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Preface

This textbook is designed to teach the university mathematics student the basics of the subject
of linear algebra and the techniques of formal mathematics. There are no prerequisites other
than ordinary algebra, but it is probably best used by a student who has the “mathematical
maturity” of a sophomore or junior. The text has two goals: to teach the fundamental concepts
and techniques of matrix algebra and abstract vector spaces, and to teach the techniques associated
with understanding the definitions and theorems forming a coherent area of mathematics. So there
is an emphasis on worked examples of nontrivial size and on proving theorems carefully.

This book is copyrighted. This means that governments have granted the author a monopoly
— the exclusive right to control the making of copies and derivative works for many years (too
many years in some cases). It also gives others limited rights, generally referred to as “fair use,”
such as the right to quote sections in a review without seeking permission. However, the author
licenses this book to anyone under the terms of the GNU Free Documentation License (GFDL),
which gives you more rights than most copyrights (see Appendix GFDL [763]). Loosely speaking,
you may make as many copies as you like at no cost, and you may distribute these unmodified
copies if you please. You may modify the book for your own use. The catch is that if you make
modifications and you distribute the modified version, or make use of portions in excess of fair
use in another work, then you must also license the new work with the GFDL. So the book has
lots of inherent freedom, and no one is allowed to distribute a derivative work that restricts these
freedoms. (See the license itself in the appendix for the exact details of the additional rights you
have been given.)

Notice that initially most people are struck by the notion that this book is free (the French
would say gratis, at no cost). And it is. However, it is more important that the book has freedom
(the French would say liberté, liberty). It will never go “out of print” nor will there ever be trivial
updates designed only to frustrate the used book market. Those considering teaching a course with
this book can examine it thoroughly in advance. Adding new exercises or new sections has been
purposely made very easy, and the hope is that others will contribute these modifications back for
incorporation into the book, for the benefit of all.

Depending on how you received your copy, you may want to check for the latest version (and
other news) at http://linear.ups.edu/.

Topics The first half of this text (through Chapter M [179]) is basically a course in matrix algebra,
though the foundation of some more advanced ideas is also being formed in these early sections.
Vectors are presented exclusively as column vectors (since we also have the typographic freedom
to avoid writing a column vector inline as the transpose of a row vector), and linear combinations
are presented very early. Spans, null spaces and column spaces are also presented early, simply as
sets, saving most of their vector space properties for later, so they are familiar objects before being
scrutinized carefully.

You cannot do everything early, so in particular matrix multiplication comes later than usual.
However, with a definition built on linear combinations of column vectors, it should seem more
natural than the more frequent definition using dot products of rows with columns. And this delay
emphasizes that linear algebra is built upon vector addition and scalar multiplication. Of course,
matrix inverses must wait for matrix multiplication, but this does not prevent nonsingular matrices
from occurring sooner. Vector space properties are hinted at when vector and matrix operations
are first defined, but the notion of a vector space is saved for a more axiomatic treatment later

xliii
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(Chapter VS [273]). Once bases and dimension have been explored in the context of vector spaces,
linear transformations and their matrix representations follow. The goal of the book is to go as far
as Jordan canonical form in the Core (Part C [3]), with less central topics collected in the Topics
(Part T [771]). A third part will contain contributed applications, with notation and theorems
integrated with the earlier two parts (Part A [827]).

Linear algebra is an ideal subject for the novice mathematics student to learn how to develop
a topic precisely, with all the rigor mathematics requires. Unfortunately, much of this rigor seems
to have escaped the standard calculus curriculum, so for many university students this is their first
exposure to careful definitions and theorems, and the expectation that they fully understand them,
to say nothing of the expectation that they become proficient in formulating their own proofs. We
have tried to make this text as helpful as possible with this transition. Every definition is stated
carefully, set apart from the text. Likewise, every theorem is carefully stated, and almost every
one has a complete proof. Theorems usually have just one conclusion, so they can be referenced
precisely later. Definitions and theorems are cataloged in order of their appearance in the front of
the book (Definitions [xi], Theorems [xiii]), and alphabetical order in the index at the back. Along
the way, there are discussions of some more important ideas relating to formulating proofs (Proof
Techniques [??]), which is part advice and part logic.

Origin and History This book is the result of the confluence of several related events and trends.

• At the University of Puget Sound we teach a one-semester, post-calculus linear algebra course
to students majoring in mathematics, computer science, physics, chemistry and economics.
Between January 1986 and June 2002, I taught this course seventeen times. For the Spring
2003 semester, I elected to convert my course notes to an electronic form so that it would be
easier to incorporate the inevitable and nearly-constant revisions. Central to my new notes
was a collection of stock examples that would be used repeatedly to illustrate new concepts.
(These would become the Archetypes, Appendix A [681].) It was only a short leap to then
decide to distribute copies of these notes and examples to the students in the two sections of
this course. As the semester wore on, the notes began to look less like notes and more like a
textbook.

• I used the notes again in the Fall 2003 semester for a single section of the course. Simultane-
ously, the textbook I was using came out in a fifth edition. A new chapter was added toward
the start of the book, and a few additional exercises were added in other chapters. This de-
manded the annoyance of reworking my notes and list of suggested exercises to conform with
the changed numbering of the chapters and exercises. I had an almost identical experience
with the third course I was teaching that semester. I also learned that in the next academic
year I would be teaching a course where my textbook of choice had gone out of print. I felt
there had to be a better alternative to having the organization of my courses buffeted by the
economics of traditional textbook publishing.

• I had used TEX and the Internet for many years, so there was little to stand in the way of
typesetting, distributing and “marketing” a free book. With recreational and professional
interests in software development, I had long been fascinated by the open-source software
movement, as exemplified by the success of GNU and Linux, though public-domain TEX
might also deserve mention. Obviously, this book is an attempt to carry over that model of
creative endeavor to textbook publishing.

• As a sabbatical project during the Spring 2004 semester, I embarked on the current project of
creating a freely-distributable linear algebra textbook. (Notice the implied financial support of
the University of Puget Sound to this project.) Most of the material was written from scratch
since changes in notation and approach made much of my notes of little use. By August 2004
I had written half the material necessary for our Math 232 course. The remaining half was
written during the Fall 2004 semester as I taught another two sections of Math 232.
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• While in early 2005 the book was complete enough to build a course around, work continued
for the next two years to fill out the narrative, exercises and supplements. In this time, I
taught four sections of the course, while three of my colleagues at the University of Puget
Sound taught another four sections.

However, much of my motivation for writing this book is captured by the sentiments expressed by
H.M. Cundy and A.P. Rollet in their Preface to the First Edition of Mathematical Models (1952),
especially the final sentence,

This book was born in the classroom, and arose from the spontaneous interest of a
Mathematical Sixth in the construction of simple models. A desire to show that even
in mathematics one could have fun led to an exhibition of the results and attracted
considerable attention throughout the school. Since then the Sherborne collection has
grown, ideas have come from many sources, and widespread interest has been shown.
It seems therefore desirable to give permanent form to the lessons of experience so that
others can benefit by them and be encouraged to undertake similar work.

How To Use This Book Chapters, Theorems, etc. are not numbered in this book, but are
instead referenced by acronyms. This means that Theorem XYZ will always be Theorem XYZ,
no matter if new sections are added, or if an individual decides to remove certain other sections.
Within sections, the subsections are acronyms that begin with the acronym of the section. So
Subsection XYZ.AB is the subsection AB in Section XYZ. Acronyms are unique within their type,
so for example there is just one Definition B [319], but there is also a Section B [319]. At first, all
the letters flying around may be confusing, but with time, you will begin to recognize the more
important ones on sight. Furthermore, there are lists of theorems, examples, etc. in the front of the
book, and an index that contains every acronym. If you are reading this in an electronic version
(PDF or XML), you will see that all of the cross-references are hyperlinks, allowing you to click to
a definition or example, and then use the back button to return. In printed versions, you must rely
on the page numbers. However, note that page numbers are not permanent! Different editions,
different margins, or different sized paper will affect what content is on each page. And in time,
the addition of new material will affect the page numbering.

Chapter divisions are not critical to the organization of the book, as Sections are the main
organizational unit. Sections are designed to be the subject of a single lecture or classroom session,
though there is frequently more material than can be discussed and illustrated in a fifty-minute
session. Consequently, the instructor will need to be selective about which topics to illustrate with
other examples and which topics to leave to the student’s reading. Many of the examples are meant
to be large, such as using five or six variables in a system of equations, so the instructor may just
want to “walk” a class through these examples. The book has been written with the idea that
some may work through it independently, so the hope is that students can learn some of the more
mechanical ideas on their own.

The highest level division of the book is the three Parts: Core, Topics, Applications. The Core
is meant to carefully describe the basic ideas required of a first exposure to linear algebra. In the
final sections of the Core, one should ask the question: which previous Sections could be removed
without destroying the logical development of the subject? Hopefully, the answer is “none.” The
goal of the book is to finish the Core with the most general representations of linear transformations
(Jordan and perhaps rational canonical forms). Of course, there will not be universal agreement
on what should, or should not, constitute the Core, but the main idea will be to limit it to about
forty sections. Topics is meant to contain those subjects that are important in linear algebra,
and which would make profitable detours from the Core for those interested in pursuing them.
Applications should illustrate the power and widespread applicability of linear algebra to as many
fields as possible. The Archetypes (Appendix A [681]) cover many of the computational aspects of
systems of linear equations, matrices and linear transformations. The student should consult them
often, and this is encouraged by exercises that simply suggest the right properties to examine at
the right time. But what is more important, they are a repository that contains enough variety to
provide abundant examples of key theorems, while also providing counterexamples to hypotheses
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or converses of theorems. The summary table at the start of this appendix should be especially
useful.

I require my students to read each Section prior to the day’s discussion on that section. For
some students this is a novel idea, but at the end of the semester a few always report on the
benefits, both for this course and other courses where they have adopted the habit. To make good
on this requirement, each section contains three Reading Questions. These sometimes only require
parroting back a key definition or theorem, or they require performing a small example of a key
computation, or they ask for musings on key ideas or new relationships between old ideas. Answers
are emailed to me the evening before the lecture. Given the flavor and purpose of these questions,
including solutions seems foolish.

Formulating interesting and effective exercises is as difficult, or more so, than building a nar-
rative. But it is the place where a student really learns the material. As such, for the student’s
benefit, complete solutions should be given. As the list of exercises expands, over time solutions
will also be provided. Exercises and their solutions are referenced with a section name, followed by
a dot, then a letter (C,M, or T) and a number. The letter ‘C’ indicates a problem that is mostly
computational in nature, while the letter ‘T’ indicates a problem that is more theoretical in nature.
A problem with a letter ‘M’ is somewhere in between (middle, mid-level, median, middling), prob-
ably a mix of computation and applications of theorems. So Solution MO.T13 [190] is a solution
to an exercise in Section MO [179] that is theoretical in nature. The number ‘13’ has no intrinsic
meaning.

More on Freedom This book is freely-distributable under the terms of the GFDL, along with
the underlying TEX code from which the book is built. This arrangement provides many benefits
unavailable with traditional texts.

• No cost, or low cost, to students. With no physical vessel (i.e. paper, binding), no transporta-
tion costs (Internet bandwidth being a negligible cost) and no marketing costs (evaluation and
desk copies are free to all), anyone with an Internet connection can obtain it, and a teacher
could make available paper copies in sufficient quantities for a class. The cost to print a copy
is not insignificant, but is just a fraction of the cost of a traditional textbook when printing
is handled by a print-on-demand service over the Internet. Students will not feel the need to
sell back their book (nor should there be much of a market for used copies), and in future
years can even pick up a newer edition freely.

• The book will not go out of print. No matter what, a teacher can maintain their own copy
and use the book for as many years as they desire. Further, the naming schemes for chapters,
sections, theorems, etc. is designed so that the addition of new material will not break any
course syllabi or assignment list.

• With many eyes reading the book and with frequent postings of updates, the reliability should
become very high. Please report any errors you find that persist into the latest version.

• For those with a working installation of the popular typesetting program TEX, the book has
been designed so that it can be customized. Page layouts, presence of exercises, solutions,
sections or chapters can all be easily controlled. Furthermore, many variants of mathematical
notation are achieved via TEX macros. So by changing a single macro, one’s favorite notation
can be reflected throughout the text. For example, every transpose of a matrix is coded in
the source as \transpose{A}, which when printed will yield At. However by changing the
definition of \transpose{ }, any desired alternative notation will then appear throughout
the text instead.

• The book has also been designed to make it easy for others to contribute material. Would
you like to see a section on symmetric bilinear forms? Consider writing one and contributing
it to one of the Topics chapters. Does there need to be more exercises about the null space of
a matrix? Send me some. Historical Notes? Contact me, and we will see about adding those
in also.
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• You have no legal obligation to pay for this book. It has been licensed with no expectation
that you pay for it. You do not even have a moral obligation to pay for the book. Thomas
Jefferson (1743 – 1826), the author of the United States Declaration of Independence, wrote,

If nature has made any one thing less susceptible than all others of exclusive prop-
erty, it is the action of the thinking power called an idea, which an individual may
exclusively possess as long as he keeps it to himself; but the moment it is divulged,
it forces itself into the possession of every one, and the receiver cannot dispossess
himself of it. Its peculiar character, too, is that no one possesses the less, because
every other possesses the whole of it. He who receives an idea from me, receives in-
struction himself without lessening mine; as he who lights his taper at mine, receives
light without darkening me. That ideas should freely spread from one to another
over the globe, for the moral and mutual instruction of man, and improvement of his
condition, seems to have been peculiarly and benevolently designed by nature, when
she made them, like fire, expansible over all space, without lessening their density in
any point, and like the air in which we breathe, move, and have our physical being,
incapable of confinement or exclusive appropriation.

Letter to Isaac McPherson
August 13, 1813

However, if you feel a royalty is due the author, or if you would like to encourage the author, or
if you wish to show others that this approach to textbook publishing can also bring financial
compensation, then donations are gratefully received. Moreover, non-financial forms of help
can often be even more valuable. A simple note of encouragement, submitting a report
of an error, or contributing some exercises or perhaps an entire section for the Topics or
Applications are all important ways you can acknowledge the freedoms accorded to this work
by the copyright holder and other contributors.

Conclusion Foremost, I hope that students find their time spent with this book profitable. I
hope that instructors find it flexible enough to fit the needs of their course. And I hope that
everyone will send me their comments and suggestions, and also consider the myriad ways they can
help (as listed on the book’s website at http://linear.ups.edu).

Robert A. Beezer
Tacoma, Washington

December 2006
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Chapter SLE
Systems of Linear Equations

We will motivate our study of linear algebra by studying solutions to systems of linear equations.
While the focus of this chapter is on the practical matter of how to find, and describe, these
solutions, we will also be setting ourselves up for more theoretical ideas that will appear later.

Section WILA
What is Linear Algebra?

Subsection LA
“Linear” + “Algebra”

The subject of linear algebra can be partially explained by the meaning of the two terms comprising
the title. “Linear” is a term you will appreciate better at the end of this course, and indeed, attaining
this appreciation could be taken as one of the primary goals of this course. However for now, you
can understand it to mean anything that is “straight” or “flat.” For example in the xy-plane you
might be accustomed to describing straight lines (is there any other kind?) as the set of solutions
to an equation of the form y = mx + b, where the slope m and the y-intercept b are constants
that together describe the line. In multivariate calculus, you may have discussed planes. Living in
three dimensions, with coordinates described by triples (x, y, z), they can be described as the set
of solutions to equations of the form ax+ by + cz = d, where a, b, c, d are constants that together
determine the plane. While we might describe planes as “flat,” lines in three dimensions might be
described as “straight.” From a multivariate calculus course you will recall that lines are sets of
points described by equations such as x = 3t− 4, y = −7t+ 2, z = 9t, where t is a parameter that
can take on any value.

Another view of this notion of “flatness” is to recognize that the sets of points just described
are solutions to equations of a relatively simple form. These equations involve addition and mul-
tiplication only. We will have a need for subtraction, and occasionally we will divide, but mostly
you can describe “linear” equations as involving only addition and multiplication. Here are some
examples of typical equations we will see in the next few sections:

2x+ 3y − 4z = 13 4x1 + 5x2 − x3 + x4 + x5 = 0 9a− 2b+ 7c+ 2d = −7

What we will not see are equations like:

xy + 5yz = 13 x1 + x3
2/x4 − x3x4x

2
5 = 0 tan(ab) + log(c− d) = −7

The exception will be that we will on occasion need to take a square root.
You have probably heard the word “algebra” frequently in your mathematical preparation for

this course. Most likely, you have spent a good ten to fifteen years learning the algebra of the
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4 Section WILA What is Linear Algebra?

real numbers, along with some introduction to the very similar algebra of complex numbers (see
Section CNO [661]). However, there are many new algebras to learn and use, and likely linear
algebra will be your second algebra. Like learning a second language, the necessary adjustments
can be challenging at times, but the rewards are many. And it will make learning your third
and fourth algebras even easier. Perhaps you have heard of “groups” and “rings” (or maybe you
have studied them already), which are excellent examples of other algebras with very interesting
properties and applications. In any event, prepare yourself to learn a new algebra and realize that
some of the old rules you used for the real numbers may no longer apply to this new algebra you
will be learning!

The brief discussion above about lines and planes suggests that linear algebra has an inherently
geometric nature, and this is true. Examples in two and three dimensions can be used to provide
valuable insight into important concepts of this course. However, much of the power of linear
algebra will be the ability to work with “flat” or “straight” objects in higher dimensions, without
concerning ourselves with visualizing the situation. While much of our intuition will come from
examples in two and three dimensions, we will maintain an algebraic approach to the subject, with
the geometry being secondary. Others may wish to switch this emphasis around, and that can lead
to a very fruitful and beneficial course, but here and now we are laying our bias bare.

Subsection AA
An Application

We conclude this section with a rather involved example that will highlight some of the power and
techniques of linear algebra. Work through all of the details with pencil and paper, until you believe
all the assertions made. However, in this introductory example, do not concern yourself with how
some of the results are obtained or how you might be expected to solve a similar problem. We will
come back to this example later and expose some of the techniques used and properties exploited.
For now, use your background in mathematics to convince yourself that everything said here really
is correct.

Example TMP
Trail Mix Packaging
Suppose you are the production manager at a food-packaging plant and one of your product lines
is trail mix, a healthy snack popular with hikers and backpackers, containing raisins, peanuts and
hard-shelled chocolate pieces. By adjusting the mix of these three ingredients, you are able to sell
three varieties of this item. The fancy version is sold in half-kilogram packages at outdoor supply
stores and has more chocolate and fewer raisins, thus commanding a higher price. The standard
version is sold in one kilogram packages in grocery stores and gas station mini-markets. Since the
standard version has roughly equal amounts of each ingredient, it is not as expensive as the fancy
version. Finally, a bulk version is sold in bins at grocery stores for consumers to load into plastic
bags in amounts of their choosing. To appeal to the shoppers that like bulk items for their economy
and healthfulness, this mix has many more raisins (at the expense of chocolate) and therefore sells
for less.

Your production facilities have limited storage space and early each morning you are able to
receive and store 380 kilograms of raisins, 500 kilograms of peanuts and 620 kilograms of chocolate
pieces. As production manager, one of your most important duties is to decide how much of
each version of trail mix to make every day. Clearly, you can have up to 1500 kilograms of raw
ingredients available each day, so to be the most productive you will likely produce 1500 kilograms
of trail mix each day. Also, you would prefer not to have any ingredients leftover each day, so that
your final product is as fresh as possible and so that you can receive the maximum delivery the
next morning. But how should these ingredients be allocated to the mixing of the bulk, standard
and fancy versions?

First, we need a little more information about the mixes. Workers mix the ingredients in 15
kilogram batches, and each row of the table below gives a recipe for a 15 kilogram batch. There
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Subsection WILA.AA An Application 5

is some additional information on the costs of the ingredients and the price the manufacturer can
charge for the different versions of the trail mix.

Raisins Peanuts Chocolate Cost Sale Price
(kg/batch) (kg/batch) (kg/batch) ($/kg) ($/kg)

Bulk 7 6 2 3.69 4.99
Standard 6 4 5 3.86 5.50
Fancy 2 5 8 4.45 6.50
Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

As production manager, it is important to realize that you only have three decisions to make —
the amount of bulk mix to make, the amount of standard mix to make and the amount of fancy
mix to make. Everything else is beyond your control or is handled by another department within
the company. Principally, you are also limited by the amount of raw ingredients you can store each
day. Let us denote the amount of each mix to produce each day, measured in kilograms, by the
variable quantities b, s and f . Your production schedule can be described as values of b, s and f
that do several things. First, we cannot make negative quantities of each mix, so

b ≥ 0 s ≥ 0 f ≥ 0

Second, if we want to consume all of our ingredients each day, the storage capacities lead to three
(linear) equations, one for each ingredient,

7
15
b+

6
15
s+

2
15
f = 380 (raisins)

6
15
b+

4
15
s+

5
15
f = 500 (peanuts)

2
15
b+

5
15
s+

8
15
f = 620 (chocolate)

It happens that this system of three equations has just one solution. In other words, as production
manager, your job is easy, since there is but one way to use up all of your raw ingredients making
trail mix. This single solution is

b = 300 kg s = 300 kg f = 900 kg.

We do not yet have the tools to explain why this solution is the only one, but it should be simple
for you to verify that this is indeed a solution. (Go ahead, we will wait.) Determining solutions
such as this, and establishing that they are unique, will be the main motivation for our initial study
of linear algebra.

So we have solved the problem of making sure that we make the best use of our limited storage
space, and each day use up all of the raw ingredients that are shipped to us. Additionally, as
production manager, you must report weekly to the CEO of the company, and you know he will
be more interested in the profit derived from your decisions than in the actual production levels.
So you compute,

300(4.99− 3.69) + 300(5.50− 3.86) + 900(6.50− 4.45) = 2727.00

for a daily profit of $2,727 from this production schedule. The computation of the daily profit is also
beyond our control, though it is definitely of interest, and it too looks like a “linear” computation.

As often happens, things do not stay the same for long, and now the marketing department
has suggested that your company’s trail mix products standardize on every mix being one-third
peanuts. Adjusting the peanut portion of each recipe by also adjusting the chocolate portion leads
to revised recipes, and slightly different costs for the bulk and standard mixes, as given in the
following table.
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Raisins Peanuts Chocolate Cost Sale Price
(kg/batch) (kg/batch) (kg/batch) ($/kg) ($/kg)

Bulk 7 5 3 3.70 4.99
Standard 6 5 4 3.85 5.50
Fancy 2 5 8 4.45 6.50
Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

In a similar fashion as before, we desire values of b, s and f so that

b ≥ 0 s ≥ 0 f ≥ 0

and

7
15
b+

6
15
s+

2
15
f = 380 (raisins)

5
15
b+

5
15
s+

5
15
f = 500 (peanuts)

3
15
b+

4
15
s+

8
15
f = 620 (chocolate)

It now happens that this system of equations has infinitely many solutions, as we will now demon-
strate. Let f remain a variable quantity. Then if we make f kilograms of the fancy mix, we will
make 4f − 3300 kilograms of the bulk mix and −5f + 4800 kilograms of the standard mix. Let us
now verify that, for any choice of f , the values of b = 4f − 3300 and s = −5f + 4800 will yield a
production schedule that exhausts all of the day’s supply of raw ingredients (right now, do not be
concerned about how you might derive expressions like these for b and s). Grab your pencil and
paper and play along.

7
15

(4f − 3300) +
6
15

(−5f + 4800) +
2
15
f = 0f +

5700
15

= 380

5
15

(4f − 3300) +
5
15

(−5f + 4800) +
5
15
f = 0f +

7500
15

= 500

3
15

(4f − 3300) +
4
15

(−5f + 4800) +
8
15
f = 0f +

9300
15

= 620

Convince yourself that these expressions for b and s allow us to vary f and obtain an infinite
number of possibilities for solutions to the three equations that describe our storage capacities. As
a practical matter, there really are not an infinite number of solutions, since we are unlikely to
want to end the day with a fractional number of bags of fancy mix, so our allowable values of f
should probably be integers. More importantly, we need to remember that we cannot make negative
amounts of each mix! Where does this lead us? Positive quantities of the bulk mix requires that

b ≥ 0 ⇒ 4f − 3300 ≥ 0 ⇒ f ≥ 825

Similarly for the standard mix,

s ≥ 0 ⇒ −5f + 4800 ≥ 0 ⇒ f ≤ 960

So, as production manager, you really have to choose a value of f from the finite set

{825, 826, . . . , 960}

leaving you with 136 choices, each of which will exhaust the day’s supply of raw ingredients. Pause
now and think about which you would choose.

Recalling your weekly meeting with the CEO suggests that you might want to choose a produc-
tion schedule that yields the biggest possible profit for the company. So you compute an expression
for the profit based on your as yet undetermined decision for the value of f ,

(4f − 3300)(4.99− 3.70) + (−5f + 4800)(5.50− 3.85) + (f)(6.50− 4.45) = −1.04f + 3663
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Since f has a negative coefficient it would appear that mixing fancy mix is detrimental to your profit
and should be avoided. So you will make the decision to set daily fancy mix production at f = 825.
This has the effect of setting b = 4(825) − 3300 = 0 and we stop producing bulk mix entirely. So
the remainder of your daily production is standard mix at the level of s = −5(825) + 4800 = 675
kilograms and the resulting daily profit is (−1.04)(825) + 3663 = 2805. It is a pleasant surprise
that daily profit has risen to $2,805, but this is not the most important part of the story. What
is important here is that there are a large number of ways to produce trail mix that use all of the
day’s worth of raw ingredients and you were able to easily choose the one that netted the largest
profit. Notice too how all of the above computations look “linear.”

In the food industry, things do not stay the same for long, and now the sales department says
that increased competition has led to the decision to stay competitive and charge just $5.25 for a
kilogram of the standard mix, rather than the previous $5.50 per kilogram. This decision has no
effect on the possibilities for the production schedule, but will affect the decision based on profit
considerations. So you revisit just the profit computation, suitably adjusted for the new selling
price of standard mix,

(4f − 3300)(4.99− 3.70) + (−5f + 4800)(5.25− 3.85) + (f)(6.50− 4.45) = 0.21f + 2463

Now it would appear that fancy mix is beneficial to the company’s profit since the value of f has a
positive coefficient. So you take the decision to make as much fancy mix as possible, setting f = 960.
This leads to s = −5(960) + 4800 = 0 and the increased competition has driven you out of the
standard mix market all together. The remainder of production is therefore bulk mix at a daily level
of b = 4(960)− 3300 = 540 kilograms and the resulting daily profit is 0.21(960) + 2463 = 2664.60.
A daily profit of $2,664.60 is less than it used to be, but as production manager, you have made
the best of a difficult situation and shown the sales department that the best course is to pull out
of the highly competitive standard mix market completely. �

This example is taken from a field of mathematics variously known by names such as operations
research, systems science, or management science. More specifically, this is a perfect example of
problems that are solved by the techniques of “linear programming.”

There is a lot going on under the hood in this example. The heart of the matter is the solution
to systems of linear equations, which is the topic of the next few sections, and a recurrent theme
throughout this course. We will return to this example on several occasions to reveal some of the
reasons for its behavior.

Subsection READ
Reading Questions

1. Is the equation x2 + xy + tan(y3) = 0 linear or not? Why or why not?

2. Find all solutions to the system of two linear equations 2x+ 3y = −8, x− y = 6.

3. Explain the importance of the procedures described in the trail mix application (Subsection
WILA.AA [4]) from the point-of-view of the production manager.
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Subsection EXC
Exercises

C10 In Example TMP [4] the first table lists the cost (per kilogram) to manufacture each of the
three varieties of trail mix (bulk, standard, fancy). For example, it costs $3.70 to make one kilogram
of the bulk variety. Re-compute each of these three costs and notice that the computations are
linear in character.
Contributed by Robert Beezer

M70 In Example TMP [4] two different prices were considered for marketing standard mix with
the revised recipes (one-third peanuts in each recipe). Selling standard mix at $5.50 resulted in
selling the minimum amount of the fancy mix and no bulk mix. At $5.25 it was best for profits to
sell the maximum amount of fancy mix and then sell no standard mix. Determine a selling price
for standard mix that allows for maximum profits while still selling some of each type of mix.
Contributed by Robert Beezer Solution [9]
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Subsection SOL
Solutions

M70 Contributed by Robert Beezer Statement [8]
If the price of standard mix is set at $5.292, then the profit function has a zero coefficient on the
variable quantity f . So, we can set f to be any integer quantity in {825, 826, . . . , 960}. All but
the extreme values (f = 825, f = 960) will result in production levels where some of every mix
is manufactured. No matter what value of f is chosen, the resulting profit will be the same, at
$2,664.60.
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Section SSLE
Solving Systems of Linear Equations

We will motivate our study of linear algebra by considering the problem of solving several linear
equations simultaneously. The word “solve” tends to get abused somewhat, as in “solve this
problem.” When talking about equations we understand a more precise meaning: find all of the
values of some variable quantities that make an equation, or several equations, true.

Subsection SLE
Systems of Linear Equations

Example STNE
Solving two (nonlinear) equations
Suppose we desire the simultaneous solutions of the two equations,

x2 + y2 = 1

−x+
√

3y = 0

You can easily check by substitution that x =
√

3
2 , y = 1

2 and x = −
√

3
2 , y = −1

2 are both solutions.
We need to also convince ourselves that these are the only solutions. To see this, plot each equation
on the xy-plane, which means to plot (x, y) pairs that make an individual equation true. In this
case we get a circle centered at the origin with radius 1 and a straight line through the origin with
slope 1√

3
. The intersections of these two curves are our desired simultaneous solutions, and so we

believe from our plot that the two solutions we know already are indeed the only ones. We like to
write solutions as sets, so in this case we write the set of solutions as

S = {(
√

3
2 ,

1
2), (−

√
3

2 , −
1
2)}

�

In order to discuss systems of linear equations carefully, we need a precise definition. And
before we do that, we will introduce our periodic discussions about “Proof Techniques.” Linear
algebra is an excellent setting for learning how to read, understand and formulate proofs. But this
is a difficult step in your development as a mathematician, so we have included a series of short
essays containing advice and explanations to help you along. These can be found back in Section
PT [669] of Appendix P [661], and we will reference them as they become appropriate. Be sure to
head back to the appendix to read this as they are introduced. With a definition next, now is
the time for the first of our proof techniques. Head back to Section PT [669] of Appendix P [661]
and study Technique D [669]. We’ll be right here when you get back. See you in a bit.

Definition SLE
System of Linear Equations
A system of linear equations is a collection ofm equations in the variable quantities x1, x2, x3, . . . , xn
of the form,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...
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12 Section SSLE Solving Systems of Linear Equations

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

where the values of aij , bi and xj are from the set of complex numbers, C. 4

Don’t let the mention of the complex numbers, C, rattle you. We will stick with real numbers
exclusively for many more sections, and it will sometimes seem like we only work with integers!
However, we want to leave the possibility of complex numbers open, and there will be occasions
in subsequent sections where they are necessary. You can review the basic properties of complex
numbers in Section CNO [661], but these facts will not be critical until we reach Section O [163].
For now, here is an example to illustrate using the notation introduced in Definition SLE [11].

Example NSE
Notation for a system of equations
Given the system of linear equations,

x1 + 2x2 + x4 = 7
x1 + x2 + x3 − x4 = 3

3x1 + x2 + 5x3 − 7x4 = 1

we have n = 4 variables and m = 3 equations. Also,

a11 = 1 a12 = 2 a13 = 0 a14 = 1 b1 = 7
a21 = 1 a22 = 1 a23 = 1 a24 = −1 b2 = 3
a31 = 3 a32 = 1 a33 = 5 a34 = −7 b3 = 1

Additionally, convince yourself that x1 = −2, x2 = 4, x3 = 2, x4 = 1 is one solution (but it is not
the only one!). �

We will often shorten the term “system of linear equations” to “system of equations” leaving
the linear aspect implied. After all, this is a book about liner algebra.

Subsection PSS
Possibilities for Solution Sets

The next example illustrates the possibilities for the solution set of a system of linear equations.
We will not be too formal here, and the necessary theorems to back up our claims will come in
subsequent sections. So read for feeling and come back later to revisit this example.

Example TTS
Three typical systems
Consider the system of two equations with two variables,

2x1 + 3x2 = 3
x1 − x2 = 4

If we plot the solutions to each of these equations separately on the x1x2-plane, we get two lines,
one with negative slope, the other with positive slope. They have exactly one point in common,
(x1, x2) = (3, −1), which is the solution x1 = 3, x2 = −1. From the geometry, we believe that this
is the only solution to the system of equations, and so we say it is unique.

Now adjust the system with a different second equation,

2x1 + 3x2 = 3
4x1 + 6x2 = 6

A plot of the solutions to these equations individually results in two lines, one on top of the other!
There are infinitely many pairs of points that make both equations true. We will learn shortly
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Subsection SSLE.ESEO Equivalent Systems and Equation Operations 13

how to describe this infinite solution set precisely (see Example SAA [32], Theorem VFSLS [98]).
Notice now how the second equation is just a multiple of the first.

One more minor adjustment provides a third system of linear equations,

2x1 + 3x2 = 3
4x1 + 6x2 = 10

A plot now reveals two lines with identical slopes, i.e. parallel lines. They have no points in common,
and so the system has a solution set that is empty, S = ∅. �

This example exhibits all of the typical behaviors of a system of equations. A subsequent
theorem will tell us that every system of linear equations has a solution set that is empty, contains
a single solution or contains infinitely many solutions (Theorem PSSLS [50]). Example STNE [11]
yielded exactly two solutions, but this does not contradict the forthcoming theorem. The equations
in Example STNE [11] are not linear because they do not match the form of Definition SLE [11],
and so we cannot apply Theorem PSSLS [50] in this case.

Subsection ESEO
Equivalent Systems and Equation Operations

With all this talk about finding solution sets for systems of linear equations, you might be ready to
begin learning how to find these solution sets yourself. We begin with our first definition that takes
a common word and gives it a very precise meaning in the context of systems of linear equations.

Definition ESYS
Equivalent Systems
Two systems of linear equations are equivalent if their solution sets are equal. 4

Notice here that the two systems of equations could look very different (i.e. not be equal), but
still have equal solution sets, and we would then call the systems equivalent. Two linear equations
in two variables might be plotted as two lines that intersect in a single point. A different system,
with three equations in two variables might have a plot that is three lines, all intersecting at a
common point, with this common point identical to the intersection point for the first system.
By our definition, we could then say these two very different looking systems of equations are
equivalent, since they have identical solution sets. It is really like a weaker form of equality, where
we allow the systems to be different in some respects, but we use the term equivalent to highlight
the situation when their solution sets are equal.

With this definition, we can begin to describe our strategy for solving linear systems. Given a
system of linear equations that looks difficult to solve, we would like to have an equivalent system
that is easy to solve. Since the systems will have equal solution sets, we can solve the “easy” system
and get the solution set to the “difficult” system. Here come the tools for making this strategy
viable.

Definition EO
Equation Operations
Given a system of linear equations, the following three operations will transform the system into a
different one, and each operation is known as an equation operation.

1. Swap the locations of two equations in the list of equations.

2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a second
equation, on both sides of the equality. Leave the first equation the same after this operation,
but replace the second equation by the new one.
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14 Section SSLE Solving Systems of Linear Equations

4

These descriptions might seem a bit vague, but the proof or the examples that follow should
make it clear what is meant by each. We will shortly prove a key theorem about equation operations
and solutions to linear systems of equations. We are about to give a rather involved proof, so a
discussion about just what a theorem really is would be timely. Head back and read Technique
T [670]. In the theorem we are about to prove, the conclusion is that two systems are
equivalent. By Definition ESYS [13] this translates to requiring that solution sets be equal for the
two systems. So we are being asked to show that two sets are equal. How do we do this? Well,
there is a very standard technique, and we will use it repeatedly through the course. If you have
not done so already, head to Section SET [665] and familiarize yourself with sets, their operations,
and especially the notion of set equality, Definition SE [666] and the nearby discussion about its
use.

Theorem EOPSS
Equation Operations Preserve Solution Sets
If we apply one of the three equation operations of Definition EO [13] to a system of linear equations
(Definition SLE [11]), then the original system and the transformed system are equivalent. �

Proof We take each equation operation in turn and show that the solution sets of the two systems
are equal, using the definition of set equality (Definition SE [666]).

1. It will not be our habit in proofs to resort to saying statements are “obvious,” but in this case,
it should be. There is nothing about the order in which we write linear equations that affects
their solutions, so the solution set will be equal if the systems only differ by a rearrangement
of the order of the equations.

2. Suppose α 6= 0 is a number. Let’s choose to multiply the terms of equation i by α to build
the new system of equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

αai1x1 + αai2x2 + αai3x3 + · · ·+ αainxn = αbi
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

Let S denote the solutions to the system in the statement of the theorem, and let T denote
the solutions to the transformed system.

(a) Show S ⊆ T . Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ S is a solution to
the original system. Ignoring the i-th equation for a moment, we know it makes all the
other equations of the transformed system true. We also know that

ai1β1 + ai2β2 + ai3β3 + · · ·+ ainβn = bi

which we can multiply by α to get

αai1β1 + αai2β2 + αai3β3 + · · ·+ αainβn = αbi

This says that the i-th equation of the transformed system is also true, so we have
established that (β1, β2, β3, . . . , βn) ∈ T , and therefore S ⊆ T .
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(b) Now show T ⊆ S. Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ T is a solution
to the transformed system. Ignoring the i-th equation for a moment, we know it makes
all the other equations of the original system true. We also know that

αai1β1 + αai2β2 + αai3β3 + · · ·+ αainβn = αbi

which we can multiply by 1
α , since α 6= 0, to get

ai1β1 + ai2β2 + ai3β3 + · · ·+ ainβn = bi

This says that the i-th equation of the original system is also true, so we have established
that (β1, β2, β3, . . . , βn) ∈ S, and therefore T ⊆ S. Locate the key point where we
required that α 6= 0, and consider what would happen if α = 0.

3. Suppose α is a number. Let’s choose to multiply the terms of equation i by α and add them
to equation j in order to build the new system of equations,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

a31x1 + a32x2 + · · ·+ a3nxn = b3
...

(αai1 + aj1)x1 + (αai2 + aj2)x2 + · · ·+ (αain + ajn)xn = αbi + bj
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Let S denote the solutions to the system in the statement of the theorem, and let T denote
the solutions to the transformed system.

(a) Show S ⊆ T . Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ S is a solution to the
original system. Ignoring the j-th equation for a moment, we know this solution makes
all the other equations of the transformed system true. Using the fact that the solution
makes the i-th and j-th equations of the original system true, we find

(αai1 + aj1)β1 + (αai2 + aj2)β2 + · · ·+ (αain + ajn)βn
= (αai1β1 + αai2β2 + · · ·+ αainβn) + (aj1β1 + aj2β2 + · · ·+ ajnβn)
= α(ai1β1 + ai2β2 + · · ·+ ainβn) + (aj1β1 + aj2β2 + · · ·+ ajnβn)
= αbi + bj .

This says that the j-th equation of the transformed system is also true, so we have
established that (β1, β2, β3, . . . , βn) ∈ T , and therefore S ⊆ T .

(b) Now show T ⊆ S. Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ T is a solution
to the transformed system. Ignoring the j-th equation for a moment, we know it makes
all the other equations of the original system true. We then find

aj1β1 + aj2β2 + · · ·+ ajnβn

= aj1β1 + aj2β2 + · · ·+ ajnβn + αbi − αbi
= aj1β1 + aj2β2 + · · ·+ ajnβn + (αai1β1 + αai2β2 + · · ·+ αainβn)− αbi
= aj1β1 + αai1β1 + aj2β2 + αai2β2 + · · ·+ ajnβn + αainβn − αbi
= (αai1 + aj1)β1 + (αai2 + aj2)β2 + · · ·+ (αain + ajn)βn − αbi
= αbi + bj − αbi
= bj

This says that the j-th equation of the original system is also true, so we have established
that (β1, β2, β3, . . . , βn) ∈ S, and therefore T ⊆ S.
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16 Section SSLE Solving Systems of Linear Equations

Why didn’t we need to require that α 6= 0 for this row operation? In other words, how does
the third statement of the theorem read when α = 0? Does our proof require some extra care
when α = 0? Compare your answers with the similar situation for the second row operation.
(See Exercise SSLE.T20 [20].)

�

Theorem EOPSS [14] is the necessary tool to complete our strategy for solving systems of
equations. We will use equation operations to move from one system to another, all the while
keeping the solution set the same. With the right sequence of operations, we will arrive at a
simpler equation to solve. The next two examples illustrate this idea, while saving some of the
details for later.

Example US
Three equations, one solution
We solve the following system by a sequence of equation operations.

x1 + 2x2 + 2x3 = 4
x1 + 3x2 + 3x3 = 5

2x1 + 6x2 + 5x3 = 6

α = −1 times equation 1, add to equation 2:

x1 + 2x2 + 2x3 = 4
0x1 + 1x2 + 1x3 = 1
2x1 + 6x2 + 5x3 = 6

α = −2 times equation 1, add to equation 3:

x1 + 2x2 + 2x3 = 4
0x1 + 1x2 + 1x3 = 1
0x1 + 2x2 + 1x3 = −2

α = −2 times equation 2, add to equation 3:

x1 + 2x2 + 2x3 = 4
0x1 + 1x2 + 1x3 = 1
0x1 + 0x2 − 1x3 = −4

α = −1 times equation 3:

x1 + 2x2 + 2x3 = 4
0x1 + 1x2 + 1x3 = 1
0x1 + 0x2 + 1x3 = 4

which can be written more clearly as

x1 + 2x2 + 2x3 = 4
x2 + x3 = 1

x3 = 4

This is now a very easy system of equations to solve. The third equation requires that x3 = 4 to
be true. Making this substitution into equation 2 we arrive at x2 = −3, and finally, substituting
these values of x2 and x3 into the first equation, we find that x1 = 2. Note too that this is the
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Subsection SSLE.ESEO Equivalent Systems and Equation Operations 17

only solution to this final system of equations, since we were forced to choose these values to make
the equations true. Since we performed equation operations on each system to obtain the next one
in the list, all of the systems listed here are all equivalent to each other by Theorem EOPSS [14].
Thus (x1, x2, x3) = (2,−3, 4) is the unique solution to the original system of equations (and all of
the other intermediate systems of equations listed as we transfomed one into another). �

Example IS
Three equations, infinitely many solutions
The following system of equations made an appearance earlier in this section (Example NSE [12]),
where we listed one of its solutions. Now, we will try to find all of the solutions to this system. Don’t
concern yourself too much about why we choose this particular sequence of equation operations,
just believe that the work we do is all correct.

x1 + 2x2 + 0x3 + x4 = 7
x1 + x2 + x3 − x4 = 3

3x1 + x2 + 5x3 − 7x4 = 1

α = −1 times equation 1, add to equation 2:

x1 + 2x2 + 0x3 + x4 = 7
0x1 − x2 + x3 − 2x4 = −4

3x1 + x2 + 5x3 − 7x4 = 1

α = −3 times equation 1, add to equation 3:

x1 + 2x2 + 0x3 + x4 = 7
0x1 − x2 + x3 − 2x4 = −4

0x1 − 5x2 + 5x3 − 10x4 = −20

α = −5 times equation 2, add to equation 3:

x1 + 2x2 + 0x3 + x4 = 7
0x1 − x2 + x3 − 2x4 = −4

0x1 + 0x2 + 0x3 + 0x4 = 0

α = −1 times equation 2:

x1 + 2x2 + 0x3 + x4 = 7
0x1 + x2 − x3 + 2x4 = 4

0x1 + 0x2 + 0x3 + 0x4 = 0

α = −2 times equation 2, add to equation 1:

x1 + 0x2 + 2x3 − 3x4 = −1
0x1 + x2 − x3 + 2x4 = 4

0x1 + 0x2 + 0x3 + 0x4 = 0

which can be written more clearly as

x1 + 2x3 − 3x4 = −1
x2 − x3 + 2x4 = 4

0 = 0
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18 Section SSLE Solving Systems of Linear Equations

What does the equation 0 = 0 mean? We can choose any values for x1, x2, x3, x4 and this equation
will be true, so we only need to consider further the first two equations, since the third is true no
matter what. We can analyze the second equation without consideration of the variable x1. It
would appear that there is considerable latitude in how we can choose x2, x3, x4 and make this
equation true. Let’s choose x3 and x4 to be anything we please, say x3 = a and x4 = b.

Now we can take these arbitrary values for x3 and x4, substitute them in equation 1, to obtain

x1 + 2a− 3b = −1
x1 = −1− 2a+ 3b

Similarly, equation 2 becomes

x2 − a+ 2b = 4
x2 = 4 + a− 2b

So our arbitrary choices of values for x3 and x4 (a and b) translate into specific values of x1 and
x2. The lone solution given in Example NSE [12] was obtained by choosing a = 2 and b = 1. Now
we can easily and quickly find many more (infinitely more). Suppose we choose a = 5 and b = −2,
then we compute

x1 = −1− 2(5) + 3(−2) = −17
x2 = 4 + 5− 2(−2) = 13

and you can verify that (x1, x2, x3, x4) = (−17, 13, 5, −2) makes all three equations true. The
entire solution set is written as

S = {(−1− 2a+ 3b, 4 + a− 2b, a, b) | a ∈ C, b ∈ C}

It would be instructive to finish off your study of this example by taking the general form of the
solutions given in this set and substituting them into each of the three equations and verify that
they are true in each case (Exercise SSLE.M40 [20]). �

In the next section we will describe how to use equation operations to systematically solve any
system of linear equations. But first, read one of our more important pieces of advice about
speaking and writing mathematics. See Technique L [670].

Before attacking the exercises in this section, it will be helpful to read some advice on getting
started on the construction of a proof. See Technique GS [671].

Subsection READ
Reading Questions

1. How many solutions does the system of equations 3x + 2y = 4, 6x + 4y = 8 have? Explain
your answer.

2. How many solutions does the system of equations 3x+ 2y = 4, 6x+ 4y = −2 have? Explain
your answer.

3. What do we mean when we say mathematics is a language?
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Subsection EXC
Exercises

C10 Find a solution to the system in Example IS [17] where x3 = 6 and x4 = 2. Find two other
solutions to the system. Find a solution where x1 = −17 and x2 = 14. How many possible answers
are there to each of these questions?
Contributed by Robert Beezer

C20 Each archetype (Appendix A [681]) that is a system of equations begins by listing some
specific solutions. Verify the specific solutions listed in the following archetypes by evaluating the
system of equations with the solutions listed.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]
Archetype E [702]
Archetype F [705]
Archetype G [710]
Archetype H [714]
Archetype I [718]
Archetype J [722]
Contributed by Robert Beezer

C50 A three-digit number has two properties. The tens-digit and the ones-digit add up to 5. If
the number is written with the digits in the reverse order, and then subtracted from the original
number, the result is 792. Use a system of equations to find all of the three-digit numbers with
these properties.
Contributed by Robert Beezer Solution [21]

M10 Each sentence below has at least two meanings. Identify the source of the double meaning,
and rewrite the sentence (at least twice) to clearly convey each meaning.

1. They are baking potatoes.

2. He bought many ripe pears and apricots.

3. She likes his sculpture.

4. I decided on the bus.

Contributed by Robert Beezer Solution [21]

M11 Discuss the diffence in meaning of each of the following three almost identical sentences,
which all have the same grammatical structure. (These are due to Keith Devlin.)

1. She saw him in the park with a dog.

2. She saw him in the park with a fountain.

3. She saw him in the park with a telescope.

Contributed by Robert Beezer Solution [21]

M12 The following sentence, due to Noam Chomsky, has a correct grammatical structure, but
is meaningless. Critique its faults. “Colorless green ideas sleep furiously.” (Chomsky, Noam.
Syntactic Structures, The Hague/Paris: Mouton, 1957. p. 15.)
Contributed by Robert Beezer Solution [21]
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20 Section SSLE Solving Systems of Linear Equations

M13 Read the following sentence and form a mental picture of the situation.

The baby cried and the mother picked it up.

What assumptions did you make about the situation?
Contributed by Robert Beezer Solution [21]

M30 This problem appears in a middle-school mathematics textbook: Together Dan and Diane
have $20. Together Diane and Donna have $15. How much do the three of them have in total?
(Transistion Mathematics, Second Edition, Scott Foresman Addison Wesley, 1998. Problem 5–
1.19.)
Contributed by David Beezer Solution [22]

M40 Solutions to the system in Example IS [17] are given as

(x1, x2, x3, x4) = (−1− 2a+ 3b, 4 + a− 2b, a, b)

Evaluate the three equations of the original system with these expressions in a and b and verify
that each equation is true, no matter what values are chosen for a and b.
Contributed by Robert Beezer

M70 We have seen in this section that systems of linear equations have limited possibilities
for solution sets, and we will shortly prove Theorem PSSLS [50] that describes these possibilities
exactly. This exercise will show that if we relax the requirement that our equations be linear, then
the possibilities expand greatly. Consider a system of two equations in the two variables x and y,
where the departure from linearity involves simply squaring the variables.

x2 − y2 = 1

x2 + y2 = 4

After solving this system of non-linear equations, replace the second equation in turn by x2 + 2x+
y2 = 3, x2 +y2 = 1, x2−x+y2 = 0, 4x2 +4y2 = 1 and solve each resulting system of two equations
in two variables.
Contributed by Robert Beezer Solution [22]

T10 Technique D [669] asks you to formulate a definition of what it means for a whole number to
be odd. What is your definition? (Don’t say “the opposite of even.”) Is 6 odd? Is 11 odd? Justify
your answers by using your definition.
Contributed by Robert Beezer Solution [22]

T20 Explain why the second equation operation in Definition EO [13] requires that the scalar be
nonzero, while in the third equation operation this restriction on the scalar is not present.
Contributed by Robert Beezer Solution [22]
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Subsection SOL
Solutions

C50 Contributed by Robert Beezer Statement [19]
Let a be the hundreds digit, b the tens digit, and c the ones digit. Then the first condition says
that b+ c = 5. The original number is 100a+ 10b+ c, while the reversed number is 100c+ 10b+ a.
So the second condition is

792 = (100a+ 10b+ c)− (100c+ 10b+ a) = 99a− 99c

So we arrive at the system of equations

b+ c = 5
99a− 99c = 792

Using equation operations, we arrive at the equivalent system

a− c = 8
b+ c = 5

We can vary c and obtain infinitely many solutions. However, c must be a digit, restricting us to
ten values (0 – 9). Furthermore, if c > 1, then the first equation forces a > 9, an impossibility.
Setting c = 0, yields 850 as a solution, and setting c = 1 yields 941 as another solution.

M10 Contributed by Robert Beezer Statement [19]

1. Is “baking” a verb or an adjective?
Potatoes are being baked.
Those are baking potatoes.

2. Are the apricots ripe, or just the pears? Parentheses could indicate just what the adjective
“ripe” is meant to modify. Were there many apricots as well, or just many pears?
He bought many pears and many ripe apricots.
He bought apricots and many ripe pears.

3. Is “sculpture” a single physical object, or the sculptor’s style expressed over many pieces and
many years?
She likes his sculpture of the girl.
She likes his sculptural style.

4. Was a decision made while in the bus, or was the outcome of a decision to choose the bus.
Would the sentence “I decided on the car,” have a similar double meaning?
I made my decision while on the bus.
I decided to ride the bus.

M11 Contributed by Robert Beezer Statement [19]
We know the dog belongs to the man, and the fountain belongs to the park. It is not clear if the
telescope belongs to the man, the woman, or the park.

M12 Contributed by Robert Beezer Statement [19]
In adjacent pairs the words are contradictory or inappropriate. Something cannot be both green
and colorless, ideas do not have color, ideas do not sleep, and it is hard to sleep furiously.

M13 Contributed by Robert Beezer Statement [20]
Did you assume that the baby and mother are human?
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Did you assume that the baby is the child of the mother?
Did you assume that the mother picked up the baby as an attempt to stop the crying?

M30 Contributed by Robert Beezer Statement [20]
If x, y and z represent the money held by Dan, Diane and Donna, then y = 15−z and x = 20−y =
20− (15−z) = 5+z. We can let z take on any value from 0 to 15 without any of the three amounts
being negative, since presumably middle-schoolers are too young to assume debt.

Then the total capital held by the three is x+ y+ z = (5 + z) + (15− z) + z = 20 + z. So their
combined holdings can range anywhere from $20 (Donna is broke) to $35 (Donna is flush).

We will have more to say about this situation in Section TSS [45], and specifically Theorem
CMVEI [50].

M70 Contributed by Robert Beezer Statement [20]
The equation x2−y2 = 1 has a solution set by itself that has the shape of a hyperbola when plotted.
The five different second equations have solution sets that are circles when plotted individually.
Where the hyperbola and circle intersect are the solutions to the system of two equations. As the
size and location of the circle varies, the number of intersections varies from four to none (in the
order given). Sketching the relevant equations would be instructive, as was discussed in Example
STNE [11].

The exact solution sets are (according to the choice of the second equation),

x2 + y2 = 4 :

{(√
5
2
,

√
3
2

)
,

(
−
√

5
2
,

√
3
2

)
,

(√
5
2
,−
√

3
2

)
,

(
−
√

5
2
,−
√

3
2

)}
x2 + 2x+ y2 = 3 :

{
(1, 0), (−2,

√
3), (−2,−

√
3)
}

x2 + y2 = 1 : {(1, 0), (−1, 0)}
x2 − x+ y2 = 0 : {(1, 0)}

4x2 + 4y2 = 1 : {}

T10 Contributed by Robert Beezer Statement [20]
We can say that an integer is odd if when it is divided by 2 there is a remainder of 1. So 6 is not
odd since 6 = 3× 2 + 0, while 11 is odd since 11 = 5× 2 + 1.

T20 Contributed by Robert Beezer Statement [20]
Definition EO [13] is engineered to make Theorem EOPSS [14] true. If we were to allow a zero
scalar to multiply an equation then that equation would be transformed to the equation 0 = 0,
which is true for any possible values of the variables. Any restrictions on the solution set imposed
by the original equation would be lost.

However, in the third operation, it is allowed to choose a zero scalar, multiply an equation by
this scalar and add the transformed equation to a second equation (leaving the first unchanged).
The result? Nothing. The second equation is the same as it was before. So the theorem is true in
this case, the two systems are equivalent. But in practice, this would be a silly thing to actually
ever do! We still allow it though, in order to keep our theorem as general as possible.

Notice the location in the proof of Theorem EOPSS [14] where the expression 1
α appears — this

explains the prohibition on α = 0 in the second equation operation.
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Section RREF
Reduced Row-Echelon Form

After solving a few systems of equations, you will recognize that it doesn’t matter so much what we
call our variables, as opposed to what numbers act as their coefficients. A system in the variables
x1, x2, x3 would behave the same if we changed the names of the variables to a, b, c and kept all
the constants the same and in the same places. In this section, we will isolate the key bits of
information about a system of equations into something called a matrix, and then use this matrix
to systematically solve the equations. Along the way we will obtain one of our most important and
useful computational tools.

Subsection MVNSE
Matrix and Vector Notation for Systems of Equations

Definition M
Matrix
An m×n matrix is a rectangular layout of numbers from C having m rows and n columns. We will
use upper-case Latin letters from the start of the alphabet (A, B, C, . . . ) to denote matrices and
squared-off brackets to delimit the layout. Many use large parentheses instead of brackets — the
distinction is not important. Rows of a matrix will be referenced starting at the top and working
down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1
is at the left). For a matrix A, the notation [A]ij will refer to the complex number in row i and
column j of A.
(This definition contains Notation M.)
(This definition contains Notation MC.) 4

Be careful with this notation for individual entries, since it is easy to think that [A]ij refers
to the whole matrix. It does not. It is just a number, but is a convenient way to talk about the
individual entries simultaneously. This notation will get a heavy workout once we get to Chapter
M [179].

Example AM
A matrix

B =

−1 2 5 3
1 0 −6 1
−4 2 2 −2


is a matrix with m = 3 rows and n = 4 columns. We can say that [B]2,3 = −6 while [B]3,4 = −2.
�

A calculator or computer language can be a convenient way to perform calculations with matri-
ces. But first you have to enter the matrix. See: Computation ME.MMA [653] Computation
ME.TI86 [657] Computation ME.TI83 [658] . When we do equation operations on system
of equations, the names of the variables really aren’t very important. x1, x2, x3, or a, b, c, or x,
y, z, it really doesn’t matter. In this subsection we will describe some notation that will make it
easier to describe linear systems, solve the systems and describe the solution sets. Here is a list of
definitions, laden with notation.

Definition CV
Column Vector
A column vector of size m is an ordered list of m numbers, which is written in order vertically,
starting at the top and proceeding to the bottom. At times, we will refer to a column vector as
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simply a vector. Column vectors will be written in bold, usually with lower case Latin letter from
the end of the alphabet such as u, v, w, x, y, z. Some books like to write vectors with arrows,
such as ~u. Writing by hand, some like to put arrows on top of the symbol, or a tilde underneath
the symbol, as in u

∼
. To refer to the entry or component that is number i in the list that is the

vector v we write [v]i.
(This definition contains Notation CV.)
(This definition contains Notation CVC.) 4

Be careful with this notation. While the symbols [v]i might look somewhat substantial, as an
object this represents just one component of a vector, which is just a single complex number.

Definition ZCV
Zero Column Vector
The zero vector of size m is the column vector of size m where each entry is the number zero,

0 =


0
0
0
...
0


or defined much more compactly, [0]i = 0 for 1 ≤ i ≤ m.
(This definition contains Notation ZCV.) 4

Definition CM
Coefficient Matrix
For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the coefficient matrix is the m× n matrix

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

am1 am2 am3 . . . amn


4

Definition VOC
Vector of Constants
For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm
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the vector of constants is the column vector of size m

b =


b1
b2
b3
...
bm


4

Definition SOLV
Solution Vector
For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the solution vector is the column vector of size n

x =


x1

x2

x3
...
xn


4

The solution vector may do double-duty on occasion. It might refer to a list of variable quantities
at one point, and subsequently refer to values of those variables that actually form a particular
solution to that system.

Definition LSMR
Matrix Representation of a Linear System
If A is the coefficient matrix of a system of linear equations and b is the vector of constants, then
we will write LS(A, b) as a shorthand expression for the system of linear equations, which we will
refer to as the matrix representation of the linear system.
(This definition contains Notation LSMR.) 4

Example NSLE
Notation for systems of linear equations
The system of linear equations

2x1 + 4x2 − 3x3 + 5x4 + x5 = 9
3x1 + x2 + x4 − 3x5 = 0

−2x1 + 7x2 − 5x3 + 2x4 + 2x5 = −3

has coefficient matrix

A =

 2 4 −3 5 1
3 1 0 1 −3
−2 7 −5 2 2


and vector of constants

b =

 9
0
−3


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and so will be referenced as LS(A, b). �

Definition AM
Augmented Matrix
Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of
constants b. Then the augmented matrix of the system of equations is the m× (n+ 1) matrix
whose first n columns are the columns of A and whose last column (number n + 1) is the column
vector b. This matrix will be written as [A | b].
(This definition contains Notation AM.) 4

The augmented matrix represents all the important information in the system of equations,
since the names of the variables have been ignored, and the only connection with the variables is
the location of their coefficients in the matrix. It is important to realize that the augmented matrix
is just that, a matrix, and not a system of equations. In particular, the augmented matrix does
not have any “solutions,” though it will be useful for finding solutions to the system of equations
that it is associated with. (Think about your objects, and review Technique L [670].) However,
notice that an augmented matrix always belongs to some system of equations, and vice versa, so it
is tempting to try and blur the distinction between the two. Here’s a quick example.

Example AMAA
Augmented matrix for Archetype A
Archetype A [685] is the following system of 3 equations in 3 variables.

x1 − x2 + 2x3 = 1
2x1 + x2 + x3 = 8

x1 + x2 = 5

Here is its augmented matrix. 1 −1 2 1
2 1 1 8
1 1 0 5


�

Subsection RO
Row Operations

An augmented matrix for a system of equations will save us the tedium of continually writing down
the names of the variables as we solve the system. It will also release us from any dependence
on the actual names of the variables. We have seen how certain operations we can perform on
equations (Definition EO [13]) will preserve their solutions (Theorem EOPSS [14]). The next two
definitions and the following theorem carry over these ideas to augmented matrices.

Definition RO
Row Operations
The following three operations will transform an m× n matrix into a different matrix of the same
size, and each is known as a row operation.

1. Swap the locations of two rows.

2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the entries in the
same columns of a second row. Leave the first row the same after this operation, but replace
the second row by the new values.
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We will use a symbolic shorthand to describe these row operations:

1. Ri ↔ Rj : Swap the location of rows i and j.

2. αRi: Multiply row i by the nonzero scalar α.

3. αRi +Rj : Multiply row i by the scalar α and add to row j.

(This definition contains Notation RO.) 4

Definition REM
Row-Equivalent Matrices
Two matrices, A and B, are row-equivalent if one can be obtained from the other by a sequence
of row operations. 4

Example TREM
Two row-equivalent matrices
The matrices

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent as can be seen from2 −1 3 4

5 2 −2 3
1 1 0 6

 R1↔R3−−−−−→

1 1 0 6
5 2 −2 3
2 −1 3 4


−2R1+R2−−−−−−→

1 1 0 6
3 0 −2 −9
2 −1 3 4


We can also say that any pair of these three matrices are row-equivalent. �

Notice that each of the three row operations is reversible (Exercise RREF.T10 [38]), so we
do not have to be careful about the distinction between “A is row-equivalent to B” and “B is
row-equivalent to A.” (Exercise RREF.T11 [38]) The preceding definitions are designed to make
the following theorem possible. It says that row-equivalent matrices represent systems of linear
equations that have identical solution sets.

Theorem REMES
Row-Equivalent Matrices represent Equivalent Systems
Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations
that they represent are equivalent systems. �

Proof If we perform a single row operation on an augmented matrix, it will have the same effect
as if we did the analogous equation operation on the corresponding system of equations. By exactly
the same methods as we used in the proof of Theorem EOPSS [14] we can see that each of these
row operations will preserve the set of solutions for the corresponding system of equations. �

So at this point, our strategy is to begin with a system of equations, represent it by an augmented
matrix, perform row operations (which will preserve solutions for the corresponding systems) to get
a “simpler” augmented matrix, convert back to a “simpler” system of equations and then solve that
system, knowing that its solutions are those of the original system. Here’s a rehash of Example US
[16] as an exercise in using our new tools.

Example USR
Three equations, one solution, reprised
We solve the following system using augmented matrices and row operations. This is the same
system of equations solved in Example US [16] using equation operations.

x1 + 2x2 + 2x3 = 4
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x1 + 3x2 + 3x3 = 5
2x1 + 6x2 + 5x3 = 6

Form the augmented matrix,

A =

1 2 2 4
1 3 3 5
2 6 5 6


and apply row operations,

−1R1+R2−−−−−−→

1 2 2 4
0 1 1 1
2 6 5 6

 −2R1+R3−−−−−−→

1 2 2 4
0 1 1 1
0 2 1 −2


−2R2+R3−−−−−−→

1 2 2 4
0 1 1 1
0 0 −1 −4

 −1R3−−−→

1 2 2 4
0 1 1 1
0 0 1 4


So the matrix

B =

1 2 2 4
0 1 1 1
0 0 1 4


is row equivalent to A and by Theorem REMES [27] the system of equations below has the same
solution set as the original system of equations.

x1 + 2x2 + 2x3 = 4
x2 + x3 = 1

x3 = 4

Solving this “simpler” system is straightforward and is identical to the process in Example US [16].
�

Subsection RREF
Reduced Row-Echelon Form

The preceding example amply illustrates the definitions and theorems we have seen so far. But it
still leaves two questions unanswered. Exactly what is this “simpler” form for a matrix, and just
how do we get it? Here’s the answer to the first question, a definition of reduced row-echelon form.

Definition RREF
Reduced Row-Echelon Form
A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero lies below any row that contains a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.

3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row i, column j and the
other located in row s, column t. If s > i, then t > j.

A row of only zero entries will be called a zero row and the leftmost nonzero entry of a nonzero
row will be called a leading 1. The number of nonzero rows will be denoted by r.

A column containing a leading 1 will be called a pivot column. The set of column indices for
all of the pivot columns will be denoted by D = {d1, d2, d3, . . . , dr} where d1 < d2 < d3 < · · · < dr,
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while the columns that are not pivot colums will be denoted as F = {f1, f2, f3, . . . , fn−r} where
f1 < f2 < f3 < · · · < fn−r.
(This definition contains Notation RREFA.) 4

The principal feature of reduced row-echelon form is the pattern of leading 1’s guaranteed by
conditions (2) and (4), reminiscent of a flight of geese, or steps in a staircase, or water cascading
down a mountain stream.

There are a number of new terms and notation introduced in this definition, which should make
you suspect that this is an important definition. Given all there is to digest here, we will save the
use of D and F until Section TSS [45].

Example RREF
A matrix in reduced row-echelon form
The matrix C is in reduced row-echelon form.

1 −3 0 6 0 0 −5 9
0 0 0 0 1 0 3 −7
0 0 0 0 0 1 7 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


This matrix has two zero rows and three leading 1’s. r = 3. Columns 1, 5, and 6 are pivot columns.

�

Example NRREF
A matrix not in reduced row-echelon form
The matrix D is not in reduced row-echelon form, as it fails each of the four requirements once.

1 0 −3 0 6 0 7 −5 9
0 0 0 5 0 1 0 3 −7
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −4 2
0 0 0 0 0 0 1 7 3
0 0 0 0 0 0 0 0 0


�

Our next theorem has a “constructive” proof. Learn about the meaning of this term in Tech-
nique C [671].

Theorem REMEF
Row-Equivalent Matrix in Echelon Form
Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.

2. B is in reduced row-echelon form.

�

Proof Suppose that A has m rows and n columns. We will describe a process for converting
A into B via row operations. This procedure is known as Gauss–Jordan elimination. Tracing
through this procedure will be easier if you recognize that i refers to a row that is being converted,
j refers to a column that is being converted, and r keeps track of the number of nonzero rows. Here
we go.

1. Set j = 0 and r = 0.

2. Increase j by 1. If j now equals n+ 1, then stop.
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3. Examine the entries of A in column j located in rows r + 1 through m.
If all of these entries are zero, then go to Step 2.

4. Choose a row from rows r + 1 through m with a nonzero entry in column j.
Let i denote the index for this row.

5. Increase r by 1.

6. Use the first row operation to swap rows i and r.

7. Use the second row operation to convert the entry in row r and column j to a 1.

8. Use the third row operation with row r to convert every other entry of column j to zero.

9. Go to Step 2.

The result of this procedure is that the matrix A is converted to a matrix in reduced row-echelon
form, which we will refer to as B. We need to now prove this claim by showing that the converted
matrix has the requisite properties of Definition RREF [28]. First, the matrix is only converted
through row operations (Step 6, Step 7, Step 8), so A and B are row-equivalent (Definition REM
[27]).

It is a bit more work to be certain that B is in reduced row-echelon form. We claim that as we
begin Step 2, the first j columns of the matrix are in reduced row-echelon form with r nonzero rows.
Certainly this is true at the start when j = 0, since the matrix has no columns and so vacuously
meets the conditions of Definition RREF [28] with r = 0 nonzero rows.

In Step 2 we increase j by 1 and begin to work with the next column. There are two possible
outcomes for Step 3. Suppose that every entry of column j in rows r + 1 through m is zero. Then
with no changes we recognize that the first j columns of the matrix has its first r rows still in
reduced-row echelon form, with the final m− r rows still all zero.

Suppose instead that the entry in row i of column j is nonzero. Notice that since r+1 ≤ i ≤ m,
we know the first j − 1 entries of this row are all zero. Now, in Step 5 we increase r by 1, and then
embark on building a new nonzero row. In Step 6 we swap row r and row i. In the first j columns,
the first r − 1 rows remain in reduced row-echelon form after the swap. In Step 7 we multiply row
r by a nonzero scalar, creating a 1 in the entry in column j of row i, and not changing any other
rows. This new leading 1 is the first nonzero entry in its row, and is located to the right of all
the leading 1’s in the preceding r − 1 rows. With Step 8 we insure that every entry in the column
with this new leading 1 is now zero, as required for reduced row-echelon form. Also, rows r + 1
through m are now all zeros in the first j columns, so we now only have one new nonzero row,
consistent with our increase of r by one. Furthermore, since the first j−1 entries of row r are zero,
the employment of the third row operation does not destroy any of the necessary features of rows
1 through r − 1 and rows r + 1 through m, in columns 1 through j − 1.

So at this stage, the first j columns of the matrix are in reduced row-echelon form. When Step 2
finally increases j to n + 1, then the procedure is completed and the full n columns of the matrix
are in reduced row-echelon form, with the value of r correctly recording the number of nonzero
rows. �

The procedure given in the proof of Theorem REMEF [29] can be more precisely described
using a pseudo-code version of a computer program, as follows:

input m, n and A
r ← 0
for j ← 1 to n

i← r + 1
while i ≤ m and [A]ij = 0

i← i+ 1
if i 6= m+ 1

r ← r + 1
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swap rows i and r of A (row op 1)
scale entry in row r, column j of A to a leading 1 (row op 2)
for k ← 1 to m, k 6= r

zero out entry in row k, column j of A (row op 3 using row r)
output r and A

Notice that as a practical matter the “and” used in the conditional statement of the while statement
should be of the “short-circuit” variety so that the array access that follows is not out-of-bounds.

