent variables

example FDV, 169
FS (section), 880
FS (subsection, section FS), 902
FS (subsection, section SD), 1521
FS (theorem), 902
FS1 (example), 915
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FS2 (example), 918
FSAG (example), 923
FSCF (example), 1521
FTMR (diagram), 1867
FTMR (theorem), 1864
FTMRA (diagram), 1868
FV (subsection, section TSS), 177
FVCS (theorem), 178

G (archetype), 2460
G (theorem), 1228
GE4 (example), 2148
GE6 (example), 2151
GEE (subsection, section IS), 2142
GEK (theorem), 2147
generalized eigenspace

as kernel
theorem GEK, 2147

definition GES, 2143
dimension

theorem DGES, 2210
dimension 4 domain

example GE4, 2148
dimension 6 domain

example GE6, 2151
invariant subspace

theorem GESIS, 2143
nilpotent restriction

theorem RGEN, 2176
nilpotent restrictions, dimension 6 domain

example GENR6, 2177
notation, 2143
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generalized eigenspace decomposition
theorem GESD, 2191

generalized eigenvector
definition GEV, 2142

GENR6 (example), 2177
GES (definition), 2143
GES (notation), 2143
GESD (subsection, section JCF), 2190
GESD (theorem), 2191
GESIS (theorem), 2143
GEV (definition), 2142
GFDL (appendix), 2629
GLT (diagram), 1563
GME (definition), 1399
GME (notation), 1400
goldilocks

theorem G, 1228
Gram-Schmidt

column vectors
theorem GSP, 593

three vectors
example GSTV, 598

gram-schmidt
mathematica, 2282

GS (technique, section PT), 2345
GSP (subsection, section O), 592
GSP (theorem), 593
GSP.MMA (computation, section MMA), 2282
GSTV (example), 598
GT (subsection, section PD), 1226

H (archetype), 2472
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Hadamard Identity
notation, 2694

Hadamard identity
definition HID, 2694

Hadamard Inverse
notation, 2695

Hadamard inverse
definition HI, 2695

Hadamard Product
Diagonalizable Matrices

theorem DMHP, 2700
notation, 2692

Hadamard product
commutativity

theorem HPC, 2693
definition HP, 2692

diagonal matrices
theorem DMMP, 2703

distributivity
theorem HPDAA, 2697

example HP, 2692
identity

theorem HPHID, 2694
inverse

theorem HPHI, 2696
scalar matrix multiplication

theorem HPSMM, 2698
hermitian

definition HM, 698
Hermitian matrix

inner product
theorem HMIP, 698
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HI (definition), 2695
HI (notation), 2695
HID (definition), 2694
HID (notation), 2694
HISAA (example), 210
HISAD (example), 212
HM (definition), 698
HM (subsection, section MM), 696
HMEM5 (example), 1405
HMIP (theorem), 698
HMOE (theorem), 1475
HMRE (theorem), 1473
HMVEI (theorem), 214
homogeneous system

Archetype C
example AHSAC, 207

consistent
theorem HSC, 208

definition HS, 207
infinitely many solutions

theorem HMVEI, 214
homogeneous systems

linear independence, 465
HP (definition), 2692
HP (example), 2692
HP (notation), 2692
HP (section), 2691
HPC (theorem), 2693
HPDAA (theorem), 2697
HPDM (example), 1516
HPHI (theorem), 2696
HPHID (theorem), 2694
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HPSMM (theorem), 2698
HS (definition), 207
HSC (theorem), 208
HSE (section), 206
HUSAB (example), 209

I (archetype), 2485
I (technique, section PT), 2363
IAP (example), 1657
IAR (example), 1635
IAS (example), 845
IAV (example), 1640
ICBM (theorem), 1963
ICLT (theorem), 1770
identities

technique PI, 2359

identity matrix
determinant, 1342
example IM, 249
notation, 249

IDLT (definition), 1750
IDV (definition), 169
IE (definition), 2177
IE (notation), 2177
IFDVS (theorem), 1838
IILT (theorem), 1759
ILT (definition), 1630
ILT (diagram), 1638
ILT (section), 1630
ILTB (theorem), 1660
ILTD (subsection, section ILT), 1662
ILTD (theorem), 1662
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ILTIS (theorem), 1761
ILTLI (subsection, section ILT), 1658
ILTLI (theorem), 1658
ILTLT (theorem), 1758
ILTVR (example), 1911
IM (definition), 248
IM (example), 249
IM (notation), 249
IM (subsection, section MISLE), 727
IM11 (example), 2657
IMILT (theorem), 1915
IMP (definition), 2656
IMR (theorem), 1907
inconsistent linear systems

theorem ISRN, 175
independent, dependent variables

definition IDV, 169
indesxstring

example SM2Z7, 2660
example SSET, 2326

index
eigenvalue

definition IE, 2177
notation, 2177

indexstring
theorem DRCMA, 1333
theorem OBUTR, 2054
theorem UMCOB, 1151

induction
technique I, 2363

infinite solution set
example ISSI, 164
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infinite solutions, 3× 4
example IS, 43

injective
example IAP, 1657
example IAR, 1635
not

example NIAO, 1656
example NIAQ, 1632
example NIAQR, 1655

not, by dimension
example NIDAU, 1663

polynomials to matrices
example IAV, 1640

injective linear transformation
bases

theorem ILTB, 1660

injective linear transformations
dimension

theorem ILTD, 1662
inner product

anti-commutative
theorem IPAC, 576

example CSIP, 570
norm

theorem IPN, 580
notation, 570
positive

theorem PIP, 582
scalar multiplication

theorem IPSM, 574
vector addition

theorem IPVA, 572
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integers
mod p

definition IMP, 2656
mod p, field

theorem FIMP, 2657
mod 11

example IM11, 2657
interpolating polynomial

theorem IP, 2808
invariant subspace

definition IS, 2130
eigenspace, 2135
eigenspaces

example EIS, 2136
example TIS, 2131
Jordan block

example ISJB, 2139
kernels of powers

theorem KPIS, 2138
inverse

composition of linear transformations
theorem ICLT, 1770

example CMI, 737
example MI, 729
notation, 727
of a matrix, 727

invertible linear transformation
defined by invertible matrix

theorem IMILT, 1915
invertible linear transformations

composition
theorem CIVLT, 1769
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computing
example CIVLT, 1765

IP (definition), 569
IP (notation), 570
IP (subsection, section O), 569
IP (theorem), 2808
IPAC (theorem), 576
IPN (theorem), 580
IPSM (theorem), 574
IPVA (theorem), 572
IS (definition), 2130
IS (example), 43
IS (section), 2129
IS (subsection, section IS), 2130
ISJB (example), 2139
ISMR4 (example), 2167

ISMR6 (example), 2170
isomorphic

multiple vector spaces
example MIVS, 1839

vector spaces
example IVSAV, 1774

isomorphic vector spaces
dimension

theorem IVSED, 1777
example TIVS, 1837

ISRN (theorem), 175
ISSI (example), 164
ITMT (theorem), 2043
IV (subsection, section IVLT), 1761
IVLT (definition), 1750
IVLT (section), 1749

Version 2.11



INDEX 2891

IVLT (subsection, section IVLT), 1749
IVLT (subsection, section MR), 1907
IVS (definition), 1774
IVSAV (example), 1774
IVSED (theorem), 1777

