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Preface

This textbook is designed to teach the university mathematics student the basics of the subject
of linear algebra and the techniques of formal mathematics. There are no prerequisites other
than ordinary algebra, but it is probably best used by a student who has the “mathematical
maturity” of a sophomore or junior. The text has two goals: to teach the fundamental concepts
and techniques of matrix algebra and abstract vector spaces, and to teach the techniques associated
with understanding the definitions and theorems forming a coherent area of mathematics. So there
is an emphasis on worked examples of nontrivial size and on proving theorems carefully.

This book is copyrighted. This means that governments have granted the author a monopoly
— the exclusive right to control the making of copies and derivative works for many years (too
many years in some cases). It also gives others limited rights, generally referred to as “fair use,”
such as the right to quote sections in a review without seeking permission. However, the author
licenses this book to anyone under the terms of the GNU Free Documentation License (GFDL),
which gives you more rights than most copyrights (see [Appendix GFDI] [763]). Loosely speaking,
you may make as many copies as you like at no cost, and you may distribute these unmodified
copies if you please. You may modify the book for your own use. The catch is that if you make
modifications and you distribute the modified version, or make use of portions in excess of fair
use in another work, then you must also license the new work with the GFDL. So the book has
lots of inherent freedom, and no one is allowed to distribute a derivative work that restricts these
freedoms. (See the license itself in the appendix for the exact details of the additional rights you
have been given.)

Notice that initially most people are struck by the notion that this book is free (the French
would say gratis, at no cost). And it is. However, it is more important that the book has freedom
(the French would say liberté, liberty). It will never go “out of print” nor will there ever be trivial
updates designed only to frustrate the used book market. Those considering teaching a course with
this book can examine it thoroughly in advance. Adding new exercises or new sections has been
purposely made very easy, and the hope is that others will contribute these modifications back for
incorporation into the book, for the benefit of all.

Depending on how you received your copy, you may want to check for the latest version (and
other news) at http://linear.ups.edu/.

Topics The first half of this text (through|[Chapter M| [179]) is basically a course in matrix algebra,
though the foundation of some more advanced ideas is also being formed in these early sections.
Vectors are presented exclusively as column vectors (since we also have the typographic freedom
to avoid writing a column vector inline as the transpose of a row vector), and linear combinations
are presented very early. Spans, null spaces and column spaces are also presented early, simply as
sets, saving most of their vector space properties for later, so they are familiar objects before being
scrutinized carefully.

You cannot do everything early, so in particular matrix multiplication comes later than usual.
However, with a definition built on linear combinations of column vectors, it should seem more
natural than the more frequent definition using dot products of rows with columns. And this delay
emphasizes that linear algebra is built upon vector addition and scalar multiplication. Of course,
matrix inverses must wait for matrix multiplication, but this does not prevent nonsingular matrices
from occurring sooner. Vector space properties are hinted at when vector and matrix operations
are first defined, but the notion of a vector space is saved for a more axiomatic treatment later
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(Chapter VS| [273]). Once bases and dimension have been explored in the context of vector spaces,
linear transformations and their matrix representations follow. The goal of the book is to go as far
as Jordan canonical form in the Core ), with less central topics collected in the Topics
). A third part will contain contributed applications, with notation and theorems
integrated with the earlier two parts )

Linear algebra is an ideal subject for the novice mathematics student to learn how to develop
a topic precisely, with all the rigor mathematics requires. Unfortunately, much of this rigor seems
to have escaped the standard calculus curriculum, so for many university students this is their first
exposure to careful definitions and theorems, and the expectation that they fully understand them,
to say nothing of the expectation that they become proficient in formulating their own proofs. We
have tried to make this text as helpful as possible with this transition. Every definition is stated
carefully, set apart from the text. Likewise, every theorem is carefully stated, and almost every
one has a complete proof. Theorems usually have just one conclusion, so they can be referenced
precisely later. Definitions and theorems are cataloged in order of their appearance in the front of
the book (Definitions| [xi], [Theorems| [xiii]), and alphabetical order in the index at the back. Along
the way, there are discussions of some more important ideas relating to formulating proofs

[??]), which is part advice and part logic.

Origin and History This book is the result of the confluence of several related events and trends.

e At the University of Puget Sound we teach a one-semester, post-calculus linear algebra course
to students majoring in mathematics, computer science, physics, chemistry and economics.
Between January 1986 and June 2002, I taught this course seventeen times. For the Spring
2003 semester, I elected to convert my course notes to an electronic form so that it would be
easier to incorporate the inevitable and nearly-constant revisions. Central to my new notes
was a collection of stock examples that would be used repeatedly to illustrate new concepts.
(These would become the Archetypes, |[Appendix A [681].) It was only a short leap to then
decide to distribute copies of these notes and examples to the students in the two sections of
this course. As the semester wore on, the notes began to look less like notes and more like a
textbook.

e | used the notes again in the Fall 2003 semester for a single section of the course. Simultane-
ously, the textbook I was using came out in a fifth edition. A new chapter was added toward
the start of the book, and a few additional exercises were added in other chapters. This de-
manded the annoyance of reworking my notes and list of suggested exercises to conform with
the changed numbering of the chapters and exercises. I had an almost identical experience
with the third course I was teaching that semester. I also learned that in the next academic
year 1 would be teaching a course where my textbook of choice had gone out of print. I felt
there had to be a better alternative to having the organization of my courses buffeted by the
economics of traditional textbook publishing.

e | had used TEX and the Internet for many years, so there was little to stand in the way of
typesetting, distributing and “marketing” a free book. With recreational and professional
interests in software development, I had long been fascinated by the open-source software
movement, as exemplified by the success of GNU and Linux, though public-domain TEX
might also deserve mention. Obviously, this book is an attempt to carry over that model of
creative endeavor to textbook publishing.

e As a sabbatical project during the Spring 2004 semester, I embarked on the current project of
creating a freely-distributable linear algebra textbook. (Notice the implied financial support of
the University of Puget Sound to this project.) Most of the material was written from scratch
since changes in notation and approach made much of my notes of little use. By August 2004
I had written half the material necessary for our Math 232 course. The remaining half was
written during the Fall 2004 semester as I taught another two sections of Math 232.
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e While in early 2005 the book was complete enough to build a course around, work continued
for the next two years to fill out the narrative, exercises and supplements. In this time, I
taught four sections of the course, while three of my colleagues at the University of Puget
Sound taught another four sections.

However, much of my motivation for writing this book is captured by the sentiments expressed by
H.M. Cundy and A.P. Rollet in their Preface to the First Edition of Mathematical Models (1952),
especially the final sentence,

This book was born in the classroom, and arose from the spontaneous interest of a
Mathematical Sixth in the construction of simple models. A desire to show that even
in mathematics one could have fun led to an exhibition of the results and attracted
considerable attention throughout the school. Since then the Sherborne collection has
grown, ideas have come from many sources, and widespread interest has been shown.
It seems therefore desirable to give permanent form to the lessons of experience so that
others can benefit by them and be encouraged to undertake similar work.

How To Use This Book Chapters, Theorems, etc. are not numbered in this book, but are
instead referenced by acronyms. This means that Theorem XYZ will always be Theorem XYZ,
no matter if new sections are added, or if an individual decides to remove certain other sections.
Within sections, the subsections are acronyms that begin with the acronym of the section. So
Subsection XYZ.AB is the subsection AB in Section XYZ. Acronyms are unique within their type,
so for example there is just one [Definition B| [319], but there is also a . At first, all
the letters flying around may be confusing, but with time, you will begin to recognize the more
important ones on sight. Furthermore, there are lists of theorems, examples, etc. in the front of the
book, and an index that contains every acronym. If you are reading this in an electronic version
(PDF or XML), you will see that all of the cross-references are hyperlinks, allowing you to click to
a definition or example, and then use the back button to return. In printed versions, you must rely
on the page numbers. However, note that page numbers are not permanent! Different editions,
different margins, or different sized paper will affect what content is on each page. And in time,
the addition of new material will affect the page numbering.

Chapter divisions are not critical to the organization of the book, as Sections are the main
organizational unit. Sections are designed to be the subject of a single lecture or classroom session,
though there is frequently more material than can be discussed and illustrated in a fifty-minute
session. Consequently, the instructor will need to be selective about which topics to illustrate with
other examples and which topics to leave to the student’s reading. Many of the examples are meant
to be large, such as using five or six variables in a system of equations, so the instructor may just
want to “walk” a class through these examples. The book has been written with the idea that
some may work through it independently, so the hope is that students can learn some of the more
mechanical ideas on their own.

The highest level division of the book is the three Parts: Core, Topics, Applications. The Core
is meant to carefully describe the basic ideas required of a first exposure to linear algebra. In the
final sections of the Core, one should ask the question: which previous Sections could be removed
without destroying the logical development of the subject? Hopefully, the answer is “none.” The
goal of the book is to finish the Core with the most general representations of linear transformations
(Jordan and perhaps rational canonical forms). Of course, there will not be universal agreement
on what should, or should not, constitute the Core, but the main idea will be to limit it to about
forty sections. Topics is meant to contain those subjects that are important in linear algebra,
and which would make profitable detours from the Core for those interested in pursuing them.
Applications should illustrate the power and widespread applicability of linear algebra to as many
fields as possible. The Archetypes (Appendix Al [681]) cover many of the computational aspects of
systems of linear equations, matrices and linear transformations. The student should consult them
often, and this is encouraged by exercises that simply suggest the right properties to examine at
the right time. But what is more important, they are a repository that contains enough variety to
provide abundant examples of key theorems, while also providing counterexamples to hypotheses
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or converses of theorems. The summary table at the start of this appendix should be especially
useful.

I require my students to read each Section prior to the day’s discussion on that section. For
some students this is a novel idea, but at the end of the semester a few always report on the
benefits, both for this course and other courses where they have adopted the habit. To make good
on this requirement, each section contains three Reading Questions. These sometimes only require
parroting back a key definition or theorem, or they require performing a small example of a key
computation, or they ask for musings on key ideas or new relationships between old ideas. Answers
are emailed to me the evening before the lecture. Given the flavor and purpose of these questions,
including solutions seems foolish.

Formulating interesting and effective exercises is as difficult, or more so, than building a nar-
rative. But it is the place where a student really learns the material. As such, for the student’s
benefit, complete solutions should be given. As the list of exercises expands, over time solutions
will also be provided. Exercises and their solutions are referenced with a section name, followed by
a dot, then a letter (C,M, or T) and a number. The letter ‘C’ indicates a problem that is mostly
computational in nature, while the letter ‘T’ indicates a problem that is more theoretical in nature.
A problem with a letter ‘M’ is somewhere in between (middle, mid-level, median, middling), prob-
ably a mix of computation and applications of theorems. So [Solution MO.T13| [190] is a solution
to an exercise in [Section MO| [179] that is theoretical in nature. The number ‘13’ has no intrinsic
meaning.

More on Freedom This book is freely-distributable under the terms of the GFDL, along with
the underlying TEX code from which the book is built. This arrangement provides many benefits
unavailable with traditional texts.

e No cost, or low cost, to students. With no physical vessel (i.e. paper, binding), no transporta-
tion costs (Internet bandwidth being a negligible cost) and no marketing costs (evaluation and
desk copies are free to all), anyone with an Internet connection can obtain it, and a teacher
could make available paper copies in sufficient quantities for a class. The cost to print a copy
is not insignificant, but is just a fraction of the cost of a traditional textbook when printing
is handled by a print-on-demand service over the Internet. Students will not feel the need to
sell back their book (nor should there be much of a market for used copies), and in future
years can even pick up a newer edition freely.

e The book will not go out of print. No matter what, a teacher can maintain their own copy
and use the book for as many years as they desire. Further, the naming schemes for chapters,
sections, theorems, etc. is designed so that the addition of new material will not break any
course syllabi or assignment list.

e With many eyes reading the book and with frequent postings of updates, the reliability should
become very high. Please report any errors you find that persist into the latest version.

e For those with a working installation of the popular typesetting program TEX, the book has
been designed so that it can be customized. Page layouts, presence of exercises, solutions,
sections or chapters can all be easily controlled. Furthermore, many variants of mathematical
notation are achieved via TEX macros. So by changing a single macro, one’s favorite notation
can be reflected throughout the text. For example, every transpose of a matrix is coded in
the source as \transpose{A}, which when printed will yield A*. However by changing the
definition of \transpose{ }, any desired alternative notation will then appear throughout
the text instead.

e The book has also been designed to make it easy for others to contribute material. Would
you like to see a section on symmetric bilinear forms? Consider writing one and contributing
it to one of the Topics chapters. Does there need to be more exercises about the null space of
a matrix? Send me some. Historical Notes? Contact me, and we will see about adding those
in also.
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e You have no legal obligation to pay for this book. It has been licensed with no expectation
that you pay for it. You do not even have a moral obligation to pay for the book. Thomas
Jefferson (1743 — 1826), the author of the United States Declaration of Independence, wrote,

If nature has made any one thing less susceptible than all others of exclusive prop-
erty, it is the action of the thinking power called an idea, which an individual may
exclusively possess as long as he keeps it to himself; but the moment it is divulged,
it forces itself into the possession of every one, and the receiver cannot dispossess
himself of it. Its peculiar character, too, is that no one possesses the less, because
every other possesses the whole of it. He who receives an idea from me, receives in-
struction himself without lessening mine; as he who lights his taper at mine, receives
light without darkening me. That ideas should freely spread from one to another
over the globe, for the moral and mutual instruction of man, and improvement of his
condition, seems to have been peculiarly and benevolently designed by nature, when
she made them, like fire, expansible over all space, without lessening their density in
any point, and like the air in which we breathe, move, and have our physical being,
incapable of confinement or exclusive appropriation.

Letter to Isaac McPherson
August 13, 1813

However, if you feel a royalty is due the author, or if you would like to encourage the author, or
if you wish to show others that this approach to textbook publishing can also bring financial
compensation, then donations are gratefully received. Moreover, non-financial forms of help
can often be even more valuable. A simple note of encouragement, submitting a report
of an error, or contributing some exercises or perhaps an entire section for the Topics or
Applications are all important ways you can acknowledge the freedoms accorded to this work
by the copyright holder and other contributors.

Conclusion Foremost, I hope that students find their time spent with this book profitable. I
hope that instructors find it flexible enough to fit the needs of their course. And I hope that
everyone will send me their comments and suggestions, and also consider the myriad ways they can
help (as listed on the book’s website at http://linear.ups.edu).

Robert A. Beezer
Tacoma, Washington
December 2006
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consult two other textbooks. Sheldon Axler’s Linear Algebra Done Right is a highly original
exposition, while Ben Noble’s Applied Linear Algebra frequently strikes just the right note between
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Chapter SLE
Systems of Linear Equations

We will motivate our study of linear algebra by studying solutions to systems of linear equations.
While the focus of this chapter is on the practical matter of how to find, and describe, these
solutions, we will also be setting ourselves up for more theoretical ideas that will appear later.

Section WILA
What is Linear Algebra?
[

]
Subsection LA
“Linear” 4+ “Algebra”

The subject of linear algebra can be partially explained by the meaning of the two terms comprising
the title. “Linear” is a term you will appreciate better at the end of this course, and indeed, attaining
this appreciation could be taken as one of the primary goals of this course. However for now, you
can understand it to mean anything that is “straight” or “flat.” For example in the zy-plane you
might be accustomed to describing straight lines (is there any other kind?) as the set of solutions
to an equation of the form y = mx + b, where the slope m and the y-intercept b are constants
that together describe the line. In multivariate calculus, you may have discussed planes. Living in
three dimensions, with coordinates described by triples (z, y, z), they can be described as the set
of solutions to equations of the form ax + by + cz = d, where a, b, ¢, d are constants that together
determine the plane. While we might describe planes as “flat,” lines in three dimensions might be
described as “straight.” From a multivariate calculus course you will recall that lines are sets of
points described by equations such as © = 3t — 4, y = —7t + 2, z = 9¢, where t is a parameter that
can take on any value.

Another view of this notion of “flatness” is to recognize that the sets of points just described
are solutions to equations of a relatively simple form. These equations involve addition and mul-
tiplication only. We will have a need for subtraction, and occasionally we will divide, but mostly
you can describe “linear” equations as involving only addition and multiplication. Here are some
examples of typical equations we will see in the next few sections:

20+ 3y — 42z =13 41 +5x9 — 23+ x4+ 25 =0 9a — 2b+ Tc+2d = -7
What we will not see are equations like:
xy + byz = 13 Ty + 23 /x4 — T32425 =0 tan(ab) + log(c — d) = =7

The exception will be that we will on occasion need to take a square root.
You have probably heard the word “algebra” frequently in your mathematical preparation for
this course. Most likely, you have spent a good ten to fifteen years learning the algebra of the

3



4 Section WILA What is Linear Algebra?

real numbers, along with some introduction to the very similar algebra of complex numbers (see
ISection CNO| [661]). However, there are many new algebras to learn and use, and likely linear
algebra will be your second algebra. Like learning a second language, the necessary adjustments
can be challenging at times, but the rewards are many. And it will make learning your third
and fourth algebras even easier. Perhaps you have heard of “groups” and “rings” (or maybe you
have studied them already), which are excellent examples of other algebras with very interesting
properties and applications. In any event, prepare yourself to learn a new algebra and realize that
some of the old rules you used for the real numbers may no longer apply to this new algebra you
will be learning!

The brief discussion above about lines and planes suggests that linear algebra has an inherently
geometric nature, and this is true. Examples in two and three dimensions can be used to provide
valuable insight into important concepts of this course. However, much of the power of linear
algebra will be the ability to work with “flat” or “straight” objects in higher dimensions, without
concerning ourselves with visualizing the situation. While much of our intuition will come from
examples in two and three dimensions, we will maintain an algebraic approach to the subject, with
the geometry being secondary. Others may wish to switch this emphasis around, and that can lead
to a very fruitful and beneficial course, but here and now we are laying our bias bare.