So now we can put it all together. Begin with a system of linear equations (Definition SLE
[11]), and represent the system by its augmented matrix (Definition AM [26]). Use row operations
(Definition RO [26]) to convert this matrix into reduced row-echelon form (Definition RREF [28]),
using the procedure outlined in the proof of Theorem REMEF [29]. Theorem REMEF [29] also
tells us we can always accomplish this, and that the result is row-equivalent (Definition REM [27])
to the original augmented matrix. Since the matrix in reduced-row echelon form has the same
solution set, we can analyze the row-reduced version instead of the original matrix, viewing it as
the augmented matrix of a different system of equations. The beauty of augmented matrices in
reduced row-echelon form is that the solution sets to their corresponding systems can be easily
determined, as we will see in the next few examples and in the next section.

We will see through the course that almost every interesting property of a matrix can be
discerned by looking at a row-equivalent matrix in reduced row-echelon form. For this reason it is
important to know that the matrix B guaranteed to exist by Theorem REMEF [29] is also unique.
We could prove this result right now, but the proof will be much easier to state and understand a
few sections from now when we have a few more definitions. However, the proof we will provide
does not explicitly require any more theorems than we have right now, so we can, and will, make
use of the uniqueness of B between now and then by citing Theorem RREFU [106]. You might
want to jump forward now to read the statement of this important theorem and save studying its
proof for later, once the rest of us get there.

We will now run through some examples of using these definitions and theorems to solve some
systems of equations. From now on, when we have a matrix in reduced row-echelon form, we will
mark the leading 1’s with a small box. In your work, you can box ’em, circle ’em or write ’em in a
different color — just identify ’em somehow. This device will prove very useful later and is a very
good habit to start developing right now.

Example SAB
Solutions for Archetype B
Let’s find the solutions to the following system of equations,

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

First, form the augmented matrix, −7 −6 −12 −33
5 5 7 24
1 0 4 5


and work to reduced row-echelon form, first with i = 1,

R1↔R3−−−−−→

 1 0 4 5
5 5 7 24
−7 −6 −12 −33

 −5R1+R2−−−−−−→

 1 0 4 5
0 5 −13 −1
−7 −6 −12 −33


7R1+R3−−−−−→

 1 0 4 5
0 5 −13 −1
0 −6 16 2


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Now, with i = 2,

1
5
R2−−−→

 1 0 4 5
0 1 −13

5
−1
5

0 −6 16 2

 6R2+R3−−−−−→

 1 0 4 5
0 1 −13

5
−1
5

0 0 2
5

4
5


And finally, with i = 3,

5
2
R3−−−→

 1 0 4 5
0 1 −13

5
−1
5

0 0 1 2

 13
5
R3+R2−−−−−−→

 1 0 4 5
0 1 0 5
0 0 1 2


−4R3+R1−−−−−−→

 1 0 0 −3
0 1 0 5
0 0 1 2


This is now the augmented matrix of a very simple system of equations, namely x1 = −3, x2 = 5,
x3 = 2, which has an obvious solution. Furthermore, we can see that this is the only solution to
this system, so we have determined the entire solution set,

S =


−3

5
2


You might compare this example with the procedure we used in Example US [16]. �

Archetypes A and B are meant to contrast each other in many respects. So let’s solve Archetype
A now.

Example SAA
Solutions for Archetype A
Let’s find the solutions to the following system of equations,

x1 − x2 + 2x3 = 1
2x1 + x2 + x3 = 8

x1 + x2 = 5

First, form the augmented matrix, 1 −1 2 1
2 1 1 8
1 1 0 5


and work to reduced row-echelon form, first with i = 1,

−2R1+R2−−−−−−→

1 −1 2 1
0 3 −3 6
1 1 0 5

 −1R1+R3−−−−−−→

 1 −1 2 1
0 3 −3 6
0 2 −2 4


Now, with i = 2,

1
3
R2−−−→

 1 −1 2 1
0 1 −1 2
0 2 −2 4

 1R2+R1−−−−−→

 1 0 1 3
0 1 −1 2
0 2 −2 4


−2R2+R3−−−−−−→

 1 0 1 3
0 1 −1 2
0 0 0 0


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The system of equations represented by this augmented matrix needs to be considered a bit dif-
ferently than that for Archetype B. First, the last row of the matrix is the equation 0 = 0, which
is always true, so it imposes no restrictions on our possible solutions and therefore we can safely
ignore it as we analyze the other two equations. These equations are,

x1 + x3 = 3
x2 − x3 = 2.

While this system is fairly easy to solve, it also appears to have a multitude of solutions. For
example, choose x3 = 1 and see that then x1 = 2 and x2 = 3 will together form a solution. Or
choose x3 = 0, and then discover that x1 = 3 and x2 = 2 lead to a solution. Try it yourself: pick
any value of x3 you please, and figure out what x1 and x2 should be to make the first and second
equations (respectively) true. We’ll wait while you do that. Because of this behavior, we say that
x3 is a “free” or “independent” variable. But why do we vary x3 and not some other variable?
For now, notice that the third column of the augmented matrix does not have any leading 1’s in
its column. With this idea, we can rearrange the two equations, solving each for the variable that
corresponds to the leading 1 in that row.

x1 = 3− x3

x2 = 2 + x3

To write the set of solution vectors in set notation, we have

S =


3− x3

2 + x3

x3

 ∣∣∣∣∣∣ x3 ∈ C


We’ll learn more in the next section about systems with infinitely many solutions and how to
express their solution sets. Right now, you might look back at Example IS [17]. �

Example SAE
Solutions for Archetype E
Let’s find the solutions to the following system of equations,

2x1 + x2 + 7x3 − 7x4 = 2
−3x1 + 4x2 − 5x3 − 6x4 = 3

x1 + x2 + 4x3 − 5x4 = 2

First, form the augmented matrix,  2 1 7 −7 2
−3 4 −5 −6 3
1 1 4 −5 2


and work to reduced row-echelon form, first with i = 1,

R1↔R3−−−−−→

 1 1 4 −5 2
−3 4 −5 −6 3
2 1 7 −7 2

 3R1+R2−−−−−→

1 1 4 −5 2
0 7 7 −21 9
2 1 7 −7 2


−2R1+R3−−−−−−→

 1 1 4 −5 2
0 7 7 −21 9
0 −1 −1 3 −2


Now, with i = 2,

R2↔R3−−−−−→

 1 1 4 −5 2
0 −1 −1 3 −2
0 7 7 −21 9

 −1R2−−−→

 1 1 4 −5 2
0 1 1 −3 2
0 7 7 −21 9


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−1R2+R1−−−−−−→

 1 0 3 −2 0
0 1 1 −3 2
0 7 7 −21 9

 −7R2+R3−−−−−−→

 1 0 3 −2 0
0 1 1 −3 2
0 0 0 0 −5


And finally, with i = 3,

− 1
5
R3−−−−→

 1 0 3 −2 0
0 1 1 −3 2
0 0 0 0 1

 −2R3+R2−−−−−−→

 1 0 3 −2 0
0 1 1 −3 0
0 0 0 0 1


Let’s analyze the equations in the system represented by this augmented matrix. The third equation
will read 0 = 1. This is patently false, all the time. No choice of values for our variables will ever
make it true. We’re done. Since we cannot even make the last equation true, we have no hope of
making all of the equations simultaneously true. So this system has no solutions, and its solution
set is the empty set, ∅ = { } (Definition ES [665]).

Notice that we could have reached this conclusion sooner. After performing the row operation
−7R2 + R3, we can see that the third equation reads 0 = −5, a false statement. Since the system
represented by this matrix has no solutions, none of the systems represented has any solutions.
However, for this example, we have chosen to bring the matrix fully to reduced row-echelon form
for the practice. �

These three examples (Example SAB [31], Example SAA [32], Example SAE [33]) illustrate the
full range of possibilities for a system of linear equations — no solutions, one solution, or infinitely
many solutions. In the next section we’ll examine these three scenarios more closely.

Definition RR
Row-Reducing
To row-reduce the matrix A means to apply row operations to A and arrive at a row-equivalent
matrix B in reduced row-echelon form. 4

So the term row-reduce is used as a verb. Theorem REMEF [29] tells us that this process
will always be successful and Theorem RREFU [106] tells us that the result will be unambiguous.
Typically, the analysis of A will proceed by analyzing B and applying theorems whose hypotheses
include the row-equivalence of A and B.

After some practice by hand, you will want to use your favorite computing device to do the
computations required to bring a matrix to reduced row-echelon form (Exercise RREF.C30 [38]).
See: Computation RR.MMA [653] Computation RR.TI86 [658] Computation RR.TI83 [659]
.

Subsection READ
Reading Questions

1. Is the matrix below in reduced row-echelon form? Why or why not?1 5 0 6 8
0 0 1 2 0
0 0 0 0 1


2. Use row operations to convert the matrix below to reduced row-echelon form and report the

final matrix.  2 1 8
−1 1 −1
−2 5 4


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3. Find all the solutions to the system below by using an augmented matrix and row operations.
Report your final matrix in reduced row-echelon form and the set of solutions.

2x1 + 3x2 − x3 = 0
x1 + 2x2 + x3 = 3
x1 + 3x2 + 3x3 = 7
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Subsection EXC
Exercises

C05 Each archetype below is a system of equations. Form the augmented matrix of the system of
equations, convert the matrix to reduced row-echelon form by using equation operations and then
describe the solution set of the original system of equations.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]
Archetype E [702]
Archetype F [705]
Archetype G [710]
Archetype H [714]
Archetype I [718]
Archetype J [722]
Contributed by Robert Beezer

For problems C10–C19, find all solutions to the system of linear equations. Write the solutions
as a set, using correct set notation.
C10

2x1 − 3x2 + x3 + 7x4 = 14
2x1 + 8x2 − 4x3 + 5x4 = −1

x1 + 3x2 − 3x3 = 4
−5x1 + 2x2 + 3x3 + 4x4 = −19

Contributed by Robert Beezer Solution [39]

C11

3x1 + 4x2 − x3 + 2x4 = 6
x1 − 2x2 + 3x3 + x4 = 2

10x2 − 10x3 − x4 = 1

Contributed by Robert Beezer Solution [39]

C12

2x1 + 4x2 + 5x3 + 7x4 = −26
x1 + 2x2 + x3 − x4 = −4

−2x1 − 4x2 + x3 + 11x4 = −10

Contributed by Robert Beezer Solution [39]

C13

x1 + 2x2 + 8x3 − 7x4 = −2
3x1 + 2x2 + 12x3 − 5x4 = 6
−x1 + x2 + x3 − 5x4 = −10

Contributed by Robert Beezer Solution [39]
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C14

2x1 + x2 + 7x3 − 2x4 = 4
3x1 − 2x2 + 11x4 = 13

x1 + x2 + 5x3 − 3x4 = 1

Contributed by Robert Beezer Solution [40]

C15

2x1 + 3x2 − x3 − 9x4 = −16
x1 + 2x2 + x3 = 0

−x1 + 2x2 + 3x3 + 4x4 = 8

Contributed by Robert Beezer Solution [40]

C16

2x1 + 3x2 + 19x3 − 4x4 = 2
x1 + 2x2 + 12x3 − 3x4 = 1
−x1 + 2x2 + 8x3 − 5x4 = 1

Contributed by Robert Beezer Solution [40]

C17

−x1 + 5x2 = −8
−2x1 + 5x2 + 5x3 + 2x4 = 9
−3x1 − x2 + 3x3 + x4 = 3
7x1 + 6x2 + 5x3 + x4 = 30

Contributed by Robert Beezer Solution [41]

C18

x1 + 2x2 − 4x3 − x4 = 32
x1 + 3x2 − 7x3 − x5 = 33
x1 + 2x3 − 2x4 + 3x5 = 22

Contributed by Robert Beezer Solution [41]

C19

2x1 + x2 = 6
−x1 − x2 = −2
3x1 + 4x2 = 4
3x1 + 5x2 = 2

Contributed by Robert Beezer Solution [41]
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For problems C30–C32, row-reduce the matrix without the aid of a calculator, indicating the
row operations you are using at each step using the notation of Definition RO [26].
C30 2 1 5 10

1 −3 −1 −2
4 −2 6 12


Contributed by Robert Beezer Solution [42]

C31  1 2 −4
−3 −1 −3
−2 1 −7


Contributed by Robert Beezer Solution [42]

C32  1 1 1
−4 −3 −2
3 2 1


Contributed by Robert Beezer Solution [42]

M50 A parking lot has 66 vehicles (cars, trucks, motorcycles and bicycles) in it. There are four
times as many cars as trucks. The total number of tires (4 per car or truck, 2 per motorcycle or
bicycle) is 252. How many cars are there? How many bicycles?
Contributed by Robert Beezer Solution [42]

T10 Prove that each of the three row operations (Definition RO [26]) is reversible. More precisely,
if the matrix B is obtained from A by application of a single row operation, show that there is a
single row operation that will transform B back into A.
Contributed by Robert Beezer Solution [43]

T11 Suppose that A, B and C are m× n matrices. Use the definition of row-equivalence (Defi-
nition REM [27]) to prove the following three facts.

1. A is row-equivalent to A.

2. If A is row-equivalent to B, then B is row-equivalent to A.

3. If A is row-equivalent to B, and B is row-equivalent to C, then A is row-equivalent to C.

A relationship that satisfies these three properties is known as an equivalence relation, an im-
portant idea in the study of various algebras. This is a formal way of saying that a relationship
behaves like equality, without requiring the relationship to be as strict as equality itself. We’ll see
it again in Theorem SER [426].
Contributed by Robert Beezer

T12 Suppose that B is an m×n matrix in reduced row-echelon form. Build a new, likely smaller,
k × ` matrix C as follows. Keep any collection of k adjacent rows, k ≤ m. From these rows, keep
columns 1 through `, ` ≤ n. Prove that C is in reduced row-echelon form.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [36]
The augmented matrix row-reduces to

1 0 0 0 1
0 1 0 0 −3
0 0 1 0 −4
0 0 0 1 1


and we see from the locations of the leading 1’s that the system is consistent (Theorem RCLS [48])
and that n−r = 4−4 = 0 and so the system has no free variables (Theorem CSRN [49]) and hence
has a unique solution. This solution is

S =




1
−3
−4
1




C11 Contributed by Robert Beezer Statement [36]
The augmented matrix row-reduces to 1 0 1 4/5 0

0 1 −1 −1/10 0
0 0 0 0 1


and a leading 1 in the last column tells us that the system is inconsistent (Theorem RCLS [48]).
So the solution set is ∅ = {}.

C12 Contributed by Robert Beezer Statement [36]
The augmented matrix row-reduces to 1 2 0 −4 2

0 0 1 3 −6
0 0 0 0 0


(Theorem RCLS [48]) and (Theorem CSRN [49]) tells us the system is consistent and the solution
set can be described with n − r = 4 − 2 = 2 free variables, namely x2 and x4. Solving for the
dependent variables (D = {x1, x3}) the first and second equations represented in the row-reduced
matrix yields,

x1 = 2− 2x2 + 4x4

x3 = −6 − 3x4

As a set, we write this as 


2− 2x2 + 4x4

x2

−6− 3x4

x4


∣∣∣∣∣∣∣∣ x2, x4 ∈ C


C13 Contributed by Robert Beezer Statement [36]
The augmented matrix of the system of equations is 1 2 8 −7 −2

3 2 12 −5 6
−1 1 1 −5 −10


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which row-reduces to  1 0 2 1 0
0 1 3 −4 0
0 0 0 0 1


With a leading one in the last column Theorem RCLS [48] tells us the system of equations is
inconsistent, so the solution set is the empty set, ∅.

C14 Contributed by Robert Beezer Statement [37]
The augmented matrix of the system of equations is2 1 7 −2 4

3 −2 0 11 13
1 1 5 −3 1


which row-reduces to  1 0 2 1 3

0 1 3 −4 −2
0 0 0 0 0


Then D = {1, 2} and F = {3, 4, 5}, so the system is consistent (5 6∈ D) and can be described by
the two free variables x3 and x4. Rearranging the equations represented by the two nonzero rows
to gain expressions for the dependent variables x1 and x2, yields the solution set,

S =




3− 2x3 − x4

−2− 3x3 + 4x4

x3

x4


∣∣∣∣∣∣∣∣ x3, x4 ∈ C


C15 Contributed by Robert Beezer Statement [37]
The augmented matrix of the system of equations is 2 3 −1 −9 −16

1 2 1 0 0
−1 2 3 4 8


which row-reduces to  1 0 0 2 3

0 1 0 −3 −5
0 0 1 4 7


Then D = {1, 2, 3} and F = {4, 5}, so the system is consistent (5 6∈ D) and can be described by
the one free variable x4. Rearranging the equations represented by the three nonzero rows to gain
expressions for the dependent variables x1, x2 and x3, yields the solution set,

S =




3− 2x4

−5 + 3x4

7− 4x4

x4


∣∣∣∣∣∣∣∣ x4 ∈ C


C16 Contributed by Robert Beezer Statement [37]
The augmented matrix of the system of equations is 2 3 19 −4 2

1 2 12 −3 1
−1 2 8 −5 1


which row-reduces to  1 0 2 1 0

0 1 5 −2 0
0 0 0 0 1


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With a leading one in the last column Theorem RCLS [48] tells us the system of equations is
inconsistent, so the solution set is the empty set, ∅ = {}.

C17 Contributed by Robert Beezer Statement [37]
We row-reduce the augmented matrix of the system of equations,

−1 5 0 0 −8
−2 5 5 2 9
−3 −1 3 1 3
7 6 5 1 30

 RREF−−−−→


1 0 0 0 3
0 1 0 0 −1
0 0 1 0 2
0 0 0 1 5


The reduced row-echelon form of the matrix is the augmented matrix of the system x1 = 3, x2 = −1,
x3 = 2, x4 = 5, which has a unique solution. As a set of column vectors, the solution set is

S =




3
−1
2
5




C18 Contributed by Robert Beezer Statement [37]
We row-reduce the augmented matrix of the system of equations,1 2 −4 −1 0 32

1 3 −7 0 −1 33
1 0 2 −2 3 22

 RREF−−−−→

 1 0 2 0 5 6
0 1 −3 0 −2 9
0 0 0 1 1 −8


With no leading 1 in the final column, we recognize the system as consistent (Theorem RCLS [48]).
Since the system is consistent, we compute the number of free variables as n − r = 5 − 3 = 2 (),
and we see that columns 3 and 5 are not pivot columns, so x3 and x5 are free variables. We convert
each row of the reduced row-echelon form of the matrix into an equation, and solve it for the lone
dependent variable, as in expresdsion in the two free variables.

x1 + 2x3 + 5x5 = 6 → x1 = 6− 2x3 − 5x5

x2 − 3x3 − 2x5 = 9 → x2 = 9 + 3x3 + 2x5

x4 + x5 = −8 → x4 = −8− x5

These expressions give us a convenient way to describe the solution set, S.

S =




6− 2x3 − 5x5

9 + 3x3 + 2x5

x3

−8− x5

x5


∣∣∣∣∣∣∣∣∣∣
x3, x5 ∈ C


C19 Contributed by Robert Beezer Statement [37]
We form the augmented matrix of the system,

2 1 6
−1 −1 −2
3 4 4
3 5 2


which row-reduces to 

1 0 4
0 1 −2
0 0 0
0 0 0


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With no leading 1 in the final column, this system is consistent (Theorem RCLS [48]). There are
n = 2 variables in the system and r = 2 non-zero rows in the row-reduced matrix. By Theorem
FVCS [49], there are n− r = 2− 2 = 0 free variables and we therefore know the solution is unique.
Forming the system of equations represented by the row-reduced matrix, we see that x1 = 4 and
x2 = −2. Written as set of column vectors,

S =
{[

4
−2

]}
C30 Contributed by Robert Beezer Statement [38]

2 1 5 10
1 −3 −1 −2
4 −2 6 12

 R1↔R2−−−−−→

1 −3 −1 −2
2 1 5 10
4 −2 6 12


−2R1+R2−−−−−−→

1 −3 −1 −2
0 7 7 14
4 −2 6 12

 −4R1+R3−−−−−−→

1 −3 −1 −2
0 7 7 14
0 10 10 20


1
7
R2−−−→

1 −3 −1 −2
0 1 1 2
0 10 10 20

 3R2+R1−−−−−→

1 0 2 4
0 1 1 2
0 10 10 20


−10R2+R3−−−−−−−→

 1 0 2 4
0 1 1 2
0 0 0 0


C31 Contributed by Robert Beezer Statement [38]

 1 2 −4
−3 −1 −3
−2 1 −7

 3R1+R2−−−−−→

 1 2 −4
0 5 −15
−2 1 −7


2R1+R3−−−−−→

1 2 −4
0 5 −15
0 5 −15

 1
5
R2−−−→

1 2 −4
0 1 −3
0 5 −15


−2R2+R1−−−−−−→

1 0 2
0 1 −3
0 5 −15

 −5R2+R3−−−−−−→

 1 0 2
0 1 −3
0 0 0


C32 Contributed by Robert Beezer Statement [38]
Following the algorithm of Theorem REMEF [29], and working to create pivot columns from left
to right, we have 1 1 1

−4 −3 −2
3 2 1

 4R1+R2−−−−−→

1 1 1
0 1 2
3 2 1

 −3R1+R3−−−−−−→

 1 1 1
0 1 2
0 −1 −2

 −1R2+R1−−−−−−→

 1 0 −1
0 1 2
0 −1 −2

 1R2+R3−−−−−→

 1 0 −1
0 1 2
0 0 0


M50 Contributed by Robert Beezer Statement [38]
Let c, t, m, b denote the number of cars, trucks, motorcycles, and bicycles. Then the statements
from the problem yield the equations:

c+ t+m+ b = 66
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c− 4t = 0
4c+ 4t+ 2m+ 2b = 252

The augmented matrix for this system is1 1 1 1 66
1 −4 0 0 0
4 4 2 2 252


which row-reduces to  1 0 0 0 48

0 1 0 0 12
0 0 1 1 6


c = 48 is the first equation represented in the row-reduced matrix so there are 48 cars. m+ b = 6
is the third equation represented in the row-reduced matrix so there are anywhere from 0 to 6
bicycles. We can also say that b is a free variable, but the context of the problem limits it to 7
integer values since cannot have a negative number of motorcycles.

T10 Contributed by Robert Beezer Statement [38]
If we can reverse each row operation individually, then we can reverse a sequence of row operations.
The operations that reverse each operation are listed below, using our shorthand notation,

Ri ↔ Rj Ri ↔ Rj

αRi, α 6= 0
1
α
Ri

αRi +Rj − αRi +Rj
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Section TSS
Types of Solution Sets

We will now be more careful about analyzing the reduced row-echelon form derived from the
augmented matrix of a system of linear equations. In particular, we will see how to systematically
handle the situation when we have infinitely many solutions to a system, and we will prove that
every system of linear equations has either zero, one or infinitely many solutions. With these tools,
we will be able to solve any system by a well-described method.

Subsection CS
Consistent Systems

The computer scientist Donald Knuth said, “Science is what we understand well enough to explain
to a computer. Art is everything else.” In this section we’ll remove solving systems of equations
from the realm of art, and into the realm of science. We begin with a definition.

Definition CS
Consistent System
A system of linear equations is consistent if it has at least one solution. Otherwise, the system is
called inconsistent. 4

We will want to first recognize when a system is inconsistent or consistent, and in the case of
consistent systems we will be able to further refine the types of solutions possible. We will do this
by analyzing the reduced row-echelon form of a matrix, using the value of r, and the sets of column
indices, D and F , first defined back in Definition RREF [28].

Use of the notation for the elements of D and F can be a bit confusing, since we have subscripted
variables that are in turn equal to integers used to index the matrix. However, many questions
about matrices and systems of equations can be answered once we know r, D and F . The choice
of the letters D and F refer to our upcoming definition of dependent and free variables (Definition
IDV [47]). An example will help us begin to get comfortable with this aspect of reduced row-echelon
form.

Example RREFN
Reduced row-echelon form notation
For the 5× 9 matrix

B =


1 5 0 0 2 8 0 5 −1
0 0 1 0 4 7 0 2 0
0 0 0 1 3 9 0 3 −6
0 0 0 0 0 0 1 4 2
0 0 0 0 0 0 0 0 0


in reduced row-echelon form we have

r = 4
d1 = 1 d2 = 3 d3 = 4 d4 = 7
f1 = 2 f2 = 5 f3 = 6 f4 = 8 f5 = 9.

Notice that the setsD = {d1, d2, d3, d4} = {1, 3, 4, 7} and F = {f1, f2, f3, f4, f5} = {2, 5, 6, 8, 9}
have nothing in common and together account for all of the columns of B (we say it is a partition
of the set of column indices). �

The number r is the single most important piece of information we can get from the reduced
row-echelon form of a matrix. It is defined as the number of non-zero rows, but since each non-zero
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row has a leading 1, it is also the number of leading 1’s present. For each leading 1, we have a pivot
column, so r is also the number of pivot columns. Repeating ourselves, r is the number of leading
1’s, the number of non-zero rows and the number of pivot columns. Across different situations,
each of these interpretations of the meaning of r will be useful.

Before proving some theorems about the possibilities for solution sets to systems of equations,
let’s analyze one particular system with an infinite solution set very carefully as an example. We’ll
use this technique frequently, and shortly we’ll refine it slightly.

Archetypes I and J are both fairly large for doing computations by hand (though not impossibly
large). Their properties are very similar, so we will frequently analyze the situation in Archetype
I, and leave you the joy of analyzing Archetype J yourself. So work through Archetype I with
the text, by hand and/or with a computer, and then tackle Archetype J yourself (and check your
results with those listed). Notice too that the archetypes describing systems of equations each lists
the values of r, D and F . Here we go. . .

Example ISSI
Describing infinite solution sets, Archetype I
Archetype I [718] is the system of m = 4 equations in n = 7 variables.

x1 + 4x2 − x4 + 7x6 − 9x7 = 3
2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 9

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 1
−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 4

This system has a 4 × 8 augmented matrix that is row-equivalent to the following matrix (check
this!), and which is in reduced row-echelon form (the existence of this matrix is guaranteed by
Theorem REMEF [29]), 

1 4 0 0 2 1 −3 4
0 0 1 0 1 −3 5 2
0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0

 .
So we find that r = 3 and

D = {d1, d2, d3} = {1, 3, 4} F = {f1, f2, f3, f4, f5} = {2, 5, 6, 7, 8} .

Let i denote one of the r = 3 non-zero rows, and then we see that we can solve the corresponding
equation represented by this row for the variable xdi and write it as a linear function of the variables
xf1 , xf2 , xf3 , xf4 (notice that f5 = 8 does not reference a variable). We’ll do this now, but you can
already see how the subscripts upon subscripts takes some getting used to.

(i = 1) xd1 = x1 = 4− 4x2 − 2x5 − x6 + 3x7

(i = 2) xd2 = x3 = 2− x5 + 3x6 − 5x7

(i = 3) xd3 = x4 = 1− 2x5 + 6x6 − 6x7

Each element of the set F = {f1, f2, f3, f4, f5} = {2, 5, 6, 7, 8} is the index of a variable, except
for f5 = 8. We refer to xf1 = x2, xf2 = x5, xf3 = x6 and xf4 = x7 as “free” (or “independent”)
variables since they are allowed to assume any possible combination of values that we can imagine
and we can continue on to build a solution to the system by solving individual equations for the
values of the other (“dependent”) variables.

Each element of the set D = {d1, d2, d3} = {1, 3, 4} is the index of a variable. We refer to
the variables xd1 = x1, xd2 = x3 and xd3 = x4 as “dependent” variables since they depend on
the independent variables. More precisely, for each possible choice of values for the independent
variables we get exactly one set of values for the dependent variables that combine to form a solution
of the system.
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To express the solutions as a set, we write



4− 4x2 − 2x5 − x6 + 3x7

x2

2− x5 + 3x6 − 5x7

1− 2x5 + 6x6 − 6x7

x5

x6

x7



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x2, x5, x6, x7 ∈ C


The condition that x2, x5, x6, x7 ∈ C is how we specify that the variables x2, x5, x6, x7 are “free”
to assume any possible values.

This systematic approach to solving a system of equations will allow us to create a precise
description of the solution set for any consistent system once we have found the reduced row-
echelon form of the augmented matrix. It will work just as well when the set of free variables is
empty and we get just a single solution. And we could program a computer to do it! Now have
a whack at Archetype J (Exercise TSS.T10 [53]), mimicking the discussion in this example. We’ll
still be here when you get back. �

Using the reduced row-echelon form of the augmented matrix of a system of equations to
determine the nature of the solution set of the system is a very key idea. So let’s look at one more
example like the last one. But first a definition, and then the example. We mix our metaphors
a bit when we call variables free versus dependent. Maybe we should call dependent variables
“enslaved”?

Definition IDV
Independent and Dependent Variables
Suppose A is the augmented matrix of a consistent system of linear equations and B is a row-
equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that
contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not
the last column. Then the variable xj is dependent. A variable that is not dependent is called
independent or free. 4

Example FDV
Free and dependent variables
Consider the system of five equations in five variables,

x1 − x2 − 2x3 + x4 + 11x5 = 13
x1 − x2 + x3 + x4 + 5x5 = 16

2x1 − 2x2 + x4 + 10x5 = 21
2x1 − 2x2 − x3 + 3x4 + 20x5 = 38

2x1 − 2x2 + x3 + x4 + 8x5 = 22

whose augmented matrix row-reduces to
1 −1 0 0 3 6
0 0 1 0 −2 1
0 0 0 1 4 9
0 0 0 0 0 0
0 0 0 0 0 0


There are leading 1’s in columns 1, 3 and 4, so D = {1, 3, 4}. From this we know that the variables
x1, x3 and x4 will be dependent variables, and each of the r = 3 nonzero rows of the row-reduced
matrix will yield an expression for one of these three variables. The set F is all the remaining
column indices, F = {2, 5, 6}. Since 6 ∈ F we know there is no leading 1 in the final column, so
the system is consistent by Theorem RCLS [48]. The remaining indices in F will correspond to
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free variables, so x2 and x5 are our free variables. The resulting three equations that describe our
solution set are then,

(xd1 = x1) x1 = 6 + x2 − 3x5

(xd2 = x3) x3 = 1 + 2x5

(xd3 = x4) x4 = 9− 4x5

Make sure you understand where these three equations came from, and notice how the location of
the leading 1’s determined the variables on the left-hand side of each equation. We can compactly
describe the solution set as,

S =




6 + x2 − 3x5

x2

1 + 2x5

9− 4x5

x5


∣∣∣∣∣∣∣∣∣∣
x2, x5 ∈ C


Notice how we express the freedom for x2 and x5: x2, x5 ∈ C. �

Sets are an important part of algebra, and we’ve seen a few already. Being comfortable with
sets is important for understanding and writing proofs. If you haven’t already, pay a visit now to
Section SET [665].

We can now use the values of m, n, r, and the independent and dependent variables to categorize
the solution sets for linear systems through a sequence of theorems. Through the following sequence
of proofs, you will want to consult three proof techniques. See Technique E [672]. See
Technique N [672]. See Technique CP [673].

First we have a theorem that explores the distinction between consistent and inconsistent linear
systems.

Theorem RCLS
Recognizing Consistency of a Linear System
Suppose A is the augmented matrix of a system of linear equations with m equations in n variables.
Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are
not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is
located in column n+ 1 of B. �

Proof (⇐) The first half of the proof begins with the assumption that the leading 1 of row r is
located in column n+ 1 of B. Then row r of B begins with n consecutive zeros, finishing with the
leading 1. This is a representation of the equation 0 = 1, which is false. Since this equation is false
for any collection of values we might choose for the variables, there are no solutions for the system
of equations, and it is inconsistent.

(⇒) For the second half of the proof, we wish to show that if we assume the system is incon-
sistent, then the final leading 1 is located in the last column. But instead of proving this directly,
we’ll form the logically equivalent statement that is the contrapositive, and prove that instead (see
Technique CP [673]). Turning the implication around, and negating each portion, we arrive at the
logically equivalent statement: If the leading 1 of row r is not in column n+ 1, then the system of
equations is consistent.

If the leading 1 for row r is located somewhere in columns 1 through n, then every preceding
row’s leading 1 is also located in columns 1 through n. In other words, since the last leading 1 is
not in the last column, no leading 1 for any row is in the last column, due to the echelon layout
of the leading 1’s. Let bi,n+1, 1 ≤ i ≤ r, denote the entries of the last column of B for the first r
rows. Employ our notation for columns of the reduced row-echelon form of a matrix (see Notation
RREFA [29]) to B and set xfi = 0, 1 ≤ i ≤ n − r and then set xdi = bi,n+1, 1 ≤ i ≤ r. In other
words, set the dependent variables equal to the corresponding values in the final column and set
all the free variables to zero. These values for the variables make the equations represented by the
first r rows all true (convince yourself of this). Rows r + 1 through m (if any) are all zero rows,
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hence represent the equation 0 = 0 and are also all true. We have now identified one solution to
the system, so we can say the system is consistent. �

The beauty of this theorem being an equivalence is that we can unequivocally test to see if a
system is consistent or inconsistent by looking at just a single entry of the reduced row-echelon
form matrix. We could program a computer to do it!

Notice that for a consistent system the row-reduced augmented matrix has n + 1 ∈ F , so the
largest element of F does not refer to a variable. Also, for an inconsistent system, n + 1 ∈ D,
and it then does not make much sense to discuss whether or not variables are free or dependent
since there is no solution. With the characterization of Theorem RCLS [48], we can explore the
relationships between r and n in light of the consistency of a system of equations. First, a situation
where we can quickly conclude the inconsistency of a system.

Theorem ISRN
Inconsistent Systems, r and n
Suppose A is the augmented matrix of a system of linear equations in n variables. Suppose also
that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely
zeros. If r = n+ 1, then the system of equations is inconsistent. �

Proof If r = n + 1, then D = {1, 2, 3, . . . , n, n+ 1} and every column of B contains a leading
1 and is a pivot column. In particular, the entry of column n+ 1 for row r = n+ 1 is a leading 1.
Theorem RCLS [48] then says that the system is inconsistent. �

Do not confuse Theorem ISRN [49] with its converse! Go check out Technique CV [673] right
now.

Next, if a system is consistent, we can distinguish between a unique solution and infinitely many
solutions, and furthermore, we recognize that these are the only two possibilities.

Theorem CSRN
Consistent Systems, r and n
Suppose A is the augmented matrix of a consistent system of linear equations with m equations in
n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not zero rows. Then r ≤ n. If r = n, then the system has a unique solution, and if
r < n, then the system has infinitely many solutions. �

Proof This theorem contains three implications that we must establish. Notice first that B has
n + 1 columns, so there can be at most n + 1 pivot columns, i.e. r ≤ n + 1. If r = n + 1, then
Theorem ISRN [49] tells us that the system is inconsistent, contrary to our hypothesis. We are left
with r ≤ n.

When r = n, we find n − r = 0 free variables (i.e. F = {n+ 1}) and any solution must equal
the unique solution given by the first n entries of column n+ 1 of B.

When r < n, we have n− r > 0 free variables, corresponding to columns of B without a leading
1, excepting the final column, which also does not contain a leading 1 by Theorem RCLS [48]. By
varying the values of the free variables suitably, we can demonstrate infinitely many solutions. �

Subsection FV
Free Variables

The next theorem simply states a conclusion from the final paragraph of the previous proof, allowing
us to state explicitly the number of free variables for a consistent system.

Theorem FVCS
Free Variables for Consistent Systems
Suppose A is the augmented matrix of a consistent system of linear equations with m equations in
n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
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rows that are not completely zeros. Then the solution set can be described with n−r free variables.
�

Proof See the proof of Theorem CSRN [49]. �

Example CFV
Counting free variables
For each archetype that is a system of equations, the values of n and r are listed. Many also contain
a few sample solutions. We can use this information profitably, as illustrated by four examples.

1. Archetype A [685] has n = 3 and r = 2. It can be seen to be consistent by the sample solutions
given. Its solution set then has n− r = 1 free variables, and therefore will be infinite.

2. Archetype B [689] has n = 3 and r = 3. It can be seen to be consistent by the single sample
solution given. Its solution set can then be described with n − r = 0 free variables, and
therefore will have just the single solution.

3. Archetype H [714] has n = 2 and r = 3. In this case, r = n + 1, so Theorem ISRN [49]
says the system is inconsistent. We should not try to apply Theorem FVCS [49] to count free
variables, since the theorem only applies to consistent systems. (What would happen if you
did?)

4. Archetype E [702] has n = 4 and r = 3. However, by looking at the reduced row-echelon form
of the augmented matrix, we find a leading 1 in row 3, column 4. By Theorem RCLS [48]
we recognize the system is then inconsistent. (Why doesn’t this example contradict Theorem
ISRN [49]?)

�

We have accomplished a lot so far, but our main goal has been the following theorem, which is
now very simple to prove. The proof is so simple that we ought to call it a corollary, but the result
is important enough that it deserves to be called a theorem. (See Technique LC [677].) Notice that
this theorem was presaged first by Example TTS [12] and further foreshadowed by other examples.

Theorem PSSLS
Possible Solution Sets for Linear Systems
A system of linear equations has no solutions, a unique solution or infinitely many solutions. �

Proof By definition, a system is either inconsistent or consistent. The first case describes systems
with no solutions. For consistent systems, we have the remaining two possibilities as guaranteed
by, and described in, Theorem CSRN [49]. �

We have one more theorem to round out our set of tools for determining solution sets to systems
of linear equations.

Theorem CMVEI
Consistent, More Variables than Equations, Infinite solutions
Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the
system has infinitely many solutions. �

Proof Suppose that the augmented matrix of the system of equations is row-equivalent to B,
a matrix in reduced row-echelon form with r nonzero rows. Because B has m rows in total, the
number that are nonzero rows is less. In other words, r ≤ m. Follow this with the hypothesis that
n > m and we find that the system has a solution set described by at least one free variable because

n− r ≥ n−m > 0.

A consistent system with free variables will have an infinite number of solutions, as given by
Theorem CSRN [49]. �

Notice that to use this theorem we need only know that the system is consistent, together with
the values of m and n. We do not necessarily have to compute a row-equivalent reduced row-echelon
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form matrix, even though we discussed such a matrix in the proof. This is the substance of the
following example.

Example OSGMD
One solution gives many, Archetype D
Archetype D is the system of m = 3 equations in n = 4 variables,

2x1 + x2 + 7x3 − 7x4 = 8
−3x1 + 4x2 − 5x3 − 6x4 = −12

x1 + x2 + 4x3 − 5x4 = 4

and the solution x1 = 0, x2 = 1, x3 = 2, x4 = 1 can be checked easily by substitution. Having been
handed this solution, we know the system is consistent. This, together with n > m, allows us to
apply Theorem CMVEI [50] and conclude that the system has infinitely many solutions. �

These theorems give us the procedures and implications that allow us to completely solve any
system of linear equations. The main computational tool is using row operations to convert an
augmented matrix into reduced row-echelon form. Here’s a broad outline of how we would instruct
a computer to solve a system of linear equations.

1. Represent a system of linear equations by an augmented matrix (an array is the appropriate
data structure in most computer languages).

2. Convert the matrix to a row-equivalent matrix in reduced row-echelon form using the proce-
dure from the proof of Theorem REMEF [29].

3. Determine r and locate the leading 1 of row r. If it is in column n+ 1, output the statement
that the system is inconsistent and halt.

4. With the leading 1 of row r not in column n+ 1, there are two possibilities:

(a) r = n and the solution is unique. It can be read off directly from the entries in rows 1
through n of column n+ 1.

(b) r < n and there are infinitely many solutions. If only a single solution is needed, set all
the free variables to zero and read off the dependent variable values from column n+ 1,
as in the second half of the proof of Theorem RCLS [48]. If the entire solution set is
required, figure out some nice compact way to describe it, since your finite computer is
not big enough to hold all the solutions (we’ll have such a way soon).

The above makes it all sound a bit simpler than it really is. In practice, row operations employ
division (usually to get a leading entry of a row to convert to a leading 1) and that will introduce
round-off errors. Entries that should be zero sometimes end up being very, very small nonzero
entries, or small entries lead to overflow errors when used as divisors. A variety of strategies can
be employed to minimize these sorts of errors, and this is one of the main topics in the important
subject known as numerical linear algebra.

Solving a linear system is such a fundamental problem in so many areas of mathematics, and
its applications, that any computational device worth using for linear algebra will have a built-in
routine to do just that. See: Computation LS.MMA [653] . In this section we’ve gained a
foolproof procedure for solving any system of linear equations, no matter how many equations or
variables. We also have a handful of theorems that allow us to determine partial information about
a solution set without actually constructing the whole set itself. Donald Knuth would be proud.

Subsection READ
Reading Questions

1. How do we recognize when a system of linear equations is inconsistent?
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2. Suppose we have converted the augmented matrix of a system of equations into reduced row-
echelon form. How do we then identify the dependent and independent (free) variables?

3. What are the possible solution sets for a system of linear equations?
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Subsection EXC
Exercises

C10 In the spirit of Example ISSI [46], describe the infinite solution set for Archetype J [722].
Contributed by Robert Beezer

M45 Prove that Archetype J [722] has infinitely many solutions without row-reducing the aug-
mented matrix.
Contributed by Robert Beezer Solution [55]

For Exercises M51–M57 say as much as possible about each system’s solution set. Be sure
to make it clear which theorems you are using to reach your conclusions.
M51 A consistent system of 8 equations in 6 variables.
Contributed by Robert Beezer Solution [55]

M52 A consistent system of 6 equations in 8 variables.
Contributed by Robert Beezer Solution [55]

M53 A system of 5 equations in 9 variables.
Contributed by Robert Beezer Solution [55]

M54 A system with 12 equations in 35 variables.
Contributed by Robert Beezer Solution [55]

M56 A system with 6 equations in 12 variables.
Contributed by Robert Beezer Solution [55]

M57 A system with 8 equations and 6 variables. The reduced row-echelon form of the augmented
matrix of the system has 7 pivot coulmns.
Contributed by Robert Beezer Solution [55]

M60 Without doing any computations, and without examining any solutions, say as much as
possible about the form of the solution set for each archetype that is a system of equations.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]
Archetype E [702]
Archetype F [705]
Archetype G [710]
Archetype H [714]
Archetype I [718]
Archetype J [722]
Contributed by Robert Beezer

T10 An inconsistent system may have r > n. If we try (incorrectly!) to apply Theorem FVCS
[49] to such a system, how many free variables would we discover?
Contributed by Robert Beezer Solution [55]

T40 Suppose that the coefficient matrix of a system of linear equations has two columns that are
identical. Prove that the system has infinitely many solutions.
Contributed by Robert Beezer Solution [55]

T41 Consider the system of linear equations LS(A, b), and suppose that every element of the
vector of constants b is a common multiple of the corresponding element of a certain column of A.
More precisely, there is a complex number α, and a column index j, such that [b]i = α [A]ij for all
i. Prove that the system is consistent.

Version 1.30



54 Section TSS Types of Solution Sets

Contributed by Robert Beezer Solution [55]
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Subsection SOL
Solutions

M45 Contributed by Robert Beezer Statement [53]
Demonstrate that the system is consistent by verifying any one of the four sample solutions provided.
Then because n = 9 > 6 = m, Theorem CMVEI [50] gives us the conclusion that the system has
infinitely many solutions.

Notice that we only know the system will have at least 9 − 6 = 3 free variables, but very well
could have more. We do not know know that r = 6, only that r ≤ 6.

M51 Contributed by Robert Beezer Statement [53]
Consistent means there is at least one solution (Definition CS [45]). It will have either a unique
solution or infinitely many solutions (Theorem PSSLS [50]).

M52 Contributed by Robert Beezer Statement [53]
With 6 rows in the augmented matrix, the row-reduced version will have r ≤ 6. Since the system
is consistent, apply Theorem CSRN [49] to see that n− r ≥ 2 implies infinitely many solutions.

M53 Contributed by Robert Beezer Statement [53]
The system could be inconsistent. If it is consistent, then because it has more variables than
equations Theorem CMVEI [50] implies that there would be infinitely many solutions. So, of all
the possibilities in Theorem PSSLS [50], only the case of a unique solution can be ruled out.

M54 Contributed by Robert Beezer Statement [53]
The system could be inconsistent. If it is consistent, then Theorem CMVEI [50] tells us the solution
set will be infinite. So we can be certain that there is not a unique solution.

M56 Contributed by Robert Beezer Statement [53]
The system could be inconsistent. If it is consistent, and since 12 > 6, then Theorem CMVEI [50]
says we will have infinitely many solutions. So there are two possibilities. Theorem PSSLS [50]
allows to state equivalently that a unique solution is an impossibility.

M57 Contributed by Robert Beezer Statement [53]
7 pivot columns implies that there are r = 7 nonzero rows (so row 8 is all zeros in the reduced
row-echelon form). Then n + 1 = 6 + 1 = 7 = r and Theorem ISRN [49] allows to conclude that
the system is inconsistent.

T10 Contributed by Robert Beezer Statement [53]
Theorem FVCS [49] will indicate a negative number of free variables, but we can say even more. If
r > n, then the only possibility is that r = n+ 1, and then we compute n− r = n− (n+ 1) = −1
free variables.

T40 Contributed by Robert Beezer Statement [53]
Since the system is consistent, we know there is either a unique solution, or infinitely many solutions
(Theorem PSSLS [50]). If we perform row operations (Definition RO [26]) on the augmented matrix
of the system, the two equal columns of the coefficient matrix will suffer the same fate, and remain
equal in the final reduced row-echelon form. Suppose both of these columns are pivot columns
(Definition RREF [28]). Then there is single row containing the two leading 1’s of the two pivot
columns, a violation of reduced row-echelon form (Definition RREF [28]). So at least one of these
columns is not a pivot column, and the column index indicates a free variable in the description
of the solution set (Definition IDV [47]). With a free variable, we arrive at an infinite solution set
(Theorem FVCS [49]).

T41 Contributed by Robert Beezer Statement [53]
The condition about the multiple of the column of constants will allow you to show that the
following values form a solution of the system LS(A, b),

x1 = 0 x2 = 0 . . . xj−1 = 0 xj = α xj+1 = 0 . . . xn−1 = 0 xn = 0
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With one solution of the system known, we can say the system is consistent (Definition CS [45]).
A more involved proof can be built using Theorem RCLS [48]. Begin by proving that each of

the three row operations (Definition RO [26]) will convert the augmented matrix of the system into
another matrix where column j is α times the entry of the same row in the last column. In other
words, the “column multiple property” is preserved under row operations. These proofs will get
successively more involved as you work through the three operations.

Now construct a proof by contradiction (Technique CD [673]), by supposing that the system
is inconsistent. Then the last column of the reduced row-echelon form of the augmented matrix is
a pivot column (Theorem RCLS [48]). Then column j must have a zero in the same row as the
leading 1 of the final column. But the “column multiple propery” implies that there is an α in
column j in the same row as the leading 1. So α = 0. By hypothesis, then the vector of constants is
the zero vector. However, if we began with a final column of zeros, row operations would never have
created a leading 1 in the final column. This contradicts the final column being a pivot column,
and therefore the system cannot be inconsistent.
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Section HSE
Homogeneous Systems of Equations

In this section we specialize to systems of linear equations where every equation has a zero as its
constant term. Along the way, we will begin to express more and more ideas in the language of
matrices and begin a move away from writing out whole systems of equations. The ideas initiated
in this section will carry through the remainder of the course.

Subsection SHS
Solutions of Homogeneous Systems

As usual, we begin with a definition.

Definition HS
Homogeneous System
A system of linear equations, LS(A, b) is homogeneous if the vector of constants is the zero
vector, in other words, b = 0. 4

Example AHSAC
Archetype C as a homogeneous system
For each archetype that is a system of equations, we have formulated a similar, yet different,
homogeneous system of equations by replacing each equation’s constant term with a zero. To
wit, for Archetype C [694], we can convert the original system of equations into the homogeneous
system,

2x1 − 3x2 + x3 − 6x4 = 0
4x1 + x2 + 2x3 + 9x4 = 0
3x1 + x2 + x3 + 8x4 = 0

Can you quickly find a solution to this system without row-reducing the augmented matrix? �

As you might have discovered by studying Example AHSAC [57], setting each variable to zero
will always be a solution of a homogeneous system. This is the substance of the following theorem.

Theorem HSC
Homogeneous Systems are Consistent
Suppose that a system of linear equations is homogeneous. Then the system is consistent. �

Proof Set each variable of the system to zero. When substituting these values into each equation,
the left-hand side evaluates to zero, no matter what the coefficients are. Since a homogeneous
system has zero on the right-hand side of each equation as the constant term, each equation is true.
With one demonstrated solution, we can call the system consistent. �

Since this solution is so obvious, we now define it as the trivial solution.

Definition TSHSE
Trivial Solution to Homogeneous Systems of Equations
Suppose a homogeneous system of linear equations has n variables. The solution x1 = 0, x2 = 0,. . . ,
xn = 0 (i.e. x = 0) is called the trivial solution. 4

Here are three typical examples, which we will reference throughout this section. Work through
the row operations as we bring each to reduced row-echelon form. Also notice what is similar in
each example, and what differs.
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Example HUSAB
Homogeneous, unique solution, Archetype B
Archetype B can be converted to the homogeneous system,

−11x1 + 2x2 − 14x3 = 0
23x1 − 6x2 + 33x3 = 0
14x1 − 2x2 + 17x3 = 0

whose augmented matrix row-reduces to 1 0 0 0
0 1 0 0
0 0 1 0


By Theorem HSC [57], the system is consistent, and so the computation n− r = 3− 3 = 0 means
the solution set contains just a single solution. Then, this lone solution must be the trivial solution.

�

Example HISAA
Homogeneous, infinite solutions, Archetype A
Archetype A [685] can be converted to the homogeneous system,

x1 − x2 + 2x3 = 0
2x1 + x2 + x3 = 0
x1 + x2 = 0

whose augmented matrix row-reduces to 1 0 1 0
0 1 −1 0
0 0 0 0


By Theorem HSC [57], the system is consistent, and so the computation n− r = 3− 2 = 1 means
the solution set contains one free variable by Theorem FVCS [49], and hence has infinitely many
solutions. We can describe this solution set using the free variable x3,

S =


x1

x2

x3

 ∣∣∣∣∣∣ x1 = −x3, x2 = x3

 =


−x3

x3

x3

 ∣∣∣∣∣∣ x3 ∈ C


Geometrically, these are points in three dimensions that lie on a line through the origin. �

Example HISAD
Homogeneous, infinite solutions, Archetype D
Archetype D [698] (and identically, Archetype E [702]) can be converted to the homogeneous system,

2x1 + x2 + 7x3 − 7x4 = 0
−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

whose augmented matrix row-reduces to 1 0 3 −2 0
0 1 1 −3 0
0 0 0 0 0


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By Theorem HSC [57], the system is consistent, and so the computation n− r = 4− 2 = 2 means
the solution set contains two free variables by Theorem FVCS [49], and hence has infinitely many
solutions. We can describe this solution set using the free variables x3 and x4,

S =



x1

x2

x3

x4


∣∣∣∣∣∣∣∣ x1 = −3x3 + 2x4, x2 = −x3 + 3x4


=



−3x3 + 2x4

−x3 + 3x4

x3

x4


∣∣∣∣∣∣∣∣ x3, x4 ∈ C


�

After working through these examples, you might perform the same computations for the slightly
larger example, Archetype J [722].

Notice that when we do row operations on the augmented matrix of a homogeneous system
of linear equations the last column of the matrix is all zeros. Any one of the three allowable
row operations will convert zeros to zeros and thus, the final column of the matrix in reduced
row-echelon form will also be all zeros. So in this case, we may be as likely to reference only the
coefficient matrix and presume that we remember that the final column begins with zeros, and after
any number of row operations is still zero.

Example HISAD [58] suggests the following theorem.

Theorem HMVEI
Homogeneous, More Variables than Equations, Infinite solutions
Suppose that a homogeneous system of linear equations has m equations and n variables with
n > m. Then the system has infinitely many solutions. �

Proof We are assuming the system is homogeneous, so Theorem HSC [57] says it is consistent.
Then the hypothesis that n > m, together with Theorem CMVEI [50], gives infinitely many
solutions. �

Example HUSAB [57] and Example HISAA [58] are concerned with homogeneous systems where
n = m and expose a fundamental distinction between the two examples. One has a unique solution,
while the other has infinitely many. These are exactly the only two possibilities for a homogeneous
system and illustrate that each is possible (unlike the case when n > m where Theorem HMVEI
[59] tells us that there is only one possibility for a homogeneous system).

Subsection NSM
Null Space of a Matrix

The set of solutions to a homogeneous system (which by Theorem HSC [57] is never empty) is of
enough interest to warrant its own name. However, we define it as a property of the coefficient
matrix, not as a property of some system of equations.

Definition NSM
Null Space of a Matrix
The null space of a matrix A, denoted N (A), is the set of all the vectors that are solutions to the
homogeneous system LS(A, 0).
(This definition contains Notation NSM.) 4

In the Archetypes (Appendix A [681]) each example that is a system of equations also has
a corresponding homogeneous system of equations listed, and several sample solutions are given.
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These solutions will be elements of the null space of the coefficient matrix. We’ll look at one
example.

Example NSEAI
Null space elements of Archetype I
The write-up for Archetype I [718] lists several solutions of the corresponding homogeneous system.
Here are two, written as solution vectors. We can say that they are in the null space of the coefficient
matrix for the system of equations in Archetype I [718].

x =



3
0
−5
−6
0
0
1


y =



−4
1
−3
−2
1
1
1


However, the vector

z =



1
0
0
0
0
0
2


is not in the null space, since it is not a solution to the homogeneous system. For example, it fails
to even make the first equation true. �

Here are two (prototypical) examples of the computation of the null space of a matrix. Notice
that we will now begin writing solutions as vectors.

Example CNS1
Computing a null space, #1
Let’s compute the null space of

A =

2 −1 7 −3 −8
1 0 2 4 9
2 2 −2 −1 8


which we write as N (A). Translating Definition NSM [59], we simply desire to solve the homoge-
neous system LS(A, 0). So we row-reduce the augmented matrix to obtain 1 0 2 0 1 0

0 1 −3 0 4 0
0 0 0 1 2 0


The variables (of the homogeneous system) x3 and x5 are free (since columns 1, 2 and 4 are pivot
columns), so we arrange the equations represented by the matrix in reduced row-echelon form to

x1 = −2x3 − x5

x2 = 3x3 − 4x5

x4 = −2x5

So we can write the infinite solution set as sets using column vectors,

N (A) =




−2x3 − x5

3x3 − 4x5

x3

−2x5

x5


∣∣∣∣∣∣∣∣∣∣
x3, x5 ∈ C


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�

Example CNS2
Computing a null space, #2
Let’s compute the null space of

C =


−4 6 1
−1 4 1
5 6 7
4 7 1


which we write as N (C). Translating Definition NSM [59], we simply desire to solve the homoge-
neous system LS(C, 0). So we row-reduce the augmented matrix to obtain

1 0 0
0 1 0
0 0 1
0 0 0


There are no free variables in the homogenous system represented by the row-reduced matrix, so
there is only the trivial solution, the zero vector, 0. So we can write the (trivial) solution set as

N (C) = {0} =


0

0
0


�

Subsection READ
Reading Questions

1. What is always true of the solution set for a homogeneous system of equations?

2. Suppose a homogeneous sytem of equations has 13 variables and 8 equations. How many
solutions will it have? Why?

3. Describe in words (not symbols) the null space of a matrix.
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Subsection EXC
Exercises

C10 Each archetype (Appendix A [681]) that is a system of equations has a corresponding ho-
mogeneous system with the same coefficient matrix. Compute the set of solutions for each. Notice
that these solution sets are the null spaces of the coefficient matrices.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/ Archetype H [714]
Archetype I [718]
and Archetype J [722]
Contributed by Robert Beezer

C20 Archetype K [727] and Archetype L [731] are simply 5×5 matrices (i.e. they are not systems
of equations). Compute the null space of each matrix.
Contributed by Robert Beezer

C30 Compute the null space of the matrix A, N (A).

A =


2 4 1 3 8
−1 −2 −1 −1 1
2 4 0 −3 4
2 4 −1 −7 4


Contributed by Robert Beezer Solution [64]

C31 Find the null space of the matrix B, N (B).

B =

−6 4 −36 6
2 −1 10 −1
−3 2 −18 3


Contributed by Robert Beezer Solution [64]

M45 Without doing any computations, and without examining any solutions, say as much as
possible about the form of the solution set for corresponding homogeneous system of equations of
each archetype that is a system of equations.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]
Contributed by Robert Beezer

For Exercises M50–M52 say as much as possible about each system’s solution set. Be sure
to make it clear which theorems you are using to reach your conclusions.
M50 A homogeneous system of 8 equations in 8 variables.
Contributed by Robert Beezer Solution [64]

M51 A homogeneous system of 8 equations in 9 variables.
Contributed by Robert Beezer Solution [65]
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M52 A homogeneous system of 8 equations in 7 variables.
Contributed by Robert Beezer Solution [65]

T10 Prove or disprove: A system of linear equations is homogeneous if and only if the system
has the zero vector as a solution.
Contributed by Martin Jackson Solution [65]

T20 Consider the homogeneous system of linear equations LS(A, 0), and suppose that u =


u1

u2

u3
...
un



is one solution to the system of equations. Prove that v =


4u1

4u2

4u3
...

4un

 is also a solution to LS(A, 0).

Contributed by Robert Beezer Solution [65]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [62]
Definition NSM [59] tells us that the null space of A is the solution set to the homogeneous system
LS(A, 0). The augmented matrix of this system is

2 4 1 3 8 0
−1 −2 −1 −1 1 0
2 4 0 −3 4 0
2 4 −1 −7 4 0


To solve the system, we row-reduce the augmented matrix and obtain,

1 2 0 0 5 0
0 0 1 0 −8 0
0 0 0 1 2 0
0 0 0 0 0 0


This matrix represents a system with equations having three dependent variables (x1, x3, and x4)
and two independent variables (x2 and x5). These equations rearrange to

x1 = −2x2 − 5x5 x3 = 8x5 x4 = −2x5

So we can write the solution set (which is the requested null space) as

N (A) =




−2x2 − 5x5

x2

8x5

−2x5

x5


∣∣∣∣∣∣∣∣∣∣
x2, x5 ∈ C


C31 Contributed by Robert Beezer Statement [62]
We form the augmented matrix of the homogeneous system LS(B, 0) and row-reduce the matrix,−6 4 −36 6 0

2 −1 10 −1 0
−3 2 −18 3 0

 RREF−−−−→

 1 0 2 1 0
0 1 −6 3 0
0 0 0 0 0


We knew ahead of time that this system would be consistent (Theorem HSC [57]), but we can now
see there are n− r = 4− 2 = 2 free variables, namely x3 and x4 (Theorem FVCS [49]). Based on
this analysis, we can rearrange the equations associated with each nonzero row of the reduced row-
echelon form into an expression for the lone dependent variable as a function of the free variables.
We arrive at the solution set to the homogeneous system, which is the null space of the matrix by
Definition NSM [59],

N (B) =



−2x3 − x4

6x3 − 3x4

x3

x4


∣∣∣∣∣∣∣∣ x3, x4 ∈ C


M50 Contributed by Robert Beezer Statement [62]
Since the system is homogeneous, we know it has the trivial solution (Theorem HSC [57]). We
cannot say anymore based on the information provided, except to say that there is either a unique

Version 1.30



Subsection HSE.SOL Solutions 65

solution or infinitely many solutions (Theorem PSSLS [50]). See Archetype A [685] and Archetype
B [689] to understand the possibilities.

M51 Contributed by Robert Beezer Statement [62]
Since there are more variables than equations, Theorem HMVEI [59] applies and tells us that the
solution set is infinite. From the proof of Theorem HSC [57] we know that the zero vector is one
solution.

M52 Contributed by Robert Beezer Statement [63]
By Theorem HSC [57], we know the system is consistent because the zero vector is always a
solution of a homogeneous system. There is no more that we can say, since both a unique solution
and infinitely many solutions are possibilities.

T10 Contributed by Robert Beezer Statement [63]
This is a true statement. A proof is:

(⇒) Suppose we have a homogeneous system LS(A, 0). Then by substituting the scalar zero
for each variable, we arrive at true statements for each equation. So the zero vector is a solution.
This is the content of Theorem HSC [57].

(⇐) Suppose now that we have a generic (i.e. not necessarily homogeneous) system of equations,
LS(A, b) that has the zero vector as a solution. Upon substituting this solution into the system,
we discover that each component of b must also be zero. So b = 0.

T20 Contributed by Robert Beezer Statement [63]
Suppose that a single equation from this system (the i-th one) has the form,

ai1x1 + ai2x2 + ai3x3 + · · ·+ ainxn = 0

Evaluate the left-hand side of this equation with the components of the proposed solution vector
v,

ai1 (4u1) + ai2 (4u2) + ai3 (4u3) + · · ·+ ain (4un)
= 4ai1u1 + 4ai2u2 + 4ai3u3 + · · ·+ 4ainun Commutativity
= 4 (ai1u1 + ai2u2 + ai3u3 + · · ·+ ainun) Distributivity
= 4(0) u solution to LS(A, 0)
= 0

So v makes each equation true, and so is a solution to the system.
Notice that this result is not true if we change LS(A, 0) from a homogeneous system to a non-

homogeneous system. Can you create an example of a (non-homogeneous) system with a solution
u such that v is not a solution?
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Section NM
Nonsingular Matrices

In this section we specialize and consider matrices with equal numbers of rows and columns, which
when considered as coefficient matrices lead to systems with equal numbers of equations and vari-
ables. We will see in the second half of the course (Chapter D [363], Chapter E [389] Chapter LT
[443], Chapter R [517]) that these matrices are especially important.

Subsection NM
Nonsingular Matrices

Our theorems will now establish connections between systems of equations (homogeneous or oth-
erwise), augmented matrices representing those systems, coefficient matrices, constant vectors, the
reduced row-echelon form of matrices (augmented and coefficient) and solution sets. Be very care-
ful in your reading, writing and speaking about systems of equations, matrices and sets of vectors.
A system of equations is not a matrix, a matrix is not a solution set, and a solution set is not
a system of equations. Now would be a great time to review the discussion about speaking and
writing mathematics in Technique L [670].

Definition SQM
Square Matrix
A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has size
n. To emphasize the situation when a matrix is not square, we will call it rectangular. 4

We can now present one of the central definitions of linear algebra.

Definition NM
Nonsingular Matrix
Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear
system of equations LS(A, 0) is {0}, i.e. the system has only the trivial solution. Then we say that
A is a nonsingular matrix. Otherwise we say A is a singular matrix. 4

We can investigate whether any square matrix is nonsingular or not, no matter if the matrix is
derived somehow from a system of equations or if it is simply a matrix. The definition says that
to perform this investigation we must construct a very specific system of equations (homogeneous,
with the matrix as the coefficient matrix) and look at its solution set. We will have theorems in this
section that connect nonsingular matrices with systems of equations, creating more opportunities
for confusion. Convince yourself now of two observations, (1) we can decide nonsingularity for any
square matrix, and (2) the determination of nonsingularity involves the solution set for a certain
homogenous system of equations.

Notice that it makes no sense to call a system of equations nonsingular (the term does not apply
to a system of equations), nor does it make any sense to call a 5× 7 matrix singular (the matrix is
not square).

Example S
A singular matrix, Archetype A
Example HISAA [58] shows that the coefficient matrix derived from Archetype A [685], specifically
the 3× 3 matrix,

A =

1 −1 2
2 1 1
1 1 0


is a singular matrix since there are nontrivial solutions to the homogeneous system LS(A, 0). �

Example NM
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A nonsingular matrix, Archetype B
Example HUSAB [57] shows that the coefficient matrix derived from Archetype B [689], specifically
the 3× 3 matrix,

B =

−7 −6 −12
5 5 7
1 0 4


is a nonsingular matrix since the homogeneous system, LS(B, 0), has only the trivial solution. �

Notice that we will not discuss Example HISAD [58] as being a singular or nonsingular coefficient
matrix since the matrix is not square.

The next theorem combines with our main computational technique (row-reducing a matrix)
to make it easy to recognize a nonsingular matrix. But first a definition.

Definition IM
Identity Matrix
The m×m identity matrix, Im, is defined by

[Im]ij =

{
1 i = j

0 i 6= j

(This definition contains Notation IM.) 4

Example IM
An identity matrix
The 4× 4 identity matrix is

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
�

Notice that an identity matrix is square, and in reduced row-echelon form. So in particular, if
we were to arrive at the identity matrix while bringing a matrix to reduced row-echelon form, then
it would have all of the diagonal entries circled as leading 1’s.

Theorem NMRRI
Nonsingular Matrices Row Reduce to the Identity matrix
Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form.
Then A is nonsingular if and only if B is the identity matrix. �

Proof (⇐) Suppose B is the identity matrix. When the augmented matrix [A | 0] is row-reduced,
the result is [B | 0] = [In | 0]. The number of nonzero rows is equal to the number of variables in
the linear system of equations LS(A, 0), so n = r and Theorem FVCS [49] gives n − r = 0 free
variables. Thus, the homogeneous system LS(A, 0) has just one solution, which must be the trivial
solution. This is exactly the definition of a nonsingular matrix.

(⇒) If A is nonsingular, then the homogeneous system LS(A, 0) has a unique solution, and
has no free variables in the description of the solution set. The homogeneous system is consistent
(Theorem HSC [57]) so Theorem FVCS [49] applies and tells us there are n−r free variables. Thus,
n− r = 0, and so n = r. So B has n pivot columns among its total of n columns. This is enough
to force B to be the n× n identity matrix In. �

Notice that since this theorem is an equivalence it will always allow us to determine if a matrix
is either nonsingular or singular. Here are two examples of this, continuing our study of Archetype
A and Archetype B.

Example SRR
Singular matrix, row-reduced

Version 1.30



Subsection NM.NSNM Null Space of a Nonsingular Matrix 69

The coefficient matrix for Archetype A [685] is

A =

1 −1 2
2 1 1
1 1 0


which when row-reduced becomes the row-equivalent matrix

B =

 1 0 1
0 1 −1
0 0 0

 .
Since this matrix is not the 3×3 identity matrix, Theorem NMRRI [68] tells us that A is a singular
matrix. �

Example NSR
Nonsingular matrix, row-reduced
The coefficient matrix for Archetype B [689] is

A =

−7 −6 −12
5 5 7
1 0 4


which when row-reduced becomes the row-equivalent matrix

B =

 1 0 0
0 1 0
0 0 1

 .
Since this matrix is the 3×3 identity matrix, Theorem NMRRI [68] tells us that A is a nonsingular
matrix. �

Subsection NSNM
Null Space of a Nonsingular Matrix

Nonsingular matrices and their null spaces are intimately related, as the next two examples illus-
trate.

Example NSS
Null space of a singular matrix
Given the coefficient matrix from Archetype A [685],

A =

1 −1 2
2 1 1
1 1 0


the null space is the set of solutions to the homogeneous system of equations LS(A, 0) has a solution
set and null space constructed in Example HISAA [58] as

N (A) =


−x3

x3

x3

 ∣∣∣∣∣∣ x3 ∈ C


�

Example NSNM
Null space of a nonsingular matrix
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Given the coefficient matrix from Archetype B [689],

A =

−7 −6 −12
5 5 7
1 0 4


the homogeneous system LS(A, 0) has a solution set constructed in Example HUSAB [57] that
contains only the trivial solution, so the null space has only a single element,

N (A) =


0

0
0


�

These two examples illustrate the next theorem, which is another equivalence.

Theorem NMTNS
Nonsingular Matrices have Trivial Null Spaces
Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, N (A),
contains only the zero vector, i.e. N (A) = {0}. �

Proof The null space of a square matrix, A, is equal to the set of solutions to the homogeneous
system, LS(A, 0). A matrix is nonsingular if and only if the set of solutions to the homogeneous
system, LS(A, 0), has only a trivial solution. These two observations may be chained together to
construct the two proofs necessary for each half of this theorem. �

The next theorem pulls a lot of ideas together. Two proof techniques are applicable to the
proof. So first, head out and read two more proof techniques: Technique CD [673] and Technique
U [674]. Theorem NMUS [70] tells us that we can learn a lot about solutions to a system
of linear equations with a square coefficient matrix by examining a similar homogeneous system.

Theorem NMUS
Nonsingular Matrices and Unique Solutions
Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system LS(A, b)
has a unique solution for every choice of the constant vector b. �

Proof (⇐) The hypothesis for this half of the proof is that the system LS(A, b) has a unique
solution for every choice of the constant vector b. We will make a very specific choice for b: b = 0.
Then we know that the system LS(A, 0) has a unique solution. But this is precisely the definition
of what it means for A to be nonsingular (Definition NM [67]). That almost seems too easy! Notice
that we have not used the full power of our hypothesis, but there is nothing that says we must use
a hypothesis to its fullest.

If the first half of the proof seemed easy, perhaps we’ll have to work a bit harder to get the
implication in the opposite direction. We provide two different proofs for the second half. The
first is suggested by Asa Scherer and relies on the uniqueness of the reduced row-echelon form of a
matrix (Theorem RREFU [106]), a result that we could have proven earlier, but we have decided
to delay until later. The second proof is lengthier and more involved, but does not rely on the
uniqueness of the reduced row-echelon form of a matrix, a result we have not proven yet. It is also
a good example of the types of proofs we will encounter throughout the course.

(⇒, Round 1) We assume that A is nonsingular, so we know there is a sequence of row operations
that will convert A into the identity matrix In (Theorem NMRRI [68]). Form the augmented matrix
A′ = [A | b] and apply this same sequence of row operations to A′. The result will be the matrix
B′ = [In | c], which is in reduced row-echelon form. It should be clear that c is a solution to
LS(A, b). Furthermore, since B′ is unique (Theorem RREFU [106]), the vector c must be unique,
and therefore is a unique solution of LS(A, b).