J (archetype), 2498
JB (definition), 2080
JB (notation), 2080
JB4 (example), 2080
JCF (definition), 2212
JCF (section), 2189
JCF (subsection, section JCF), 2211
JCF10 (example), 2216
JCFLT (theorem), 2213
Jordan block

definition JB, 2080
nilpotent

theorem NJB, 2088
notation, 2080
size 4

example JB4, 2080
Jordan canonical form

definition JCF, 2212
size 10

example JCF10, 2216

K (archetype), 2515
kernel

injective linear transformation
theorem KILT, 1653

isomorphic to null space
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theorem KNSI, 1892
linear transformation

example NKAO, 1644
notation, 1643
of a linear transformation

definition KLT, 1643
pre-image, 1651
subspace

theorem KLTS, 1647
trivial

example TKAP, 1648
via matrix representation

example KVMR, 1895
KILT (theorem), 1653
KLT (definition), 1643
KLT (notation), 1643

KLT (subsection, section ILT), 1643
KLTS (theorem), 1647
KNSI (theorem), 1892
KPI (theorem), 1651
KPIS (theorem), 2138
KPLT (theorem), 2094
KPNLT (example), 2099
KPNLT (theorem), 2097
KVMR (example), 1895

L (archetype), 2527
L (technique, section PT), 2341
LA (subsection, section WILA), 3
LC (definition), 1020
LC (section), 315
LC (subsection, section LC), 316
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LC (technique, section PT), 2369
LCCV (definition), 316
LCM (example), 1021
LDCAA (example), 476
LDHS (example), 468
LDP4 (example), 1187
LDRN (example), 472
LDS (example), 459
LDS (section), 521
LDSS (subsection, section LDS), 522
least squares

minimizes residuals
theorem LSMR, 2814

least squares solution
definition LSS, 2814

left null space

as row space, 902
definition LNS, 881
example LNS, 882
notation, 881
subspace

theorem LNSMS, 1038
lemma

technique LC, 2369
LI (definition), 1061
LI (section), 457
LI (subsection, section LISS), 1060
LIC (example), 1073
LICAB (example), 477
LICV (definition), 458
LIHS (example), 466
LIM32 (example), 1066
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linear combination
system of equations

example ABLC, 321
definition LC, 1020
definition LCCV, 316
example TLC, 317
linear transformation, 1580
matrices

example LCM, 1021
system of equations

example AALC, 323
linear combinations

solutions to linear systems
theorem SLSLC, 327

linear dependence
more vectors than size

theorem MVSLD, 475
linear independence

definition LI, 1061
definition LICV, 458
homogeneous systems

theorem LIVHS, 465
injective linear transformation

theorem ILTLI, 1658
matrices

example LIM32, 1066
orthogonal, 589
r and n

theorem LIVRN, 471
linear solve

mathematica, 2273
sage, 2304
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linear system
consistent

theorem RCLS, 172
matrix representation

definition MRLS, 79
notation, 80

linear systems
notation

example MNSLE, 664
example NSLE, 80

linear transformation
polynomials to polynomials

example LTPP, 1561
addition

definition LTA, 1599
theorem MLTLT, 1602

theorem SLTLT, 1599
as matrix multiplication

example ALTMM, 1869
basis of range

example BRLT, 1718
checking

example ALT, 1553
composition

definition LTC, 1606
theorem CLTLT, 1607

defined by a matrix
example LTM, 1567

defined on a basis
example LTDB1, 1586
example LTDB2, 1588
example LTDB3, 1590
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theorem LTDB, 1582
definition LT, 1550
identity

definition IDLT, 1750
injection

definition ILT, 1630
inverse

theorem ILTLT, 1758
inverse of inverse

theorem IILT, 1759
invertible

definition IVLT, 1750
example AIVLT, 1751

invertible, injective and surjective
theorem ILTIS, 1761

Jordan canonical form

theorem JCFLT, 2213
kernels of powers

theorem KPLT, 2094
linear combination

theorem LTLC, 1580
matrix of, 1574

example MFLT, 1572
example MOLT, 1577

not
example NLT, 1557

not invertible
example ANILT, 1754

notation, 1551
polynomials to matrices

example LTPM, 1558
rank plus nullity
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theorem RPNDD, 1781
restriction

definition LTR, 2157
notation, 2157

scalar multiple
example SMLT, 1604

scalar multiplication
definition LTSM, 1602

spanning range
theorem SSRLT, 1716

sum
example STLT, 1601

surjection
definition SLT, 1687

vector space of, 1606
zero vector

theorem LTTZZ, 1562
linear transformation inverse

via matrix representation
example ILTVR, 1911

linear transformation restriction
on generalized eigenspace

example LTRGE, 2158
linear transformations

compositions
example CTLT, 1608

from matrices
theorem MBLT, 1570

linearly dependent
r < n

example LDRN, 472
via homogeneous system
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example LDHS, 468
linearly dependent columns

Archetype A
example LDCAA, 476

linearly dependent set
example LDS, 459
linear combinations within

theorem DLDS, 522
polynomials

example LDP4, 1187
linearly independent

crazy vector space
example LIC, 1073

extending sets
theorem ELIS, 1226

polynomials

example LIP4, 1062
via homogeneous system

example LIHS, 466
linearly independent columns

Archetype B
example LICAB, 477

linearly independent set
example LIS, 462
example LLDS, 473

LINM (subsection, section LI), 476
LINSB (example), 481
LIP4 (example), 1062
LIS (example), 462
LISS (section), 1059
LISV (subsection, section LI), 457
LIVHS (theorem), 465
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LIVRN (theorem), 471
LLDS (example), 473
LNS (definition), 881
LNS (example), 882
LNS (notation), 881
LNS (subsection, section FS), 881
LNSMS (theorem), 1038
lower triangular matrix

definition LTM, 2041
LS.MMA (computation, section MMA), 2273
LS.SAGE (computation, section SAGE), 2304
LSMR (theorem), 2814
LSS (definition), 2814
LT (acronyms, section IVLT), 1813
LT (chapter), 1548
LT (definition), 1550

LT (notation), 1551
LT (section), 1549
LT (subsection, section LT), 1550
LTA (definition), 1599
LTC (definition), 1606
LTC (subsection, section LT), 1563
LTDB (theorem), 1582
LTDB1 (example), 1586
LTDB2 (example), 1588
LTDB3 (example), 1590
LTLC (subsection, section LT), 1580
LTLC (theorem), 1580
LTM (definition), 2041
LTM (example), 1567
LTPM (example), 1558
LTPP (example), 1561
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LTR (definition), 2157
LTR (notation), 2157
LTRGE (example), 2158
LTSM (definition), 1602
LTTZZ (theorem), 1562

M (acronyms, section FS), 950
M (archetype), 2540
M (chapter), 611
M (definition), 71
M (notation), 71
MA (definition), 614
MA (example), 614
MA (notation), 614
MACN (Property), 2317
MAF (Property), 2653

MAP (subsection, section SVD), 2773
mathematica

gram-schmidt (computation), 2282
linear solve (computation), 2273
matrix entry (computation), 2271
matrix inverse (computation), 2287
matrix multiplication (computation), 2285
null space (computation), 2276
row reduce (computation), 2272
transpose of a matrix (computation), 2285
vector form of solutions (computation),