Subsection AA
An Application

We conclude this section with a rather involved example that will highlight some of the power and
techniques of linear algebra. Work through all of the details with pencil and paper, until you believe
all the assertions made. However, in this introductory example, do not concern yourself with how
some of the results are obtained or how you might be expected to solve a similar problem. We will
come back to this example later and expose some of the techniques used and properties exploited.
For now, use your background in mathematics to convince yourself that everything said here really
is correct.

Example TMP

Trail Mix Packaging

Suppose you are the production manager at a food-packaging plant and one of your product lines
is trail mix, a healthy snack popular with hikers and backpackers, containing raisins, peanuts and
hard-shelled chocolate pieces. By adjusting the mix of these three ingredients, you are able to sell
three varieties of this item. The fancy version is sold in half-kilogram packages at outdoor supply
stores and has more chocolate and fewer raisins, thus commanding a higher price. The standard
version is sold in one kilogram packages in grocery stores and gas station mini-markets. Since the
standard version has roughly equal amounts of each ingredient, it is not as expensive as the fancy
version. Finally, a bulk version is sold in bins at grocery stores for consumers to load into plastic
bags in amounts of their choosing. To appeal to the shoppers that like bulk items for their economy
and healthfulness, this mix has many more raisins (at the expense of chocolate) and therefore sells
for less.

Your production facilities have limited storage space and early each morning you are able to
receive and store 380 kilograms of raisins, 500 kilograms of peanuts and 620 kilograms of chocolate
pieces. As production manager, one of your most important duties is to decide how much of
each version of trail mix to make every day. Clearly, you can have up to 1500 kilograms of raw
ingredients available each day, so to be the most productive you will likely produce 1500 kilograms
of trail mix each day. Also, you would prefer not to have any ingredients leftover each day, so that
your final product is as fresh as possible and so that you can receive the maximum delivery the
next morning. But how should these ingredients be allocated to the mixing of the bulk, standard
and fancy versions?

First, we need a little more information about the mixes. Workers mix the ingredients in 15
kilogram batches, and each row of the table below gives a recipe for a 15 kilogram batch. There
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Subsection WILA.AA An Application 5

is some additional information on the costs of the ingredients and the price the manufacturer can
charge for the different versions of the trail mix.

Raisins Peanuts Chocolate | Cost | Sale Price
(kg/batch) | (kg/batch) | (kg/batch) | ($/kg) | ($/ke)
Bulk 7 6 2 3.69 4.99
Standard 6 4 5 3.86 5.50
Fancy 2 5 8 4.45 6.50
Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

As production manager, it is important to realize that you only have three decisions to make —
the amount of bulk mix to make, the amount of standard mix to make and the amount of fancy
mix to make. Everything else is beyond your control or is handled by another department within
the company. Principally, you are also limited by the amount of raw ingredients you can store each
day. Let us denote the amount of each mix to produce each day, measured in kilograms, by the
variable quantities b, s and f. Your production schedule can be described as values of b, s and f
that do several things. First, we cannot make negative quantities of each mix, so

b>0 s> 0 F>0

Second, if we want to consume all of our ingredients each day, the storage capacities lead to three
(linear) equations, one for each ingredient,

7 6 2 ..
1—5b+ 5° + 1—5f =380 (raisins)

6 4 5

1—51)—1— T + 1—5f =500 (peanuts)
2 5 8

il = —f =62 hocol
15b—|— 153+ 15f 620 (chocolate)

It happens that this system of three equations has just one solution. In other words, as production
manager, your job is easy, since there is but one way to use up all of your raw ingredients making
trail mix. This single solution is

b= 300 kg s =300 kg f =900 kg.

We do not yet have the tools to explain why this solution is the only one, but it should be simple
for you to verify that this is indeed a solution. (Go ahead, we will wait.) Determining solutions
such as this, and establishing that they are unique, will be the main motivation for our initial study
of linear algebra.

So we have solved the problem of making sure that we make the best use of our limited storage
space, and each day use up all of the raw ingredients that are shipped to us. Additionally, as
production manager, you must report weekly to the CEO of the company, and you know he will
be more interested in the profit derived from your decisions than in the actual production levels.
So you compute,

300(4.99 — 3.69) + 300(5.50 — 3.86) + 900(6.50 — 4.45) = 2727.00

for a daily profit of $2,727 from this production schedule. The computation of the daily profit is also
beyond our control, though it is definitely of interest, and it too looks like a “linear” computation.

As often happens, things do not stay the same for long, and now the marketing department
has suggested that your company’s trail mix products standardize on every mix being one-third
peanuts. Adjusting the peanut portion of each recipe by also adjusting the chocolate portion leads
to revised recipes, and slightly different costs for the bulk and standard mixes, as given in the
following table.
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6 Section WILA What is Linear Algebra?

Raisins Peanuts Chocolate | Cost | Sale Price
(kg/batch) | (kg/batch) | (kg/batch) | ($/kg) ($/kg)
Bulk 7 5 3 3.70 4.99
Standard 6 5 4 3.85 5.50
Fancy 2 5 8 4.45 6.50
Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

In a similar fashion as before, we desire values of b, s and f so that

b>0 52>0 f=0
and
7 6 ..
1—51) + s + f 380 (raisins)
) )
1—56 + 15 —|— f = 500 (peanuts)
3 4
-~ - =62 hocol
15b—|— 15s+ f 620 (chocolate)

It now happens that this system of equations has infinitely many solutions, as we will now demon-
strate. Let f remain a variable quantity. Then if we make f kilograms of the fancy mix, we will
make 4 f — 3300 kilograms of the bulk mix and —5f 4 4800 kilograms of the standard mix. Let us
now verify that, for any choice of f, the values of b = 4f — 3300 and s = —5f + 4800 will yield a
production schedule that exhausts all of the day’s supply of raw ingredients (right now, do not be
concerned about how you might derive expressions like these for b and s). Grab your pencil and
paper and play along.

7 6 5700

75 (4F = 3300) + T (~5 +4800) + f—0f+1—5_380
5(4f 3300) + 5( 5.f + 4800) + f—0f+7?—(5]0—500
3(4f 3300) + 4( 5.f + 4800) + f—0f+&go_620

Convince yourself that these expressions for b and s allow us to vary f and obtain an infinite
number of possibilities for solutions to the three equations that describe our storage capacities. As
a practical matter, there really are not an infinite number of solutions, since we are unlikely to
want to end the day with a fractional number of bags of fancy mix, so our allowable values of f
should probably be integers. More importantly, we need to remember that we cannot make negative
amounts of each mix! Where does this lead us? Positive quantities of the bulk mix requires that

b>0 = 4f-3300>0 = f>2825
Similarly for the standard mix,
5>0 = —=5f+4800>0 = f<960
So, as production manager, you really have to choose a value of f from the finite set
{825, 826, ..., 960}

leaving you with 136 choices, each of which will exhaust the day’s supply of raw ingredients. Pause
now and think about which you would choose.

Recalling your weekly meeting with the CEO suggests that you might want to choose a produc-
tion schedule that yields the biggest possible profit for the company. So you compute an expression
for the profit based on your as yet undetermined decision for the value of f,

(4 — 3300)(4.99 — 3.70) + (=5f + 4800)(5.50 — 3.85) + (f)(6.50 — 4.45) = —1.04f + 3663
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Subsection WILA.READ Reading Questions 7

Since f has a negative coeflicient it would appear that mixing fancy mix is detrimental to your profit
and should be avoided. So you will make the decision to set daily fancy mix production at f = 825.
This has the effect of setting b = 4(825) — 3300 = 0 and we stop producing bulk mix entirely. So
the remainder of your daily production is standard mix at the level of s = —5(825) + 4800 = 675
kilograms and the resulting daily profit is (—1.04)(825) 4+ 3663 = 2805. It is a pleasant surprise
that daily profit has risen to $2,805, but this is not the most important part of the story. What
is important here is that there are a large number of ways to produce trail mix that use all of the
day’s worth of raw ingredients and you were able to easily choose the one that netted the largest
profit. Notice too how all of the above computations look “linear.”

In the food industry, things do not stay the same for long, and now the sales department says
that increased competition has led to the decision to stay competitive and charge just $5.25 for a
kilogram of the standard mix, rather than the previous $5.50 per kilogram. This decision has no
effect on the possibilities for the production schedule, but will affect the decision based on profit
considerations. So you revisit just the profit computation, suitably adjusted for the new selling
price of standard mix,

(4f — 3300)(4.99 — 3.70) + (=5 f + 4800)(5.25 — 3.85) + (f)(6.50 — 4.45) = 0.21f + 2463

Now it would appear that fancy mix is beneficial to the company’s profit since the value of f has a
positive coefficient. So you take the decision to make as much fancy mix as possible, setting f = 960.
This leads to s = —5(960) + 4800 = 0 and the increased competition has driven you out of the
standard mix market all together. The remainder of production is therefore bulk mix at a daily level
of b= 4(960) — 3300 = 540 kilograms and the resulting daily profit is 0.21(960) + 2463 = 2664.60.
A daily profit of $2,664.60 is less than it used to be, but as production manager, you have made
the best of a difficult situation and shown the sales department that the best course is to pull out
of the highly competitive standard mix market completely. X

This example is taken from a field of mathematics variously known by names such as operations
research, systems science, or management science. More specifically, this is a perfect example of
problems that are solved by the techniques of “linear programming.”

There is a lot going on under the hood in this example. The heart of the matter is the solution
to systems of linear equations, which is the topic of the next few sections, and a recurrent theme
throughout this course. We will return to this example on several occasions to reveal some of the
reasons for its behavior.

Subsection READ
Reading Questions

1. Ts the equation x2 + zy + tan(y®) = 0 linear or not? Why or why not?
2. Find all solutions to the system of two linear equations 2x + 3y = —8, x — y = 6.

3. Explain the importance of the procedures described in the trail mix application (Subsection]
WILA.AA ) from the point-of-view of the production manager.
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8 Section WILA What is Linear Algebra?

Subsection EXC
Exercises

C10 In|[Example TMP] [4] the first table lists the cost (per kilogram) to manufacture each of the
three varieties of trail mix (bulk, standard, fancy). For example, it costs $3.70 to make one kilogram
of the bulk variety. Re-compute each of these three costs and notice that the computations are
linear in character.

Contributed by

M70 In|Example TMP| 4] two different prices were considered for marketing standard mix with
the revised recipes (one-third peanuts in each recipe). Selling standard mix at $5.50 resulted in
selling the minimum amount of the fancy mix and no bulk mix. At $5.25 it was best for profits to
sell the maximum amount of fancy mix and then sell no standard mix. Determine a selling price
for standard mix that allows for maximum profits while still selling some of each type of mix.
Contributed by [Robert Beezer] [Solution| [9]
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Subsection SOL
Solutions

M70 Contributed by [Robert Beezer| [Statement]

If the price of standard mix is set at $5.292, then the profit function has a zero coefficient on the
variable quantity f. So, we can set f to be any integer quantity in {825, 826, ..., 960}. All but
the extreme values (f = 825, f = 960) will result in production levels where some of every mix

is manufactured. No matter what value of f is chosen, the resulting profit will be the same, at
$2,664.60.
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Section SSLE
Solving Systems of Linear Equations
[ m |

We will motivate our study of linear algebra by considering the problem of solving several linear
equations simultaneously. The word “solve” tends to get abused somewhat, as in “solve this
problem.” When talking about equations we understand a more precise meaning: find all of the
values of some variable quantities that make an equation, or several equations, true.

Subsection SLE
Systems of Linear Equations

Example STNE
Solving two (nonlinear) equations
Suppose we desire the simultaneous solutions of the two equations,

242 =1
—z+V3y=0
You can easily check by substitution that x = @, Yy = % and r = —@, Yy = —% are both solutions.

We need to also convince ourselves that these are the only solutions. To see this, plot each equation
on the xy-plane, which means to plot (z, y) pairs that make an individual equation true. In this
case we get a circle centered at the origin with radius 1 and a straight line through the origin with
slope % The intersections of these two curves are our desired simultaneous solutions, and so we
believe from our plot that the two solutions we know already are indeed the only ones. We like to
write solutions as sets, so in this case we write the set of solutions as

S={(2 3 (%, -}

2

D=

X

In order to discuss systems of linear equations carefully, we need a precise definition. And
before we do that, we will introduce our periodic discussions about “Proof Techniques.” Linear
algebra is an excellent setting for learning how to read, understand and formulate proofs. But this
is a difficult step in your development as a mathematician, so we have included a series of short
essays containing advice and explanations to help you along. These can be found back in
[669] of [Appendix P| [661], and we will reference them as they become appropriate. Be sure to
head back to the appendix to read this as they are introduced. With a definition next, now is

the time for the first of our proof techniques. Head back to [Section PT| [669] of |Appendix P|[661
and study [Technique D| [669]. We’ll be right here when you get back. See you in a bit.

Definition SLE

System of Linear Equations

A system of linear equations is a collection of m equations in the variable quantities x1, xo, x3, ...
of the form,

a1121 + a12®2 + a1323 + - + a1pTy = by
a2121 + a2 + 2323 + - - - + a2p Ty = bo

a31x1 + azoT2 + azzr3 + - -+ aspry, = b3
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12 Section SSLE Solving Systems of Linear Equations

Am1T1 + Ama®2 + @33 + -+ ATy = by

where the values of a;;, b; and x; are from the set of complex numbers, C. A

Don’t let the mention of the complex numbers, C, rattle you. We will stick with real numbers
exclusively for many more sections, and it will sometimes seem like we only work with integers!
However, we want to leave the possibility of complex numbers open, and there will be occasions
in subsequent sections where they are necessary. You can review the basic properties of complex
numbers in [Section CNO| [661], but these facts will not be critical until we reach |Section O] |[163].
For now, here is an example to illustrate using the notation introduced in [Definition SLE] .

Example NSE
Notation for a system of equations
Given the system of linear equations,

1+ 2x0+ Ty =7
T+ 29 +T3—x4=3
3$1+$2+5$3*73§4:1

we have n = 4 variables and m = 3 equations. Also,

a11:1 a12:2 CL13:0 a14:1 b1:7

a21:1 a22:1 a23:1 a24:—1 b2:3

CL31:3 CL32:1 CL33:5 a34:—7 b3:1
Additionally, convince yourself that 1 = —2, 9 = 4, 3 = 2, ©4 = 1 is one solution (but it is not
the only onel). X

We will often shorten the term “system of linear equations” to “system of equations” leaving
the linear aspect implied. After all, this is a book about liner algebra.

Subsection PSS
Possibilities for Solution Sets

The next example illustrates the possibilities for the solution set of a system of linear equations.
We will not be too formal here, and the necessary theorems to back up our claims will come in
subsequent sections. So read for feeling and come back later to revisit this example.

Example TTS
Three typical systems
Consider the system of two equations with two variables,

201+ 3x0 =3

xl—x2:4

If we plot the solutions to each of these equations separately on the zizo-plane, we get two lines,
one with negative slope, the other with positive slope. They have exactly one point in common,
(1, x2) = (3, —1), which is the solution x1 = 3, 29 = —1. From the geometry, we believe that this
is the only solution to the system of equations, and so we say it is unique.

Now adjust the system with a different second equation,

221+ 30 =3
4x1 4+ 622 = 6

A plot of the solutions to these equations individually results in two lines, one on top of the other!
There are infinitely many pairs of points that make both equations true. We will learn shortly
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how to describe this infinite solution set precisely (see [Example SAA| [32], [Theorem VFSLS] [98]).

Notice now how the second equation is just a multiple of the first.

One more minor adjustment provides a third system of linear equations,

21+ 30 =3
4xq + 629 = 10

A plot now reveals two lines with identical slopes, i.e. parallel lines. They have no points in common,
and so the system has a solution set that is empty, S = 0. X

This example exhibits all of the typical behaviors of a system of equations. A subsequent
theorem will tell us that every system of linear equations has a solution set that is empty, contains
a single solution or contains infinitely many solutions (Theorem PSSLS| [50]). [Example STNE]
yielded exactly two solutions, but this does not contradict the forthcoming theorem. The equations
in [Example STNE| are not linear because they do not match the form of [Definition SLE] [L1],
and so we cannot apply [Theorem PSSLS| in this case.

Subsection ESEO
Equivalent Systems and Equation Operations

With all this talk about finding solution sets for systems of linear equations, you might be ready to
begin learning how to find these solution sets yourself. We begin with our first definition that takes
a common word and gives it a very precise meaning in the context of systems of linear equations.

Definition ESYS
Equivalent Systems
Two systems of linear equations are equivalent if their solution sets are equal. A

Notice here that the two systems of equations could look very different (i.e. not be equal), but
still have equal solution sets, and we would then call the systems equivalent. Two linear equations
in two variables might be plotted as two lines that intersect in a single point. A different system,
with three equations in two variables might have a plot that is three lines, all intersecting at a
common point, with this common point identical to the intersection point for the first system.
By our definition, we could then say these two very different looking systems of equations are
equivalent, since they have identical solution sets. It is really like a weaker form of equality, where
we allow the systems to be different in some respects, but we use the term equivalent to highlight
the situation when their solution sets are equal.

With this definition, we can begin to describe our strategy for solving linear systems. Given a
system of linear equations that looks difficult to solve, we would like to have an equivalent system
that is easy to solve. Since the systems will have equal solution sets, we can solve the “easy” system
and get the solution set to the “difficult” system. Here come the tools for making this strategy
viable.

Definition EO

Equation Operations

Given a system of linear equations, the following three operations will transform the system into a
different one, and each operation is known as an equation operation.