(⇒, Round 2) We will assume A is nonsingular, and try to solve the system LS(A, b) without
making any assumptions about b. To do this we will begin by constructing a new homogeneous
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linear system of equations that looks very much like the original. Suppose A has size n (why must
it be square?) and write the original system as,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
... (∗)

an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn

form the new, homogeneous system in n equations with n+ 1 variables, by adding a new variable
y, whose coefficients are the negatives of the constant terms,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn − b1y = 0
a21x1 + a22x2 + a23x3 + · · ·+ a2nxn − b2y = 0
a31x1 + a32x2 + a33x3 + · · ·+ a3nxn − b3y = 0

... (∗∗)
an1x1 + an2x2 + an3x3 + · · ·+ annxn − bny = 0

Since this is a homogeneous system with more variables than equations (m = n+ 1 > n), Theorem
HMVEI [59] says that the system has infinitely many solutions. We will choose one of these
solutions, any one of these solutions, so long as it is not the trivial solution. Write this solution as

x1 = c1 x2 = c2 x3 = c3 . . . xn = cn y = cn+1

We know that at least one value of the ci is nonzero, but we will now show that in particular
cn+1 6= 0. We do this using a proof by contradiction (Technique CD [673]). So suppose the ci form
a solution as described, and in addition that cn+1 = 0. Then we can write the i-th equation of
system (∗∗) as,

ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn − bi(0) = 0

which becomes

ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn = 0

Since this is true for each i, we have that x1 = c1, x2 = c2, x3 = c3, . . . , xn = cn is a solution to the
homogeneous system LS(A, 0) formed with a nonsingular coefficient matrix. This means that the
only possible solution is the trivial solution, so c1 = 0, c2 = 0, c3 = 0, . . . , cn = 0. So, assuming
simply that cn+1 = 0, we conclude that all of the ci are zero. But this contradicts our choice of the
ci as not being the trivial solution to the system (∗∗). So cn+1 6= 0.

We now propose and verify a solution to the original system (∗). Set

x1 =
c1

cn+1
x2 =

c2

cn+1
x3 =

c3

cn+1
. . . xn =

cn
cn+1

Notice how it was necessary that we know that cn+1 6= 0 for this step to succeed. Now, evaluate
the i-th equation of system (∗) with this proposed solution, and recognize in the third line that
c1 through cn+1 appear as if they were substituted into the left-hand side of the i-th equation of
system (∗∗),

ai1
c1

cn+1
+ ai2

c2

cn+1
+ ai3

c3

cn+1
+ · · ·+ ain

cn
cn+1

=
1

cn+1
(ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn)
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=
1

cn+1
(ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn − bicn+1) + bi

=
1

cn+1
(0) + bi

= bi

Since this equation is true for every i, we have found a solution to system (∗). To finish, we still
need to establish that this solution is unique.

With one solution in hand, we will entertain the possibility of a second solution. So assume
system (∗) has two solutions,

x1 = d1 x2 = d2 x3 = d3 . . . xn = dn

x1 = e1 x2 = e2 x3 = e3 . . . xn = en

Then,

(ai1(d1 − e1) + ai2(d2 − e2) + ai3(d3 − e3) + · · ·+ ain(dn − en))
= (ai1d1 + ai2d2 + ai3d3 + · · ·+ aindn)− (ai1e1 + ai2e2 + ai3e3 + · · ·+ ainen)
= bi − bi
= 0

This is the i-th equation of the homogeneous system LS(A, 0) evaluated with xj = dj − ej , 1 ≤
j ≤ n. Since A is nonsingular, we must conclude that this solution is the trivial solution, and so
0 = dj − ej , 1 ≤ j ≤ n. That is, dj = ej for all j and the two solutions are identical, meaning any
solution to (∗) is unique. �

This important theorem deserves several comments. First, notice that the proposed solution
(xi = ci

cn+1
) appeared in the Round 2 proof with no motivation whatsoever. This is just fine in a

proof. A proof should convince you that a theorem is true. It is your job to read the proof and be
convinced of every assertion. Questions like “Where did that come from?” or “How would I think
of that?” have no bearing on the validity of the proof.

Second, this theorem helps to explain part of our interest in nonsingular matrices. If a matrix
is nonsingular, then no matter what vector of constants we pair it with, using the matrix as the
coefficient matrix will always yield a linear system of equations with a solution, and the solution is
unique. To determine if a matrix has this property (non-singularity) it is enough to just solve one
linear system, the homogeneous system with the matrix as coefficient matrix and the zero vector
as the vector of constants (or any other vector of constants, see Exercise MM.T10 [203]).

Finally, formulating the negation of the second part of this theorem is a good exercise. A
singular matrix has the property that for some value of the vector b, the system LS(A, b) does
not have a unique solution (which means that it has no solution or infinitely many solutions).
We will be able to say more about this case later (see the discussion following Theorem PSPHS
[103]). Square matrices that are nonsingular have a long list of interesting properties, which we
will start to catalog in the following, recurring, theorem. Of course, singular matrices will then
have all of the opposite properties. The following theorem is a list of equivalences. We want
to understand just what is involved with understanding and proving a theorem that says several
condtions are equivalent. So have a look at Technique ME [674] before studying the first in this
series of theorems.

Theorem NME1
Nonsingular Matrix Equivalences, Round 1
Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.
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4. The linear system LS(A, b) has a unique solution for every possible choice of b.

�

Proof That A is nonsingular is equivalent to each of the subsequent statements by, in turn,
Theorem NMRRI [68], Theorem NMTNS [70] and Theorem NMUS [70]. So the statement of this
theorem is just a convenient way to organize all these results. �

Subsection READ
Reading Questions

1. What is the definition of a nonsingular matrix?

2. What is the easiest way to recognize a nonsingular matrix?

3. Suppose we have a system of equations and its coefficient matrix is nonsingular. What can
you say about the solution set for this system?
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Subsection EXC
Exercises

In Exercises C30–C33 determine if the matrix is nonsingular or singular. Give reasons for your
answer.
C30 

−3 1 2 8
2 0 3 4
1 2 7 −4
5 −1 2 0


Contributed by Robert Beezer Solution [76]

C31 
2 3 1 4
1 1 1 0
−1 2 3 5
1 2 1 3


Contributed by Robert Beezer Solution [76]

C32 9 3 2 4
5 −6 1 3
4 1 3 −5


Contributed by Robert Beezer Solution [76]

C33 
−1 2 0 3
1 −3 −2 4
−2 0 4 3
−3 1 −2 3


Contributed by Robert Beezer Solution [76]

C40 Each of the archetypes below is a system of equations with a square coefficient matrix, or is
itself a square matrix. Determine if these matrices are nonsingular, or singular. Comment on the
null space of each matrix.
Archetype A [685]
Archetype B [689]
Archetype F [705]
Archetype K [727]
Archetype L [731]
Contributed by Robert Beezer

M30 Let A be the coefficient matrix of the system of equations below. Is A nonsingular or
singular? Explain what you could infer about the solution set for the system based only on what
you have learned about A being singular or nonsingular.

−x1 + 5x2 = −8
−2x1 + 5x2 + 5x3 + 2x4 = 9
−3x1 − x2 + 3x3 + x4 = 3
7x1 + 6x2 + 5x3 + x4 = 30

Contributed by Robert Beezer Solution [76]

Version 1.30



Subsection NM.EXC Exercises 75

For Exercises M51–M52 say as much as possible about each system’s solution set. Be sure
to make it clear which theorems you are using to reach your conclusions.
M51 6 equations in 6 variables, singular coefficient matrix.
Contributed by Robert Beezer Solution [76]

M52 A system with a nonsingular coefficient matrix, not homogeneous.
Contributed by Robert Beezer Solution [76]

T10 Suppose that A is a singular matrix, and B is a matrix in reduced row-echelon form that is
row-equivalent to A. Prove that the last row of B is a zero row.
Contributed by Robert Beezer Solution [77]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [74]
The matrix row-reduces to 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


which is the 4×4 identity matrix. By Theorem NMRRI [68] the original matrix must be nonsingular.

C31 Contributed by Robert Beezer Statement [74]
Row-reducing the matrix yields, 

1 0 0 −2
0 1 0 3
0 0 1 −1
0 0 0 0


Since this is not the 4× 4 identity matrix, Theorem NMRRI [68] tells us the matrix is singular.

C32 Contributed by Robert Beezer Statement [74]
The matrix is not square, so neither term is applicable. See Definition NM [67], which is stated for
just square matrices.

C33 Contributed by Robert Beezer Statement [74]
Theorem NMRRI [68] tells us we can answer this question by simply row-reducing the matrix.
Doing this we obtain, 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Since the reduced row-echelon form of the matrix is the 4× 4 identity matrix I4, we know that B
is nonsingular.

M30 Contributed by Robert Beezer Statement [74]
We row-reduce the coefficient matrix of the system of equations,

−1 5 0 0
−2 5 5 2
−3 −1 3 1
7 6 5 1

 RREF−−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Since the row-reduced version of the coefficient mattrix is the 4× 4 identity matrix, I4 (Definition
IM [68] byTheorem NMRRI [68], we know the coefficient matrix is nonsingular. According to
Theorem NMUS [70] we know that the system is guaranteed to have a unique solution, based only
on the extra information that the coefficient matrix is nonsingular.

M51 Contributed by Robert Beezer Statement [75]
Theorem NMRRI [68] tells us that the coefficient matrix will not row-reduce to the identity matrix.
So if we were to row-reduce the augmented matrix of this system of equations, we would not get a
unique solution. So by Theorem PSSLS [50] the remaining possibilities are no solutions, or infinitely
many.

M52 Contributed by Robert Beezer Statement [75]
Any system with a nonsingular coefficient matrix will have a unique solution by Theorem NMUS
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[70]. If the system is not homogeneous, the solution cannot be the zero vector (Exercise HSE.T10
[63]).

T10 Contributed by Robert Beezer Statement [75]
Let n denote the size of the square matrix A. By Theorem NMRRI [68] the hypothesis that A is
singular implies that B is not the identity matrix In. If B has n pivot columns, then it would have
to be In, so B must have fewer than n pivot columns. But the number of nonzero rows in B (r)
is equal to the number of pivot columns as well. So the n rows of B have fewer than n nonzero
rows, and B must contain at least one zero row. By Definition RREF [28], this row must be at the
bottom of B.
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Annotated Acronyms SLE
Systems of Linear Equations

At the conclusion of each chapter you will find a section like this, reviewing selected definitions and
theorems. There are many reasons for why a definition or theorem might be placed here. It might
represent a key concept, it might be used frequently for computations, provide the critical step in
many proofs, or it may deserve special comment.

These lists are not meant to be exhaustive, but should still be useful as part of reviewing each
chapter. We will mention a few of these that you might eventually recognize on sight as being worth
memorization. By that we mean that you can associate the acronym with a rough statement of the
theorem — not that the exact details of the theorem need to be memorized. And it is certainly
not our intent that everything on these lists is important enough to memorize.

Theorem RCLS [48]

We will repeatedly appeal to this theorem to determine if a system of linear equations, does, or
doesn’t, have a solution. This one we will see often enough that it is worth memorizing.

Theorem HMVEI [59]

This theorem is the theoretical basis of several of our most important theorems. So keep an eye out
for it, and its descendants, as you study other proofs. For example, Theorem HMVEI [59] is critical
to the proof of Theorem SSLD [333], Theorem SSLD [333] is critical to the proof of Theorem G
[347], Theorem G [347] is critical to the proofs of the pair of similar theorems, Theorem ILTD [473]
and Theorem SLTD [489], while finally Theorem ILTD [473] and Theorem SLTD [489] are critical
to the proof of an important result, Theorem IVSED [503]. This chain of implications might not
make much sense on a first reading, but come back later to see how some very important theorems
build on the seemingly simple result that is Theorem HMVEI [59]. Using the “find” feature in
whatever software you use to read the electronic version of the text can be a fun way to explore
these relationships.

Theorem NMRRI [68]

This theorem gives us one of simplest ways, computationally, to recognize if a matrix is nonsingular,
or singular. We will see this one often, in computational exercises especially.

Theorem NMUS [70]

Nonsingular matrices will be an important topic going forward (witness the NMEx series of theo-
rems). This is our first result along these lines, a useful theorem for other proofs, and also illustrates
a more general concept from Chapter LT [443].
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Chapter V
Vectors

We have worked extensively in the last chapter with matrices, and some with vectors. In this
chapter we will develop the properties of vectors, while preparing to study vector spaces (Chapter
VS [273]). Initially we will depart from our study of systems of linear equations, but in Section
LC [89] we will forge a connection between linear combinations and systems of linear equations in
Theorem SLSLC [92]. This connection will allow us to understand systems of linear equations at a
higher level, while consequently discussing them less frequently.

Section VO
Vector Operations

In this section we define some new operations involving vectors, and collect some basic properties of
these operations. Begin by recalling our definition of a column vector as an ordered list of complex
numbers, written vertically (Definition CV [23]). The collection of all possible vectors of a fixed
size is a commonly used set, so we start with its definition.

Definition VSCV
Vector Space of Column Vectors
The vector space Cm is the set of all column vectors (Definition CV [23]) of size m with entries
from the set of complex numbers, C.
(This definition contains Notation VSCV.) 4

When a set similar to this is defined using only column vectors where all the entries are from
the real numbers, it is written as Rm and is known as Euclidean m-space.

The term “vector” is used in a variety of different ways. We have defined it as an ordered list
written vertically. It could simply be an ordered list of numbers, and written as (2, 3, −1, 6). Or
it could be interpreted as a point in m dimensions, such as (3, 4, −2) representing a point in three
dimensions relative to x, y and z axes. With an interpretation as a point, we can construct an
arrow from the origin to the point which is consistent with the notion that a vector has direction
and magnitude.

All of these ideas can be shown to be related and equivalent, so keep that in mind as you connect
the ideas of this course with ideas from other disciplines. For now, we’ll stick with the idea that a
vector is a just a list of numbers, in some particular order.

Subsection VEASM
Vector Equality, Addition, Scalar Multiplication

We start our study of this set by first defining what it means for two vectors to be the same.
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Definition CVE
Column Vector Equality
Suppose that u, v ∈ Cm. Then u and v are equal, written u = v if

[u]i = [v]i 1 ≤ i ≤ m

(This definition contains Notation CVE.) 4

Now this may seem like a silly (or even stupid) thing to say so carefully. Of course two vectors
are equal if they are equal for each corresponding entry! Well, this is not as silly as it appears.
We will see a few occasions later where the obvious definition is not the right one. And besides,
in doing mathematics we need to be very careful about making all the necessary definitions and
making them unambiguous. And we’ve done that here.

Notice now that the symbol ‘=’ is now doing triple-duty. We know from our earlier education
what it means for two numbers (real or complex) to be equal, and we take this for granted. In
Definition SE [666] we defined what it meant for two sets to be equal. Now we have defined what it
means for two vectors to be equal, and that definition builds on our definition for when two numbers
are equal when we use the condition ui = vi for all 1 ≤ i ≤ m. So think carefully about your objects
when you see an equal sign and think about just which notion of equality you have encountered.
This will be especially important when you are asked to construct proofs whose conclusion states
that two objects are equal.

OK, let’s do an example of vector equality that begins to hint at the utility of this definition.

Example VESE
Vector equality for a system of equations
Consider the system of linear equations in Archetype B [689],

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

Note the use of three equals signs — each indicates an equality of numbers (the linear expressions
are numbers when we evaluate them with fixed values of the variable quantities). Now write the
vector equality, −7x1 − 6x2 − 12x3

5x1 + 5x2 + 7x3

x1 + 4x3

 =

−33
24
5

 .
By Definition CVE [82], this single equality (of two column vectors) translates into three simulta-
neous equalities of numbers that form the system of equations. So with this new notion of vector
equality we can become less reliant on referring to systems of simultaneous equations. There’s
more to vector equality than just this, but this is a good example for starters and we will develop
it further. �

We will now define two operations on the set Cm. By this we mean well-defined procedures
that somehow convert vectors into other vectors. Here are two of the most basic definitions of the
entire course.

Definition CVA
Column Vector Addition
Suppose that u, v ∈ Cm. The sum of u and v is the vector u + v defined by

[u + v]i = [u]i + [v]i 1 ≤ i ≤ m

(This definition contains Notation CVA.) 4

So vector addition takes two vectors of the same size and combines them (in a natural way!)
to create a new vector of the same size. Notice that this definition is required, even if we agree
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that this is the obvious, right, natural or correct way to do it. Notice too that the symbol ‘+’ is
being recycled. We all know how to add numbers, but now we have the same symbol extended to
double-duty and we use it to indicate how to add two new objects, vectors. And this definition of
our new meaning is built on our previous meaning of addition via the expressions ui + vi. Think
about your objects, especially when doing proofs. Vector addition is easy, here’s an example from
C4.

Example VA
Addition of two vectors in C4

If

u =


2
−3
4
2

 v =


−1
5
2
−7


then

u + v =


2
−3
4
2

+


−1
5
2
−7

 =


2 + (−1)
−3 + 5
4 + 2

2 + (−7)

 =


1
2
6
−5

 .
�

Our second operation takes two objects of different types, specifically a number and a vector,
and combines them to create another vector. In this context we call a number a scalar in order to
emphasize that it is not a vector.

Definition CVSM
Column Vector Scalar Multiplication
Suppose u ∈ Cm and α ∈ C, then the scalar multiple of u by α is the vector αu defined by

[αu]i = α [u]i 1 ≤ i ≤ m

(This definition contains Notation CVSM.) 4
Notice that we are doing a kind of multiplication here, but we are defining a new type, perhaps

in what appears to be a natural way. We use juxtaposition (smashing two symbols together side-by-
side) to denote this operation rather than using a symbol like we did with vector addition. So this
can be another source of confusion. When two symbols are next to each other, are we doing regular
old multiplication, the kind we’ve done for years, or are we doing scalar vector multiplication, the
operation we just defined? Think about your objects — if the first object is a scalar, and the second
is a vector, then it must be that we are doing our new operation, and the result of this operation
will be another vector.

Notice how consistency in notation can be an aid here. If we write scalars as lower case Greek
letters from the start of the alphabet (such as α, β, . . . ) and write vectors in bold Latin letters
from the end of the alphabet (u, v, . . . ), then we have some hints about what type of objects we
are working with. This can be a blessing and a curse, since when we go read another book about
linear algebra, or read an application in another discipline (physics, economics, . . . ) the types of
notation employed may be very different and hence unfamiliar.

Again, computationally, vector scalar multiplication is very easy.

Example CVSM
Scalar multiplication in C5

If

u =


3
1
−2
4
−1


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and α = 6, then

αu = 6


3
1
−2
4
−1

 =


6(3)
6(1)

6(−2)
6(4)

6(−1)

 =


18
6
−12
24
−6

 .
�

Vector addition and scalar multiplication are the most natural and basic operations to perform
on vectors, so it should be easy to have your computational device form a linear combination. See:
Computation VLC.MMA [654] Computation VLC.TI86 [658] Computation VLC.TI83 [659]
.

Subsection VSP
Vector Space Properties

With definitions of vector addition and scalar multiplication we can state, and prove, several prop-
erties of each operation, and some properties that involve their interplay. We now collect ten of
them here for later reference.

Theorem VSPCV
Vector Space Properties of Column Vectors
Suppose that Cm is the set of column vectors of size m (Definition VSCV [81]) with addition and
scalar multiplication as defined in Definition CVA [82] and Definition CVSM [83]. Then

• ACC Additive Closure, Column Vectors
If u, v ∈ Cm, then u + v ∈ Cm.

• SCC Scalar Closure, Column Vectors
If α ∈ C and u ∈ Cm, then αu ∈ Cm.

• CC Commutativity, Column Vectors
If u, v ∈ Cm, then u + v = v + u.

• AAC Additive Associativity, Column Vectors
If u, v, w ∈ Cm, then u + (v + w) = (u + v) + w.

• ZC Zero Vector, Column Vectors
There is a vector, 0, called the zero vector, such that u + 0 = u for all u ∈ Cm.

• AIC Additive Inverses, Column Vectors
If u ∈ Cm, then there exists a vector −u ∈ Cm so that u + (−u) = 0.

• SMAC Scalar Multiplication Associativity, Column Vectors
If α, β ∈ C and u ∈ Cm, then α(βu) = (αβ)u.

• DVAC Distributivity across Vector Addition, Column Vectors
If α ∈ C and u, v ∈ Cm, then α(u + v) = αu + αv.

• DSAC Distributivity across Scalar Addition, Column Vectors
If α, β ∈ C and u ∈ Cm, then (α+ β)u = αu + βu.

• OC One, Column Vectors
If u ∈ Cm, then 1u = u.
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�

Proof While some of these properties seem very obvious, they all require proof. However, the
proofs are not very interesting, and border on tedious. We’ll prove one version of distributivity very
carefully, and you can test your proof-building skills on some of the others. We need to establish
an equality, so we will do so by beginning with one side of the equality, apply various definitions
and theorems (listed to the right of each step) to massage the expression from the left into the
expression on the right. Now would be a good time to read Technique PI [675], just below. Here
we go with a proof of Property DSAC [84]. For 1 ≤ i ≤ m,

[(α+ β)u]i = (α+ β) [u]i Definition CVSM [83]
= α [u]i + β [u]i Distributivity in C
= [αu]i + [βu]i Definition CVSM [83]
= [αu + βu]i Definition CVA [82]

Since the individual components of the vectors (α+β)u and αu+βu are equal for all i, 1 ≤ i ≤ m,
Definition CVE [82] tells us the vectors are equal. �

Many of the conclusions of our theorems can be characterized as “identities,” especially when
we are establishing basic properties of operations such as those in this section. So some advice
about the style we use for proving identities is appropriate right now. Have a look at Technique
PI [675].

Be careful with the notion of the vector −u. This is a vector that we add to u so that the result
is the particular vector 0. This is basically a property of vector addition. It happens that we can
compute −u using the other operation, scalar multiplication. We can prove this directly by writing
that

[−u]i = − [u]i = (−1) [u]i = [(−1)u]i

We will see later how to derive this property as a consequence of several of the ten properties listed
in Theorem VSPCV [84].

Subsection READ
Reading Questions

1. Where have you seen vectors used before in other courses? How were they different?

2. In words, when are two vectors equal?

3. Perform the following computation with vector operations

2

1
5
0

+ (−3)

7
6
5


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Subsection EXC
Exercises

C10 Compute

4


2
−3
4
1
0

+ (−2)


1
2
−5
2
4

+


−1
3
0
1
2


Contributed by Robert Beezer Solution [87]

T13 Prove Property CC [84] of Theorem VSPCV [84]. Write your proof in the style of the proof
of Property DSAC [84] given in this section.
Contributed by Robert Beezer Solution [87]

T17 Prove Property SMAC [84] of Theorem VSPCV [84]. Write your proof in the style of the
proof of Property DSAC [84] given in this section.
Contributed by Robert Beezer

T18 Prove Property DVAC [84] of Theorem VSPCV [84]. Write your proof in the style of the
proof of Property DSAC [84] given in this section.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [86]
5
−13
26
1
−6


T13 Contributed by Robert Beezer Statement [86]
For all 1 ≤ i ≤ m,

[u + v]i = [u]i + [v]i Definition CVA [82]
= [v]i + [u]i Commutativity in C
= [v + u]i Definition CVA [82]

With equality of each component of the vectors u + v and v + u being equal Definition CVE [82]
tells us the two vectors are equal.
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Section LC
Linear Combinations

In Section VO [81] we defined vector addition and scalar multiplication. These two operations
combine nicely to give us a construction known as a linear combination, a construct that we will
work with throughout this course.

Subsection LC
Linear Combinations

Definition LCCV
Linear Combination of Column Vectors
Given n vectors u1, u2, u3, . . . , un from Cm and n scalars α1, α2, α3, . . . , αn, their linear com-
bination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.

4

So this definition takes an equal number of scalars and vectors, combines them using our two
new operations (scalar multiplication and vector addition) and creates a single brand-new vector, of
the same size as the original vectors. When a definition or theorem employs a linear combination,
think about the nature of the objects that go into its creation (lists of scalars and vectors), and the
type of object that results (a single vector). Computationally, a linear combination is pretty easy.

Example TLC
Two linear combinations in C6

Suppose that

α1 = 1 α2 = −4 α3 = 2 α4 = −1

and

u1 =



2
4
−3
1
2
9

 u2 =



6
3
0
−2
1
4

 u3 =



−5
2
1
1
−3
0

 u4 =



3
2
−5
7
1
3


then their linear combination is

α1u1 + α2u2 + α3u3 + α4u4 = (1)



2
4
−3
1
2
9

+ (−4)



6
3
0
−2
1
4

+ (2)



−5
2
1
1
−3
0

+ (−1)



3
2
−5
7
1
3



=



2
4
−3
1
2
9

+



−24
−12

0
8
−4
−16

+



−10
4
2
2
−6
0

+



−3
−2
5
−7
−1
−3

 =



−35
−6
4
4
−9
−10

 .
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A different linear combination, of the same set of vectors, can be formed with different scalars.
Take

β1 = 3 β2 = 0 β3 = 5 β4 = −1

and form the linear combination

β1u1 + β2u2 + β3u3 + β4u4 = (3)



2
4
−3
1
2
9

+ (0)



6
3
0
−2
1
4

+ (5)



−5
2
1
1
−3
0

+ (−1)



3
2
−5
7
1
3



=



6
12
−9
3
6
27

+



0
0
0
0
0
0

+



−25
10
5
5
−15

0

+



−3
−2
5
−7
−1
−3

 =



−22
20
1
1
−10
24

 .

Notice how we could keep our set of vectors fixed, and use different sets of scalars to construct
different vectors. You might build a few new linear combinations of u1, u2, u3, u4 right now. We’ll
be right here when you get back. What vectors were you able to create? Do you think you could
create the vector

w =



13
15
5
−17

2
25


with a “suitable” choice of four scalars? Do you think you could create any possible vector from
C6 by choosing the proper scalars? These last two questions are very fundamental, and time spent
considering them now will prove beneficial later. �

Our next two examples are key ones, and a discussion about decompositions is timely. Have a
look at Technique DC [675] before studying the next two examples.

Example ABLC
Archetype B as a linear combination
In this example we will rewrite Archetype B [689] in the language of vectors, vector equality and
linear combinations. In Example VESE [82] we wrote the system of m = 3 equations as the vector
equality −7x1 − 6x2 − 12x3

5x1 + 5x2 + 7x3

x1 + 4x3

 =

−33
24
5

 .
Now we will bust up the linear expressions on the left, first using vector addition,−7x1

5x1

x1

+

−6x2

5x2

0x2

+

−12x3

7x3

4x3

 =

−33
24
5

 .
Now we can rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector, where the
scalar is one of the unknown variables, converting the left-hand side into a linear combination

x1

−7
5
1

+ x2

−6
5
0

+ x3

−12
7
4

 =

−33
24
5

 .
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We can now interpret the problem of solving the system of equations as determining values for
the scalar multiples that make the vector equation true. In the analysis of Archetype B [689], we
were able to determine that it had only one solution. A quick way to see this is to row-reduce
the coefficient matrix to the 3 × 3 identity matrix and apply Theorem NMRRI [68] to determine
that the coefficient matrix is nonsingular. Then Theorem NMUS [70] tells us that the system of
equations has a unique solution. This solution is

x1 = −3 x2 = 5 x3 = 2.

So, in the context of this example, we can express the fact that these values of the variables are a
solution by writing the linear combination,

(−3)

−7
5
1

+ (5)

−6
5
0

+ (2)

−12
7
4

 =

−33
24
5

 .
Furthermore, these are the only three scalars that will accomplish this equality, since they come
from a unique solution.

Notice how the three vectors in this example are the columns of the coefficient matrix of the
system of equations. This is our first hint of the important interplay between the vectors that form
the columns of a matrix, and the matrix itself. �

With any discussion of Archetype A [685] or Archetype B [689] we should be sure to contrast
with the other.

Example AALC
Archetype A as a linear combination
As a vector equality, Archetype A [685] can be written asx1 − x2 + 2x3

2x1 + x2 + x3

x1 + x2

 =

1
8
5

 .
Now bust up the linear expressions on the left, first using vector addition, x1

2x1

x1

+

−x2

x2

x2

+

2x3

x3

0x3

 =

1
8
5

 .
Rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector, where the scalar is one
of the unknown variables, converting the left-hand side into a linear combination

x1

1
2
1

+ x2

−1
1
1

+ x3

2
1
0

 =

1
8
5

 .
Row-reducing the augmented matrix for Archetype A [685] leads to the conclusion that the system is
consistent and has free variables, hence infinitely many solutions. So for example, the two solutions

x1 = 2 x2 = 3 x3 = 1
x1 = 3 x2 = 2 x3 = 0

can be used together to say that,

(2)

1
2
1

+ (3)

−1
1
1

+ (1)

2
1
0

 =

1
8
5

 = (3)

1
2
1

+ (2)

−1
1
1

+ (0)

2
1
0


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Ignore the middle of this equation, and move all the terms to the left-hand side,

(2)

1
2
1

+ (3)

−1
1
1

+ (1)

2
1
0

+ (−3)

1
2
1

+ (−2)

−1
1
1

+ (−0)

2
1
0

 =

0
0
0

 .
Regrouping gives

(−1)

1
2
1

+ (1)

−1
1
1

+ (1)

2
1
0

 =

0
0
0

 .
Notice that these three vectors are the columns of the coefficient matrix for the system of equations
in Archetype A [685]. This equality says there is a linear combination of those columns that equals
the vector of all zeros. Give it some thought, but this says that

x1 = −1 x2 = 1 x3 = 1

is a nontrivial solution to the homogeneous system of equations with the coefficient matrix for the
original system in Archetype A [685]. In particular, this demonstrates that this coefficient matrix
is singular. �

There’s a lot going on in the last two examples. Come back to them in a while and make some
connections with the intervening material. For now, we will summarize and explain some of this
behavior with a theorem.

Theorem SLSLC
Solutions to Linear Systems are Linear Combinations
Denote the columns of the m×n matrix A as the vectors A1, A2, A3, . . . , An. Then x is a solution
to the linear system of equations LS(A, b) if and only if

[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An = b

�

Proof The proof of this theorem is as much about a change in notation as it is about making
logical deductions. Write the system of equations LS(A, b) as

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm.

Notice then that the entry of the coefficient matrix A in row i and column j has two names: aij
as the coefficient of xj in equation i of the system and [Aj ]i as the i-th entry of the column vector
in column j of the coefficient matrix A. Likewise, entry i of b has two names: bi from the linear
system and [b]i as an entry of a vector. Our theorem is an equivalence (Technique E [672]) so we
need to prove both “directions.”

(⇐) Suppose we have the vector equality between b and the linear combination of the columns
of A. Then for 1 ≤ i ≤ n,

bi = [b]i Notation
= [[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An]i Hypothesis
= [[x]1 A1]i + [[x]2 A2]i + [[x]3 A3]i + · · ·+ [[x]n An]i Definition CVA [82]
= [x]1 [A1]i + [x]2 [A2]i + [x]3 [A3]i + · · ·+ [x]n [An]i Definition CVSM [83]
= [x]1 ai1 + [x]2 ai2 + [x]3 ai3 + · · ·+ [x]n ain Notation
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= ai1 [x]1 + ai2 [x]2 + ai3 [x]3 + · · ·+ ain [x]n Commutativity in C

This says that the entries of x form a solution to equation i of LS(A, b) for all 1 ≤ i ≤ n, i.e. x is
a solution to LS(A, b).

(⇒) Suppose now that x is a solution to the linear system LS(A, b). Then for all 1 ≤ i ≤ n,

[b]i = bi Notation
= ai1 [x]1 + ai2 [x]2 + ai3 [x]3 + · · ·+ ain [x]n Hypothesis
= [x]1 ai1 + [x]2 ai2 + [x]3 ai3 + · · ·+ [x]n ain Commutativity in C
= [x]1 [A1]i + [x]2 [A2]i + [x]3 [A3]i + · · ·+ [x]n [An]i Notation
= [[x]1 A1]i + [[x]2 A2]i + [[x]3 A3]i + · · ·+ [[x]n An]i Definition CVSM [83]
= [[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An]i Definition CVA [82]

Sinc the components of b and the linear combination of the columns of A agree for all 1 ≤ i ≤ n,
Definition CVE [82] tells us that the vectors are equal. �

In other words, this theorem tells us that solutions to systems of equations are linear combi-
nations of the column vectors of the coefficient matrix (Ai) which yield the constant vector b. Or
said another way, a solution to a system of equations LS(A, b) is an answer to the question “How
can I form the vector b as a linear combination of the columns of A?” Look through the archetypes
that are systems of equations and examine a few of the advertised solutions. In each case use the
solution to form a linear combination of the columns of the coefficient matrix and verify that the
result equals the constant vector (see Exercise LC.C21 [108]).

Subsection VFSS
Vector Form of Solution Sets

We have written solutions to systems of equations as column vectors. For example Archetype B
[689] has the solution x1 = −3, x2 = 5, x3 = 2 which we now write as

x =

x1

x2

x3

 =

−3
5
2

 .
Now, we will use column vectors and linear combinations to express all of the solutions to a linear
system of equations in a compact and understandable way. First, here’s two examples that will
motivate our next theorem. This is a valuable technique, almost the equal of row-reducing a matrix,
so be sure you get comfortable with it over the course of this section.

Example VFSAD
Vector form of solutions for Archetype D
Archetype D [698] is a linear system of 3 equations in 4 variables. Row-reducing the augmented
matrix yields  1 0 3 −2 4

0 1 1 −3 0
0 0 0 0 0


and we see r = 2 nonzero rows. Also, D = {1, 2} so the dependent variables are then x1 and x2.
F = {3, 4, 5} so the two free variables are x3 and x4. We will express a generic solution for the
system by two slightly different methods, though both arrive at the same conclusion.

First, we will decompose (Technique DC [675]) a solution vector. Rearranging each equation
represented in the row-reduced form of the augmented matrix by solving for the dependent variable
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in each row yields the vector equality,
x1

x2

x3

x4

 =


4− 3x3 + 2x4

−x3 + 3x4

x3

x4


Now we will use the definitions of column vector addition and scalar multiplication to express this
vector as a linear combination,

=


4
0
0
0

+


−3x3

−x3

x3

0

+


2x4

3x4

0
x4

 Definition CVA [82]

=


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1

 Definition CVSM [83]

We will develop the same linear combination a bit quicker, using three steps. While the method
above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of n−r vectors,
using the free variables as the scalars.

x =


x1

x2

x3

x4

 =


+ x3


+ x4




Step 2. Use 0’s and 1’s to ensure equality for the entries of the the vectors with indices in F
(corresponding to the free variables).

x =


x1

x2

x3

x4

 =

0
0

+ x3

1
0

+ x4

0
1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation expressing
the dependent variable as a constant plus multiples of the free variables. Convert this equation
into entries of the vectors that ensure equality for each dependent variable, one at a time.

x1 = 4− 3x3 + 2x4 ⇒ x =


x1

x2

x3

x4

 =


4

0
0

+ x3


−3

1
0

+ x4


2

0
1



x2 = 0− 1x3 + 3x4 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1



This final form of a typical solution is especially pleasing and useful. For example, we can build
solutions quickly by choosing values for our free variables, and then compute a linear combination.
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Such as

x3 = 2, x4 = −5 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ (2)


−3
−1
1
0

+ (−5)


2
3
0
1

 =


−12
−17

2
−5


or,

x3 = 1, x4 = 3 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ (1)


−3
−1
1
0

+ (3)


2
3
0
1

 =


7
8
1
3

 .
You’ll find the second solution listed in the write-up for Archetype D [698], and you might check
the first solution by substituting it back into the original equations.

While this form is useful for quickly creating solutions, its even better because it tells us exactly
what every solution looks like. We know the solution set is infinite, which is pretty big, but now

we can say that a solution is some multiple of


−3
−1
1
0

 plus a multiple of


2
3
0
1

 plus the fixed vector


4
0
0
0

. Period. So it only takes us three vectors to describe the entire infinite solution set, provided

we also agree on how to combine the three vectors into a linear combination. �

This is such an important and fundamental technique, we’ll do another example.

Example VFS
Vector form of solutions
Consider a linear system of m = 5 equations in n = 7 variables, having the augmented matrix A.

A =


2 1 −1 −2 2 1 5 21
1 1 −3 1 1 1 2 −5
1 2 −8 5 1 1 −6 −15
3 3 −9 3 6 5 2 −24
−2 −1 1 2 1 1 −9 −30


Row-reducing we obtain the matrix

B =


1 0 2 −3 0 0 9 15
0 1 −5 4 0 0 −8 −10
0 0 0 0 1 0 −6 11
0 0 0 0 0 1 7 −21
0 0 0 0 0 0 0 0


and we see r = 4 nonzero rows. Also, D = {1, 2, 5, 6} so the dependent variables are then
x1, x2, x5, and x6. F = {3, 4, 7, 8} so the n − r = 3 free variables are x3, x4 and x7. We will
express a generic solution for the system by two different methods: both a decomposition and a
construction.

First, we will decompose (Technique DC [675]) a solution vector. Rearranging each equation
represented in the row-reduced form of the augmented matrix by solving for the dependent variable
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in each row yields the vector equality,

x1

x2

x3

x4

x5

x6

x7


=



15− 2x3 + 3x4 − 9x7

−10 + 5x3 − 4x4 + 8x7

x3

x4

11 + 6x7

−21− 7x7

x7


Now we will use the definitions of column vector addition and scalar multiplication to decompose
this generic solution vector as a linear combination,

=



15
−10

0
0
11
−21

0


+



−2x3

5x3

x3

0
0
0
0


+



3x4

−4x4

0
x4

0
0
0


+



−9x7

8x7

0
0

6x7

−7x7

x7


Definition CVA [82]

=



15
−10

0
0
11
−21

0


+ x3



−2
5
1
0
0
0
0


+ x4



3
−4
0
1
0
0
0


+ x7



−9
8
0
0
6
−7
1


Definition CVSM [83]

We will now develop the same linear combination a bit quicker, using three steps. While the method
above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of n−r vectors,
using the free variables as the scalars.

x =



x1

x2

x3

x4

x5

x6

x7


=




+ x3




+ x4




+ x7




Step 2. Use 0’s and 1’s to ensure equality for the entries of the the vectors with indices in F
(corresponding to the free variables).

x =



x1

x2

x3

x4

x5

x6

x7


=


0
0

0


+ x3


1
0

0


+ x4


0
1

0


+ x7


0
0

1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation expressing
the dependent variable as a constant plus multiples of the free variables. Convert this equation
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into entries of the vectors that ensure equality for each dependent variable, one at a time.

x1 = 15− 2x3 + 3x4 − 9x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15

0
0

0


+ x3



−2

1
0

0


+ x4



3

0
1

0


+ x7



−9

0
0

1



x2 = −10 + 5x3 − 4x4 + 8x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0

0


+ x3



−2
5
1
0

0


+ x4



3
−4
0
1

0


+ x7



−9
8
0
0

1



x5 = 11 + 6x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11

0


+ x3



−2
5
1
0
0

0


+ x4



3
−4
0
1
0

0


+ x7



−9
8
0
0
6

1



x6 = −21− 7x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11
−21

0


+ x3



−2
5
1
0
0
0
0


+ x4



3
−4
0
1
0
0
0


+ x7



−9
8
0
0
6
−7
1



This final form of a typical solution is especially pleasing and useful. For example, we can build
solutions quickly by choosing values for our free variables, and then compute a linear combination.
For example

x3 = 2, x4 = −4, x7 = 3 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11
−21

0


+ (2)



−2
5
1
0
0
0
0


+ (−4)



3
−4
0
1
0
0
0


+ (3)



−9
8
0
0
6
−7
1


=



−28
40
2
−4
29
−42

3


or perhaps,

x3 = 5, x4 = 2, x7 = 1 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11
−21

0


+ (5)



−2
5
1
0
0
0
0


+ (2)



3
−4
0
1
0
0
0


+ (1)



−9
8
0
0
6
−7
1


=



2
15
5
2
17
−28

1


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or even,

x3 = 0, x4 = 0, x7 = 0 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10

0
0
11
−21

0


+ (0)



−2
5
1
0
0
0
0


+ (0)



3
−4
0
1
0
0
0


+ (0)



−9
8
0
0
6
−7
1


=



15
−10

0
0
11
−21

0


So we can compactly express all of the solutions to this linear system with just 4 fixed vectors,
provided we agree how to combine them in a linear combinations to create solution vectors.

Suppose you were told that the vector w below was a solution to this system of equations.
Could you turn the problem around and write w as a linear combination of the four vectors c, u1,
u2, u3? (See Exercise LC.M11 [109].)

w =



100
−75

7
9
−37
35
−8


c =



15
−10

0
0
11
−21

0


u1 =



−2
5
1
0
0
0
0


u2 =



3
−4
0
1
0
0
0


u3 =



−9
8
0
0
6
−7
1


�

Did you think a few weeks ago that you could so quickly and easily list all the solutions to a
linear system of 5 equations in 7 variables?

We’ll now formalize the last two (important) examples as a theorem.

Theorem VFSLS
Vector Form of Solutions to Linear Systems
Suppose that [A | b] is the augmented matrix for a consistent linear system LS(A, b) of m equations
in n variables. Let B be a row-equivalent m× (n+1) matrix in reduced row-echelon form. Suppose
thatB has r nonzero rows, columns without leading 1’s with indices F = {f1, f2, f3, . . . , fn−r, n+ 1},
and columns with leading 1’s (pivot columns) having indices D = {d1, d2, d3, . . . , dr}. Define vec-
tors c, uj , 1 ≤ j ≤ n− r of size n by

[c]i =

{
0 if i ∈ F
[B]k,n+1 if i ∈ D, i = dk

[uj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

.

Then the set of solutions to the system of equations LS(A, b) is

S =
{

c + xf1u1 + xf2u2 + xf3u3 + · · ·+ xfn−run−r
∣∣ xf1 , xf2 , xf3 , . . . , xfn−r ∈ C

}
�

Proof We are being asked to prove that the solution set has a particular form. First, LS(A, b)
is equivalent to the linear system of equations that has the matrix B as its augmented matrix
(Theorem REMES [27]), so we need only show that S is the solution set for the system with B as
its augmented matrix.
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We begin by showing that every element of S is a solution to the system. Let xf1 = α1, xf2 = α2,
xf3 = α3, . . ., xfn−r = αn−r be one choice of the values of xf1 , xf2 , xf3 , . . . , xfn−r . So a proposed
solution is

x = c + αf1u1 + αf2u2 + αf3u3 + · · ·+ αfn−run−r

So we evaluate equation ` of the system represented by B with the solution vector x,

β = [B]`1 [x]1 + [B]`2 [x]2 + [B]`3 [x]3 + · · ·+ [B]`n [x]n

When r+ 1 ≤ ` ≤ m, row ` of the matrix B is a zero row, so the equation represented by that row
is always true, no matter which solution vector we propose. So assume 1 ≤ ` ≤ r. Then [B]`di = 0
for all 1 ≤ i ≤ r, except that [B]`d` = 1, so β simplifies to

β = [x]d` + [B]`f1 [x]f1 + [B]`f2 [x]f2 + [B]`f3 [x]f3 + · · ·+ [B]`fn−r [x]fn−r

Notice that for 1 ≤ i ≤ n− r

[x]fi = [c]fi + αf1 [u1]fi + αf2 [u2]fi + αf3 [u3]fi + · · ·+ αfi [ui]fi + · · ·+ αfn−r [un−r]fi
= 0 + αf1(0) + αf2(0) + αf3(0) + · · ·+ αfi(1) + · · ·+ αfn−r(0)
= αfi

So β simplifies further to

β = [x]d` + [B]`f1 αf1 + [B]`f2 αf2 + [B]`f3 αf3 + · · ·+ [B]`fn−r αfn−r

Now examine the [x]d` term of β,

[x]d` = [c]d` + αf1 [u1]d` + αf2 [u2]d` + αf3 [u3]d` + · · ·+ αfn−r [un−r]d`
= [B]`,n+1 + αf1(− [B]`,f1) + αf2(− [B]`,f2) + αf3(− [B]`,f3) + · · ·+ αfn−r(− [B]`,fn−r)

Replacing this term into the expression for β, we obtain

β = [x]d` + [B]`f1 αf1 + [B]`f2 αf2 + [B]`f3 αf3 + · · ·+ [B]`fn−r αfn−r
= [B]`,n+1 + αf1(− [B]`,f1) + αf2(− [B]`,f2) + αf3(− [B]`,f3) + · · ·+ αfn−r(− [B]`,fn−r)+

[B]`f1 αf1 + [B]`f2 αf2 + [B]`f3 αf3 + · · ·+ [B]`fn−r αfn−r
= [B]`,n+1

So β began as the left-hand side of equation ` from the system represented by B and we now know
it equals [B]`,n+1, the constant term for equation `. So this arbitrarily chosen vector from S makes
every equation true, and therefore is a solution to the system.

For the second half of the proof, assume that x1 = α1, x2 = α2, x3 = α3, . . . , xn = αn are the
components of a solution vector for the system having B as its augmented matrix, and show that
this solution vector is an element of the set S. Begin with the observation that this solution makes
equation ` of the system true for 1 ≤ ` ≤ m,

[B]`,1 α1 + [B]`,2 α2 + [B]`,3 α3 + · · ·+ [B]`,n αn = [B]`,n+1

Since B is in reduced row-echelon form, when ` > r we know that all the entries of B in row
` are all zero and this equation is true. For ` ≤ r, we can further exploit the knowledge of the
structure of B, specifically recalling that B has no leading 1’s in the final column since the system
is consistent(Theorem RCLS [48]). Equation ` then reduces to

(1)αd` + [B]`,f1 αf1 + [B]`,f2 αf2 + [B]`,f3 αf3 + · · ·+ [B]`,fn−r αfn−r = [B]`,n+1

Rearranging, this becomes,

αd` = [B]`,n+1 − [B]`,f1 αf1 − [B]`,f2 αf2 − [B]`,f3 αf3 − · · · − [B]`,fn−r αfn−r
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= [c]` + αf1 [u1]` + αf2 [u2]` + αf3 [u3]` + · · ·+ αfn−r [un−r]`
=
[
c + αf1u1 + αf2u2 + αf3u3 + · · ·+ αfn−run−r

]
`

This tells us that the components of the solution vector corresponding to dependent variables
(indices in D), are of the same form as stated for membership in the set S. We still need to check
the components that correspond to the free variables (indices in F ). To this end, suppose i ∈ F
and i = fj . Then

αi = 1αfj
= 0 + 0αf1 + 0αf2 + 0αf3 + · · ·+ 0αfj−1

+ 1αfj + 0αfj+1
+ · · ·+ 0αfn−r

= [c]i + αf1 [u1]i + αf2 [u2]i + αf2 [u3]i + · · ·+ αfn−r [un−r]i
=
[
c + αf1u1 + αf2u2 + · · ·+ αfn−run−r

]
i

So our solution vector is also of the right form in the remaining slots, and hence qualifies for
membership in the set S. �

Theorem VFSLS [98] formalizes what happened in the three steps of Example VFSAD [93].
The theorem will be useful in proving other theorems, and it it is useful since it tells us an exact
procedure for simply describing an infinite solution set. We could program a computer to implement
it, once we have the augmented matrix row-reduced and have checked that the system is consistent.
By Knuth’s definition, this completes our conversion of linear equation solving from art into science.
Notice that it even applies (but is overkill) in the case of a unique solution. However, as a practical
matter, I prefer the three-step process of Example VFSAD [93] when I need to describe an infinite
solution set. So let’s practice some more, but with a bigger example.

Example VFSAI
Vector form of solutions for Archetype I
Archetype I [718] is a linear system of m = 4 equations in n = 7 variables. Row-reducing the
augmented matrix yields 

1 4 0 0 2 1 −3 4
0 0 1 0 1 −3 5 2
0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0


and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 3, 4} so the r dependent
variables are x1, x3, x4. The columns without leading 1’s are F = {2, 5, 6, 7, 8}, so the n− r = 4
free variables are x2, x5, x6, x7.

Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear combination of
n− r = 4 vectors (u1, u2, u3, u4), using the free variables as the scalars.

x =



x1

x2

x3

x4

x5

x6

x7


=




+ x2




+ x5




+ x6




+ x7




Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corresponding entry of the
the vectors. Take note of the pattern of 0’s and 1’s at this stage, because this is the best look you’ll
have at it. We’ll state an important theorem in the next section and the proof will essentially rely
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on this observation.

x =



x1

x2

x3

x4

x5

x6

x7


=



0

0
0
0


+ x2



1

0
0
0


+ x5



0

1
0
0


+ x6



0

0
1
0


+ x7



0

0
0
1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation expressing
the dependent variable as a constant plus multiples of the free variables. Convert this equation
into entries of the vectors that ensure equality for each dependent variable, one at a time.

x1 = 4− 4x2 − 2x5 − 1x6 + 3x7 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



4
0

0
0
0


+ x2



−4
1

0
0
0


+ x5



−2
0

1
0
0


+ x6



−1
0

0
1
0


+ x7



3
0

0
0
1


x3 = 2 + 0x2 − x5 + 3x6 − 5x7 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



4
0
2

0
0
0


+ x2



−4
1
0

0
0
0


+ x5



−2
0
−1

1
0
0


+ x6



−1
0
3

0
1
0


+ x7



3
0
−5

0
0
1


x4 = 1 + 0x2 − 2x5 + 6x6 − 6x7 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



4
0
2
1
0
0
0


+ x2



−4
1
0
0
0
0
0


+ x5



−2
0
−1
−2
1
0
0


+ x6



−1
0
3
6
0
1
0


+ x7



3
0
−5
−6
0
0
1



We can now use this final expression to quickly build solutions to the system. You might try to
recreate each of the solutions listed in the write-up for Archetype I [718]. (Hint: look at the values
of the free variables in each solution, and notice that the vector c has 0’s in these locations.)

Even better, we have a description of the infinite solution set, based on just 5 vectors, which
we combine in linear combinations to produce solutions.

Whenever we discuss Archetype I [718] you know that’s your cue to go work through Archetype
J [722] by yourself. Remember to take note of the 0/1 pattern at the conclusion of Step 2. Have
fun — we won’t go anywhere while you’re away. �

This technique is so important, that we’ll do one more example. However, an important dis-
tinction will be that this system is homogeneous.

Example VFSAL
Vector form of solutions for Archetype L
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Archetype L [731] is presented simply as the 5× 5 matrix

L =


−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6


We’ll interpret it here as the coefficient matrix of a homogeneous system and reference this matrix
as L. So we are solving the homogeneous system LS(L, 0) having m = 5 equations in n = 5
variables. If we built the augmented matrix, we would add a sixth column to L containing all
zeros. As we did row operations, this sixth column would remain all zeros. So instead we will
row-reduce the coefficient matrix, and mentally remember the missing sixth column of zeros. This
row-reduced matrix is 

1 0 0 1 −2
0 1 0 −2 2
0 0 1 2 −1
0 0 0 0 0
0 0 0 0 0


and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 2, 3} so the r dependent
variables are x1, x2, x3. The columns without leading 1’s are F = {4, 5}, so the n − r = 2
free variables are x4, x5. Notice that if we had included the all-zero vector of constants to form
the augmented matrix for the system, then the index 6 would have appeared in the set F , and
subsequently would have been ignored when listing the free variables.

Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear combination of
n− r = 2 vectors (u1, u2), using the free variables as the scalars.

x =


x1

x2

x3

x4

x5

 =


+ x4


+ x5




Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corresponding entry of the
the vectors. Take note of the pattern of 0’s and 1’s at this stage, even if it is not as illuminating as
in other examples.

x =


x1

x2

x3

x4

x5

 =

0
0

+ x4

1
0

+ x5

0
1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation expressing
the dependent variable as a constant plus multiples of the free variables. Don’t forget about the
“missing” sixth column being full of zeros. Convert this equation into entries of the vectors that
ensure equality for each dependent variable, one at a time.

x1 = 0− 1x4 + 2x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0

0
0

+ x4


−1

1
0

+ x5


2

0
1



x2 = 0 + 2x4 − 2x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0
0

0
0

+ x4


−1
2

1
0

+ x5


2
−2

0
1


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x3 = 0− 2x4 + 1x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0
0
0
0
0

+ x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1


The vector c will always have 0’s in the entries corresponding to free variables. However, since
we are solving a homogeneous system, the row-reduced augmented matrix has zeros in column
n+ 1 = 6, and hence all the entries of c are zero. So we can write

x =


x1

x2

x3

x4

x5

 = 0 + x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1

 = x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1


It will always happen that the solutions to a homogeneous system has c = 0 (even in the case of
a unique solution?). So our expression for the solutions is a bit more pleasing. In this example

it says that the solutions are all possible linear combinations of the two vectors u1 =


−1
2
−2
1
0

 and

u2 =


2
−2
1
0
1

, with no mention of any fixed vector entering into the linear combination.

This observation will motivate our next section and the main definition of that section, and
after that we will conclude the section by formalizing this situation. �

Subsection PSHS
Particular Solutions, Homogeneous Solutions

The next theorem tells us that in order to find all of the solutions to a linear system of equations,
it is sufficient to find just one solution, and then find all of the solutions to the corresponding
homogeneous system. This explains part of our interest in the null space, the set of all solutions to
a homogeneous system.

Theorem PSPHS
Particular Solution Plus Homogeneous Solutions
Suppose that w is one solution to the linear system of equations LS(A, b). Then y is a solution to
LS(A, b) if and only if y = w + z for some vector z ∈ N (A). �

Proof Let A1, A2, A3, . . . , An be the columns of the coefficient matrix A.
(⇐) Suppose y = w + z and z ∈ N (A). Then

b = [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An Theorem SLSLC [92]
= [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An + 0 Property ZC [84]
= [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An

+ [z]1 A1 + [z]2 A2 + [z]3 A3 + · · ·+ [z]n An Theorem SLSLC [92]
= ([w]1 + [z]1) A1 + ([w]2 + [z]2) A2 + · · ·+ ([w]n + [z]n) An Theorem VSPCV [84]
= [w + z]1 A1 + [w + z]2 A2 + [w + z]3 A3 + · · ·+ [w + z]n An Definition CVA [82]
= [y]1 A1 + [y]2 A2 + [y]3 A3 + · · ·+ [y]n An Definition of y
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Applying Theorem SLSLC [92] we see that the vector y is a solution to LS(A, b).
(⇒) Suppose y is a solution to LS(A, b). Then

0 = b− b

= [y]1 A1 + [y]2 A2 + [y]3 A3 + · · ·+ [y]n An

− ([w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An) Theorem SLSLC [92]
= ([y]1 − [w]1) A1 + ([y]2 − [w]2) A2 + · · ·+ ([y]n − [w]n) An Theorem VSPCV [84]
= [y −w]1 A1 + [y −w]2 A2 + [y −w]3 A3 + · · ·+ [y −w]n An Definition CVA [82]

By Theorem SLSLC [92] we see that the vector y − w is a solution to the homogeneous system
LS(A, 0) and by Definition NSM [59], y −w ∈ N (A). In other words, y −w = z for some vector
z ∈ N (A). Rewritten, this is y = w + z, as desired. �

After proving Theorem NMUS [70] we commented (insufficiently) on the negation of one half of
the theorem. Nonsingular coefficient matrices lead to unique solutions for every choice of the vector
of constants. What does this say about singular matrices? A singular matrix A has a nontrivial
null space (Theorem NMTNS [70]). For a given vector of constants, b, the system LS(A, b) could
be inconsistent, meaning there are no solutions. But if there is at least one solution (w), then
Theorem PSPHS [103] tells us there will be infinitely many solutions because of the role of the
infinite null space for a singular matrix. So a system of equations with a singular coefficient matrix
never has a unique solution. Either there are no solutions, or infinitely many solutions, depending
on the choice of the vector of constants (b).

Example PSHS
Particular solutions, homogeneous solutions, Archetype D
Archetype D [698] is a consistent system of equations with a nontrivial null space. Let A denote
the coefficient matrix of this system. The write-up for this system begins with three solutions,

y1 =


0
1
2
1

 y2 =


4
0
0
0

 y3 =


7
8
1
3


We will choose to have y1 play the role of w in the statement of Theorem PSPHS [103], any one
of the three vectors listed here (or others) could have been chosen. To illustrate the theorem,
we should be able to write each of these three solutions as the vector w plus a solution to the
corresponding homogeneous system of equations. Since 0 is always a solution to a homogeneous
system we can easily write

y1 = w = w + 0.

The vectors y2 and y3 will require a bit more effort. Solutions to the homogeneous system LS(A, 0)
are exactly the elements of the null space of the coefficient matrix, which by an application of
Theorem VFSLS [98] is

N (A) =

x3


−3
−1
1
0

+ x4


2
3
0
1


∣∣∣∣∣∣∣∣ x3, x4 ∈ C


Then

y2 =


4
0
0
0

 =


0
1
2
1

+


4
−1
−2
−1

 =


0
1
2
1

+

(−2)


−3
−1
1
0

+ (−1)


2
3
0
1


 = w + z2

where

z2 =


4
−1
−2
−1

 = (−2)


−3
−1
1
0

+ (−1)


2
3
0
1


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is obviously a solution of the homogeneous system since it is written as a linear combination of the
vectors describing the null space of the coefficient matrix (or as a check, you could just evaluate
the equations in the homogeneous system with z2).

Again

y3 =


7
8
1
3

 =


0
1
2
1

+


7
7
−1
2

 =


0
1
2
1

+

(−1)


−3
−1
1
0

+ 2


2
3
0
1


 = w + z3

where

z3 =


7
7
−1
2

 = (−1)


−3
−1
1
0

+ 2


2
3
0
1


is obviously a solution of the homogeneous system since it is written as a linear combination of the
vectors describing the null space of the coefficient matrix (or as a check, you could just evaluate
the equations in the homogeneous system with z2).

Here’s another view of this theorem, in the context of this example. Grab two new solutions of
the original system of equations, say

y4 =


11
0
−3
−1

 y5 =


−4
2
4
2


and form their difference,

u =


11
0
−3
−1

−

−4
2
4
2

 =


15
−2
−7
−3

 .
It is no accident that u is a solution to the homogeneous system (check this!). In other words, the
difference between any two solutions to a linear system of equations is an element of the null space
of the coefficient matrix. This is an equivalent way to state Theorem PSPHS [103]. (See Exercise
MM.T50 [203]). �

The ideas of this subsection will be appear again in Chapter LT [443] when we discuss pre-images
of linear transformations (Definition PI [454]).

Subsection URREF
Uniqueness of Reduced Row-Echelon Form

We are now in a position to establish that the reduced row-echelon form of a matrix is unique.
Going forward, we will emphasize the point-of-view that a matrix is a collection of columns. But
there are two occasions when we need to work carefully with the rows of a matrix. This is the
first such occasion. We could define something called a row vector that would equal a given row
of a matrix, and might be written as a horizontal list. Then we could define vector equality, the
basic operations of vector addition and scalar multiplication, followed by a definition of a linear
combination of row vectors. We will not incur the overhead of stating all these definitions, but will
instead convert the rows of a matrix to column vectors and use our definitions that are already in
place. This was our reason for delaying this proof until now. Remind yourself as you work through
this proof that it only relies only on the definition of equivalent matrices, reduced row-echelon
form and linear combinations. So in particular, we are not guilty of circular reasoning. Should we
have defined vector operations and linear combinations just prior to discussing reduced row-echelon
form, then the following proof of uniqueness could have been presented at that time. OK, here we
go.
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Theorem RREFU
Reduced Row-Echelon Form is Unique
Suppose that A is an m× n matrix and that B and C are m× n matrices that are row-equivalent
to A and in reduced row-echelon form. Then B = C. �

Proof Denote the pivot columns of B as D = {d1, d2, d3, . . . , dr} and the pivot columns of C as
D′ = {d′1, d′2, d′3, . . . , d′r′} (Notation RREFA [29]). We begin by showing that D = D′.

For both B and C, we can take the elements of a row of the matrix and use them to construct
a column vector. We will denote these by bi and ci, respectively, 1 ≤ i ≤ m. Since B and C
are both row-equivalent to A, there is a sequence of row operations that will convert B to C, and
vice-versa, since row operations are reversible. If we can convert B into C via a sequence of row
operations, then any row of C expressed as a column vector, say ck, is a linear combination of
the column vectors derived from the rows of B, {b1, b2, b3, . . . , bm}. Similarly, any row of B
is a linear combination of the set of rows of C. Our principal device in this proof is to carefully
analyze individual entries of vector equalities between a single row of either B or C and a linear
combination of the rows of the other matrix.

Let’s first show that d1 = d′1. Suppose that d1 < d′1. We can write the first row of B as a linear
combination of the rows of C, that is, there are scalars a1, a2, a3, . . . , am such that

b1 = a1c1 + a2c2 + a3c3 + · · ·+ amcm

Consider the entry in location d1 on both sides of this equality. Since B is in reduced row-echelon
form (Definition RREF [28]) we find a one in b1 on the left. Since d1 < d′1, and C is in reduced
row-echelon form (Definition RREF [28]) each vector ci has a zero in location d1, and therefore the
linear combination on the right also has a zero in location d1. This is a contradiction, so we know
that d1 ≥ d′1. By an entirely similar argument, we could conclude that d1 ≤ d′1. This means that
d1 = d′1.

Suppose that we have determined that d1 = d′1, d2 = d′2, d3 = d′3, . . . , dk = d′k. Let’s now show
that dk+1 = d′k+1. To achieve a contradiction, suppose that dk+1 < d′k+1. Row k+1 of B is a linear
combination of the rows of C, so there are scalars a1, a2, a3, . . . , am such that

bk+1 = a1c1 + a2c2 + a3c3 + · · ·+ amcm

Since B is in reduced row-echelon form (Definition RREF [28]), the entries of bk+1 in locations
d1, d2, d3, . . . , dk are all zero. Since C is in reduced row-echelon form (Definition RREF [28]), lo-
cation di of ci is one for each 1 ≤ i ≤ k. The equality of these vectors in locations d1, d2, d3, . . . , dk
then implies that a1 = 0, a2 = 0, a3 = 0, . . . , ak = 0.

Now consider location dk+1 in this vector equality. The vector bk+1 on the left is one in this
location since B is in reduced row-echelon form (Definition RREF [28]). Vectors c1, c2, c3, . . . ,
ck, are multiplied by zero scalars in the linear combination on the right. The remaining vectors,
ck+1, ck+2, ck+3, . . . , cm each has a zero in location dk+1 since dk+1 < d′k+1 and C is in reduced
row-echelon form (Definition RREF [28]). So the right hand side of the vector equality is zero
in location dk+1, a contradiction. Thus dk+1 ≥ d′k+1. By an entirely similar argument, we could
conclude that dk+1 ≤ d′k+1, and therefore dk+1 = d′k+1.

Now we establish that r = r′. Suppose that r < r′. By the arguments above we can show that
d1 = d′1, d2 = d′2, d3 = d′3, . . . , dr = d′r. Row r′ of C is a linear combination of the r non-zero rows
of B, so there are scalars a1, a2, a3, . . . , ar so that

cr′ = a1b1 + a2b2 + a3b3 + · · ·+ arbr

Locations d1, d2, d3, . . . , dr of cr′ are all zero since r < r′ and C is in reduced row-echelon form
(Definition RREF [28]). For a given index i, 1 ≤ i ≤ r, the vectors b1, b2, b3, . . . , br have zeros
in location di, except that the vector bi is one in location di since B is in reduced row-echelon form
(Definition RREF [28]). This consideration of location di implies that ai = 0, 1 ≤ i ≤ r. With
all the scalars in the linear combination equal to zero, we conclude that cr′ = 0, contradicting the
existence of a leading 1 in cr′ . So r ≥ r′. By a similar argument, we conclude that r ≤ r′ and
therefore r = r′. Thus D = D′.
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To finally show that B = C, we will show that the rows of the two matrices are equal. Row k
of C, ck, is a linear combination of the r non-zero rows of B, so there are scalars a1, a2, a3, . . . , ar
such that

ck = a1b1 + a2b2 + a3b3 + · · ·+ arbr

Because C is in reduced row-echelon form (Definition RREF [28]), location di of ck is zero for
1 ≤ i ≤ r, except in location dk where the entry is one. In the linear combination on the right of
the vector equality, the vectors b1, b2, b3, . . . , br have zeros in location di, except that bk has a
one in location dk, since B is in reduced row-echelon form (Definition RREF [28]). This implies
that a1 = 0, a2 = 0, . . . , ak−1 = 0, ak+1 = 0, ak+2 = 0, . . . , ar = 0 and ak = 1. Then the vector
equality reduces to simply ck = bk. Since k was arbitrary, B and C have equal rows and so are
equal matrices. �

Subsection READ
Reading Questions

1. Earlier, a reading question asked you to solve the system of equations

2x1 + 3x2 − x3 = 0
x1 + 2x2 + x3 = 3
x1 + 3x2 + 3x3 = 7

Use a linear combination to rewrite this system of equations as a vector equality.

2. Find a linear combination of the vectors

S =


 1

3
−1

 ,
2

0
4

 ,
−1

3
−5


that equals the vector

 1
−9
11

.

3. The matrix below is the augmented matrix of a system of equations, row-reduced to reduced
row-echelon form. Write the vector form of the solutions to the system. 1 3 0 6 0 9

0 0 1 −2 0 −8
0 0 0 0 1 3


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Subsection EXC
Exercises

C21 Consider each archetype that is a system of equations. For individual solutions listed (both
for the original system and the corresponding homogeneous system) express the vector of constants
as a linear combination of the columns of the coefficient matrix, as guaranteed by Theorem SLSLC
[92]. Verify this equality by computing the linear combination. For systems with no solutions,
recognize that it is then impossible to write the vector of constants as a linear combination of the
columns of the coefficient matrix. Note too, for homogeneous systems, that the solutions give rise
to linear combinations that equal the zero vector.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]
Archetype E [702]
Archetype F [705]
Archetype G [710]
Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer Solution [110]

C22 Consider each archetype that is a system of equations. Write elements of the solution set in
vector form, as guaranteed by Theorem VFSLS [98].
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]
Archetype E [702]
Archetype F [705]
Archetype G [710]
Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer Solution [110]

C40 Find the vector form of the solutions to the system of equations below.

2x1 − 4x2 + 3x3 + x5 = 6
x1 − 2x2 − 2x3 + 14x4 − 4x5 = 15

x1 − 2x2 + x3 + 2x4 + x5 = −1
−2x1 + 4x2 − 12x4 + x5 = −7

Contributed by Robert Beezer Solution [110]

C41 Find the vector form of the solutions to the system of equations below.

−2x1 − 1x2 − 8x3 + 8x4 + 4x5 − 9x6 − 1x7 − 1x8 − 18x9 = 3
3x1 − 2x2 + 5x3 + 2x4 − 2x5 − 5x6 + 1x7 + 2x8 + 15x9 = 10

4x1 − 2x2 + 8x3 + 2x5 − 14x6 − 2x8 + 2x9 = 36
−1x1 + 2x2 + 1x3 − 6x4 + 7x6 − 1x7 − 3x9 = −8
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3x1 + 2x2 + 13x3 − 14x4 − 1x5 + 5x6 − 1x8 + 12x9 = 15
−2x1 + 2x2 − 2x3 − 4x4 + 1x5 + 6x6 − 2x7 − 2x8 − 15x9 = −7

Contributed by Robert Beezer Solution [110]

M10 Example TLC [89] asks if the vector

w =



13
15
5
−17

2
25


can be written as a linear combination of the four vectors

u1 =



2
4
−3
1
2
9

 u2 =



6
3
0
−2
1
4

 u3 =



−5
2
1
1
−3
0

 u4 =



3
2
−5
7
1
3


Can it? Can any vector in C6 be written as a linear combination of the four vectors u1, u2, u3, u4?
Contributed by Robert Beezer Solution [111]

M11 At the end of Example VFS [95], the vector w is claimed to be a solution to the linear
system under discussion. Verify that w really is a solution. Then determine the four scalars that
express w as a linear combination of c, u1, u2, u3.
Contributed by Robert Beezer Solution [111]
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer Statement [108]
Solutions for Archetype A [685] and Archetype B [689] are described carefully in Example AALC
[91] and Example ABLC [90].

C22 Contributed by Robert Beezer Statement [108]
Solutions for Archetype D [698] and Archetype I [718] are described carefully in Example VFSAD
[93] and Example VFSAI [100]. The technique described in these examples is probably more useful
than carefully deciphering the notation of Theorem VFSLS [98]. The solution for each archetype
is contained in its description. So now you can check-off the box for that item.

C40 Contributed by Robert Beezer Statement [108]
Row-reduce the augmented matrix representing this system, to find

1 −2 0 6 0 1
0 0 1 −4 0 3
0 0 0 0 1 −5
0 0 0 0 0 0


The system is consistent (no leading one in column 6, Theorem RCLS [48]). x2 and x4 are the free
variables. Now apply Theorem VFSLS [98] directly, or follow the three-step process of Example
VFS [95], Example VFSAD [93], Example VFSAI [100], or Example VFSAL [101] to obtain

x1

x2

x3

x4

x5

 =


1
0
3
0
−5

+ x2


2
1
0
0
0

+ x4


−6
0
4
1
0


C41 Contributed by Robert Beezer Statement [108]
Row-reduce the augmented matrix representing this system, to find

1 0 3 −2 0 −1 0 0 3 6
0 1 2 −4 0 3 0 0 2 −1
0 0 0 0 1 −2 0 0 −1 3
0 0 0 0 0 0 1 0 4 0
0 0 0 0 0 0 0 1 2 −2
0 0 0 0 0 0 0 0 0 0


The system is consistent (no leading one in column 10, Theorem RCLS [48]). F = {3, 4, 6, 9, 10},
so the free variables are x3, x4, x6 and x9. Now apply Theorem VFSLS [98] directly, or follow the
three-step process of Example VFS [95], Example VFSAD [93], Example VFSAI [100], or Example
VFSAL [101] to obtain the solution set

S =





6
−1
0
0
3
0
0
−2
0


+ x3



−3
−2
1
0
0
0
0
0
0


+ x4



2
4
0
1
0
0
0
0
0


+ x6



1
−3
0
0
2
1
0
0
0


+ x9



−3
−2
0
0
1
0
−4
−2
1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x3, x4, x6, x9 ∈ C


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M10 Contributed by Robert Beezer Statement [109]
No, it is not possible to create w as a linear combination of the four vectors u1, u2, u3, u4. By
creating the desired linear combination with unknowns as scalars, Theorem SLSLC [92] provides
a system of equations that has no solution. This one computation is enough to show us that
it is not possible to create all the vectors of C6 through linear combinations of the four vectors
u1, u2, u3, u4.