2278
vector linear combinations (computation),

2275
mathematical language

technique L, 2341
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matrix
addition

definition MA, 614
notation, 614

augmented
definition AM, 81

column space
definition CSM, 808

complex conjugate
example CCM, 631

definition M, 71
equality

definition ME, 613
notation, 613

example AM, 72
identity

definition IM, 248
inverse

definition MI, 727
nonsingular

definition NM, 246
notation, 71
of a linear transformation

theorem MLTCV, 1574
product

example PTM, 673
example PTMEE, 678

product with vector
definition MVP, 661

rectangular, 245
row space

definition RSM, 833
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scalar multiplication
definition MSM, 615
notation, 616

singular, 246
square

definition SQM, 245
submatrices

example SS, 1291
submatrix

definition SM, 1290
symmetric

definition SYM, 624
transpose

definition TM, 622
unitary

definition UM, 785

unitary is invertible
theorem UMI, 787

zero
definition ZM, 621

matrix addition
example MA, 614

matrix components
notation, 72

matrix entry
mathematica, 2271
sage, 2299
ti83, 2293
ti86, 2288

matrix inverse
Archetype B, 745
computation
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theorem CINM, 742
mathematica, 2287
nonsingular matrix

theorem NI, 781
of a matrix inverse

theorem MIMI, 750
one-sided

theorem OSIS, 779
product

theorem SS, 748
sage, 2308
scalar multiple

theorem MISM, 753
size 2 matrices

theorem TTMI, 732
transpose

theorem MIT, 751
uniqueness

theorem MIU, 747
matrix multiplication

adjoints
theorem MMAD, 694

associativity
theorem MMA, 687

complex conjugation
theorem MMCC, 691

definition MM, 672
distributivity

theorem MMDAA, 684
entry-by-entry

theorem EMP, 676
identity matrix
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theorem MMIM, 682
inner product

theorem MMIP, 689
mathematica, 2285
noncommutative

example MMNC, 674
scalar matrix multiplication

theorem MMSMM, 685
systems of linear equations

theorem SLEMM, 663
transposes

theorem MMT, 692
zero matrix

theorem MMZM, 681
matrix product

as composition of linear transformations

example MPMR, 1881
matrix representation

basis of eigenvectors
example MRBE, 1988

composition of linear transformations
theorem MRCLT, 1879

definition MR, 1855
invertible

theorem IMR, 1907
multiple of a linear transformation

theorem MRMLT, 1878
notation, 1856
restriction to generalized eigenspace

theorem MRRGE, 2186
sum of linear transformations

theorem MRSLT, 1876

Version 2.11



INDEX 2905

theorem FTMR, 1864
upper triangular

theorem UTMR, 2046
matrix representations

converting with change-of-basis
example MRCM, 1980

example OLTTR, 1856
matrix scalar multiplication

example MSM, 616
matrix vector space

dimension
theorem DM, 1191

matrix-adjoint product
eigenvalues, eigenvectors

theorem EEMAP, 2773
matrix-vector product

example MTV, 662
notation, 662

MBC (example), 665
MBLT (theorem), 1570
MC (notation), 72
MCC (subsection, section MO), 630
MCCN (Property), 2316
MCF (Property), 2652
MCN (definition), 2322
MCN (subsection, section CNO), 2322
MCSM (example), 814
MCT (theorem), 634
MD (chapter), 2731
ME (definition), 613
ME (notation), 613
ME (subsection, section PEE), 1462
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ME (technique, section PT), 2358
ME (theorem), 1466
ME.MMA (computation, section MMA), 2271
ME.SAGE (computation, section SAGE), 2299
ME.TI83 (computation, section TI83), 2293
ME.TI86 (computation, section TI86), 2288
MEASM (subsection, section MO), 613
MFLT (example), 1572
MI (definition), 727
MI (example), 729
MI (notation), 727
MI.MMA (computation, section MMA), 2287
MI.SAGE (computation, section SAGE), 2308
MICN (Property), 2318
MIF (Property), 2654
MIMI (theorem), 750

MINM (section), 773
MISLE (section), 723
MISM (theorem), 753
MIT (theorem), 751
MIU (theorem), 747
MIVS (example), 1839
MLT (subsection, section LT), 1566
MLTCV (theorem), 1574
MLTLT (theorem), 1602
MM (definition), 672
MM (section), 660
MM (subsection, section MM), 671
MM.MMA (computation, section MMA), 2285
MMA (section), 2271
MMA (theorem), 687
MMAD (theorem), 694
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MMCC (theorem), 691
MMDAA (theorem), 684
MMEE (subsection, section MM), 676
MMIM (theorem), 682
MMIP (theorem), 689
MMNC (example), 674
MMSMM (theorem), 685
MMT (theorem), 692
MMZM (theorem), 681
MNEM (theorem), 1471
MNSLE (example), 664
MO (section), 612
MOLT (example), 1577
more variables than equations

example OSGMD, 183
theorem CMVEI, 182

MPMR (example), 1881
MR (definition), 1855
MR (notation), 1856
MR (section), 1855
MRBE (example), 1988
MRCB (theorem), 1979
MRCLT (diagram), 1889
MRCLT (theorem), 1879
MRCM (example), 1980
MRLS (definition), 79
MRLS (notation), 80
MRMLT (theorem), 1878
MRRGE (theorem), 2186
MRS (subsection, section CB), 1978
MRSLT (theorem), 1876
MSCN (example), 2323
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MSM (definition), 615
MSM (example), 616
MSM (notation), 616
MTV (example), 662
multiplicative associativity

complex numbers
Property MACN, 2317

multiplicative closure
complex numbers

Property MCCN, 2316
field

Property MCF, 2652
multiplicative commutativity

complex numbers
Property CMCN, 2317

multiplicative inverse

complex numbers
Property MICN, 2318

MVNSE (subsection, section RREF), 71
MVP (definition), 661
MVP (notation), 662
MVP (subsection, section MM), 661
MVSLD (theorem), 475
MWIAA (example), 728

N (archetype), 2547
N (subsection, section O), 578
N (technique, section PT), 2350
NDMS4 (example), 1511
negation of statements

technique N, 2350
NEM (theorem), 1465
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NI (theorem), 781
NIAO (example), 1656
NIAQ (example), 1632
NIAQR (example), 1655
NIDAU (example), 1663
nilpotent

linear transformation
definition NLT, 2074

NILT (diagram), 1633
NJB (theorem), 2088
NJB5 (example), 2081
NKAO (example), 1644
NLT (definition), 2074
NLT (example), 1557
NLT (section), 2071
NLT (subsection, section NLT), 2073