1. Swap the locations of two equations in the list of equations.
2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a second
equation, on both sides of the equality. Leave the first equation the same after this operation,
but replace the second equation by the new one.
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A

These descriptions might seem a bit vague, but the proof or the examples that follow should
make it clear what is meant by each. We will shortly prove a key theorem about equation operations
and solutions to linear systems of equations. We are about to give a rather involved proof, so a
discussion about just what a theorem really is would be timely. Head back and read
. In the theorem we are about to prove, the conclusion is that two systems are
equivalent. By [Definition ESYS| this translates to requiring that solution sets be equal for the
two systems. So we are being asked to show that two sets are equal. How do we do this? Well,
there is a very standard technique, and we will use it repeatedly through the course. If you have
not done so already, head to [665] and familiarize yourself with sets, their operations,
and especially the notion of set equality, [Definition SE| [666] and the nearby discussion about its
use.

Theorem EOPSS
Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of [Definition EO to a system of linear equations
(Definition SLE| ), then the original system and the transformed system are equivalent. ]

Proof We take each equation operation in turn and show that the solution sets of the two systems
are equal, using the definition of set equality (Definition SE| [666]).

1. It will not be our habit in proofs to resort to saying statements are “obvious,” but in this case,
it should be. There is nothing about the order in which we write linear equations that affects
their solutions, so the solution set will be equal if the systems only differ by a rearrangement
of the order of the equations.

2. Suppose a # 0 is a number. Let’s choose to multiply the terms of equation ¢ by « to build
the new system of equations,

a1171 + a1202 + 41373 + -+ + app Ty = by
a21%1 + as2T9 + as3x3 + - -+ + ag9pTn, = bo

a31x1 + azoT2 + azzr3 + - -+ azpry, = b3

Qa1 T + QT2 + Qa3rs + -+ Qi Ty = ab;

Am121 + Am2a®2 + @m3T3 + - -+ Ay Tn = by

Let S denote the solutions to the system in the statement of the theorem, and let T denote
the solutions to the transformed system.

(a) Show S C T. Suppose (z1, 2, T3, ...,2n) = (01, B2, B3, ...,0n) € S is a solution to

the original system. Ignoring the i-th equation for a moment, we know it makes all the
other equations of the transformed system true. We also know that

a1 + ai2f2 + aizfs + - + @infin = b;
which we can multiply by « to get

aa;1 B + aaipfe + aaizfs + - - - + aai By, = ab;

This says that the i-th equation of the transformed system is also true, so we have
established that (81, B2, B3, ..., 0n) € T, and therefore S C T.
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(b)

Now show T' C S. Suppose (x1, 2, X3, ...,2n) = (01, B2, 03, ...,0n) € T is a solution
to the transformed system. Ignoring the i-th equation for a moment, we know it makes
all the other equations of the original system true. We also know that

aan B + aaipfs + aaisfs + -+ aapn By = ab;

which we can multiply by é, since a # 0, to get
an P+ aigf2 + aizfBs + - + @infn = b
This says that the i-th equation of the original system is also true, so we have established

that (51, B2, B3, ...,0n) € S, and therefore T C S. Locate the key point where we
required that a # 0, and consider what would happen if o = 0.

3. Suppose « is a number. Let’s choose to multiply the terms of equation ¢ by « and add them
to equation j in order to build the new system of equations,

1171 + a12%2 + - - + 41Ty = by
ag1x1 + a2 + - - - + Ty = by

as1x1 + aza®o + - - - + azpxTy = b3

(aain + aji)zy + (az + ajo)xs + - - + (@i + ajn)T, = ab; +b;

Am1T1 + AmaZ2 + - - + AppTy = by,

Let S denote the solutions to the system in the statement of the theorem, and let 1" denote
the solutions to the transformed system.

(a)

Show S C T. Suppose (z1, T2, 3, ..., Zn) = (81, B2, B3, ..., n) € S is a solution to the
original system. Ignoring the j-th equation for a moment, we know this solution makes
all the other equations of the transformed system true. Using the fact that the solution
makes the i-th and j-th equations of the original system true, we find

(cain + aj1)pr + (aaip + ajo) B2 + - - + (aain + ajn)Bn
= (a1 f1 + aappfo + - - + aapmfn) + (a1 1 + ajofB2 + - - + ajnfn)
= afa;fr + apfBa+ -+ ainfn) + (@161 + ajpfB2 + - + ajnfn)
= ab; + b;.
This says that the j-th equation of the transformed system is also true, so we have
established that (51, B2, (s, ...,0s) € T, and therefore S C T.

Now show T' C S. Suppose (x1, 2, x3, ...,2n) = (01, B2, 03, ...,0n) € T is a solution
to the transformed system. Ignoring the j-th equation for a moment, we know it makes
all the other equations of the original system true. We then find

a;j181 + ajef2 + -+ ajpnfn
= a1+ ajpf2 + - + ajnfy + ab; — ab;
=aj1f1 +ajofo+ -+ ajnfn + (@an i + aaigfe + - + aainBn) — ab;
= a1 + aan B + ajefr + aaipfBe + - + ajnfn + Qinfn — ab;
= (aayn + a;1)081 + (aiz + aj2) Pz + - + (aain + ajn)Bn — ab;
= ab; +b; — ab;
= b
This says that the j-th equation of the original system is also true, so we have established

that (51, B2, 03, ...,0n) € S, and therefore T' C S.
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16 Section SSLE Solving Systems of Linear Equations

Why didn’t we need to require that o # 0 for this row operation? In other words, how does
the third statement of the theorem read when o« = 07 Does our proof require some extra care

when o = 07 Compare your answers with the similar situation for the second row operation.
(See [Exercise SSLE.T20] [20].)

[Theorem EOPSS| is the necessary tool to complete our strategy for solving systems of
equations. We will use equation operations to move from one system to another, all the while
keeping the solution set the same. With the right sequence of operations, we will arrive at a
simpler equation to solve. The next two examples illustrate this idea, while saving some of the
details for later.

Example US
Three equations, one solution
We solve the following system by a sequence of equation operations.

T+ 229 + 223 =4
1+ 3x2+3x3 =25
2x1 + 6x2 4+ bxr3 =6

a = —1 times equation 1, add to equation 2:

T, + 220 + 223 =4
Oz1 4+ 1o+ 12z =1
2x1 + 6x2 4+ bxr3 =6

a = —2 times equation 1, add to equation 3:

T1 + 229 + 223 =4
O0x1 4+ 1o+ 13 =1
0z 4+ 222 + 123 = —2

a = —2 times equation 2, add to equation 3:

r1 + 2x9 + 223 =4
01‘1 + 1$2 + 11‘3 =1
0x1 4+ O0xo — 1laxg = —4

a = —1 times equation 3:

T, + 220 + 223 =4
Oy 4+ 1o+ 123 =1
0x1 4+ 020 + 13 =14

which can be written more clearly as

T1 + 229 + 223 =4
To+x3=1
xr3 = 4
This is now a very easy system of equations to solve. The third equation requires that z3 = 4 to

be true. Making this substitution into equation 2 we arrive at x5 = —3, and finally, substituting
these values of xo and z3 into the first equation, we find that z; = 2. Note too that this is the
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Subsection SSLE.ESEO Equivalent Systems and Equation Operations 17

only solution to this final system of equations, since we were forced to choose these values to make
the equations true. Since we performed equation operations on each system to obtain the next one
in the list, all of the systems listed here are all equivalent to each other by [Theorem EOPSS] [14].
Thus (x1, z2, x3) = (2,—3,4) is the unique solution to the original system of equations (and all of
the other intermediate systems of equations listed as we transfomed one into another). X

Example IS
Three equations, infinitely many solutions

The following system of equations made an appearance earlier in this section (Example NSE ),

where we listed one of its solutions. Now, we will try to find all of the solutions to this system. Don’t
concern yourself too much about why we choose this particular sequence of equation operations,
just believe that the work we do is all correct.

1+ 209 +0x3+24 =7
T1+x2+T3— T4 =3
31+ 2o+ 5x3 — Ty =1

a = —1 times equation 1, add to equation 2:

1+ 2209 +0x34+24 =7
Orx1 — 20+ 23 — 224 = —4
3rx1+x9+ 523 —Tryg =1

a = —3 times equation 1, add to equation 3:

1+ 209+ 023 +24 =7
Ox1 — a0+ 23 — 224 = —4
O0x1 — 5z 4+ by — 10x4 = —20

a = —b times equation 2, add to equation 3:

1+ 2209 +0x34+24 =7
Orx1 — 20+ 23 — 224 = —4
0x1 4+ 0xo + 023 + 0x4 =0

a = —1 times equation 2:
1+ 209+ 0x34+24 =7
Ox1+a0 — 23+ 224 =4
O0x1 + 0xo 4+ 0z3 +0x4 =0
a = —2 times equation 2, add to equation 1:

1+ 0xo + 2203 — 324 = —1
Orx1 4+ 20 — 23+ 224 =4
0x1 4+ 0xo + 023 + 0x4 =0

which can be written more clearly as

T, + 2x3 — 3x4 = —1

Il
e

Ty — T3 + 214
0=0
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18 Section SSLE Solving Systems of Linear Equations

What does the equation 0 = 0 mean? We can choose any values for x1, x2, x3, x4 and this equation
will be true, so we only need to consider further the first two equations, since the third is true no
matter what. We can analyze the second equation without consideration of the variable z1. It
would appear that there is considerable latitude in how we can choose x2, x3, x4 and make this
equation true. Let’s choose z3 and x4 to be anything we please, say x3 = a and x4 = b.

Now we can take these arbitrary values for 3 and x4, substitute them in equation 1, to obtain

1+ 2a—3b=-1
$1:—1—2a—|—3b

Similarly, equation 2 becomes

To—a+2b=4
To=4+a—2b

So our arbitrary choices of values for x3 and x4 (a and b) translate into specific values of 27 and

22. The lone solution given in [Example NSE was obtained by choosing a = 2 and b = 1. Now

we can easily and quickly find many more (infinitely more). Suppose we choose a =5 and b = —2,
then we compute

21 = —1-2(5) +3(-2) = —17
29 =4+5—2(—2) =13

and you can verify that (z, za, x3, ©4) = (=17, 13, 5, —2) makes all three equations true. The
entire solution set is written as

S={(-1-2a+3b,4+a—2b,a,b)|acC,beC}

It would be instructive to finish off your study of this example by taking the general form of the
solutions given in this set and substituting them into each of the three equations and verify that
they are true in each case (Exercise SSLE.MA40] [20]). X

In the next section we will describe how to use equation operations to systematically solve any
system of linear equations.  But first, read one of our more important pieces of advice about
speaking and writing mathematics. See [Technique 1] [670].

Before attacking the exercises in this section, it will be helpful to read some advice on getting
started on the construction of a proof. See [Technique GS| [671].

Subsection READ
Reading Questions

1. How many solutions does the system of equations 3z + 2y = 4, 6x + 4y = 8 have? Explain
your answer.

2. How many solutions does the system of equations 3z + 2y = 4, 6x + 4y = —2 have? Explain
your answer.

3. What do we mean when we say mathematics is a language?
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Subsection SSLE.EXC Exercises 19

Subsection EXC
Exercises

C10 Find a solution to the system in [Example IS where x3 = 6 and x4 = 2. Find two other
solutions to the system. Find a solution where x1 = —17 and x5 = 14. How many possible answers

are there to each of these questions?

Contributed by

C20 Each archetype (Appendix A] [681]) that is a system of equations begins by listing some
specific solutions. Verify the specific solutions listed in the following archetypes by evaluating the
system of equations with the solutions listed.

Archetype Al [685
Archetype E 689
Archetype q 694
Archetype D| 698

Archetype E| 702
Archetype F| [705]
Archetype G| @

Archetype HI 714
Archetype | @ﬂ
Archetype J| [722]

Contributed by

C50 A three-digit number has two properties. The tens-digit and the ones-digit add up to 5. If
the number is written with the digits in the reverse order, and then subtracted from the original
number, the result is 792. Use a system of equations to find all of the three-digit numbers with
these properties.

Contributed by |[Robert Beezer| [Solution]

M10 Each sentence below has at least two meanings. Identify the source of the double meaning,
and rewrite the sentence (at least twice) to clearly convey each meaning.

1. They are baking potatoes.

2. He bought many ripe pears and apricots.
3. She likes his sculpture.

4. T decided on the bus.

Contributed by [Robert Beezer| [Solution|

M11 Discuss the diffence in meaning of each of the following three almost identical sentences,
which all have the same grammatical structure. (These are due to Keith Devlin.)

1. She saw him in the park with a dog.
2. She saw him in the park with a fountain.

3. She saw him in the park with a telescope.

Contributed by [Robert Beezer| [Solution)

M12 The following sentence, due to Noam Chomsky, has a correct grammatical structure, but
is meaningless. Critique its faults. “Colorless green ideas sleep furiously.” (Chomsky, Noam.
Syntactic Structures, The Hague/Paris: Mouton, 1957. p. 15.)

Contributed by [Robert Beezer| [Solution)
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20 Section SSLE Solving Systems of Linear Equations

M13 Read the following sentence and form a mental picture of the situation.
The baby cried and the mother picked it up.

What assumptions did you make about the situation?
Contributed by [Robert Beezer| [Solution]

M30 This problem appears in a middle-school mathematics textbook: Together Dan and Diane
have $20. Together Diane and Donna have $15. How much do the three of them have in total?
(Transistion Mathematics, Second Edition, Scott Foresman Addison Wesley, 1998. Problem 5-
1.19.)

Contributed by [David Beezer| |Solution]

M40 Solutions to the system in [Example IS are given as

(z1, x2, 3, 4) = (=1 — 2a + 3b, 4+ a — 2b, a, b)

Evaluate the three equations of the original system with these expressions in a and b and verify
that each equation is true, no matter what values are chosen for a and b.

Contributed by

M70 We have seen in this section that systems of linear equations have limited possibilities
for solution sets, and we will shortly prove [Theorem PSSLS| that describes these possibilities
exactly. This exercise will show that if we relax the requirement that our equations be linear, then
the possibilities expand greatly. Consider a system of two equations in the two variables x and y,
where the departure from linearity involves simply squaring the variables.

x2—y2:1
224y’ =4

After solving this system of non-linear equations, replace the second equation in turn by 22 + 2z +
y? =3, 22+9y> =1, 22 —x+y? =0, 422 + 4y? = 1 and solve each resulting system of two equations
in two variables.

Contributed by [Robert Beezer| [Solution]

T10 [Technique D|[669] asks you to formulate a definition of what it means for a whole number to
be odd. What is your definition? (Don’t say “the opposite of even.”) Is 6 odd? Is 11 odd? Justify
your answers by using your definition.

Contributed by [Robert Beezer| [Solution]

T20 Explain why the second equation operation in |[Definition EO| requires that the scalar be
nonzero, while in the third equation operation this restriction on the scalar is not present.

Contributed by [Robert Beezer| [Solution
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Subsection SOL
Solutions

C50 Contributed by [Robert Beezer| [Statement]|

Let a be the hundreds digit, b the tens digit, and ¢ the ones digit. Then the first condition says
that b+ ¢ = 5. The original number is 100a 4+ 10b 4 ¢, while the reversed number is 100c 4 100 + a.
So the second condition is

792 = (100a + 10b + ¢) — (100c¢ + 10b + a) = 99a — 99¢
So we arrive at the system of equations

b+c=5
99a — 99¢ = 792

Using equation operations, we arrive at the equivalent system
a—c=28
b+c=5

We can vary ¢ and obtain infinitely many solutions. However, ¢ must be a digit, restricting us to
ten values (0 — 9). Furthermore, if ¢ > 1, then the first equation forces a > 9, an impossibility.
Setting ¢ = 0, yields 850 as a solution, and setting ¢ = 1 yields 941 as another solution.

M10 Contributed by [Robert Beezer| [Statement]

1. Is “baking” a verb or an adjective?
Potatoes are being baked.
Those are baking potatoes.

2. Are the apricots ripe, or just the pears? Parentheses could indicate just what the adjective
“ripe” is meant to modify. Were there many apricots as well, or just many pears?
He bought many pears and many ripe apricots.
He bought apricots and many ripe pears.

3. Is “sculpture” a single physical object, or the sculptor’s style expressed over many pieces and
many years?
She likes his sculpture of the girl.
She likes his sculptural style.

4. Was a decision made while in the bus, or was the outcome of a decision to choose the bus.
Would the sentence “I decided on the car,” have a similar double meaning?
I made my decision while on the bus.
I decided to ride the bus.

M11 Contributed by [Robert Beezer| [Statement|
We know the dog belongs to the man, and the fountain belongs to the park. It is not clear if the
telescope belongs to the man, the woman, or the park.

M12 Contributed by [Robert Beezer| [Statement|
In adjacent pairs the words are contradictory or inappropriate. Something cannot be both green
and colorless, ideas do not have color, ideas do not sleep, and it is hard to sleep furiously.

M13 Contributed by [Robert Beezer| [Statement|
Did you assume that the baby and mother are human?
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22 Section SSLE Solving Systems of Linear Equations

Did you assume that the baby is the child of the mother?
Did you assume that the mother picked up the baby as an attempt to stop the crying?

M30 Contributed by [Robert Beezer| [Statement]|
If z, y and z represent the money held by Dan, Diane and Donna, then y = 15—z and ¢ = 20—y =
20— (15—2) = 5+ 2. We can let z take on any value from 0 to 15 without any of the three amounts
being negative, since presumably middle-schoolers are too young to assume debt.

Then the total capital held by the threeis x +y+ 2z = (54 2) + (15 — z) + 2 = 20 + 2. So their
combined holdings can range anywhere from $20 (Donna is broke) to $35 (Donna is flush).

We will have more to say about this situation in , and specifically

@)

M70 Contributed by [Robert Beezer| [Statement]

The equation 22 —y? = 1 has a solution set by itself that has the shape of a hyperbola when plotted.
The five different second equations have solution sets that are circles when plotted individually.
Where the hyperbola and circle intersect are the solutions to the system of two equations. As the
size and location of the circle varies, the number of intersections varies from four to none (in the
order given). Sketching the relevant equations would be instructive, as was discussed in

STNE [

The exact solution sets are (according to the choice of the second equation),

oo (0 (0 (54 (E49)
P2ty =3 {(1,0), (-2,V3), (-2,-V3)}

2+92=1:  {(1,0), (-1,0)}
P —r+y?=0: {(1,0)}

d? + 4P =1 {}

T10 Contributed by [Robert Beezer| [Statement|
We can say that an integer is odd if when it is divided by 2 there is a remainder of 1. So 6 is not
odd since 6 = 3 x 2 + 0, while 11 is odd since 11 =5 x 2 4+ 1.