M11 Contributed by Robert Beezer Statement [109]
The coefficient of c is 1. The coefficients of u1, u2, u3 lie in the third, fourth and seventh entries
of w. Can you see why? (Hint: F = {3, 4, 7, 8}, so the free variables are x3, x4 and x7.)

Version 1.30



112 Section LC Linear Combinations

Version 1.30



Section SS Spanning Sets 113

Section SS
Spanning Sets

In this section we will describe a compact way to indicate the elements of an infinite set of vectors,
making use of linear combinations. This will give us a convenient way to describe the elements of
a set of solutions to a linear system, or the elements of the null space of a matrix, or many other
sets of vectors.

Subsection SSV
Span of a Set of Vectors

In Example VFSAL [101] we saw the solution set of a homogeneous system described as all possible
linear combinations of two particular vectors. This happens to be a useful way to construct or
describe infinite sets of vectors, so we encapsulate this idea in a definition.

Definition SSCV
Span of a Set of Column Vectors
Given a set of vectors S = {u1, u2, u3, . . . , up}, their span, 〈S〉, is the set of all possible linear
combinations of u1, u2, u3, . . . , up. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αpup | αi ∈ C, 1 ≤ i ≤ p}

=

{
p∑
i=1

αiui

∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ p

}

(This definition contains Notation SSV.) 4

The span is just a set of vectors, though in all but one situation it is an infinite set. (Just when
is it not infinite?) So we start with a finite collection of vectors S (t of them to be precise), and
use this finite set to describe an infinite set of vectors, 〈S〉. Confusing the finite set S with the
infinite set 〈S〉 is one of the most pervasive problems in understanding introductory linear algebra.
We will see this construction repeatedly, so let’s work through some examples to get comfortable
with it. The most obvious question about a set is if a particular item of the correct type is in the
set, or not.

Example ABS
A basic span
Consider the set of 5 vectors, S, from C4

S =




1
1
3
1

 ,


2
1
2
−1

 ,


7
3
5
−5

 ,


1
1
−1
2

 ,

−1
0
9
0




and consider the infinite set of vectors 〈S〉 formed from all possible linear combinations of the
elements of S. Here are four vectors we definitely know are elements of 〈S〉, since we will construct
them in accordance with Definition SSCV [113],

w = (2)


1
1
3
1

+ (1)


2
1
2
−1

+ (−1)


7
3
5
−5

+ (2)


1
1
−1
2

+ (3)


−1
0
9
0

 =


−4
2
28
10


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x = (5)


1
1
3
1

+ (−6)


2
1
2
−1

+ (−3)


7
3
5
−5

+ (4)


1
1
−1
2

+ (2)


−1
0
9
0

 =


−26
−6
2
34



y = (1)


1
1
3
1

+ (0)


2
1
2
−1

+ (1)


7
3
5
−5

+ (0)


1
1
−1
2

+ (1)


−1
0
9
0

 =


7
4
17
−4



z = (0)


1
1
3
1

+ (0)


2
1
2
−1

+ (0)


7
3
5
−5

+ (0)


1
1
−1
2

+ (0)


−1
0
9
0

 =


0
0
0
0


The purpose of a set is to collect objects with some common property, and to exclude objects
without that property. So the most fundamental question about a set is if a given object is an
element of the set or not. Let’s learn more about 〈S〉 by investigating which vectors are elements
of the set, and which are not.

First, is u =


−15
−6
19
5

 an element of 〈S〉? We are asking if there are scalars α1, α2, α3, α4, α5

such that

α1


1
1
3
1

+ α2


2
1
2
−1

+ α3


7
3
5
−5

+ α4


1
1
−1
2

+ α5


−1
0
9
0

 = u =


−15
−6
19
5


Applying Theorem SLSLC [92] we recognize the search for these scalars as a solution to a linear
system of equations with augmented matrix

1 2 7 1 −1 −15
1 1 3 1 0 −6
3 2 5 −1 9 19
1 −1 −5 2 0 5


which row-reduces to 

1 0 −1 0 3 10
0 1 4 0 −1 −9
0 0 0 1 −2 −7
0 0 0 0 0 0


At this point, we see that the system is consistent (Theorem RCLS [48]), so we know there is a
solution for the five scalars α1, α2, α3, α4, α5. This is enough evidence for us to say that u ∈ 〈S〉.
If we wished further evidence, we could compute an actual solution, say

α1 = 2 α2 = 1 α3 = −2 α4 = −3 α5 = 2

This particular solution allows us to write

(2)


1
1
3
1

+ (1)


2
1
2
−1

+ (−2)


7
3
5
−5

+ (−3)


1
1
−1
2

+ (2)


−1
0
9
0

 = u =


−15
−6
19
5


making it even more obvious that u ∈ 〈S〉.
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Lets do it again. Is v =


3
1
2
−1

 an element of 〈S〉? We are asking if there are scalars

α1, α2, α3, α4, α5 such that

α1


1
1
3
1

+ α2


2
1
2
−1

+ α3


7
3
5
−5

+ α4


1
1
−1
2

+ α5


−1
0
9
0

 = v =


3
1
2
−1


Applying Theorem SLSLC [92] we recognize the search for these scalars as a solution to a linear
system of equations with augmented matrix

1 2 7 1 −1 3
1 1 3 1 0 1
3 2 5 −1 9 2
1 −1 −5 2 0 −1


which row-reduces to 

1 0 −1 0 3 0
0 1 4 0 −1 0
0 0 0 1 −2 0
0 0 0 0 0 1


At this point, we see that the system is inconsistent by Theorem RCLS [48], so we know there is
not a solution for the five scalars α1, α2, α3, α4, α5. This is enough evidence for us to say that
v 6∈ 〈S〉. End of story. �

Example SCAA
Span of the columns of Archetype A
Begin with the finite set of three vectors of size 3

S = {u1, u2, u3} =


1

2
1

 ,
−1

1
1

 ,
2

1
0


and consider the infinite set 〈S〉. The vectors of S could have been chosen to be anything, but for
reasons that will become clear later, we have chosen the three columns of the coefficient matrix in
Archetype A [685]. First, as an example, note that

v = (5)

1
2
1

+ (−3)

−1
1
1

+ (7)

2
1
0

 =

22
14
2


is in 〈S〉, since it is a linear combination of u1, u2, u3. We write this succinctly as v ∈ 〈S〉. There
is nothing magical about the scalars α1 = 5, α2 = −3, α3 = 7, they could have been chosen to be
anything. So repeat this part of the example yourself, using different values of α1, α2, α3. What
happens if you choose all three scalars to be zero?

So we know how to quickly construct sample elements of the set 〈S〉. A slightly different question
arises when you are handed a vector of the correct size and asked if it is an element of 〈S〉. For

example, is w =

1
8
5

 in 〈S〉? More succinctly, w ∈ 〈S〉?

To answer this question, we will look for scalars α1, α2, α3 so that

α1u1 + α2u2 + α3u3 = w.
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By Theorem SLSLC [92] solutions to this vector equation are solutions to the system of equations

α1 − α2 + 2α3 = 1
2α1 + α2 + α3 = 8

α1 + α2 = 5.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 1 3
0 1 −1 2
0 0 0 0

 .
This system has infinitely many solutions (there’s a free variable in x3), but all we need is one
solution vector. The solution,

α1 = 2 α2 = 3 α3 = 1

tells us that
(2)u1 + (3)u2 + (1)u3 = w

so we are convinced that w really is in 〈S〉. Notice that there are an infinite number of ways to
answer this question affirmatively. We could choose a different solution, this time choosing the free
variable to be zero,

α1 = 3 α2 = 2 α3 = 0

shows us that
(3)u1 + (2)u2 + (0)u3 = w

Verifying the arithmetic in this second solution maybe makes it seem obvious that w is in this span?
And of course, we now realize that there are an infinite number of ways to realize w as element of

〈S〉. Let’s ask the same type of question again, but this time with y =

2
4
3

, i.e. is y ∈ 〈S〉?

So we’ll look for scalars α1, α2, α3 so that

α1u1 + α2u2 + α3u3 = y.

By Theorem SLSLC [92] solutions to this vector equation are the solutions to the system of equations

α1 − α2 + 2α3 = 2
2α1 + α2 + α3 = 4

α1 + α2 = 3.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 1 0
0 1 −1 0
0 0 0 1


This system is inconsistent (there’s a leading 1 in the last column, Theorem RCLS [48]), so there
are no scalars α1, α2, α3 that will create a linear combination of u1, u2, u3 that equals y. More
precisely, y 6∈ 〈S〉.

There are three things to observe in this example. (1) It is easy to construct vectors in 〈S〉.
(2) It is possible that some vectors are in 〈S〉 (e.g. w), while others are not (e.g. y). (3) Deciding
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if a given vector is in 〈S〉 leads to solving a linear system of equations and asking if the system is
consistent.

With a computer program in hand to solve systems of linear equations, could you create a
program to decide if a vector was, or wasn’t, in the span of a given set of vectors? Is this art or
science?

This example was built on vectors from the columns of the coefficient matrix of Archetype A
[685]. Study the determination that v ∈ 〈S〉 and see if you can connect it with some of the other
properties of Archetype A [685]. �

Having analyzed Archetype A [685] in Example SCAA [115], we will of course subject Archetype
B [689] to a similar investigation.

Example SCAB
Span of the columns of Archetype B
Begin with the finite set of three vectors of size 3 that are the columns of the coefficient matrix in
Archetype B [689],

R = {v1, v2, v3} =


−7

5
1

 ,
−6

5
0

 ,
−12

7
4


and consider the infinite set V = 〈R〉. First, as an example, note that

x = (2)

−7
5
1

+ (4)

−6
5
0

+ (−3)

−12
7
4

 =

 −2
9
−10


is in 〈R〉, since it is a linear combination of v1, v2, v3. In other words, x ∈ 〈R〉. Try some different
values of α1, α2, α3 yourself, and see what vectors you can create as elements of 〈R〉.

Now ask if a given vector is an element of 〈R〉. For example, is z =

−33
24
5

 in 〈R〉? Is z ∈ 〈R〉?

To answer this question, we will look for scalars α1, α2, α3 so that

α1v1 + α2v2 + α3v3 = z.

By Theorem SLSLC [92] solutions to this vector equation are the solutions to the system of equations

−7α1 − 6α2 − 12α3 = −33
5α1 + 5α2 + 7α3 = 24

α1 + 4α3 = 5.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 0 −3
0 1 0 5
0 0 1 2

 .
This system has a unique solution,

α1 = −3 α2 = 5 α3 = 2

telling us that
(−3)v1 + (5)v2 + (2)v3 = z

so we are convinced that z really is in 〈R〉. Notice that in this case we have only one way to answer
the question affirmatively since the solution is unique.

Let’s ask about another vector, say is x =

−7
8
−3

 in 〈R〉? Is x ∈ 〈R〉?
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We desire scalars α1, α2, α3 so that

α1v1 + α2v2 + α3v3 = x.

By Theorem SLSLC [92] solutions to this vector equation are the solutions to the system of equations

−7α1 − 6α2 − 12α3 = −7
5α1 + 5α2 + 7α3 = 8

α1 + 4α3 = −3.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 0 1
0 1 0 2
0 0 1 −1


This system has a unique solution,

α1 = 1 α2 = 2 α3 = −1

telling us that
(1)v1 + (2)v2 + (−1)v3 = x

so we are convinced that x really is in 〈R〉. Notice that in this case we again have only one way to
answer the question affirmatively since the solution is again unique.

We could continue to test other vectors for membership in 〈R〉, but there is no point. A
question about membership in 〈R〉 inevitably leads to a system of three equations in the three
variables α1, α2, α3 with a coefficient matrix whose columns are the vectors v1, v2, v3. This
particular coefficient matrix is nonsingular, so by Theorem NMUS [70], it is guaranteed to have
a solution. (This solution is unique, but that’s not critical here.) So no matter which vector we
might have chosen for z, we would have been certain to discover that it was an element of 〈R〉.
Stated differently, every vector of size 3 is in 〈R〉, or 〈R〉 = C3.

Compare this example with Example SCAA [115], and see if you can connect z with some
aspects of the write-up for Archetype B [689]. �

Subsection SSNS
Spanning Sets of Null Spaces

We saw in Example VFSAL [101] that when a system of equations is homogeneous the solution
set can be expressed in the form described by Theorem VFSLS [98] where the vector c is the zero
vector. We can essentially ignore this vector, so that the remainder of the typical expression for
a solution looks like an arbitrary linear combination, where the scalars are the free variables and
the vectors are u1, u2, u3, . . . , un−r. Which sounds a lot like a span. This is the substance of the
next theorem.

Theorem SSNS
Spanning Sets for Null Spaces
Suppose that A is an m×n matrix, and B is a row-equivalent matrix in reduced row-echelon form
with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the column indices where B has leading 1’s
(pivot columns) and F = {f1, f2, f3, . . . , fn−r} be the set of column indices where B does not
have leading 1’s. Construct the n− r vectors zj , 1 ≤ j ≤ n− r of size n as

[zj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk
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Then the null space of A is given by

N (A) = 〈{z1, z2, z3, . . . , zn−r}〉 .

�

Proof Consider the homogeneous system with A as a coefficient matrix, LS(A, 0). Its set of
solutions, S, is by Definition NSM [59], the null space of A, N (A). Let B′ denote the result of
row-reducing the augmented matrix of this homogeneous system. Since the system is homogeneous,
the final column of the augmented matrix will be all zeros, and after any number of row operations
(Definition RO [26]), the column will still be all zeros. So B′ has a final column that is totally
zeros.

Now apply Theorem VFSLS [98] to B′, after noting that our homogeneous system must be
consistent (Theorem HSC [57]). The vector c has zeros for each entry that corresponds to an index
in F . For entries that correspond to an index in D, the value is − [B′]k,n+1, but for B′ any entry in
the final column (index n+ 1) is zero. So c = 0. The vectors zj , 1 ≤ j ≤ n− r are identical to the
vectors uj , 1 ≤ j ≤ n− r described in Theorem VFSLS [98]. Putting it all together and applying
Definition SSCV [113] in the final step,

N (A) = S

=
{

c + xf1u1 + xf2u2 + xf3u3 + · · ·+ xfn−run−r
∣∣ xf1 , xf2 , xf3 , . . . , xfn−r ∈ C

}
=
{
xf1z1 + xf2z2 + xf3z3 + · · ·+ xfn−rzn−r

∣∣ xf1 , xf2 , xf3 , . . . , xfn−r ∈ C
}

= 〈{z1, z2, z3, . . . , zn−r}〉

�

Example SSNS
Spanning set of a null space
Find a set of vectors, S, so that the null space of the matrix A below is the span of S, that is,
〈S〉 = N (A).

A =


1 3 3 −1 −5
2 5 7 1 1
1 1 5 1 5
−1 −4 −2 0 4


The null space of A is the set of all solutions to the homogeneous system LS(A, 0). If we find the
vector form of the solutions to this homogenous system (Theorem VFSLS [98]) then the vectors
uj , 1 ≤ j ≤ n − r in the linear combination are exactly the vectors zj , 1 ≤ j ≤ n − r described
in Theorem SSNS [118]. So we can mimic Example VFSAL [101] to arrive at these vectors (rather
than being a slave to the formulas in the statement of the theorem).

Begin by row-reducing A. The result is
1 0 6 0 4
0 1 −1 0 −2
0 0 0 1 3
0 0 0 0 0


With D = {1, 2, 4} and F = {3, 5} we recognize that x3 and x5 are free variables and we can
express each nonzero row as an expression for the dependent variables x1, x2, x4 (respectively) in
the free variables x3 and x5. With this we can write the vector form of a solution vector as

x1

x2

x3

x4

x5

 =


−6x3 − 4x5

x3 + 2x5

x3

−3x5

x5

 = x3


−6
1
1
0
0

+ x5


−4
2
0
−3
1


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Then in the notation of Theorem SSNS [118],

z1 =


−6
1
1
0
0

 z2 =


−4
2
0
−3
1


and

N (A) = 〈{z1, z2}〉 =

〈


−6
1
1
0
0

 ,

−4
2
0
−3
1



〉

�

Example NSDS
Null space directly as a span
Let’s express the null space of A as the span of a set of vectors, applying Theorem SSNS [118] as
economically as possible, without reference to the underlying homogeneous system of equations (in
contrast to Example SSNS [119]).

A =


2 1 5 1 5 1
1 1 3 1 6 −1
−1 1 −1 0 4 −3
−3 2 −4 −4 −7 0
3 −1 5 2 2 3


Theorem SSNS [118] creates vectors for the span by first row-reducing the matrix in question. The
row-reduced version of A is

B =


1 0 2 0 −1 2
0 1 1 0 3 −1
0 0 0 1 4 −2
0 0 0 0 0 0
0 0 0 0 0 0


I usually find it easier to envision the construction of the homogenous system of equations rep-
resented by this matrix, solve for the dependent variables and then unravel the equations into a
linear combination. But we can just as well mechanically follow the prescription of Theorem SSNS
[118]. Here we go, in two big steps.

First, the indices of the non-pivot columns have indices F = {3, 5, 6}, so we will construct the
n− r = 6− 3 = 3 vectors with a pattern of zeros and ones corresponding to the indices in F . This
is the realization of the first two lines of the three-case definition of the vectors zj , 1 ≤ j ≤ n− r.

z1 =


1

0
0

 z2 =


0

1
0

 z3 =


0

0
1


Each of these vectors arises due to the presence of a column that is not a pivot column. The
remaining entries of each vector are the entries of the corresponding non-pivot column, negated,
and distributed into the empty slots in order (these slots have indices in the set D and correspond
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to pivot columns). This is the realization of the third line of the three-case definition of the vectors
zj , 1 ≤ j ≤ n− r.

z1 =



−2
1
1
2
0
0

 z2 =



1
−3
0
−4
1
0

 z3 =



−2
−1
0
0
0
1


So, by Theorem SSNS [118], we have

N (A) = 〈{z1, z2, z3}〉 =

〈




−2
1
1
2
0
0

 ,


1
−3
0
−4
1
0

 ,


−2
−1
0
0
0
1




〉

We know that the null space of A is the solution set of the homogeneous system LS(A, 0), but
nowhere in this application of Theorem SSNS [118] have we found occasion to reference the variables
or equations of this system. �

More advanced computational devices will compute the null space of a matrix. See: Compu-
tation NS.MMA [654] . Here’s an example that will simultaneously exercise the span construction
and Theorem SSNS [118], while also pointing the way to the next section.

Example SCAD
Span of the columns of Archetype D
Begin with the set of four vectors of size 3

T = {w1, w2, w3, w4} =


 2
−3
1

 ,
1

4
1

 ,
 7
−5
4

 ,
−7
−6
−5


and consider the infinite set W = 〈T 〉. The vectors of T have been chosen as the four columns of
the coefficient matrix in Archetype D [698]. Check that the vector

z2 =


2
3
0
1


is a solution to the homogeneous system LS(D, 0) (it is the vector z2 provided by the description
of the null space of the coefficient matrix D from Theorem SSNS [118]). Applying Theorem SLSLC
[92], we can write the linear combination,

2w1 + 3w2 + 0w3 + 1w4 = 0

which we can solve for w4,
w4 = (−2)w1 + (−3)w2.

This equation says that whenever we encounter the vector w4, we can replace it with a specific
linear combination of the vectors w1 and w2. So using w4 in the set T , along with w1 and w2, is
excessive. An example of what we mean here can be illustrated by the computation,

5w1 + (−4)w2 + 6w3 + (−3)w4 = 5w1 + (−4)w2 + 6w3 + (−3) ((−2)w1 + (−3)w2)
= 5w1 + (−4)w2 + 6w3 + (6w1 + 9w2)
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= 11w1 + 5w2 + 6w3.

So what began as a linear combination of the vectors w1, w2, w3, w4 has been reduced to a
linear combination of the vectors w1, w2, w3. A careful proof using our definition of set equality
(Definition SE [666]) would now allow us to conclude that this reduction is possible for any vector
in W , so

W = 〈{w1, w2, w3}〉 .

So the span of our set of vectors, W , has not changed, but we have described it by the span of a
set of three vectors, rather than four. Furthermore, we can achieve yet another, similar, reduction.

Check that the vector

z1 =


−3
−1
1
0


is a solution to the homogeneous system LS(D, 0) (it is the vector z1 provided by the description
of the null space of the coefficient matrix D from Theorem SSNS [118]). Applying Theorem SLSLC
[92], we can write the linear combination,

(−3)w1 + (−1)w2 + 1w3 = 0

which we can solve for w3,
w3 = 3w1 + 1w2.

This equation says that whenever we encounter the vector w3, we can replace it with a specific
linear combination of the vectors w1 and w2. So, as before, the vector w3 is not needed in the
description of W , provided we have w1 and w2 available. In particular, a careful proof would show
that

W = 〈{w1, w2}〉 .

So W began life as the span of a set of four vectors, and we have now shown (utilizing solutions
to a homogeneous system) that W can also be described as the span of a set of just two vectors.
Convince yourself that we cannot go any further. In other words, it is not possible to dismiss either
w1 or w2 in a similar fashion and winnow the set down to just one vector.

What was it about the original set of four vectors that allowed us to declare certain vectors as
surplus? And just which vectors were we able to dismiss? And why did we have to stop once we
had two vectors remaining? The answers to these questions motivate “linear independence,” our
next section and next definition, and so are worth considering carefully now. �

It is possible to have your computational device crank out the vector form of the solution set
to a linear system of equations. See: Computation VFSS.MMA [655] .

Subsection READ
Reading Questions

1. Let S be the set of three vectors below.

S =


 1

2
−1

 ,
 3
−4
2

 ,
 4
−2
1


Let W = 〈S〉 be the span of S. Is the vector

−1
8
−4

 in W? Give an explanation of the reason

for your answer.
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2. Use S and W from the previous question. Is the vector

 6
5
−1

 in W? Give an explanation of

the reason for your answer.

3. For the matrix A below, find a set S so that 〈S〉 = N (A), where N (A) is the null space of A.
(See Theorem SSNS [118].)

A =

1 3 1 9
2 1 −3 8
1 1 −1 5


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Subsection EXC
Exercises

C22 For each archetype that is a system of equations, consider the corresponding homogeneous
system of equations. Write elements of the solution set to these homogeneous systems in vector
form, as guaranteed by Theorem VFSLS [98]. Then write the null space of the coefficient matrix
of each system as the span of a set of vectors, as described in Theorem SSNS [118].
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/ Archetype E [702]
Archetype F [705]
Archetype G [710]/ Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer Solution [126]

C23 Archetype K [727] and Archetype L [731] are defined as matrices. Use Theorem SSNS [118]
directly to find a set S so that 〈S〉 is the null space of the matrix. Do not make any reference to
the associated homogeneous system of equations in your solution.
Contributed by Robert Beezer Solution [126]

C40 Suppose that S =




2
−1
3
4

 ,


3
2
−2
1


. Let W = 〈S〉 and let x =


5
8
−12
−5

. Is x ∈ W? If so,

provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [126]

C41 Suppose that S =




2
−1
3
4

 ,


3
2
−2
1


. Let W = 〈S〉 and let y =


5
1
3
5

. Is y ∈ W? If so,

provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [126]

C42 Suppose R =




2
−1
3
4
0

 ,


1
1
2
2
−1

 ,


3
−1
0
3
−2


. Is y =


1
−1
−8
−4
−3

 in 〈R〉?

Contributed by Robert Beezer Solution [127]

C43 Suppose R =




2
−1
3
4
0

 ,


1
1
2
2
−1

 ,


3
−1
0
3
−2


. Is z =


1
1
5
3
1

 in 〈R〉?

Contributed by Robert Beezer Solution [127]

C44 Suppose that S =


−1

2
1

 ,
3

1
2

 ,
1

5
4

 ,
−6

5
1

. Let W = 〈S〉 and let y =

−5
3
0

. Is

x ∈W? If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [128]
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C45 Suppose that S =


−1

2
1

 ,
3

1
2

 ,
1

5
4

 ,
−6

5
1

. Let W = 〈S〉 and let w =

2
1
3

. Is x ∈W?

If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [128]

C50 Let A be the matrix below.
(a) Find a set S so that N (A) = 〈S〉.

(b) If z =


3
−5
1
2

, then show directly that z ∈ N (A).

(c) Write z as a linear combination of the vectors in S.

A =

 2 3 1 4
1 2 1 3
−1 0 1 1


Contributed by Robert Beezer Solution [129]

C60 For the matrix A below, find a set of vectors S so that the span of S equals the null space
of A, 〈S〉 = N (A).

A =

 1 1 6 −8
1 −2 0 1
−2 1 −6 7


Contributed by Robert Beezer Solution [129]

M20 In Example SCAD [121] we began with the four columns of the coefficient matrix of
Archetype D [698], and used these columns in a span construction. Then we methodically ar-
gued that we could remove the last column, then the third column, and create the same set by just
doing a span construction with the first two columns. We claimed we could not go any further, and
had removed as many vectors as possible. Provide a convincing argument for why a third vector
cannot be removed.
Contributed by Robert Beezer

M21 In the spirit of Example SCAD [121], begin with the four columns of the coefficient matrix
of Archetype C [694], and use these columns in a span construction to build the set S. Argue that
S can be expressed as the span of just three of the columns of the coefficient matrix (saying exactly
which three) and in the spirit of Exercise SS.M20 [125] argue that no one of these three vectors can
be removed and still have a span construction create S.
Contributed by Robert Beezer Solution [130]

T10 Suppose that v1, v2 ∈ Cm. Prove that

〈{v1, v2}〉 = 〈{v1, v2, 5v1 + 3v2}〉

Contributed by Robert Beezer Solution [130]

T20 Suppose that S is a set of vectors from Cm. Prove that the zero vector, 0, is an element of
〈S〉.
Contributed by Robert Beezer Solution [130]

T21 Suppose that S is a set of vectors from Cm and x, y ∈ 〈S〉. Prove that x + y ∈ 〈S〉.
Contributed by Robert Beezer

T22 Suppose that S is a set of vectors from Cm, α ∈ C, and x ∈ 〈S〉. Prove that αx ∈ 〈S〉.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C22 Contributed by Robert Beezer Statement [124]
The vector form of the solutions obtained in this manner will involve precisely the vectors described
in Theorem SSNS [118] as providing the null space of the coefficient matrix of the system as a span.
These vectors occur in each archetype in a description of the null space. Studying Example VFSAL
[101] may be of some help.

C23 Contributed by Robert Beezer Statement [124]
Study Example NSDS [120] to understand the correct approach to this question. The solution for
each is listed in the Archetypes (Appendix A [681]) themselves.

C40 Contributed by Robert Beezer Statement [124]
Rephrasing the question, we want to know if there are scalars α1 and α2 such that

α1


2
−1
3
4

+ α2


3
2
−2
1

 =


5
8
−12
−5


Theorem SLSLC [92] allows us to rephrase the question again as a quest for solutions to the system
of four equations in two unknowns with an augmented matrix given by

2 3 5
−1 2 8
3 −2 −12
4 1 −5


This matrix row-reduces to 

1 0 −2
0 1 3
0 0 0
0 0 0


From the form of this matrix, we can see that α1 = −2 and α2 = 3 is an affirmative answer to our
question. More convincingly,

(−2)


2
−1
3
4

+ (3)


3
2
−2
1

 =


5
8
−12
−5


C41 Contributed by Robert Beezer Statement [124]
Rephrasing the question, we want to know if there are scalars α1 and α2 such that

α1


2
−1
3
4

+ α2


3
2
−2
1

 =


5
1
3
5


Theorem SLSLC [92] allows us to rephrase the question again as a quest for solutions to the system
of four equations in two unknowns with an augmented matrix given by

2 3 5
−1 2 1
3 −2 3
4 1 5


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This matrix row-reduces to 
1 0 0
0 1 0
0 0 1
0 0 0


With a leading 1 in the last column of this matrix (Theorem RCLS [48]) we can see that the system
of equations has no solution, so there are no values for α1 and α2 that will allow us to conclude
that y is in W . So y 6∈W .

C42 Contributed by Robert Beezer Statement [124]
Form a linear combination, with unknown scalars, of R that equals y,

a1


2
−1
3
4
0

+ a2


1
1
2
2
−1

+ a3


3
−1
0
3
−2

 =


1
−1
−8
−4
−3


We want to know if there are values for the scalars that make the vector equation true since that is
the definition of membership in 〈R〉. By Theorem SLSLC [92] any such values will also be solutions
to the linear system represented by the augmented matrix,

2 1 3 1
−1 1 −1 −1
3 2 0 −8
4 2 3 −4
0 −1 −2 −3


Row-reducing the matrix yields, 

1 0 0 −2
0 1 0 −1
0 0 1 2
0 0 0 0
0 0 0 0


From this we see that the system of equations is consistent (Theorem RCLS [48]), and has a unique
solution. This solution will provide a linear combination of the vectors in R that equals y. So
y ∈ R.

C43 Contributed by Robert Beezer Statement [124]
Form a linear combination, with unknown scalars, of R that equals z,

a1


2
−1
3
4
0

+ a2


1
1
2
2
−1

+ a3


3
−1
0
3
−2

 =


1
1
5
3
1


We want to know if there are values for the scalars that make the vector equation true since that is
the definition of membership in 〈R〉. By Theorem SLSLC [92] any such values will also be solutions
to the linear system represented by the augmented matrix,

2 1 3 1
−1 1 −1 1
3 2 0 5
4 2 3 3
0 −1 −2 1


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Row-reducing the matrix yields, 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


With a leading 1 in the last column, the system is inconsistent (Theorem RCLS [48]), so there
are no scalars a1, a2, a3 that will create a linear combination of the vectors in R that equal z. So
z 6∈ R.

C44 Contributed by Robert Beezer Statement [124]
Form a linear combination, with unknown scalars, of S that equals y,

a1

−1
2
1

+ a2

3
1
2

+ a3

1
5
4

+ a4

−6
5
1

 =

−5
3
0


We want to know if there are values for the scalars that make the vector equation true since that is
the definition of membership in 〈S〉. By Theorem SLSLC [92] any such values will also be solutions
to the linear system represented by the augmented matrix,−1 3 1 −6 −5

2 1 5 5 3
1 2 4 1 0


Row-reducing the matrix yields,  1 0 2 3 2

0 1 1 −1 −1
0 0 0 0 0


From this we see that the system of equations is consistent (Theorem RCLS [48]), and has a
infinitely many solutions. Any solution will provide a linear combination of the vectors in R that
equals y. So y ∈ S, for example,

(−10)

−1
2
1

+ (−2)

3
1
2

+ (3)

1
5
4

+ (2)

−6
5
1

 =

−5
3
0


C45 Contributed by Robert Beezer Statement [125]
Form a linear combination, with unknown scalars, of S that equals w,

a1

−1
2
1

+ a2

3
1
2

+ a3

1
5
4

+ a4

−6
5
1

 =

2
1
3


We want to know if there are values for the scalars that make the vector equation true since that is
the definition of membership in 〈S〉. By Theorem SLSLC [92] any such values will also be solutions
to the linear system represented by the augmented matrix,−1 3 1 −6 2

2 1 5 5 1
1 2 4 1 3


Row-reducing the matrix yields,  1 0 2 3 0

0 1 1 −1 0
0 0 0 0 1


Version 1.30



Subsection SS.SOL Solutions 129

With a leading 1 in the last column, the system is inconsistent (Theorem RCLS [48]), so there are
no scalars a1, a2, a3, a4 that will create a linear combination of the vectors in S that equal w. So
w 6∈ 〈S〉.

C50 Contributed by Robert Beezer Statement [125]
(a) Theorem SSNS [118] provides formulas for a set S with this property, but first we must
row-reduce A

A
RREF−−−−→

 1 0 −1 −1
0 1 1 2
0 0 0 0


x3 and x4 would be the free variables in the homogeneous system LS(A, 0) and Theorem SSNS
[118] provides the set S = {z1, z2} where

z1 =


1
−1
1
0

 z2 =


1
−2
0
1


(b) Simply employ the components of the vector z as the variables in the homogeneous system
LS(A, 0). The three equations of this system evaluate as follows,

2(3) + 3(−5) + 1(1) + 4(2) = 0
1(3) + 2(−5) + 1(1) + 3(2) = 0
−1(3) + 0(−5) + 1(1) + 1(2) = 0

Since each result is zero, z qualifies for membership in N (A).
(c) By Theorem SSNS [118] we know this must be possible (that is the moral of this exercise).

Find scalars α1 and α2 so that

α1z1 + α2z2 = α1


1
−1
1
0

+ α2


1
−2
0
1

 =


3
−5
1
2

 = z

Theorem SLSLC [92] allows us to convert this question into a question about a system of four
equations in two variables. The augmented matrix of this system row-reduces to

1 0 1
0 1 2
0 0 0
0 0 0


A solution is α1 = 1 and α2 = 2. (Notice too that this solution is unique!)

C60 Contributed by Robert Beezer Statement [125]
Theorem SSNS [118] says that if we find the vector form of the solutions to the homogeneous system
LS(A, 0), then the fixed vectors (one per free variable) will have the desired property. Row-reduce
A, viewing it as the augmented matrix of a homogeneous system with an invisible columns of zeros
as the last column,  1 0 4 −5

0 1 2 −3
0 0 0 0


Moving to the vector form of the solutions (Theorem VFSLS [98]), with free variables x3 and x4,
solutions to the consistent system (it is homogeneous, Theorem HSC [57]) can be expressed as

x1

x2

x3

x4

 = x3


−4
−2
1
0

+ x4


5
3
0
1


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Then with S given by

S =



−4
−2
1
0

 ,


5
3
0
1




Theorem SSNS [118] guarantees that

N (A) = 〈S〉 =

〈

−4
−2
1
0

 ,


5
3
0
1



〉

M21 Contributed by Robert Beezer Statement [125]
If the columns of the coefficient matrix from Archetype C [694] are named u1, u2, u3, u4 then we
can discover the equation

(−2)u1 + (−3)u2 + u3 + u4 = 0

by building a homogeneous system of equations and viewing a solution to the system as scalars in
a linear combination via Theorem SLSLC [92]. This particular vector equation can be rearranged
to read

u4 = (2)u1 + (3)u2 + (−1)u3

This can be interpreted to mean that u4 is unnecessary in 〈{u1, u2, u3, u4}〉, so that

〈{u1, u2, u3, u4}〉 = 〈{u1, u2, u3}〉

If we try to repeat this process and find a linear combination of u1, u2, u3 that equals the zero
vector, we will fail. The required homogeneous system of equations (via Theorem SLSLC [92]) has
only a trivial solution, which will not provide the kind of equation we need to remove one of the
three remaining vectors.

T10 Contributed by Robert Beezer Statement [125]
This is an equality of sets, so Definition SE [666] applies.

First show that X = 〈{v1, v2}〉 ⊆ 〈{v1, v2, 5v1 + 3v2}〉 = Y .
Choose x ∈ X. Then x = a1v1 + a2v2 for some scalars a1 and a2. Then,

x = a1v1 + a2v2 = a1v1 + a2v2 + 0(5v1 + 3v2)

which qualifies x for membership in Y , as it is a linear combination of v1, v2, 5v1 + 3v2.
Now show the opposite inclusion, Y = 〈{v1, v2, 5v1 + 3v2}〉 ⊆ 〈{v1, v2}〉 = X.

Choose y ∈ Y . Then there are scalars a1, a2, a3 such that

y = a1v1 + a2v2 + a3(5v1 + 3v2)

Rearranging, we obtain,

y = a1v1 + a2v2 + a3(5v1 + 3v2)
= a1v1 + a2v2 + 5a3v1 + 3a3v2 Property DVAC [84]
= a1v1 + 5a3v1 + a2v2 + 3a3v2 Property CC [84]
= (a1 + 5a3)v1 + (a2 + 3a3)v2 Property DSAC [84]

This is an expression for y as a linear combination of v1 and v2, earning y membership in X. Since
X is a subset of Y , and vice versa, we see that X = Y , as desired.

T20 Contributed by Robert Beezer Statement [125]
No matter what the elements of the set S are, we can choose the scalars in a linear combination to
all be zero. Suppose that S = {v1, v2, v3, . . . , vp}. Then compute

0v1 + 0v2 + 0v3 + · · ·+ 0vp = 0 + 0 + 0 + · · ·+ 0
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= 0

But what if we choose S to be the empty set? The convention is that the empty sum in Definition
SSCV [113] evaluates to “zero,” in this case this is the zero vector.
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Section LI
Linear Independence

Subsection LISV
Linearly Independent Sets of Vectors

Theorem SLSLC [92] tells us that a solution to a homogeneous system of equations is a linear
combination of the columns of the coefficient matrix that equals the zero vector. We used just this
situation to our advantage (twice!) in Example SCAD [121] where we reduced the set of vectors
used in a span construction from four down to two, by declaring certain vectors as surplus. The
next two definitions will allow us to formalize this situation.

Definition RLDCV
Relation of Linear Dependence for Column Vectors
Given a set of vectors S = {u1, u2, u3, . . . , un}, a true statement of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e.
αi = 0, 1 ≤ i ≤ n, then we say it is the trivial relation of linear dependence on S. 4

Definition LICV
Linear Independence of Column Vectors
The set of vectors S = {u1, u2, u3, . . . , un} is linearly dependent if there is a relation of linear
dependence on S that is not trivial. In the case where the only relation of linear dependence on S
is the trivial one, then S is a linearly independent set of vectors. 4

Notice that a relation of linear dependence is an equation. Though most of it is a linear
combination, it is not a linear combination (that would be a vector). Linear independence is a
property of a set of vectors. It is easy to take a set of vectors, and an equal number of scalars, all
zero, and form a linear combination that equals the zero vector. When the easy way is the only
way, then we say the set is linearly independent. Here’s a couple of examples.

Example LDS
Linearly dependent set in C5

Consider the set of n = 4 vectors from C5,

S =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,

−6
7
−1
0
1


 .

To determine linear independence we first form a relation of linear dependence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
0
1

 = 0.

We know that α1 = α2 = α3 = α4 = 0 is a solution to this equation, but that is of no interest
whatsoever. That is always the case, no matter what four vectors we might have chosen. We are
curious to know if there are other, nontrivial, solutions. Theorem SLSLC [92] tells us that we can

Version 1.30



134 Section LI Linear Independence

find such solutions as solutions to the homogeneous system LS(A, 0) where the coefficient matrix
has these four vectors as columns,

A =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 0
2 2 1 1

 .

Row-reducing this coefficient matrix yields,
1 0 0 −2
0 1 0 4
0 0 1 −3
0 0 0 0
0 0 0 0

 .

We could solve this homogeneous system completely, but for this example all we need is one
nontrivial solution. Setting the lone free variable to any nonzero value, such as x4 = 1, yields the
nontrivial solution

x =


2
−4
3
1

 .
completing our application of Theorem SLSLC [92], we have

2


2
−1
3
1
2

+ (−4)


1
2
−1
5
2

+ 3


2
1
−3
6
1

+ 1


−6
7
−1
0
1

 = 0.

This is a relation of linear dependence on S that is not trivial, so we conclude that S is linearly
dependent. �

Example LIS
Linearly independent set in C5

Consider the set of n = 4 vectors from C5,

T =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,

−6
7
−1
1
1


 .

To determine linear independence we first form a relation of linear dependence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
1
1

 = 0.

We know that α1 = α2 = α3 = α4 = 0 is a solution to this equation, but that is of no interest
whatsoever. That is always the case, no matter what four vectors we might have chosen. We are
curious to know if there are other, nontrivial, solutions. Theorem SLSLC [92] tells us that we can
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find such solutions as solution to the homogeneous system LS(B, 0) where the coefficient matrix
has these four vectors as columns,

B =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 1
2 2 1 1

 .

Row-reducing this coefficient matrix yields,
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

From the form of this matrix, we see that there are no free variables, so the solution is unique, and
because the system is homogeneous, this unique solution is the trivial solution. So we now know
that there is but one way to combine the four vectors of T into a relation of linear dependence,
and that one way is the easy and obvious way. In this situation we say that the set, T , is linearly
independent. �

Example LDS [133] and Example LIS [134] relied on solving a homogeneous system of equations
to determine linear independence. We can codify this process in a time-saving theorem.

Theorem LIVHS
Linearly Independent Vectors and Homogeneous Systems
Suppose that A is an m×n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors in Cm that
are the columns of A. Then S is a linearly independent set if and only if the homogeneous system
LS(A, 0) has a unique solution. �

Proof (⇐) Suppose that LS(A, 0) has a unique solution. Since it is a homogeneous system, this
solution must be the trivial solution x = 0. By Theorem SLSLC [92], this means that the only
relation of linear dependence on S is the trivial one. So S is linearly independent.

(⇒) We will prove the contrapositive. Suppose that LS(A, 0) does not have a unique solution.
Since it is a homogeneous system, it is consistent (Theorem HSC [57]), and so must have infinitely
many solutions (Theorem PSSLS [50]). One of these infinitely many solutions must be nontrivial
(in fact, almost all of them are), so choose one. By Theorem SLSLC [92] this nontrivial solution
will give a nontrivial relation of linear dependence on S, so we can conclude that S is a linearly
dependent set. �

Since Theorem LIVHS [135] is an equivalence, we can use it to determine the linear independence
or dependence of any set of column vectors, just by creating a corresponding matrix and analyzing
the row-reduced form. Let’s illustrate this with two more examples.

Example LIHS
Linearly independent, homogeneous system
Is the set of vectors

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
5
1




linearly independent or linearly dependent?
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Theorem LIVHS [135] suggests we study the matrix whose columns are the vectors in S,

A =


2 6 4
−1 2 3
3 −1 −4
4 3 5
2 4 1


Specifically, we are interested in the size of the solution set for the homogeneous system LS(A, 0).
Row-reducing A, we obtain 

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


Now, r = 3, so there are n − r = 3 − 3 = 0 free variables and we see that LS(A, 0) has a unique
solution (Theorem HSC [57], Theorem FVCS [49]). By Theorem LIVHS [135], the set S is linearly
independent. �

Example LDHS
Linearly dependent, homogeneous system
Is the set of vectors

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
−1
2




linearly independent or linearly dependent?
Theorem LIVHS [135] suggests we study the matrix whose columns are the vectors in S,

A =


2 6 4
−1 2 3
3 −1 −4
4 3 −1
2 4 2


Specifically, we are interested in the size of the solution set for the homogeneous system LS(A, 0).
Row-reducing A, we obtain 

1 0 −1
0 1 1
0 0 0
0 0 0
0 0 0


Now, r = 2, so there are n − r = 3 − 2 = 1 free variables and we see that LS(A, 0) has infinitely
many solutions (Theorem HSC [57], Theorem FVCS [49]). By Theorem LIVHS [135], the set S is
linearly dependent. �

As an equivalence, Theorem LIVHS [135] gives us a straightforward way to determine if a set
of vectors is linearly independent or dependent.

Review Example LIHS [135] and Example LDHS [136]. They are very similar, differing only
in the last two slots of the third vector. This resulted in slightly different matrices when row-
reduced, and slightly different values of r, the number of nonzero rows. Notice, too, that we are
less interested in the actual solution set, and more interested in its form or size. These observations
allow us to make a slight improvement in Theorem LIVHS [135].
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Theorem LIVRN
Linearly Independent Vectors, r and n
Suppose that A is an m×n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors in Cm that
are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A
and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if
n = r. �

Proof Theorem LIVHS [135] says the linear independence of S is equivalent to the homogeneous
linear system LS(A, 0) having a unique solution. Since LS(A, 0) is consistent (Theorem HSC [57])
we can apply Theorem CSRN [49] to see that the solution is unique exactly when n = r. �

So now here’s an example of the most straightfoward way to determine if a set of column
vectors in linearly independent or linearly dependent. While this method can be quick and easy,
don’t forget the logical progression from the definition of linear independence through homogeneous
system of equations which makes it possible.

Example LDRN
Linearly dependent, r < n
Is the set of vectors

S =





2
−1
3
1
0
3

 ,


9
−6
−2
3
2
1

 ,


1
1
1
0
0
1

 ,


−3
1
4
2
1
2

 ,


6
−2
1
4
3
2




linearly independent or linearly dependent? Theorem LIVHS [135] suggests we place these vectors
into a matrix as columns and analyze the row-reduced version of the matrix,

2 9 1 −3 6
−1 −6 1 1 −2
3 −2 1 4 1
1 3 0 2 4
0 2 0 1 3
3 1 1 2 2


RREF−−−−→



1 0 0 0 −1
0 1 0 0 1
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0


Now we need only compute that r = 4 < 5 = n to recognize, via Theorem LIVHS [135] that S is a
linearly dependent set. Boom! �

Example LLDS
Large linearly dependent set in C4

Consider the set of n = 9 vectors from C4,

R =



−1
3
1
2

 ,


7
1
−3
6

 ,


1
2
−1
−2

 ,


0
4
2
9

 ,


5
−2
4
3

 ,


2
1
−6
4

 ,


3
0
−3
1

 ,


1
1
5
3

 ,

−6
−1
1
1


 .

To employ Theorem LIVHS [135], we form a 4× 9 coefficient matrix, C,

C =


−1 7 1 0 5 2 3 1 −6
3 1 2 4 −2 1 0 1 −1
1 −3 −1 2 4 −6 −3 5 1
2 6 −2 9 3 4 1 3 1

 .
To determine if the homogeneous system LS(C, 0) has a unique solution or not, we would normally
row-reduce this matrix. But in this particular example, we can do better. Theorem HMVEI [59]
tells us that since the system is homogeneous with n = 9 variables in m = 4 equations, and n > m,
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there must be infinitely many solutions. Since there is not a unique solution, Theorem LIVHS [135]
says the set is linearly dependent. �

The situation in Example LLDS [137] is slick enough to warrant formulating as a theorem.

Theorem MVSLD
More Vectors than Size implies Linear Dependence
Suppose that S = {u1, u2, u3, . . . , un} is the set of vectors in Cm, and that n > m. Then S is a
linearly dependent set. �

Proof Form the m × n coefficient matrix A that has the column vectors ui, 1 ≤ i ≤ n as its
columns. Consider the homogeneous system LS(A, 0). By Theorem HMVEI [59] this system has
infinitely many solutions. Since the system does not have a unique solution, Theorem LIVHS [135]
says the columns of A form a linearly dependent set, which is the desired conclusion. �

Subsection LINM
Linear Independence and Nonsingular Matrices

We will now specialize to sets of n vectors from Cn. This will put Theorem MVSLD [138] off-limits,
while Theorem LIVHS [135] will involve square matrices. Let’s begin by contrasting Archetype A
[685] and Archetype B [689].

Example LDCAA
Linearly dependent columns in Archetype A
Archetype A [685] is a system of linear equations with coefficient matrix,

A =

1 −1 2
2 1 1
1 1 0

 .
Do the columns of this matrix form a linearly independent or dependent set? By Example S [67] we
know that A is singular. According to the definition of nonsingular matrices, Definition NM [67],
the homogeneous system LS(A, 0) has infinitely many solutions. So by Theorem LIVHS [135], the
columns of A form a linearly dependent set. �

Example LICAB
Linearly independent columns in Archetype B
Archetype B [689] is a system of linear equations with coefficient matrix,

B =

−7 −6 −12
5 5 7
1 0 4

 .
Do the columns of this matrix form a linearly independent or dependent set? By Example NM [68]
we know that B is nonsingular. According to the definition of nonsingular matrices, Definition NM
[67], the homogeneous system LS(A, 0) has a unique solution. So by Theorem LIVHS [135], the
columns of B form a linearly independent set. �

That Archetype A [685] and Archetype B [689] have opposite properties for the columns of their
coefficient matrices is no accident. Here’s the theorem, and then we will update our equivalences
for nonsingular matrices, Theorem NME1 [72].

Theorem NMLIC
Nonsingular Matrices have Linearly Independent Columns
Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a
linearly independent set. �

Proof This is a proof where we can chain together equivalences, rather than proving the two
halves separately.

A nonsingular ⇐⇒ LS(A, 0) has a unique solution Definition NM [67]
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⇐⇒ columns of A are linearly independent Theorem LIVHS [135]

�

Here’s an update to Theorem NME1 [72].

Theorem NME2
Nonsingular Matrix Equivalences, Round 2
Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A form a linearly independent set.

�

Proof Theorem NMLIC [138] is yet another equivalence for a nonsingular matrix, so we can add
it to the list in Theorem NME1 [72]. �

Subsection NSSLI
Null Spaces, Spans, Linear Independence

In Subsection SS.SSNS [118] we proved Theorem SSNS [118] which provided n − r vectors that
could be used with the span construction to build the entire null space of a matrix. As we have
hinted in Example SCAD [121], and as we will see again going forward, linearly dependent sets carry
redundant vectors with them when used in building a set as a span. Our aim now is to show that
the vectors provided by Theorem SSNS [118] form a linearly independent set, so in one sense they
are as efficient as possible a way to describe the null space. Notice that the vectors zj , 1 ≤ j ≤ n−r
first appear in the vector form of solutions to arbitrary linear systems (Theorem VFSLS [98]). The
exact same vectors appear again in the span construction in the conclusion of Theorem SSNS [118].
Since this second theorem specializes to homogeneous systems the only real difference is that the
vector c in Theorem VFSLS [98] is the zero vector for a homogeneous system. Finally, Theorem
BNS [140] will now show that these same vectors are a linearly independent set. we’ll set the stage
for the proof of this theorem with a moderately large example. Study the example carefully, as it
will make it easier to understand the proof.

Example LINSB
Linearly independence of null space basis
Suppose that we are interested in the null space of the a 3× 7 matrix, A, which row-reduces to

B =

 1 0 −2 4 0 3 9
0 1 5 6 0 7 1
0 0 0 0 1 8 −5


The set F = {3, 4, 6, 7} is the set of indices for our four free variables that would be used in
a description of the solution set for the homogeneous system homosystemA. Applying Theorem
SSNS [118] we can begin to construct a set of four vectors whose span is the null space of A, a set
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of vectors we will reference as T .

N (A) = 〈T 〉 = 〈{z1, z2, z3, z4}〉 =

〈



1
0

0
0


,


0
1

0
0


,


0
0

1
0


,


0
0

0
1





〉

So far, we have constructed as much of these individual vectors as we can, based just on the
knowledge of the contents of the set F . This has allowed us to determine the entries in slots 3, 4,
6 and 7, while we have left slots 1, 2 and 5 blank. Without doing any more, lets ask if T is linearly
independent? Begin with a relation of linear dependence on T , and see what we can learn about
the scalars,

0 = α1z1 + α2z2 + α3z3 + α4z4

0
0
0
0
0
0
0


= α1


1
0

0
0


+ α2


0
1

0
0


+ α3


0
0

1
0


+ α4


0
0

0
1



=


α1

0

0
0


+


0
α2

0
0


+


0
0

α3

0


+


0
0

0
α4


=


α1

α2

α3

α4


Applying Definition CVE [82] to the two ends of this chain of equalities, we see that α1 = α2 =
α3 = α4 = 0. So the only relation of linear dependence on the set T is a trivial one. By Definition
LICV [133] the set T is linearly independent. The important feature of this example is how the
“pattern of zeros and ones” in the four vectors led to the conclusion of linear independence. �

The proof of Theorem BNS [140] is really quite straightforward, and relies on the “pattern
of zeros and ones” that arise in the vectors zi, 1 ≤ i ≤ n − r in the entries that correspond to
the free variables. Play along with Example LINSB [139] as you study the proof. Also, take a
look at Example VFSAD [93], Example VFSAI [100] and Example VFSAL [101], especially at the
conclusion of Step 2 (temporarily ignore the construction of the constant vector, c). This proof is
also a good first example of how to prove a conclusion that states a set is linearly independent.

Theorem BNS
Basis for Null Spaces
Suppose that A is an m×n matrix, and B is a row-equivalent matrix in reduced row-echelon form
with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r} be the sets of
column indices where B does and does not (respectively) have leading 1’s. Construct the n − r
vectors zj , 1 ≤ j ≤ n− r of size n as

[zj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

Define the set S = {z1, z2, z3, . . . , zn−r}. Then
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1. N (A) = 〈S〉.

2. S is a linearly independent set.

�

Proof Notice first that the vectors zj , 1 ≤ j ≤ n − r are exactly the same as the n − r vectors
defined in Theorem SSNS [118]. Also, the hypotheses of Theorem SSNS [118] are the same as the
hypotheses of the theorem we are currently proving. So it is then simply the conclusion of Theorem
SSNS [118] that tells us that N (A) = 〈S〉. That was the easy half, but the second part is not much
harder. What is new here is the claim that S is a linearly independent set.

To prove the linear independence of a set, we need to start with a relation of linear dependence
and somehow conclude that the scalars involved must all be zero, i.e. that the relation of linear
dependence only happens in the trivial fashion. So to establish the linear independence of S, we
start with

α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r = 0.

For each j, 1 ≤ j ≤ n − r, consider the equality of the individual entries of the vectors on both
sides of this equality in position fj ,

0 = [0]fj
= [α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r]fj Definition CVE [82]

= [α1z1]fj + [α2z2]fj + [α3z3]fj + · · ·+ [αn−rzn−r]fj Definition CVA [82]

= α1 [z1]fj + α2 [z2]fj + α3 [z3]fj + · · ·+

αj−1 [zj−1]fj + αj [zj ]fj + αj+1 [zj+1]fj + · · ·+

αn−r [zn−r]fj Definition CVSM [83]

= α1(0) + α2(0) + α3(0) + · · ·+
αj−1(0) + αj(1) + αj+1(0) + · · ·+ αn−r(0) Definition of zj

= αj

So for all j, 1 ≤ j ≤ n − r, we have αj = 0, which is the conclusion that tells us that the only
relation of linear dependence on S = {z1, z2, z3, . . . , zn−r} is the trivial one. Hence, by Definition
LICV [133] the set is linearly independent, as desired. �

Example NSLIL
Null space spanned by linearly independent set, Archetype L
In Example VFSAL [101] we previewed Theorem SSNS [118] by finding a set of two vectors such
that their span was the null space for the matrix in Archetype L [731]. Writing the matrix as L,
we have

N (L) =

〈


−1
2
−2
1
0

 ,


2
−2
1
0
1



〉
.

Solving the homogeneous system LS(L, 0) resulted in recognizing x4 and x5 as the free variables.
So look in entries 4 and 5 of the two vectors above and notice the pattern of zeros and ones that
provides the linear independence of the set. �
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Subsection READ
Reading Questions

1. Let S be the set of three vectors below.

S =


 1

2
−1

 ,
 3
−4
2

 ,
 4
−2
1


Is S linearly independent or linearly dependent? Explain why.

2. Let S be the set of three vectors below.

S =


 1
−1
0

 ,
3

2
2

 ,
 4

3
−4


Is S linearly independent or linearly dependent? Explain why.

3. Based on your answer to the previous question, is the matrix below singular or nonsingular?
Explain.  1 3 4

−1 2 3
0 2 −4


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Subsection EXC
Exercises

Determine if the sets of vectors in Exercises C20–C25 are linearly independent or linearly dependent.

C20


 1
−2
1

 ,
 2
−1
3

 ,
1

5
0


Contributed by Robert Beezer Solution [146]

C21



−1
2
4
2

 ,


3
3
−1
3

 ,


7
3
−6
4




Contributed by Robert Beezer Solution [146]

C22


1

5
1

 ,
 6
−1
2

 ,
 9
−3
8

 ,
 2

8
−1

 ,
 3
−2
0


Contributed by Robert Beezer Solution [146]

C23




1
−2
2
5
3

 ,


3
3
1
2
−4

 ,


2
1
2
−1
1

 ,


1
0
1
2
2




Contributed by Robert Beezer Solution [146]

C24




1
2
−1
0
1

 ,


3
2
−1
2
2

 ,


4
4
−2
2
3

 ,

−1
2
−1
−2
0




Contributed by Robert Beezer Solution [146]

C25




2
1
3
−1
2

 ,


4
−2
1
3
2

 ,


10
−7
0
10
4




Contributed by Robert Beezer Solution [147]

C30 For the matrix B below, find a set S that is linearly independent and spans the null space
of B, that is, N (B) = 〈S〉.

B =

−3 1 −2 7
−1 2 1 4
1 1 2 −1


Contributed by Robert Beezer Solution [147]

C31 For the matrix A below, find a linearly independent set S so that the null space of A is
spanned by S, that is, N (A) = 〈S〉.

A =


−1 −2 2 1 5
1 2 1 1 5
3 6 1 2 7
2 4 0 1 2


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Contributed by Robert Beezer Solution [147]

C50 Consider each archetype that is a system of equations and consider the solutions listed for
the homogeneous version of the archetype. (If only the trivial solution is listed, then assume this is
the only solution to the system.) From the solution set, determine if the columns of the coefficient
matrix form a linearly independent or linearly dependent set. In the case of a linearly dependent
set, use one of the sample solutions to provide a nontrivial relation of linear dependence on the set
of columns of the coefficient matrix (Definition RLD [303]). Indicate when Theorem MVSLD [138]
applies and connect this with the number of variables and equations in the system of equations.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer

C51 For each archetype that is a system of equations consider the homogeneous version. Write
elements of the solution set in vector form (Theorem VFSLS [98]) and from this extract the vectors
zj described in Theorem BNS [140]. These vectors are used in a span construction to describe the
null space of the coefficient matrix for each archetype. What does it mean when we write a null
space as 〈{ }〉?
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer

C52 For each archetype that is a system of equations consider the homogeneous version. Sample
solutions are given and a linearly independent spanning set is given for the null space of the
coefficient matrix. Write each of the sample solutions individually as a linear combination of the
vectors in the spanning set for the null space of the coefficient matrix.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer

C60 For the matrix A below, find a set of vectors S so that (1) S is linearly independent, and
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(2) the span of S equals the null space of A, 〈S〉 = N (A). (See Exercise SS.C60 [125].)

A =

 1 1 6 −8
1 −2 0 1
−2 1 −6 7


Contributed by Robert Beezer Solution [148]

M50 Consider the set of vectors from C3, W , given below. Find a set T that contains three
vectors from W and such that W = 〈T 〉.

W = 〈{v1, v2, v3, v4, v5}〉 =

〈
2

1
1

 ,
−1
−1
1

 ,
1

2
3

 ,
3

1
3

 ,
 0

1
−3


〉

Contributed by Robert Beezer Solution [148]

T10 Prove that if a set of vectors contains the zero vector, then the set is linearly dependent.
(Ed. “The zero vector is death to linearly independent sets.”)
Contributed by Martin Jackson

T12 Suppose that S is a linearly independent set of vectors, and T is a subset of S, T ⊆ S
(Definition SSET [665]). Prove that T is linearly independent.
Contributed by Robert Beezer

T13 Suppose that T is a linearly dependent set of vectors, and T is a subset of S, T ⊆ S
(Definition SSET [665]). Prove that S is linearly dependent.
Contributed by Robert Beezer

T15 Suppose that {v1, v2, v3, . . . , vn} is a set of vectors. Prove that

{v1 − v2, v2 − v3, v3 − v4, . . . , vn − v1}

is a linearly dependent set.

Contributed by Robert Beezer Solution [149]

T20 Suppose that {v1, v2, v3, v4} is a linearly independent set in C35. Prove that

{v1, v1 + v2, v1 + v2 + v3, v1 + v2 + v3 + v4}

is a linearly independent set.
Contributed by Robert Beezer Solution [149]

T50 Suppose that A is matrix with linearly independent columns and the linear system LS(A, b)
is consistent. Show that this system has a unique solution. (Notice that we are not requiring A to
be square.)
Contributed by Robert Beezer Solution [150]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [143]
With three vectors from C3, we can form a square matrix by making these three vectors the columns
of a matrix. We do so, and row-reduce to obtain, 1 0 0

0 1 0
0 0 1


the 3 × 3 identity matrix. So by Theorem NME2 [139] the original matrix is nonsingular and its
columns are therefore a linearly independent set.

C21 Contributed by Robert Beezer Statement [143]
Theorem LIVRN [137] says we can answer this question by putting theses vectors into a matrix as
columns and row-reducing. Doing this we obtain,

1 0 0
0 1 0
0 0 1
0 0 0


With n = 3 (3 vectors, 3 columns) and r = 3 (3 leading 1’s) we have n = r and the theorem says
the vectors are linearly independent.

C22 Contributed by Robert Beezer Statement [143]
Five vectors from C3. Theorem MVSLD [138] says the set is linearly dependent. Boom.

C23 Contributed by Robert Beezer Statement [143]
Theorem LIVRN [137] suggests we analyze a matrix whose columns are the vectors of S,

A =


1 3 2 1
−2 3 1 0
2 1 2 1
5 2 −1 2
3 −4 1 2


Row-reducing the matrix A yields, 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


We see that r = 4 = n, where r is the number of nonzero rows and n is the number of columns.
By Theorem LIVRN [137], the set S is linearly independent.

C24 Contributed by Robert Beezer Statement [143]
Theorem LIVRN [137] suggests we analyze a matrix whose columns are the vectors from the set,

A =


1 3 4 −1
2 2 4 2
−1 −1 −2 −1
0 2 2 −2
1 2 3 0


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Row-reducing the matrix A yields, 
1 0 1 2
0 1 1 −1
0 0 0 0
0 0 0 0
0 0 0 0


We see that r = 2 6= 4 = n, where r is the number of nonzero rows and n is the number of columns.
By Theorem LIVRN [137], the set S is linearly dependent.

C25 Contributed by Robert Beezer Statement [143]
Theorem LIVRN [137] suggests we analyze a matrix whose columns are the vectors from the set,

A =


2 4 10
1 −2 −7
3 1 0
−1 3 10
2 2 4


Row-reducing the matrix A yields, 

1 0 −1
0 1 3
0 0 0
0 0 0
0 0 0


We see that r = 2 6= 3 = n, where r is the number of nonzero rows and n is the number of columns.
By Theorem LIVRN [137], the set S is linearly dependent.

C30 Contributed by Robert Beezer Statement [143]
The requested set is described by Theorem BNS [140]. It is easiest to find by using the procedure
of Example VFSAL [101]. Begin by row-reducing the matrix, viewing it as the coefficient matrix
of a homogeneous system of equations. We obtain, 1 0 1 −2

0 1 1 1
0 0 0 0


Now build the vector form of the solutions to this homogeneous system (Theorem VFSLS [98]).
The free variables are x3 and x4, corresponding to the columns without leading 1’s,

x1

x2

x3

x4

 = x3


−1
−1
1
0

+ x4


2
−1
0
1


The desired set S is simply the constant vectors in this expression, and these are the vectors z1

and z2 described by Theorem BNS [140].

S =



−1
−1
1
0

 ,


2
−1
0
1




C31 Contributed by Robert Beezer Statement [143]
Theorem BNS [140] provides formulas for n − r vectors that will meet the requirements of this
question. These vectors are the same ones listed in Theorem VFSLS [98] when we solve the
homogeneous system LS(A, 0), whose solution set is the null space (Definition NSM [59]).
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To apply Theorem BNS [140] or Theorem VFSLS [98] we first row-reduce the matrix, resulting
in

B =


1 2 0 0 3
0 0 1 0 6
0 0 0 1 −4
0 0 0 0 0


So we see that n− r = 5− 3 = 2 and F = {2, 5}, so the vector form of a generic solution vector is

x1

x2

x3

x4

x5

 = x2


−2
1
0
0
0

+ x5


−3
0
−6
4
1


So we have

N (A) =

〈


−2
1
0
0
0

 ,

−3
0
−6
4
1



〉

C60 Contributed by Robert Beezer Statement [144]
Theorem BNS [140] says that if we find the vector form of the solutions to the homogeneous system
LS(A, 0), then the fixed vectors (one per free variable) will have the desired properties. Row-reduce
A, viewing it as the augmented matrix of a homogeneous system with an invisible columns of zeros
as the last column,  1 0 4 −5

0 1 2 −3
0 0 0 0


Moving to the vector form of the solutions (Theorem VFSLS [98]), with free variables x3 and x4,
solutions to the consistent system (it is homogeneous, Theorem HSC [57]) can be expressed as

x1

x2

x3

x4

 = x3


−4
−2
1
0

+ x4


5
3
0
1


Then with S given by

S =



−4
−2
1
0

 ,


5
3
0
1




Theorem BNS [140] guarantees the set has the desired properties.

M50 Contributed by Robert Beezer Statement [145]
We want to first find some relations of linear dependence on {v1, v2, v3, v4, v5} that will allow
us to “kick out” some vectors, in the spirit of Example SCAD [121]. To find relations of linear
dependence, we formulate a matrix A whose columns are v1, v2, v3, v4, v5. Then we consider the
homogeneous sytem of equations LS(A, 0) by row-reducing its coefficient matrix (remember that
if we formulated the augmented matrix we would just add a column of zeros). After row-reducing,
we obtain  1 0 0 2 −1

0 1 0 1 −2
0 0 1 0 0


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From this we that solutions can be obtained employing the free variables x4 and x5. With appro-
priate choices we will be able to conclude that vectors v4 and v5 are unnecessary for creating W
via a span. By Theorem SLSLC [92] the choice of free variables below lead to solutions and linear
combinations, which are then rearranged.

x4 = 1, x5 = 0 ⇒ (−2)v1 + (−1)v2 + (0)v3 + (1)v4 + (0)v5 = 0 ⇒ v4 = 2v1 + v2

x4 = 0, x5 = 1 ⇒ (1)v1 + (2)v2 + (0)v3 + (0)v4 + (1)v5 = 0 ⇒ v5 = −v1 − 2v2

Since v4 and v5 can be expressed as linear combinations of v1 and v2 we can say that v4 and v5 are
not needed for the linear combinations used to build W (a claim that we could establish carefully
with a pair of set equality arguments). Thus

W = 〈{v1, v2, v3}〉 =

〈
2

1
1

 ,
−1
−1
1

 ,
1

2
3


〉

That the {v1, v2, v3} is linearly independent set can be established quickly with Theorem LIVRN
[137].

There are other answers to this question, but notice that any nontrivial linear combination of
v1, v2, v3, v4, v5 will have a zero coefficient on v3, so this vector can never be eliminated from the
set used to build the span.

T15 Contributed by Robert Beezer Statement [145]
Consider the following linear combination

1 (v1 − v2) +1 (v2 − v3) + 1 (v3 − v4) + · · ·+ 1 (vn − v1)
= v1 − v2 + v2 − v3 + v3 − v4 + · · ·+ vn − v1

= v1 + 0 + 0 + · · ·+ 0− v1

= 0

This is a nontrivial relation of linear dependence (Definition RLDCV [133]), so by Definition LICV
[133] the set is linearly dependent.

T20 Contributed by Robert Beezer Statement [145]
Our hypothesis and our conclusion use the term linear independence, so it will get a workout. To
establish linear independence, we begin with the definition (Definition LICV [133]) and write a
relation of linear dependence (Definition RLDCV [133]),

α1 (v1) + α2 (v1 + v2) + α3 (v1 + v2 + v3) + α4 (v1 + v2 + v3 + v4) = 0

Using the distributive and commutative properties of vector addition and scalar multiplication
(Theorem VSPCV [84]) this equation can be rearranged as

(α1 + α2 + α3 + α4) v1 + (α2 + α3 + α4) v2 + (α3 + α4) v3 + (α4) v4 = 0

However, this is a relation of linear dependence (Definition RLDCV [133]) on a linearly independent
set, {v1, v2, v3, v4} (this was our lone hypothesis). By the definition of linear independence
(Definition LICV [133]) the scalars must all be zero. This is the homogeneous system of equations,

α1 + α2 + α3 + α4 = 0
α2 + α3 + α4 = 0

α3 + α4 = 0
α4 = 0

Row-reducing the coefficient matrix of this system (or backsolving) gives the conclusion

α1 = 0 α2 = 0 α3 = 0 α4 = 0
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This means, by Definition LICV [133], that the original set

{v1, v1 + v2, v1 + v2 + v3, v1 + v2 + v3 + v4}

is linearly independent.

T50 Contributed by Robert Beezer Statement [145]
Let A = [A1|A2|A3| . . . |An]. LS(A, b) is consistent, so we know the system has at least one
solution (Definition CS [45]). We would like to show that there are no more than one solution
to the system. Employing Technique U [674], suppose that x and y are two solution vectors for
LS(A, b). By Theorem SLSLC [92] we know we can write,

b = [x]1A1 + [x]2A2 + [x]3A3 + · · ·+ [x]nAn
b = [y]1A1 + [y]2A2 + [y]3A3 + · · ·+ [y]nAn

Then

0 = b− b

= ([x]1A1 + [x]2A2 + [x]3A3 + · · ·+ [x]nAn)−
([y]1A1 + [y]2A2 + [y]3A3 + · · ·+ [y]nAn)
= ([x]1 − [y]1)A1 + ([x]2 − [y]2)A2 + · · ·+ ([x]n − [y]n)An

This is a relation of linear dependence (Definition RLDCV [133]) on a linearly independent set (the
columns of A). So the scalars must all be zero,

[x]1 − [y]1 = 0 [x]2 − [y]2 = 0 . . . [x]n − [y]n = 0

Rearranging these equations yields the statement that [x]i = [y]i, for 1 ≤ i ≤ n. However, this is
exactly how we define vector equality (Definition CVE [82]), so x = y.
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Section LDS
Linear Dependence and Spans

In any linearly dependent set there is always one vector that can be written as a linear combination
of the others. This is the substance of the upcoming Theorem DLDS [151]. Perhaps this will explain
the use of the word “dependent.” In a linearly dependent set, at least one vector “depends” on the
others (via a linear combination).