NLTFO (subsection, section LT), 1598
NM (definition), 246
NM (example), 247
NM (section), 244
NM (subsection, section NM), 245
NM (subsection, section OD), 2059
NM62 (example), 2077
NM64 (example), 2074
NM83 (example), 2085
NME1 (theorem), 259
NME2 (theorem), 479
NME3 (theorem), 782
NME4 (theorem), 831
NME5 (theorem), 1140
NME6 (theorem), 1205
NME7 (theorem), 1351
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NME8 (theorem), 1449
NME9 (theorem), 1917
NMI (subsection, section MINM), 774
NMLIC (theorem), 478
NMPEM (theorem), 1289
NMRRI (theorem), 250
NMTNS (theorem), 256
NMUS (theorem), 256
NOILT (theorem), 1781
NOLT (definition), 1780
NOLT (notation), 1780
NOM (definition), 1197
NOM (notation), 1197
nonsingular

columns as basis
theorem CNMB, 1138

nonsingular matrices
linearly independent columns

theorem NMLIC, 478
nonsingular matrix

Archetype B
example NM, 247

column space, 830
elementary matrices

theorem NMPEM, 1289
equivalences

theorem NME1, 259
theorem NME2, 479
theorem NME3, 782
theorem NME4, 831
theorem NME5, 1140
theorem NME6, 1205
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theorem NME7, 1351
theorem NME8, 1449
theorem NME9, 1917

matrix inverse, 781
null space

example NSNM, 254
nullity, 1204
product of nonsingular matrices

theorem NPNT, 775
rank

theorem RNNM, 1204
row-reduced

theorem NMRRI, 250
trivial null space

theorem NMTNS, 256
unique solutions

theorem NMUS, 256
nonsingular matrix, row-reduced

example NSR, 252
norm

example CNSV, 579
inner product, 581
notation, 578

normal matrix
definition NRML, 2059
example ANM, 2060
orthonormal basis, 2069

notation
A, 636
AM, 81
AME, 1399
C, 2330
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CCCV, 566
CCM, 630
CCN, 2319
CNA, 2315
CNE, 2315
CNM, 2316
CSM, 808
CV, 74
CVA, 289
CVC, 74
CVE, 286
CVSM, 292
D, 1177
DM, 1292
DS, 1246
ELEM, 1278

ES, 2326
GES, 2143
GME, 1400
HI, 2695
HID, 2694
HP, 2692
IE, 2177
IM, 249
IP, 570
JB, 2080
KLT, 1643
LNS, 881
LT, 1551
LTR, 2157
M, 71
MA, 614
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MC, 72
ME, 613
MI, 727
MR, 1856
MRLS, 80
MSM, 616
MVP, 662
NOLT, 1780
NOM, 1197
NSM, 216
NV, 578
RLT, 1701
RO, 85
ROLT, 1779
ROM, 1197
RREFA, 92

RSM, 833
SC, 2333
SE, 2327
SETM, 2324
SI, 2332
SM, 1290
SRM, 2800
SSET, 2325
SSV, 391
SU, 2331
SUV, 587
T, 2675
TM, 622
VR, 1820
VSCV, 285
VSM, 612
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ZCV, 75
ZM, 621

notation for a linear system
example NSE, 26

NPNT (theorem), 775
NRFO (subsection, section MR), 1876
NRML (definition), 2059
NRREF (example), 93
NS.MMA (computation, section MMA), 2276
NSAO (example), 1714
NSAQ (example), 1688
NSAQR (example), 1711
NSC2A (example), 1014
NSC2S (example), 1015
NSC2Z (example), 1013
NSDAT (example), 1723

NSDS (example), 415
NSE (example), 26
NSEAI (example), 217
NSLE (example), 80
NSLIL (example), 487
NSM (definition), 216
NSM (notation), 216
NSM (subsection, section HSE), 216
NSMS (theorem), 1017
NSNM (example), 254
NSNM (subsection, section NM), 253
NSR (example), 252
NSS (example), 253
NSSLI (subsection, section LI), 480
Null space

as a span
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example NSDS, 415
null space

Archetype I
example NSEAI, 217

basis
theorem BNS, 484

computation
example CNS1, 218
example CNS2, 220

isomorphic to kernel, 1892
linearly independent basis

example LINSB, 481
mathematica, 2276
matrix

definition NSM, 216
nonsingular matrix, 255

notation, 216
singular matrix, 254
spanning set

example SSNS, 411
theorem SSNS, 409

subspace
theorem NSMS, 1017

null space span, linearly independent
Archetype L

example NSLIL, 487
nullity

computing, 1200
injective linear transformation

theorem NOILT, 1781
linear transformation

definition NOLT, 1780
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matrix, 1198
definition NOM, 1197

notation, 1197, 1780
square matrix, 1202

NV (definition), 578
NV (notation), 578
NVM (theorem), 2720

O (archetype), 2554
O (Property), 958
O (section), 565
OBC (subsection, section B), 1142
OBNM (theorem), 2069
OBUTR (theorem), 2054
OC (Property), 296
OCN (Property), 2318

OD (section), 2040
OD (subsection, section OD), 2061
OD (theorem), 2062
OF (Property), 2653
OLTTR (example), 1856
OM (Property), 619
one

column vectors
Property OC, 296

complex numbers
Property OCN, 2318

field
Property OF, 2653

matrices
Property OM, 619

vectors
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Property O, 958
ONFV (example), 601
ONS (definition), 599
ONTV (example), 600
orthogonal

linear independence
theorem OSLI, 589

set
example AOS, 588

set of vectors
definition OSV, 586

vector pairs
definition OV, 584

orthogonal vectors
example TOV, 584

orthonormal

definition ONS, 599
matrix columns

example OSMC, 790
orthonormal basis

normal matrix
theorem OBNM, 2069

orthonormal diagonalization
theorem OD, 2062

orthonormal set
four vectors

example ONFV, 601
three vectors

example ONTV, 600
OSGMD (example), 183
OSIS (theorem), 779
OSLI (theorem), 589
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OSMC (example), 790
OSV (definition), 586
OV (definition), 584
OV (subsection, section O), 584

P (appendix), 2311
P (archetype), 2562
P (technique, section PT), 2368
particular solutions

example PSHS, 371
PCNA (theorem), 2316
PCVS (example), 984
PD (section), 1225
PDM (section), 1325
PDM (theorem), 2802
PEE (section), 1445

PEEF (theorem), 897
PI (definition), 1592
PI (subsection, section LT), 1592
PI (technique, section PT), 2359
PIP (theorem), 582
PM (example), 1371
PM (subsection, section EE), 1371
PMI (subsection, section MISLE), 747
PMM (subsection, section MM), 680
PMR (subsection, section MR), 1891
PNLT (subsection, section NLT), 2090
POD (section), 2801
polar decomposition

theorem PDM, 2802
polynomial

of a matrix
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example PM, 1371
polynomial vector space

dimension
theorem DP, 1190

positive semi-definite
creating

theorem CPSM, 2724
positive semi-definite matrix

definition PSM, 2723
eigenvalues

theorem EPSM, 2725
practice

technique P, 2368
pre-image

definition PI, 1592
kernel

theorem KPI, 1651
pre-images

example SPIAS, 1593
principal axis theorem, 2068
product of triangular matrices

theorem PTMT, 2042
Property

AA, 957
AAC, 295
AACN, 2317
AAF, 2653
AAM, 618
AC, 956
ACC, 295
ACCN, 2316
ACF, 2652
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ACM, 618
AI, 957
AIC, 296
AICN, 2318
AIF, 2653
AIM, 619
C, 957
CACN, 2317
CAF, 2652
CC, 295
CM, 618
CMCN, 2317
CMF, 2652
DCN, 2317
DF, 2653
DMAM, 619

DSA, 958
DSAC, 296
DSAM, 619
DVA, 958
DVAC, 296
MACN, 2317
MAF, 2653
MCCN, 2316
MCF, 2652
MICN, 2318
MIF, 2654
O, 958
OC, 296
OCN, 2318
OF, 2653
OM, 619
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SC, 957
SCC, 295
SCM, 618
SMA, 957
SMAC, 296
SMAM, 619
Z, 957
ZC, 295
ZCN, 2317
ZF, 2653
ZM, 618