T20 Contributed by [Robert Beezer| [Statement]
Definition EO is engineered to make [Theorem EOPSS] true. If we were to allow a zero

scalar to multiply an equation then that equation would be transformed to the equation 0 = 0,
which is true for any possible values of the variables. Any restrictions on the solution set imposed
by the original equation would be lost.

However, in the third operation, it is allowed to choose a zero scalar, multiply an equation by
this scalar and add the transformed equation to a second equation (leaving the first unchanged).
The result? Nothing. The second equation is the same as it was before. So the theorem is true in
this case, the two systems are equivalent. But in practice, this would be a silly thing to actually
ever do! We still allow it though, in order to keep our theorem as general as possible.

Notice the location in the proof of |Theorem EOPSS| where the expression é appears — this
explains the prohibition on o = 0 in the second equation operation.
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Section RREF
Reduced Row-Echelon Form
| |

After solving a few systems of equations, you will recognize that it doesn’t matter so much what we
call our variables, as opposed to what numbers act as their coefficients. A system in the variables
1, T9, x3 would behave the same if we changed the names of the variables to a, b, ¢ and kept all
the constants the same and in the same places. In this section, we will isolate the key bits of
information about a system of equations into something called a matrix, and then use this matrix
to systematically solve the equations. Along the way we will obtain one of our most important and
useful computational tools.

Subsection MVNSE
Matrix and Vector Notation for Systems of Equations

Definition M

Matrix

An m xn matrix is a rectangular layout of numbers from C having m rows and n columns. We will
use upper-case Latin letters from the start of the alphabet (A, B, C,...) to denote matrices and
squared-off brackets to delimit the layout. Many use large parentheses instead of brackets — the
distinction is not important. Rows of a matrix will be referenced starting at the top and working
down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1
is at the left). For a matrix A, the notation [A];; will refer to the complex number in row i and
column j of A.

(This definition contains Notation M.)

(This definition contains Notation MC.) A

Be careful with this notation for individual entries, since it is easy to think that [A];; refers

to the whole matrix. It does not. It is just a number, but is a convenient way to talk about the
individual entries simultaneously. This notation will get a heavy workout once we get to

M [179).

Example AM
A matrix
-1 2 5 3
B=]1 0 -6 1
-4 2 2 =2
is a matrix with m = 3 rows and n = 4 columns. We can say that [B], 3 = —6 while [B]; ; = —2.
X

A calculator or computer language can be a convenient way to perform calculations with matri-
ces. But first you have to enter the matrix. See: |Computation ME.MMA| [653] |Computation|
IME.TI86| [657] [Computation ME.TI83| [655] . When we do equation operations on system
of equations, the names of the variables really aren’t very important. xi, x2, x3, or a, b, ¢, or ,
Yy, z, it really doesn’t matter. In this subsection we will describe some notation that will make it
easier to describe linear systems, solve the systems and describe the solution sets. Here is a list of
definitions, laden with notation.

Definition CV

Column Vector

A column vector of size m is an ordered list of m numbers, which is written in order vertically,
starting at the top and proceeding to the bottom. At times, we will refer to a column vector as

Version 1.30



24  Section RREF Reduced Row-Echelon Form

simply a vector. Column vectors will be written in bold, usually with lower case Latin letter from
the end of the alphabet such as u, v, w, x, y, z. Some books like to write vectors with arrows,
such as «. Writing by hand, some like to put arrows on top of the symbol, or a tilde underneath
the symbol, as in u. To refer to the entry or component that is number ¢ in the list that is the

vector v we write [v];.

(This definition contains Notation CV.)
(This definition contains Notation CVC.) A

Be careful with this notation. While the symbols [v], might look somewhat substantial, as an
object this represents just one component of a vector, which is just a single complex number.

Definition ZCV
Zero Column Vector
The zero vector of size m is the column vector of size m where each entry is the number zero,

0
0

0= 1|0

0

or defined much more compactly, [0], = 0 for 1 <i < m.
(This definition contains Notation ZCV.) A

Definition CM
Coefficient Matrix
For a system of linear equations,

a1121 + a12@2 + a1323 + - - - + a1pTy = b1
2121 + a22T2 + 2373 + - - - 4+ a2p Ty = bo

as1x1 + azoro + agzxs + - - - + agpTn, = b3

Am1T1 + Ama®2 + @33 + -+ ATy = by

the coefficient matrix is the m x n matrix

a11 a2 aiz ... Qin

az; az2 a3 ... QA2p

A= |a31 a32 asz ... Qa3n
|Gm1 Am2 am3 ... (Gmn |

Definition VOC
Vector of Constants
For a system of linear equations,

a1171 + a1202 + 41373 + -+ + app Ty, = by
ao1x1 + 929 + as3x3 + - -+ + ag9pTy, = bo

a31x1 + azoT2 + azzr3 + - -+ aspry, = b3

Am1T1 + Ama®2 + @33 + - - + ATy = by

Version 1.30



Subsection RREF.MVNSE Matrix and Vector Notation for Systems of Equations 25

the vector of constants is the column vector of size m

b1
bo
b= |03
_bm_
AN
Definition SOLV
Solution Vector
For a system of linear equations,
a11x1 + a12x2 + a1373 + - - - + a1y, = by
a2121 + a2 + a23T3 + - - - + a2 Ty = b
a31x1 + azoT2 + az3r3 + - -+ azpry, = b3
Am1T1 + AmaT2 + G303+ + + ATy = by
the solution vector is the column vector of size n
o]
X2
_wn_
AN

The solution vector may do double-duty on occasion. It might refer to a list of variable quantities
at one point, and subsequently refer to values of those variables that actually form a particular
solution to that system.

Definition LSMR

Matrix Representation of a Linear System

If A is the coefficient matrix of a system of linear equations and b is the vector of constants, then
we will write LS(A, b) as a shorthand expression for the system of linear equations, which we will
refer to as the matrix representation of the linear system.

(This definition contains Notation LSMR.) A

Example NSLE
Notation for systems of linear equations
The system of linear equations

2x1 +4x9 — 323+ 524+ 25 =9
31+ 29 + x4 —3x5 =0
—2x1 + Txo — bxg + 224 + 225 = —3

has coefficient matrix

and vector of constants
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and so will be referenced as LS(A4, b). X

Definition AM

Augmented Matrix

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of
constants b. Then the augmented matrix of the system of equations is the m x (n + 1) matrix
whose first n columns are the columns of A and whose last column (number n + 1) is the column
vector b. This matrix will be written as [A| b].

(This definition contains Notation AM.) A

The augmented matrix represents all the important information in the system of equations,
since the names of the variables have been ignored, and the only connection with the variables is
the location of their coefficients in the matrix. It is important to realize that the augmented matrix
is just that, a matrix, and not a system of equations. In particular, the augmented matrix does
not have any “solutions,” though it will be useful for finding solutions to the system of equations
that it is associated with. (Think about your objects, and review [Technique Lf [670].) However,
notice that an augmented matrix always belongs to some system of equations, and vice versa, so it
is tempting to try and blur the distinction between the two. Here’s a quick example.

Example AMAA
Augmented matrix for Archetype A
|Archetype Al [685] is the following system of 3 equations in 3 variables.

T — 22+ 23 =1
201+ a0+ 23 =28

T1+T2=09

Here is its augmented matrix.

1 -1 2 1

2 1 1 8

1 1 0 5

X

Subsection RO
Row Operations

An augmented matrix for a system of equations will save us the tedium of continually writing down
the names of the variables as we solve the system. It will also release us from any dependence
on the actual names of the variables. We have seen how certain operations we can perform on

equations (Definition EQ| [13]) will preserve their solutions (Theorem EOPSS] [14]). The next two

definitions and the following theorem carry over these ideas to augmented matrices.
Definition RO
Row Operations

The following three operations will transform an m X n matrix into a different matrix of the same
size, and each is known as a row operation.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the entries in the
same columns of a second row. Leave the first row the same after this operation, but replace
the second row by the new values.
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We will use a symbolic shorthand to describe these row operations:
1. R; + R;: Swap the location of rows ¢ and j.
2. aR;: Multiply row ¢ by the nonzero scalar a.
3. aR; + Rj: Multiply row ¢ by the scalar o and add to row j.
(This definition contains Notation RO.) A
Definition REM
Row-Equivalent Matrices

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a sequence
of row operations. A

Example TREM
Two row-equivalent matrices
The matrices

2 -1 3 4 1 1 0 6
A=1|5 2 -2 3 B=13 0 -2 -9
1 1 0 6 2 -1 3 4
are row-equivalent as can be seen from
2 -1 3 4 1 1 0 6
5 2 -2 3| Befils 9 o 3
1 1 0 6 2 -1 3 4
[1 1
2t 13 0 -2 -9
2 -1 3 4
We can also say that any pair of these three matrices are row-equivalent. X

Notice that each of the three row operations is reversible (Exercise RREF.T10| ), SO we
do not have to be careful about the distinction between “A is row-equivalent to B” and “B is
row-equivalent to A.” (Exercise RREF.T1]] ) The preceding definitions are designed to make
the following theorem possible. It says that row-equivalent matrices represent systems of linear
equations that have identical solution sets.

Theorem REMES

Row-Equivalent Matrices represent Equivalent Systems

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations
that they represent are equivalent systems. O

Proof If we perform a single row operation on an augmented matrix, it will have the same effect
as if we did the analogous equation operation on the corresponding system of equations. By exactly
the same methods as we used in the proof of [Theorem EOPSS| we can see that each of these
row operations will preserve the set of solutions for the corresponding system of equations. |

So at this point, our strategy is to begin with a system of equations, represent it by an augmented
matrix, perform row operations (which will preserve solutions for the corresponding systems) to get
a “simpler” augmented matrix, convert back to a “simpler” system of equations and then solve that
system, knowing that its solutions are those of the original system. Here’s a rehash of
as an exercise in using our new tools.

Example USR
Three equations, one solution, reprised
We solve the following system using augmented matrices and row operations. This is the same

system of equations solved in [Example US using equation operations.
T1 + 229 + 223 =4
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1+ 32+ 323 =5
2x1 + 6x9 4+ b3 =6

Form the augmented matrix,

1 2 2 4
A=1|1 3 3 5
2 6 5 6
and apply row operations,
(1 2 2 4 1 2 2 4
e N VI R e N R R
2 6 5 6 0 2 1 2
1 2 2 4 (1 2 2 4
2eths g1 1 Mg o111
0 0 -1 —4 0 0 1 4
So the matrix
1 2 2 4
B=|0111
0 01 4

is row equivalent to A and by [Theorem REMES| the system of equations below has the same
solution set as the original system of equations.

T1 + 2x9 + 203 =4

ro+x3=1
r3 =4
Solving this “simpler” system is straightforward and is identical to the process in [Example US .
X
Subsection RREF
Reduced Row-Echelon Form

The preceding example amply illustrates the definitions and theorems we have seen so far. But it
still leaves two questions unanswered. Exactly what is this “simpler” form for a matrix, and just
how do we get it? Here’s the answer to the first question, a definition of reduced row-echelon form.

Definition RREF
Reduced Row-Echelon Form
A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero lies below any row that contains a nonzero entry.
2. The leftmost nonzero entry of a row is equal to 1.
3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row i, column j and the
other located in row s, column ¢. If s > 4, then ¢t > j.

A row of only zero entries will be called a zero row and the leftmost nonzero entry of a nonzero
row will be called a leading 1. The number of nonzero rows will be denoted by 7.

A column containing a leading 1 will be called a pivot column. The set of column indices for
all of the pivot columns will be denoted by D = {dy, da, ds, ..., d,} where d; < dp < d3 < --- < d,
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while the columns that are not pivot colums will be denoted as F' = {fi, fo, f3, ..., fn—r} where
hi<fa<fz<- <o
(This definition contains Notation RREFA.) A

The principal feature of reduced row-echelon form is the pattern of leading 1’s guaranteed by
conditions (2) and (4), reminiscent of a flight of geese, or steps in a staircase, or water cascading
down a mountain stream.

There are a number of new terms and notation introduced in this definition, which should make
you suspect that this is an important definition. Given all there is to digest here, we will save the

use of D and F' until [Section TSS .

Example RREF
A matrix in reduced row-echelon form
The matrix C is in reduced row-echelon form.

1 -3 06 00 -5 9
0o 0o 0010 3 -7
o 0o ooo0o1 7 3
0O 0 000O0 O O
0O 0 000O0 O O
This matrix has two zero rows and three leading 1’s. » = 3. Columns 1, 5, and 6 are pivot columns.
X
Example NRREF
A matrix not in reduced row-echelon form
The matrix D is not in reduced row-echelon form, as it fails each of the four requirements once.
(1 0 -3 0 6 07 =5 97
0o 0 5010 3 -7
00 0 O0O0OO O O
01 0 0O0O0O0 -4 2
00 0o o001 7 3
oo 0 0000 0 O |
X
Our next theorem has a “constructive” proof. Learn about the meaning of this term in [Tech-
)
Theorem REMEF
Row-Equivalent Matrix in Echelon Form
Suppose A is a matrix. Then there is a matrix B so that
1. A and B are row-equivalent.
2. B is in reduced row-echelon form.
O

Proof Suppose that A has m rows and n columns. We will describe a process for converting
A into B via row operations. This procedure is known as Gauss—Jordan elimination. Tracing
through this procedure will be easier if you recognize that i refers to a row that is being converted,
j refers to a column that is being converted, and r keeps track of the number of nonzero rows. Here
we go.

1. Set j=0and r =0.

2. Increase j by 1. If j now equals n + 1, then stop.
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3. Examine the entries of A in column j located in rows r 4+ 1 through m.
If all of these entries are zero, then go to Step

4. Choose a row from rows r + 1 through m with a nonzero entry in column j.
Let ¢ denote the index for this row.

5. Increase r by 1.

6. Use the first row operation to swap rows ¢ and r.

7. Use the second row operation to convert the entry in row r and column j to a 1.

8. Use the third row operation with row r to convert every other entry of column j to zero.

9. Go to Step

The result of this procedure is that the matrix A is converted to a matrix in reduced row-echelon
form, which we will refer to as B. We need to now prove this claim by showing that the converted
matrix has the requisite properties of [Definition RREF| . First, the matrix is only converted
through row operations (Step @ Step |7, Step , so A and B are row-equivalent (Definition REM]|
7).

It is a bit more work to be certain that B is in reduced row-echelon form. We claim that as we
begin Step|2] the first j columns of the matrix are in reduced row-echelon form with r nonzero rows.
Certainly this is true at the start when j = 0, since the matrix has no columns and so vacuously
meets the conditions of [Definition RREF] with » = 0 nonzero rows.

In Step [2] we increase j by 1 and begin to work with the next column. There are two possible
outcomes for Step [3] Suppose that every entry of column j in rows r + 1 through m is zero. Then
with no changes we recognize that the first j columns of the matrix has its first r rows still in
reduced-row echelon form, with the final m — r rows still all zero.

Suppose instead that the entry in row ¢ of column j is nonzero. Notice that since r+1 <17 < m,
we know the first j — 1 entries of this row are all zero. Now, in Step [5| we increase r by 1, and then
embark on building a new nonzero row. In Step [6] we swap row r and row i. In the first j columns,
the first » — 1 rows remain in reduced row-echelon form after the swap. In Step [7] we multiply row
r by a nonzero scalar, creating a 1 in the entry in column j of row 4, and not changing any other
rows. This new leading 1 is the first nonzero entry in its row, and is located to the right of all
the leading 1’s in the preceding r — 1 rows. With Step |8 we insure that every entry in the column
with this new leading 1 is now zero, as required for reduced row-echelon form. Also, rows r + 1
through m are now all zeros in the first j columns, so we now only have one new nonzero row,
consistent with our increase of r by one. Furthermore, since the first j — 1 entries of row r are zero,
the employment of the third row operation does not destroy any of the necessary features of rows
1 through » — 1 and rows r + 1 through m, in columns 1 through j — 1.

So at this stage, the first j columns of the matrix are in reduced row-echelon form. When Step [2]
finally increases j to m + 1, then the procedure is completed and the full n columns of the matrix
are in reduced row-echelon form, with the value of r correctly recording the number of nonzero
rows. |

The procedure given in the proof of [Theorem REMEF]| can be more precisely described
using a pseudo-code version of a computer program, as follows:

input m, n and A
r«<—20
forj«—1ton
te—1r+1
while i <m and [A];; =0
7—1+1
ifi£Fm+1
r—r+1
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swap rows ¢ and r of A (row op 1)
scale entry in row r, column j of A to a leading 1 (row op 2)
fork<—1tom, k#r
zero out entry in row k, column j of A (row op 3 using row r)
output » and A

Notice that as a practical matter the “and” used in the conditional statement of the while statement
should be of the “short-circuit” variety so that the array access that follows is not out-of-bounds.
So now we can put it all together. Begin with a system of linear equations (Definition SLE]

), and represent the system by its augmented matrix (Definition AM ) Use row operations

(Definition RO| [26]) to convert this matrix into reduced row-echelon form (Definition RREF] [28]),
using the procedure outlined in the proof of [Theorem REMEF]| [29]. [Theorem REMEF also

tells us we can always accomplish this, and that the result is row-equivalent (Definition REM] )
to the original augmented matrix. Since the matrix in reduced-row echelon form has the same
solution set, we can analyze the row-reduced version instead of the original matrix, viewing it as
the augmented matrix of a different system of equations. The beauty of augmented matrices in
reduced row-echelon form is that the solution sets to their corresponding systems can be easily
determined, as we will see in the next few examples and in the next section.