Indeed, because Theorem DLDS [151] is an equivalence (Technique E [672]) some authors use
this condition as a definition (Technique D [669]) of linear dependence. Then linear independence
is defined as the logical opposite of linear dependence. Of course, we have chosen to take Definition
LICV [133] as our definition, and then follow with Theorem DLDS [151] as a theorem.

Subsection LDSS
Linearly Dependent Sets and Spans

If we use a linearly dependent set to construct a span, then we can always create the same infinite
set with a starting set that is one vector smaller in size. We will illustrate this behavior in Example
RSC5 [152]. However, this will not be possible if we build a span from a linearly independent set.
So in a certain sense, using a linearly independent set to formulate a span is the best possible way
— there aren’t any extra vectors being used to build up all the necessary linear combinations. OK,
here’s the theorem, and then the example.

Theorem DLDS
Dependency in Linearly Dependent Sets
Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors. Then S is a linearly dependent set
if and only if there is an index t, 1 ≤ t ≤ n such that ut is a linear combination of the vectors
u1, u2, u3, . . . , ut−1, ut+1, . . . , un. �

Proof (⇒) Suppose that S is linearly dependent, so there exists a nontrivial relation of linear
dependence by Definition LICV [133]. That is, there are scalars, αi, 1 ≤ i ≤ n, which are not all
zero, such that

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0.

Since the αi cannot all be zero, choose one, say αt, that is nonzero. Then,

ut =
−1
αt

(−αtut) Property MICN [663]

=
−1
αt

(α1u1 + · · ·+ αt−1ut−1 + αt+1ut+1 + · · ·+ αnun) Theorem VSPCV [84]

=
−α1

αt
u1 + · · ·+ −αt−1

αt
ut−1 +

−αt+1

αt
ut+1 + · · ·+ −αn

αt
un Theorem VSPCV [84]

Since the values of αi
αt

are again scalars, we have expressed ut as a linear combination of the other
elements of S.

(⇐) Assume that the vector ut is a linear combination of the other vectors in S. Write this
linear combination, denoting the relevant scalars as β1, β2, . . . , βt−1, βt+1, . . .βn, as

ut = β1u1 + β2u2 + · · ·+ βt−1ut−1 + βt+1ut+1 + · · ·+ βnun

Then we have

β1u1 + · · ·+ βt−1ut−1 + (−1)ut + βt+1ut+1 + · · ·+ βnun
= ut + (−1)ut Theorem VSPCV [84]
= (1 + (−1)) ut Property DSAC [84]
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= 0ut Property AICN [663]
= 0 Definition CVSM [83]

So the scalars β1, β2, β3, . . . , βt−1, βt = −1, βt+1, . . . , βn provide a nontrivial linear combination
of the vectors in S, thus establishing that S is a linearly dependent set (Definition LICV [133]). �

This theorem can be used, sometimes repeatedly, to whittle down the size of a set of vectors
used in a span construction. We have seen some of this already in Example SCAD [121], but in
the next example we will detail some of the subtleties.

Example RSC5
Reducing a span in C5

Consider the set of n = 4 vectors from C5,

R = {v1, v2, v3, v4} =




1
2
−1
3
2

 ,


2
1
3
1
2

 ,


0
−7
6
−11
−2

 ,


4
1
2
1
6




and define V = 〈R〉.
To employ Theorem LIVHS [135], we form a 5× 4 coefficient matrix, D,

D =


1 2 0 4
2 1 −7 1
−1 3 6 2
3 1 −11 1
2 2 −2 6


and row-reduce to understand solutions to the homogeneous system LS(D, 0),

1 0 0 4
0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

 .

We can find infinitely many solutions to this system, most of them nontrivial, and we choose any
one we like to build a relation of linear dependence on R. Let’s begin with x4 = 1, to find the
solution 

−4
0
−1
1

 .
So we can write the relation of linear dependence,

(−4)v1 + 0v2 + (−1)v3 + 1v4 = 0.

Theorem DLDS [151] guarantees that we can solve this relation of linear dependence for some
vector in R, but the choice of which one is up to us. Notice however that v2 has a zero coefficient.
In this case, we cannot choose to solve for v2. Maybe some other relation of linear dependence
would produce a nonzero coefficient for v2 if we just had to solve for this vector. Unfortunately,
this example has been engineered to always produce a zero coefficient here, as you can see from
solving the homogeneous system. Every solution has x2 = 0!

OK, if we are convinced that we cannot solve for v2, let’s instead solve for v3,

v3 = (−4)v1 + 0v2 + 1v4 = (−4)v1 + 1v4.
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We now claim that this particular equation will allow us to write

V = 〈R〉 = 〈{v1, v2, v3, v4}〉 = 〈{v1, v2, v4}〉

in essence declaring v3 as surplus for the task of building V as a span. This claim is an equality
of two sets, so we will use Definition SE [666] to establish it carefully. Let R′ = {v1, v2, v4} and
V ′ = 〈R′〉. We want to show that V = V ′.

First show that V ′ ⊆ V . Since every vector of R′ is in R, any vector we can construct in V ′ as
a linear combination of vectors from R′ can also be constructed as a vector in V by the same linear
combination of the same vectors in R. That was easy, now turn it around.

Next show that V ⊆ V ′. Choose any v from V . Then there are scalars α1, α2, α3, α4 so that

v = α1v1 + α2v2 + α3v3 + α4v4

= α1v1 + α2v2 + α3 ((−4)v1 + 1v4) + α4v4

= α1v1 + α2v2 + ((−4α3)v1 + α3v4) + α4v4

= (α1 − 4α3) v1 + α2v2 + (α3 + α4) v4.

This equation says that v can then be written as a linear combination of the vectors in R′ and
hence qualifies for membership in V ′. So V ⊆ V ′ and we have established that V = V ′.

If R′ was also linearly dependent (its not), we could reduce the set even further. Notice that we
could have chosen to eliminate any one of v1, v3 or v4, but somehow v2 is essential to the creation
of V since it cannot be replaced by any linear combination of v1, v3 or v4. �

Subsection COV
Casting Out Vectors

In Example RSC5 [152] we used four vectors to create a span. With a relation of linear dependence
in hand, we were able to “toss-out” one of these four vectors and create the same span from a
subset of just three vectors from the original set of four. We did have to take some care as to just
which vector we tossed-out. In the next example, we will be more methodical about just how we
choose to eliminate vectors from a linearly dependent set while preserving a span.

Example COV
Casting out vectors
We begin with a set S containing seven vectors from C4,

S =




1
2
0
−1

 ,


4
8
0
−4

 ,


0
−1
2
2

 ,

−1
3
−3
4

 ,


0
9
−4
8

 ,


7
−13
12
−31

 ,

−9
7
−8
37




and define W = 〈S〉. The set S is obviously linearly dependent by Theorem MVSLD [138], since
we have n = 7 vectors from C4. So we can slim down S some, and still create W as the span of a
smaller set of vectors. As a device for identifying relations of linear dependence among the vectors
of S, we place the seven column vectors of S into a matrix as columns,

A = [A1|A2|A3| . . . |A7] =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37


By Theorem SLSLC [92] a nontrivial solution to LS(A, 0) will give us a nontrivial relation of linear
dependence (Definition RLDCV [133]) on the columns of A (which are the elements of the set S).
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The row-reduced form for A is the matrix

B =


1 4 0 0 2 1 −3
0 0 1 0 1 −3 5
0 0 0 1 2 −6 6
0 0 0 0 0 0 0


so we can easily create solutions to the homogeneous system LS(A, 0) using the free variables
x2, x5, x6, x7. Any such solution will correspond to a relation of linear dependence on the columns
of B. These solutions will allow us to solve for one column vector as a linear combination of some
others, in the spirit of Theorem DLDS [151], and remove that vector from the set. We’ll set about
forming these linear combinations methodically. Set the free variable x2 to one, and set the other
free variables to zero. Then a solution to LS(A, 0) is

x =



−4
1
0
0
0
0
0


which can be used to create the linear combination

(−4)A1 + 1A2 + 0A3 + 0A4 + 0A5 + 0A6 + 0A7 = 0

This can then be arranged and solved for A2, resulting in A2 expressed as a linear combination of
{A1, A3, A4},

A2 = 4A1 + 0A3 + 0A4

This means that A2 is surplus, and we can create W just as well with a smaller set with this vector
removed,

W = 〈{A1, A3, A4, A5, A6, A7}〉

Technically, this set equality for W requires a proof, in the spirit of Example RSC5 [152], but we
will bypass this requirement here, and in the next few paragraphs.

Now, set the free variable x5 to one, and set the other free variables to zero. Then a solution
to LS(B, 0) is

x =



−2
0
−1
−2
1
0
0


which can be used to create the linear combination

(−2)A1 + 0A2 + (−1)A3 + (−2)A4 + 1A5 + 0A6 + 0A7 = 0

This can then be arranged and solved for A5, resulting in A5 expressed as a linear combination of
{A1, A3, A4},

A5 = 2A1 + 1A3 + 2A4

This means that A5 is surplus, and we can create W just as well with a smaller set with this vector
removed,

W = 〈{A1, A3, A4, A6, A7}〉
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Do it again, set the free variable x6 to one, and set the other free variables to zero. Then a
solution to LS(B, 0) is

x =



−1
0
3
6
0
1
0


which can be used to create the linear combination

(−1)A1 + 0A2 + 3A3 + 6A4 + 0A5 + 1A6 + 0A7 = 0

This can then be arranged and solved for A6, resulting in A6 expressed as a linear combination of
{A1, A3, A4},

A6 = 1A1 + (−3)A3 + (−6)A4

This means that A6 is surplus, and we can create W just as well with a smaller set with this vector
removed,

W = 〈{A1, A3, A4, A7}〉

Set the free variable x7 to one, and set the other free variables to zero. Then a solution to
LS(B, 0) is

x =



3
0
−5
−6
0
0
1


which can be used to create the linear combination

3A1 + 0A2 + (−5)A3 + (−6)A4 + 0A5 + 0A6 + 1A7 = 0

This can then be arranged and solved for A7, resulting in A7 expressed as a linear combination of
{A1, A3, A4},

A7 = (−3)A1 + 5A3 + 6A4

This means that A7 is surplus, and we can create W just as well with a smaller set with this vector
removed,

W = 〈{A1, A3, A4}〉

You might think we could keep this up, but we have run out of free variables. And not coin-
cidentally, the set {A1, A3, A4} is linearly independent (check this!). It should be clear how each
free variable was used to eliminate the corresponding column from the set used to span the column
space, as this will be the essence of the proof of the next theorem. The column vectors in S were
not chosen entirely at random, they are the columns of Archetype I [718]. See if you can mimic
this example using the columns of Archetype J [722]. Go ahead, we’ll go grab a cup of coffee and
be back before you finish up.

For extra credit, notice that the vector

b =


3
9
1
4


is the vector of constants in the definition of Archetype I [718]. Since the system LS(A, b) is
consistent, we know by Theorem SLSLC [92] that b is a linear combination of the columns of A, or
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stated equivalently, b ∈W . This means that b must also be a linear combination of just the three
columns A1, A3, A4. Can you find such a linear combination? Did you notice that there is just a
single (unique) answer? Hmmmm. �

Example COV [153] deserves your careful attention, since this important example motivates
the following very fundamental theorem.

Theorem BS
Basis of a Span
Suppose that S = {v1, v2, v3, . . . , vn} is a set of column vectors. Define W = 〈S〉 and let A be
the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A,
with D = {d1, d2, d3, . . . , dr} the set of column indices corresponding to the pivot columns of B.
Then

1. T = {vd1 , vd2 , vd3 , . . . vdr} is a linearly independent set.

2. W = 〈T 〉.

�

Proof To prove that T is linearly independent, begin with a relation of linear dependence on T ,

0 = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr

and we will try to conclude that the only possibility for the scalars αi is that they are all zero.
Denote the non-pivot columns of B by F = {f1, f2, f3, . . . , fn−r}. Then we can preserve the
equality by adding a big fat zero to the linear combination,

0 = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr + 0vf1 + 0vf2 + 0vf3 + . . .+ 0vfn−r

By Theorem SLSLC [92], the scalars in this linear combination (suitably reordered) are a solution
to the homogeneous system LS(A, 0). But notice that this is the solution obtained by setting each
free variable to zero. If we consider the description of a solution vector in the conclusion of Theorem
VFSLS [98], in the case of a homogeneous system, then we see that if all the free variables are set
to zero the resulting solution vector is trivial (all zeros). So it must be that αi = 0, 1 ≤ i ≤ r. This
implies by Definition LICV [133] that T is a linearly independent set.

The second conclusion of this theorem is an equality of sets (Definition SE [666]). Since T
is a subset of S, any linear combination of elements of the set T can also be viewed as a linear
combination of elements of the set S. So 〈T 〉 ⊆ 〈S〉 = W . It remains to prove that W = 〈S〉 ⊆ 〈T 〉.

For each k, 1 ≤ k ≤ n−r, form a solution x to LS(A, 0) by setting the free variables as follows:

xf1 = 0 xf2 = 0 xf3 = 0 . . . xfk = 1 . . . xfn−r = 0

By Theorem VFSLS [98], the remainder of this solution vector is given by,

xd1 = − [B]1,fk xd2 = − [B]2,fk xd3 = − [B]3,fk . . . xdr = − [B]r,fk

From this solution, we obtain a relation of linear dependence on the columns of A,

− [B]1,fk vd1 − [B]2,fk vd2 − [B]3,fk vd3 − . . .− [B]r,fk vdr + 1vfk = 0

which can be arranged as the equality

vfk = [B]1,fk vd1 + [B]2,fk vd2 + [B]3,fk vd3 + . . .+ [B]r,fk vdr

Now, suppose we take an arbitrary element, w, of W = 〈S〉 and write it as a linear combination
of the elements of S, but with the terms organized according to the indices in D and F ,

w = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr + β1vf1 + β2vf2 + β3vf3 + . . .+ βn−rvfn−r
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From the above, we can replace each vfj by a linear combination of the vdi ,

w = α1vd1 + α2vd2 + α3vd3 + . . .+ αrvdr+

β1

(
[B]1,f1 vd1 + [B]2,f1 vd2 + [B]3,f1 vd3 + . . .+ [B]r,f1 vdr

)
+

β2

(
[B]1,f2 vd1 + [B]2,f2 vd2 + [B]3,f2 vd3 + . . .+ [B]r,f2 vdr

)
+

β3

(
[B]1,f3 vd1 + [B]2,f3 vd2 + [B]3,f3 vd3 + . . .+ [B]r,f3 vdr

)
+

...

βn−r

(
[B]1,fn−r vd1 + [B]2,fn−r vd2 + [B]3,fn−r vd3 + . . .+ [B]r,fn−r vdr

)
With repeated applications of several of the properties of Theorem VSPCV [84] we can rearrange
this expression as,

=
(
α1 + β1 [B]1,f1 + β2 [B]1,f2 + β3 [B]1,f3 + . . .+ βn−r [B]1,fn−r

)
vd1+(

α2 + β1 [B]2,f1 + β2 [B]2,f2 + β3 [B]2,f3 + . . .+ βn−r [B]2,fn−r
)

vd2+(
α3 + β1 [B]3,f1 + β2 [B]3,f2 + β3 [B]3,f3 + . . .+ βn−r [B]3,fn−r

)
vd3+

...(
αr + β1 [B]r,f1 + β2 [B]r,f2 + β3 [B]r,f3 + . . .+ βn−r [B]r,fn−r

)
vdr

This mess expresses the vector w as a linear combination of the vectors in

T = {vd1 , vd2 , vd3 , . . . vdr}

thus saying that w ∈ 〈T 〉. Therefore, W = 〈S〉 ⊆ 〈T 〉. �

In Example COV [153], we tossed-out vectors one at a time. But in each instance, we rewrote the
offending vector as a linear combination of those vectors that corresponded to the pivot columns
of the reduced row-echelon form of the matrix of columns. In the proof of Theorem BS [156],
we accomplish this reduction in one big step. In Example COV [153] we arrived at a linearly
independent set at exactly the same moment that we ran out of free variables to exploit. This was
not a coincidence, it is the substance of our conclusion of linear independence in Theorem BS [156].

Here’s a straightfoward application of Theorem BS [156].

Example RSSC4
Reducing a span in C4

Begin with a set of five vectors from C4,

S =




1
1
2
1

 ,


2
2
4
2

 ,


2
0
−1
1

 ,


7
1
−1
4

 ,


0
2
5
1




and let W = 〈S〉. To arrive at a (smaller) linearly independent set, follow the procedure described
in Theorem BS [156]. Place the vectors from S into a matrix as columns, and row-reduce,

1 2 2 7 0
1 2 0 1 2
2 4 −1 −1 5
1 2 1 4 1

 RREF−−−−→


1 2 0 1 2
0 0 1 3 −1
0 0 0 0 0
0 0 0 0 0


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158 Section LDS Linear Dependence and Spans

Columns 1 and 3 are the pivot columns (D = {1, 3}) so the set

T =




1
1
2
1

 ,


2
0
−1
1




is linearly independent and 〈T 〉 = 〈S〉 = W . Boom!
Since the reduced row-echelon form of a matrix is unique (Theorem RREFU [106]), the proce-

dure of Theorem BS [156] leads us to a unique set T . However, there is a wide variety of possibilites
for sets T that are linearly independent and which can be employed in a span to create W . Without
proof, we list two other possibilities:

T ′ =




2
2
4
2

 ,


2
0
−1
1




T ∗ =




3
1
1
2

 ,

−1
1
3
0




Can you prove that T ′ and T ∗ are linearly independent sets and W = 〈S〉 = 〈T ′〉 = 〈T ∗〉? �

Example RES
Reworking elements of a span
Begin with a set of five vectors from C4,

R =




2
1
3
2

 ,

−1
1
0
1

 ,

−8
−1
−9
−4

 ,


3
1
−1
−2

 ,

−10
−1
−1
4




It is easy to create elements of X = 〈R〉 — we will create one at random,

y = 6


2
1
3
2

+ (−7)


−1
1
0
1

+ 1


−8
−1
−9
−4

+ 6


3
1
−1
−2

+ 2


−10
−1
−1
4

 =


9
2
1
−3


We know we can replace R by a smaller set (since it is obviously linearly dependent by Theorem
MVSLD [138]) that will create the same span. Here goes,

2 −1 −8 3 −10
1 1 −1 1 −1
3 0 −9 −1 −1
2 1 −4 −2 4

 RREF−−−−→


1 0 −3 0 −1
0 1 2 0 2
0 0 0 1 −2
0 0 0 0 0


So, if we collect the first, second and fourth vectors from R,

P =




2
1
3
2

 ,

−1
1
0
1

 ,


3
1
−1
−2




then P is linearly independent and 〈P 〉 = 〈R〉 = X by Theorem BS [156]. Since we built y as an
element of 〈R〉 it must also be an element of 〈P 〉. Can we write y as a linear combination of just the
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three vectors in P? The answer is, of course, yes. But let’s compute an explicit linear combination
just for fun. By Theorem SLSLC [92] we can get such a linear combination by solving a system of
equations with the column vectors of R as the columns of a coefficient matrix, and y as the vector
of constants. Employing an augmented matrix to solve this system,

2 −1 3 9
1 1 1 2
3 0 −1 1
2 1 −2 −3

 RREF−−−−→


1 0 0 1
0 1 0 −1
0 0 1 2
0 0 0 0


So we see, as expected, that

1


2
1
3
2

+ (−1)


−1
1
0
1

+ 2


3
1
−1
−2

 =


9
2
1
−3

 = y

A key feature of this example is that the linear combination that expresses y as a linear combination
of the vectors in P is unique. This is a consequence of the linear independence of P . The linearly
independent set P is smaller than R, but still just (barely) big enough to create elements of the set
X = 〈R〉. There are many, many ways to write y as a linear combination of the five vectors in R
(the appropriate system of equations to verify this claim has two free variables in the description
of the solution set), yet there is precisely one way to write y as a linear combination of the three
vectors in P . �

Subsection READ
Reading Questions

1. Let S be the linearly dependent set of three vectors below.

S =




1
10
100
1000

 ,


1
1
1
1

 ,


5
23
203
2003




Write one vector from S as a linear combination of the other two (you should be able to do
this on sight, rather than doing some computations). Convert this expression into a relation
of linear dependence on S.

2. Explain why the word “dependent” is used in the definition of linear dependence.

3. Suppose that Y = 〈P 〉 = 〈Q〉, where P is a linearly dependent set and Q is linearly indepen-
dent. Would you rather use P or Q to describe Y ? Why?
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Subsection EXC
Exercises

C20 Let T be the set of columns of the matrix B below. Define W = 〈T 〉. Find a set R so that
(1) R has 3 vectors, (2) R is a subset of T , and (3) W = 〈R〉.

B =

−3 1 −2 7
−1 2 1 4
1 1 2 −1


Contributed by Robert Beezer Solution [161]

C40 Verify that the set R′ = {v1, v2, v4} at the end of Example RSC5 [152] is linearly indepen-
dent.
Contributed by Robert Beezer

C50 Consider the set of vectors from C3, W , given below. Find a linearly independent set T that
contains three vectors from W and such that 〈W 〉 = 〈T 〉.

W = {v1, v2, v3, v4, v5} =


2

1
1

 ,
−1
−1
1

 ,
1

2
3

 ,
3

1
3

 ,
 0

1
−3


Contributed by Robert Beezer Solution [161]

C51 Given the set S below, find a linearly independent set T so that 〈T 〉 = 〈S〉.

S =


 2
−1
2

 ,
3

0
1

 ,
 1

1
−1

 ,
 5
−1
3


Contributed by Robert Beezer Solution [162]

C55 Let T be the set of vectors T =


 1
−1
2

 ,
3

0
1

 ,
4

2
3

 ,
3

0
6

. Find two different subsets

of T , named R and S, so that R and S each contain three vectors, and so that 〈R〉 = 〈T 〉 and
〈S〉 = 〈T 〉. Prove that both R and S are linearly independent.
Contributed by Robert Beezer Solution [161]

C70 Reprise Example RES [158] by creating a new version of the vector y. In other words, form
a new, different linear combination of the vectors in R to create a new vector y (but do not simplify
the problem too much by choosing any of the five new scalars to be zero). Then express this new
y as a combination of the vectors in P .
Contributed by Robert Beezer

M10 At the conclusion of Example RSSC4 [157] two alternative solutions, sets T ′ and T ∗, are
proposed. Verify these claims by proving that 〈T 〉 = 〈T ′〉 and 〈T 〉 = 〈T ∗〉.
Contributed by Robert Beezer

T40 Suppose that v1 and v2 are any two vectors from Cm. Prove the following set equality.

〈{v1, v2}〉 = 〈{v1 + v2, v1 − v2}〉

Contributed by Robert Beezer Solution [162]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [160]

Let T = {w1, w2, w3, w4}. The vector


2
−1
0
1

 is a solution to the homogeneous system with the

matrix B as the coefficient matrix (check this!). By Theorem SLSLC [92] it provides the scalars for
a linear combination of the columns of B (the vectors in T ) that equals the zero vector, a relation
of linear dependence on T ,

2w1 + (−1)w2 + (1)w4 = 0

We can rearrange this equation by solving for w4,

w4 = (−2)w1 + w2

This equation tells us that the vector w4 is superfluous in the span construction that creates W .
So W = 〈{w1, w2, w3}〉. The requested set is R = {w1, w2, w3}.

C50 Contributed by Robert Beezer Statement [160]
To apply Theorem BS [156], we formulate a matrix A whose columns are v1, v2, v3, v4, v5. Then
we row-reduce A. After row-reducing, we obtain 1 0 0 2 −1

0 1 0 1 −2
0 0 1 0 0


From this we that the pivot columns are D = {1, 2, 3}. Thus

T = {v1, v2, v3} =


2

1
1

 ,
−1
−1
1

 ,
1

2
3


is a linearly independent set and 〈T 〉 = W . Compare this problem with Exercise LI.M50 [145].

C55 Contributed by Robert Beezer Statement [160]
Let A be the matrix whose columns are the vectors in T . Then row-reduce A,

A
RREF−−−−→ B =

 1 0 0 2
0 1 0 −1
0 0 1 1


From Theorem BS [156] we can form R by choosing the columns of A that correspond to the pivot
columns of B. Theorem BS [156] also guarantees that R will be linearly independent.

R =


 1
−1
2

 ,
3

0
1

 ,
4

2
3


That was easy. To find S will require a bit more work. From B we can obtain a solution to
LS(A, 0), which by Theorem SLSLC [92] will provide a nontrivial relation of linear dependence on
the columns of A, which are the vectors in T . To wit, choose the free variable x4 to be 1, then
x1 = −2, x2 = 1, x3 = −1, and so

(−2)

 1
−1
2

+ (1)

3
0
1

+ (−1)

4
2
3

+ (1)

3
0
6

 =

0
0
0


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this equation can be rewritten with the second vector staying put, and the other three moving to
the other side of the equality,3

0
1

 = (2)

 1
−1
2

+ (1)

4
2
3

+ (−1)

3
0
6


We could have chosen other vectors to stay put, but may have then needed to divide by a nonzero
scalar. This equation is enough to conclude that the second vector in T is “surplus” and can be
replaced (see the careful argument in Example RSC5 [152]). So set

S =


 1
−1
2

 ,
4

2
3

 ,
3

0
6


and then 〈S〉 = 〈T 〉. T is also a linearly independent set, which we can show directly. Make a
matrix C whose columns are the vectors in S. Row-reduce B and you will obtain the identity
matrix I3. By Theorem LIVRN [137], the set S is linearly independent.

C51 Contributed by Robert Beezer Statement [160]
Theorem BS [156] says we can make a matrix with these four vectors as columns, row-reduce, and
just keep the columns with indices in the set D. Here we go, forming the relevant matrix and
row-reducing,  2 3 1 5

−1 0 1 −1
2 1 −1 3

 RREF−−−−→

 1 0 −1 1
0 1 1 1
0 0 0 0


Analyzing the row-reduced version of this matrix, we see that the firast two columns are pivot
columns, so D = {1, 2}. Theorem BS [156] says we need only “keep” the first two columns to
create a set with the requisite properties,

T =


 2
−1
2

 ,
3

0
1


T40 Contributed by Robert Beezer Statement [160]
This is an equality of sets, so Definition SE [666] applies.

The “easy” half first. Show that X = 〈{v1 + v2, v1 − v2}〉 ⊆ 〈{v1, v2}〉 = Y .
Choose x ∈ X. Then x = a1(v1 + v2) + a2(v1 − v2) for some scalars a1 and a2. Then,

x = a1(v1 + v2) + a2(v1 − v2)
= a1v1 + a1v2 + a2v1 + (−a2)v2

= (a1 + a2)v1 + (a1 − a2)v2

which qualifies x for membership in Y , as it is a linear combination of v1, v2.
Now show the opposite inclusion, Y = 〈{v1, v2}〉 ⊆ 〈{v1 + v2, v1 − v2}〉 = X.

Choose y ∈ Y . Then there are scalars b1, b2 such that y = b1v1 + b2v2. Rearranging, we obtain,

y = b1v1 + b2v2

=
b1
2

[(v1 + v2) + (v1 − v2)] +
b2
2

[(v1 + v2)− (v1 − v2)]

=
b1 + b2

2
(v1 + v2) +

b1 − b2
2

(v1 − v2)

This is an expression for y as a linear combination of v1 + v2 and v1 − v2, earning y membership
in X. Since X is a subset of Y , and vice versa, we see that X = Y , as desired.
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Section O
Orthogonality

In this section we define a couple more operations with vectors, and prove a few theorems. At first
blush these definitions and results will not appear central to what follows, but we will make use
of them at key points in the remainder of the course (such as Section MINM [221], Section OD
[585]). Because we have chosen to use C as our set of scalars, this subsection is a bit more, uh, . . .
complex than it would be for the real numbers. We’ll explain as we go along how things get easier
for the real numbers R. If you haven’t already, now would be a good time to review some of the
basic properties of arithmetic with complex numbers described in Section CNO [661]. With that
done, we can extend the basics of complex number arithmetic to our study of vectors in Cm.

Subsection CAV
Complex Arithmetic and Vectors

We know how the addition and multiplication of complex numbers is employed in defining the
operations for vectors in Cm (Definition CVA [82] and Definition CVSM [83]). We can also extend
the idea of the conjugate to vectors.

Definition CCCV
Complex Conjugate of a Column Vector
Suppose that u is a vector from Cm. Then the conjugate of the vector, u, is defined by

[u]i = [u]i 1 ≤ i ≤ m

(This definition contains Notation CCCV.) 4

With this definition we can show that the conjugate of a column vector behaves as we would
expect with regard to vector addition and scalar multiplication.

Theorem CRVA
Conjugation Respects Vector Addition
Suppose x and y are two vectors from Cm. Then

x + y = x + y

�

Proof For each 1 ≤ i ≤ m,

[x + y]i = [x + y]i Definition CCCV [163]

= [x]i + [y]i Definition CVA [82]

= [x]i + [y]i Theorem CCRA [663]
= [x]i + [y]i Definition CCCV [163]
= [x + y]i Definition CVA [82]

Then by Definition CVE [82] we have x + y = x + y. �

Theorem CRSM
Conjugation Respects Vector Scalar Multiplication
Suppose x is a vector from Cm, and α ∈ C is a scalar. Then

αx = αx
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�

Proof For 1 ≤ i ≤ m,

[αx]i = [αx]i Definition CCCV [163]

= α [x]i Definition CVSM [83]

= α [x]i Theorem CCRM [663]
= α [x]i Definition CCCV [163]
= [αx]i Definition CVSM [83]

Then by Definition CVE [82] we have αx = αx. �

These two theorems together tell us how we can “push” complex conjugation through linear
combinations.

Subsection IP
Inner products

Definition IP
Inner Product
Given the vectors u, v ∈ Cm the inner product of u and v is the scalar quantity in C,

〈u, v〉 = [u]1 [v]1 + [u]2 [v]2 + [u]3 [v]3 + · · ·+ [u]m [v]m =
m∑
i=1

[u]i [v]i

(This definition contains Notation IP.) 4

This operation is a bit different in that we begin with two vectors but produce a scalar. Com-
puting one is straightforward.

Example CSIP
Computing some inner products
The scalar product of

u =

2 + 3i
5 + 2i
−3 + i

 and v =

 1 + 2i
−4 + 5i
0 + 5i


is

〈u, v〉 = (2 + 3i)(1 + 2i) + (5 + 2i)(−4 + 5i) + (3 + i)(0 + 5i)
= (2 + 3i)(1− 2i) + (5 + 2i)(−4− 5i) + (3 + i)(0− 5i)
= (8− i) + (−10− 33i) + (5 + 15i)
= 3− 19i

The scalar product of

w =


2
4
−3
2
8

 and x =


3
1
0
−1
−2


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is

〈w, x〉 = 2(3) + 4(1) + (−3)(0) + 2(−1) + 8(−2) = 2(3) + 4(1) + (−3)0 + 2(−1) + 8(−2) = −8.

�

In the case where the entries of our vectors are all real numbers (as in the second part of
Example CSIP [164]), the computation of the inner product may look familiar and be known to
you as a dot product or scalar product. So you can view the inner product as a generalization
of the scalar product to vectors from Cm (rather than Rm).

Also, note that we have chosen to conjugate the entries of the second vector listed in the inner
product, while many authors choose to conjugate entries from the first component. It really makes
no difference which choice is made, it just requires that subsequent definitions and theorems are
consistent with the choice. You can study the conclusion of Theorem IPAC [166] as an explanation
of the magnitude of the difference that results from this choice. But be careful as you read other
treatments of the inner product or its use in applications, and be sure you know ahead of time
which choice has been made.

There are several quick theorems we can now prove, and they will each be useful later.

Theorem IPVA
Inner Product and Vector Addition
Suppose u, v, w ∈ Cm. Then

1. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
2. 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉

�

Proof The proofs of the two parts are very similar, with the second one requiring just a bit more
effort due to the conjugation that occurs. We will prove part 2 and you can prove part 1 (Exercise
O.T10 [175]).

〈u, v + w〉 =
m∑
i=1

[u]i [v + w]i Definition IP [164]

=
m∑
i=1

[u]i ([v]i + [w]i) Definition CVA [82]

=
m∑
i=1

[u]i ([v]i + [w]i) Theorem CCRA [663]

=
m∑
i=1

[u]i [v]i + [u]i [w]i Property DCN [662]

=
m∑
i=1

[u]i [v]i +
m∑
i=1

[u]i [w]i Property CACN [662]

= 〈u, v〉+ 〈u, w〉 Definition IP [164]

�

Theorem IPSM
Inner Product and Scalar Multiplication
Suppose u, v ∈ Cm and α ∈ C. Then

1. 〈αu, v〉 = α 〈u, v〉
2. 〈u, αv〉 = α 〈u, v〉
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�

Proof The proofs of the two parts are very similar, with the second one requiring just a bit more
effort due to the conjugation that occurs. We will prove part 2 and you can prove part 1 (Exercise
O.T11 [175]).

〈u, αv〉 =
m∑
i=1

[u]i [αv]i Definition IP [164]

=
m∑
i=1

[u]i α [v]i Definition CVSM [83]

=
m∑
i=1

[u]i α [v]i Theorem CCRM [663]

=
m∑
i=1

α [u]i [v]i Property CMCN [662]

= α

m∑
i=1

[u]i [v]i Property DCN [662]

= α 〈u, v〉 Definition IP [164]

�

Theorem IPAC
Inner Product is Anti-Commutative
Suppose that u and v are vectors in Cm. Then 〈u, v〉 = 〈v, u〉. �

Proof

〈u, v〉 =
m∑
i=1

[u]i [v]i Definition IP [164]

=
m∑
i=1

[u]i [v]i Theorem CCT [664]

=
m∑
i=1

[u]i [v]i Theorem CCRM [663]

=

(
m∑
i=1

[u]i [v]i

)
Theorem CCRA [663]

=

(
m∑
i=1

[v]i [u]i

)
Property CMCN [662]

= 〈v, u〉 Definition IP [164]

�

Subsection N
Norm

If treating linear algebra in a more geometric fashion, the length of a vector occurs naturally, and
is what you would expect from its name. With complex numbers, we will define a similar function.
Recall that if c is a complex number, then |c| denotes its modulus (Definition MCN [664]).
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Definition NV
Norm of a Vector
The norm of the vector u is the scalar quantity in C

‖u‖ =
√
|[u]1|

2 + |[u]2|
2 + |[u]3|

2 + · · ·+ |[u]m|
2 =

√√√√ m∑
i=1

|[u]i|
2

(This definition contains Notation NV.) 4

Computing a norm is also easy to do.

Example CNSV
Computing the norm of some vectors
The norm of

u =


3 + 2i
1− 6i
2 + 4i
2 + i


is

‖u‖ =
√
|3 + 2i|2 + |1− 6i|2 + |2 + 4i|2 + |2 + i|2 =

√
13 + 37 + 20 + 5 =

√
75 = 5

√
3.

The norm of

v =


3
−1
2
4
−3


is

‖v‖ =
√
|3|2 + |−1|2 + |2|2 + |4|2 + |−3|2 =

√
32 + 12 + 22 + 42 + 32 =

√
39.

�

Notice how the norm of a vector with real number entries is just the length of the vector. Inner
products and norms are related by the following theorem.

Theorem IPN
Inner Products and Norms
Suppose that u is a vector in Cm. Then ‖u‖2 = 〈u, u〉. �

Proof

‖u‖2 =

√√√√ m∑
i=1

|[u]i|
2

2

Definition NV [167]

=
m∑
i=1

|[u]i|
2

=
m∑
i=1

[u]i [u]i Definition MCN [664]

= 〈u, u〉 Definition IP [164]

�

When our vectors have entries only from the real numbers Theorem IPN [167] says that the dot
product of a vector with itself is equal to the length of the vector squared.
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Theorem PIP
Positive Inner Products
Suppose that u is a vector in Cm. Then 〈u, u〉 ≥ 0 with equality if and only if u = 0. �

Proof From the proof of Theorem IPN [167] we see that

〈u, u〉 = |[u]1|
2 + |[u]2|

2 + |[u]3|
2 + · · ·+ |[u]m|

2

Since each modulus is squared, every term is positive, and the sum must also be positive. (Notice
that in general the inner product is a complex number and cannot be compared with zero, but in
the special case of 〈u, u〉 the result is a real number.) The phrase, “with equality if and only if”
means that we want to show that the statement 〈u, u〉 = 0 (i.e. with equality) is equivalent (“if
and only if”) to the statement u = 0.

If u = 0, then it is a straightforward computation to see that 〈u, u〉 = 0. In the other direction,
assume that 〈u, u〉 = 0. As before, 〈u, u〉 is a sum of moduli. So we have

0 = 〈u, u〉 = |[u]1|
2 + |[u]2|

2 + |[u]3|
2 + · · ·+ |[u]m|

2

Now we have a sum of squares equaling zero, so each term must be zero. Then by similar logic,
|[u]i| = 0 will imply that [u]i = 0, since 0 + 0i is the only complex number with zero modulus.
Thus every entry of u is zero and so u = 0, as desired. �

Notice that Theorem PIP [168] contains three implications:

u ∈ Cm ⇒ 〈u, u〉 ≥ 0
u = 0⇒ 〈u, u〉 = 0

〈u, u〉 = 0⇒ u = 0

The results contained in Theorem PIP [168] are summarized by saying “the inner product is pos-
itive definite.”

Subsection OV
Orthogonal Vectors

“Orthogonal” is a generalization of “perpendicular.” You may have used mutually perpendicular
vectors in a physics class, or you may recall from a calculus class that perpendicular vectors have a
zero dot product. We will now extend these ideas into the realm of higher dimensions and complex
scalars.

Definition OV
Orthogonal Vectors
A pair of vectors, u and v, from Cm are orthogonal if their inner product is zero, that is, 〈u, v〉 = 0.

4

Example TOV
Two orthogonal vectors
The vectors

u =


2 + 3i
4− 2i
1 + i
1 + i

 v =


1− i
2 + 3i
4− 6i

1


are orthogonal since

〈u, v〉 = (2 + 3i)(1 + i) + (4− 2i)(2− 3i) + (1 + i)(4 + 6i) + (1 + i)(1)
= (−1 + 5i) + (2− 16i) + (−2 + 10i) + (1 + i)
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= 0 + 0i.

�

We extend this definition to whole sets by requiring vectors to be pairwise orthogonal. Despite
using the same word, careful thought about what objects you are using will eliminate any source
of confusion.

Definition OSV
Orthogonal Set of Vectors
Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors from Cm. Then S is an orthogonal set
if every pair of different vectors from S is orthogonal, that is 〈ui, uj〉 = 0 whenever i 6= j. 4

We now define the prototypical orthogonal set, which we will reference repeatedly.

Definition SUV
Standard Unit Vectors
Let ej ∈ Cm, 1 ≤ j ≤ m denote the column vectors defined by

[ej ]i =

{
0 if i 6= j

1 if i = j

Then the set

{e1, e2, e3, . . . , em} = {ej | 1 ≤ j ≤ m}

is the set of standard unit vectors in Cm.
(This definition contains Notation SUV.) 4

Notice that ej is identical to column j of the m ×m identity matrix Im (Definition IM [68]).
This observation will often be useful. It is not hard to see that the set of standard unit vectors is
an orthogonal set. We will reserve the notation ei for these vectors.

Example SUVOS
Standard Unit Vectors are an Orthogonal Set
Compute the inner product of two distinct vectors from the set of standard unit vectors (Definition
SUV [169]), say ei, ej , where i 6= j,

〈ei, ej〉 = 00 + 00 + · · ·+ 10 + · · ·+ 00 + · · ·+ 01 + · · ·+ 00 + 00
= 0(0) + 0(0) + · · ·+ 1(0) + · · ·+ 0(1) + · · ·+ 0(0) + 0(0)
= 0

So the set {e1, e2, e3, . . . , em} is an orthogonal set. �

Example AOS
An orthogonal set
The set

{x1, x2, x3, x4} =




1 + i
1

1− i
i

 ,


1 + 5i
6 + 5i
−7− i
1− 6i

 ,

−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 ,

−2− 4i

6 + i
4 + 3i
6− i




is an orthogonal set. Since the inner product is anti-commutative (Theorem IPAC [166]) we can
test pairs of different vectors in any order. If the result is zero, then it will also be zero if the inner
product is computed in the opposite order. This means there are six pairs of different vectors to
use in an inner product computation. We’ll do two and you can practice your inner products on
the other four.

〈x1, x3〉 = (1 + i)(−7− 34i) + (1)(−8 + 23i) + (1− i)(−10− 22i) + (i)(30− 13i)
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= (27− 41i) + (−8 + 23i) + (−32− 12i) + (13 + 30i)
= 0 + 0i

and

〈x2, x4〉 = (1 + 5i)(−2 + 4i) + (6 + 5i)(6− i) + (−7− i)(4− 3i) + (1− 6i)(6 + i)
= (−22− 6i) + (41 + 24i) + (−31 + 17i) + (12− 35i)
= 0 + 0i

�

So far, this section has seen lots of definitions, and lots of theorems establishing un-surprising
consequences of those definitions. But here is our first theorem that suggests that inner products
and orthogonal vectors have some utility. It is also one of our first illustrations of how to arrive at
linear independence as the conclusion of a theorem.

Theorem OSLI
Orthogonal Sets are Linearly Independent
Suppose that S is an orthogonal set of nonzero vectors. Then S is linearly independent. �

Proof Let S = {u1, u2, u3, . . . , un} be an orthogonal set of nonzero vectors. To prove the
linear independence of S, we can appeal to the definition (Definition LICV [133]) and begin with
an arbitrary relation of linear dependence (Definition RLDCV [133]),

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0.

Then, for every 1 ≤ i ≤ n, we have

αi =
1

〈ui, ui〉
(αi 〈ui, ui〉) Theorem PIP [168]

=
1

〈ui, ui〉
(α1(0) + α2(0) + · · ·+ αi 〈ui, ui〉+ · · ·+ αn(0)) Property ZCN [662]

=
1

〈ui, ui〉
(α1 〈u1, ui〉+ · · ·+ αi 〈ui, ui〉+ · · ·+ αn 〈un, ui〉) Definition OSV [169]

=
1

〈ui, ui〉
(〈α1u1, ui〉+ 〈α2u2, ui〉+ · · ·+ 〈αnun, ui〉) Theorem IPSM [165]

=
1

〈ui, ui〉
〈α1u1 + α2u2 + α3u3 + · · ·+ αnun, ui〉 Theorem IPVA [165]

=
1

〈ui, ui〉
〈0, ui〉 Definition RLDCV [133]

=
1

〈ui, ui〉
0 Definition IP [164]

= 0 Property ZCN [662]

So we conclude that αi = 0 for all 1 ≤ i ≤ n in any relation of linear dependence on S. But this
says that S is a linearly independent set since the only way to form a relation of linear dependence
is the trivial way (Definition LICV [133]). Boom! �

Subsection GSP
Gram-Schmidt Procedure

The Gram-Schmidt Procedure is really a theorem. It says that if we begin with a linearly indepen-
dent set of p vectors, S, then we can do a number of calculations with these vectors and produce
an orthogonal set of p vectors, T , so that 〈S〉 = 〈T 〉. Given the large number of computations
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involved, it is indeed a procedure to do all the necessary computations, and it is best employed
on a computer. However, it also has value in proofs where we may on occasion wish to replace a
linearly independent set by an orthogonal set.

This is our first occasion to use the technique of “mathematical induction” for a proof, a
technique we will see again several times, especially in Chapter D [363]. So study the simple
example described in Technique I [676] first.

Theorem GSP
Gram-Schmidt Procedure
Suppose that S = {v1, v2, v3, . . . , vp} is a linearly independent set of vectors in Cm. Define the
vectors ui, 1 ≤ i ≤ p by

ui = vi −
〈vi, u1〉
〈u1, u1〉

u1 −
〈vi, u2〉
〈u2, u2〉

u2 −
〈vi, u3〉
〈u3, u3〉

u3 − · · · −
〈vi, ui−1〉
〈ui−1, ui−1〉

ui−1

Then if T = {u1, u2, u3, . . . , up}, then T is an orthogonal set of non-zero vectors, and 〈T 〉 = 〈S〉.
�

Proof We will prove the result by using induction on p (Technique I [676]). To begin, we prove
that T has the desired properties when p = 1. In this case u1 = v1 and T = {u1} = {v1} = S.
Because S and T are equal, 〈S〉 = 〈T 〉. Equally trivial, T is an orthogonal set. If u1 = 0, then S
would be a linearly dependent set, a contradiction.

Now suppose that the theorem is true for any set of p−1 linearly independent vectors. Let S =
{v1, v2, v3, . . . , vp} be a linearly independent set of p vectors. Then S′ = {v1, v2, v3, . . . , vp−1}
is also linearly independent. So we can apply the theorem to S′ and construct the vectors T ′ =
{u1, u2, u3, . . . , up−1}. T ′ is therefore an orthogonal set of nonzero vectors and 〈S′〉 = 〈T ′〉. Define

up = vp −
〈vp, u1〉
〈u1, u1〉

u1 −
〈vp, u2〉
〈u2, u2〉

u2 −
〈vp, u3〉
〈u3, u3〉

u3 − · · · −
〈vp, up−1〉
〈up−1, up−1〉

up−1

and let T = T ′ ∪{up}. We need to now show that T has several properties by building on what we
know about T ′. But first notice that the above equation has no problems with the denominators
(〈ui, ui〉) being zero, since the ui are from T ′, which is composed of nonzero vectors.

We show that 〈T 〉 = 〈S〉, by first establishing that 〈T 〉 ⊆ 〈S〉. Suppose x ∈ 〈T 〉, so

x = a1u1 + a2u2 + a3u3 + · · ·+ apup

The term apup is a linear combination of vectors from T ′ and the vector vp, while the remaining
terms are a linear combination of vectors from T ′. Since 〈T ′〉 = 〈S′〉, any term that is a multiple of
a vector from T ′ can be rewritten as a linear combination of vectors from S′. The remaining term
apvp is a multiple of a vector in S. So we see that x can be rewritten as a linear combination of
vectors from S, i.e. x ∈ 〈S〉.

To show that 〈S〉 ⊆ 〈T 〉, begin with y ∈ 〈S〉, so

y = a1v1 + a2v2 + a3v3 + · · ·+ apvp

Rearrange our defining equation for up by solving for vp. Then the term apvp is a multiple
of a linear combination of elements of T . The remaining terms are a linear combination of
v1, v2, v3, . . . , vp−1, hence an element of 〈S′〉 = 〈T ′〉. Thus these remaining terms can be written
as a linear combination of the vectors in T ′. So y is a linear combination of vectors from T , i.e.
y ∈ 〈T 〉.

The elements of T ′ are nonzero, but what about up? Suppose to the contrary that up = 0,

0 = up = vp −
〈vp, u1〉
〈u1, u1〉

u1 −
〈vp, u2〉
〈u2, u2〉

u2 −
〈vp, u3〉
〈u3, u3〉

u3 − · · · −
〈vp, up−1〉
〈up−1, up−1〉

up−1

vp =
〈vp, u1〉
〈u1, u1〉

u1 +
〈vp, u2〉
〈u2, u2〉

u2 +
〈vp, u3〉
〈u3, u3〉

u3 + · · ·+ 〈vp, up−1〉
〈up−1, up−1〉

up−1
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Since 〈S′〉 = 〈T ′〉 we can write the vectors u1, u2, u3, . . . , up−1 on the right side of this equation
in terms of the vectors v1, v2, v3, . . . , vp−1 and we then have the vector vp expressed as a linear
combination of the other p− 1 vectors in S, implying that S is a linearly dependent set (Theorem
DLDS [151]), contrary to our lone hypothesis about S.

Finally, it is a simple matter to establish that T is an orthogonal set, though it will not appear
so simple looking. Think about your objects as you work through the following — what is a vector
and what is a scalar. Since T ′ is an orthogonal set by induction, most pairs of elements in T are
already known to be orthogonal. We just need to test “new” inner products, between up and ui,
for 1 ≤ i ≤ p− 1. Here we go, using summation notation,

〈up, ui〉 =

〈
vp −

p−1∑
k=1

〈vp, uk〉
〈uk, uk〉

uk, ui

〉

= 〈vp, ui〉 −

〈
p−1∑
k=1

〈vp, uk〉
〈uk, uk〉

uk, ui

〉
Theorem IPVA [165]

= 〈vp, ui〉 −
p−1∑
k=1

〈
〈vp, uk〉
〈uk, uk〉

uk, ui

〉
Theorem IPVA [165]

= 〈vp, ui〉 −
p−1∑
k=1

〈vp, uk〉
〈uk, uk〉

〈uk, ui〉 Theorem IPSM [165]

= 〈vp, ui〉 −
〈vp, ui〉
〈ui, ui〉

〈ui, ui〉 −
∑
k 6=i

〈vp, uk〉
〈uk, uk〉

(0) Induction Hypothesis

= 〈vp, ui〉 − 〈vp, ui〉 −
∑
k 6=i

0

= 0

�

Example GSTV
Gram-Schmidt of three vectors
We will illustrate the Gram-Schmidt process with three vectors. Begin with the linearly independent
(check this!) set

S = {v1, v2, v3} =


 1

1 + i
1

 ,
 −i1

1 + i

 ,
0
i
i


Then

u1 = v1 =

 1
1 + i

1


u2 = v2 −

〈v2, u1〉
〈u1, u1〉

u1 =
1
4

−2− 3i
1− i
2 + 5i


u3 = v3 −

〈v3, u1〉
〈u1, u1〉

u1 −
〈v3, u2〉
〈u2, u2〉

u2 =
1
11

−3− i
1 + 3i
−1− i


and

T = {u1, u2, u3} =


 1

1 + i
1

 , 1
4

−2− 3i
1− i
2 + 5i

 , 1
11

−3− i
1 + 3i
−1− i


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is an orthogonal set (which you can check) of nonzero vectors and 〈T 〉 = 〈S〉 (all by Theorem GSP
[171]). Of course, as a by-product of orthogonality, the set T is also linearly independent (Theorem
OSLI [170]). �

One final definition related to orthogonal vectors.

Definition ONS
OrthoNormal Set
Suppose S = {u1, u2, u3, . . . , un} is an orthogonal set of vectors such that ‖ui‖ = 1 for all
1 ≤ i ≤ n. Then S is an orthonormal set of vectors. 4

Once you have an orthogonal set, it is easy to convert it to an orthonormal set — multiply each
vector by the reciprocal of its norm, and the resulting vector will have norm 1. This scaling of each
vector will not affect the orthogonality properties (apply Theorem IPSM [165]).

Example ONTV
Orthonormal set, three vectors
The set

T = {u1, u2, u3} =


 1

1 + i
1

 , 1
4

−2− 3i
1− i
2 + 5i

 , 1
11

−3− i
1 + 3i
−1− i


from Example GSTV [172] is an orthogonal set. We compute the norm of each vector,

‖u1‖ = 2 ‖u2‖ =
1
2

√
11 ‖u3‖ =

√
2√
11

Converting each vector to a norm of 1, yields an orthonormal set,

w1 =
1
2

 1
1 + i

1


w2 =

1
1
2

√
11

1
4

−2− 3i
1− i
2 + 5i

 =
1

2
√

11

−2− 3i
1− i
2 + 5i


w3 =

1
√

2√
11

1
11

−3− i
1 + 3i
−1− i

 =
1√
22

−3− i
1 + 3i
−1− i


�

Example ONFV
Orthonormal set, four vectors
As an exercise convert the linearly independent set

S =




1 + i
1

1− i
i

 ,


i
1 + i
−1
−i

 ,


i
−i
−1 + i

1

 ,

−1− i
i
1
−1




to an orthogonal set via the Gram-Schmidt Process (Theorem GSP [171]) and then scale the vectors
to norm 1 to create an orthonormal set. You should get the same set you would if you scaled the
orthogonal set of Example AOS [169] to become an orthonormal set. �

It is crazy to do all but the simplest and smallest instances of the Gram-Schmidt procedure by
hand. Well, OK, maybe just once or twice to get a good understanding of Theorem GSP [171].
After that, let a machine do the work for you. That’s what they are for. See: Computation
GSP.MMA [656] .

We will see orthonormal sets again in Subsection MINM.UM [224]. They are intimately related
to unitary matrices (Definition UM [224]) through Theorem CUMOS [225]. Some of the utility of
orthonormal sets is captured by Theorem COB [325] in Subsection B.OBC [325]. Orthonormal sets
appear once again in Section OD [585] where they are key in orthonormal diagonalization.
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Subsection READ
Reading Questions

1. Is the set 
 1
−1
2

 ,
 5

3
−1

 ,
 8

4
−2


an orthogonal set? Why?

2. What is the distinction between an orthogonal set and an orthonormal set?

3. What is nice about the output of the Gram-Schmidt process?
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Subsection EXC
Exercises

C20 Complete Example AOS [169] by verifying that the four remaining inner products are zero.

Contributed by Robert Beezer

C21 Verify that the set T created in Example GSTV [172] by the Gram-Schmidt Procedure is an
orthogonal set.
Contributed by Robert Beezer

T10 Prove part 1 of the conclusion of Theorem IPVA [165].
Contributed by Robert Beezer

T11 Prove part 1 of the conclusion of Theorem IPSM [165].
Contributed by Robert Beezer
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Annotated Acronyms V
Vectors

Theorem VSPCV [84]

These are the fundamental rules for working with the addition, and scalar multiplication, of column
vectors. We will see something very similar in the next chapter (Theorem VSPM [180]) and then
this will be generalized into what is arguably our most important definition, Definition VS [273].

Theorem SLSLC [92]

Vector addition and scalar multiplication are the two fundamental operations on vectors, and
linear combinations roll them both into one. Theorem SLSLC [92] connects linear combinations
with systems of equations. This one we will see often enough that it is worth memorizing.

Theorem PSPHS [103]

This theorem is interesting in its own right, and sometimes the vaugeness surrounding the choice
of z can seem mysterious. But we list it here because we will see an important theorem in Section
ILT [465] which will generalize this result (Theorem KPI [470]).

Theorem LIVRN [137]

If you have a set of column vectors, this is the fastest computational approach to determine if the
set is linearly independent. Make the vectors the columns of a matrix, row-reduce, compare r and
n. That’s it — and you always get an answer. Put this one in your toolkit.

Theorem BNS [140]

We will have several theorems (all listed in these “Annotated Acronyms” sections) whose conclusions
will provide a linearly independent set of vectors whose span equals some set of interest (the null
space here). While the notation in this theorem might appear a gruesome, in practice it can become
very routine to apply. So practice this one — we’ll be using it all through the book.

Theorem BS [156]

As promised, another theorem that provides a linearly independent set of vectors whose span equals
some set of interest (a span now). You can use this one to clean up any span.
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Chapter M
Matrices

We have made frequent use of matrices for solving systems of equations, and we have begun to
investigate a few of their properties, such as the null space and nonsingularity. In this chapter, we
will take a more systematic approach to the study of matrices.

Section MO
Matrix Operations

In this section we will back up and start simple. First a definition of a totally general set of matrices.

Definition VSM
Vector Space of m× n Matrices
The vector space Mmn is the set of all m×n matrices with entries from the set of complex numbers.

(This definition contains Notation VSM.) 4

Subsection MEASM
Matrix Equality, Addition, Scalar Multiplication

Just as we made, and used, a careful definition of equality for column vectors, so too, we have
precise definitions for matrices.

Definition ME
Matrix Equality
The m × n matrices A and B are equal, written A = B provided [A]ij = [B]ij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.
(This definition contains Notation ME.) 4

So equality of matrices translates to the equality of complex numbers, on an entry-by-entry
basis. Notice that we now have yet another definition that uses the symbol “=” for shorthand.
Whenever a theorem has a conclusion saying two matrices are equal (think about your objects),
we will consider appealing to this definition as a way of formulating the top-level structure of the
proof. We will now define two operations on the set Mmn. Again, we will overload a symbol (‘+’)
and a convention (juxtaposition for scalar multiplication).

Definition MA
Matrix Addition
Given the m×n matrices A and B, define the sum of A and B as an m×n matrix, written A+B,
according to

[A+B]ij = [A]ij + [B]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n

179
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(This definition contains Notation MA.) 4
So matrix addition takes two matrices of the same size and combines them (in a natural way!)

to create a new matrix of the same size. Perhaps this is the “obvious” thing to do, but it doesn’t
relieve us from the obligation to state it carefully.

Example MA
Addition of two matrices in M23

If

A =
[
2 −3 4
1 0 −7

]
B =

[
6 2 −4
3 5 2

]
then

A+B =
[
2 −3 4
1 0 −7

]
+
[
6 2 −4
3 5 2

]
=
[
2 + 6 −3 + 2 4 + (−4)
1 + 3 0 + 5 −7 + 2

]
=
[
8 −1 0
4 5 −5

]
�

Our second operation takes two objects of different types, specifically a number and a matrix,
and combines them to create another matrix. As with vectors, in this context we call a number a
scalar in order to emphasize that it is not a matrix.

Definition MSM
Matrix Scalar Multiplication
Given the m × n matrix A and the scalar α ∈ C, the scalar multiple of A is an m × n matrix,
written αA and defined according to

[αA]ij = α [A]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n

(This definition contains Notation MSM.) 4
Notice again that we have yet another kind of multiplication, and it is again written putting

two symbols side-by-side. Computationally, scalar matrix multiplication is very easy.

Example MSM
Scalar multiplication in M32

If

A =

 2 8
−3 5
0 1


and α = 7, then

αA = 7

 2 8
−3 5
0 1

 =

 7(2) 7(8)
7(−3) 7(5)
7(0) 7(1)

 =

 14 56
−21 35

0 7


�

Subsection VSP
Vector Space Properties

With definitions of matrix addition and scalar multiplication we can now state, and prove, several
properties of each operation, and some properties that involve their interplay. We now collect ten
of them here for later reference.

Theorem VSPM
Vector Space Properties of Matrices
Suppose that Mmn is the set of all m×n matrices (Definition VSM [179]) with addition and scalar
multiplication as defined in Definition MA [179] and Definition MSM [180]. Then
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• ACM Additive Closure, Matrices
If A, B ∈Mmn, then A+B ∈Mmn.

• SCM Scalar Closure, Matrices
If α ∈ C and A ∈Mmn, then αA ∈Mmn.

• CM Commutativity, Matrices
If A, B ∈Mmn, then A+B = B +A.

• AAM Additive Associativity, Matrices
If A, B, C ∈Mmn, then A+ (B + C) = (A+B) + C.

• ZM Zero Vector, Matrices
There is a matrix, O, called the zero matrix, such that A+O = A for all A ∈Mmn.

• AIM Additive Inverses, Matrices
If A ∈Mmn, then there exists a matrix −A ∈Mmn so that A+ (−A) = O.

• SMAM Scalar Multiplication Associativity, Matrices
If α, β ∈ C and A ∈Mmn, then α(βA) = (αβ)A.

• DMAM Distributivity across Matrix Addition, Matrices
If α ∈ C and A, B ∈Mmn, then α(A+B) = αA+ αB.

• DSAM Distributivity across Scalar Addition, Matrices
If α, β ∈ C and A ∈Mmn, then (α+ β)A = αA+ βA.

• OM One, Matrices
If A ∈Mmn, then 1A = A.

�

Proof While some of these properties seem very obvious, they all require proof. However, the
proofs are not very interesting, and border on tedious. We’ll prove one version of distributivity
very carefully, and you can test your proof-building skills on some of the others. We’ll give our new
notation for matrix entries a workout here. Compare the style of the proofs here with those given
for vectors in Theorem VSPCV [84] — while the objects here are more complicated, our notation
makes the proofs cleaner.

To prove Property DSAM [181], (α+ β)A = αA+ βA, we need to establish the equality of two
matrices (see Technique GS [671]). Definition ME [179] says we need to establish the equality of
their entries, one-by-one. How do we do this, when we do not even know how many entries the two
matrices might have? This is where Notation ME [179] comes into play. Ready? Here we go.

For any i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[(α+ β)A]ij = (α+ β) [A]ij Definition MSM [180]

= α [A]ij + β [A]ij Distributivity in C
= [αA]ij + [βA]ij Definition MSM [180]

= [αA+ βA]ij Definition MA [179]

There are several things to notice here. (1) Each equals sign is an equality of numbers. (2) The two
ends of the equation, being true for any i and j, allow us to conclude the equality of the matrices
by Definition ME [179]. (3) There are several plus signs, and several instances of juxtaposition.
Identify each one, and state exactly what operation is being represented by each. �

For now, note the similarities between Theorem VSPM [180] about matrices and Theorem
VSPCV [84] about vectors.

The zero matrix described in this theorem, O, is what you would expect — a matrix full of
zeros.
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Definition ZM
Zero Matrix
The m × n zero matrix is written as O = Om×n and defined by [O]ij = 0, for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.
(This definition contains Notation ZM.) 4

Subsection TSM
Transposes and Symmetric Matrices

We describe one more common operation we can perform on matrices. Informally, to transpose a
matrix is to build a new matrix by swapping its rows and columns.

Definition TM
Transpose of a Matrix
Given an m× n matrix A, its transpose is the n×m matrix At given by[

At
]
ij

= [A]ji , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(This definition contains Notation TM.) 4

Example TM
Transpose of a 3× 4 matrix
Suppose

D =

 3 7 2 −3
−1 4 2 8
0 3 −2 5

 .
We could formulate the transpose, entry-by-entry, using the definition. But it is easier to just
systematically rewrite rows as columns (or vice-versa). The form of the definition given will be
more useful in proofs. So we have

Dt =


3 −1 0
7 4 3
2 2 −2
−3 8 5


�

It will sometimes happen that a matrix is equal to its transpose. In this case, we will call a
matrix symmetric. These matrices occur naturally in certain situations, and also have some nice
properties, so it is worth stating the definition carefully. Informally a matrix is symmetric if we
can “flip” it about the main diagonal (upper-left corner, running down to the lower-right corner)
and have it look unchanged.

Definition SYM
Symmetric Matrix
The matrix A is symmetric if A = At. 4

Example SYM
A symmetric 5× 5 matrix
The matrix

E =


2 3 −9 5 7
3 1 6 −2 −3
−9 6 0 −1 9
5 −2 −1 4 −8
7 −3 9 −8 −3


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is symmetric. �

You might have noticed that Definition SYM [182] did not specify the size of the matrix A,
as has been our custom. That’s because it wasn’t necessary. An alternative would have been to
state the definition just for square matrices, but this is the substance of the next proof. Before
reading the next proof, we want to offer you some advice about how to become more proficient
at constructing proofs. Perhaps you can apply this advice to the next theorem. Have a peek at
Technique P [677] now.

Theorem SMS
Symmetric Matrices are Square
Suppose that A is a symmetric matrix. Then A is square. �

Proof We start by specifying A’s size, without assuming it is square, since we are trying to prove
that, so we can’t also assume it. Suppose A is an m×n matrix. Because A is symmetric, we know
by Definition SM [367] that A = At. So, in particular, Definition ME [179] requires that A and At

must have the same size. The size of At is n ×m. Because A has m rows and At has n rows, we
conclude that m = n, and hence A must be square by Definition SQM [67]. �

We finish this section with three easy theorems, but they illustrate the interplay of our three
new operations, our new notation, and the techniques used to prove matrix equalities.

Theorem TMA
Transpose and Matrix Addition
Suppose that A and B are m× n matrices. Then (A+B)t = At +Bt. �

Proof The statement to be proved is an equality of matrices, so we work entry-by-entry and use
Definition ME [179]. Think carefully about the objects involved here, and the many uses of the
plus sign. [

(A+B)t
]
ij

= [A+B]ji Definition TM [182]

= [A]ji + [B]ji Definition MA [179]

=
[
At
]
ij

+
[
Bt
]
ij

Definition TM [182]

=
[
At +Bt

]
ij

Definition MA [179]

Since the matrices (A+B)t and At +Bt agree at each entry, Definition ME [179] tells us the two
matrices are equal. �

Theorem TMSM
Transpose and Matrix Scalar Multiplication
Suppose that α ∈ C and A is an m× n matrix. Then (αA)t = αAt. �

Proof The statement to be proved is an equality of matrices, so we work entry-by-entry and use
Definition ME [179]. Think carefully about the objects involved here, the many uses of juxtaposi-
tion. [

(αA)t
]
ij

= [αA]ji Definition TM [182]

= α [A]ji Definition MSM [180]

= α
[
At
]
ij

Definition TM [182]

=
[
αAt

]
ij

Definition MSM [180]

Since the matrices (αA)t and αAt agree at each entry, Definition ME [179] tells us the two matrices
are equal. �

Theorem TT
Transpose of a Transpose
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Suppose that A is an m× n matrix. Then
(
At
)t = A. �

Proof We again want to prove an equality of matrices, so we work entry-by-entry and use
Definition ME [179].[(

At
)t]

ij
=
[
At
]
ji

Definition TM [182]

= [A]ij Definition TM [182]

�

Its usually straightforward to coax the transpose of a matrix out of a computational device.
See: Computation TM.MMA [656] Computation TM.TI86 [658] .

Subsection MCC
Matrices and Complex Conjugation

As we did with vectors (Definition CCCV [163]), we can define what it means to take the conjugate
of a matrix.

Definition CCM
Complex Conjugate of a Matrix
Suppose A is an m×n matrix. Then the conjugate of A, written A is an m×n matrix defined by[

A
]
ij

= [A]ij

(This definition contains Notation CCM.) 4

Example CCM
Complex conjugate of a matrix
If

A =
[

2− i 3 5 + 4i
−3 + 6i 2− 3i 0

]
then

A =
[

2 + i 3 5− 4i
−3− 6i 2 + 3i 0

]
�

The interplay between the conjugate of a matrix and the two operations on matrices is what
you might expect.

Theorem CRMA
Conjugation Respects Matrix Addition
Suppose that A and B are m× n matrices. Then A+B = A+B. �

Proof [
A+B

]
ij

= [A+B]ij Definition CCM [184]

= [A]ij + [B]ij Definition MA [179]

= [A]ij + [B]ij Theorem CCRA [663]

=
[
A
]
ij

+
[
B
]
ij

Definition CCM [184]

=
[
A+B

]
ij

Definition MA [179]
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Since the matrices A+B and A+B are equal in each entry, Definition ME [179] says that A+B =
A+B. �

Theorem CRMSM
Conjugation Respects Matrix Scalar Multiplication
Suppose that α ∈ C and A is an m× n matrix. Then αA = αA. �

Proof [
αA
]
ij

= [αA]ij Definition CCM [184]

= α [A]ij Definition MSM [180]

= α[A]ij Theorem CCRM [663]

= α
[
A
]
ij

Definition CCM [184]

=
[
αA
]
ij

Definition MSM [180]

Since the matrices αA and αA are equal in each entry, Definition ME [179] says that αA = αA. �

Theorem CCM
Conjugate of the Conjugate of a Matrix
Suppose that A is an m× n matrix. Then

(
A
)

= A. �

Proof For 1 ≤ i ≤ m, 1 ≤ j ≤ n,[(
A
)]
ij

=
[
A
]
ij

Definition CCM [184]

= [A]ij Definition CCM [184]

= [A]ij Theorem CCT [664]

Since the matrices
(
A
)

and A are equal in each entry, Definition ME [179] says that
(
A
)

= A. �

Finally, we will need the following result about matrix conjugation and transposes later.

Theorem MCT
Matrix Conjugation and Transposes
Suppose that A is an m× n matrix. Then (At) =

(
A
)t. �

Proof [
(At)

]
ij

= [At]ij Definition CCM [184]

= [A]ji Definition TM [182]

=
[
A
]
ji

Definition CCM [184]

=
[(
A
)t]

ij
Definition TM [182]

Since the matrices (At) and
(
A
)t are equal in each entry, Definition ME [179] says that (At) =

(
A
)t.
�

Subsection AM
Adjoint of a Matrix

The combination of transposing and conjugating a matrix will be important in subsequent sections,
such as Subsection MINM.UM [224] and Section OD [585]. We make a key definition here and prove
some basic results in the same spirit as those above.
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Definition A
Adjoint
If A is a square matrix, then its adjoint is A∗ =

(
A
)t.

(This definition contains Notation A.) 4

You will see the adjoint written elsewhere variously as AH , A∗ or A†. Notice that Theorem
MCT [185] says it does not really matter if we conjugate and then transpose, or transpose and then
conjugate.