PSHS (example), 371
PSHS (subsection, section LC), 368
PSM (definition), 2723
PSM (section), 2722
PSM (subsection, section PSM), 2723

PSM (subsection, section SD), 1489
PSMSR (theorem), 2790
PSPHS (theorem), 368
PSS (subsection, section SSLE), 28
PSSD (theorem), 1236
PSSLS (theorem), 180
PT (section), 2336
PTFP (example), 2810
PTM (example), 673
PTMEE (example), 678
PTMT (theorem), 2042

Q (archetype), 2569

R (acronyms, section JCF), 2264
R (archetype), 2581
R (chapter), 1818
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R.SAGE (computation, section SAGE), 2297
range

full
example FRAN, 1707

isomorphic to column space
theorem RCSI, 1900

linear transformation
example RAO, 1701

notation, 1701
of a linear transformation

definition RLT, 1701
pre-image

theorem RPI, 1720
subspace

theorem RLTS, 1705
surjective linear transformation

theorem RSLT, 1710
via matrix representation

example RVMR, 1903
rank

computing
theorem CRN, 1200

linear transformation
definition ROLT, 1779

matrix
definition ROM, 1197
example RNM, 1198

notation, 1197, 1779
of transpose

example RRTI, 1240
square matrix

example RNSM, 1202
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surjective linear transformation
theorem ROSLT, 1780

transpose
theorem RMRT, 1239

rank one decomposition
size 2

example ROD2, 2740
size 4

example ROD4, 2742
theorem ROD, 2734

rank+nullity
theorem RPNC, 1201

RAO (example), 1701
RCLS (theorem), 172
RCSI (theorem), 1900
RD (subsection, section VS), 985

RDS (theorem), 1259
READ (subsection, section B), 1156
READ (subsection, section CB), 2025
READ (subsection, section CRS), 853
READ (subsection, section D), 1207
READ (subsection, section DM), 1307
READ (subsection, section EE), 1421
READ (subsection, section FS), 930
READ (subsection, section HSE), 222
READ (subsection, section ILT), 1665
READ (subsection, section IVLT), 1794
READ (subsection, section LC), 376
READ (subsection, section LDS), 551
READ (subsection, section LI), 489
READ (subsection, section LISS), 1093
READ (subsection, section LT), 1611
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READ (subsection, section MINM), 796
READ (subsection, section MISLE), 754
READ (subsection, section MM), 701
READ (subsection, section MO), 639
READ (subsection, section MR), 1919
READ (subsection, section NM), 260
READ (subsection, section O), 603
READ (subsection, section PD), 1261
READ (subsection, section PDM), 1355
READ (subsection, section PEE), 1477
READ (subsection, section RREF), 124
READ (subsection, section S), 1039
READ (subsection, section SD), 1528
READ (subsection, section SLT), 1726
READ (subsection, section SS), 424
READ (subsection, section SSLE), 49

READ (subsection, section TSS), 186
READ (subsection, section VO), 299
READ (subsection, section VR), 1849
READ (subsection, section VS), 987
READ (subsection, section WILA), 18
reduced row-echelon form

analysis
notation, 92

definition RREF, 91
example NRREF, 93
example RREF, 92
extended

definition EEF, 894
notation

example RREFN, 162
unique
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theorem RREFU, 101
reducing a span

example RSC5, 525
relation of linear dependence

definition RLD, 1061
definition RLDCV, 458

REM (definition), 85
REMEF (theorem), 94
REMES (theorem), 87
REMRS (theorem), 839
RES (example), 546
RGEN (theorem), 2176
rings

sage, 2297
RLD (definition), 1061
RLDCV (definition), 458

RLT (definition), 1701
RLT (notation), 1701
RLT (subsection, section IS), 2157
RLT (subsection, section SLT), 1700
RLTS (theorem), 1705
RMRT (theorem), 1239
RNLT (subsection, section IVLT), 1779
RNM (example), 1198
RNM (subsection, section D), 1196
RNNM (subsection, section D), 1202
RNNM (theorem), 1204
RNSM (example), 1202
RO (definition), 84
RO (notation), 85
RO (subsection, section RREF), 83
ROD (section), 2734
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ROD (theorem), 2734
ROD2 (example), 2740
ROD4 (example), 2742
ROLT (definition), 1779
ROLT (notation), 1779
ROM (definition), 1197
ROM (notation), 1197
ROSLT (theorem), 1780
row operations

definition RO, 84
elementary matrices, 1279, 1281
notation, 85

row reduce
mathematica, 2272
sage, 2301
ti83, 2294

ti86, 2290
row space

Archetype I
example RSAI, 834

as column space, 848
basis

example RSB, 1132
theorem BRS, 843

matrix, 833
notation, 833
row-equivalent matrices

theorem REMRS, 839
subspace

theorem RSMS, 1038
row-equivalent matrices

definition REM, 85

Version 2.11



INDEX 2927

example TREM, 85
row space, 839
row spaces

example RSREM, 842
theorem REMES, 87

row-reduce
the verb

definition RR, 122
row-reduced matrices

theorem REMEF, 94
RPI (theorem), 1720
RPNC (theorem), 1201
RPNDD (theorem), 1781
RR (definition), 122
RR.MMA (computation, section MMA), 2272
RR.SAGE (computation, section SAGE), 2301

RR.TI83 (computation, section TI83), 2294
RR.TI86 (computation, section TI86), 2290
RREF (definition), 91
RREF (example), 92
RREF (section), 70
RREF (subsection, section RREF), 90
RREFA (notation), 92
RREFN (example), 162
RREFU (theorem), 101
RRTI (example), 1240
RS (example), 1135
RSAI (example), 834
RSB (example), 1132
RSC4 (example), 544
RSC5 (example), 525
RSLT (theorem), 1710
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RSM (definition), 833
RSM (notation), 833
RSM (subsection, section CRS), 833
RSMS (theorem), 1038
RSNS (example), 1018
RSREM (example), 842
RT (subsection, section PD), 1238
RVMR (example), 1903

S (archetype), 2590
S (definition), 1002
S (example), 247
S (section), 1002
SAA (example), 116
SAB (example), 113
SABMI (example), 723

SAE (example), 119
sage

eigenspaces (computation), 2309
linear solve (computation), 2304
matrix entry (computation), 2299
matrix inverse (computation), 2308
rings (computation), 2297
row reduce (computation), 2301
transpose of a matrix (computation), 2309
vector linear combinations (computation),

2306
SAGE (section), 2297
SAN (example), 1714
SAR (example), 1692
SAS (section), 2820
SAV (example), 1696
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SC (definition), 2333
SC (example), 2334
SC (notation), 2333
SC (Property), 957
SC (subsection, section S), 1037
SC (subsection, section SET), 2330
SC3 (example), 1003
SCAA (example), 398
SCAB (example), 403
SCAD (example), 419
scalar closure

column vectors
Property SCC, 295

matrices
Property SCM, 618

vectors

Property SC, 957
scalar multiple

matrix inverse, 753
scalar multiplication

zero scalar
theorem ZSSM, 979

zero vector
theorem ZVSM, 980

zero vector result
theorem SMEZV, 982

scalar multiplication associativity
column vectors

Property SMAC, 296
matrices

Property SMAM, 619
vectors
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Property SMA, 957
SCB (theorem), 1986
SCC (Property), 295
SCM (Property), 618
SD (section), 1484
SDS (example), 1247
SE (definition), 2327
SE (notation), 2327
secret sharing