We will see through the course that almost every interesting property of a matrix can be
discerned by looking at a row-equivalent matrix in reduced row-echelon form. For this reason it is
important to know that the matrix B guaranteed to exist by [Theorem REMEF]| is also unique.
We could prove this result right now, but the proof will be much easier to state and understand a
few sections from now when we have a few more definitions. However, the proof we will provide
does not explicitly require any more theorems than we have right now, so we can, and will, make
use of the uniqueness of B between now and then by citing [Theorem RREFU| [106]. You might
want to jump forward now to read the statement of this important theorem and save studying its
proof for later, once the rest of us get there.

We will now run through some examples of using these definitions and theorems to solve some
systems of equations. From now on, when we have a matrix in reduced row-echelon form, we will
mark the leading 1’s with a small box. In your work, you can box ’em, circle ’em or write ’em in a
different color — just identify ’em somehow. This device will prove very useful later and is a very
good habit to start developing right now.

Example SAB
Solutions for Archetype B
Let’s find the solutions to the following system of equations,

—7.%'1 — 6.%'2 — 12.1‘3 =-33
5x1 + dxo + Txg = 24
1 +4r3 =95

First, form the augmented matrix,

-7 —6 —12 -33
5 5 7 24
1 0 4 )

and work to reduced row-echelon form, first with ¢ = 1,

10 4 5 1 0 4 5
5 5 7 24 Ot g 5 13 1
-7 -6 -12 -33 7 -6 -12 -33
1] o 4 5
0 5 —13 —1
0 -6 16 2

Ri—R3
—_—

TR1+R3
—_—
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Now, with ¢ = 2,

1R, 0 4 5 CRosn 0 4 5
5 ~13 -1 2+R3 _ _
— |0 1 = F — |0 3 g
0 -6 16 2 0 0 z :
And finally, with ¢ = 3,
SR3 0 7%3 E)l L R3+Ry 0 45
— |0 5 3 |V 05
|0 0 1 2 0O 0 1 2
4R3+R 0o 0 =3
i Rie N 0 5
0 0 2
This is now the augmented matrix of a very simple system of equations, namely x1 = —3, x9 = 5,

x3 = 2, which has an obvious solution. Furthermore, we can see that this is the only solution to
this system, so we have determined the entire solution set,

-3
S = 5
2
You might compare this example with the procedure we used in [Example US . X

Archetypes A and B are meant to contrast each other in many respects. So let’s solve Archetype
A now.

Example SAA
Solutions for Archetype A
Let’s find the solutions to the following system of equations,
Tl —x9+2x3=1
201+ 20+ 23 =38
r1+x9=2>5

First, form the augmented matrix,

—1

—_ N

2
1
0

ot o

1
1
and work to reduced row-echelon form, first with ¢ =1,

—2R1+Rso
_

Now, with i = 2,

) 2 0 1 3
3R2 1 1R2+Rq 0 1 -1 2
-2 0 2 —2 4

—2R2+R3
=

—_
O N W N o
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The system of equations represented by this augmented matrix needs to be considered a bit dif-
ferently than that for Archetype B. First, the last row of the matrix is the equation 0 = 0, which
is always true, so it imposes no restrictions on our possible solutions and therefore we can safely
ignore it as we analyze the other two equations. These equations are,

r1+x3=3

To — x3 = 2.

While this system is fairly easy to solve, it also appears to have a multitude of solutions. For
example, choose 3 = 1 and see that then 1 = 2 and zo = 3 will together form a solution. Or
choose x3 = 0, and then discover that 1 = 3 and x2 = 2 lead to a solution. Try it yourself: pick
any value of xg you please, and figure out what x1 and x2 should be to make the first and second
equations (respectively) true. We’ll wait while you do that. Because of this behavior, we say that
3 is a “free” or “independent” variable. But why do we vary x3 and not some other variable?
For now, notice that the third column of the augmented matrix does not have any leading 1’s in
its column. With this idea, we can rearrange the two equations, solving each for the variable that
corresponds to the leading 1 in that row.

:L'1:3—1'3

To =2+ x3
To write the set of solution vectors in set notation, we have

3—:L’3
S = 24 x3 r3 € C
T3

We’ll learn more in the next section about systems with infinitely many solutions and how to

express their solution sets. Right now, you might look back at [Example IS . X

Example SAE
Solutions for Archetype E
Let’s find the solutions to the following system of equations,

201 + a0+ Txg — Ty = 2
—3x1 + 4x9 — by — 614 = 3
1+ 29 +4x3 — by =2

First, form the augmented matrix,

2 1 7 =7 2
-3 4 -5 —6 3
1 1 4 -5 2

and work to reduced row-echelon form, first with i = 1,

1 1 4 -5 2 114 -5 2
fols 3 4 5 —6 3 Shtle g 7 7 921 9
2 1 7 -7 2 21 7 -7 2
2RR'1 4 -5 2
2B Y 7 7 21 9
0 -1 -1 3 =2
Now, with ¢ = 2,
- 1] 1 4 -5 2 - 1] 14 -5 2
22800 -1 -1 30 =2 —= 10 11 -3 2
0 7 7 =21 9 0 77 —-21 9
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g [ 03 =20 o 0 3 -2 0
Zlhetha 0 1 1 -3 2 s, 0 1 ~-3 92
0 77 —21 9 0 0 0 0 -5

And finally, with ¢ = 3,

@)

(1] 0 —2 0 3 -2 0

3
0 [1] 1 -3 el 1y 1] 1 -3 0
0 0

0 0 0 0 0 0 0 [1]

Let’s analyze the equations in the system represented by this augmented matrix. The third equation
will read 0 = 1. This is patently false, all the time. No choice of values for our variables will ever
make it true. We’re done. Since we cannot even make the last equation true, we have no hope of
making all of the equations simultaneously true. So this system has no solutions, and its solution
set is the empty set, ) = { } (Definition ES] [665)).

Notice that we could have reached this conclusion sooner. After performing the row operation
—T7Rs + R3, we can see that the third equation reads 0 = —5, a false statement. Since the system
represented by this matrix has no solutions, none of the systems represented has any solutions.
However, for this example, we have chosen to bring the matrix fully to reduced row-echelon form
for the practice. X

1
—1Rs

=N

These three examples (Example SAB] [31], [Example SAA| [32], [Example SAE] [33]) illustrate the
full range of possibilities for a system of linear equations — no solutions, one solution, or infinitely
many solutions. In the next section we’ll examine these three scenarios more closely.

Definition RR
Row-Reducing
To row-reduce the matrix A means to apply row operations to A and arrive at a row-equivalent
matrix B in reduced row-echelon form. A

So the term row-reduce is used as a verb. [Theorem REMEF] tells us that this process
will always be successful and [Theorem RREFU| [106] tells us that the result will be unambiguous.
Typically, the analysis of A will proceed by analyzing B and applying theorems whose hypotheses
include the row-equivalence of A and B.

After some practice by hand, you will want to use your favorite computing device to do the
computations required to bring a matrix to reduced row-echelon form (Exercise RREF.C30) )
See:  |Computation RR.MMA|[653] [Computation RR.TI86|[658] [Computation RR.TI83|[659

Subsection READ
Reading Questions

1. Is the matrix below in reduced row-echelon form? Why or why not?
1 50 6 8
001 20
000 01

2. Use row operations to convert the matrix below to reduced row-echelon form and report the
final matrix.
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3. Find all the solutions to the system below by using an augmented matrix and row operations.
Report your final matrix in reduced row-echelon form and the set of solutions.

2x1 + 30 — 23 =0
r1+2x9 +x3 =3
1+ 3xs+3x3 =17
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Subsection EXC
Exercises

C05 Each archetype below is a system of equations. Form the augmented matrix of the system of
equations, convert the matrix to reduced row-echelon form by using equation operations and then
describe the solution set of the original system of equations.

Archetype Al [685
Archetype E 689
Archetype g 694
Archetype D| 698

Archetype El 702
Archetype G| @
Archetype 1 [11
Archetype I| @ﬂ
Archetype J] [722]
Contributed by

For problems C10-C19, find all solutions to the system of linear equations. Write the solutions
as a set, using correct set notation.

C10

201 — 3xo + a3+ Ty = 14
2x1 + 8xg — 43 + dry = —1
T, + 3x9 — 3x3 =4
—5x1 + 2x9 4+ 3x3 + 44 = —19

Contributed by [Robert Beezer| [Solution)

C11

3r1+4x9 —x3+ 214 =6
1 — 229+ 323+ 14 =2
101’2— 10.%3—:174 =1

Contributed by [Robert Beezer| [Solutionl

C12

2x1 4+ 4xo + Sx3 4+ Ty = —26
T1+ 220 + 73 — 14 = —4
—2x1 —4xo + 23+ 112y = —10

Contributed by |[Robert Beezer| [Solution|

C13

T, + 229 +8x3 — Txy = —2
3r1 + 2x9 + 1223 — 524 = 6
—x1+ 2o+ 23 — dry = —10

Contributed by [Robert Beezer| [Solution)
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C14

201 + 29+ Txg — 224 =4
3x1 —2x9 + 1124 = 13
1+ 29+ 53 — 34 =1

Contributed by |[Robert Beezer]

[Solution|

C15

2x1 4+ 3x2 — x3 — 924 = —16
1+ 222 +23=0
—x1 4+ 229 +3x3 +4x4 =8

Contributed by [Robert Beezer|

[Solution|

C1e6

2x1 + 319 + 1923 — 4y = 2
T1 4+ 220 + 1223 — 34 =1
—x1 4+ 229 +8x3 —bxy =1

Contributed by [Robert Beezer|

[Solution|

C17

-1 + dwg = —8
—2x1 + dxo + 5x3+ 214 =9
—3xr1 —xo+3x3+x4=3
Tx1 + 629 + 53z + x4 = 30

Contributed by [Robert Beezer|

[Solution|

C18

T + 209 — 4dx3 — x4 = 32
$1+3$2*7$3*$5:33
r1 + 223 — 224 + 35 = 22

Contributed by [Robert Beezer|

C19

[Solution|
2x1 + a2 =206
—Xr1 — T9 = —2
3r1 +4x0 =4
3T1 4+ dxo =2

Contributed by [Robert Beezer|

[Solution|
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For problems C30-C32, row-reduce the matrix without the aid of a calculator, indicating the

row operations you are using at each step using the notation of [Definition RO .
C30

2 1 5 10
1 -3 -1 -2
4 -2 6 12

Contributed by [Robert Beezer| [Solution]

C31
1 2 —4
-3 -1 -3
—2 1 -7

Contributed by [Robert Beezer| [Solution]

C32

1 1 1
-4 -3 -2
3 2 1

Contributed by [Robert Beezer| [Solution

M50 A parking lot has 66 vehicles (cars, trucks, motorcycles and bicycles) in it. There are four
times as many cars as trucks. The total number of tires (4 per car or truck, 2 per motorcycle or
bicycle) is 252. How many cars are there? How many bicycles?

Contributed by [Robert Beezer| [Solution

T10 Prove that each of the three row operations (Definition RO| ) is reversible. More precisely,
if the matrix B is obtained from A by application of a single row operation, show that there is a

single row operation that will transform B back into A.
Contributed by [Robert Beezer| [Solution

T11 Suppose that A, B and C are m x n matrices. Use the definition of row-equivalence (Defi-|
nition REM| ) to prove the following three facts.

1. A is row-equivalent to A.
2. If A is row-equivalent to B, then B is row-equivalent to A.
3. If A is row-equivalent to B, and B is row-equivalent to C, then A is row-equivalent to C.

A relationship that satisfies these three properties is known as an equivalence relation, an im-
portant idea in the study of various algebras. This is a formal way of saying that a relationship
behaves like equality, without requiring the relationship to be as strict as equality itself. We’ll see
it again in [Theorem SER] [426].
Contributed by

T12 Suppose that B is an m X n matrix in reduced row-echelon form. Build a new, likely smaller,
k x ¢ matrix C as follows. Keep any collection of k adjacent rows, k < m. From these rows, keep
columns 1 through ¢, £ < n. Prove that C is in reduced row-echelon form.

Contributed by
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Subsection SOL
Solutions

C10 Contributed by [Robert Beezer| [Statement]|
The augmented matrix row-reduces to

0 1
0 -3
—4

1

and we see from the locations of the leading 1’s that the system is consistent (Theorem RCLS )
and that n —r = 4 —4 = 0 and so the system has no free variables (Theorem CSRN| ) and hence
has a unique solution. This solution is

——

o olr]e

o[=]e o
S

C11 Contributed by [Robert Beezer| [Statement]|
The augmented matrix row-reduces to

1] o 1 4/5 0
0 [1] -1 —1/10 o0

o 0o o o [1]

and a leading 1 in the last column tells us that the system is inconsistent (Theorem RCLS| )
So the solution set is ) = {}.

C12 Contributed by [Robert Beezer| [Statement|
The augmented matrix row-reduces to

2 0 —4 2

0 0 3 -6

0 0 0 0 O
(Theorem RCLS| [48]) and (Theorem CSRN] [49]) tells us the system is consistent and the solution
set can be described with n —r = 4 — 2 = 2 free variables, namely x2 and x4. Solving for the
dependent variables (D = {x1, x3}) the first and second equations represented in the row-reduced
matrix yields,

T1 =2 —2x9 + 4y

r3 = —6 - 3:64
As a set, we write this as
2 —2x9 + 4dxy
€2
6 3u, T, x4 € C
T4

C13 Contributed by [Robert Beezer| [Statement]|
The augmented matrix of the system of equations is

1 2 8 -7 =2
3 2 12 -5 6
-1 1 1 -5 -10
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which row-reduces to

1] o 2 1 0
0 [1] 3 -4 0
0 0 0 0 |[1]

With a leading one in the last column [Theorem RCLS| tells us the system of equations is
inconsistent, so the solution set is the empty set, .

C14 Contributed by [Robert Beezer| [Statement|
The augmented matrix of the system of equations is

2 1 7 =2 4
3 =2 0 11 13
1 1 5 =3 1

which row-reduces to
0 2 1 3

0 3 —4 -2
0 0 0 0 0

Then D = {1,2} and F = {3,4,5}, so the system is consistent (5 ¢ D) and can be described by
the two free variables x3 and x4. Rearranging the equations represented by the two nonzero rows
to gain expressions for the dependent variables x; and xo, yields the solution set,

3—2x3 — x4
—2 —3x3 4+ 4x4
3
T4

S = x3, x4 € C

C15 Contributed by [Robert Beezer| [Statement|
The augmented matrix of the system of equations is

2 3 -1 -9 -16
1 2 1 O 0
-1 2 3 4 8

which row-reduces to

0o 0 2 3

0 0 -3 -5

0 0 4 7

Then D = {1,2,3} and F = {4,5}, so the system is consistent (5 ¢ D) and can be described by
the one free variable x4. Rearranging the equations represented by the three nonzero rows to gain
expressions for the dependent variables z1, 9 and x3, yields the solution set,

3 — 22?4
—5 + 314
7 — 4334
Ty

S = x4e(C

C16 Contributed by [Robert Beezer| [Statement
The augmented matrix of the system of equations is

2 319 -4 2
1 2 12 -3
-1 2 8 -5

1] 0o 2 1
0 [1] 5 -2

0 0 0 O

—_ =

which row-reduces to

~|lo o
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With a leading one in the last column [Theorem RCLS| tells us the system of equations is
inconsistent, so the solution set is the empty set, ) = {}.

C17 Contributed by [Robert Beezer| [Statement]

We row-reduce the augmented matrix of the system of equations,

-1 5 00 -8 0 0 0 3
-2 5 5 2 9| rrer_ [0 0 0 -1
-3 -1 31 0 0 0 2
7 6 5 1 30 0O 0 0 5
The reduced row-echelon form of the matrix is the augmented matrix of the system 1 = 3, zo = —1,

x3 = 2, x4 = 5, which has a unique solution. As a set of column vectors, the solution set is

C18 Contributed by [Robert Beezer| [Statement|
We row-reduce the augmented matrix of the system of equations,

12 -4 -1 0 32 1] o 2 0 5 6
13 -7 0 -1 33| 25 1 -3 0 -2 9
10 2 -2 3 22 0 0 0 1 -8

With no leading 1 in the final column, we recognize the system as consistent (Theorem RCLS| )
Since the system is consistent, we compute the number of free variables asn —r =5 —3 = 2 (),
and we see that columns 3 and 5 are not pivot columns, so x3 and x5 are free variables. We convert
each row of the reduced row-echelon form of the matrix into an equation, and solve it for the lone
dependent variable, as in expresdsion in the two free variables.

1 +2x3+ 525 =6 — x1=06—2x3—bx;
To—3x3—225 =9 — x9=9+ 323+ 2x5

T4 +r5=—-8 — 1x14=-8—15

These expressions give us a convenient way to describe the solution set, .S.