Theorem AMA
Adjoint and Matrix Addition
Suppose A and B are matrices of the same size. Then (A+B)∗ = A∗ +B∗. �

Proof

(A+B)∗ =
(
A+B

)t Definition A [186]

=
(
A+B

)t Theorem CRMA [184]

=
(
A
)t +

(
B
)t Theorem TMA [183]

= A∗ +B∗ Definition A [186]

�

Theorem AMSM
Adjoint and Matrix Scalar Multiplication
Suppose α ∈ C is a scalar and A is a matrix. Then (αA)∗ = αA∗. �

Proof

(αA)∗ =
(
αA
)t Definition A [186]

=
(
αA
)t Theorem CRMSM [185]

= α
(
A
)t Theorem TMSM [183]

= αA∗ Definition A [186]

�

Theorem AA
Adjoint of an Adjoint
Suppose that A is a matrix. Then (A∗)∗ = A �

Proof

(A∗)∗ =
(

(A∗)
)t

Definition A [186]

=
(
(A∗)t

)
Theorem MCT [185]

=
(((

A
)t)t) Definition A [186]

=
(
A
)

Theorem TT [183]
= A Theorem CCM [185]

�

Take note of how the theorems in this section, while simple, build on earlier theorems and
definitions and never descend to the level of entry-by-entry proofs based on Definition ME [179].
In other words, the equal signs that appear in the previous proofs are equalities of matrices, not
scalars (which is the opposite of a proof like that of Theorem TMA [183]).
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Subsection READ
Reading Questions

1. Perform the following matrix computation.

(6)

2 −2 8 1
4 5 −1 3
7 −3 0 2

+ (−2)

2 7 1 2
3 −1 0 5
1 7 3 3


2. Theorem VSPM [180] reminds you of what previous theorem? How strong is the similarity?

3. Compute the transpose of the matrix below. 6 8 4
−2 1 0
9 −5 6


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Subsection EXC
Exercises

In Chapter V [81] we defined the operations of vector addition and vector scalar multiplication in
Definition CVA [82] and Definition CVSM [83]. These two operations formed the underpinnings of
the remainder of the chapter. We have now defined similar operations for matrices in Definition MA
[179] and Definition MSM [180]. You will have noticed the resulting similarities between Theorem
VSPCV [84] and Theorem VSPM [180].

In Exercises M20–M25, you will be asked to extend these similarities to other fundamental
definitions and concepts we first saw in Chapter V [81]. This sequence of problems was suggested
by Martin Jackson.

M20 Suppose S = {B1, B2, B3, . . . , Bp} is a set of matrices from Mmn. Formulate appropriate
definitions for the following terms and give an example of the use of each.

1. A linear combination of elements of S.

2. A relation of linear dependence on S, both trivial and non-trivial.

3. S is a linearly independent set.

4. 〈S〉.

Contributed by Robert Beezer

M21 Show that the set S is linearly independent in M2,2.

S =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Contributed by Robert Beezer

M22 Determine if the set

S =
{[
−2 3 4
−1 3 −2

]
,

[
4 −2 2
0 −1 1

]
,

[
−1 −2 −2
2 2 2

]
,

[
−1 1 0
−1 0 −2

]
,

[
−1 2 −2
0 −1 −2

]}
is linearly independent in M2,3.

Contributed by Robert Beezer

M23 Determine if the matrix A is in the span of S. In other words, is A ∈ 〈S〉? If so write A as
a linear combination of the elements of S.

A =
[
−13 24 2
−8 −2 −20

]
S =

{[
−2 3 4
−1 3 −2

]
,

[
4 −2 2
0 −1 1

]
,

[
−1 −2 −2
2 2 2

]
,

[
−1 1 0
−1 0 −2

]
,

[
−1 2 −2
0 −1 −2

]}

Contributed by Robert Beezer

M24 Suppose Y is the set of all 3× 3 symmetric matrices (Definition SYM [182]). Find a set T
so that T is linearly independent and 〈T 〉 = Y .
Contributed by Robert Beezer

M25 Define a subset of M3,3 by

U33 =
{
A ∈M3,3 | [A]ij = 0 whenever i > j

}
Version 1.30



Subsection MO.EXC Exercises 189

Find a set R so that R is linearly independent and 〈R〉 = U33.
Contributed by Robert Beezer

T13 Prove Property CM [181] of Theorem VSPM [180]. Write your proof in the style of the proof
of Property DSAM [181] given in this section.
Contributed by Robert Beezer Solution [190]

T14 Prove Property AAM [181] of Theorem VSPM [180]. Write your proof in the style of the
proof of Property DSAM [181] given in this section.
Contributed by Robert Beezer

T17 Prove Property SMAM [181] of Theorem VSPM [180]. Write your proof in the style of the
proof of Property DSAM [181] given in this section.
Contributed by Robert Beezer

T18 Prove Property DMAM [181] of Theorem VSPM [180]. Write your proof in the style of the
proof of Property DSAM [181] given in this section.
Contributed by Robert Beezer
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Subsection SOL
Solutions

T13 Contributed by Robert Beezer Statement [189]
For all A, B ∈Mmn and for all 1 ≤ i ≤ m, 1 ≤ i ≤ n,

[A+B]ij = [A]ij + [B]ij Definition MA [179]

= [B]ij + [A]ij Commutativity in C
= [B +A]ij Definition MA [179]

With equality of each entry of the matrices A+B and B+A being equal Definition ME [179] tells
us the two matrices are equal.
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Section MM
Matrix Multiplication

We know how to add vectors and how to multiply them by scalars. Together, these operations give
us the possibility of making linear combinations. Similarly, we know how to add matrices and how
to multiply matrices by scalars. In this section we mix all these ideas together and produce an
operation known as “matrix multiplication.” This will lead to some results that are both surprising
and central. We begin with a definition of how to multiply a vector by a matrix.

Subsection MVP
Matrix-Vector Product

We have repeatedly seen the importance of forming linear combinations of the columns of a matrix.
As one example of this, the oft-used Theorem SLSLC [92], said that every solution to a system of
linear equations gives rise to a linear combination of the column vectors of the coefficient matrix that
equals the vector of constants. This theorem, and others, motivate the following central definition.

Definition MVP
Matrix-Vector Product
Suppose A is an m×n matrix with columns A1, A2, A3, . . . , An and u is a vector of size n. Then
the matrix-vector product of A with u is the linear combination

Au = [u]1 A1 + [u]2 A2 + [u]3 A3 + · · ·+ [u]n An

(This definition contains Notation MVP.) 4

So, the matrix-vector product is yet another version of “multiplication,” at least in the sense
that we have yet again overloaded juxtaposition of two symbols as our notation. Remember your
objects, an m×n matrix times a vector of size n will create a vector of size m. So if A is rectangular,
then the size of the vector changes. With all the linear combinations we have performed so far, this
computation should now seem second nature.

Example MTV
A matrix times a vector
Consider

A =

 1 4 2 3 4
−3 2 0 1 −2
1 6 −3 −1 5

 u =


2
1
−2
3
−1


Then

Au = 2

 1
−3
1

+ 1

4
2
6

+ (−2)

 2
0
−3

+ 3

 3
1
−1

+ (−1)

 4
−2
5

 =

7
1
6

 .
�

We can now represent systems of linear equations compactly with a matrix-vector product
(Definition MVP [191]) and column vector equality (Definition CVE [82]). This finally yields a
very popular alternative to our unconventional LS(A, b) notation.
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Theorem SLEMM
Systems of Linear Equations as Matrix Multiplication
The set of solutions to the linear system LS(A, b) equals the set of solutions for x in the vector
equation Ax = b. �

Proof This theorem says that two sets (of solutions) are equal. So we need to show that one set of
solutions is a subset of the other, and vice versa (Definition SE [666]). Let A1, A2, A3, . . . , An be
the columns of A. Both of these set inclusions then follow from the following chain of equivalences,

x is a solution to LS(A, b)
⇐⇒ [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An = b Theorem SLSLC [92]
⇐⇒ x is a solution to Ax = b Definition MVP [191]

�

Example MNSLE
Matrix notation for systems of linear equations
Consider the system of linear equations from Example NSLE [25].

2x1 + 4x2 − 3x3 + 5x4 + x5 = 9
3x1 + x2 + x4 − 3x5 = 0

−2x1 + 7x2 − 5x3 + 2x4 + 2x5 = −3

has coefficient matrix

A =

 2 4 −3 5 1
3 1 0 1 −3
−2 7 −5 2 2


and vector of constants

b =

 9
0
−3


and so will be described compactly by the vector equation Ax = b. �

The matrix-vector product is a very natural computation. We have motivated it by its connec-
tions with systems of equations, but here is a another example.

Example MBC
Money’s best cities
Every year Money magazine selects several cities in the United States as the “best” cities to live
in, based on a wide arrary of statistics about each city. This is an example of how the editors of
Money might arrive at a single number that consolidates the statistics about a city. We will analyze
Los Angeles, Chicago and New York City, based on four criteria: average high temperature in July
(Farenheit), number of colleges and universities in a 30-mile radius, number of toxic waste sites in
the Superfund environmental clean-up program and a personal crime index based on FBI statistics
(average = 100, smaller is safer). It should be apparent how to generalize the example to a greater
number of cities and a greater number of statistics.

We begin by building a table of statistics. The rows will be labeled with the cities, and the
columns with statistical categories. These values are from Money’s website in early 2005.

City Temp Colleges Superfund Crime
Los Angeles 77 28 93 254
Chicago 84 38 85 363
New York 84 99 1 193
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Conceivably these data might reside in a spreadsheet. Now we must combine the statistics for
each city. We could accomplish this by weighting each category, scaling the values and summing
them. The sizes of the weights would depend upon the numerical size of each statistic generally,
but more importantly, they would reflect the editors opinions or beliefs about which statistics were
most important to their readers. Is the crime index more important than the number of colleges
and universities? Of course, there is no right answer to this question.

Suppose the editors finally decide on the following weights to employ: temperature, 0.23; col-
leges, 0.46; Superfund, −0.05; crime, −0.20. Notice how negative weights are used for undesirable
statistics. Then, for example, the editors would compute for Los Angeles,

(0.23)(77) + (0.46)(28) + (−0.05)(93) + (−0.20)(254) = −24.86

This computation might remind you of an inner product, but we will produce the computations for
all of the cities as a matrix-vector product. Write the table of raw statistics as a matrix

T =

77 28 93 254
84 38 85 363
84 99 1 193


and the weights as a vector

w =


0.23
0.46
−0.05
−0.20


then the matrix-vector product (Definition MVP [191]) yields

Tw = (0.23)

77
84
84

+ (0.46)

28
38
99

+ (−0.05)

93
85
1

+ (−0.20)

254
363
193

 =

−24.86
−40.05
26.21


This vector contains a single number for each of the cities being studied, so the editors would rank
New York best, Los Angeles next, and Chicago third. Of course, the mayor’s offices in Chicago and
Los Angeles are free to counter with a different set of weights that cause their city to be ranked
best. These alternative weights would be chosen to play to each cities’ strengths, and minimize
their problem areas.

If a speadsheet were used to make these computations, a row of weights would be entered
somewhere near the table of data and the formulas in the spreadsheet would effect a matrix-vector
product. This example is meant to illustrate how “linear” computations (addition, multiplication)
can be organized as a matrix-vector product.

Another example would be the matrix of numerical scores on examinations and exercises for
students in a class. The rows would correspond to students and the columns to exams and assign-
ments. The instructor could then assign weights to the different exams and assignments, and via a
matrix-vector product, compute a single score for each student. �

Later (much later) we will need the following theorem, which is really a technical lemma (see
Technique LC [677]). Since we are in a position to prove it now, we will. But you can safely
skip it for the moment, if you promise to come back later to study the proof when the theorem
is employed. At that point you will also be able to understand the comments in the paragraph
following the proof.

Theorem EMMVP
Equal Matrices and Matrix-Vector Products
Suppose that A and B are m× n matrices such that Ax = Bx for every x ∈ Cn. Then A = B. �

Proof We are assuming Ax = Bx for all x ∈ Cn, so we can employ this equality for any choice
of the vector x. However, we’ll limit our use of this equality to the standard unit vectors, ej ,
1 ≤ j ≤ n (Definition SUV [169]). For all 1 ≤ j ≤ n, 1 ≤ i ≤ m,

[A]ij = 0 [A]i1 + · · ·+ 0 [A]i,j−1 + 1 [A]ij + 0 [A]i,j+1 + · · ·+ 0 [A]in
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= [A]i1 [ej ]1 + [A]i2 [ej ]2 + [A]i3 [ej ]3 + · · ·+ [A]in [ej ]n Definition SUV [169]
= [Aej ]i Definition MVP [191]
= [Bej ]i Definition CVE [82]
= [B]i1 [ej ]1 + [B]i2 [ej ]2 + [B]i3 [ej ]3 + · · ·+ [B]in [ej ]n Definition MVP [191]
= 0 [B]i1 + · · ·+ 0 [B]i,j−1 + 1 [B]ij + 0 [B]i,j+1 + · · ·+ 0 [B]in Definition SUV [169]

= [B]ij

So by Definition ME [179] the matrices A and B are equal, as desired. �

You might notice that the hypotheses of this theorem could be weakened (i.e. made less re-
strictive). We could suppose the equality of the matrix-vector products for just the standard unit
vectors (Definition SUV [169]) or any other spanning set (Definition TSVS [307]) of Cn (Exercise
LISS.T40 [314]). However, in practice, when we apply this theorem we will only need this weaker
form. (If we made the hypothesis less restricive, we would call the theorem stronger.)

Subsection MM
Matrix Multiplication

We now define how to multiply two matrices together. Stop for a minute and think about how you
might define this new operation.

Many books would present this definition much earlier in the course. However, we have taken
great care to delay it as long as possible and to present as many ideas as practical based mostly on
the notion of linear combinations. Towards the conclusion of the course, or when you perhaps take
a second course in linear algebra, you may be in a position to appreciate the reasons for this. For
now, understand that matrix multiplication is a central definition and perhaps you will appreciate
its importance more by having saved it for later.

Definition MM
Matrix Multiplication
Suppose A is an m× n matrix and B is an n× p matrix with columns B1, B2, B3, . . . , Bp. Then
the matrix product of A with B is the m×p matrix where column i is the matrix-vector product
ABi. Symbolically,

AB = A [B1|B2|B3| . . . |Bp] = [AB1|AB2|AB3| . . . |ABp] .

4

Example PTM
Product of two matrices
Set

A =

 1 2 −1 4 6
0 −4 1 2 3
−5 1 2 −3 4

 B =


1 6 2 1
−1 4 3 2
1 1 2 3
6 4 −1 2
1 −2 3 0


Then

AB =

A


1
−1
1
6
1


∣∣∣∣∣∣∣∣∣∣
A


6
4
1
4
−2


∣∣∣∣∣∣∣∣∣∣
A


2
3
2
−1
3


∣∣∣∣∣∣∣∣∣∣
A


1
2
3
2
0


 =

 28 17 20 10
20 −13 −3 −1
−18 −44 12 −3

 .
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�

Is this the definition of matrix multiplication you expected? Perhaps our previous operations for
matrices caused you to think that we might multiply two matrices of the same size, entry-by-entry?
Notice that our current definition uses matrices of different sizes (though the number of columns
in the first must equal the number of rows in the second), and the result is of a third size. Notice
too in the previous example that we cannot even consider the product BA, since the sizes of the
two matrices in this order aren’t right.

But it gets weirder than that. Many of your old ideas about “multiplication” won’t apply to
matrix multiplication, but some still will. So make no assumptions, and don’t do anything until
you have a theorem that says you can. Even if the sizes are right, matrix multiplication is not
commutative — order matters.

Example MMNC
Matrix multiplication is not commutative
Set

A =
[

1 3
−1 2

]
B =

[
4 0
5 1

]
.

Then we have two square, 2 × 2 matrices, so Definition MM [194] allows us to multiply them in
either order. We find

AB =
[
19 3
6 2

]
BA =

[
4 12
4 17

]
and AB 6= BA. Not even close. It should not be hard for you to construct other pairs of matrices
that do not commute (try a couple of 3× 3’s). Can you find a pair of non-identical matrices that
do commute? �

Matrix multiplication is fundamental, so it is a natural procedure for any computational device.
See: Computation MM.MMA [657] .

Subsection MMEE
Matrix Multiplication, Entry-by-Entry

While certain “natural” properties of multiplication don’t hold, many more do. In the next sub-
section, we’ll state and prove the relevant theorems. But first, we need a theorem that provides
an alternate means of multiplying two matrices. In many texts, this would be given as the defi-
nition of matrix multiplication. We prefer to turn it around and have the following formula as a
consequence of our definition. It will prove useful for proofs of matrix equality, where we need to
examine products of matrices, entry-by-entry.

Theorem EMP
Entries of Matrix Products
Suppose A is an m × n matrix and B = is an n × p matrix. Then for 1 ≤ i ≤ m, 1 ≤ j ≤ p, the
individual entries of AB are given by

[AB]ij = [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj

=
n∑
k=1

[A]ik [B]kj

�

Proof Denote the columns of A as the vectors A1, A2, A3, . . . , An and the columns of B as the
vectors B1, B2, B3, . . . , Bp. Then for 1 ≤ i ≤ m, 1 ≤ j ≤ p,

[AB]ij = [ABj ]i Definition MM [194]
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=
[
[Bj ]1 A1 + [Bj ]2 A2 + [Bj ]3 A3 + · · ·+ [Bj ]n An

]
i

Definition MVP [191]

=
[
[Bj ]1 A1

]
i
+
[
[Bj ]2 A2

]
i
+
[
[Bj ]3 A3

]
i
+ · · ·+

[
[Bj ]n An

]
i

Definition CVA [82]

= [Bj ]1 [A1]i + [Bj ]2 [A2]i + [Bj ]3 [A3]i + · · ·+ [Bj ]n [An]i Definition CVSM [83]
= [B]1j [A]i1 + [B]2j [A]i2 + [B]3j [A]i3 + · · ·+ [B]nj [A]in Notation ME [179]

= [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj Property CMCN [662]

=
n∑
k=1

[A]ik [B]kj

�

Example PTMEE
Product of two matrices, entry-by-entry
Consider again the two matrices from Example PTM [194]

A =

 1 2 −1 4 6
0 −4 1 2 3
−5 1 2 −3 4

 B =


1 6 2 1
−1 4 3 2
1 1 2 3
6 4 −1 2
1 −2 3 0


Then suppose we just wanted the entry of AB in the second row, third column:

[AB]23 = [A]21 [B]13 + [A]22 [B]23 + [A]23 [B]33 + [A]24 [B]43 + [A]25 [B]53

=(0)(2) + (−4)(3) + (1)(2) + (2)(−1) + (3)(3) = −3

Notice how there are 5 terms in the sum, since 5 is the common dimension of the two matrices
(column count for A, row count for B). In the conclusion of Theorem EMP [195], it would be the
index k that would run from 1 to 5 in this computation. Here’s a bit more practice.

The entry of third row, first column:

[AB]31 = [A]31 [B]11 + [A]32 [B]21 + [A]33 [B]31 + [A]34 [B]41 + [A]35 [B]51

=(−5)(1) + (1)(−1) + (2)(1) + (−3)(6) + (4)(1) = −18

To get some more practice on your own, complete the computation of the other 10 entries of this
product. Construct some other pairs of matrices (of compatible sizes) and compute their product
two ways. First use Definition MM [194]. Since linear combinations are straightforward for you
now, this should be easy to do and to do correctly. Then do it again, using Theorem EMP [195].
Since this process may take some practice, use your first computation to check your work. �

Theorem EMP [195] is the way many people compute matrix products by hand. It will also be
very useful for the theorems we are going to prove shortly. However, the definition (Definition MM
[194]) is frequently the most useful for its connections with deeper ideas like the null space and the
upcoming column space.

Subsection PMM
Properties of Matrix Multiplication

In this subsection, we collect properties of matrix multiplication and its interaction with the zero
matrix (Definition ZM [182]), the identity matrix (Definition IM [68]), matrix addition (Definition
MA [179]), scalar matrix multiplication (Definition MSM [180]), the inner product (Definition IP
[164]), conjugation (Theorem MMCC [199]), and the transpose (Definition TM [182]). Whew! Here
we go. These are great proofs to practice with, so try to concoct the proofs before reading them,
they’ll get progressively more complicated as we go.
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Theorem MMZM
Matrix Multiplication and the Zero Matrix
Suppose A is an m× n matrix. Then
1. AOn×p = Om×p
2. Op×mA = Op×n �

Proof We’ll prove (1) and leave (2) to you. Entry-by-entry,

[AOn×p]ij =
n∑
k=1

[A]ik [On×p]kj Theorem EMP [195]

=
n∑
k=1

[A]ik 0 Definition ZM [182]

=
n∑
k=1

0 = 0.

So every entry of the product is the scalar zero, i.e. the result is the zero matrix. �

Theorem MMIM
Matrix Multiplication and Identity Matrix
Suppose A is an m× n matrix. Then
1. AIn = A
2. ImA = A �

Proof Again, we’ll prove (1) and leave (2) to you. Entry-by-entry,

[AIn]ij =
n∑
k=1

[A]ik [In]kj Theorem EMP [195]

= [A]ij [In]jj +
n∑
k=1
k 6=j

[A]ik [In]kj Property CACN [662]

= [A]ij (1) +
n∑

k=1,k 6=j
[A]ik (0) Definition IM [68]

= [A]ij +
n∑

k=1,k 6=j
0

= [A]ij

So the matrices A and AIn are equal, entry-by-entry, and by the definition of matrix equality
(Definition ME [179]) we can say they are equal matrices. �

It is this theorem that gives the identity matrix its name. It is a matrix that behaves with
matrix multiplication like the scalar 1 does with scalar multiplication. To multiply by the identity
matrix is to have no effect on the other matrix.

Theorem MMDAA
Matrix Multiplication Distributes Across Addition
Suppose A is an m× n matrix and B and C are n× p matrices and D is a p× s matrix. Then
1. A(B + C) = AB +AC
2. (B + C)D = BD + CD �

Proof We’ll do (1), you do (2). Entry-by-entry,

[A(B + C)]ij =
n∑
k=1

[A]ik [B + C]kj Theorem EMP [195]
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=
n∑
k=1

[A]ik ([B]kj + [C]kj) Definition MA [179]

=
n∑
k=1

[A]ik [B]kj + [A]ik [C]kj Property DCN [662]

=
n∑
k=1

[A]ik [B]kj +
n∑
k=1

[A]ik [C]kj Property CACN [662]

= [AB]ij + [AC]ij Theorem EMP [195]

= [AB +AC]ij Definition MA [179]

So the matrices A(B+C) and AB+AC are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [179]) we can say they are equal matrices. �

Theorem MMSMM
Matrix Multiplication and Scalar Matrix Multiplication
Suppose A is an m × n matrix and B is an n × p matrix. Let α be a scalar. Then α(AB) =
(αA)B = A(αB). �

Proof These are equalities of matrices. We’ll do the first one, the second is similar and will be
good practice for you.

[α(AB)]ij = α [AB]ij Definition MSM [180]

= α

n∑
k=1

[A]ik [B]kj Theorem EMP [195]

=
n∑
k=1

α [A]ik [B]kj Property DCN [662]

=
n∑
k=1

[αA]ik [B]kj Definition MSM [180]

= [(αA)B]ij Theorem EMP [195]

So the matrices α(AB) and (αA)B are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [179]) we can say they are equal matrices. �

Theorem MMA
Matrix Multiplication is Associative
Suppose A is an m×n matrix, B is an n×p matrix and D is a p×s matrix. Then A(BD) = (AB)D.

�

Proof A matrix equality, so we’ll go entry-by-entry, no surprise there.

[A(BD)]ij =
n∑
k=1

[A]ik [BD]kj Theorem EMP [195]

=
n∑
k=1

[A]ik

(
p∑
`=1

[B]k` [D]`j

)
Theorem EMP [195]

=
n∑
k=1

p∑
`=1

[A]ik [B]k` [D]`j Property DCN [662]

We can switch the order of the summation since these are finite sums,

=
p∑
`=1

n∑
k=1

[A]ik [B]k` [D]`j Property CACN [662]

Version 1.30



Subsection MM.PMM Properties of Matrix Multiplication 199

As [D]`j does not depend on the index k, we can factor it out of the inner sum,

=
p∑
`=1

[D]`j

(
n∑
k=1

[A]ik [B]k`

)
Property DCN [662]

=
p∑
`=1

[D]`j [AB]i` Theorem EMP [195]

=
p∑
`=1

[AB]i` [D]`j Property CMCN [662]

= [(AB)D]ij Theorem EMP [195]

So the matrices (AB)D and A(BD) are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [179]) we can say they are equal matrices. �

The statement of our next theorem is technically inaccurate. If we upgrade the vectors u, v
to matrices with a single column, then the expression utv is a 1 × 1 matrix, though we will treat
this small matrix as if it was simply the scalar quantity in its lone entry. When we apply Theorem
MMIP [199] there should not be any confusion.

Theorem MMIP
Matrix Multiplication and Inner Products
If we consider the vectors u, v ∈ Cm as m× 1 matrices then

〈u, v〉 = utv

�

Proof

〈u, v〉 =
m∑
k=1

[u]k [v]k Definition IP [164]

=
m∑
k=1

[u]k1 [v]k1 Column vectors as matrices

=
m∑
k=1

[
ut
]
1k

[v]k1 Definition TM [182]

=
m∑
k=1

[
ut
]
1k

[v]k1 Definition CCCV [163]

=
[
utv

]
11

Theorem EMP [195]

To finish we just blur the distinction between a 1× 1 matrix (utv) and its lone entry. �

Theorem MMCC
Matrix Multiplication and Complex Conjugation
Suppose A is an m× n matrix and B is an n× p matrix. Then AB = AB. �

Proof To obtain this matrix equality, we will work entry-by-entry,[
AB
]
ij

= [AB]ij Definition CM [24]

=
n∑
k=1

[A]ik [B]kj Theorem EMP [195]

=
n∑
k=1

[A]ik [B]kj Theorem CCRA [663]
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=
n∑
k=1

[A]ik [B]kj Theorem CCRM [663]

=
n∑
k=1

[
A
]
ik

[
B
]
kj

Definition CCM [184]

=
[
AB

]
ij

Theorem EMP [195]

So the matrices AB and AB are equal, entry-by-entry, and by the definition of matrix equality
(Definition ME [179]) we can say they are equal matrices. �

Another theorem in this style, and its a good one. If you’ve been practicing with the previous
proofs you should be able to do this one yourself.

Theorem MMT
Matrix Multiplication and Transposes
Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)t = BtAt. �

Proof This theorem may be surprising but if we check the sizes of the matrices involved, then
maybe it will not seem so far-fetched. First, AB has size m × p, so its transpose has size p ×m.
The product of Bt with At is a p × n matrix times an n × m matrix, also resulting in a p × m
matrix. So at least our objects are compatible for equality (and would not be, in general, if we
didn’t reverse the order of the matrix multiplication).

Here we go again, entry-by-entry,[
(AB)t

]
ij

= [AB]ji Definition TM [182]

=
n∑
k=1

[A]jk [B]ki Theorem EMP [195]

=
n∑
k=1

[B]ki [A]jk Property CMCN [662]

=
n∑
k=1

[
Bt
]
ik

[
At
]
kj

Definition TM [182]

=
[
BtAt

]
ij

Theorem EMP [195]

So the matrices (AB)t and BtAt are equal, entry-by-entry, and by the definition of matrix equality
(Definition ME [179]) we can say they are equal matrices. �

This theorem seems odd at first glance, since we have to switch the order of A and B. But if we
simply consider the sizes of the matrices involved, we can see that the switch is necessary for this
reason alone. That the individual entries of the products then come along to be equal is a bonus.

As the adjoint of a matrix is a composition of a conjugate and a transpose, its interaction with
matrix multiplication is similar to that of a transpose. Here’s the last of our long list of basic
properties of matrix multiplication.

Theorem MMAD
Matrix Multiplication and Adjoints
Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)∗ = B∗A∗. �

Proof

(AB)∗ =
(
AB
)t Definition A [186]

=
(
AB

)t Theorem MMCC [199]

=
(
B
)t (

A
)t Theorem MMT [200]

= B∗A∗ Definition A [186]
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�

Notice how none of these proofs above relied on writing out huge general matrices with lots
of ellipses (“. . . ”) and trying to formulate the equalities a whole matrix at a time. This messy
business is a “proof technique” to be avoided at all costs. Notice too how the proof of Theorem
MMAD [200] does not use an entry-by-entry approach, but simply builds on previous results about
matrix multiplication’s interaction with conjugation and transposes.

These theorems, along with Theorem VSPM [180] and the other results in Section MO [179], give
you the “rules” for how matrices interact with the various operations we have defined on matrices
(addition, scalar multiplication, matrix multiplication, conjugation, transposes and adjoints). Use
them and use them often. But don’t try to do anything with a matrix that you don’t have a rule for.
Together, we would informally call all these operations, and the attendant theorems, “the algebra
of matrices.” Notice, too, that every column vector is just a n× 1 matrix, so these theorems apply
to column vectors also. Finally, these results, taken as a whole, may make us feel that the definition
of matrix multiplication is not so unnatural.

Subsection HM
Hermitian Matrices

The adjoint of a matrix has a basic property when employed in a matrix-vector product as part
of an inner product. At this point, you could even use the following result as a motivation for the
definition of an adjoint.

Theorem AIP
Adjoint and Inner Product
Suppose that A is an m× n matrix and x ∈ Cn, y ∈ Cm. Then 〈Ax, y〉 = 〈x, A∗y〉. �

Proof

〈Ax, y〉 = (Ax)t y Theorem MMIP [199]
= xtAty Theorem MMT [200]

= xt
(
A
)t

y Theorem CCM [185]

= xt
((
A
)t)y Theorem MCT [185]

= xt(A∗)y Definition A [186]

= xt(A∗y) Theorem MMCC [199]
= 〈x, A∗y〉 Theorem MMIP [199]

�

Sometimes a matrix is equal to its adjoint (Definition A [186]), and these matrices have inter-
esting properties. One of the most common situations where this occurs is when a matrix has only
real number entries. Then we are simply talking about symmetric matrices (Definition SYM [182]),
so you can view this as a generalization of a symmetric matrix.

Definition HM
Hermitian Matrix
The square matrix A is Hermitian (or self-adjoint) if A = A∗. 4

Again, the set of real matrices that are Hermitian is exactly the set of symmetric matrices. In
Section PEE [411] we will uncover some amazing properties of Hermitian matrices, so when you
get there, run back here to remind yourself of this definition. Further properties will also appear
in various sections of the Topics (Part T [771]). Right now we prove a fundamental result about
Hermitian matrices, matrix vector products and inner products. As a characterization, this could
be employed as a definition of a Hermitian matrix and some authors take this approach.
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Theorem HMIP
Hermitian Matrices and Inner Products
Suppose that A is a square matrix of size n. Then A is Hermitian if and only if 〈Ax, y〉 = 〈x, Ay〉
for all x, y ∈ Cn. �

Proof (⇒) This is the “easy half” of the proof, and makes the rationale for a definition of
Hermitian matrices most obvious. Assume A is Hermitian,

〈Ax, y〉 = 〈x, A∗y〉 Theorem AIP [201]
= 〈x, Ay〉 Definition HM [201]

(⇐) This “half” will take a bit more work. Assume that 〈Ax, y〉 = 〈x, Ay〉 for all x, y ∈ Cn.
Choose any x ∈ Cn. We want to show that A = A∗ by establishing that Ax = A∗x. With only this
much motivation, consider the inner product,

〈Ax−A∗x, Ax−A∗x〉 = 〈Ax−A∗x, Ax〉 − 〈Ax−A∗x, A∗x〉 Theorem IPVA [165]
= 〈Ax−A∗x, Ax〉 − 〈A (Ax−A∗x) , x〉 Theorem AIP [201]
= 〈A (Ax−A∗x) , x〉 − 〈A (Ax−A∗x) , x〉 Hypothesis
= 0 Property AICN [663]

Because this inner product equals zero, and has the same vector in each argument (Ax − A∗x),
Theorem PIP [168] gives the conclusion that Ax−A∗x = 0. With Ax = A∗x for all x ∈ Cn, Theo-
rem EMMVP [193] says A = A∗, which is the defining property of a Hermitian matrix (Definition
HM [201]). �

So, informally, Hermitian matrices are those that can be tossed around from one side of an
inner product to the other with reckless abandon. We’ll see later what this buys us.

Subsection READ
Reading Questions

1. Form the matrix vector product of

2 3 −1 0
1 −2 7 3
1 5 3 2

 with


2
−3
0
5


2. Multiply together the two matrices below (in the order given).

2 3 −1 0
1 −2 7 3
1 5 3 2




2 6
−3 −4
0 2
3 −1


3. Rewrite the system of linear equations below as a vector equality and using a matrix-vector

product. (This question does not ask for a solution to the system. But it does ask you to
express the system of equations in a new form using tools from this section.)

2x1 + 3x2 − x3 = 0
x1 + 2x2 + x3 = 3
x1 + 3x2 + 3x3 = 7
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Subsection EXC
Exercises

C20 Compute the product of the two matrices below, AB. Do this using the definitions of the
matrix-vector product (Definition MVP [191]) and the definition of matrix multiplication (Defini-
tion MM [194]).

A =

 2 5
−1 3
2 −2

 B =
[
1 5 −3 4
2 0 2 −3

]

Contributed by Robert Beezer Solution [205]

T10 Suppose that A is a square matrix and there is a vector, b, such that LS(A, b) has a unique
solution. Prove that A is nonsingular. Give a direct proof (perhaps appealing to Theorem PSPHS
[103]) rather than just negating a sentence from the text discussing a similar situation.
Contributed by Robert Beezer Solution [205]

T20 Prove the second part of Theorem MMZM [197].
Contributed by Robert Beezer

T21 Prove the second part of Theorem MMIM [197].
Contributed by Robert Beezer

T22 Prove the second part of Theorem MMDAA [197].
Contributed by Robert Beezer

T23 Prove the second part of Theorem MMSMM [198].
Contributed by Robert Beezer Solution [205]

T31 Suppose that A is an m× n matrix and x, y ∈ N (A). Prove that x + y ∈ N (A).
Contributed by Robert Beezer

T32 Suppose that A is an m× n matrix, α ∈ C, and x ∈ N (A). Prove that αx ∈ N (A).
Contributed by Robert Beezer

T40 Suppose that A is an m × n matrix and B is an n × p matrix. Prove that the null space
of B is a subset of the null space of AB, that is N (B) ⊆ N (AB). Provide an example where the
opposite is false, in other words give an example where N (AB) 6⊆ N (B).
Contributed by Robert Beezer Solution [205]

T41 Suppose that A is an n × n nonsingular matrix and B is an n × p matrix. Prove that the
null space of B is equal to the null space of AB, that is N (B) = N (AB). (Compare with Exercise
MM.T40 [203].)
Contributed by Robert Beezer Solution [206]

T50 Suppose u and v are any two solutions of the linear system LS(A, b). Prove that u− v is
an element of the null space of A, that is, u− v ∈ N (A).
Contributed by Robert Beezer

T51 Give a new proof of Theorem PSPHS [103] replacing applications of Theorem SLSLC [92]
with matrix-vector products (Theorem SLEMM [192]).
Contributed by Robert Beezer Solution [206]

T52 Suppose that x, y ∈ Cn, b ∈ Cm and A is an m × n matrix. If x, y and x + y are
each a solution to the linear system LS(A, b), what interesting can you say about b? Form an
implication with the existence of the three solutions as the hypothesis and an interesting statement
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about LS(A, b) as the conclusion, and then give a proof.
Contributed by Robert Beezer Solution [206]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [203]
By Definition MM [194],

AB =

 2 5
−1 3
2 −2

[1
2

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[5
0

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[−3
2

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[ 4
−2

]
Repeated applications of Definition MVP [191] give

=

1

 2
−1
2

+ 2

 5
3
−2

∣∣∣∣∣∣ 5

 2
−1
2

+ 0

 5
3
−2

∣∣∣∣∣∣ −3

 2
−1
2

+ 2

 5
3
−2

∣∣∣∣∣∣ 4

 2
−1
2

+ (−3)

 5
3
−2


=

12 10 4 −7
5 −5 9 −13
−2 10 −10 14


T10 Contributed by Robert Beezer Statement [203]
Since LS(A, b) has at least one solution, we can apply Theorem PSPHS [103]. Because the solution
is assumed to be unique, the null space of A must be trivial. Then Theorem NMTNS [70] implies
that A is nonsingular.

The converse of this statement is a trivial application of Theorem NMUS [70]. That said, we
could extend our NSMxx series of theorems with an added equivalence for nonsingularity, “Given
a single vector of constants, b, the system LS(A, b) has a unique solution.”

T23 Contributed by Robert Beezer Statement [203]
We’ll run the proof entry-by-entry.

[α(AB)]ij =α [AB]ij Definition MSM [180]

=α
n∑
k=1

[A]ik [B]kj Theorem EMP [195]

=
n∑
k=1

α [A]ik [B]kj Distributivity in C

=
n∑
k=1

[A]ik α [B]kj Commutativity in C

=
n∑
k=1

[A]ik [αB]kj Definition MSM [180]

= [A(αB)]ij Theorem EMP [195]

So the matrices α(AB) and A(αB) are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [179]) we can say they are equal matrices.

T40 Contributed by Robert Beezer Statement [203]
To prove that one set is a subset of another, we start with an element of the smaller set and see if
we can determine that it is a member of the larger set (Definition SSET [665]). Suppose x ∈ N (B).
Then we know that Bx = 0 by Definition NSM [59]. Consider

(AB)x = A(Bx) Theorem MMA [198]
= A0 Hypothesis
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= 0 Theorem MMZM [197]

This establishes that x ∈ N (AB), so N (B) ⊆ N (AB).
To show that the inclusion does not hold in the opposite direction, choose B to be any non-

singular matrix of size n. Then N (B) = {0} by Theorem NMTNS [70]. Let A be the square
zero matrix, O, of the same size. Then AB = OB = O by Theorem MMZM [197] and therefore
N (AB) = Cn, and is not a subset of N (B) = {0}.

T41 Contributed by Robert Beezer Statement [203]
From the solution to Exercise MM.T40 [203] we know that N (B) ⊆ N (AB). So to establish the
set equality (Definition SE [666]) we need to show that N (AB) ⊆ N (B).

Suppose x ∈ N (AB). Then we know that ABx = 0 by Definition NSM [59]. Consider

Bx = InBx Theorem MMIM [197]

=
(
A−1A

)
Bx Theorem NI [223]

= A−1 (AB) x

= 0 Theorem MMZM [197]

This establishes that x ∈ N (B), so N (AB) ⊆ N (B) and combined with the solution to Exercise
MM.T40 [203] we have N (B) = N (AB) when A is nonsingular.

T51 Contributed by Robert Beezer Statement [203]
We will work with the vector equality representations of the relevant systems of equations, as
described by Theorem SLEMM [192].

(⇐) Suppose y = w + z and z ∈ N (A). Then

Ay = A(w + z) Subsitution
= Aw +Az Theorem MMDAA [197]
= b + 0 z ∈ N (A)
= b Property ZC [84]

demonstrating that y is a solution.
(⇒) Suppose y is a solution to LS(A, b). Then

A(y −w) = Ay −Aw Theorem MMDAA [197]
= b− b y, w solutions to Ax = b

= 0 Property AIC [84]

which says that y −w ∈ N (A). In other words, y −w = z for some vector z ∈ N (A). Rewritten,
this is y = w + z, as desired.

T52 Contributed by Robert Beezer Statement [203]
LS(A, b) must be homogeneous. To see this consider that

b = Ax Theorem SLEMM [192]
= Ax + 0 Property ZC [84]
= Ax +Ay −Ay Property AIC [84]
= A (x + y)−Ay Theorem MMDAA [197]
= b− b Theorem SLEMM [192]
= 0 Property AIC [84]

By Definition HS [57] we see that LS(A, b) is homogeneous.
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Section MISLE
Matrix Inverses and Systems of Linear Equations

We begin with a familiar example, performed in a novel way.

Example SABMI
Solutions to Archetype B with a matrix inverse
Archetype B [689] is the system of m = 3 linear equations in n = 3 variables,

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

By Theorem SLEMM [192] we can represent this system of equations as

Ax = b

where

A =

−7 −6 −12
5 5 7
1 0 4

 x =

x1

x2

x3

 b =

−33
24
5


We’ll pull a rabbit out of our hat and present the 3× 3 matrix B,

B =

−10 −12 −9
13
2 8 11

2
5
2 3 5

2


and note that

BA =

−10 −12 −9
13
2 8 11

2
5
2 3 5

2

−7 −6 −12
5 5 7
1 0 4

 =

1 0 0
0 1 0
0 0 1

 .
Now apply this computation to the problem of solving the system of equations,

x = I3x Theorem MMIM [197]
= (BA)x Substitution
= B(Ax) Theorem MMA [198]
= Bb Substitution

So we have

x = Bb =

−10 −12 −9
13
2 8 11

2
5
2 3 5

2

−33
24
5

 =

−3
5
2


So with the help and assistance of B we have been able to determine a solution to the system
represented by Ax = b through judicious use of matrix multiplication. We know by Theorem
NMUS [70] that since the coefficient matrix in this example is nonsingular, there would be a unique
solution, no matter what the choice of b. The derivation above amplifies this result, since we were
forced to conclude that x = Bb and the solution couldn’t be anything else. You should notice that
this argument would hold for any particular value of b. �

The matrix B of the previous example is called the inverse of A. When A and B are combined
via matrix multiplication, the result is the identity matrix, which can be inserted “in front” of x
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as the first step in finding the solution. This is entirely analogous to how we might solve a single
linear equation like 3x = 12.

x = 1x =
(

1
3

(3)
)
x =

1
3

(3x) =
1
3

(12) = 4

Here we have obtained a solution by employing the “multiplicative inverse” of 3, 3−1 = 1
3 . This

works fine for any scalar multiple of x, except for zero, since zero does not have a multiplicative
inverse. For matrices, it is more complicated. Some matrices have inverses, some do not. And
when a matrix does have an inverse, just how would we compute it? In other words, just where did
that matrix B in the last example come from? Are there other matrices that might have worked
just as well?

Subsection IM
Inverse of a Matrix

Definition MI
Matrix Inverse
Suppose A and B are square matrices of size n such that AB = In and BA = In. Then A is
invertible and B is the inverse of A. In this situation, we write B = A−1.
(This definition contains Notation MI.) 4

Notice that if B is the inverse of A, then we can just as easily say A is the inverse of B, or A
and B are inverses of each other.

Not every square matrix has an inverse. In Example SABMI [207] the matrix B is the inverse
the coefficient matrix of Archetype B [689]. To see this it only remains to check that AB = I3.
What about Archetype A [685]? It is an example of a square matrix without an inverse.

Example MWIAA
A matrix without an inverse, Archetype A
Consider the coefficient matrix from Archetype A [685],

A =

1 −1 2
2 1 1
1 1 0


Suppose that A is invertible and does have an inverse, say B. Choose the vector of constants

b =

1
3
2


and consider the system of equations LS(A, b). Just as in Example SABMI [207], this vector
equation would have the unique solution x = Bb.

However, the system LS(A, b) is inconsistent. Form the augmented matrix [A | b] and row-
reduce to  1 0 1 0

0 1 −1 0
0 0 0 1


which allows to recognize the inconsistency by Theorem RCLS [48].

So the assumption of A’s inverse leads to a logical inconsistency (the system can’t be both
consistent and inconsistent), so our assumption is false. A is not invertible.

Its possible this example is less than satisfying. Just where did that particular choice of the
vector b come from anyway? Stay tuned for an application of the future Theorem CSCS [232] in
Example CSAA [235]. �

Let’s look at one more matrix inverse before we embark on a more systematic study.
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Example MI
Matrix inverse
Consider the matrix,

A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1


And the matrix

B =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1


Then

AB =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1



−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1



=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and

BA =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1




1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1



=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


so by Definition MI [208], we can say that A is invertible and write B = A−1. �

We will now concern ourselves less with whether or not an inverse of a matrix exists, but instead
with how you can find one when it does exist. In Section MINM [221] we will have some theorems
that allow us to more quickly and easily determine just when a matrix is invertible.

Subsection CIM
Computing the Inverse of a Matrix

We’ve seen that the matrices from Archetype B [689] and Archetype K [727] both have inverses, but
these inverse matrices have just dropped from the sky. How would we compute an inverse? And
just when is a matrix invertible, and when is it not? Writing a putative inverse with n2 unknowns
and solving the resultant n2 equations is one approach. Applying this approach to 2× 2 matrices
can get us somewhere, so just for fun, let’s do it.
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Theorem TTMI
Two-by-Two Matrix Inverse
Suppose

A =
[
a b
c d

]
Then A is invertible if and only if ad− bc 6= 0. When A is invertible, we have

A−1 =
1

ad− bc

[
d −b
−c a

]
�

Proof (⇐) If ad− bc 6= 0 then the displayed formula is legitimate (we are not dividing by zero),
and we compute

AA−1 =
[
a b
c d

](
1

ad− bc

[
d −b
−c a

])
=

1
ad− bc

[
ad− bc 0

0 ad− bc

]
=
[
1 0
0 1

]
and

AA−1A =
1

ad− bc

[
d −b
−c a

] [
a b
c d

]
1

ad− bc

[
d −b
−c a

]
=

1
ad− bc

[
ad− bc 0

0 ad− bc

]
=
[
1 0
0 1

]
(⇒) Assume that A is invertible, and proceed with a proof by contradiction (Technique CD

[673]), by assuming also that ad− bc = 0. This translates to ad = bc. Let

B =
[
e f
g h

]
be a putative inverse of A. This means that

I2 = AB =
[
a b
c d

] [
e f
g h

]
=
[
ae+ bg af + bh
ce+ dg cf + dh

]
Working on the matrices on both ends of this equation, we will multiply the top row by c and the
bottom row by a. [

c 0
0 a

]
=
[
ace+ bcg acf + bch
ace+ adg acf + adh

]
We are assuming that ad = bc, so we can replace two occurences of ad by bc in the bottom row of
the right matrix. [

c 0
0 a

]
=
[
ace+ bcg acf + bch
ace+ bcg acf + bch

]
The matrix on the right now has two rows that are identical, and therefore the same must be true
of the matrix on the left. Given the form of the matrix on the left, identical rows implies that a = 0
and c = 0.

With this information, the product AB becomes[
1 0
0 1

]
= I2 = AB =

[
ae+ bg af + bh
ce+ dg cf + dh

]
=
[
bg bh
dg dh

]
So bg = dh = 1 and thus b, g, d, h are all nonzero. But then bh and dg (the “other corners”) must
also be nonzero, so this is (finally) a contradiction. So our assumption was false and we see that
ad− bc 6= 0 whenever A has an inverse. �

There are several ways one could try to prove this theorem, but there is a continual temptation
to divide by one of the eight entries involved (a through f), but we can never be sure if these
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numbers are zero or not. This could lead to an analysis by cases, which is messy, messy, messy.
Note how the above proof never divides, but always multiplies, and how zero/nonzero considerations
are handled. Pay attention to the expression ad− bc, as we will see it again in a while (Chapter D
[363]).

This theorem is cute, and it is nice to have a formula for the inverse, and a condition that
tells us when we can use it. However, this approach becomes impractical for larger matrices, even
though it is possible to demonstrate that, in theory, there is a general formula. (Think for a minute
about extending this result to just 3 × 3 matrices. For starters, we need 18 letters!) Instead, we
will work column-by-column. Let’s first work an example that will motivate the main theorem and
remove some of the previous mystery.

Example CMI
Computing a matrix inverse
Consider the matrix defined in Example MI [209] as,

A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1


For its inverse, we desire a matrix B so that AB = I5. Emphasizing the structure of the columns
and employing the definition of matrix multiplication Definition MM [194],

AB = I5

A[B1|B2|B3|B4|B5] = [e1|e2|e3|e4|e5]
[AB1|AB2|AB3|AB4|AB5] = [e1|e2|e3|e4|e5].

Equating the matrices column-by-column we have

AB1 = e1 AB2 = e2 AB3 = e3 AB4 = e4 AB5 = e5.

Since the matrix B is what we are trying to compute, we can view each column, Bi, as a column
vector of unknowns. Then we have five systems of equations to solve, each with 5 equations in 5
variables. Notice that all 5 of these systems have the same coefficient matrix. We’ll now solve each
system in turn,

Row-reduce the augmented matrix of the linear system LS(A, e1),


1 2 1 2 1 1
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−−→


1 0 0 0 0 −3
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

 so B1 =


−3
0
1
1
1


Row-reduce the augmented matrix of the linear system LS(A, e2),


1 2 1 2 1 0
−2 −3 0 −5 −1 1
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−−→


1 0 0 0 0 3
0 1 0 0 0 −2
0 0 1 0 0 2
0 0 0 1 0 0
0 0 0 0 1 −1

 so B2 =


3
−2
2
0
−1


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Row-reduce the augmented matrix of the linear system LS(A, e3),
1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 1
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−−→


1 0 0 0 0 6
0 1 0 0 0 −5
0 0 1 0 0 4
0 0 0 1 0 1
0 0 0 0 1 −2

 so B3 =


6
−5
4
1
−2


Row-reduce the augmented matrix of the linear system LS(A, e4),

1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 1
−1 −3 −1 −3 1 0

 RREF−−−−→


1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0

 so B4 =


−1
−1
1
1
0


Row-reduce the augmented matrix of the linear system LS(A, e5),

1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 1

 RREF−−−−→


1 0 0 0 0 −2
0 1 0 0 0 1
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 1

 so B5 =


−2
1
−1
0
1



We can now collect our 5 solution vectors into the matrix B,

B =[B1|B2|B3|B4|B5]

=



−3
0
1
1
1


∣∣∣∣∣∣∣∣∣∣


3
−2
2
0
−1


∣∣∣∣∣∣∣∣∣∣


6
−5
4
1
−2


∣∣∣∣∣∣∣∣∣∣


−1
−1
1
1
0


∣∣∣∣∣∣∣∣∣∣


−2
1
−1
0
1




=


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1


By this method, we know that AB = I5. Check that BA = I5, and then we will know that we have
the inverse of A. �

Notice how the five systems of equations in the preceding example were all solved by exactly the
same sequence of row operations. Wouldn’t it be nice to avoid this obvious duplication of effort?
Our main theorem for this section follows, and it mimics this previous example, while also avoiding
all the overhead.

Theorem CINM
Computing the Inverse of a Nonsingular Matrix
Suppose A is a nonsingular square matrix of size n. Create the n × 2n matrix M by placing the
n× n identity matrix In to the right of the matrix A. Let N be a matrix that is row-equivalent to
M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns
of N . Then AJ = In. �

Proof A is nonsingular, so by Theorem NMRRI [68] there is a sequence of row operations that
will convert A into In. It is this same sequence of row operations that will convert M into N ,
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since having the identity matrix in the first n columns of N is sufficient to guarantee that N is in
reduced row-echelon form.

If we consider the systems of linear equations, LS(A, ei), 1 ≤ i ≤ n, we see that the aforemen-
tioned sequence of row operations will also bring the augmented matrix of each of these systems
into reduced row-echelon form. Furthermore, the unique solution to LS(A, ei) appears in column
n + 1 of the row-reduced augmented matrix of the system and is identical to column n + i of N .
Let N1, N2, N3, . . . , N2n denote the columns of N . So we find,

AJ =A[Nn+1|Nn+2|Nn+3| . . . |Nn+n]
=[ANn+1|ANn+2|ANn+3| . . . |ANn+n] Definition MM [194]
=[e1|e2|e3| . . . |en]
=In Definition IM [68]

as desired. �

We have to be just a bit careful here about both what this theorem says and what it doesn’t
say. If A is a nonsingular matrix, then we are guaranteed a matrix B such that AB = In, and
the proof gives us a process for constructing B. However, the definition of the inverse of a matrix
(Definition MI [208]) requires that BA = In also. So at this juncture we must compute the matrix
product in the “opposite” order before we claim B as the inverse of A. However, we’ll soon see
that this is always the case, in Theorem OSIS [222], so the title of this theorem is not inaccurate.

What if A is singular? At this point we only know that Theorem CINM [212] cannot be applied.
The question of A’s inverse is still open. (But see Theorem NI [223] in the next section.) We’ll
finish by computing the inverse for the coefficient matrix of Archetype B [689], the one we just
pulled from a hat in Example SABMI [207]. There are more examples in the Archetypes (Appendix
A [681]) to practice with, though notice that it is silly to ask for the inverse of a rectangular matrix
(the sizes aren’t right) and not every square matrix has an inverse (remember Example MWIAA
[208]?).

Example CMIAB
Computing a matrix inverse, Archetype B
Archetype B [689] has a coefficient matrix given as

B =

−7 −6 −12
5 5 7
1 0 4


Exercising Theorem CINM [212] we set

M =

−7 −6 −12 1 0 0
5 5 7 0 1 0
1 0 4 0 0 1

 .
which row reduces to

N =

1 0 0 −10 −12 −9
0 1 0 13

2 8 11
2

0 0 1 5
2 3 5

2

 .
So

B−1 =

−10 −12 −9
13
2 8 11

2
5
2 3 5

2


once we check that B−1B = I3 (the product in the opposite order is a consequence of the theorem).

�

While we can use a row-reducing procedure to compute any needed inverse, most computa-
tional devices have a built-in procedure to compute the inverse of a matrix straightaway. See:
Computation MI.MMA [657] .
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Subsection PMI
Properties of Matrix Inverses

The inverse of a matrix enjoys some nice properties. We collect a few here. First, a matrix can
have but one inverse.

Theorem MIU
Matrix Inverse is Unique
Suppose the square matrix A has an inverse. Then A−1 is unique. �

Proof As described in Technique U [674], we will assume that A has two inverses. The hypothesis
tells there is at least one. Suppose then that B and C are both inverses for A. Then, repeated
use of Definition MI [208] and Theorem MMIM [197] plus one application of Theorem MMA [198]
gives

B = BIn Theorem MMIM [197]
= B(AC) Definition MI [208]
= (BA)C Theorem MMA [198]
= InC Definition MI [208]
= C Theorem MMIM [197]

So we conclude that B and C are the same, and cannot be different. So any matrix that acts like
an inverse, must be the inverse. �

When most of us dress in the morning, we put on our socks first, followed by our shoes. In the
evening we must then first remove our shoes, followed by our socks. Try to connect the conclusion
of the following theorem with this everyday example.

Theorem SS
Socks and Shoes
Suppose A and B are invertible matrices of size n. Then (AB)−1 = B−1A−1 and AB is an

invertible matrix. �

Proof At the risk of carrying our everyday analogies too far, the proof of this theorem is quite
easy when we compare it to the workings of a dating service. We have a statement about the
inverse of the matrix AB, which for all we know right now might not even exist. Suppose AB was
to sign up for a dating service with two requirements for a compatible date. Upon multiplication
on the left, and on the right, the result should be the identity matrix. In other words, AB’s ideal
date would be its inverse.

Now along comes the matrix B−1A−1 (which we know exists because our hypothesis says both
A and B are invertible and we can form the product of these two matrices), also looking for a date.
Let’s see if B−1A−1 is a good match for AB. First they meet at a non-committal neutral location,
say a coffee shop, for quiet conversation:

(B−1A−1)(AB) = B−1(A−1A)B Theorem MMA [198]

= B−1InB Definition MI [208]

= B−1B Theorem MMIM [197]
= In Definition MI [208]

The first date having gone smoothly, a second, more serious, date is arranged, say dinner and a
show:

(AB)(B−1A−1) = A(BB−1)A−1 Theorem MMA [198]

= AInA
−1 Definition MI [208]
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= AA−1 Theorem MMIM [197]
= In Definition MI [208]

So the matrix B−1A−1 has met all of the requirements to be AB’s inverse (date) and with the
ensuing marriage proposal we can announce that (AB)−1 = B−1A−1. �

Theorem MIMI
Matrix Inverse of a Matrix Inverse
Suppose A is an invertible matrix. Then A−1 is invertible and (A−1)−1 = A. �

Proof As with the proof of Theorem SS [214], we examine if A is a suitable inverse for A−1 (by
definition, the opposite is true).

AA−1 = In Definition MI [208]

and

A−1A = In Definition MI [208]

The matrix A has met all the requirements to be the inverse of A−1, and so is invertible and we
can write A = (A−1)−1. �

Theorem MIT
Matrix Inverse of a Transpose
Suppose A is an invertible matrix. Then At is invertible and (At)−1 = (A−1)t. �

Proof As with the proof of Theorem SS [214], we see if (A−1)t is a suitable inverse for At. Apply
Theorem MMT [200] to see that

(A−1)tAt = (AA−1)t Theorem MMT [200]
= Itn Definition MI [208]
= In In is symmetric

and

At(A−1)t = (A−1A)t Theorem MMT [200]
= Itn Definition MI [208]
= In In is symmetric

The matrix (A−1)t has met all the requirements to be the inverse of At, and so is invertible and we
can write (At)−1 = (A−1)t. �

Theorem MISM
Matrix Inverse of a Scalar Multiple
Suppose A is an invertible matrix and α is a nonzero scalar. Then (αA)−1 = 1

αA
−1 and αA is

invertible. �

Proof As with the proof of Theorem SS [214], we see if 1
αA
−1 is a suitable inverse for αA.(

1
α
A−1

)
(αA) =

(
1
α
α

)(
AA−1

)
Theorem MMSMM [198]

= 1In Scalar multiplicative inverses
= In Property OM [181]

and

(αA)
(

1
α
A−1

)
=
(
α

1
α

)(
A−1A

)
Theorem MMSMM [198]
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= 1In Scalar multiplicative inverses
= In Property OM [181]

The matrix 1
αA
−1 has met all the requirements to be the inverse of αA, so we can write (αA)−1 =

1
αA
−1. �

Notice that there are some likely theorems that are missing here. For example, it would be
tempting to think that (A+B)−1 = A−1 +B−1, but this is false. Can you find a counterexample?
(See Exercise MISLE.T10 [218].)

Subsection READ
Reading Questions

1. Compute the inverse of the matrix below. [
4 10
2 6

]
2. Compute the inverse of the matrix below. 2 3 1

1 −2 −3
−2 4 6


3. Explain why Theorem SS [214] has the title it does. (Do not just state the theorem, explain

the choice of the title making reference to the theorem itself.)
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Subsection EXC
Exercises

C21 Verify that B is the inverse of A.

A =


1 1 −1 2
−2 −1 2 −3
1 1 0 2
−1 2 0 2

 B =


4 2 0 −1
8 4 −1 −1
−1 0 1 0
−6 −3 1 1


Contributed by Robert Beezer Solution [219]

C22 Recycle the matrices A and B from Exercise MISLE.C21 [217] and set

c =


2
1
−3
2

 d =


1
1
1
1


Employ the matrix B to solve the two linear systems LS(A, c) and LS(A, d).
Contributed by Robert Beezer Solution [219]

C23 If it exists, find the inverse of the 2× 2 matrix

A =
[
7 3
5 2

]
and check your answer. (See Theorem TTMI [210].)
Contributed by Robert Beezer

C24 If it exists, find the inverse of the 2× 2 matrix

A =
[
6 3
4 2

]
and check your answer. (See Theorem TTMI [210].)
Contributed by Robert Beezer

C25 At the conclusion of Example CMI [211], verify that BA = I5 by computing the matrix
product.
Contributed by Robert Beezer

C26 Let

D =


1 −1 3 −2 1
−2 3 −5 3 0
1 −1 4 −2 2
−1 4 −1 0 4
1 0 5 −2 5


Compute the inverse of D, D−1, by forming the 5× 10 matrix [D | I5] and row-reducing (Theorem
CINM [212]). Then use a calculator to compute D−1 directly.
Contributed by Robert Beezer Solution [219]

C27 Let

E =


1 −1 3 −2 1
−2 3 −5 3 −1
1 −1 4 −2 2
−1 4 −1 0 2
1 0 5 −2 4


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Compute the inverse of E, E−1, by forming the 5× 10 matrix [E | I5] and row-reducing (Theorem
CINM [212]). Then use a calculator to compute E−1 directly.
Contributed by Robert Beezer Solution [219]

C28 Let

C =


1 1 3 1
−2 −1 −4 −1
1 4 10 2
−2 0 −4 5


Compute the inverse of C, C−1, by forming the 4 × 8 matrix [C | I4] and row-reducing (Theorem
CINM [212]). Then use a calculator to compute C−1 directly.
Contributed by Robert Beezer Solution [219]

C40 Find all solutions to the system of equations below, making use of the matrix inverse found
in Exercise MISLE.C28 [218].

x1 + x2 + 3x3 + x4 = −4
−2x1 − x2 − 4x3 − x4 = 4
x1 + 4x2 + 10x3 + 2x4 = −20
−2x1 − 4x3 + 5x4 = 9

Contributed by Robert Beezer Solution [219]

C41 Use the inverse of a matrix to find all the solutions to the following system of equations.

x1 + 2x2 − x3 = −3
2x1 + 5x2 − x3 = −4
−x1 − 4x2 = 2

Contributed by Robert Beezer Solution [220]

C42 Use a matrix inverse to solve the linear system of equations.

x1 − x2 + 2x3 = 5
x1 − 2x3 = −8

2x1 − x2 − x3 = −6

Contributed by Robert Beezer Solution [220]

T10 Construct an example to demonstrate that (A+B)−1 = A−1 +B−1 is not true for all square
matrices A and B of the same size.
Contributed by Robert Beezer Solution [220]
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer Statement [217]
Check that both matrix products (Definition MM [194]) AB and BA equal the 4×4 identity matrix
I4 (Definition IM [68]).

C22 Contributed by Robert Beezer Statement [217]
Represent each of the two systems by a vector equality, Ax = c and Ay = d. Then in the spirit of
Example SABMI [207], solutions are given by

x = Bc =


8
21
−5
−16

 y = Bd =


5
10
0
−7


Notice how we could solve many more systems having A as the coefficient matrix, and how each
such system has a unique solution. You might check your work by substituting the solutions back
into the systems of equations, or forming the linear combinations of the columns of A suggested by
Theorem SLSLC [92].

C26 Contributed by Robert Beezer Statement [217]
The inverse of D is

D−1 =


−7 −6 −3 2 1
−7 −4 2 2 −1
−5 −2 3 1 −1
−6 −3 1 1 0
4 2 −2 −1 1


C27 Contributed by Robert Beezer Statement [217]
The matrix E has no inverse, though we do not yet have a theorem that allows us to reach this
conclusion. However, when row-reducing the matrix [E | I5], the first 5 columns will not row-reduce
to the 5 × 5 identity matrix, so we are a t a loss on how we might compute the inverse. When
requesting that your calculator compute E−1, it should give some indication that E does not have
an inverse.

C28 Contributed by Robert Beezer Statement [218]
Employ Theorem CINM [212],


1 1 3 1 1 0 0 0
−2 −1 −4 −1 0 1 0 0
1 4 10 2 0 0 1 0
−2 0 −4 5 0 0 0 1

 RREF−−−−→


1 0 0 0 38 18 −5 −2
0 1 0 0 96 47 −12 −5
0 0 1 0 −39 −19 5 2
0 0 0 1 −16 −8 2 1


And therefore we see that C is nonsingular (C row-reduces to the identity matrix, Theorem NMRRI
[68]) and by Theorem CINM [212],

C−1 =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1


C40 Contributed by Robert Beezer Statement [218]
View this system as LS(C, b), where C is the 4 × 4 matrix from Exercise MISLE.C28 [218] and
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b =


−4
4
−20

9

. Since C was seen to be nonsingular in Exercise MISLE.C28 [218] Theorem SNCM

[223] says the solution, which is unique by Theorem NMUS [70], is given by

C−1b =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1



−4
4
−20

9

 =


2
−1
−2
1


Notice that this solution can be easily checked in the original system of equations.

C41 Contributed by Robert Beezer Statement [218]
The coefficient matrix of this system of equations is

A =

 1 2 −1
2 5 −1
−1 −4 0



and the vector of constants is b =

−3
−4
2

. So by Theorem SLEMM [192] we can convert the system

to the form Ax = b. Row-reducing this matrix yields the identity matrix so by Theorem NMRRI
[68] we know A is nonsingular. This allows us to apply Theorem SNCM [223] to find the unique
solution as

x = A−1b =

−4 4 3
1 −1 −1
−3 2 1

−3
−4
2

 =

 2
−1
3


Remember, you can check this solution easily by evaluating the matrix-vector product Ax (Defini-
tion MVP [191]).

C42 Contributed by Robert Beezer Statement [218]
We can reformulate the linear system as a vector equality with a matrix-vector product via Theorem
SLEMM [192]. The system is then represented by Ax = b where

A =

1 −1 2
1 0 −2
2 −1 −1

 b =

 5
−8
−6


According to Theorem SNCM [223], if A is nonsingular then the (unique) solution will be given by
A−1b. We attempt the computation of A−1 through Theorem CINM [212], or with our favorite
computational device and obtain,

A−1 =

2 3 −2
3 5 −4
1 1 −1


So by Theorem NI [223], we know A is nonsingular, and so the unique solution is

A−1b =

2 3 −2
3 5 −4
1 1 −1

 5
−8
−6

 =

−2
−1
3


T10 Contributed by Robert Beezer Statement [218]
Let D be any 2× 2 matrix that has an inverse (Theorem TTMI [210] can help you construct such
a matrix, I2 is a simple choice). Set A = D and B = (−1)D. While A−1 and B−1 both exist, what
is (A+B)−1? Can the proposed statement be a theorem?
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Section MINM
Matrix Inverses and Nonsingular Matrices

We saw in Theorem CINM [212] that if a square matrix A is nonsingular, then there is a matrix B
so that AB = In. In other words, B is halfway to being an inverse of A. We will see in this section
that B automatically fulfills the second condition (BA = In). Example MWIAA [208] showed
us that the coefficient matrix from Archetype A [685] had no inverse. Not coincidentally, this
coefficient matrix is singular. We’ll make all these connections precise now. Not many examples or
definitions in this section, just theorems.

Subsection NMI
Nonsingular Matrices are Invertible

We need a couple of technical results for starters. Some books would call these minor, but essential,
results “lemmas.” We’ll just call ’em theorems. See Technique LC [677] for more on the
distinction.

The first of these technical results is interesting in that the hypothesis says something about a
product of two square matrices and the conclusion then says the same thing about each individual
matrix in the product.

Theorem NPNT
Nonsingular Product has Nonsingular Terms
Suppose that A and B are square matrices of size n and the product AB is nonsingular. Then A
and B are both nonsingular. �

Proof We’ll do the proof in two parts, each as a proof by contradiction (Technique CD [673]).
Establishing that B is nonsingular is the easier part, so we will do it first, but in reality, we will
need to know that B is nonsingular when we prove that A is nonsingular.

You can also think of this proof as being a study of four possible conclusions in the table below.
One of the four rows must happen (the list is exhaustive). In the proof we learn that the first three
rows lead to contradictions, and so are impossible. That leaves the fourth row as a certainty, which
is our desired conclusion.

A B Case
Singular Singular 1
Nonsingular Singular 1
Singular Nonsingular 2
Nonsingular Nonsingular

Case 1. Suppose B is singular. Then there is a nonzero vector z that is a solution to LS(B, 0). So

(AB)z = A(Bz) Theorem MMA [198]
= A0 Theorem SLEMM [192]
= 0 Theorem MMZM [197]

Because z is a nonzero solution to LS(AB, 0), we conclude that AB is singular (Definition NM
[67]). This is a contradiction, so B is nonsingular, as desired.

Case 2. Suppose A is singular. Then there is a nonzero vector y that is a solution to LS(A, 0).
Now consider the linear system LS(B, y). Since we know B is nonsingular from Case 1, the system
has a unique solution (Theorem NMUS [70]), which we will denote as w. We first claim w is not
the zero vector either. Assuming the opposite, suppose that w = 0 (Technique CD [673]). Then

y = Bw Theorem SLEMM [192]
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= B0 Hypothesis
= 0 Theorem MMZM [197]

contrary to y being nonzero. So w 6= 0. The pieces are in place, so here we go,

(AB)w = A(Bw) Theorem MMA [198]
= Ay Theorem SLEMM [192]
= 0 Theorem SLEMM [192]

So w is a nonzero solution to LS(AB, 0), and thus we can say that AB is singular (Definition NM
[67]). This is a contradiction, so A is nonsingular, as desired.

�

This is a powerful result, because it allows us to begin with a hypothesis that something com-
plicated (the matrix product AB) has the property of being nonsingular, and we can then conclude
that the simpler constituents (A and B individually) then also have the property of being nonsin-
gular. If we had thought that the matrix product was an artificial construction, results like this
would make us begin to think twice.

The contrapositive of this result is equally interesting. It says that if either A or B (or both) is
a singular matrix, then the product AB is also singular. Notice how the negation of the theorem’s
conclusion (A and B both nonsingular) becomes the statement “at least one of A and B is singular.”
(See Technique CP [673].)

Theorem OSIS
One-Sided Inverse is Sufficient
Suppose A and B are square matrices of size n such that AB = In. Then BA = In. �

Proof The matrix In is nonsingular (since it row-reduces easily to In, Theorem NMRRI [68]).
So A and B are nonsingular by Theorem NPNT [221], so in particular B is nonsingular. We can
therefore apply Theorem CINM [212] to assert the existence of a matrix C so that BC = In. This
application of Theorem CINM [212] could be a bit confusing, mostly because of the names of the
matrices involved. B is nonsingular, so there must be a “right-inverse” for B, and we’re calling it
C.

Now

BA = (BA)In Theorem MMIM [197]
= (BA)(BC) Theorem CINM [212]
= B(AB)C Theorem MMA [198]
= BInC Hypothesis
= BC Theorem MMIM [197]
= In Theorem CINM [212]

which is the desired conclusion. �

So Theorem OSIS [222] tells us that if A is nonsingular, then the matrix B guaranteed by
Theorem CINM [212] will be both a “right-inverse” and a “left-inverse” for A, so A is invertible
and A−1 = B.