6 ways
example SS6W, 2825

SEE (example), 1366
SEEF (example), 895
SER (theorem), 1490
set

cardinality

definition C, 2330
example CS, 2330
notation, 2330

complement
definition SC, 2333
example SC, 2334
notation, 2333

definition SET, 2324
empty

definition ES, 2326
equality

definition SE, 2327
notation, 2327

intersection
definition SI, 2332
example SI, 2332
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notation, 2332
membership

example SETM, 2325
notation, 2324

size, 2330
subset, 2325
union

definition SU, 2331
example SU, 2332
notation, 2331

SET (definition), 2324
SET (section), 2324
SETM (example), 2325
SETM (notation), 2324
shoes, 748
SHS (subsection, section HSE), 207

SI (definition), 2332
SI (example), 2332
SI (notation), 2332
SI (subsection, section IVLT), 1772
SIM (definition), 1485
similar matrices

equal eigenvalues
example EENS, 1494

eual eigenvalues
theorem SMEE, 1493

example SMS3, 1487
example SMS5, 1486

similarity
definition SIM, 1485
equivalence relation

theorem SER, 1490
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singular matrix
Archetype A

example S, 247
null space

example NSS, 253
singular matrix, row-reduced

example SRR, 251
singular value decomposition

theorem SVD, 2786
singular values

definition SV, 2785
SLE (acronyms, section NM), 280
SLE (chapter), 2
SLE (definition), 25
SLE (subsection, section SSLE), 23
SLELT (subsection, section IVLT), 1788

SLEMM (theorem), 663
SLSLC (theorem), 327
SLT (definition), 1687
SLT (section), 1687
SLTB (theorem), 1721
SLTD (subsection, section SLT), 1722
SLTD (theorem), 1722
SLTLT (theorem), 1599
SM (definition), 1290
SM (notation), 1290
SM (subsection, section SD), 1485
SM2Z7 (example), 2660
SM32 (example), 1030
SMA (Property), 957
SMAC (Property), 296
SMAM (Property), 619
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SMEE (theorem), 1493
SMEZV (theorem), 982
SMLT (example), 1604
SMS (theorem), 625
SMS3 (example), 1487
SMS5 (example), 1486
SMZD (theorem), 1348
SMZE (theorem), 1448
SNCM (theorem), 783
SO (subsection, section SET), 2331
socks, 748
SOL (subsection, section B), 1161
SOL (subsection, section CB), 2029
SOL (subsection, section CRS), 869
SOL (subsection, section D), 1214
SOL (subsection, section DM), 1316

SOL (subsection, section EE), 1429
SOL (subsection, section F), 2672
SOL (subsection, section FS), 939
SOL (subsection, section HSE), 233
SOL (subsection, section ILT), 1674
SOL (subsection, section IVLT), 1802
SOL (subsection, section LC), 384
SOL (subsection, section LDS), 557
SOL (subsection, section LI), 502
SOL (subsection, section LISS), 1101
SOL (subsection, section LT), 1619
SOL (subsection, section MINM), 802
SOL (subsection, section MISLE), 764
SOL (subsection, section MM), 712
SOL (subsection, section MO), 649
SOL (subsection, section MR), 1928
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SOL (subsection, section NM), 268
SOL (subsection, section O), 607
SOL (subsection, section PD), 1267
SOL (subsection, section PDM), 1359
SOL (subsection, section PEE), 1480
SOL (subsection, section RREF), 139
SOL (subsection, section S), 1047
SOL (subsection, section SD), 1534
SOL (subsection, section SLT), 1735
SOL (subsection, section SS), 435
SOL (subsection, section SSLE), 60
SOL (subsection, section T), 2688
SOL (subsection, section TSS), 195
SOL (subsection, section VO), 308
SOL (subsection, section VR), 1852
SOL (subsection, section VS), 995

SOL (subsection, section WILA), 21
solution set

Archetype A
example SAA, 116

archetype E
example SAE, 119

theorem PSPHS, 368
solution sets

possibilities
theorem PSSLS, 180

solution vector
definition SOLV, 78

SOLV (definition), 78
solving homogeneous system

Archetype A
example HISAA, 210
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Archetype B
example HUSAB, 209

Archetype D
example HISAD, 212

solving nonlinear equations
example STNE, 23

SP4 (example), 1011
span

basic
example ABS, 391

basis
theorem BS, 539

definition SS, 1023
definition SSCV, 390
improved

example IAS, 845

notation, 391
reducing

example RSC4, 544
reduction

example RS, 1135
removing vectors

example COV, 530
reworking elements

example RES, 546
set of polynomials

example SSP, 1026
subspace

theorem SSS, 1023
span of columns

Archetype A
example SCAA, 398
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Archetype B
example SCAB, 403

Archetype D
example SCAD, 419

spanning set
crazy vector space

example SSC, 1084
definition TSVS, 1076
matrices

example SSM22, 1081
more vectors

theorem SSLD, 1178
polynomials

example SSP4, 1077
SPIAS (example), 1593
SQM (definition), 245

square root
eigenvalues, eigenspaces

theorem EESR, 2794
matrix

definition SRM, 2800
notation, 2800

positive semi-definite matrix
theorem PSMSR, 2790

unique
theorem USR, 2799

SR (section), 2789
SRM (definition), 2800
SRM (notation), 2800
SRM (subsection, section SR), 2790
SRR (example), 251
SS (definition), 1023
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SS (example), 1291
SS (section), 389
SS (subsection, section LISS), 1075
SS (theorem), 748
SS6W (example), 2825
SSC (example), 1084
SSCV (definition), 390
SSET (definition), 2325
SSET (example), 2326
SSET (notation), 2325
SSLD (theorem), 1178
SSLE (section), 22
SSM22 (example), 1081
SSNS (example), 411
SSNS (subsection, section SS), 409
SSNS (theorem), 409

SSP (example), 1026
SSP4 (example), 1077
SSRLT (theorem), 1716
SSS (theorem), 1023
SSSLT (subsection, section SLT), 1715
SSV (notation), 391
SSV (subsection, section SS), 390
standard unit vector

notation, 587
starting proofs

technique GS, 2345
STLT (example), 1601
STNE (example), 23
SU (definition), 2331
SU (example), 2332
SU (notation), 2331
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submatrix
notation, 1290

subset
definition SSET, 2325
notation, 2325

subspace
as null space

example RSNS, 1018
characterized

example ASC, 1837
definition S, 1002
in P4

example SP4, 1011
not, additive closure

example NSC2A, 1014
not, scalar closure

example NSC2S, 1015
not, zero vector

example NSC2Z, 1013
testing

theorem TSS, 1008
trivial

definition TS, 1016
verification

example SC3, 1003
example SM32, 1030

subspaces
equal dimension

theorem EDYES, 1237
surjective

Archetype N
example SAN, 1714
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example SAR, 1692
not

example NSAQ, 1688
example NSAQR, 1711

not, Archetype O
example NSAO, 1714

not, by dimension
example NSDAT, 1723

polynomials to matrices
example SAV, 1696

surjective linear transformation
bases

theorem SLTB, 1721
surjective linear transformations

dimension
theorem SLTD, 1722

SUV (definition), 586
SUV (notation), 587
SUVB (theorem), 1122
SUVOS (example), 587
SV (definition), 2785
SVD (section), 2772
SVD (subsection, section SVD), 2785
SVD (theorem), 2786
SVP4 (example), 1235
SYM (definition), 624
SYM (example), 624
symmetric matrices

theorem SMS, 625
symmetric matrix

example SYM, 624
system of equations
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vector equality
example VESE, 287

system of linear equations
definition SLE, 25

T (archetype), 2597
T (definition), 2674
T (notation), 2675
T (part), 2650
T (section), 2674
T (technique, section PT), 2339
TCSD (example), 1303
TD (section), 2747
TD (subsection, section TD), 2748
TD (theorem), 2748
TD4 (example), 2754