6 — 2%3 - 5%5
9 + 3x3 + 2z5
S = xs3 3, Ty € C
*8*%5
s

C19 Contributed by [Robert Beezer| [Statement|
We form the augmented matrix of the system,

2 1 6
-1 -1 -2
3 4 4
3 5 2

which row-reduces to

oooH
o o[=]o
&
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With no leading 1 in the final column, this system is consistent (Theorem RCLS| [48]). There are
n = 2 variables in the system and r = 2 non-zero rows in the row-reduced matrix. By
, there are n —r = 2 — 2 = 0 free variables and we therefore know the solution is unique.
Forming the system of equations represented by the row-reduced matrix, we see that x1 = 4 and
ro = —2. Written as set of column vectors,

s={[5))

C30 Contributed by [Robert Beezer| [Statement|

2 1 5 107 1 -3 -1 -2
1 -3 -1 -2 el 1o 1 5 10
4 -2 6 12 4 -2 6 12
1 -3 —1 -2 1 -3 —1 —2
2Rl g 7 7 1y ZARs g 7 7 14
4 -2 6 12 0 10 10 20
e 1 -3 -1 =2 1 0 2 4
=12
2 o011 2 Setli g 1 1 9
0 10 10 20 0 10 10 20
iy | H O 24
——2+3>012
0 0 00

C31 Contributed by [Robert Beezer| [Statement|

(1 2 4 1 2 —4
3 -1 -3 3hitle 1y 5 15
2 1 -7 -2 1 -7
(1 2 —47 e 12 4
2hdRs 1o 5 —15 200 1 -3
0 5 —15 0 5 —15
10 2] 1] o 2
—2R2+Rq 0 1 -3 —5R2+R3 0 _3
0 5 —15) 0 0 0

C32 Contributed by |Robert Beezer| [Statement
Following the algorithm of [Theorem REMEF , and working to create pivot columns from left

to right, we have

1 1 1] 11 1] 1] 1

4 3 _g| Auth, 0 1 9| Z3fitfs, 0 1 ) TRt Ry
3 2 1| 3 2 1] 0 -1 -2

(1] o —1] 1] o —1]

0 1 2| et 0 [1] 2

0 -1 -2 0 0 0]

M50 Contributed by [Robert Beezer| [Statement|
Let ¢, t, m, b denote the number of cars, trucks, motorcycles, and bicycles. Then the statements
from the problem yield the equations:

c+t+m-+b==66
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c—4t =20
4e + 4t + 2m + 2b = 252

The augmented matrix for this system is

1 1 1 1 66
1 -4 0 0 O
4 4 2 2 252

which row-reduces to
0 0 0 48

0 [1] 0o 0 12
0 0 [1] 1 6

¢ = 48 is the first equation represented in the row-reduced matrix so there are 48 cars. m +b =6
is the third equation represented in the row-reduced matrix so there are anywhere from 0 to 6
bicycles. We can also say that b is a free variable, but the context of the problem limits it to 7
integer values since cannot have a negative number of motorcycles.

T10 Contributed by [Robert Beezer| [Statement|
If we can reverse each row operation individually, then we can reverse a sequence of row operations.
The operations that reverse each operation are listed below, using our shorthand notation,

RZ' — Rj Ri — Rj
1
OéRi, [0 7& 0 *RZ‘
«
aR; + Rj —aR; + Rj
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Section TSS
Types of Solution Sets
[ m |

We will now be more careful about analyzing the reduced row-echelon form derived from the
augmented matrix of a system of linear equations. In particular, we will see how to systematically
handle the situation when we have infinitely many solutions to a system, and we will prove that
every system of linear equations has either zero, one or infinitely many solutions. With these tools,
we will be able to solve any system by a well-described method.

Subsection CS
Consistent Systems

The computer scientist Donald Knuth said, “Science is what we understand well enough to explain
to a computer. Art is everything else.” In this section we’ll remove solving systems of equations
from the realm of art, and into the realm of science. We begin with a definition.

Definition CS

Consistent System

A system of linear equations is consistent if it has at least one solution. Otherwise, the system is
called inconsistent. A

We will want to first recognize when a system is inconsistent or consistent, and in the case of
consistent systems we will be able to further refine the types of solutions possible. We will do this
by analyzing the reduced row-echelon form of a matrix, using the value of r, and the sets of column
indices, D and F, first defined back in [Definition RREF]| .

Use of the notation for the elements of D and F' can be a bit confusing, since we have subscripted
variables that are in turn equal to integers used to index the matrix. However, many questions
about matrices and systems of equations can be answered once we know r, D and F. The choice
of the letters D and F refer to our upcoming definition of dependent and free variables
). An example will help us begin to get comfortable with this aspect of reduced row-echelon

form.

Example RREFN
Reduced row-echelon form notation
For the 5 x 9 matrix

5 0 0 28 0 5 —1]
0 0 0 47 0 2 0
B=|0 0 0 39 0 3 —6
00 0 0 00 4 2
(000 000 0 0 0|
in reduced row-echelon form we have
r=4
di =1 dy =3 d3 =4 dy =7
=2 fa=5 f3=06 Ji=38 f5=9.

Notice that the sets D = {dy, da, d3, d4} = {1, 3, 4, 7} and F' = { f1, fo, f3, fa, f5} = {2, 5, 6, 8, 9}
have nothing in common and together account for all of the columns of B (we say it is a partition
of the set of column indices). X

The number r is the single most important piece of information we can get from the reduced
row-echelon form of a matrix. It is defined as the number of non-zero rows, but since each non-zero
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row has a leading 1, it is also the number of leading 1’s present. For each leading 1, we have a pivot
column, so r is also the number of pivot columns. Repeating ourselves, r is the number of leading
1’s, the number of non-zero rows and the number of pivot columns. Across different situations,
each of these interpretations of the meaning of r will be useful.

Before proving some theorems about the possibilities for solution sets to systems of equations,
let’s analyze one particular system with an infinite solution set very carefully as an example. We’ll
use this technique frequently, and shortly we’ll refine it slightly.

Archetypes I and J are both fairly large for doing computations by hand (though not impossibly
large). Their properties are very similar, so we will frequently analyze the situation in Archetype
I, and leave you the joy of analyzing Archetype J yourself. So work through Archetype I with
the text, by hand and/or with a computer, and then tackle Archetype J yourself (and check your
results with those listed). Notice too that the archetypes describing systems of equations each lists
the values of r, D and F'. Here we go. ..

Example ISSI
Describing infinite solution sets, Archetype I
Archetype 1| [718] is the system of m = 4 equations in n = 7 variables.

T1 +4x9g — x4 + Txg — 927 = 3
2x1 + 8x9 — x3 + 3x4 + 925 — 1326 + 727 =9
203 — 3xy — 4xs + 1224 — 8z7 =1
—x1 — 4w + 223 + 4wy + 8x5 — 3lg + 3707 =4
This system has a 4 x 8 augmented matrix that is row-equivalent to the following matrix (check

this!), and which is in reduced row-echelon form (the existence of this matrix is guaranteed by
[Theorem REMEF] [29)),

4 0 0 2 1 -3 4
0 0 01 -3 5 2
0 0 0 2 -6 6 1
000 00 0 0 O
So we find that r = 3 and
D = {dla d27 d3} = {]-a 37 4} F = {fl’ an f37 f47 f5}:{2a 9, 67 77 8}

Let ¢ denote one of the r = 3 non-zero rows, and then we see that we can solve the corresponding
equation represented by this row for the variable x4, and write it as a linear function of the variables
Tf, Ty, Tfy, Tf, (notice that f5 = 8 does not reference a variable). We'll do this now, but you can
already see how the subscripts upon subscripts takes some getting used to.

(’i:1) $d1:x1:4—4x2—2x5—x6+3x7
(1=2) Tgy, =23 =2 — x5 + 3x6 — D7
(1=23) Ty = T4 =1 — 25 + 626 — 627

Each element of the set F' = {f1, fa, f3, fa, f5} = {2, 5, 6, 7, 8} is the index of a variable, except
for f5 = 8. We refer to xy, = 29, x4, = x5, ¥4, = v and xy, = 27 as “free” (or “independent”)
variables since they are allowed to assume any possible combination of values that we can imagine
and we can continue on to build a solution to the system by solving individual equations for the
values of the other (“dependent”) variables.

Each element of the set D = {dy, do, d3} = {1, 3, 4} is the index of a variable. We refer to
the variables x4, = z1, 4, = 23 and x4, = x4 as “dependent” variables since they depend on
the independent variables. More precisely, for each possible choice of values for the independent
variables we get exactly one set of values for the dependent variables that combine to form a solution
of the system.

Version 1.30



Subsection TSS.CS Consistent Systems 47

To express the solutions as a set, we write

4 — 4:13‘2 — 233‘5 — Tg + 31‘7-
x2
2 — x5+ 3xg — Ox7
1 — 2x5 4+ 62 — 627 To, Ty, Tg, T7 € C
Ts5
Te
7

The condition that zo, x5, g, x7 € C is how we specify that the variables zo, x5, xg, 7 are “free”
to assume any possible values.

This systematic approach to solving a system of equations will allow us to create a precise
description of the solution set for any consistent system once we have found the reduced row-
echelon form of the augmented matrix. It will work just as well when the set of free variables is
empty and we get just a single solution. And we could program a computer to do it! Now have
a whack at Archetype J (Exercise TSS.T10| [53]), mimicking the discussion in this example. We'll
still be here when you get back. X

Using the reduced row-echelon form of the augmented matrix of a system of equations to
determine the nature of the solution set of the system is a very key idea. So let’s look at one more
example like the last one. But first a definition, and then the example. We mix our metaphors
a bit when we call variables free versus dependent. Maybe we should call dependent variables
“enslaved”?

Definition IDV

Independent and Dependent Variables

Suppose A is the augmented matrix of a consistent system of linear equations and B is a row-
equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that
contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not
the last column. Then the variable z; is dependent. A variable that is not dependent is called
independent or free. A

Example FDV
Free and dependent variables
Consider the system of five equations in five variables,

Ty — X9 —2x3+ x4+ 1l = 13
T1 — X9+ T3+ x4 + 55 = 16
21 — 2290 + x4 + 1025 = 21

2x1 — 2x9 — x3 + 324 + 2025 = 38
2x1 — 2x9 + x3 + x4 + 815 = 22

whose augmented matrix row-reduces to

-1 0 0 3 6
0 0 0 -2 1
0 0 0 49
0 0 0 0 0 0
0 0 0 0 0 0

There are leading 1’s in columns 1, 3 and 4, so D = {1, 3, 4}. From this we know that the variables
x1, 3 and x4 will be dependent variables, and each of the » = 3 nonzero rows of the row-reduced
matrix will yield an expression for one of these three variables. The set F' is all the remaining
column indices, F' = {2, 5, 6}. Since 6 € F' we know there is no leading 1 in the final column, so
the system is consistent by [Theorem RCLS| . The remaining indices in F' will correspond to
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free variables, so 3 and x5 are our free variables. The resulting three equations that describe our
solution set are then,

(:Bdl :IL’l) Tl :6+.T2—3.735
(de = .%'3) r3 =14 2x5
(de = .%'4) Ty = 9 — 41‘5

Make sure you understand where these three equations came from, and notice how the location of
the leading 1’s determined the variables on the left-hand side of each equation. We can compactly
describe the solution set as,

6+ x2 — 3$5
T2
S = 1+ 225 To, x5 € C
9 —4xs
Ts
Notice how we express the freedom for xo and z5: x2, x5 € C. X

Sets are an important part of algebra, and we’ve seen a few already. Being comfortable with
sets is important for understanding and writing proofs. If you haven’t already, pay a visit now to
Section SET] [665].

We can now use the values of m, n, r, and the independent and dependent variables to categorize
the solution sets for linear systems through a sequence of theorems. Through the following sequence
of proofs, you will want to consult three proof techniques. See [Technique E| [672]. See

Technique N| [672]. See [Technique CP| [673].

First we have a theorem that explores the distinction between consistent and inconsistent linear

systems.

Theorem RCLS

Recognizing Consistency of a Linear System

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables.
Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are
not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is
located in column n + 1 of B. O

Proof (<) The first half of the proof begins with the assumption that the leading 1 of row r is
located in column n + 1 of B. Then row r of B begins with n consecutive zeros, finishing with the
leading 1. This is a representation of the equation 0 = 1, which is false. Since this equation is false
for any collection of values we might choose for the variables, there are no solutions for the system
of equations, and it is inconsistent.

(=) For the second half of the proof, we wish to show that if we assume the system is incon-
sistent, then the final leading 1 is located in the last column. But instead of proving this directly,
we'll form the logically equivalent statement that is the contrapositive, and prove that instead (see
[Technique CP] [673]). Turning the implication around, and negating each portion, we arrive at the
logically equivalent statement: If the leading 1 of row r is not in column n + 1, then the system of
equations is consistent.

If the leading 1 for row r is located somewhere in columns 1 through n, then every preceding
row’s leading 1 is also located in columns 1 through n. In other words, since the last leading 1 is
not in the last column, no leading 1 for any row is in the last column, due to the echelon layout
of the leading 1’s. Let b; 41, 1 < i < r, denote the entries of the last column of B for the first r
rows. Employ our notation for columns of the reduced row-echelon form of a matrix (see
) to B and set x5, = 0, 1 <4 < n —r and then set x4, = b; 11, 1 <@ < r. In other
words, set the dependent variables equal to the corresponding values in the final column and set
all the free variables to zero. These values for the variables make the equations represented by the
first  rows all true (convince yourself of this). Rows r 4+ 1 through m (if any) are all zero rows,
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hence represent the equation 0 = 0 and are also all true. We have now identified one solution to
the system, so we can say the system is consistent. |

The beauty of this theorem being an equivalence is that we can unequivocally test to see if a
system is consistent or inconsistent by looking at just a single entry of the reduced row-echelon
form matrix. We could program a computer to do it!

Notice that for a consistent system the row-reduced augmented matrix has n + 1 € F', so the
largest element of F' does not refer to a variable. Also, for an inconsistent system, n + 1 € D,
and it then does not make much sense to discuss whether or not variables are free or dependent
since there is no solution. With the characterization of [Theorem RCLS| , we can explore the
relationships between r and n in light of the consistency of a system of equations. First, a situation
where we can quickly conclude the inconsistency of a system.

Theorem ISRN

Inconsistent Systems, » and n

Suppose A is the augmented matrix of a system of linear equations in n variables. Suppose also
that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely
zeros. If ¥ = n + 1, then the system of equations is inconsistent. [l

Proof Ifr=n+1, then D=1{1,2,3,...,n, n+ 1} and every column of B contains a leading
1 and is a pivot column. In particular, the entry of column n + 1 for row r = n + 1 is a leading 1.
[Theorem RCLS then says that the system is inconsistent. [ |

Do not confuse [Theorem ISRN| with its converse! Go check out [I'echnique CV| [673] right

now.

Next, if a system is consistent, we can distinguish between a unique solution and infinitely many
solutions, and furthermore, we recognize that these are the only two possibilities.

Theorem CSRN

Consistent Systems, r and n

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in
n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not zero rows. Then r < n. If r = n, then the system has a unique solution, and if
r < n, then the system has infinitely many solutions. (Il

Proof This theorem contains three implications that we must establish. Notice first that B has
n + 1 columns, so there can be at most n + 1 pivot columns, i.e. r < n+ 1. If r = n + 1, then
[Theorem ISRN| tells us that the system is inconsistent, contrary to our hypothesis. We are left
with r < n.

When r = n, we find n —r = 0 free variables (i.e. F' = {n + 1}) and any solution must equal
the unique solution given by the first n entries of column n + 1 of B.

When r < n, we have n —r > 0 free variables, corresponding to columns of B without a leading
1, excepting the final column, which also does not contain a leading 1 by [Theorem RCLS| . By
varying the values of the free variables suitably, we can demonstrate infinitely many solutions. W

Subsection FV
Free Variables

The next theorem simply states a conclusion from the final paragraph of the previous proof, allowing
us to state explicitly the number of free variables for a consistent system.

Theorem FVCS

Free Variables for Consistent Systems

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in
n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
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rows that are not completely zeros. Then the solution set can be described with n—r free variables.
O

Proof See the proof of [Theorem CSRN| [49]. |

Example CFV

Counting free variables

For each archetype that is a system of equations, the values of n and r are listed. Many also contain
a few sample solutions. We can use this information profitably, as illustrated by four examples.

1. |Archetype A|[685] has n = 3 and r = 2. It can be seen to be consistent by the sample solutions
given. Its solution set then has n — r = 1 free variables, and therefore will be infinite.

2. [Archetype B| [689] has n = 3 and r = 3. It can be seen to be consistent by the single sample
solution given. Its solution set can then be described with n — r = 0 free variables, and
therefore will have just the single solution.

3. [Archetype H| [714] has n = 2 and r = 3. In this case, r = n + 1, so [Theorem ISRN|

says the system is inconsistent. We should not try to apply [Theorem FVCS to count free
variables, since the theorem only applies to consistent systems. (What would happen if you
did?)

4. |Archetype E| [702] has n = 4 and r = 3. However, by looking at the reduced row-echelon form
of the augmented matrix, we find a leading 1 in row 3, column 4. By [Theorem RCLS
we recognize the system is then inconsistent. (Why doesn’t this example contradict

m?)

X

We have accomplished a lot so far, but our main goal has been the following theorem, which is
now very simple to prove. The proof is so simple that we ought to call it a corollary, but the result
is important enough that it deserves to be called a theorem. (See[Technique LC|[677].) Notice that

this theorem was presaged first by [Example TTS and further foreshadowed by other examples.

Theorem PSSLS
Possible Solution Sets for Linear Systems
A system of linear equations has no solutions, a unique solution or infinitely many solutions.  [J

Proof By definition, a system is either inconsistent or consistent. The first case describes systems
with no solutions. For consistent systems, we have the remaining two possibilities as guaranteed
by, and described in, [Theorem CSRN| . |

We have one more theorem to round out our set of tools for determining solution sets to systems
of linear equations.

Theorem CMVEIL

Consistent, More Variables than Equations, Infinite solutions

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the
system has infinitely many solutions. O

Proof Suppose that the augmented matrix of the system of equations is row-equivalent to B,
a matrix in reduced row-echelon form with r nonzero rows. Because B has m rows in total, the
number that are nonzero rows is less. In other words, » < m. Follow this with the hypothesis that
n > m and we find that the system has a solution set described by at least one free variable because

n—r>n—m>0.

A consistent system with free variables will have an infinite number of solutions, as given by

[Theorem CSRN] [49]. [ |

Notice that to use this theorem we need only know that the system is consistent, together with
the values of m and n. We do not necessarily have to compute a row-equivalent reduced row-echelon
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form matrix, even though we discussed such a matrix in the proof. This is the substance of the
following example.