So if you have a nonsingular matrix, A, you can use the procedure described in Theorem CINM
[212] to find an inverse for A. If A is singular, then the procedure in Theorem CINM [212] will fail
as the first n columns of M will not row-reduce to the identity matrix. However, we can say a bit
more. When A is singular, then A does not have an inverse (which is very different from saying
that the procedure in Theorem CINM [212] fails to find an inverse). This may feel like we are
splitting hairs, but its important that we do not make unfounded assumptions. These observations
motivate the next theorem.
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Theorem NI
Nonsingularity is Invertibility
Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible. �

Proof (⇐) Suppose A is invertible, and suppose that x is any solution to the homogeneous system
LS(A, 0). Then

x = Inx Theorem MMIM [197]

=
(
A−1A

)
x Definition MI [208]

= A−1 (Ax) Theorem MMA [198]

= A−10 Theorem SLEMM [192]
= 0 Theorem MMZM [197]

So the only solution to LS(A, 0) is the zero vector, so by Definition NM [67], A is nonsingular.
(⇒) Suppose now that A is nonsingular. By Theorem CINM [212] we find B so that AB = In.

Then Theorem OSIS [222] tells us that BA = In. So B is A’s inverse, and by construction, A is
invertible. �

So for a square matrix, the properties of having an inverse and of having a trivial null space are
one and the same. Can’t have one without the other.

Theorem NME3
Nonsingular Matrix Equivalences, Round 3
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

�

Proof We can update our list of equivalences for nonsingular matrices (Theorem NME2 [139])
with the equivalent condition from Theorem NI [223]. �

In the case that A is a nonsingular coefficient matrix of a system of equations, the inverse allows
us to very quickly compute the unique solution, for any vector of constants.

Theorem SNCM
Solution with Nonsingular Coefficient Matrix
Suppose that A is nonsingular. Then the unique solution to LS(A, b) is A−1b. �

Proof By Theorem NMUS [70] we know already that LS(A, b) has a unique solution for every
choice of b. We need to show that the expression stated is indeed a solution (the solution). That’s
easy, just “plug it in” to the corresponding vector equation representation (Theorem SLEMM [192]),

A
(
A−1b

)
=
(
AA−1

)
b Theorem MMA [198]

= Inb Definition MI [208]
= b Theorem MMIM [197]

Since Ax = b is true when we substitute A−1b for x, A−1b is a (the!) solution to LS(A, b). �
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Subsection UM
Unitary Matrices

Recall that the adjoint of a matrix is A∗ =
(
A
)t (Definition A [186]).

Definition UM
Unitary Matrices
Suppose that U is a square matrix of size n such that U∗U = In. Then we say U is unitary. 4

This condition may seem rather far-fetched at first glance. Would there be any matrix that
behaved this way? Well, yes, here’s one.

Example UM3
Unitary matrix of size 3

U =


1+i√

5
3+2 i√

55
2+2i√

22
1−i√

5
2+2 i√

55
−3+i√

22
i√
5

3−5 i√
55
− 2√

22


The computations get a bit tiresome, but if you work your way through the computation of U∗U ,
you will arrive at the 3× 3 identity matrix I3. �

Unitary matrices do not have to look quite so gruesome. Here’s a larger one that is a bit more
pleasing.

Example UPM
Unitary permutation matrix
The matrix

P =


0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0


is unitary as can be easily checked. Notice that it is just a rearrangement of the columns of the
5× 5 identity matrix, I5 (Definition IM [68]).

An interesting exercise is to build another 5× 5 unitary matrix, R, using a different rearrange-
ment of the columns of I5. Then form the product PR. This will be another unitary matrix
(Exercise MINM.T10 [228]). If you were to build all 5! = 5× 4× 3× 2× 1 = 120 matrices of this
type you would have a set that remains closed under matrix multiplication. It is an example of
another algebraic structure known as a group since together the set and the one operation (matrix
multiplication here) is closed, associative, has an identity (I5), and inverses (Theorem UMI [224]).
Notice though that the operation in this group is not commutative! �

If a matrix A has only real number entries (we say it is a real matrix) then the defining
property of being unitary simplifies to AtA = In. In this case we, and everybody else, calls the
matrix orthogonal, so you may often encounter this term in your other reading when the complex
numbers are not under consideration.

Unitary matrices have easily computed inverses. They also have columns that form orthonormal
sets. Here are the theorems that show us that unitary matrices are not as strange as they might
initially appear.

Theorem UMI
Unitary Matrices are Invertible
Suppose that U is a unitary matrix of size n. Then U is nonsingular, and U−1 = U∗. �

Proof By Definition UM [224], we know that U∗U = In. The matrix In is nonsingular (since it
row-reduces easily to In, Theorem NMRRI [68]). So by Theorem NPNT [221], U and U∗ are both
nonsingular matrices.
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The equation U∗U = In gets us halfway to an inverse of U , and Theorem OSIS [222] tells us
that then UU∗ = In also. So U and U∗ are inverses of each other (Definition MI [208]). �

Theorem CUMOS
Columns of Unitary Matrices are Orthonormal Sets
Suppose that A is a square matrix of size n with columns S = {A1, A2, A3, . . . , An}. Then A is
a unitary matrix if and only if S is an orthonormal set. �

Proof The proof revolves around recognizing that a typical entry of the product A∗A is an inner
product of columns of A. Here are the details to support this claim.

[A∗A]ij =
n∑
k=1

[A∗]ik [A]kj Theorem EMP [195]

=
n∑
k=1

[(
A
)t]

ik
[A]kj Theorem EMP [195]

=
n∑
k=1

[
A
]
ki

[A]kj Definition TM [182]

=
n∑
k=1

[A]ki [A]kj Definition CCM [184]

=
n∑
k=1

[A]kj [A]ki Property CMCN [662]

=
n∑
k=1

[Aj ]k [Ai]k

= 〈Aj , Ai〉 Definition IP [164]

We now employ this equality in a chain of equivalences,

S = {A1, A2, A3, . . . , An} is an orthonormal set

⇐⇒ 〈Aj , Ai〉 =

{
0 if i 6= j

1 if i = j
Definition ONS [173]

⇐⇒ [A∗A]ij =

{
0 if i 6= j

1 if i = j

⇐⇒ [A∗A]ij = [In]ij , 1 ≤ i ≤ n, 1 ≤ j ≤ n Definition IM [68]

⇐⇒ A∗A = In Definition ME [179]
⇐⇒ A is a unitary matrix Definition UM [224]

�

Example OSMC
Orthonormal set from matrix columns
The matrix

U =


1+i√

5
3+2 i√

55
2+2i√

22
1−i√

5
2+2 i√

55
−3+i√

22
i√
5

3−5 i√
55
− 2√

22


from Example UM3 [224] is a unitary matrix. By Theorem CUMOS [225], its columns


1+i√

5
1−i√

5
i√
5

 ,


3+2 i√
55

2+2 i√
55

3−5 i√
55

 ,


2+2i√
22

−3+i√
22

− 2√
22



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form an orthonormal set. You might find checking the six inner products of pairs of these vectors
easier than doing the matrix product U∗U . Or, because the inner product is anti-commutative
(Theorem IPAC [166]) you only need check three inner products (see Exercise MINM.T12 [228]).
�

When using vectors and matrices that only have real number entries, orthogonal matrices are
those matrices with inverses that equal their transpose. Similarly, the inner product is the familiar
dot product. Keep this special case in mind as you read the next theorem.

Theorem UMPIP
Unitary Matrices Preserve Inner Products
Suppose that U is a unitary matrix of size n and u and v are two vectors from Cn. Then

〈Uu, Uv〉 = 〈u, v〉 and ‖Uv‖ = ‖v‖

�

Proof

〈Uu, Uv〉 = (Uu)tUv Theorem MMIP [199]

= utU tUv Theorem MMT [200]

= utU tUv Theorem MMCC [199]

= ut
(
U
)t
Uv Theorem CCT [664]

= ut
(
U
)t
Uv Theorem MCT [185]

= ut
(
U
)t
Uv Theorem MMCC [199]

= utU∗Uv Definition A [186]

= utInv Definition UM [224]
= utInv DefinitionIM [68]
= utv Theorem MMIM [197]
= 〈u, v〉 Theorem MMIP [199]

The second conclusion is just a specialization of the first conclusion.

‖Uv‖ =
√
‖Uv‖2

=
√
〈Uv, Uv〉 Theorem IPN [167]

=
√
〈v, v〉

=
√
‖v‖2 Theorem IPN [167]

= ‖v‖

�

Aside from the inherent interest in this theorem, it makes a bigger statement about unitary
matrices. When we view vectors geometrically as directions or forces, then the norm equates to
a notion of length. If we transform a vector by multiplication with a unitary matrix, then the
length (norm) of that vector stays the same. If we consider column vectors with two or three slots
containing only real numbers, then the inner product of two such vectors is just the dot product,
and this quantity can be used to compute the angle between two vectors. When two vectors are
multiplied (transformed) by the same unitary matrix, their dot product is unchanged and their
individual lengths are unchanged. The results in the angle between the two vectors remaining
unchanged.

A “unitary transformation” (matrix-vector products with unitary matrices) thus preserve geo-
metrical relationships among vectors representing directions, forces, or other physical quantities. In
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the case of a two-slot vector with real entries, this is simply a rotation. These sorts of computations
are exceedingly important in computer graphics such as games and real-time simulations, especially
when increased realism is achieved by performing many such computations quickly. We will see
unitary matrices again in subsequent sections (especially Theorem OD [591]) and in each instance,
consider the interpretation of the unitary matrix as a sort of geometry-preserving transformation.
Some authors use the term isometry to highlight this behavior. We will speak loosely of a unitary
matrix as being a sort of generalized rotation.

A final reminder: the terms “dot product,” “symmetric matrix” and “orthogonal matrix” used
in reference to vectors or matrices with real number entries correspond to the terms inner product,
Hermitian matrix and unitary matrix when we generalize to include complex number entries, so
keep that in mind as you read elsewhere.

Subsection READ
Reading Questions

1. Show how to use the inverse of a matrix to solve the system of equations below and state the
resulting solution.

4x1 + 10x2 = 12
2x1 + 6x2 = 4

2. In the reading questions for Section MISLE [207] you were asked to find the inverse of the
3× 3 matrix below.  2 3 1

1 −2 −3
−2 4 6


Because the matrix was not nonsingular, you had no theorems at that point that would allow
you to compute the inverse. Explain why you now know that the inverse does not exist (which
is different than not being able to compute it) by quoting the relevant theorem’s acronym.

3. Is the matrix A unitary? Why?

A =

[
1√
22

(4 + 2i) 1√
374

(5 + 3i)
1√
22

(−1− i) 1√
374

(12 + 14i)

]
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Subsection EXC
Exercises

C40 Solve the system of equations below using the inverse of a matrix.

x1 + x2 + 3x3 + x4 = 5
−2x1 − x2 − 4x3 − x4 = −7
x1 + 4x2 + 10x3 + 2x4 = 9
−2x1 − 4x3 + 5x4 = 9

Contributed by Robert Beezer Solution [229]

M20 Construct an example of a 4× 4 unitary matrix.
Contributed by Robert Beezer Solution [229]

T10 Suppose that Q and P are unitary matrices of size n. Prove that QP is a unitary matrix.
Contributed by Robert Beezer

T11 Prove that Hermitian matrices (Definition HM [201]) have real entries on the diagonal. More
precisely, suppose that A is a Hermitian matrix of size n. Then [A]ii ∈ R, 1 ≤ i ≤ n.
Contributed by Robert Beezer

T12 Suppose that we are checking if a square matrix of size n is unitary. Show that a straight-
forward application of Theorem CUMOS [225] requires the computation of n2 inner products when
the matrix is unitary, and fewer when the matrix is not orthogonal. Then show that this maximum
number of inner products can be reduced to 1

2n(n+ 1) in light of Theorem IPAC [166].
Contributed by Robert Beezer
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Subsection SOL
Solutions

C40 Contributed by Robert Beezer Statement [228]
The coefficient matrix and vector of constants for the system are

1 1 3 1
−2 −1 −4 −1
1 4 10 2
−2 0 −4 5

 b =


5
−7
9
9


A−1 can be computed by using a calculator, or by the method of Theorem CINM [212]. Then
Theorem SNCM [223] says the unique solution is

A−1b =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1




5
−7
9
9

 =


1
−2
1
3


M20 Contributed by Robert Beezer Statement [228]
The 4 × 4 identity matrix, I4, would be one example (Definition IM [68]). Any of the 23 other
rearrangements of the columns of I4 would be a simple, but less trivial, example. See Example
UPM [224].
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Section CRS
Column and Row Spaces

Theorem SLSLC [92] showed us that there is a natural correspondence between solutions to linear
systems and linear combinations of the columns of the coefficient matrix. This idea motivates the
following important definition.

Definition CSM
Column Space of a Matrix
Suppose that A is an m×n matrix with columns {A1, A2, A3, . . . , An}. Then the column space
of A, written C(A), is the subset of Cm containing all linear combinations of the columns of A,

C(A) = 〈{A1, A2, A3, . . . , An}〉

(This definition contains Notation CSM.) 4

Some authors refer to the column space of a matrix as the range, but we will reserve this term
for use with linear transformations (Definition RLT [483]).

Subsection CSSE
Column Spaces and Systems of Equations

Upon encountering any new set, the first question we ask is what objects are in the set, and which
objects are not? Here’s an example of one way to answer this question, and it will motivate a
theorem that will then answer the question precisely.

Example CSMCS
Column space of a matrix and consistent systems
Archetype D [698] and Archetype E [702] are linear systems of equations, with an identical 3 × 4
coefficient matrix, which we call A here. However, Archetype D [698] is consistent, while Archetype
E [702] is not. We can explain this difference by employing the column space of the matrix A.

The column vector of constants, b, in Archetype D [698] is

b =

 8
−12

4


One solution to LS(A, b), as listed, is

x =


7
8
1
3


By Theorem SLSLC [92], we can summarize this solution as a linear combination of the columns
of A that equals b,

7

 2
−3
1

+ 8

1
4
1

+ 1

 7
−5
4

+ 3

−7
−6
−5

 =

 8
−12

4

 = b.

This equation says that b is a linear combination of the columns of A, and then by Definition CSM
[231], we can say that b ∈ C(A).
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On the other hand, Archetype E [702] is the linear system LS(A, c), where the vector of
constants is

c =

2
3
2


and this system of equations is inconsistent. This means c 6∈ C(A), for if it were, then it would equal
a linear combination of the columns of A and Theorem SLSLC [92] would lead us to a solution of
the system LS(A, c). �

So if we fix the coefficient matrix, and vary the vector of constants, we can sometimes find
consistent systems, and sometimes inconsistent systems. The vectors of constants that lead to
consistent systems are exactly the elements of the column space. This is the content of the next
theorem, and since it is an equivalence, it provides an alternate view of the column space.

Theorem CSCS
Column Spaces and Consistent Systems
Suppose A is an m× n matrix and b is a vector of size m. Then b ∈ C(A) if and only if LS(A, b)
is consistent. �

Proof (⇒) Suppose b ∈ C(A). Then we can write b as some linear combination of the columns of
A. By Theorem SLSLC [92] we can use the scalars from this linear combination to form a solution
to LS(A, b), so this system is consistent.

(⇐) If LS(A, b) is consistent, there is a solution that may be used with Theorem SLSLC [92]
to write b as a linear combination of the columns of A. This qualifies b for membership in C(A).
�

This theorem tells us that asking if the system LS(A, b) is consistent is exactly the same
question as asking if b is in the column space of A. Or equivalently, it tells us that the column
space of the matrix A is precisely those vectors of constants, b, that can be paired with A to create
a system of linear equations LS(A, b) that is consistent.

Employing Theorem SLEMM [192] we can form the chain of equivalences

b ∈ C(A) ⇐⇒ LS(A, b) is consistent ⇐⇒ Ax = b for some x

Thus, an alternative (and popular) definition of the column space of an m× n matrix A is

C(A) = {y ∈ Cm | y = Ax for some x ∈ Cn} = {Ax | x ∈ Cn} ⊆ Cm

We recognize this as saying create all the matrix vector products possible with the matrix A by
letting x range over all of the possibilities. By Definition MVP [191] we see that this means take
all possible linear combinations of the columns of A — precisely the definition of the column space
(Definition CSM [231]) we have chosen.

Notice how this formulation of the column space looks very much like the definition of the null
space of a matrix (Definition NSM [59]), but for a rectangular matrix the column vectors of C(A)
and N (A) have different sizes, so the sets are very different.

Given a vector b and a matrix A it is now very mechanical to test if b ∈ C(A). Form the
linear system LS(A, b), row-reduce the augmented matrix, [A | b], and test for consistency with
Theorem RCLS [48]. Here’s an example of this procedure.

Example MCSM
Membership in the column space of a matrix
Consider the column space of the 3× 4 matrix A,

A =

 3 2 1 −4
−1 1 −2 3
2 −4 6 −8


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We first show that v =

18
−6
12

 is in the column space of A, v ∈ C(A). Theorem CSCS [232] says we

need only check the consistency of LS(A, v). Form the augmented matrix and row-reduce, 3 2 1 −4 18
−1 1 −2 3 −6
2 −4 6 −8 12

 RREF−−−−→

 1 0 1 −2 6
0 1 −1 1 0
0 0 0 0 0


Without a leading 1 in the final column, Theorem RCLS [48] tells us the system is consistent and
therefore by Theorem CSCS [232], v ∈ C(A).

If we wished to demonstrate explicitly that v is a linear combination of the columns of A, we
can find a solution (any solution) of LS(A, v) and use Theorem SLSLC [92] to construct the desired
linear combination. For example, set the free variables to x3 = 2 and x4 = 1. Then a solution has
x2 = 1 and x1 = 6. Then by Theorem SLSLC [92],

v =

18
−6
12

 = 6

 3
−1
2

+ 1

 2
1
−4

+ 2

 1
−2
6

+ 1

−4
3
−8



Now we show that w =

 2
1
−3

 is not in the column space of A, w 6∈ C(A). Theorem CSCS [232]

says we need only check the consistency of LS(A, w). Form the augmented matrix and row-reduce, 3 2 1 −4 2
−1 1 −2 3 1
2 −4 6 −8 −3

 RREF−−−−→

 1 0 1 −2 0
0 1 −1 1 0
0 0 0 0 1


With a leading 1 in the final column, Theorem RCLS [48] tells us the system is inconsistent and
therefore by Theorem CSCS [232], w 6∈ C(A). �

Subsection CSSOC
Column Space Spanned by Original Columns

So we have a foolproof, automated procedure for determining membership in C(A). While this
works just fine a vector at a time, we would like to have a more useful description of the set C(A)
as a whole. The next example will preview the first of two fundamental results about the column
space of a matrix.

Example CSTW
Column space, two ways
Consider the 5× 7 matrix A, 

2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2


According to the definition (Definition CSM [231]), the column space of A is

C(A) =

〈


2
1
0
1
−2

 ,


4
2
0
2
−4

 ,


1
1
1
−1
1

 ,

−1
0
4
2
3

 ,


1
2
1
1
−1

 ,


4
4
8
9
−2

 ,


4
7
7
6
−2



〉

Version 1.30



234 Section CRS Column and Row Spaces

While this is a concise description of an infinite set, we might be able to describe the span with
fewer than seven vectors. This is the substance of Theorem BS [156]. So we take these seven
vectors and make them the columns of matrix, which is simply the original matrix A again. Now
we row-reduce,

2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2

 RREF−−−−→


1 2 0 0 0 3 1
0 0 1 0 0 −1 0
0 0 0 1 0 2 1
0 0 0 0 1 1 3
0 0 0 0 0 0 0


The pivot columns are D = {1, 3, 4, 5}, so we can create the set

T =




2
1
0
1
−2

 ,


1
1
1
−1
1

 ,

−1
0
4
2
3

 ,


1
2
1
1
−1




and know that C(A) = 〈T 〉 and T is a linearly independent set of columns from the set of columns
of A. �

We will now formalize the previous example, which will make it trivial to determine a linearly
independent set of vectors that will span the column space of a matrix, and is constituted of just
columns of A.

Theorem BCS
Basis of the Column Space
Suppose that A is an m× n matrix with columns A1, A2, A3, . . . , An, and B is a row-equivalent
matrix in reduced row-echelon form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the set
of column indices where B has leading 1’s. Let T = {Ad1 , Ad2 , Ad3 , . . . , Adr}. Then

1. T is a linearly independent set.

2. C(A) = 〈T 〉.

�

Proof Definition CSM [231] describes the column space as the span of the set of columns of A.
Theorem BS [156] tells us that we can reduce the set of vectors used in a span. If we apply Theorem
BS [156] to C(A), we would collect the columns of A into a matrix (which would just be A again)
and bring the matrix to reduced row-echelon form, which is the matrix B in the statement of the
theorem. In this case, the conclusions of Theorem BS [156] applied to A, B and C(A) are exactly
the conclusions we desire. �

This is a nice result since it gives us a handful of vectors that describe the entire column space
(through the span), and we believe this set is as small as possible because we cannot create any more
relations of linear dependence to trim it down further. Furthermore, we defined the column space
(Definition CSM [231]) as all linear combinations of the columns of the matrix, and the elements
of the set S are still columns of the matrix (we won’t be so lucky in the next two constructions of
the column space).

Procedurally this theorem is extremely easy to apply. Row-reduce the original matrix, identify
r columns with leading 1’s in this reduced matrix, and grab the corresponding columns of the
original matrix. But it is still important to study the proof of Theorem BS [156] and its motivation
in Example COV [153] which lie at the root of this theorem. We’ll trot through an example all the
same.

Example CSOCD
Column space, original columns, Archetype D
Let’s determine a compact expression for the entire column space of the coefficient matrix of the
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system of equations that is Archetype D [698]. Notice that in Example CSMCS [231] we were only
determining if individual vectors were in the column space or not, now we are describing the entire
column space.

To start with the application of Theorem BCS [234], call the coefficient matrix A

A =

 2 1 7 −7
−3 4 −5 −6
1 1 4 −5

 .
and row-reduce it to reduced row-echelon form,

B =

 1 0 3 −2
0 1 1 −3
0 0 0 0

 .
There are leading 1’s in columns 1 and 2, so D = {1, 2}. To construct a set that spans C(A), just
grab the columns of A indicated by the set D, so

C(A) =

〈
 2
−3
1

 ,
1

4
1


〉
.

That’s it.
In Example CSMCS [231] we determined that the vector

c =

2
3
2


was not in the column space of A. Try to write c as a linear combination of the first two columns
of A. What happens?

Also in Example CSMCS [231] we determined that the vector

b =

 8
−12

4


was in the column space of A. Try to write b as a linear combination of the first two columns of
A. What happens? Did you find a unique solution to this question? Hmmmm. �

Subsection CSNM
Column Space of a Nonsingular Matrix

Let’s specialize to square matrices and contrast the column spaces of the coefficient matrices in
Archetype A [685] and Archetype B [689].

Example CSAA
Column space of Archetype A
The coefficient matrix in Archetype A [685] is

A =

1 −1 2
2 1 1
1 1 0


which row-reduces to  1 0 1

0 1 −1
0 0 0

 .
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Columns 1 and 2 have leading 1’s, so by Theorem BCS [234] we can write

C(A) = 〈{A1, A2}〉 =

〈
1

2
1

 ,
−1

1
1


〉
.

We want to show in this example that C(A) 6= C3. So take, for example, the vector b =

1
3
2

. Then

there is no solution to the system LS(A, b), or equivalently, it is not possible to write b as a linear
combination of A1 and A2. Try one of these two computations yourself. (Or try both!). Since
b 6∈ C(A), the column space of A cannot be all of C3. So by varying the vector of constants, it is
possible to create inconsistent systems of equations with this coefficient matrix (the vector b being
one such example).

In Example MWIAA [208] we wished to show that the coefficient matrix from Archetype A
[685] was not invertible as a first example of a matrix without an inverse. Our device there was to
find an inconsistent linear system with A as the coefficient matrix. The vector of constants in that
example was b, deliberately chosen outside the column space of A. �

Example CSAB
Column space of Archetype B
The coefficient matrix in Archetype B [689], call it B here, is known to be nonsingular (see Example
NM [68]). By Theorem NMUS [70], the linear system LS(B, b) has a (unique) solution for every
choice of b. Theorem CSCS [232] then says that b ∈ C(B) for all b ∈ C3. Stated differently, there
is no way to build an inconsistent system with the coefficient matrix B, but then we knew that
already from Theorem NMUS [70]. �

Example CSAA [235] and Example CSAB [236] together motivate the following equivalence,
which says that nonsingular matrices have column spaces that are as big as possible.

Theorem CSNM
Column Space of a Nonsingular Matrix
Suppose A is a square matrix of size n. Then A is nonsingular if and only if C(A) = Cn. �

Proof (⇒) Suppose A is nonsingular. We wish to establish the set equality C(A) = Cn. By
Definition CSM [231], C(A) ⊆ Cn.

To show that Cn ⊆ C(A) choose b ∈ Cn. By Theorem NMUS [70], we know the linear system
LS(A, b) has a (unique) solution and therefore is consistent. Theorem CSCS [232] then says that
b ∈ C(A). So by Definition SE [666], C(A) = Cn.

(⇐) If ei is column i of the n × n identity matrix (Definition SUV [169]) and by hypothesis
C(A) = Cn, then ei ∈ C(A) for 1 ≤ i ≤ n. By Theorem CSCS [232], the system LS(A, ei) is
consistent for 1 ≤ i ≤ n. Let bi denote any one particular solution to LS(A, ei), 1 ≤ i ≤ n.

Define the n× n matrix B = [b1|b2|b3| . . . |bn]. Then

AB = A [b1|b2|b3| . . . |bn]
= [Ab1|Ab2|Ab3| . . . |Abn] Definition MM [194]
= [e1|e2|e3| . . . |en]
= In Definition SUV [169]

So the matrix B is a “right-inverse” for A. By Theorem NMRRI [68], In is a nonsingular matrix,
so by Theorem NPNT [221] both A and B are nonsingular. Thus, in particular, A is nonsingular.
(Travis Osborne contributed to this proof.) �

With this equivalence for nonsingular matrices we can update our list, Theorem NME3 [223].

Theorem NME4
Nonsingular Matrix Equivalences, Round 4
Suppose that A is a square matrix of size n. The following are equivalent.
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1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

�

Proof Since Theorem CSNM [236] is an equivalence, we can add it to the list in Theorem NME3
[223]. �

Subsection RSM
Row Space of a Matrix

The rows of a matrix can be viewed as vectors, since they are just lists of numbers, arranged
horizontally. So we will transpose a matrix, turning rows into columns, so we can then manipulate
rows as column vectors. As a result we will be able to make some new connections between row
operations and solutions to systems of equations. OK, here is the second primary definition of this
section.

Definition RSM
Row Space of a Matrix
Suppose A is an m × n matrix. Then the row space of A, R(A), is the column space of At, i.e.
R(A) = C

(
At
)
.

(This definition contains Notation RSM.) 4
Informally, the row space is the set of all linear combinations of the rows of A. However, we

write the rows as column vectors, thus the necessity of using the transpose to make the rows into
columns. Additionally, with the row space defined in terms of the column space, all of the previous
results of this section can be applied to row spaces.

Notice that if A is a rectangular m×n matrix, then C(A) ⊆ Cm, while R(A) ⊆ Cn and the two
sets are not comparable since they do not even hold objects of the same type. However, when A is
square of size n, both C(A) and R(A) are subsets of Cn, though usually the sets will not be equal
(but see Exercise CRS.M20 [245]).

Example RSAI
Row space of Archetype I
The coefficient matrix in Archetype I [718] is

I =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
To build the row space, we transpose the matrix,

It =



1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


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Then the columns of this matrix are used in a span to build the row space,

R(I) = C
(
It
)

=

〈




1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13

7


,



0
0
2
−3
−4
12
−8


,



−1
−4
2
4
8
−31
37





〉
.

However, we can use Theorem BCS [234] to get a slightly better description. First, row-reduce It,

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Since there are leading 1’s in columns with indices D = {1, 2, 3}, the column space of It can be
spanned by just the first three columns of It,

R(I) = C
(
It
)

=

〈




1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13

7


,



0
0
2
−3
−4
12
−8





〉
.

�

The row space would not be too interesting if it was simply the column space of the transpose.
However, when we do row operations on a matrix we have no effect on the many linear combinations
that can be formed with the rows of the matrix. This is stated more carefully in the following
theorem.

Theorem REMRS
Row-Equivalent Matrices have equal Row Spaces
Suppose A and B are row-equivalent matrices. Then R(A) = R(B). �

Proof Two matrices are row-equivalent (Definition REM [27]) if one can be obtained from another
by a sequence of (possibly many) row operations. We will prove the theorem for two matrices that
differ by a single row operation, and then this result can be applied repeatedly to get the full
statement of the theorem. The row spaces of A and B are spans of the columns of their transposes.
For each row operation we perform on a matrix, we can define an analogous operation on the
columns. Perhaps we should call these column operations. Instead, we will still call them row
operations, but we will apply them to the columns of the transposes.

Refer to the columns of At and Bt as Ai and Bi, 1 ≤ i ≤ m. The row operation that switches
rows will just switch columns of the transposed matrices. This will have no effect on the possible
linear combinations formed by the columns.

Suppose that Bt is formed from At by multiplying column At by α 6= 0. In other words,
Bt = αAt, and Bi = Ai for all i 6= t. We need to establish that two sets are equal, C

(
At
)

= C
(
Bt
)
.

We will take a generic element of one and show that it is contained in the other.

β1B1+β2B2 + β3B3 + · · ·+ βtBt + · · ·+ βmBm
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= β1A1 + β2A2 + β3A3 + · · ·+ βt (αAt) + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ (αβt) At + · · ·+ βmAm

says that C
(
Bt
)
⊆ C

(
At
)
. Similarly,

γ1A1+γ2A2 + γ3A3 + · · ·+ γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+
(γt
α
α
)

At + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ γt
α

(αAt) + · · ·+ γmAm

= γ1B1 + γ2B2 + γ3B3 + · · ·+ γt
α

Bt + · · ·+ γmBm

says that C
(
At
)
⊆ C

(
Bt
)
. So R(A) = C

(
At
)

= C
(
Bt
)

= R(B) when a single row operation of the
second type is performed.

Suppose now that Bt is formed from At by replacing At with αAs + At for some α ∈ C and
s 6= t. In other words, Bt = αAs + At, and Bi = Ai for i 6= t.

β1B1+β2B2 + β3B3 + · · ·+ βsBs + · · ·+ βtBt + · · ·+ βmBm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + · · ·+ βt (αAs + At) + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + · · ·+ (βtα) As + βtAt + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + (βtα) As + · · ·+ βtAt + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ (βs + βtα) As + · · ·+ βtAt + · · ·+ βmAm

says that C
(
Bt
)
⊆ C

(
At
)
. Similarly,

γ1A1 + γ2A2 + γ3A3 + · · ·+ γsAs + · · ·+ γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ γsAs + · · ·+ (−αγtAs + αγtAs) + γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ (−αγtAs) + γsAs + · · ·+ (αγtAs + γtAt) + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ (−αγt + γs) As + · · ·+ γt (αAs + At) + · · ·+ γmAm

= γ1B1 + γ2B2 + γ3B3 + · · ·+ (−αγt + γs) Bs + · · ·+ γtBt + · · ·+ γmBm

says that C
(
At
)
⊆ C

(
Bt
)
. So R(A) = C

(
At
)

= C
(
Bt
)

= R(B) when a single row operation of the
third type is performed.

So the row space of a matrix is preserved by each row operation, and hence row spaces of
row-equivalent matrices are equal sets. �

Example RSREM
Row spaces of two row-equivalent matrices
In Example TREM [27] we saw that the matrices

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent by demonstrating a sequence of two row operations that converted A into B.
Applying Theorem REMRS [238] we can say

R(A) =

〈


2
−1
3
4

 ,


5
2
−2
3

 ,


1
1
0
6



〉

=

〈


1
1
0
6

 ,


3
0
−2
−9

 ,


2
−1
3
4



〉

= R(B)

�

Theorem REMRS [238] is at its best when one of the row-equivalent matrices is in reduced
row-echelon form. The vectors that correspond to the zero rows can be ignored. (Who needs the
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zero vector when building a span? See Exercise LI.T10 [145].) The echelon pattern insures that
the nonzero rows yield vectors that are linearly independent. Here’s the theorem.

Theorem BRS
Basis for the Row Space
Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S
be the set of nonzero columns of Bt. Then

1. R(A) = 〈S〉.

2. S is a linearly independent set.

�

Proof From Theorem REMRS [238] we know that R(A) = R(B). If B has any zero rows, these
correspond to columns of Bt that are the zero vector. We can safely toss out the zero vector in
the span construction, since it can be recreated from the nonzero vectors by a linear combination
where all the scalars are zero. So R(A) = 〈S〉.

Suppose B has r nonzero rows and let D = {d1, d2, d3, . . . , dr} denote the column indices
of B that have a leading one in them. Denote the r column vectors of Bt, the vectors in S,
as B1, B2, B3, . . . , Br. To show that S is linearly independent, start with a relation of linear
dependence

α1B1 + α2B2 + α3B3 + · · ·+ αrBr = 0

Now consider this vector equality in location di. Since B is in reduced row-echelon form, the entries
of column di of B are all zero, except for a (leading) 1 in row i. Thus, in Bt, row di is all zeros,
excepting a 1 in column i. So, for 1 ≤ i ≤ r,

0 = [0]di Definition ZCV [24]

= [α1B1 + α2B2 + α3B3 + · · ·+ αrBr]di Definition RLDCV [133]

= [α1B1]di + [α2B2]di + [α3B3]di + · · ·+ [αrBr]di + Definition MA [179]

= α1 [B1]di + α2 [B2]di + α3 [B3]di + · · ·+ αr [Br]di + Definition MSM [180]

= α1(0) + α2(0) + α3(0) + · · ·+ αi(1) + · · ·+ αr(0) Definition RREF [28]
= αi

So we conclude that αi = 0 for all 1 ≤ i ≤ r, establishing the linear independence of S (Definition
LICV [133]). �

Example IAS
Improving a span
Suppose in the course of analyzing a matrix (its column space, its null space, its. . . ) we encounter
the following set of vectors, described by a span

X =

〈


1
2
1
6
6

 ,


3
−1
2
−1
6

 ,


1
−1
0
−1
−2

 ,

−3
2
−3
6
−10



〉

Let A be the matrix whose rows are the vectors in X, so by design X = R(A),

A =


1 2 1 6 6
3 −1 2 −1 6
1 −1 0 −1 −2
−3 2 −3 6 −10


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Row-reduce A to form a row-equivalent matrix in reduced row-echelon form,

B =


1 0 0 2 −1
0 1 0 3 1
0 0 1 −2 5
0 0 0 0 0


Then Theorem BRS [240] says we can grab the nonzero columns of Bt and write

X = R(A) = R(B) =

〈


1
0
0
2
−1

 ,


0
1
0
3
1

 ,


0
0
1
−2
5



〉

These three vectors provide a much-improved description of X. There are fewer vectors, and the
pattern of zeros and ones in the first three entries makes it easier to determine membership in
X. And all we had to do was row-reduce the right matrix and toss out a zero row. Next to row
operations themselves, this is probably the most powerful computational technique at your disposal
as it quickly provides a much improved description of a span, any span. �

Theorem BRS [240] and the techniques of Example IAS [240] will provide yet another description
of the column space of a matrix. First we state a triviality as a theorem, so we can reference it
later.

Theorem CSRST
Column Space, Row Space, Transpose
Suppose A is a matrix. Then C(A) = R

(
At
)
. �

Proof

C(A) = C
((
At
)t) Theorem TT [183]

= R
(
At
)

Definition RSM [237]

�

So to find another expression for the column space of a matrix, build its transpose, row-reduce
it, toss out the zero rows, and convert the nonzero rows to column vectors to yield an improved set
for the span construction. We’ll do Archetype I [718], then you do Archetype J [722].

Example CSROI
Column space from row operations, Archetype I
To find the column space of the coefficient matrix of Archetype I [718], we proceed as follows. The
matrix is

I =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
The transpose is 

1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


.
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Row-reduced this becomes, 

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Now, using Theorem CSRST [241] and Theorem BRS [240]

C(I) = R
(
It
)

=

〈


1
0
0
−31

7

 ,


0
1
0
12
7

 ,


0
0
1
13
7



〉
.

This is a very nice description of the column space. Fewer vectors than the 7 involved in the
definition, and the pattern of the zeros and ones in the first 3 slots can be used to advantage.
For example, Archetype I [718] is presented as a consistent system of equations with a vector of
constants

b =


3
9
1
4

 .
Since LS(I, b) is consistent, Theorem CSCS [232] tells us that b ∈ C(I). But we could see this
quickly with the following computation, which really only involves any work in the 4th entry of the
vectors as the scalars in the linear combination are dictated by the first three entries of b.

b =


3
9
1
4

 = 3


1
0
0
−31

7

+ 9


0
1
0
12
7

+ 1


0
0
1
13
7


Can you now rapidly construct several vectors, b, so that LS(I, b) is consistent, and several more
so that the system is inconsistent? �

Subsection READ
Reading Questions

1. Write the column space of the matrix below as the span of a set of three vectors and explain
your choice of method.  1 3 1 3

2 0 1 1
−1 2 1 0


2. Suppose that A is an n× n nonsingular matrix. What can you say about its column space?

3. Is the vector


0
5
2
3

 in the row space of the following matrix? Why or why not?

 1 3 1 3
2 0 1 1
−1 2 1 0


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Subsection EXC
Exercises

C30 Example CSOCD [234] expresses the column space of the coefficient matrix from Archetype
D [698] (call the matrix A here) as the span of the first two columns of A. In Example CSMCS
[231] we determined that the vector

c =

2
3
2


was not in the column space of A and that the vector

b =

 8
−12

4


was in the column space of A. Attempt to write c and b as linear combinations of the two vectors in
the span construction for the column space in Example CSOCD [234] and record your observations.
Contributed by Robert Beezer Solution [247]

C31 For the matrix A below find a set of vectors T meeting the following requirements: (1) the
span of T is the column space of A, that is, 〈T 〉 = C(A), (2) T is linearly independent, and (3) the
elements of T are columns of A.

A =


2 1 4 −1 2
1 −1 5 1 1
−1 2 −7 0 1
2 −1 8 −1 2


Contributed by Robert Beezer Solution [247]

C32 In Example CSAA [235], verify that the vector b is not in the column space of the coefficient
matrix.
Contributed by Robert Beezer

C33 Find a linearly independent set S so that the span of S, 〈S〉, is row space of the matrix B,
and S is linearly independent.

B =

 2 3 1 1
1 1 0 1
−1 2 3 −4


Contributed by Robert Beezer Solution [247]

C34 For the 3× 4 matrix A and the column vector y ∈ C4 given below, determine if y is in the
row space of A. In other words, answer the question: y ∈ R(A)? (15 points)

A =

−2 6 7 −1
7 −3 0 −3
8 0 7 6

 y =


2
1
3
−2


Contributed by Robert Beezer Solution [247]

C35 For the matrix A below, find two different linearly independent sets whose spans equal the
column space of A, C(A), such that
(a) the elements are each columns of A.
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(b) the set is obtained by a procedure that is substantially different from the procedure you use
in part (a).

A =

 3 5 1 −2
1 2 3 3
−3 −4 7 13


Contributed by Robert Beezer Solution [248]

C40 The following archetypes are systems of equations. For each system, write the vector of
constants as a linear combination of the vectors in the span construction for the column space
provided by Theorem BCS [234] (these vectors are listed for each of these archetypes).
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]
Archetype E [702]
Archetype F [705]
Archetype G [710]
Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer

C42 The following archetypes are either matrices or systems of equations with coefficient matri-
ces. For each matrix, compute a set of column vectors such that (1) the vectors are columns of the
matrix, (2) the set is linearly independent, and (3) the span of the set is the column space of the
matrix. See Theorem BCS [234].
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]
Archetype K [727]
Archetype L [731]

Contributed by Robert Beezer

C50 The following archetypes are either matrices or systems of equations with coefficient matri-
ces. For each matrix, compute a set of column vectors such that (1) the set is linearly independent,
and (2) the span of the set is the row space of the matrix. See Theorem BRS [240].
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]
Archetype K [727]
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Archetype L [731]

Contributed by Robert Beezer

C51 The following archetypes are either matrices or systems of equations with coefficient ma-
trices. For each matrix, compute the column space as the span of a linearly independent set as
follows: transpose the matrix, row-reduce, toss out zero rows, convert rows into column vectors.
See Example CSROI [241].
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]
Archetype K [727]
Archetype L [731]

Contributed by Robert Beezer

C52 The following archetypes are systems of equations. For each different coefficient matrix build
two new vectors of constants. The first should lead to a consistent system and the second should
lead to an inconsistent system. Descriptions of the column space as spans of linearly independent
sets of vectors with “nice patterns” of zeros and ones might be most useful and instructive in
connection with this exercise. (See the end of Example CSROI [241].)
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer

M10 For the matrix E below, find vectors b and c so that the system LS(E, b) is consistent and
LS(E, c) is inconsistent.

E =

−2 1 1 0
3 −1 0 2
4 1 1 6


Contributed by Robert Beezer Solution [248]

M20 Usually the column space and null space of a matrix contain vectors of different sizes. For
a square matrix, though, the vectors in these two sets are the same size. Usually the two sets will
be different. Construct an example of a square matrix where the column space and null space are
equal.
Contributed by Robert Beezer Solution [248]

M21 We have a variety of theorems about how to create column spaces and row spaces and
they frequently involve row-reducing a matrix. Here is a procedure that some try to use to get
a column space. Begin with an m × n matrix A and row-reduce to a matrix B with columns
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B1, B2, B3, . . . , Bn. Then form the column space of A as

C(A) = 〈{B1, B2, B3, . . . , Bn}〉 = C(B)

This is not not a legitimate procedure, and therefore is not a theorem. Construct an example to
show that the procedure will not in general create the column space of A.
Contributed by Robert Beezer Solution [248]

T40 Suppose that A is an m× n matrix and B is an n× p matrix. Prove that the column space
of AB is a subset of the column space of A, that is C(AB) ⊆ C(A). Provide an example where the
opposite is false, in other words give an example where C(A) 6⊆ C(AB). (Compare with Exercise
MM.T40 [203].)
Contributed by Robert Beezer Solution [249]

T41 Suppose that A is an m × n matrix and B is an n × n nonsingular matrix. Prove that the
column space of A is equal to the column space of AB, that is C(A) = C(AB). (Compare with
Exercise MM.T41 [203] and Exercise CRS.T40 [246].)
Contributed by Robert Beezer Solution [249]

T45 Suppose that A is an m × n matrix and B is an n ×m matrix where AB is a nonsingular
matrix. Prove that
(1) N (B) = {0}
(2) C(B) ∩N (A) = {0}
Discuss the case when m = n in connection with Theorem NPNT [221].
Contributed by Robert Beezer Solution [249]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [243]
In each case, begin with a vector equation where one side contains a linear combination of the two
vectors from the span construction that gives the column space of A with unknowns for scalars, and
then use Theorem SLSLC [92] to set up a system of equations. For c, the corresponding system
has no solution, as we would expect.

For b there is a solution, as we would expect. What is interesting is that the solution is unique.
This is a consequence of the linear independence of the set of two vectors in the span construction.
If we wrote b as a linear combination of all four columns of A, then there would be infinitely many
ways to do this.

C31 Contributed by Robert Beezer Statement [243]
Theorem BCS [234] is the right tool for this problem. Row-reduce this matrix, identify the pivot
columns and then grab the corresponding columns of A for the set T . The matrix A row-reduces
to 

1 0 3 0 0
0 1 −2 0 0
0 0 0 1 0
0 0 0 0 1


So D = {1, 2, 4, 5} and then

T = {A1, A2, A4, A5} =




2
1
−1
2

 ,


1
−1
2
−1

 ,

−1
1
0
−1

 ,


2
1
1
2




has the requested properties.

C33 Contributed by Robert Beezer Statement [243]
Theorem BRS [240] is the most direct route to a set with these properties. Row-reduce, toss zero
rows, keep the others. You could also transpose the matrix, then look for the column space by
row-reducing the transpose and applying Theorem BCS [234]. We’ll do the former,

B
RREF−−−−→

 1 0 −1 2
0 1 1 −1
0 0 0 0


So the set S is

S =




1
0
−1
2

 ,


0
1
1
−1




C34 Contributed by Robert Beezer Statement [243]

y ∈ R(A) ⇐⇒ y ∈ C
(
At
)

Definition RSM [237]
⇐⇒ LS

(
At, y

)
is consistent Theorem CSCS [232]

The augmented matrix
[
At
∣∣ y
]

row reduces to
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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and with a leading 1 in the final column Theorem RCLS [48] tells us the linear system is inconsistent
and so y 6∈ R(A).

C35 Contributed by Robert Beezer Statement [243]
(a) By Theorem BCS [234] we can row-reduce A, identify pivot columns with the set D, and
“keep” those columns of A and we will have a set with the desired properties.

A
RREF−−−−→

 1 0 −13 −19
0 1 8 11
0 0 0 0


So we have the set of pivot columns D = {1, 2} and we “keep” the first two columns of A,

 3
1
−3

 ,
 5

2
−4


(b) We can view the column space as the row space of the transpose (Theorem CSRST [241]). We
can get a basis of the row space of a matrix quickly by bringing the matrix to reduced row-echelon
form and keeping the nonzero rows as column vectors (Theorem BRS [240]). Here goes.

At
RREF−−−−→


1 0 −2
0 1 3
0 0 0
0 0 0


Taking the nonzero rows and tilting them up as columns gives us

 1
0
−2

 ,
0

1
3


An approach based on the matrix L from extended echelon form (Definition EEF [254]) and The-
orem FS [257] will work as well as an alternative approach.

M10 Contributed by Robert Beezer Statement [245]
Any vector from C3 will lead to a consistent system, and therefore there is no vector that will lead
to an inconsistent system.

How do we convince ourselves of this? First, row-reduce E,

E
RREF−−−−→

 1 0 0 1
0 1 0 1
0 0 1 1


If we augment E with any vector of constants, and row-reduce the augmented matrix, we will never
find a leading 1 in the final column, so by Theorem RCLS [48] the system will always be consistent.

Said another way, the column space of E is all of C3, C(E) = C3. So by Theorem CSCS [232] any
vector of conststants will create a consistent system (and none will create an inconsistent system).

M20 Contributed by Robert Beezer Statement [245]
The 2× 2 matrix [

1 1
−1 −1

]
has C(A) = N (A) =

〈{[
1
−1

]}〉
.

M21 Contributed by Robert Beezer Statement [245]
Begin with a matrix A (of any size) that does not have any zero rows, but which when row-reduced
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to B yields at least one row of zeros. Such a matrix should be easy to construct (or find, like say
from Archetype A [685]).
C(A) will contain some vectors whose final slot (entry m) is non-zero, however, every column

vector from the matrix B will have a zero in slot m and so every vector in C(B) will also contain
a zero in the final slot. This means that C(A) 6= C(B), since we have vectors in C(A) that cannot
be elements of C(B).

T40 Contributed by Robert Beezer Statement [246]
Choose x ∈ C(AB). Then by Theorem CSCS [232] there is a vector w that is a solution to
LS(AB, x). Define the vector y by y = Bw. We’re set,

Ay = A (Bw) Definition of y

= (AB) w Theorem MMA [198]
= x w solution to LS(AB, x)

This says that LS(A, x) is a consistent system, and by Theorem CSCS [232], we see that x ∈ C(A)
and therefore C(AB) ⊆ C(A).

For an example where C(A) 6⊆ C(AB) choose A to be any nonzero matrix and choose B to be
a zero matrix. Then C(A) 6= {0} and C(AB) = C(O) = {0}.

T41 Contributed by Robert Beezer Statement [246]
From the solution to Exercise CRS.T40 [246] we know that C(AB) ⊆ C(A). So to establish the set
equality (Definition SE [666]) we need to show that C(A) ⊆ C(AB).

Choose x ∈ C(A). By Theorem CSCS [232] the linear system LS(A, x) is consistent, so let y
be one such solution. Because B is nonsingular, and linear system using B as a coefficient matrix
will have a solution (Theorem NMUS [70]). Let w be the unique solution to the linear system
LS(B, y). All set, here we go,

(AB) w = A (Bw) Theorem MMA [198]
= Ay w solution to LS(B, y)
= x y solution to LS(A, x)

This says that the linear system LS(AB, x) is consistent, so by Theorem CSCS [232], x ∈ C(AB).
So C(A) ⊆ C(AB).

T45 Contributed by Robert Beezer Statement [246]
First, 0 ∈ N (B) trivially. Now suppose that x ∈ N (B). Then

ABx = A(Bx) Theorem MMA [198]
= A0 x ∈ N (B)
= 0 Theorem MMZM [197]

Since we have assumed AB is nonsingular, Definition NM [67] implies that x = 0.
Second, 0 ∈ C(B) and 0 ∈ N (A) trivially, and so the zero vector is in the intersection as well

(Definition SI [667]). Now suppose that y ∈ C(B) ∩ N (A). Because y ∈ C(B), Theorem CSCS
[232] says the system LS(B, y) is consistent. Let x ∈ Cn be one solution to this system. Then

ABx = A(Bx) Theorem MMA [198]
= Ay x solution to LS(B, y)
= 0 y ∈ N (A)

Since we have assumed AB is nonsingular, Definition NM [67] implies that x = 0. Then y = Bx =
B0 = 0.
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When AB is nonsingular and m = n we know that the first condition, N (B) = {0}, means that
B is nonsingular (Theorem NMTNS [70]). Because B is nonsingular Theorem CSNM [236] implies
that C(B) = Cm. In order to have the second condition fulfilled, C(B) ∩ N (A) = {0}, we must
realize that N (A) = {0}. However, a second application of Theorem NMTNS [70] shows that A
must be nonsingular. This reproduces Theorem NPNT [221].
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Section FS
Four Subsets

There are four natural subsets associated with a matrix. We have met three already: the null
space, the column space and the row space. In this section we will introduce a fourth, the left null
space. The objective of this section is to describe one procedure that will allow us to find linearly
independent sets that span each of these four sets of column vectors. Along the way, we will make
a connection with the inverse of a matrix, so Theorem FS [257] will tie together most all of this
chapter (and the entire course so far).

Subsection LNS
Left Null Space

Definition LNS
Left Null Space
Suppose A is an m× n matrix. Then the left null space is defined as L(A) = N

(
At
)
⊆ Cm.

(This definition contains Notation LNS.) 4

The left null space will not feature prominently in the sequel, but we can explain its name and
connect it to row operations. Suppose y ∈ L(A). Then by Definition LNS [251], Aty = 0. We can
then write

0t =
(
Aty

)t Definition LNS [251]

= yt
(
At
)t Theorem MMT [200]

= ytA Theorem TT [183]

The product ytA can be viewed as the components of y acting as the scalars in a linear combination
of the rows of A. And the result is a “row vector”, 0t that is totally zeros. When we apply a sequence
of row operations to a matrix, each row of the resulting matrix is some linear combination of the
rows. These observations tell us that the vectors in the left null space are scalars that record a
sequence of row operations that result in a row of zeros in the row-reduced version of the matrix.
We will see this idea more explicitly in the course of proving Theorem FS [257].

Example LNS
Left null space
We will find the left null space of

A =


1 −3 1
−2 1 1
1 5 1
9 −4 0


We transpose A and row-reduce,

At =

 1 −2 1 9
−3 1 5 −4
1 1 1 0

 RREF−−−−→

 1 0 0 2
0 1 0 −3
0 0 1 1


Applying Definition LNS [251] and Theorem BNS [140] we have

L(A) = N
(
At
)

=

〈

−2
3
−1
1



〉
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If you row-reduce A you will discover one zero row in the reduced row-echelon form. This zero row
is created by a sequence of row operations, which in total amounts to a linear combination, with
scalars a1 = −2, a2 = 3, a3 = −1 and a4 = 1, on the rows of A and which results in the zero vector
(check this!). So the components of the vector describing the left null space of A provide a relation
of linear dependence on the rows of A. �

Subsection CRS
Computing Column Spaces

We have three ways to build the column space of a matrix. First, we can use just the definition,
Definition CSM [231], and express the column space as a span of the columns of the matrix. A
second approach gives us the column space as the span of some of the columns of the matrix,
but this set is linearly independent (Theorem BCS [234]). Finally, we can transpose the matrix,
row-reduce the transpose, kick out zero rows, and transpose the remaining rows back into column
vectors. Theorem CSRST [241] and Theorem BRS [240] tell us that the resulting vectors are
linearly independent and their span is the column space of the original matrix.

We will now demonstrate a fourth method by way of a rather complicated example. Study this
example carefully, but realize that its main purpose is to motivate a theorem that simpifies much of
the apparent complexity. So other than an instructive exercise or two, the procedure we are about
to describe will not be a usual approach to computing a column space.

Example CSANS
Column space as null space
Lets find the column space of the matrix A below with a new approach.

A =



10 0 3 8 7
−16 −1 −4 −10 −13
−6 1 −3 −6 −6
0 2 −2 −3 −2
3 0 1 2 3
−1 −1 1 1 0


By Theorem CSCS [232] we know that the column vector b is in the column space of A if and only
if the linear system LS(A, b) is consistent. So let’s try to solve this system in full generality, using
a vector of variables for the vector of constants. In other words, which vectors b lead to consistent
systems? Begin by forming the augmented matrix [A | b] with a general version of b,

[A | b] =



10 0 3 8 7 b1
−16 −1 −4 −10 −13 b2
−6 1 −3 −6 −6 b3
0 2 −2 −3 −2 b4
3 0 1 2 3 b5
−1 −1 1 1 0 b6


To identify solutions we will row-reduce this matrix and bring it to reduced row-echelon form.
Despite the presence of variables in the last column, there is nothing to stop us from doing this.
Except our numerical routines on calculators can’t be used, and even some of the symbolic algebra
routines do some unexpected maneuvers with this computation. So do it by hand. Yes, it is a bit
of work. But worth it. We’ll still be here when you get back. Notice along the way that the row
operations are exactly the same ones you would do if you were just row-reducing the coefficient
matrix alone, say in connection with a homogeneous system of equations. The column with the bi
acts as a sort of bookkeeping device. There are many different possibilities for the result, depending
on what order you choose to perform the row operations, but shortly we’ll all be on the same page.
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Here’s one possibility (you can find this same result by doing additional row operations with the
fifth and sixth rows to remove any occurences of b1 and b2 from the first four rows of your result):

1 0 0 0 2 b3 − b4 + 2b5 − b6
0 1 0 0 −3 −2b3 + 3b4 − 3b5 + 3b6
0 0 1 0 1 b3 + b4 + 3b5 + 3b6
0 0 0 1 −2 −2b3 + b4 − 4b5
0 0 0 0 0 b1 + 3b3 − b4 + 3b5 + b6
0 0 0 0 0 b2 − 2b3 + b4 + b5 − b6


Our goal is to identify those vectors b which make LS(A, b) consistent. By Theorem RCLS [48]
we know that the consistent systems are precisely those without a leading 1 in the last column.
Are the expressions in the last column of rows 5 and 6 equal to zero, or are they leading 1’s? The
answer is: maybe. It depends on b. With a nonzero value for either of these expressions, we would
scale the row and produce a leading 1. So we get a consistent system, and b is in the column space,
if and only if these two expressions are both simultaneously zero. In other words, members of the
column space of A are exactly those vectors b that satisfy

b1 + 3b3 − b4 + 3b5 + b6 = 0
b2 − 2b3 + b4 + b5 − b6 = 0

Hmmm. Looks suspiciously like a homogeneous system of two equations with six variables. If
you’ve been playing along (and we hope you have) then you may have a slightly different system,
but you should have just two equations. Form the coefficient matrix and row-reduce (notice that
the system above has a coefficient matrix that is already in reduced row-echelon form). We should
all be together now with the same matrix,

L =
[

1 0 3 −1 3 1
0 1 −2 1 1 −1

]
So, C(A) = N (L) and we can apply Theorem BNS [140] to obtain a linearly independent set to use
in a span construction,

C(A) = N (L) =

〈




−3
2
1
0
0
0

 ,


1
−1
0
1
0
0

 ,


−3
−1
0
0
1
0

 ,


−1
1
0
0
0
1




〉

Whew! As a postscript to this central example, you may wish to convince yourself that the four
vectors above really are elements of the column space? Do they create consistent systems with A
as coefficient matrix? Can you recognize the constant vector in your description of these solution
sets?

OK, that was so much fun, let’s do it again. But simpler this time. And we’ll all get the same
results all the way through. Doing row operations by hand with variables can be a bit error prone,
so let’s see if we can improve the process some. Rather than row-reduce a column vector b full of
variables, let’s write b = I6b and we will row-reduce the matrix I6 and when we finish row-reducing,
then we will compute the matrix-vector product. You should first convince yourself that we can
operate like this (this is the subject of a future homework exercise). Rather than augmenting A
with b, we will instead augment it with I6 (does this feel familiar?),

M =



10 0 3 8 7 1 0 0 0 0 0
−16 −1 −4 −10 −13 0 1 0 0 0 0
−6 1 −3 −6 −6 0 0 1 0 0 0
0 2 −2 −3 −2 0 0 0 1 0 0
3 0 1 2 3 0 0 0 0 1 0
−1 −1 1 1 0 0 0 0 0 0 1


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We want to row-reduce the left-hand side of this matrix, but we will apply the same row operations
to the right-hand side as well. And once we get the left-hand side in reduced row-echelon form,
we will continue on to put leading 1’s in the final two rows, as well as clearing out the columns
containing those two additional leading 1’s. It is these additional row operations that will ensure
that we all get to the same place, since the reduced row-echelon form is unique (Theorem RREFU
[106]),

N =



1 0 0 0 2 0 0 1 −1 2 −1
0 1 0 0 −3 0 0 −2 3 −3 3
0 0 1 0 1 0 0 1 1 3 3
0 0 0 1 −2 0 0 −2 1 −4 0
0 0 0 0 0 1 0 3 −1 3 1
0 0 0 0 0 0 1 −2 1 1 −1


We are after the final six columns of this matrix, which we will multiply by b

J =



0 0 1 −1 2 −1
0 0 −2 3 −3 3
0 0 1 1 3 3
0 0 −2 1 −4 0
1 0 3 −1 3 1
0 1 −2 1 1 −1


so

Jb =



0 0 1 −1 2 −1
0 0 −2 3 −3 3
0 0 1 1 3 3
0 0 −2 1 −4 0
1 0 3 −1 3 1
0 1 −2 1 1 −1





b1
b2
b3
b4
b5
b6

 =



b3 − b4 + 2b5 − b6
−2b3 + 3b4 − 3b5 + 3b6
b3 + b4 + 3b5 + 3b6
−2b3 + b4 − 4b5

b1 + 3b3 − b4 + 3b5 + b6
b2 − 2b3 + b4 + b5 − b6


So by applying the same row operations that row-reduce A to the identity matrix (which we could
do with a calculator once I6 is placed alongside of A), we can then arrive at the result of row-
reducing a column of symbols where the vector of constants usually resides. Since the row-reduced
version of A has two zero rows, for a consistent system we require that

b1 + 3b3 − b4 + 3b5 + b6 = 0
b2 − 2b3 + b4 + b5 − b6 = 0

Now we are exactly back where we were on the first go-round. Notice that we obtain the matrix L
as simply the last two rows and last six columns of N . �

This example motivates the remainder of this section, so it is worth careful study. You might
attempt to mimic the second approach with the coefficient matrices of Archetype I [718] and
Archetype J [722]. We will see shortly that the matrix L contains more information about A than
just the column space.

Subsection EEF
Extended echelon form

The final matrix that we row-reduced in Example CSANS [252] should look familiar in most respects
to the procedure we used to compute the inverse of a nonsingular matrix, Theorem CINM [212].
We will now generalize that procedure to matrices that are not necessarily nonsingular, or even
square. First a definition.

Definition EEF
Extended Echelon Form
Suppose A is an m× n matrix. Add m new columns to A that together equal an m×m identity
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Subsection FS.EEF Extended echelon form 255

matrix to form an m× (n+m) matrix M . Use row operations to bring M to reduced row-echelon
form and call the result N . N is the extended reduced row-echelon form of A, and we will
standardize on names for five submatrices (B, C, J , K, L) of N .

Let B denote the m × n matrix formed from the first n columns of N and let J denote the
m×m matrix formed from the last m columns of N . Suppose that B has r nonzero rows. Further
partition N by letting C denote the r × n matrix formed from all of the non-zero rows of B. Let
K be the r ×m matrix formed from the first r rows of J , while L will be the (m− r)×m matrix
formed from the bottom m− r rows of J . Pictorially,

M = [A|Im] RREF−−−−→ N = [B|J ] =
[
C K

0 L

]
4

Example SEEF
Submatrices of extended echelon form
We illustrate Definition EEF [254] with the matrix A,

A =


1 −1 −2 7 1 6
−6 2 −4 −18 −3 −26
4 −1 4 10 2 17
3 −1 2 9 1 12


Augmenting with the 4× 4 identity matrix, M=

1 −1 −2 7 1 6 1 0 0 0
−6 2 −4 −18 −3 −26 0 1 0 0
4 −1 4 10 2 17 0 0 1 0
3 −1 2 9 1 12 0 0 0 1


and row-reducing, we obtain

N =


1 0 2 1 0 3 0 1 1 1
0 1 4 −6 0 −1 0 2 3 0
0 0 0 0 1 2 0 −1 0 −2
0 0 0 0 0 0 1 2 2 1


So we then obtain

B =


1 0 2 1 0 3
0 1 4 −6 0 −1
0 0 0 0 1 2
0 0 0 0 0 0


C =

 1 0 2 1 0 3
0 1 4 −6 0 −1
0 0 0 0 1 2



J =


0 1 1 1
0 2 3 0
0 −1 0 −2
1 2 2 1


K =

0 1 1 1
0 2 3 0
0 −1 0 −2


L =

[
1 2 2 1

]
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You can observe (or verify) the properties of the following theorem with this example. �

Theorem PEEF
Properties of Extended Echelon Form
Suppose that A is an m× n matrix and that N is its extended echelon form. Then

1. J is nonsingular.

2. B = JA.

3. If x ∈ Cn and y ∈ Cm, then Ax = y if and only if Bx = Jy.

4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.

5. L is in reduced row-echelon form, has no zero rows and has m− r pivot columns.

�

Proof J is the result of applying a sequence of row operations to Im, as such J and Im are
row-equivalent. LS(Im, 0) has only the zero solution, since Im is nonsingular (Theorem NMRRI
[68]). Thus, LS(J, 0) also has only the zero solution (Theorem REMES [27], Definition ESYS [13])
and J is therefore nonsingular (Definition NSM [59]).

To prove the second part of this conclusion, first convince yourself that row operations and
the matrix-vector are commutative operations. By this we mean the following. Suppose that F
is an m × n matrix that is row-equivalent to the matrix G. Apply to the column vector Fw the
same sequence of row operations that converts F to G. Then the result is Gw. So we can do
row operations on the matrix, then do a matrix-vector product, or do a matrix-vector product
and then do row operations on a column vector, and the result will be the same either way. Since
matrix multiplication is defined by a collection of matrix-vector products (Definition MM [194]),
if we apply to the matrix product FH the same sequence of row operations that converts F to G
then the result will equal GH. Now apply these observations to A.

Write AIn = ImA and apply the row operations that convert M to N . A is converted to B,
while Im is converted to J , so we have BIn = JA. Simplifying the left side gives the desired
conclusion.

For the third conclusion, we now establish the two equivalences

Ax = y ⇐⇒ JAx = Jy ⇐⇒ Bx = Jy

The forward direction of the first equivalence is accomplished by multiplying both sides of the
matrix equality by J , while the backward direction is accomplished by multiplying by the inverse
of J (which we know exists by Theorem NI [223] since J is nonsingular). The second equivalence
is obtained simply by the substitutions given by JA = B.

The first r rows of N are in reduced row-echelon form, since any contiguous collection of rows
taken from a matrix in reduced row-echelon form will form a matrix that is again in reduced row-
echelon form. Since the matrix C is formed by removing the last n entries of each these rows, the
remainder is still in reduced row-echelon form. By its construction, C has no zero rows. C has r
rows and each contains a leading 1, so there are r pivot columns in C.

The final m− r rows of N are in reduced row-echelon form, since any contiguous collection of
rows taken from a matrix in reduced row-echelon form will form a matrix that is again in reduced
row-echelon form. Since the matrix L is formed by removing the first n entries of each these rows,
and these entries are all zero (they form the zero rows of B), the remainder is still in reduced
row-echelon form. L is the final m − r rows of the nonsingular matrix J , so none of these rows
can be totally zero, or J would not row-reduce to the identity matrix. L has m− r rows and each
contains a leading 1, so there are m− r pivot columns in L.

�

Notice that in the case where A is a nonsingular matrix we know that the reduced row-echelon
form of A is the identity matrix (Theorem NMRRI [68]), so B = In. Then the second conclusion
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above says JA = B = In, so J is the inverse of A. Thus this theorem generalizes Theorem CINM
[212], though the result is a “left-inverse” of A rather than a “right-inverse.”

The third conclusion of Theorem PEEF [256] is the most telling. It says that x is a solution
to the linear system LS(A, y) if and only if x is a solution to the linear system LS(B, Jy). Or
said differently, if we row-reduce the augmented matrix [A | x] we will get the augmented matrix
[B | Jy]. The matrix J tracks the cumulative effect of the row operations that converts A to
reduced row-echelon form, here effectively applying them to the vector of constants in a system of
equations having A as a coefficient matrix. When A row-reduces to a matrix with zero rows, then
Jy should also have zero entries in the same rows if the system is to be consistent.

Subsection FS
Four Subsets

With all the preliminaries in place we can state our main result for this section. In essence this
result will allow us to say that we can find linearly independent sets to use in span constructions
for all four subsets (null space, column space, row space, left null space) by analyzing only the
extended echelon form of the matrix, and specifically, just the two submatrices C and L, which will
be ripe for analysis since they are already in reduced row-echelon form (Theorem PEEF [256]).

Theorem FS
Four Subsets
Suppose A is an m × n matrix with extended echelon form N . Suppose the reduced row-echelon
form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the
first n columns and L is the submatrix of N formed from the last m columns and the last m − r
rows. Then

1. The null space of A is the null space of C, N (A) = N (C).

2. The row space of A is the row space of C, R(A) = R(C).

3. The column space of A is the null space of L, C(A) = N (L).

4. The left null space of A is the row space of L, L(A) = R(L).

�

Proof First, N (A) = N (B) since B is row-equivalent to A (Theorem REMES [27]). The zero
rows of B represent equations that are always true in the homogeneous system LS(B, 0), so the
removal of these equations will not change the solution set. Thus, in turn, N (B) = N (C).

Second, R(A) = R(B) since B is row-equivalent to A (Theorem REMRS [238]). The zero rows
of B contribute nothing to the span that is the row space of B, so the removal of these rows will
not change the row space. Thus, in turn, R(B) = R(C).

Third, we prove the set equality C(A) = N (L) with Definition SE [666]. Begin by showing that
C(A) ⊆ N (L). Choose y ∈ C(A) ⊆ Cm. Then there exists a vector x ∈ Cn such that Ax = y
(Theorem CSCS [232]). Then for 1 ≤ k ≤ m− r,

[Ly]k = [Jy]r+k L a submatrix of J
= [Bx]r+k Theorem PEEF [256]
= [Ox]k Zero matrix a submatrix of B
= [0]k Theorem MMZM [197]

So, for all 1 ≤ k ≤ m − r, [Ly]k = [0]k. So by Definition CVE [82] we have Ly = 0 and thus
y ∈ N (L).

Now, show that N (L) ⊆ C(A). Choose y ∈ N (L) ⊆ Cm. Form the vector Ky ∈ Cr. The
linear system LS(C, Ky) is consistent since C is in reduced row-echelon form and has no zero rows
(Theorem PEEF [256]). Let x ∈ Cn denote a solution to LS(C, Ky).
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Then for 1 ≤ j ≤ r,

[Bx]j = [Cx]j C a submatrix of B

= [Ky]j x a solution to LS(C, Ky)

= [Jy]j K a submatrix of J

And for r + 1 ≤ k ≤ m,

[Bx]k = [Ox]k−r Zero matrix a submatrix of B
= [0]k−r Theorem MMZM [197]
= [Ly]k−r y in N (L)
= [Jy]k L a submatrix of J

So for all 1 ≤ i ≤ m, [Bx]i = [Jy]i and by Definition CVE [82] we have Bx = Jy. From Theorem
PEEF [256] we know then that Ax = y, and therefore y ∈ C(A) (Theorem CSCS [232]). By
Definition SE [666] we now have C(A) = N (L).

Fourth, we prove the set equality L(A) = R(L) with Definition SE [666]. Begin by showing
that R(L) ⊆ L(A). Choose y ∈ R(L) ⊆ Cm. Then there exists a vector w ∈ Cm−r such that
y = Ltw (Definition RSM [237], Theorem CSCS [232]). Then for 1 ≤ i ≤ n,

[
Aty

]
i

=
m∑
k=1

[
At
]
ik

[y]k Theorem EMP [195]

=
m∑
k=1

[
At
]
ik

[
Ltw

]
k

Definition of w

=
m∑
k=1

[
At
]
ik

m−r∑
`=1

[
Lt
]
k`

[w]` Theorem EMP [195]

=
m∑
k=1

m−r∑
`=1

[
At
]
ik

[
Lt
]
k`

[w]` Property DCN [662]

=
m−r∑
`=1

m∑
k=1

[
At
]
ik

[
Lt
]
k`

[w]` Property CACN [662]

=
m−r∑
`=1

(
m∑
k=1

[
At
]
ik

[
Lt
]
k`

)
[w]` Property DCN [662]

=
m−r∑
`=1

(
m∑
k=1

[
At
]
ik

[
J t
]
k,r+`

)
[w]` L a submatrix of J

=
m−r∑
`=1

[
AtJ t

]
i,r+`

[w]` Theorem EMP [195]

=
m−r∑
`=1

[
(JA)t

]
i,r+`

[w]` Theorem MMT [200]

=
m−r∑
`=1

[
Bt
]
i,r+`

[w]` Theorem PEEF [256]

=
m−r∑
`=1

0 [w]` Zero rows in B

= 0 Property ZCN [662]
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= [0]i Definition ZCV [24]

Since
[
Aty

]
i

= [0]i for 1 ≤ i ≤ n, Definition CVE [82] implies that Aty = 0. This means that
y ∈ N

(
At
)
.