TDEE (theorem), 2762
TDEE6 (example), 2767
TDSSE (example), 2758
TDSSE (subsection, section TD), 2757
technique

C, 2347
CD, 2354
CP, 2352
CV, 2353
D, 2337
DC, 2361
E, 2348
GS, 2345
I, 2363
L, 2341
LC, 2369
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ME, 2358
N, 2350
P, 2368
PI, 2359
T, 2339
U, 2357

theorem
AA, 638
AIP, 696
AISM, 981
AIU, 977
AMA, 636
AMSM, 637
BCS, 822
BIS, 1188
BNS, 484

BRS, 843
BS, 539
CB, 1961
CCM, 633
CCRA, 2320
CCRM, 2321
CCT, 2321
CFDVS, 1836
CFNLT, 2105
CHT, 2262
CILTI, 1664
CINM, 742
CIVLT, 1769
CLI, 1840
CLTLT, 1607
CMVEI, 182
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CNMB, 1138
COB, 1144
CPSM, 2724
CRMA, 631
CRMSM, 632
CRN, 1200
CRSM, 568
CRVA, 567
CSCS, 812
CSLTS, 1725
CSMS, 1037
CSNM, 830
CSRN, 176
CSRST, 848
CSS, 1841
CUMOS, 788

DC, 1499
DCM, 1190
DCP, 1462
DEC, 1301
DED, 1513
DEM, 1344
DEMMM, 1346
DER, 1295
DERC, 1331
DFS, 1242
DGES, 2210
DIM, 1342
DLDS, 522
DM, 1191
DMFE, 1506
DMHP, 2700
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DMMP, 2703
DMST, 1294
DNLT, 2092
DP, 1190
DRCM, 1330
DRCMA, 1333
DRCS, 1327
DRMM, 1353
DSD, 1257
DSFB, 1248
DSFOS, 1250
DSLI, 1255
DSZI, 1253
DSZV, 1251
DT, 1299
DVM, 2712

DZRC, 1326
EDELI, 1445
EDYES, 1237
EEMAP, 2773
EER, 1996
EESR, 2794
EIM, 1457
EIS, 2135
ELIS, 1226
EMDRO, 1281
EMHE, 1376
EMMVP, 670
EMN, 1288
EMNS, 1394
EMP, 676
EMRCP, 1390
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EMS, 1392
ENLT, 2090
EOMP, 1452
EOPSS, 34
EPM, 1454
EPSM, 2725
ERMCP, 1461
ESMM, 1451
ETM, 1459
FIMP, 2657
FS, 902
FTMR, 1864
FVCS, 178
G, 1228
GEK, 2147
GESD, 2191

GESIS, 2143
GSP, 593
HMIP, 698
HMOE, 1475
HMRE, 1473
HMVEI, 214
HPC, 2693
HPDAA, 2697
HPHI, 2696
HPHID, 2694
HPSMM, 2698
HSC, 208
ICBM, 1963
ICLT, 1770
IFDVS, 1838
IILT, 1759
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ILTB, 1660
ILTD, 1662
ILTIS, 1761
ILTLI, 1658
ILTLT, 1758
IMILT, 1915
IMR, 1907
IP, 2808
IPAC, 576
IPN, 580
IPSM, 574
IPVA, 572
ISRN, 175
ITMT, 2043
IVSED, 1777
JCFLT, 2213

KILT, 1653
KLTS, 1647
KNSI, 1892
KPI, 1651
KPIS, 2138
KPLT, 2094
KPNLT, 2097
LIVHS, 465
LIVRN, 471
LNSMS, 1038
LSMR, 2814
LTDB, 1582
LTLC, 1580
LTTZZ, 1562
MBLT, 1570
MCT, 634
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ME, 1466
MIMI, 750
MISM, 753
MIT, 751
MIU, 747
MLTCV, 1574
MLTLT, 1602
MMA, 687
MMAD, 694
MMCC, 691
MMDAA, 684
MMIM, 682
MMIP, 689
MMSMM, 685
MMT, 692
MMZM, 681

MNEM, 1471
MRCB, 1979
MRCLT, 1879
MRMLT, 1878
MRRGE, 2186
MRSLT, 1876
MVSLD, 475
NEM, 1465
NI, 781
NJB, 2088
NME1, 259
NME2, 479
NME3, 782
NME4, 831
NME5, 1140
NME6, 1205
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NME7, 1351
NME8, 1449
NME9, 1917
NMLIC, 478
NMPEM, 1289
NMRRI, 250
NMTNS, 256
NMUS, 256
NOILT, 1781
NPNT, 775
NSMS, 1017
NVM, 2720
OBNM, 2069
OBUTR, 2054
OD, 2062
OSIS, 779

OSLI, 589
PCNA, 2316
PDM, 2802
PEEF, 897
PIP, 582
PSMSR, 2790
PSPHS, 368
PSSD, 1236
PSSLS, 180
PTMT, 2042
RCLS, 172
RCSI, 1900
RDS, 1259
REMEF, 94
REMES, 87
REMRS, 839
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RGEN, 2176
RLTS, 1705
RMRT, 1239
RNNM, 1204
ROD, 2734
ROSLT, 1780
RPI, 1720
RPNC, 1201
RPNDD, 1781
RREFU, 101
RSLT, 1710
RSMS, 1038
SCB, 1986
SER, 1490
SLEMM, 663
SLSLC, 327

SLTB, 1721
SLTD, 1722
SLTLT, 1599
SMEE, 1493
SMEZV, 982
SMS, 625
SMZD, 1348
SMZE, 1448
SNCM, 783
SS, 748
SSLD, 1178
SSNS, 409
SSRLT, 1716
SSS, 1023
SUVB, 1122
SVD, 2786
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TD, 2748
TDEE, 2762
technique T, 2339
TIST, 2679
TL, 2675
TMA, 626
TMSM, 627
TSE, 2680
TSRM, 2677
TSS, 1008
TT, 628
TTMI, 732
UMCOB, 1151
UMI, 787
UMPIP, 792
USR, 2799

UTMR, 2046
VFSLS, 350
VRI, 1832
VRILT, 1835
VRLT, 1820
VRRB, 1090
VRS, 1833
VSLT, 1606
VSPCV, 295
VSPM, 618
ZSSM, 979
ZVSM, 980
ZVU, 977

ti83
matrix entry (computation), 2293
row reduce (computation), 2294
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vector linear combinations (computation),
2295

TI83 (section), 2293
ti86

matrix entry (computation), 2288
row reduce (computation), 2290
transpose of a matrix (computation), 2292
vector linear combinations (computation),