Example OSGMD
One solution gives many, Archetype D
Archetype D is the system of m = 3 equations in n = 4 variables,

201 + 29+ Txg —Try =8
—3x1 + 4x9 — Dy — 6y = —12
1+ a9 +4x3 —bry =4
and the solution 1 =0, 2 = 1, 3 = 2, x4 = 1 can be checked easily by substitution. Having been

handed this solution, we know the system is consistent. This, together with n > m, allows us to
apply [Theorem CMVE]| and conclude that the system has infinitely many solutions. X

These theorems give us the procedures and implications that allow us to completely solve any
system of linear equations. The main computational tool is using row operations to convert an
augmented matrix into reduced row-echelon form. Here’s a broad outline of how we would instruct
a computer to solve a system of linear equations.

1. Represent a system of linear equations by an augmented matrix (an array is the appropriate
data structure in most computer languages).

2. Convert the matrix to a row-equivalent matrix in reduced row-echelon form using the proce-
dure from the proof of [Theorem REMEF] [29].

3. Determine r and locate the leading 1 of row 7. If it is in column n + 1, output the statement
that the system is inconsistent and halt.

4. With the leading 1 of row r not in column n + 1, there are two possibilities:

(a) r = n and the solution is unique. It can be read off directly from the entries in rows 1
through n of column n + 1.

(b) 7 < n and there are infinitely many solutions. If only a single solution is needed, set all
the free variables to zero and read off the dependent variable values from column n + 1,
as in the second half of the proof of [Theorem RCLS| [48]. If the entire solution set is
required, figure out some nice compact way to describe it, since your finite computer is
not big enough to hold all the solutions (we’ll have such a way soon).

The above makes it all sound a bit simpler than it really is. In practice, row operations employ
division (usually to get a leading entry of a row to convert to a leading 1) and that will introduce
round-off errors. Entries that should be zero sometimes end up being very, very small nonzero
entries, or small entries lead to overflow errors when used as divisors. A variety of strategies can
be employed to minimize these sorts of errors, and this is one of the main topics in the important
subject known as numerical linear algebra.

Solving a linear system is such a fundamental problem in so many areas of mathematics, and
its applications, that any computational device worth using for linear algebra will have a built-in
routine to do just that. See: [Computation LS.MMA| [653] .  In this section we’ve gained a
foolproof procedure for solving any system of linear equations, no matter how many equations or
variables. We also have a handful of theorems that allow us to determine partial information about
a solution set without actually constructing the whole set itself. Donald Knuth would be proud.

Subsection READ
Reading Questions

1. How do we recognize when a system of linear equations is inconsistent?
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2. Suppose we have converted the augmented matrix of a system of equations into reduced row-
echelon form. How do we then identify the dependent and independent (free) variables?

3. What are the possible solution sets for a system of linear equations?
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Subsection EXC
Exercises

C10 In the spirit of [Example ISSI , describe the infinite solution set for [Archetype J| [722].
Contributed by

M45 Prove that |[Archetype J| [722] has infinitely many solutions without row-reducing the aug-
mented matrix.
Contributed by [Robert Beezer| [Solution|

For Exercises M51-M57 say as much as possible about each system’s solution set. Be sure
to make it clear which theorems you are using to reach your conclusions.
Mb51 A consistent system of 8 equations in 6 variables.
Contributed by [Robert Beezer| [Solutionl

M52 A consistent system of 6 equations in 8 variables.
Contributed by [Robert Beezer| [Solution|

M53 A system of 5 equations in 9 variables.
Contributed by [Robert Beezer| [Solution|

M54 A system with 12 equations in 35 variables.
Contributed by [Robert Beezer| [Solution|

M56 A system with 6 equations in 12 variables.
Contributed by [Robert Beezer| [Solution|

M57 A system with 8 equations and 6 variables. The reduced row-echelon form of the augmented

matrix of the system has 7 pivot coulmns.
Contributed by [Robert Beezer| [Solution)

M60 Without doing any computations, and without examining any solutions, say as much as
possible about the form of the solution set for each archetype that is a system of equations.

Archetype Al [685
Archetype E 689
Archetype q 694

Archetype D| 698
Archotypo O [710

Archetype E 714

Archetype 1| [715]
Archetype J| [722]

Contributed by

T10 An inconsistent system may have r > n. If we try (incorrectly!) to apply [Theorem FVCS|
to such a system, how many free variables would we discover?
Contributed by [Robert Beezer| [Solutionl

T40 Suppose that the coefficient matrix of a system of linear equations has two columns that are
identical. Prove that the system has infinitely many solutions.

Contributed by [Robert Beezer| [Solutionl

T41 Consider the system of linear equations LS(A, b), and suppose that every element of the
vector of constants b is a common multiple of the corresponding element of a certain column of A.
More precisely, there is a complex number «, and a column index j, such that [b]; = a[A],; for all
i. Prove that the system is consistent.
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Contributed by [Robert Beezer| [Solution)
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Subsection SOL
Solutions

M45  Contributed by [Robert Beezer| [Statement]
Demonstrate that the system is consistent by verifying any one of the four sample solutions provided.
Then because n = 9 > 6 = m, [Theorem CMVEI| gives us the conclusion that the system has
infinitely many solutions.

Notice that we only know the system will have at least 9 — 6 = 3 free variables, but very well
could have more. We do not know know that r = 6, only that r <6.

M51  Contributed by [Robert Beezer| [Statement]

Consistent means there is at least one solution (Definition CS ) It will have either a unique
solution or infinitely many solutions (Theorem PSSLS| )

M52  Contributed by [Robert Beezer| [Statement]
With 6 rows in the augmented matrix, the row-reduced version will have » < 6. Since the system
is consistent, apply [Theorem CSRN| to see that n — r > 2 implies infinitely many solutions.

M53  Contributed by [Robert Beezer| [Statement]

The system could be inconsistent. If it is consistent, then because it has more variables than
equations [Theorem CMVE] implies that there would be infinitely many solutions. So, of all
the possibilities in [Theorem PSSLS| , only the case of a unique solution can be ruled out.

M54  Contributed by [Robert Beezer| [Statement|
The system could be inconsistent. If it is consistent, then|Theorem CMVE]] tells us the solution
set will be infinite. So we can be certain that there is not a unique solution.

M56  Contributed by [Robert Beezer| [Statement|

The system could be inconsistent. If it is consistent, and since 12 > 6, then [Theorem CMVEI|
says we will have infinitely many solutions. So there are two possibilities. [Theorem PSSLS]
allows to state equivalently that a unique solution is an impossibility.

MS57  Contributed by [Robert Beezer| |Statement]

7 pivot columns implies that there are r = 7 nonzero rows (so row 8 is all zeros in the reduced
row-echelon form). Then n+1 =6+ 1 =7 = r and [Theorem ISRN]| allows to conclude that
the system is inconsistent.

T10 Contributed by [Robert Beezer| |Statement|

[Theorem FVCS| will indicate a negative number of free variables, but we can say even more. If
r > n, then the only possibility is that 7 = n + 1, and then we compute n —r=n—(n+1) = -1
free variables.

T40 Contributed by [Robert Beezer| [Statement|

Since the system is consistent, we know there is either a unique solution, or infinitely many solutions
(Theorem PSSLS| [50]). If we perform row operations [26]) on the augmented matrix
of the system, the two equal columns of the coefficient matrix will suffer the same fate, and remain
equal in the final reduced row-echelon form. Suppose both of these columns are pivot columns
(Definition RREF] [28]). Then there is single row containing the two leading 1’s of the two pivot
columns, a violation of reduced row-echelon form (Definition RREF]| ) So at least one of these
columns is not a pivot column, and the column index indicates a free variable in the description
of the solution set (Definition IDV] [47]). With a free variable, we arrive at an infinite solution set
(Theorem FVCS| [49)).

T41 Contributed by [Robert Beezer| [Statement|
The condition about the multiple of the column of constants will allow you to show that the
following values form a solution of the system LS(A, b),

.CE1:0 .CEQZO l’jflzo xj:a :EjJrl:O ﬂfn,120 IEnZO

Version 1.30



56 Section TSS Types of Solution Sets

With one solution of the system known, we can say the system is consistent (Definition CS )
A more involved proof can be built using [Theorem RCLS| . Begin by proving that each of

the three row operations ) will convert the augmented matrix of the system into
another matrix where column j is « times the entry of the same row in the last column. In other
words, the “column multiple property” is preserved under row operations. These proofs will get
successively more involved as you work through the three operations.

Now construct a proof by contradiction (Technique CD| [673]), by supposing that the system
is inconsistent. Then the last column of the reduced row-echelon form of the augmented matrix is
a pivot column (Theorem RCLS| ) Then column j must have a zero in the same row as the
leading 1 of the final column. But the “column multiple propery” implies that there is an « in
column j in the same row as the leading 1. So @ = 0. By hypothesis, then the vector of constants is
the zero vector. However, if we began with a final column of zeros, row operations would never have
created a leading 1 in the final column. This contradicts the final column being a pivot column,
and therefore the system cannot be inconsistent.
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Section HSE

Homogeneous Systems of Equations
[ m | |

In this section we specialize to systems of linear equations where every equation has a zero as its
constant term. Along the way, we will begin to express more and more ideas in the language of
matrices and begin a move away from writing out whole systems of equations. The ideas initiated
in this section will carry through the remainder of the course.

Subsection SHS
Solutions of Homogeneous Systems

As usual, we begin with a definition.

Definition HS

Homogeneous System

A system of linear equations, £LS(A, b) is homogeneous if the vector of constants is the zero
vector, in other words, b = 0. A

Example AHSAC

Archetype C as a homogeneous system

For each archetype that is a system of equations, we have formulated a similar, yet different,
homogeneous system of equations by replacing each equation’s constant term with a zero. To
wit, for [Archetype C| [694], we can convert the original system of equations into the homogeneous
System,

2x1 —3x9+x3 — 624 =0
4x1 + x9 + 223+ 924 =0
3r1 +x2+x3+8x4 =0

Can you quickly find a solution to this system without row-reducing the augmented matrix? X

As you might have discovered by studying [Example AHSAC] , setting each variable to zero
will always be a solution of a homogeneous system. This is the substance of the following theorem.

Theorem HSC
Homogeneous Systems are Consistent
Suppose that a system of linear equations is homogeneous. Then the system is consistent. [l

Proof Set each variable of the system to zero. When substituting these values into each equation,
the left-hand side evaluates to zero, no matter what the coefficients are. Since a homogeneous
system has zero on the right-hand side of each equation as the constant term, each equation is true.
With one demonstrated solution, we can call the system consistent. |

Since this solution is so obvious, we now define it as the trivial solution.

Definition TSHSE

Trivial Solution to Homogeneous Systems of Equations

Suppose a homogeneous system of linear equations has n variables. The solution 1 =0, 2 =0,. ..,
zn =0 (i.e. x = 0) is called the trivial solution. A

Here are three typical examples, which we will reference throughout this section. Work through
the row operations as we bring each to reduced row-echelon form. Also notice what is similar in
each example, and what differs.
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Example HUSAB
Homogeneous, unique solution, Archetype B
Archetype B can be converted to the homogeneous system,

—11x1 + 229 — 1423 =0

23$1 — 6.%’2 + 331’3 =0
1ldx1 — 229+ 1723 =0

whose augmented matrix row-reduces to

0 0
0 0
0 0
By [Theorem HSC , the system is consistent, and so the computation n —r = 3 — 3 = 0 means

the solution set contains just a single solution. Then, this lone solution must be the trivial solution.
X

0
0
0

Example HISAA
Homogeneous, infinite solutions, Archetype A
Archetype Al [685] can be converted to the homogeneous system,

1 —x9+2x3=0
221 +x2+2x3=0
1 + X2 =0

whose augmented matrix row-reduces to

By [Theorem HSC , the system is consistent, and so the computation n —r = 3 — 2 = 1 means

the solution set contains one free variable by [Theorem FVCS| , and hence has infinitely many
solutions. We can describe this solution set using the free variable x3,

X1 —T3
S = X9 r1 = —T3,T2 =T33 p = x3 r3 € C
T3 3
Geometrically, these are points in three dimensions that lie on a line through the origin. X

Example HISAD
Homogeneous, infinite solutions, Archetype D
IArchetype D|[698] (and identically, [Archetype E[[702]) can be converted to the homogeneous system,

201 + 29+ Txs — Ty =0
—3x1 +4x9 — bxg — 624 =0
1+ 29 +4x3 —5xry =0

whose augmented matrix row-reduces to

1] 0 3 -2 0
0 [1] 1 =30
0 0 0 0 0
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By [Theorem HSC , the system is consistent, and so the computation n — r = 4 — 2 = 2 means

the solution set contains two free variables by [Theorem FVCS| , and hence has infinitely many
solutions. We can describe this solution set using the free variables x3 and x4,

x1
T2
S = - r1 = —3x3+ 224, T2 = —T3 + 324
3
| T4
_—3333 + 214
—x3 + 314
= 3 x3, x4 € C
3
\ L T4

X

After working through these examples, you might perform the same computations for the slightly
larger example, [Archetype J| [722].

Notice that when we do row operations on the augmented matrix of a homogeneous system
of linear equations the last column of the matrix is all zeros. Any one of the three allowable
row operations will convert zeros to zeros and thus, the final column of the matrix in reduced
row-echelon form will also be all zeros. So in this case, we may be as likely to reference only the
coefficient matrix and presume that we remember that the final column begins with zeros, and after
any number of row operations is still zero.

[Example HISAD)| suggests the following theorem.

Theorem HMVEI

Homogeneous, More Variables than Equations, Infinite solutions

Suppose that a homogeneous system of linear equations has m equations and n variables with
n > m. Then the system has infinitely many solutions. O

Proof We are assuming the system is homogeneous, so [Theorem HSC says it is consistent.
Then the hypothesis that n > m, together with [Theorem CMVEI , gives infinitely many

solutions. |

|[Example HUSAB| and [Example HISAA| are concerned with homogeneous systems where
n = m and expose a fundamental distinction between the two examples. One has a unique solution,
while the other has infinitely many. These are exactly the only two possibilities for a homogeneous
system and illustrate that each is possible (unlike the case when n > m where [Theorem HMVEI|
tells us that there is only one possibility for a homogeneous system).

Subsection NSM
Null Space of a Matrix

The set of solutions to a homogeneous system (which by [Theorem HSC is never empty) is of

enough interest to warrant its own name. However, we define it as a property of the coefficient
matrix, not as a property of some system of equations.

Definition NSM

Null Space of a Matrix

The null space of a matrix A, denoted N (A), is the set of all the vectors that are solutions to the
homogeneous system LS(A, 0).

(This definition contains Notation NSM.) A

In the Archetypes (Appendix A| [681]) each example that is a system of equations also has
a corresponding homogeneous system of equations listed, and several sample solutions are given.
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These solutions will be elements of the null space of the coefficient matrix. We’ll look at one
example.

Example NSEAI

Null space elements of Archetype I

The write-up for [Archetype I [718] lists several solutions of the corresponding homogeneous system.
Here are two, written as solution vectors. We can say that they are in the null space of the coefficient
matrix for the system of equations in [Archetype 1| [71§].

3 —4
0 1
-5 -3
x=|[—6 y=|—-2
0 1
0 1
1] [ 1]
However, the vector
o
0
0
z= |0
0
0
[2]

is not in the null space, since it is not a solution to the homogeneous system. For example, it fails
to even make the first equation true. X

Here are two (prototypical) examples of the computation of the null space of a matrix. Notice
that we will now begin writing solutions as vectors.

Example CNS1
Computing a null space, #1
Let’s compute the null space of

2 -1 7 -3 -8

A=1|1 0 2 4 9

2 2 -2 -1 8
which we write as A'(A). Translating [Definition NSM] [59], we simply desire to solve the homoge-
neous system LS(A, 0). So we row-reduce the augmented matrix to obtain

1] o 2 0 10
0 [1] =3 0 4 0
0 0 0 [1] 2 0

The variables (of the homogeneous system) z3 and x5 are free (since columns 1, 2 and 4 are pivot
columns), so we arrange the equations represented by the matrix in reduced row-echelon form to

T = —2(L‘3 — Iy
xTro = 3.%'3 — 4.%'5

T4 = —2.1‘5

So we can write the infinite solution set as sets using column vectors,
—2$3 — Ip
3.%'3 - 4.%'5
N(A) = x3 xg, v5 € C
—2235
Ts5
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X

Example CNS2
Computing a null space, #2
Let’s compute the null space of

ot
N O = O
- = =

1

which we write as A'(C). Translating [Definition NSM] [59], we simply desire to solve the homoge-
neous system LS(C, 0). So we row-reduce the augmented matrix to obtain

0 0

0 0

0 0
0

0 0

There are no free variables in the homogenous system represented by the row-reduced matrix, so
there is only the trivial solution, the zero vector, 0. So we can write the (trivial) solution set as

0
N(C)={0}=4¢ |0
0
X
Subsection READ
Reading Questions

1. What is always true of the solution set for a homogeneous system of equations?

2. Suppose a homogeneous sytem of equations has 13 variables and 8 equations. How many
solutions will it have? Why?

3. Describe in words (not symbols) the null space of a matrix.
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Subsection EXC
Exercises

C10 Each archetype (Appendix A] [681]) that is a system of equations has a corresponding ho-
mogeneous system with the same coefficient matrix. Compute the set of solutions for each. Notice
that these solution sets are the null spaces of the coefficient matrices.

Archetype Al [685
Archetype E 689
Archetype g 694
Archetype D] [698] [Archetype E] [702]
Archetype F| ﬂ@]

Archetype G| [710]/ [Archetype H| [714]
Archetype 1| [718]

and [Archetype J| [722]

Contributed by

C20 [Archetype K] [727] and [Archetype L] [731] are simply 5 x 5 matrices (i.e. they are not systems
of equations). Compute the null space of each matrix.

Contributed by

C30 Compute the null space of the matrix A, N'(A).
2 4 1 3
-1 -2 -1 -1
2 4 0 -3
2 4 -1 -7

A=

R 00

Contributed by |[Robert Beezer| [Solution|

C31 Find the null space of the matrix B, N'(B).
-6 4 -36 6
B=|2 -1 10 -1
-3 2 =18 3

Contributed by [Robert Beezer| [Solution)

M45 Without doing any computations, and without examining any solutions, say as much as
possible about the form of the solution set for corresponding homogeneous system of equations of
each archetype that is a system of equations.