2291
TI86 (section), 2288
TIS (example), 2131
TIST (theorem), 2679
TIVS (example), 1837
TKAP (example), 1648
TL (theorem), 2675
TLC (example), 317

TM (definition), 622
TM (example), 623
TM (notation), 622
TM (subsection, section OD), 2041
TM.MMA (computation, section MMA), 2285
TM.SAGE (computation, section SAGE), 2309
TM.TI86 (computation, section TI86), 2292
TMA (theorem), 626
TMP (example), 7
TMSM (theorem), 627
TOV (example), 584
trace

definition T, 2674
linearity

theorem TL, 2675
matrix multiplication
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theorem TSRM, 2677
notation, 2675
similarity

theorem TIST, 2679
sum of eigenvalues

theorem TSE, 2680
trail mix

example TMP, 7
transpose

matrix scalar multiplication
theorem TMSM, 627

example TM, 623
matrix addition

theorem TMA, 626
matrix inverse, 751
notation, 622

scalar multiplication, 628
transpose of a matrix

mathematica, 2285
sage, 2309
ti86, 2292

transpose of a transpose
theorem TT, 628

TREM (example), 85
triangular decomposition

entry by entry, size 6
example TDEE6, 2767

entry by entry
theorem TDEE, 2762

size 4
example TD4, 2754

solving systems of equations

Version 2.11



INDEX 2952

example TDSSE, 2758
theorem TD, 2748

triangular matrix
inverse

theorem ITMT, 2043
trivial solution

system of equations
definition TSHSE, 209

TS (definition), 1016
TS (subsection, section S), 1007
TSE (theorem), 2680
TSHSE (definition), 209
TSM (subsection, section MO), 622
TSRM (theorem), 2677
TSS (section), 160
TSS (subsection, section S), 1020

TSS (theorem), 1008
TSVS (definition), 1076
TT (theorem), 628
TTMI (theorem), 732
TTS (example), 28
typical systems, 2× 2

example TTS, 28

U (archetype), 2602
U (technique, section PT), 2357
UM (definition), 785
UM (subsection, section MINM), 784
UM3 (example), 785
UMCOB (theorem), 1151
UMI (theorem), 787
UMPIP (theorem), 792
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unique solution, 3× 3
example US, 40
example USR, 88

uniqueness
technique U, 2357

unit vectors
basis

theorem SUVB, 1122
definition SUV, 586
orthogonal

example SUVOS, 587
unitary

permutation matrix
example UPM, 786

size 3
example UM3, 785

unitary matrices

columns

theorem CUMOS, 788

unitary matrix

inner product

theorem UMPIP, 792

UPM (example), 786

upper triangular matrix

definition UTM, 2041

US (example), 40

USR (example), 88

USR (theorem), 2799

UTM (definition), 2041

UTMR (subsection, section OD), 2046

UTMR (theorem), 2046
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V (acronyms, section O), 608
V (archetype), 2609
V (chapter), 283
VA (example), 290
Vandermonde matrix

definition VM, 2710
vandermonde matrix

determinant
theorem DVM, 2712

nonsingular
theorem NVM, 2720

size 4
example VM4, 2711

VEASM (subsection, section VO), 286
vector

addition

definition CVA, 289
column

definition CV, 73
equality

definition CVE, 286
notation, 286

inner product
definition IP, 569

norm
definition NV, 578

notation, 74
of constants

definition VOC, 76
product with matrix, 661, 672
scalar multiplication

definition CVSM, 291
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vector addition
example VA, 290

vector component
notation, 74

vector form of solutions
Archetype D

example VFSAD, 332
Archetype I

example VFSAI, 357
Archetype L

example VFSAL, 362
example VFS, 338
mathematica, 2278
theorem VFSLS, 350

vector linear combinations
mathematica, 2275

sage, 2306
ti83, 2295
ti86, 2291

vector representation
example AVR, 1088
example VRC4, 1823
injective

theorem VRI, 1832
invertible

theorem VRILT, 1835
linear transformation

definition VR, 1819
notation, 1820
theorem VRLT, 1820

surjective
theorem VRS, 1833
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theorem VRRB, 1090
vector representations

polynomials
example VRP2, 1828

vector scalar multiplication
example CVSM, 293

vector space
characterization

theorem CFDVS, 1836
column vectors

definition VSCV, 285
definition VS, 956
infinite dimension

example VSPUD, 1195
linear transformations

theorem VSLT, 1606

over integers mod 5
example VSIM5, 2658

vector space of column vectors
notation, 285

vector space of functions
example VSF, 967

vector space of infinite sequences
example VSIS, 966

vector space of matrices
definition VSM, 612
example VSM, 961
notation, 612

vector space of polynomials
example VSP, 963

vector space properties
column vectors

Version 2.11



INDEX 2957

theorem VSPCV, 295
matrices

theorem VSPM, 618
vector space, crazy

example CVS, 970
vector space, singleton

example VSS, 968
vector spaces

isomorphic
definition IVS, 1774
theorem IFDVS, 1838

VESE (example), 287
VFS (example), 338
VFSAD (example), 332
VFSAI (example), 357
VFSAL (example), 362

VFSLS (theorem), 350
VFSS (subsection, section LC), 331
VFSS.MMA (computation, section MMA), 2278
VLC.MMA (computation, section MMA), 2275
VLC.SAGE (computation, section SAGE), 2306
VLC.TI83 (computation, section TI83), 2295
VLC.TI86 (computation, section TI86), 2291
VM (definition), 2710
VM (section), 2710
VM4 (example), 2711
VO (section), 284
VOC (definition), 76
VR (definition), 1819
VR (notation), 1820
VR (section), 1819
VR (subsection, section LISS), 1087
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VRC4 (example), 1823
VRI (theorem), 1832
VRILT (theorem), 1835
VRLT (theorem), 1820
VRP2 (example), 1828
VRRB (theorem), 1090
VRS (theorem), 1833
VS (acronyms, section PD), 1271
VS (chapter), 954
VS (definition), 956
VS (section), 955
VS (subsection, section VS), 956
VSCV (definition), 285
VSCV (example), 961
VSCV (notation), 285
VSF (example), 967

VSIM5 (example), 2658
VSIS (example), 966
VSLT (theorem), 1606
VSM (definition), 612
VSM (example), 961
VSM (notation), 612
VSP (example), 963
VSP (subsection, section MO), 617
VSP (subsection, section VO), 294
VSP (subsection, section VS), 975
VSPCV (theorem), 295
VSPM (theorem), 618
VSPUD (example), 1195
VSS (example), 968

W (archetype), 2615
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WILA (section), 3

X (archetype), 2621

Z (Property), 957
ZC (Property), 295
ZCN (Property), 2317
ZCV (definition), 74
ZCV (notation), 75
zero

complex numbers
Property ZCN, 2317

field
Property ZF, 2653

zero column vector
definition ZCV, 74
notation, 75

zero matrix
notation, 621

zero vector
column vectors

Property ZC, 295
matrices

Property ZM, 618
unique

theorem ZVU, 977
vectors

Property Z, 957
ZF (Property), 2653
ZM (definition), 621
ZM (notation), 621
ZM (Property), 618
ZNDAB (example), 1350
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ZSSM (theorem), 979
ZVSM (theorem), 980
ZVU (theorem), 977
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