Archetype Al [685
Archetype E 689
Archetype g 694
Archetype D] [698] [Archetype E] [702]

Archetype F| ﬂ@]

Archetype G| [710] [Archetype H] [714]
Archetype I| @ﬂ
Archetype J] [722
Contributed by

For Exercises M50-Mb52 say as much as possible about each system’s solution set. Be sure
to make it clear which theorems you are using to reach your conclusions.
M50 A homogeneous system of 8 equations in 8 variables.
Contributed by [Robert Beezer| [Solution)

—

M51 A homogeneous system of 8 equations in 9 variables.
Contributed by [Robert Beezer| [Solution)
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M52 A homogeneous system of 8 equations in 7 variables.
Contributed by [Robert Beezer| [Solution|

T10 Prove or disprove: A system of linear equations is homogeneous if and only if the system
has the zero vector as a solution.
Contributed by Martin Jackson| [Solution|

]
Uz
T20 Consider the homogeneous system of linear equations LS(A, 0), and suppose that u = |43
_u”_
PR
4U2
is one solution to the system of equations. Prove that v = |43 | is also a solution to £S(A, 0).
4y, |

Contributed by [Robert Beezer| [Solution|
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Subsection SOL
Solutions

C30 Contributed by [Robert Beezer| [Statement|
IDefinition NSM] tells us that the null space of A is the solution set to the homogeneous system
LS(A, 0). The augmented matrix of this system is

2 4 1 3 80
-1 -2 -1 -1 1 0
2 4 0 -3 40
2 4 -1 -7 40

To solve the system, we row-reduce the augmented matrix and obtain,

12 0 0 5 0
0 0[1] o -8 0
0 0 0 [1] 2 o0
00 0 0 0 0

This matrix represents a system with equations having three dependent variables (z1, z3, and x4)
and two independent variables (z2 and x5). These equations rearrange to

r1 = —2.%2 - 5.%5 r3 — 81‘5 T4 = —21‘5
So we can write the solution set (which is the requested null space) as

—25[72 - 51‘5
Z2
N(A) = 8xs To, x5 € C
—2$5
Ts

C31 Contributed by [Robert Beezer| [Statement|
We form the augmented matrix of the homogeneous system £S(B, 0) and row-reduce the matrix,

6 4 —36 6 0 1] 0o 2 10
2 -1 10 -1 o] 25 1 —6 3 0
3 2 —18 3 0 0 0 0 00

We knew ahead of time that this system would be consistent (Theorem HSC] ), but we can now
see there are n — r = 4 — 2 = 2 free variables, namely z3 and z4 (Theorem FVCS| [49]). Based on
this analysis, we can rearrange the equations associated with each nonzero row of the reduced row-
echelon form into an expression for the lone dependent variable as a function of the free variables.
We arrive at the solution set to the homogeneous system, which is the null space of the matrix by

[Definition NSM] [59),

—2x3 — 24
6%3 — 3334
T3
T4

N(B) =

x3, 14 € C

M50 Contributed by [Robert Beezer| [Statement]
Since the system is homogeneous, we know it has the trivial solution (Theorem HSC ) We

cannot say anymore based on the information provided, except to say that there is either a unique
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solution or infinitely many solutions (Theorem PSSLS| [50]). See[Archetype A] [685] and [Archetype]
[689] to understand the possibilities.

M51  Contributed by [Robert Beezer| [Statement

Since there are more variables than equations, [I’heorem HMVEI applies and tells us that the
solution set is infinite. From the proof of [Theorem HSC we know that the zero vector is one

solution.

M52  Contributed by [Robert Beezer| [Statement|

By , we know the system is consistent because the zero vector is always a
solution of a homogeneous system. There is no more that we can say, since both a unique solution
and infinitely many solutions are possibilities.

T10 Contributed by [Robert Beezer| [Statement|
This is a true statement. A proof is:

(=) Suppose we have a homogeneous system LS(A, 0). Then by substituting the scalar zero
for each variable, we arrive at true statements for each equation. So the zero vector is a solution.
This is the content of .

(<) Suppose now that we have a generic (i.e. not necessarily homogeneous) system of equations,
LS(A, b) that has the zero vector as a solution. Upon substituting this solution into the system,
we discover that each component of b must also be zero. So b = 0.

T20 Contributed by [Robert Beezer| [Statement|

Suppose that a single equation from this system (the i-th one) has the form,

ai171 + ajpr2 + a;3T3 + -+ ATy =0

Evaluate the left-hand side of this equation with the components of the proposed solution vector
V’

a;1 (4u1) + a9 (4u2) + a;3 (4U3) + -+ ain (4un)

= 4a;1uq + 4aous + 4a;zus + - - - + dauy Commutativity

=4 (aj1u1 + ajpug + azus + - - + ainly) Distributivity

= 4(0) u solution to LS(A, 0)
=0

So v makes each equation true, and so is a solution to the system.

Notice that this result is not true if we change LS(A, 0) from a homogeneous system to a non-
homogeneous system. Can you create an example of a (non-homogeneous) system with a solution
u such that v is not a solution?
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Section NM

Nonsingular Matrices
[ | L

In this section we specialize and consider matrices with equal numbers of rows and columns, which
when considered as coefficient matrices lead to systems with equal numbers of equations and vari-
ables. We will see in the second half of the course (Chapter D|[363], |Chapter Ef [389] [Chapter LT|
[443], [Chapter R] [517]) that these matrices are especially important.

Subsection NM
Nonsingular Matrices

Our theorems will now establish connections between systems of equations (homogeneous or oth-
erwise), augmented matrices representing those systems, coefficient matrices, constant vectors, the
reduced row-echelon form of matrices (augmented and coefficient) and solution sets. Be very care-
ful in your reading, writing and speaking about systems of equations, matrices and sets of vectors.
A system of equations is not a matrix, a matrix is not a solution set, and a solution set is not
a system of equations. Now would be a great time to review the discussion about speaking and

writing mathematics in [Technique L [670].

Definition SQM

Square Matrix

A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has size
n. To emphasize the situation when a matrix is not square, we will call it rectangular. A

We can now present one of the central definitions of linear algebra.

Definition NM

Nonsingular Matrix

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear
system of equations LS(A4, 0) is {0}, i.e. the system has only the trivial solution. Then we say that
A is a nonsingular matrix. Otherwise we say A is a singular matrix. A

We can investigate whether any square matrix is nonsingular or not, no matter if the matrix is
derived somehow from a system of equations or if it is simply a matrix. The definition says that
to perform this investigation we must construct a very specific system of equations (homogeneous,
with the matrix as the coefficient matrix) and look at its solution set. We will have theorems in this
section that connect nonsingular matrices with systems of equations, creating more opportunities
for confusion. Convince yourself now of two observations, (1) we can decide nonsingularity for any
square matrix, and (2) the determination of nonsingularity involves the solution set for a certain
homogenous system of equations.

Notice that it makes no sense to call a system of equations nonsingular (the term does not apply
to a system of equations), nor does it make any sense to call a 5 x 7 matrix singular (the matrix is
not square).

Example S

A singular matrix, Archetype A

[Example HISAA| shows that the coefficient matrix derived from |[Archetype Al [685], specifically
the 3 x 3 matrix,

1 -1 2
A=12 1 1
1 1 0

is a singular matrix since there are nontrivial solutions to the homogeneous system £LS(A, 0). X

Example NM
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A nonsingular matrix, Archetype B
I[Example HUSARB]| shows that the coefficient matrix derived from |[Archetype B|[689], specifically
the 3 x 3 matrix,

-7 —6 —12
B=|5 5 7
1 0 4

is a nonsingular matrix since the homogeneous system, £LS(B, 0), has only the trivial solution. X

Notice that we will not discuss|Example HISAD| as being a singular or nonsingular coefficient
matrix since the matrix is not square.

The next theorem combines with our main computational technique (row-reducing a matrix)
to make it easy to recognize a nonsingular matrix. But first a definition.

Definition IM
Identity Matrix
The m x m identity matrix, I,,, is defined by

[Im];; = {(1) z;;

(This definition contains Notation IM.) A

Example IM
An identity matrix
The 4 x 4 identity matrix is

1000
010 0
L=1g 01 0
000 1

X

Notice that an identity matrix is square, and in reduced row-echelon form. So in particular, if
we were to arrive at the identity matrix while bringing a matrix to reduced row-echelon form, then
it would have all of the diagonal entries circled as leading 1’s.

Theorem NMRRI

Nonsingular Matrices Row Reduce to the Identity matrix

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form.
Then A is nonsingular if and only if B is the identity matrix. (]

Proof (<) Suppose B is the identity matrix. When the augmented matrix [ A | 0] is row-reduced,
the result is [B| 0] = [I,,| 0]. The number of nonzero rows is equal to the number of variables in
the linear system of equations £LS(A, 0), so n = r and [Theorem FVCS| gives n —r = 0 free
variables. Thus, the homogeneous system £S(A, 0) has just one solution, which must be the trivial
solution. This is exactly the definition of a nonsingular matrix.

(=) If A is nonsingular, then the homogeneous system L£S(A, 0) has a unique solution, and
has no free variables in the description of the solution set. The homogeneous system is consistent
) so[Theorem FVC§| applies and tells us there are n —r free variables. Thus,
n—r =0, and so n = r. So B has n pivot columns among its total of n columns. This is enough
to force B to be the n x n identity matrix I,,. [ |

Notice that since this theorem is an equivalence it will always allow us to determine if a matrix
is either nonsingular or singular. Here are two examples of this, continuing our study of Archetype
A and Archetype B.

Example SRR
Singular matrix, row-reduced
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The coefficient matrix for [Archetype Al [685] is

1 -1 2
A=12 1 1
1 1 0

which when row-reduced becomes the row-equivalent matrix

1] o 1
B=|0 [1] -1

0 0 0

Since this matrix is not the 3 x 3 identity matrix, [Theorem NMRRI] tells us that A is a singular
matrix. X

Example NSR
Nonsingular matrix, row-reduced
The coefficient matrix for [Archetype B| [689] is

-7 —6 -—12
A=|5 5 7
1 0 4

which when row-reduced becomes the row-equivalent matrix

1] 0o o0
B=1|0 [1] o
0 o [1]

Since this matrix is the 3 x 3 identity matrix, [Theorem NMRRI] tells us that A is a nonsingular
matrix. X

Subsection NSNM
Null Space of a Nonsingular Matrix

Nonsingular matrices and their null spaces are intimately related, as the next two examples illus-
trate.

Example NSS
Null space of a singular matrix
Given the coefficient matrix from |[Archetype Al [685],

1 -1 2
A=12 1 1

1 1 0
the null space is the set of solutions to the homogeneous system of equations LS(A, 0) has a solution
set and null space constructed in [Example HISA Al as

—x3
N(A) = xs3 xg3 € C

x3

Example NSNM
Null space of a nonsingular matrix
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Given the coefficient matrix from |[Archetype B| [689),

-7 —6 -—12
A=|5 5 7
1 0 4

the homogeneous system LS(A, 0) has a solution set constructed in [Example HUSAB| that
contains only the trivial solution, so the null space has only a single element,

N(A) =

)

These two examples illustrate the next theorem, which is another equivalence.

Theorem NMTNS

Nonsingular Matrices have Trivial Null Spaces

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, N'(A),
contains only the zero vector, i.e. N(A) = {0}. O

Proof The null space of a square matriz, A, is equal to the set of solutions to the homogeneous
system, LS(A, 0). A matriz is nonsingular if and only if the set of solutions to the homogeneous
system, LS(A, 0), has only a trivial solution. These two observations may be chained together to
construct the two proofs necessary for each half of this theorem. |

The next theorem pulls a lot of ideas together. Two proof techniques are applicable to the
proof. So first, head out and read two more proof techniques: [T'echnique CD| [673]| and [Technique
1674]. |Theorem NMUS| tells us that we can learn a lot about solutions to a system

of linear equations with a square coefficient matrix by examining a similar homogeneous system.

Theorem NMUS

Nonsingular Matrices and Unique Solutions

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system LS(A, b)
has a unique solution for every choice of the constant vector b. ([

Proof (<) The hypothesis for this half of the proof is that the system L£LS(A, b) has a unique
solution for every choice of the constant vector b. We will make a very specific choice for b: b = 0.
Then we know that the system LS(A, 0) has a unique solution. But this is precisely the definition
of what it means for A to be nonsingular ) That almost seems too easy! Notice
that we have not used the full power of our hypothesis, but there is nothing that says we must use
a hypothesis to its fullest.

If the first half of the proof seemed easy, perhaps we’ll have to work a bit harder to get the
implication in the opposite direction. We provide two different proofs for the second half. The
first is suggested by Asa Scherer and relies on the uniqueness of the reduced row-echelon form of a
matrix (Theorem RREFU| [106]), a result that we could have proven earlier, but we have decided
to delay until later. The second proof is lengthier and more involved, but does not rely on the
uniqueness of the reduced row-echelon form of a matrix, a result we have not proven yet. It is also
a good example of the types of proofs we will encounter throughout the course.

(=, Round 1) We assume that A is nonsingular, so we know there is a sequence of row operations
that will convert A into the identity matrix I,, (Theorem NMRRI| [68]). Form the augmented matrix
A" = [A] b] and apply this same sequence of row operations to A’. The result will be the matrix
B’ = [I,,| c], which is in reduced row-echelon form. It should be clear that ¢ is a solution to
LS(A, b). Furthermore, since B’ is unique (Theorem RREFU| [106]), the vector ¢ must be unique,
and therefore is a unique solution of LS(A, b).

(=, Round 2) We will assume A is nonsingular, and try to solve the system LS(A, b) without
making any assumptions about b. To do this we will begin by constructing a new homogeneous
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linear system of equations that looks very much like the original. Suppose A has size n (why must

it be square?) and write the original system as,

a11T1 + a2 + ajzxz + - -
a21T1 + a2%2 + ag3x3 + - - -

a31r1 + azzx2 + azzxrz + - - -

Ap1x1 + @n2T2 + ap3xrs + - -

+ a1nTn = b1
+ a2nTp = bo

+ aznTn = b3

(%)

“t pnxy = bn

form the new, homogeneous system in n equations with n + 1 variables, by adding a new variable
y, whose coeflicients are the negatives of the constant terms,

bly:0

2121 + a22T2 + a23x3 + - - - 4+ a2p Ty — boy = 0

a1121 + a12T2 + a13x3 + -+ - + ATy —

az1T1 + azaT2 + az3xr3 + - - + agpry — b3y =0

(%)

an1T1 + Gnp2%2 + Ap3x3 + -+ + ApnTn — bny =0

Since this is a homogeneous system with more variables than equations (m =n+1 > n),
HMVEI says that the system has infinitely many solutions. We will choose one of these
solutions, any one of these solutions, so long as it is not the trivial solution. Write this solution as

r1 = C1 Tr9 = C9 I3 = C3

Tp = Cp Y = Cpn+1

We know that at least one value of the ¢; is nonzero, but we will now show that in particular
cnt1 # 0. We do this using a proof by contradiction (Technique CD] [673]). So suppose the ¢; form
a solution as described, and in addition that ¢,4+1 = 0. Then we can write the ¢-th equation of
system (xx) as,

ajic1 + aipca + aizcs + - + ammcn — b;(0) =0
which becomes

a;ic1 + azoco + ajzes + -+ apen =0

Since this is true for each ¢, we have that x1 = ¢1, 2 = ¢o, x3 =c¢3,..., Tn = ¢, is a solution to the
homogeneous system LS(A, 0) formed with a nonsingular coefficient matrix. This means that the
only possible solution is the trivial solution, so ¢y = 0, ¢ce =0, ¢3 =0, ..., ¢, = 0. So, assuming
simply that c,4+1 = 0, we conclude that all of the ¢; are zero. But this contradicts our choice of the
¢; as not being the trivial solution to the system (xx). So ¢,41 # 0.

We now propose and verify a solution to the original system (x). Set

C1 C2 C3 Cn
Tro = xr3 = e Tn =

Ir =

Cn+1 Cn+1 Cn+1 Cn+1

Notice how it was necessary that we know that c¢,11 % 0 for this step to succeed. Now, evaluate
the i-th equation of system (x) with this proposed solution, and recognize in the third line that
c1 through c¢,41 appear as if they were substituted into the left-hand side of the i-th equation of
system (%),

a1 G 3 Cn

+ -t ap—
Cn+1

(airc1 + ajaca + azcs + -+ - + aincy)

Cn+1
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1
= (ailcl + a;9c2 + a;3¢3 + - - + QinCp — bicn+1) +b;
Cn+1
1
= (0) + b;
Cn+1

— b

Since this equation is true for every ¢, we have found a solution to system (x). To finish, we still
need to establish that this solution is unique.

With one solution in hand, we will entertain the possibility of a second solution. So assume
system (*) has two solutions,

l’lzdl x2:d2 .1‘3:d3 .,”Un:dn

Ir1 = €1 9 = €2 Ir3 = €3 Tp = €En
Then,

(ai1(d1 —e1) + az(dz — e2) + a3(ds —e3) + - + ain(dn — €n))

= (aﬂdl + ajods + a;3dg + - - + amdn) — (aﬂel + a;joes + a;zes + - - -+ amen)
=b;i —b;

=0

This is the i-th equation of the homogeneous system LS(A, 0) evaluated with z; = d;j —e;, 1 <
j < n. Since A is nonsingular, we must conclude that this solution is the trivial solution, and so
0=d;j —e;, 1 <j<n. Thatis, d; = e; for all j and the two solutions are identical, meaning any
solution to (x) is unique. [ |

This important theorem deserves several comments. First, notice that the proposed solution
(x; = Cnci 1) appeared in the Round 2 proof with no motivation whatsoever. This is just fine in a
proof. A proof s