Now, show that L(A) ⊆ R(L). Choose y ∈ L(A) ⊆ Cm. The matrix J is nonsingular (Theo-
rem PEEF [256]), so J t is also nonsingular (Theorem MIT [215]) and therefore the linear system
LS
(
J t, y

)
has a unique solution. Denote this solution as x ∈ Cm. We will need to work with two

“halves” of x, which we will denote as z and w with formal definitions given by

[z]j = [x]i 1 ≤ j ≤ r, [w]k = [x]r+k 1 ≤ k ≤ m− r

Now, for 1 ≤ j ≤ r,

[
Ctz

]
j

=
r∑

k=1

[
Ct
]
jk

[z]k Theorem EMP [195]

=
r∑

k=1

[
Ct
]
jk

[z]k +
m−r∑
`=1

[O]j` [w]` Definition ZM [182]

=
r∑

k=1

[
Bt
]
jk

[z]k +
m−r∑
`=1

[
Bt
]
j,r+`

[w]` C, O submatrices of B

=
r∑

k=1

[
Bt
]
jk

[x]k +
m−r∑
`=1

[
Bt
]
j,r+`

[x]r+` Definitions of z and w

=
r∑

k=1

[
Bt
]
jk

[x]k +
m∑

k=r+1

[
Bt
]
jk

[x]k Re-index second sum

=
m∑
k=1

[
Bt
]
jk

[x]k Combine sums

=
m∑
k=1

[
(JA)t

]
jk

[x]k Theorem PEEF [256]

=
m∑
k=1

[
AtJ t

]
jk

[x]k Theorem MMT [200]

=
m∑
k=1

m∑
`=1

[
At
]
j`

[
J t
]
`k

[x]k Theorem EMP [195]

=
m∑
`=1

m∑
k=1

[
At
]
j`

[
J t
]
`k

[x]k Property CACN [662]

=
m∑
`=1

[
At
]
j`

(
m∑
k=1

[
J t
]
`k

[x]k

)
Property DCN [662]

=
m∑
`=1

[
At
]
j`

[
J tx

]
`

Theorem EMP [195]

=
m∑
`=1

[
At
]
j`

[y]` Definition of x

=
[
Aty

]
j

Theorem EMP [195]

= [0]j y ∈ L(A)

So, by Definition CVE [82], Ctz = 0 and the vector z gives us a linear combination of the columns
of Ct that equals the zero vector. In other words, z gives a relation of linear dependence on the
the rows of C. However, the rows of C are a linearly independent set by Theorem BRS [240].
According to Definition LICV [133] we must conclude that the entries of z are all zero, i.e. z = 0.

Version 1.30



260 Section FS Four Subsets

Now, for 1 ≤ i ≤ m, we have

[y]i =
[
J tx

]
i

Definition of x

=
m∑
k=1

[
J t
]
ik

[x]k Theorem EMP [195]

=
r∑

k=1

[
J t
]
ik

[x]k +
m∑

k=r+1

[
J t
]
ik

[x]k Break apart sum

=
r∑

k=1

[
J t
]
ik

[z]k +
m∑

k=r+1

[
J t
]
ik

[w]k−r Definition of z and w

=
r∑

k=1

[
J t
]
ik

0 +
m−r∑
`=1

[
J t
]
i,r+`

[w]` z = 0, re-index

= 0 +
m−r∑
`=1

[
Lt
]
i,`

[w]` L a submatrix of J

=
[
Ltw

]
i

Theorem EMP [195]

So by Definition CVE [82], y = Ltw. The existence of w implies that y ∈ R(L), and therefore
L(A) ⊆ R(L). So by Definition SE [666] we have L(A) = R(L). �

The first two conclusions of this theorem are nearly trivial. But they set up a pattern of results
for C that is reflected in the latter two conclusions about L. In total, they tell us that we can
compute all four subsets just by finding null spaces and row spaces. This theorem does not tell
us exactly how to compute these subsets, but instead simply expresses them as null spaces and
row spaces of matrices in reduced row-echelon form without any zero rows (C and L). A linearly
independent set that spans the null space of a matrix in reduced row-echelon form can be found
easily with Theorem BNS [140]. It is an even easier matter to find a linearly independent set that
spans the row space of a matrix in reduced row-echelon form with Theorem BRS [240], especially
when there are no zero rows present. So an application of Theorem FS [257] is typically followed
by two applications each of Theorem BNS [140] and Theorem BRS [240].

The situation when r = m deserves comment, since now the matrix L has no rows. What is C(A)
when we try to apply Theorem FS [257] and encounter N (L)? One interpretation of this situation
is that L is the coefficient matrix of a homogeneous system that has no equations. How hard is it
to find a solution vector to this system? Some thought will convince you that any proposed vector
will qualify as a solution, since it makes all of the equations true. So every possible vector is in
the null space of L and therefore C(A) = N (L) = Cm. OK, perhaps this sounds like some twisted
argument from Alice in Wonderland. Let us try another argument that might solidly convince you
of this logic.

If r = m, when we row-reduce the augmented matrix of LS(A, b) the result will have no zero
rows, and all the leading 1’s will occur in first n columns, so by Theorem RCLS [48] the system
will be consistent. By Theorem CSCS [232], b ∈ C(A). Since b was arbitrary, every possible vector
is in the column space of A, so we again have C(A) = Cm. The situation when a matrix has r = m
is known by the term full rank, and in the case of a square matrix coincides with nonsingularity
(see Exercise FS.M50 [266]).

The properties of the matrix L described by this theorem can be explained informally as follows.
A column vector y ∈ Cm is in the column space of A if the linear system LS(A, y) is consistent
(Theorem CSCS [232]). By Theorem RCLS [48], the reduced row-echelon form of the augmented
matrix [A | y] of a consistent system will have zeros in the bottom m − r locations of the last
column. By Theorem PEEF [256] this final column is the vector Jy and so should then have zeros
in the final m − r locations. But since L comprises the final m − r rows of J , this condition is
expressed by saying y ∈ N (L).
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Additionally, the rows of J are the scalars in linear combinations of the rows of A that create
the rows of B. That is, the rows of J record the net effect of the sequence of row operations that
takes A to its reduced row-echelon form, B. This can be seen in the equation JA = B (Theorem
PEEF [256]). As such, the rows of L are scalars for linear combinations of the rows of A that yield
zero rows. But such linear combinations are precisely the elements of the left null space. So any
element of the row space of L is also an element of the left null space of A. We will now illustrate
Theorem FS [257] with a few examples.

Example FS1
Four subsets, #1
In Example SEEF [255] we found the five relevant submatrices of the matrix

A =


1 −1 −2 7 1 6
−6 2 −4 −18 −3 −26
4 −1 4 10 2 17
3 −1 2 9 1 12


To apply Theorem FS [257] we only need C and L,

C =

 1 0 2 1 0 3
0 1 4 −6 0 −1
0 0 0 0 1 2

 L =
[

1 2 2 1
]

Then we use Theorem FS [257] to obtain

N (A) = N (C) =

〈




−2
−4
1
0
0
0

 ,


−1
6
0
1
0
0

 ,


−3
1
0
0
−2
1




〉

Theorem BNS [140]

R(A) = R(C) =

〈




1
0
2
1
0
3

 ,


0
1
4
−6
0
−1

 ,


0
0
0
0
1
2




〉

Theorem BRS [240]

C(A) = N (L) =

〈

−2
1
0
0

 ,

−2
0
1
0

 ,

−1
0
0
1



〉

Theorem BNS [140]

L(A) = R(L) =

〈


1
2
2
1



〉

Theorem BRS [240]

Boom! �

Example FS2
Four subsets, #2
Now lets return to the matrix A that we used to motivate this section in Example CSANS [252],

A =



10 0 3 8 7
−16 −1 −4 −10 −13
−6 1 −3 −6 −6
0 2 −2 −3 −2
3 0 1 2 3
−1 −1 1 1 0


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We form the matrix M by adjoining the 6× 6 identity matrix I6,

M =



10 0 3 8 7 1 0 0 0 0 0
−16 −1 −4 −10 −13 0 1 0 0 0 0
−6 1 −3 −6 −6 0 0 1 0 0 0
0 2 −2 −3 −2 0 0 0 1 0 0
3 0 1 2 3 0 0 0 0 1 0
−1 −1 1 1 0 0 0 0 0 0 1


and row-reduce to obtain N

N =



1 0 0 0 2 0 0 1 −1 2 −1
0 1 0 0 −3 0 0 −2 3 −3 3
0 0 1 0 1 0 0 1 1 3 3
0 0 0 1 −2 0 0 −2 1 −4 0
0 0 0 0 0 1 0 3 −1 3 1
0 0 0 0 0 0 1 −2 1 1 −1


To find the four subsets for A, we only need identify the 4× 5 matrix C and the 2× 6 matrix L,

C =


1 0 0 0 2
0 1 0 0 −3
0 0 1 0 1
0 0 0 1 −2

 L =
[

1 0 3 −1 3 1
0 1 −2 1 1 −1

]

Then we apply Theorem FS [257],

N (A) = N (C) =

〈


−2
3
−1
2
1



〉

Theorem BNS [140]

R(A) = R(C) =

〈


1
0
0
0
2

 ,


0
1
0
0
−3

 ,


0
0
1
0
1

 ,


0
0
0
1
−2



〉

Theorem BRS [240]

C(A) = N (L) =

〈




−3
2
1
0
0
0

 ,


1
−1
0
1
0
0

 ,


−3
−1
0
0
1
0

 ,


−1
1
0
0
0
1




〉

Theorem BNS [140]

L(A) = R(L) =

〈




1
0
3
−1
3
1

 ,


0
1
−2
1
1
−1




〉

Theorem BRS [240]

�

The next example is just a bit different since the matrix has more rows than columns, and a
trivial null space.
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Example FSAG
Four subsets, Archetype G
Archetype G [710] and Archetype H [714] are both systems of m = 5 equations in n = 2 variables.
They have identical coefficient matrices, which we will denote here as the matrix G,

G =


2 3
−1 4
3 10
3 −1
6 9

 .
Adjoin the 5× 5 identity matrix, I5, to form

M =


2 3 1 0 0 0 0
−1 4 0 1 0 0 0
3 10 0 0 1 0 0
3 −1 0 0 0 1 0
6 9 0 0 0 0 1


This row-reduces to

N =


1 0 0 0 0 3

11
1
33

0 1 0 0 0 − 2
11

1
11

0 0 1 0 0 0 −1
3

0 0 0 1 0 1 −1
3

0 0 0 0 1 1 −1


The first n = 2 columns contain r = 2 leading 1’s, so we obtain C as the 2× 2 identity matrix and
extract L from the final m− r = 3 rows in the final m = 5 columns.

C =
[

1 0
0 1

]
L =

 1 0 0 0 −1
3

0 1 0 1 −1
3

0 0 1 1 −1


Then we apply Theorem FS [257],

N (G) = N (C) = 〈∅〉 = {0} Theorem BNS [140]

R(G) = R(C) =
〈{[

1
0

]
,

[
0
1

]}〉
= C2 Theorem BRS [240]

C(G) = N (L) =

〈


0
−1
−1
1
0

 ,


1
3
1
3
1
0
1



〉

Theorem BNS [140]

=

〈


0
−1
−1
1
0

 ,


1
1
3
0
3



〉

L(G) = R(L) =

〈


1
0
0
0
−1

3

 ,


0
1
0
1
−1

3

 ,


0
0
1
1
−1



〉

Theorem BRS [240]

=

〈


3
0
0
0
−1

 ,


0
3
0
3
−1

 ,


0
0
1
1
−1



〉
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As mentioned earlier, Archetype G [710] is consistent, while Archetype H [714] is inconsistent.
See if you can write the two different vectors of constants from these two archetypes as linear
combinations of the two vectors in C(G). How about the two columns of G, can you write each
individually as a linear combination of the two vectors in C(G)? They must be in the column space
of G also. Are your answers unique? Do you notice anything about the scalars that appear in the
linear combinations you are forming? �

Example COV [153] and Example CSROI [241] each describes the column space of the coefficient
matrix from Archetype I [718] as the span of a set of r = 3 linearly independent vectors. It is no
accident that these two different sets both have the same size. If we (you?) were to calculate the
column space of this matrix using the null space of the matrix L from Theorem FS [257] then we
would again find a set of 3 linearly independent vectors that span the range. More on this later.

So we have three different methods to obtain a description of the column space of a matrix as
the span of a linearly independent set. Theorem BCS [234] is sometimes useful since the vectors it
specifies are equal to actual columns of the matrix. Theorem BRS [240] and Theorem CSRST [241]
combine to create vectors with lots of zeros, and strategically placed 1’s near the top of the vector.
Theorem FS [257] and the matrix L from the extended echelon form gives us a third method,
which tends to create vectors with lots of zeros, and strategically placed 1’s near the bottom of the
vector. If we don’t care about linear independence we can also appeal to Definition CSM [231] and
simply express the column space as the span of all the columns of the matrix, giving us a fourth
description.

Although we have many ways to describe a column space, notice that one tempting strategy will
usually fail. It is not possible to simply row-reduce a matrix directly and then use the columns of the
row-reduced matrix as a set whose span equals the column space. In other words, row operations
do not preserve column spaces (however row operations do preserve row spaces, Theorem REMRS
[238]). See Exercise CRS.M21 [245].

Subsection READ
Reading Questions

1. Find a nontrivial element of the left null space of A.

A =

 2 1 −3 4
−1 −1 2 −1
0 −1 1 2


2. Find the matrices C and L in the extended echelon form of A.

A =

−9 5 −3
2 −1 1
−5 3 −1


3. Why is Theorem FS [257] a great conclusion to Chapter M [179]?
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Subsection EXC
Exercises

C20 Example FSAG [263] concludes with several questions. Perform the analysis suggested by
these questions.
Contributed by Robert Beezer

C25 Given the matrix A below, use the extended echelon form of A to answer each part of this
problem. In each part, find a linearly independent set of vectors, S, so that the span of S, 〈S〉,
equals the specified set of vectors.

A =


−5 3 −1
−1 1 1
−8 5 −1
3 −2 0


(a) The row space of A, R(A).
(b) The column space of A, C(A).
(c) The null space of A, N (A).
(d) The left null space of A, L(A).

Contributed by Robert Beezer Solution [267]

C26 For the matrix D below use the extended echelon form to find
(a) a linearly independent set whose span is the column space of D.
(b) a linearly independent set whose span is the left null space of D.

D =


−7 −11 −19 −15
6 10 18 14
3 5 9 7
−1 −2 −4 −3


Contributed by Robert Beezer Solution [267]

C41 The following archetypes are systems of equations. For each system, write the vector of
constants as a linear combination of the vectors in the span construction for the column space
provided by Theorem FS [257] and Theorem BNS [140] (these vectors are listed for each of these
archetypes).
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]
Archetype E [702]
Archetype F [705]
Archetype G [710]
Archetype H [714]
Archetype I [718]
Archetype J [722]

Contributed by Robert Beezer

C43 The following archetypes are either matrices or systems of equations with coefficient matrices.
For each matrix, compute the extended echelon form N and identify the matrices C and L. Using
Theorem FS [257], Theorem BNS [140] and Theorem BRS [240] express the null space, the row
space, the column space and left null space of each coefficient matrix as a span of a linearly
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independent set.
Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]
Archetype K [727]
Archetype L [731]

Contributed by Robert Beezer

C60 For the matrix B below, find sets of vectors whose span equals the column space of B (C(B))
and which individually meet the following extra requirements.
(a) The set illustrates the definition of the column space.
(b) The set is linearly independent and the members of the set are columns of B.
(c) The set is linearly independent with a “nice pattern of zeros and ones” at the top of each
vector.
(d) The set is linearly independent with a “nice pattern of zeros and ones” at the bottom of each
vector.

B =

 2 3 1 1
1 1 0 1
−1 2 3 −4


Contributed by Robert Beezer Solution [268]

C61 Let A be the matrix below, and find the indicated sets with the requested properties.

A =

 2 −1 5 −3
−5 3 −12 7
1 1 4 −3


(a) A linearly independent set S so that C(A) = 〈S〉 and S is composed of columns of A.
(b) A linearly independent set S so that C(A) = 〈S〉 and the vectors in S have a nice pattern of
zeros and ones at the top of the vectors.
(c) A linearly independent set S so that C(A) = 〈S〉 and the vectors in S have a nice pattern of
zeros and ones at the bottom of the vectors.
(d) A linearly independent set S so that R(A) = 〈S〉.
Contributed by Robert Beezer Solution [269]

M50 Suppose that A is a nonsingular matrix. Extend the four conclusions of Theorem FS [257]
in this special case and discuss connections with previous results (such as Theorem NME4 [236]).
Contributed by Robert Beezer

M51 Suppose that A is a singular matrix. Extend the four conclusions of Theorem FS [257] in
this special case and discuss connections with previous results (such as Theorem NME4 [236]).
Contributed by Robert Beezer
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Subsection SOL
Solutions

C25 Contributed by Robert Beezer Statement [265]
Add a 4 × 4 identity matrix to the right of A to form the matrix M and then row-reduce to the
matrix N ,

M =


−5 3 −1 1 0 0 0
−1 1 1 0 1 0 0
−8 5 −1 0 0 1 0
3 −2 0 0 0 0 1

 RREF−−−−→


1 0 2 0 0 −2 −5
0 1 3 0 0 −3 −8
0 0 0 1 0 −1 −1
0 0 0 0 1 1 3

 = N

To apply Theorem FS [257] in each of these four parts, we need the two matrices,

C =
[

1 0 2
0 1 3

]
L =

[
1 0 −1 −1
0 1 1 3

]
(a)

R(A) = R(C) Theorem FS [257]

=

〈1
0
2

 ,
0

1
3

〉 Theorem BRS [240]

(b)

C(A) = N (L) Theorem FS [257]

=

〈
1
−1
1
0

 ,


1
−3
0
1


〉

Theorem BNS [140]

(c)

N (A) = N (C) Theorem FS [257]

=

〈−2
−3
1

〉 Theorem BNS [140]

(d)

L(A) = R(L) Theorem FS [257]

=

〈
1
0
−1
−1

 ,


0
1
1
3


〉

Theorem BRS [240]

C26 Contributed by Robert Beezer Statement [265]
For both parts, we need the extended echelon form of the matrix.

−7 −11 −19 −15 1 0 0 0
6 10 18 14 0 1 0 0
3 5 9 7 0 0 1 0
−1 −2 −4 −3 0 0 0 1

 RREF−−−−→


1 0 −2 −1 0 0 2 5
0 1 3 2 0 0 −1 −3
0 0 0 0 1 0 3 2
0 0 0 0 0 1 −2 0


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From this matrix we extract the last two rows, in the last four columns to form the matrix L,

L =
[

1 0 3 2
0 1 −2 0

]
(a) By Theorem FS [257] and Theorem BNS [140] we have

C(D) = N (L) =

〈

−3
2
1
0

 ,

−2
0
0
1



〉

(b) By Theorem FS [257] and Theorem BRS [240] we have

L(D) = R(L) =

〈


1
0
3
2

 ,


0
1
−2
0



〉

C60 Contributed by Robert Beezer Statement [266]
(a) The definition of the column space is the span of the set of columns (Definition CSM [231]).
So the desired set is just the four columns of B,

S =


 2

1
−1

 ,
3

1
2

 ,
1

0
3

 ,
 1

1
−4


(b) Theorem BCS [234] suggests row-reducing the matrix and using the columns of B that corre-
spond to the pivot columns.

B
RREF−−−−→

 1 0 −1 2
0 1 1 −1
0 0 0 0


So the pivot columns are numbered by elements of D = {1, 2}, so the requested set is

S =


 2

1
−1

 ,
3

1
2


(c) We can find this set by row-reducing the transpose of B, deleting the zero rows, and using
the nonzero rows as column vectors in the set. This is an application of Theorem CSRST [241]
followed by Theorem BRS [240].

Bt RREF−−−−→


1 0 3
0 1 −7
0 0 0
0 0 0


So the requested set is

S =


1

0
3

 ,
 0

1
−7


(d) With the column space expressed as a null space, the vectors obtained via Theorem BNS [140]
will be of the desired shape. So we first proceed with Theorem FS [257] and create the extended
echelon form,

[B | I3] =

 2 3 1 1 1 0 0
1 1 0 1 0 1 0
−1 2 3 −4 0 0 1

 RREF−−−−→

 1 0 −1 2 0 2
3

−1
3

0 1 1 −1 0 1
3

1
3

0 0 0 0 1 −7
3

−1
3


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So, employing Theorem FS [257], we have C(B) = N (L), where

L =
[

1 −7
3

−1
3

]
We can find the desired set of vectors from Theorem BNS [140] as

S =


7

3
1
0

 ,
1

3
0
1


C61 Contributed by Robert Beezer Statement [266]
(a) First find a matrix B that is row-equivalent to A and in reduced row-echelon form

B =

 1 0 3 −2
0 1 1 −1
0 0 0 0


By Theorem BCS [234] we can choose the columns of A that correspond to dependent variables
(D = {1, 2}) as the elements of S and obtain the desired properties. So

S =


 2
−5
1

 ,
−1

3
1


(b) We can write the column space of A as the row space of the transpose (Theorem CSRST
[241]). So we row-reduce the transpose of A to obtain the row-equivalent matrix C in reduced
row-echelon form

C =


1 0 8
0 1 3
0 0 0
0 0 0


The nonzero rows (written as columns) will be a linearly independent set that spans the row space
of At, by Theorem BRS [240], and the zeros and ones will be at the top of the vectors,

S =


1

0
8

 ,
0

1
3


(c) In preparation for Theorem FS [257], augment A with the 3 × 3 identity matrix I3 and row-
reduce to obtain the extended echelon form,1 0 3 −2 0 −1

8
3
8

0 1 1 −1 0 1
8

5
8

0 0 0 0 1 3
8 −1

8


Then since the first four columns of row 3 are all zeros, we extract

L =
[

1 3
8 −1

8

]
Theorem FS [257] says that C(A) = N (L). We can then use Theorem BNS [140] to construct the
desired set S, based on the free variables with indices in F = {2, 3} for the homogeneous system
LS(L, 0), so

S =


−3

8
1
0

 ,
1

8
0
1


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Notice that the zeros and ones are at the bottom of the vectors.
(d) This is a straightforward application of Theorem BRS [240]. Use the row-reduced matrix B
from part (a), grab the nonzero rows, and write them as column vectors,

S =




1
0
3
−2

 ,


0
1
1
−1



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Annotated Acronyms M
Matrices

Theorem VSPM [180]

These are the fundamental rules for working with the addition, and scalar multiplication, of ma-
trices. We saw something very similar in the previous chapter (Theorem VSPCV [84]). Together,
these two definitions will provide our definition for the key definition, Definition VS [273].

Theorem SLEMM [192]

Theorem SLSLC [92] connected linear combinations with systems of equations. Theorem SLEMM
[192] connects the matrix-vector product (Definition MVP [191]) and column vector equality (Def-
inition CVE [82]) with systems of equations. We’ll see this one regularly.

Theorem EMP [195]

This theorem is a workhorse in Section MM [191] and will continue to make regular appearances.
If you want to get better at formulating proofs, the application of this theorem can be a key step in
gaining that broader understanding. While it might be hard to imagine Theorem EMP [195] as a
definition of matrix multiplication, we’ll see in Exercise MR.T80 [549] that in theory it is actually
a better definition of matrix multiplication long-term.

Theorem CINM [212]

The inverse of a matrix is key. Here’s how you can get one if you know how to row-reduce.

Theorem NI [223]

“Nonsingularity” or “invertibility”? Pick your favorite, or show your versatility by using one or the
other in the right context. They mean the same thing.

Theorem BCS [234]

Another theorem that provides a linearly independent set of vectors whose span equals some set of
interest (a column space this time).

Theorem BRS [240]

Yet another theorem that provides a linearly independent set of vectors whose span equals some
set of interest (a row space).

Theorem CSRST [241]

Column spaces, row spaces, transposes, rows, columns, rank, nullity. Many of the connections
between these objects are based on the simple observation captured in this theorem. This is not a
deep result. We state it as a theorem for convenience, so we can refer to it as needed.

Theorem FS [257]

This theorem is inherently interesting, if not computationally satisfying. Null space, row space,
column space, left null space — here they all are, simply by row reducing the extended matrix and
applying Theorem BNS [140] and Theorem BCS [234] twice (each). Nice.
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Chapter VS
Vector Spaces

We now have a computational toolkit in place and so we can begin our study of linear algebra in
a more theoretical style.

Linear algebra is the study of two fundamental objects, vector spaces and linear transformations
(see Chapter LT [443]). This chapter will focus on the former. The power of mathematics is often
derived from generalizing many different situations into one abstract formulation, and that is exactly
what we will be doing throughout this chapter.

Section VS
Vector Spaces

In this section we present a formal definition of a vector space, which will lead to an extra increment
of abstraction. Once defined, we study its most basic properties.

Subsection VS
Vector Spaces

Here is one of the two most important definitions in the entire course.

Definition VS
Vector Space
Suppose that V is a set upon which we have defined two operations: (1) vector addition, which
combines two elements of V and is denoted by “+”, and (2) scalar multiplication, which combines
a complex number with an element of V and is denoted by juxtaposition. Then V , along with the
two operations, is a vector space if the following ten properties hold.

• AC Additive Closure
If u, v ∈ V , then u + v ∈ V .

• SC Scalar Closure
If α ∈ C and u ∈ V , then αu ∈ V .

• C Commutativity
If u, v ∈ V , then u + v = v + u.

• AA Additive Associativity
If u, v, w ∈ V , then u + (v + w) = (u + v) + w.

• Z Zero Vector
There is a vector, 0, called the zero vector, such that u + 0 = u for all u ∈ V .
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274 Section VS Vector Spaces

• AI Additive Inverses
If u ∈ V , then there exists a vector −u ∈ V so that u + (−u) = 0.

• SMA Scalar Multiplication Associativity
If α, β ∈ C and u ∈ V , then α(βu) = (αβ)u.

• DVA Distributivity across Vector Addition
If α ∈ C and u, v ∈ V , then α(u + v) = αu + αv.

• DSA Distributivity across Scalar Addition
If α, β ∈ C and u ∈ V , then (α+ β)u = αu + βu.

• O One
If u ∈ V , then 1u = u.

The objects in V are called vectors, no matter what else they might really be, simply by virtue of
being elements of a vector space. 4

Now, there are several important observations to make. Many of these will be easier to un-
derstand on a second or third reading, and especially after carefully studying the examples in
Subsection VS.EVS [274].

An axiom is often a “self-evident” truth. Something so fundamental that we all agree it is true
and accept it without proof. Typically, it would be the logical underpinning that we would begin
to build theorems upon. Some might refer to the ten properties of Definition VS [273] as axioms,
implying that a vector space is a very natural object and the ten properties are the essence of a
vector space. We will instead emphasize that we will begin with a definition of a vector space.
After studying the remainder of this chapter, you might return here and remind yourself how all
our forthcoming theorems and definitions rest on this foundation.

As we will see shortly, the objects in V can be anything, even though we will call them vectors.
We have been working with vectors frequently, but we should stress here that these have so far just
been column vectors — scalars arranged in a columnar list of fixed length. In a similar vein, you
have used the symbol “+” for many years to represent the addition of numbers (scalars). We have
extended its use to the addition of column vectors and to the addition of matrices, and now we are
going to recycle it even further and let it denote vector addition in any possible vector space. So
when describing a new vector space, we will have to define exactly what “+” is. Similar comments
apply to scalar multiplication. Conversely, we can define our operations any way we like, so long
as the ten properties are fulfilled (see Example CVS [277]).

A vector space is composed of three objects, a set and two operations. However, we usually use
the same symbol for both the set and the vector space itself. Do not let this convenience fool you
into thinking the operations are secondary!

This discussion has either convinced you that we are really embarking on a new level of ab-
straction, or they have seemed cryptic, mysterious or nonsensical. You might want to return to
this section in a few days and give it another read then. In any case, let’s look at some concrete
examples now.

Subsection EVS
Examples of Vector Spaces

Our aim in this subsection is to give you a storehouse of examples to work with, to become
comfortable with the ten vector space properties and to convince you that the multitude of examples
justifies (at least initially) making such a broad definition as Definition VS [273]. Some of our claims
will be justified by reference to previous theorems, we will prove some facts from scratch, and we will
do one non-trivial example completely. In other places, our usual thoroughness will be neglected,
so grab paper and pencil and play along.
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Example VSCV
The vector space Cm

Set: Cm, all column vectors of size m, Definition VSCV [81].
Equality: Entry-wise, Definition CVE [82].
Vector Addition: The “usual” addition, given in Definition CVA [82].
Scalar Multiplication: The “usual” scalar multiplication, given in Definition CVSM [83].

Does this set with these operations fulfill the ten properties? Yes. And by design all we need
to do is quote Theorem VSPCV [84]. That was easy. �

Example VSM
The vector space of matrices, Mmn

Set: Mmn, the set of all matrices of size m× n and entries from C, Example VSM [275].
Equality: Entry-wise, Definition ME [179].
Vector Addition: The “usual” addition, given in Definition MA [179].
Scalar Multiplication: The “usual” scalar multiplication, given in Definition MSM [180].

Does this set with these operations fulfill the ten properties? Yes. And all we need to do is
quote Theorem VSPM [180]. Another easy one (by design). �

So, the set of all matrices of a fixed size forms a vector space. That entitles us to call a matrix
a vector, since a matrix is an element of a vector space. For example, if A, B ∈ M3,4 then we call
A and B “vectors,” and we even use our previous notation for column vectors to refer to A and B.
So we could legitimately write expressions like

u + v = A+B = B +A = v + u

This could lead to some confusion, but it is not too great a danger. But it is worth comment.
The previous two examples may be less than satisfying. We made all the relevant definitions

long ago. And the required verifications were all handled by quoting old theorems. However, it
is important to consider these two examples first. We have been studying vectors and matrices
carefully (Chapter V [81], Chapter M [179]), and both objects, along with their operations, have
certain properties in common, as you may have noticed in comparing Theorem VSPCV [84] with
Theorem VSPM [180]. Indeed, it is these two theorems that motivate us to formulate the abstract
definition of a vector space, Definition VS [273]. Now, should we prove some general theorems
about vector spaces (as we will shortly in Subsection VS.VSP [279]), we can instantly apply the
conclusions to both Cm and Mmn. Notice too how we have taken six definitions and two theorems
and reduced them down to two examples. With greater generalization and abstraction our old ideas
get downgraded in stature.

Let us look at some more examples, now considering some new vector spaces.

Example VSP
The vector space of polynomials, Pn
Set: Pn, the set of all polynomials of degree n or less in the variable x with coefficients from C.
Equality:

a0 + a1x+ a2x
2 + · · ·+ anx

n = b0 + b1x+ b2x
2 + · · ·+ bnx

n if and only if ai = bi for 0 ≤ i ≤ n

Vector Addition:

(a0 + a1x+ a2x
2 + · · ·+ anx

n) + (b0 + b1x+ b2x
2 + · · ·+ bnx

n) =

(a0 + b0) + (a1 + b1)x+ (a2 + b2)x2 + · · ·+ (an + bn)xn

Scalar Multiplication:

α(a0 + a1x+ a2x
2 + · · ·+ anx

n) = (αa0) + (αa1)x+ (αa2)x2 + · · ·+ (αan)xn

This set, with these operations, will fulfill the ten properties, though we will not work all the
details here. However, we will make a few comments and prove one of the properties. First, the
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zero vector (Property Z [273]) is what you might expect, and you can check that it has the required
property.

0 = 0 + 0x+ 0x2 + · · ·+ 0xn

The additive inverse (Property AI [274]) is also no surprise, though consider how we have chosen
to write it.

−
(
a0 + a1x+ a2x

2 + · · ·+ anx
n
)

= (−a0) + (−a1)x+ (−a2)x2 + · · ·+ (−an)xn

Now let’s prove the associativity of vector addition (Property AA [273]). This is a bit tedious,
though necessary. Throughout, the plus sign (“+”) does triple-duty. You might ask yourself what
each plus sign represents as you work through this proof.

u+(v + w)
= (a0 + a1x+ · · ·+ anx

n) + ((b0 + b1x+ · · ·+ bnx
n) + (c0 + c1x+ · · ·+ cnx

n))
= (a0 + a1x+ · · ·+ anx

n) + ((b0 + c0) + (b1 + c1)x+ · · ·+ (bn + cn)xn)
= (a0 + (b0 + c0)) + (a1 + (b1 + c1))x+ · · ·+ (an + (bn + cn))xn

= ((a0 + b0) + c0) + ((a1 + b1) + c1)x+ · · ·+ ((an + bn) + cn)xn

= ((a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn) + (c0 + c1x+ · · ·+ cnx
n)

= ((a0 + b1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)) + (c0 + c1x+ · · ·+ cnx
n)

= (u + v) + w

Notice how it is the application of the associativity of the (old) addition of complex numbers in the
middle of this chain of equalities that makes the whole proof happen. The remainder is successive
applications of our (new) definition of vector (polynomial) addition. Proving the remainder of the
ten properties is similar in style and tedium. You might try proving the commutativity of vector
addition (Property C [273]), or one of the distributivity properties (Property DVA [274], Property
DSA [274]). �

Example VSIS
The vector space of infinite sequences
Set: C∞ = {(c0, c1, c2, c3, . . .) | ci ∈ C, i ∈ N}.
Equality:

(c0, c1, c2, . . .) = (d0, d1, d2, . . .) if and only if ci = di for all i ≥ 0

Vector Addition:

(c0, c1, c2, . . .) + (d0, d1, d2, . . .) = (c0 + d0, c1 + d1, c2 + d2, . . .)

Scalar Multiplication:

α(c0, c1, c2, c3, . . .) = (αc0, αc1, αc2, αc3, . . .)

This should remind you of the vector space Cm, though now our lists of scalars are written hori-
zontally with commas as delimiters and they are allowed to be infinite in length. What does the
zero vector look like (Property Z [273])? Additive inverses (Property AI [274])? Can you prove the
associativity of vector addition (Property AA [273])? �

Example VSF
The vector space of functions
Set: F = {f | f : C → C}.
Equality: f = g if and only if f(x) = g(x) for all x ∈ C.
Vector Addition: f + g is the function with outputs defined by (f + g)(x) = f(x) + g(x).
Scalar Multiplication: αf is the function with outputs defined by (αf)(x) = αf(x).

So this is the set of all functions of one variable that take a complex number to a complex
number. You might have studied functions of one variable that take a real number to a real
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number, and that might be a more natural set to study. But since we are allowing our scalars
to be complex numbers, we need to expand the domain and range of our functions also. Study
carefully how the definitions of the operation are made, and think about the different uses of “+”
and juxtaposition. As an example of what is required when verifying that this is a vector space,
consider that the zero vector (Property Z [273]) is the function z whose definition is z(x) = 0 for
every input x.

While vector spaces of functions are very important in mathematics and physics, we will not
devote them much more attention.

�

Here’s a unique example.

Example VSS
The singleton vector space
Set: Z = {z}.
Equality: Huh?
Vector Addition: z + z = z.
Scalar Multiplication: αz = z.

This should look pretty wild. First, just what is z? Column vector, matrix, polynomial,
sequence, function? Mineral, plant, or animal? We aren’t saying! z just is. And we have definitions
of vector addition and scalar multiplication that are sufficient for an occurence of either that may
come along.

Our only concern is if this set, along with the definitions of two operations, fulfills the ten
properties of Definition VS [273]. Let’s check associativity of vector addition (Property AA [273]).
For all u, v, w ∈ Z,

u + (v + w) = z + (z + z)
= z + z

= (z + z) + z

= (u + v) + w

What is the zero vector in this vector space (Property Z [273])? With only one element in the set,
we do not have much choice. Is z = 0? It appears that z behaves like the zero vector should, so
it gets the title. Maybe now the definition of this vector space does not seem so bizarre. It is a
set whose only element is the element that behaves like the zero vector, so that lone element is the
zero vector. �

Perhaps some of the above definitions and verifications seem obvious or like splitting hairs, but
the next example should convince you that they are necessary. We will study this one carefully.
Ready? Check your preconceptions at the door.

Example CVS
The crazy vector space
Set: C = {(x1, x2) | x1, x2 ∈ C}.
Vector Addition: (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1).
Scalar Multiplication: α(x1, x2) = (αx1 + α− 1, αx2 + α− 1).

Now, the first thing I hear you say is “You can’t do that!” And my response is, “Oh yes, I
can!” I am free to define my set and my operations any way I please. They may not look natural,
or even useful, but we will now verify that they provide us with another example of a vector space.
And that is enough. If you are adventurous, you might try first checking some of the properties
yourself. What is the zero vector? Additive inverses? Can you prove associativity? Ready, here
we go.

Property AC [273], Property SC [273]: The result of each operation is a pair of complex numbers,
so these two closure properties are fulfilled.

Property C [273]:

u + v = (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1)
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= (y1 + x1 + 1, y2 + x2 + 1) = (y1, y2) + (x1, x2)
= v + u

Property AA [273]:

u + (v + w) = (x1, x2) + ((y1, y2) + (z1, z2))
= (x1, x2) + (y1 + z1 + 1, y2 + z2 + 1)
= (x1 + (y1 + z1 + 1) + 1, x2 + (y2 + z2 + 1) + 1)
= (x1 + y1 + z1 + 2, x2 + y2 + z2 + 2)
= ((x1 + y1 + 1) + z1 + 1, (x2 + y2 + 1) + z2 + 1)
= (x1 + y1 + 1, x2 + y2 + 1) + (z1, z2)
= ((x1, x2) + (y1, y2)) + (z1, z2)
= (u + v) + w

Property Z [273]: The zero vector is . . . 0 = (−1, −1). Now I hear you say, “No, no, that can’t be,
it must be (0, 0)!” Indulge me for a moment and let us check my proposal.

u + 0 = (x1, x2) + (−1, −1) = (x1 + (−1) + 1, x2 + (−1) + 1) = (x1, x2) = u

Feeling better? Or worse?
Property AI [274]: For each vector, u, we must locate an additive inverse, −u. Here it is,

−(x1, x2) = (−x1 − 2, −x2 − 2). As odd as it may look, I hope you are withholding judgment.
Check:

u+(−u) = (x1, x2)+(−x1−2, −x2−2) = (x1 +(−x1−2)+1, −x2 +(x2−2)+1) = (−1, −1) = 0

Property SMA [274]:

α(βu) = α(β(x1, x2))
= α(βx1 + β − 1, βx2 + β − 1)
= (α(βx1 + β − 1) + α− 1, α(βx2 + β − 1) + α− 1)
= ((αβx1 + αβ − α) + α− 1, (αβx2 + αβ − α) + α− 1)
= (αβx1 + αβ − 1, αβx2 + αβ − 1)
= (αβ)(x1, x2)
= (αβ)u

Property DVA [274]: If you have hung on so far, here’s where it gets even wilder. In the next two
properties we mix and mash the two operations.

α(u + v) = α ((x1, x2) + (y1, y2))
= α(x1 + y1 + 1, x2 + y2 + 1)
= (α(x1 + y1 + 1) + α− 1, α(x2 + y2 + 1) + α− 1)
= (αx1 + αy1 + α+ α− 1, αx2 + αy2 + α+ α− 1)
= (αx1 + α− 1 + αy1 + α− 1 + 1, αx2 + α− 1 + αy2 + α− 1 + 1)
= ((αx1 + α− 1) + (αy1 + α− 1) + 1, (αx2 + α− 1) + (αy2 + α− 1) + 1)
= (αx1 + α− 1, αx2 + α− 1) + (αy1 + α− 1, αy2 + α− 1)
= α(x1, x2) + α(y1, y2)
= αu + αv

Property DSA [274]:

(α+ β)u = (α+ β)(x1, x2)
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= ((α+ β)x1 + (α+ β)− 1, (α+ β)x2 + (α+ β)− 1)
= (αx1 + βx1 + α+ β − 1, αx2 + βx2 + α+ β − 1)
= (αx1 + α− 1 + βx1 + β − 1 + 1, αx2 + α− 1 + βx2 + β − 1 + 1)
= ((αx1 + α− 1) + (βx1 + β − 1) + 1, (αx2 + α− 1) + (βx2 + β − 1) + 1)
= (αx1 + α− 1, αx2 + α− 1) + (βx1 + β − 1, βx2 + β − 1)
= α(x1, x2) + β(x1, x2)
= αu + βu

Property O [274]: After all that, this one is easy, but no less pleasing.

1u = 1(x1, x2) = (x1 + 1− 1, x2 + 1− 1) = (x1, x2) = u

That’s it, C is a vector space, as crazy as that may seem.
Notice that in the case of the zero vector and additive inverses, we only had to propose pos-

sibilities and then verify that they were the correct choices. You might try to discover how you
would arrive at these choices, though you should understand why the process of discovering them
is not a necessary component of the proof itself. �

Subsection VSP
Vector Space Properties

Subsection VS.EVS [274] has provided us with an abundance of examples of vector spaces, most of
them containing useful and interesting mathematical objects along with natural operations. In this
subsection we will prove some general properties of vector spaces. Some of these results will again
seem obvious, but it is important to understand why it is necessary to state and prove them. A
typical hypothesis will be “Let V be a vector space.” From this we may assume the ten properties
of Definition VS [273], and nothing more. Its like starting over, as we learn about what can happen
in this new algebra we are learning. But the power of this careful approach is that we can apply
these theorems to any vector space we encounter — those in the previous examples, or new ones
we have not yet contemplated. Or perhaps new ones that nobody has ever contemplated. We will
illustrate some of these results with examples from the crazy vector space (Example CVS [277]),
but mostly we are stating theorems and doing proofs. These proofs do not get too involved, but
are not trivial either, so these are good theorems to try proving yourself before you study the proof
given here. (See Technique P [677].)

First we show that there is just one zero vector. Notice that the properties only require there
to be at least one, and say nothing about there possibly being more. That is because we can use
the ten properties of a vector space (Definition VS [273]) to learn that there can never be more
than one. To require that this extra condition be stated as an eleventh property would make the
definition of a vector space more complicated than it needs to be.

Theorem ZVU
Zero Vector is Unique
Suppose that V is a vector space. The zero vector, 0, is unique. �

Proof To prove uniqueness, a standard technique is to suppose the existence of two objects
(Technique U [674]). So let 01 and 02 be two zero vectors in V . Then

01 = 01 + 02 Property Z [273] for 02

= 02 + 01 Property C [273]
= 02 Property Z [273] for 01
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This proves the uniqueness since the two zero vectors are really the same. �

Theorem AIU
Additive Inverses are Unique
Suppose that V is a vector space. For each u ∈ V , the additive inverse, −u, is unique. �

Proof To prove uniqueness, a standard technique is to suppose the existence of two objects
(Technique U [674]). So let −u1 and −u2 be two additive inverses for u. Then

−u1 = −u1 + 0 Property Z [273]
= −u1 + (u +−u2) Property AI [274]
= (−u1 + u) +−u2 Property AA [273]
= 0 +−u2 Property AI [274]
= −u2 Property Z [273]

So the two additive inverses are really the same. �

As obvious as the next three theorems appear, nowhere have we guaranteed that the zero scalar,
scalar multiplication and the zero vector all interact this way. Until we have proved it, anyway.

Theorem ZSSM
Zero Scalar in Scalar Multiplication
Suppose that V is a vector space and u ∈ V . Then 0u = 0. �

Proof Notice that 0 is a scalar, u is a vector, so Property SC [273] says 0u is again a vector. As
such, 0u has an additive inverse, −(0u) by Property AI [274].

0u = 0 + 0u Property Z [273]
= (−(0u) + 0u) + 0u Property AI [274]
= −(0u) + (0u + 0u) Property AA [273]
= −(0u) + (0 + 0)u Property DSA [274]
= −(0u) + 0u 0 in C
= 0 Property AI [274]

�

Here’s another theorem that looks like it should be obvious, but is still in need of a proof.

Theorem ZVSM
Zero Vector in Scalar Multiplication
Suppose that V is a vector space and α ∈ C. Then α0 = 0. �

Proof Notice that α is a scalar, 0 is a vector, so Property SC [273] means α0 is again a vector.
As such, α0 has an additive inverse, −(α0) by Property AI [274].

α0 = 0 + α0 Property Z [273]
= (−(α0) + α0) + α0 Property AI [274]
= −(α0) + (α0 + α0) Property AA [273]
= −(α0) + α (0 + 0) Property DVA [274]
= −(α0) + α0 Property Z [273]
= 0 Property AI [274]

�

Here’s another one that sure looks obvious. But understand that we have chosen to use certain
notation because it makes the theorem’s conclusion look so nice. The theorem is not true because
the notation looks so good, it still needs a proof. If we had really wanted to make this point,
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we might have defined the additive inverse of u as u]. Then we would have written the defining
property, Property AI [274], as u + u] = 0. This theorem would become u] = (−1)u. Not really
quite as pretty, is it?

Theorem AISM
Additive Inverses from Scalar Multiplication
Suppose that V is a vector space and u ∈ V . Then −u = (−1)u. �

Proof

−u = −u + 0 Property Z [273]
= −u + 0u Theorem ZSSM [280]
= −u + (1 + (−1)) u

= −u + (1u + (−1)u) Property DSA [274]
= −u + (u + (−1)u) Property O [274]
= (−u + u) + (−1)u Property AA [273]
= 0 + (−1)u Property AI [274]
= (−1)u Property Z [273]

�

Because of this theorem, we can now write linear combinations like 6u1 + (−4)u2

as 6u1 − 4u2, even though we have not formally defined an operation called vector subtraction.
Our next theorem is a bit different from several of the others in the list. Rather than making a
declaration (“the zero vector is unique”) it is an implication (“if. . . , then. . . ”) and so can be used
in proofs to convert a vector equality into two possibilities, one a scalar equlaity and the other
a vector equality. It should remind you of the situation for complex numbers. If α, β ∈ C and
αβ = 0, then α = 0 or β = 0. This critical property is the driving force behind using a factorization
to solve a polynomial equation.

Theorem SMEZV
Scalar Multiplication Equals the Zero Vector
Suppose that V is a vector space and α ∈ C. If αu = 0, then either α = 0 or u = 0. �

Proof We prove this theorem by breaking up the analysis into two cases. The first seems too
trivial, and it is, but the logic of the argument is still legitimate.

Case 1. Suppose α = 0. In this case our conclusion is true (the first part of the either/or is
true) and we are done. That was easy.

Case 2. Suppose α 6= 0.

u = 1u Property O [274]

=
(

1
α
α

)
u α 6= 0

=
1
α

(αu) Property SMA [274]

=
1
α

(0) Hypothesis

= 0 Theorem ZVSM [280]

So in this case, the conclusion is true (the second part of the either/or is true) and we are done
since the conclusion was true in each of the two cases. �

Example PCVS
Properties for the Crazy Vector Space
Several of the above theorems have interesting demonstrations when applied to the crazy vector
space, C (Example CVS [277]). We are not proving anything new here, or learning anything we
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did not know already about C. It is just plain fun to see how these general theorems apply in a
specific instance. For most of our examples, the applications are obvious or trivial, but not with C.

Suppose u ∈ C.
Then, as given by Theorem ZSSM [280],

0u = 0(x1, x2) = (0x1 + 0− 1, 0x2 + 0− 1) = (−1,−1) = 0

And as given by Theorem ZVSM [280],

α0 = α(−1, −1) = (α(−1) + α− 1, α(−1) + α− 1)
= (−α+ α− 1, −α+ α− 1) = (−1, −1) = 0

Finally, as given by Theorem AISM [281],

(−1)u = (−1)(x1, x2) = ((−1)x1 + (−1)− 1, (−1)x2 + (−1)− 1)
= (−x1 − 2, −x2 − 2) = −u

�

Subsection RD
Recycling Definitions

When we say that V is a vector space, we then know we have a set of objects (the “vectors”), but
we also know we have been provided with two operations (“vector addition” and “scalar multiplica-
tion”) and these operations behave with these objects according to the ten properties of Definition
VS [273]. One combines two vectors and produces a vector, the other takes a scalar and a vector,
producing a vector as the result. So if u1, u2, u3 ∈ V then an expression like

5u1 + 7u2 − 13u3

would be unambiguous in any of the vector spaces we have discussed in this section. And the
resulting object would be another vector in the vector space. If you were tempted to call the above
expression a linear combination, you would be right. Four of the definitions that were central to
our discussions in Chapter V [81] were stated in the context of vectors being column vectors, but
were purposely kept broad enough that they could be applied in the context of any vector space.
They only rely on the presence of scalars, vectors, vector addition and scalar multiplication to make
sense. We will restate them shortly, unchanged, except that their titles and acronyms no longer
refer to column vectors, and the hypothesis of being in a vector space has been added. Take the
time now to look forward and review each one, and begin to form some connections to what we have
done earlier and what we will be doing in subsequent sections and chapters. Specifically, compare
the following pairs of definitions:

Definition LCCV [89] and Definition LC [292]
Definition SSCV [113] and Definition SS [293]
Definition RLDCV [133] and Definition RLD [303]
Definition LICV [133] and Definition LI [303]

Subsection READ
Reading Questions

1. Comment on how the vector space Cm went from a theorem (Theorem VSPCV [84]) to an
example (Example VSCV [275]).
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2. In the crazy vector space, C, (Example CVS [277]) compute the linear combination

2(3, 4) + (−6)(1, 2).

3. Suppose that α is a scalar and 0 is the zero vector. Why should we prove anything as obvious
as α0 = 0 such as we did in Theorem ZVSM [280]?
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Subsection EXC
Exercises

M10 Define a possibly new vector space by beginning with the set and vector addition from C2

(Example VSCV [275]) but change the definition of scalar multiplication to

αx = 0 =
[
0
0

]
α ∈ C, x ∈ C2

Prove that the first nine properties required for a vector space hold, but Property O [274] does not
hold.

This example shows us that we cannot expect to be able to derive Property O [274] as a
consequence of assuming the first nine properties. In other words, we cannot slim down our list of
properties by jettisoning the last one, and still have the same collection of objects qualify as vector
spaces.
Contributed by Robert Beezer

T10 Prove each of the ten properties of Definition VS [273] for each of the following examples of
a vector space:
Example VSP [275]
Example VSIS [276]
Example VSF [276]
Example VSS [277]
Contributed by Robert Beezer

The next three problems suggest that under the right situations we can “cancel.” In practice,
these techniques should be avoided in other proofs. Prove each of the following statements.

T21 Suppose that V is a vector space, and u, v, w ∈ V . If w + u = w + v, then u = v.
Contributed by Robert Beezer Solution [285]

T22 Suppose V is a vector space, u, v ∈ V and α is a nonzero scalar from C. If αu = αv, then
u = v.
Contributed by Robert Beezer Solution [285]

T23 Suppose V is a vector space, u 6= 0 is a vector in V and α, β ∈ C. If αu = βu, then α = β.
Contributed by Robert Beezer Solution [285]
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Subsection SOL
Solutions

T21 Contributed by Robert Beezer Statement [284]

u = 0 + u Property Z [273]
= (−w + w) + u Property AI [274]
= −w + (w + u) Property AA [273]
= −w + (w + v) Hypothesis
= (−w + w) + v Property AA [273]
= 0 + v Property AI [274]
= v Property Z [273]

T22 Contributed by Robert Beezer Statement [284]

u = 1u Property O [274]

=
(

1
α
α

)
u α 6= 0

=
1
α

(αu) Property SMA [274]

=
1
α

(αv) Hypothesis

=
(

1
α
α

)
v Property SMA [274]

= 1v

= v Property O [274]

T23 Contributed by Robert Beezer Statement [284]

0 = αu +− (αu) Property AI [274]
= βu +− (αu) Hypothesis
= βu + (−1) (αu) Theorem AISM [281]
= βu + ((−1)α) u Property SMA [274]
= βu + (−α) u

= (β − α) u Property DSA [274]

By hypothesis, u 6= 0, so Theorem SMEZV [281] implies

0 = β − α
α = β
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Section S
Subspaces

A subspace is a vector space that is contained within another vector space. So every subspace is a
vector space in its own right, but it is also defined relative to some other (larger) vector space. We
will discover shortly that we are already familiar with a wide variety of subspaces from previous
sections. Here’s the definition.

Definition S
Subspace
Suppose that V and W are two vector spaces that have identical definitions of vector addition and
scalar multiplication, and that W is a subset of V , W ⊆ V . Then W is a subspace of V . 4

Lets look at an example of a vector space inside another vector space.

Example SC3
A subspace of C3

We know that C3 is a vector space (Example VSCV [275]). Consider the subset,

W =


x1

x2

x3

 ∣∣∣∣∣∣ 2x1 − 5x2 + 7x3 = 0


It is clear that W ⊆ C3, since the objects in W are column vectors of size 3. But is W a vector
space? Does it satisfy the ten properties of Definition VS [273] when we use the same operations?

That is the main question. Suppose x =

x1

x2

x3

 and y =

y1

y2

y3

 are vectors from W . Then we know

that these vectors cannot be totally arbitrary, they must have gained membership in W by virtue
of meeting the membership test. For example, we know that x must satisfy 2x1 − 5x2 + 7x3 = 0
while y must satisfy 2y1− 5y2 + 7y3 = 0. Our first property (Property AC [273]) asks the question,
is x + y ∈W? When our set of vectors was C3, this was an easy question to answer. Now it is not
so obvious. Notice first that

x + y =

x1

x2

x3

+

y1

y2

y3

 =

x1 + y1

x2 + y2

x3 + y3


and we can test this vector for membership in W as follows,

2(x1 + y1)− 5(x2 + y2) + 7(x3 + y3) = 2x1 + 2y1 − 5x2 − 5y2 + 7x3 + 7y3

= (2x1 − 5x2 + 7x3) + (2y1 − 5y2 + 7y3)
= 0 + 0 x ∈W, y ∈W
= 0

and by this computation we see that x + y ∈W . One property down, nine to go.
If α is a scalar and x ∈ W , is it always true that αx ∈ W? This is what we need to establish

Property SC [273]. Again, the answer is not as obvious as it was when our set of vectors was all of
C3. Let’s see.

αx = α

x1

x2

x3

 =

αx1

αx2

αx3


and we can test this vector for membership in W with

2(αx1)− 5(αx2) + 7(αx3) = α(2x1 − 5x2 + 7x3)
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= α0 x ∈W
= 0

and we see that indeed αx ∈W . Always.
If W has a zero vector, it will be unique (Theorem ZVU [279]). The zero vector for C3 should

also perform the required duties when added to elements of W . So the likely candidate for a zero

vector in W is the same zero vector that we know C3 has. You can check that 0 =

0
0
0

 is a zero

vector in W too (Property Z [273]).
With a zero vector, we can now ask about additive inverses (Property AI [274]). As you might

suspect, the natural candidate for an additive inverse in W is the same as the additive inverse
from C3. However, we must insure that these additive inverses actually are elements of W . Given
x ∈W , is −x ∈W?

−x =

−x1

−x2

−x3


and we can test this vector for membership in W with

2(−x1)− 5(−x2) + 7(−x3) = −(2x1 − 5x2 + 7x3)
= −0 x ∈W
= 0

and we now believe that −x ∈W .
Is the vector addition in W commutative (Property C [273])? Is x + y = y + x? Of course!

Nothing about restricting the scope of our set of vectors will prevent the operation from still being
commutative. Indeed, the remaining five properties are unaffected by the transition to a smaller
set of vectors, and so remain true. That was convenient.

So W satisfies all ten properties, is therefore a vector space, and thus earns the title of being a
subspace of C3. �

Subsection TS
Testing Subspaces

In Example SC3 [287] we proceeded through all ten of the vector space properties before believing
that a subset was a subspace. But six of the properties were easy to prove, and we can lean on
some of the properties of the vector space (the superset) to make the other four easier. Here is a
theorem that will make it easier to test if a subset is a vector space. A shortcut if there ever was
one.

Theorem TSS
Testing Subsets for Subspaces
Suppose that V is a vector space and W is a subset of V , W ⊆ V . Endow W with the same
operations as V . Then W is a subspace if and only if three conditions are met

1. W is non-empty, W 6= ∅.

2. If x ∈W and y ∈W , then x + y ∈W .

3. If α ∈ C and x ∈W , then αx ∈W .

�

Proof (⇒) We have the hypothesis that W is a subspace, so by Definition VS [273] we know that
W contains a zero vector. This is enough to show that W 6= ∅. Also, since W is a vector space it
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satisfies the additive and scalar multiplication closure properties, and so exactly meets the second
and third conditions. If that was easy, the the other direction might require a bit more work.

(⇐) We have three properties for our hypothesis, and from this we should conclude that W has
the ten defining properties of a vector space. The second and third conditions of our hypothesis are
exactly Property AC [273] and Property SC [273]. Our hypothesis that V is a vector space implies
that Property C [273], Property AA [273], Property SMA [274], Property DVA [274], Property DSA
[274] and Property O [274] all hold. They continue to be true for vectors from W since passing to
a subset, and keeping the operation the same, leaves their statements unchanged. Eight down, two
to go.

Suppose x ∈ W . Then by the third part of our hypothesis (scalar closure), we know that
(−1)x ∈ W . By Theorem AISM [281] (−1)x = −x, so together these statements show us that
−x ∈ W . −x is the additive inverse of x in V , but will continue in this role when viewed as
element of the subset W . So every element of W has an additive inverse that is an element of W
and Property AI [274] is completed. Just one property left.

While we have implicitly discussed the zero vector in the previous paragraph, we need to be
certain that the zero vector (of V ) really lives in W . Since W is non-empty, we can choose some
vector z ∈ W . Then by the argument in the previous paragraph, we know −z ∈ W . Now by
Property AI [274] for V and then by the second part of our hypothesis (additive closure) we see
that

0 = z + (−z) ∈W

So W contain the zero vector from V . Since this vector performs the required duties of a zero
vector in V , it will continue in that role as an element of W . This gives us, Property Z [273], the
final property of the ten required. (Sarah Fellez contributed to this proof.)

�

So just three conditions, plus being a subset of a known vector space, gets us all ten properties.
Fabulous! This theorem can be paraphrased by saying that a subspace is “a non-empty subset (of
a vector space) that is closed under vector addition and scalar multiplication.”

You might want to go back and rework Example SC3 [287] in light of this result, perhaps seeing
where we can now economize or where the work done in the example mirrored the proof and where
it did not. We will press on and apply this theorem in a slightly more abstract setting.

Example SP4
A subspace of P4

P4 is the vector space of polynomials with degree at most 4 (Example VSP [275]). Define a subset
W as

W = {p(x) | p ∈ P4, p(2) = 0}

so W is the collection of those polynomials (with degree 4 or less) whose graphs cross the x-axis at
x = 2. Whenever we encounter a new set it is a good idea to gain a better understanding of the
set by finding a few elements in the set, and a few outside it. For example x2 − x− 2 ∈ W , while
x4 + x3 − 7 6∈W .

Is W nonempty? Yes, x− 2 ∈W .
Additive closure? Suppose p ∈W and q ∈W . Is p+ q ∈W? p and q are not totally arbitrary,

we know that p(2) = 0 and q(2) = 0. Then we can check p+ q for membership in W ,

(p+ q)(2) = p(2) + q(2) Addition in P4

= 0 + 0 p ∈W, q ∈W
= 0

so we see that p+ q qualifies for membership in W .
Scalar multiplication closure? Suppose that α ∈ C and p ∈ W . Then we know that p(2) = 0.

Testing αp for membership,

(αp)(2) = αp(2) Scalar multiplication in P4
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= α0 p ∈W
= 0

so αp ∈W .
We have shown that W meets the three conditions of Theorem TSS [288] and so qualifies as

a subspace of P4. Notice that by Definition S [287] we now know that W is also a vector space.
So all the properties of a vector space (Definition VS [273]) and the theorems of Section VS [273]
apply in full.

�

Much of the power of Theorem TSS [288] is that we can easily establish new vector spaces if we
can locate them as subsets of other vector spaces, such as the ones presented in Subsection VS.EVS
[274].

It can be as instructive to consider some subsets that are not subspaces. Since Theorem TSS
[288] is an equivalence (see Technique E [672]) we can be assured that a subset is not a subspace
if it violates one of the three conditions, and in any example of interest this will not be the “non-
empty” condition. However, since a subspace has to be a vector space in its own right, we can also
search for a violation of any one of the ten defining properties in Definition VS [273] or any inherent
property of a vector space, such as those given by the basic theorems of Subsection VS.VSP [279].
Notice also that a violation need only be for a specific vector or pair of vectors.

Example NSC2Z
A non-subspace in C2, zero vector
Consider the subset W below as a candidate for being a subspace of C2

W =
{[

x1

x2

] ∣∣∣∣ 3x1 − 5x2 = 12
}

The zero vector of C2, 0 =
[
0
0

]
will need to be the zero vector in W also. However, 0 6∈ W

since 3(0) − 5(0) = 0 6= 12. So W has no zero vector and fails Property Z [273] of Definition VS
[273]. This subspace also fails to be closed under addition and scalar multiplication. Can you find
examples of this? �

Example NSC2A
A non-subspace in C2, additive closure
Consider the subset X below as a candidate for being a subspace of C2

X =
{[

x1

x2

] ∣∣∣∣ x1x2 = 0
}

You can check that 0 ∈ X, so the approach of the last example will not get us anywhere. However,

notice that x =
[
1
0

]
∈ X and y =

[
0
1

]
∈ X. Yet

x + y =
[
1
0

]
+
[
0
1

]
=
[
1
1

]
6∈ X

So X fails the additive closure requirement of either Property AC [273] or Theorem TSS [288], and
is therefore not a subspace. �

Example NSC2S
A non-subspace in C2, scalar multiplication closure
Consider the subset Y below as a candidate for being a subspace of C2

Y =
{[

x1

x2

] ∣∣∣∣ x1 ∈ Z, x2 ∈ Z
}
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Z is the set of integers, so we are only allowing “whole numbers” as the constituents of our vectors.
Now, 0 ∈ Y , and additive closure also holds (can you prove these claims?). So we will have to try

something different. Note that α = 1
2 ∈ C and

[
2
3

]
∈ Y , but

αx =
1
2

[
2
3

]
=
[

1
3
2

]
6∈ Y

So Y fails the scalar multiplication closure requirement of either Property SC [273] or Theorem
TSS [288], and is therefore not a subspace. �

There are two examples of subspaces that are trivial. Suppose that V is any vector space. Then
V is a subset of itself and is a vector space. By Definition S [287], V qualifies as a subspace of
itself. The set containing just the zero vector Z = {0} is also a subspace as can be seen by applying
Theorem TSS [288] or by simple modifications of the techniques hinted at in Example VSS [277].
Since these subspaces are so obvious (and therefore not too interesting) we will refer to them as
being trivial.

Definition TS
Trivial Subspaces
Given the vector space V , the subspaces V and {0} are each called a trivial subspace. 4

We can also use Theorem TSS [288] to prove more general statements about subspaces, as
illustrated in the next theorem.

Theorem NSMS
Null Space of a Matrix is a Subspace
Suppose that A is an m× n matrix. Then the null space of A, N (A), is a subspace of Cn. �

Proof We will examine the three requirements of Theorem TSS [288]. Recall that N (A) =
{x ∈ Cn | Ax = 0}.

First, 0 ∈ N (A), which can be inferred as a consequence of Theorem HSC [57]. So N (A) 6= ∅.
Second, check additive closure by supposing that x ∈ N (A) and y ∈ N (A). So we know a

little something about x and y: Ax = 0 and Ay = 0, and that is all we know. Question: Is
x + y ∈ N (A)? Let’s check.

A(x + y) = Ax +Ay Theorem MMDAA [197]
= 0 + 0 x ∈ N (A) , y ∈ N (A)
= 0 Theorem VSPCV [84]

So, yes, x + y qualifies for membership in N (A).
Third, check scalar multiplication closure by supposing that α ∈ C and x ∈ N (A). So we know

a little something about x: Ax = 0, and that is all we know. Question: Is αx ∈ N (A)? Let’s
check.

A(αx) = α(Ax) Theorem MMSMM [198]
= α0 x ∈ N (A)
= 0 Theorem ZVSM [280]

So, yes, αx qualifies for membership in N (A).
Having met the three conditions in Theorem TSS [288] we can now say that the null space of

a matrix is a subspace (and hence a vector space in its own right!). �

Here is an example where we can exercise Theorem NSMS [291].

Example RSNS
Recasting a subspace as a null space
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Consider the subset of C5 defined as

W =




x1

x2

x3

x4

x5


∣∣∣∣∣∣∣∣∣∣

3x1 + x2 − 5x3 + 7x4 + x5 = 0,
4x1 + 6x2 + 3x3 − 6x4 − 5x5 = 0,
−2x1 + 4x2 + 7x4 + x5 = 0


It is possible to show that W is a subspace of C5 by checking the three conditions of Theorem TSS
[288] directly, but it will get tedious rather quickly. Instead, give W a fresh look and notice that it
is a set of solutions to a homogeneous system of equations. Define the matrix

A =

 3 1 −5 7 1
4 6 3 −6 −5
−2 4 0 7 1


and then recognize that W = N (A). By Theorem NSMS [291] we can immediately see that W is
a subspace. Boom! �

Subsection TSS
The Span of a Set

The span of a set of column vectors got a heavy workout in Chapter V [81] and Chapter M
[179]. The definition of the span depended only on being able to formulate linear combinations.
In any of our more general vector spaces we always have a definition of vector addition and of
scalar multiplication. So we can build linear combinations and manufacture spans. This subsection
contains two definitions that are just mild variants of definitions we have seen earlier for column
vectors. If you haven’t already, compare them with Definition LCCV [89] and Definition SSCV
[113].

Definition LC
Linear Combination
Suppose that V is a vector space. Given n vectors u1, u2, u3, . . . , un and n scalars α1, α2, α3, . . . , αn,
their linear combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.

4

Example LCM
A linear combination of matrices
In the vector space M23 of 2× 3 matrices, we have the vectors

x =
[
1 3 −2
2 0 7

]
y =

[
3 −1 2
5 5 1

]
z =

[
4 2 −4
1 1 1

]
and we can form linear combinations such as

2x + 4y + (−1)z = 2
[
1 3 −2
2 0 7

]
+ 4

[
3 −1 2
5 5 1

]
+ (−1)

[
4 2 −4
1 1 1

]
=
[
2 6 −4
4 0 14

]
+
[
12 −4 8
20 20 4

]
+
[
−4 −2 4
−1 −1 −1

]
=
[
10 0 8
23 19 17

]
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or,

4x− 2y + 3z = 4
[
1 3 −2
2 0 7

]
− 2

[
3 −1 2
5 5 1

]
+ 3

[
4 2 −4
1 1 1

]
=
[
4 12 −8
8 0 28

]
+
[
−6 2 −4
−10 −10 −2

]
+
[
12 6 −12
3 3 3

]
=
[
10 20 −24
1 −7 29

]
�

When we realize that we can form linear combinations in any vector space, then it is natural to
revisit our definition of the span of a set, since it is the set of all possible linear combinations of a
set of vectors.

Definition SS
Span of a Set
Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut}, their span, 〈S〉,
is the set of all possible linear combinations of u1, u2, u3, . . . , ut. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αtut | αi ∈ C, 1 ≤ i ≤ t}

=

{
t∑
i=1

αiui

∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ t

}

4

Theorem SSS
Span of a Set is a Subspace
Suppose V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut} ⊆ V , their span, 〈S〉,
is a subspace. �

Proof We will verify the three conditions of Theorem TSS [288]. First,

0 = 0 + 0 + 0 + . . .+ 0 Property Z [273] for V
= 0u1 + 0u2 + 0u3 + · · ·+ 0ut Theorem ZSSM [280]

So we have written 0 as a linear combination of the vectors in S and by Definition SS [293],0 ∈ 〈S〉
and therefore S 6= ∅.

Second, suppose x ∈ 〈S〉 and y ∈ 〈S〉. Can we conclude that x + y ∈ 〈S〉? What do we
know about x and y by virtue of their membership in 〈S〉? There must be scalars from C,
α1, α2, α3, . . . , αt and β1, β2, β3, . . . , βt so that

x = α1u1 + α2u2 + α3u3 + · · ·+ αtut
y = β1u1 + β2u2 + β3u3 + · · ·+ βtut

Then

x + y = α1u1 + α2u2 + α3u3 + · · ·+ αtut
+ β1u1 + β2u2 + β3u3 + · · ·+ βtut

= α1u1 + β1u1 + α2u2 + β2u2

+ α3u3 + β3u3 + · · ·+ αtut + βtut Property AA [273], Property C [273]
= (α1 + β1)u1 + (α2 + β2)u2

+ (α3 + β3)u3 + · · ·+ (αt + βt)ut Property DSA [274]

Since each αi + βi is again a scalar from C we have expressed the vector sum x + y as a linear
combination of the vectors from S, and therefore by Definition SS [293] we can say that x+y ∈ 〈S〉.
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Third, suppose α ∈ C and x ∈ 〈S〉. Can we conclude that αx ∈ 〈S〉? What do we know about
x by virtue of its membership in 〈S〉? There must be scalars from C, α1, α2, α3, . . . , αt so that

x = α1u1 + α2u2 + α3u3 + · · ·+ αtut

Then

αx = α (α1u1 + α2u2 + α3u3 + · · ·+ αtut)
= α(α1u1) + α(α2u2) + α(α3u3) + · · ·+ α(αtut) Property DVA [274]
= (αα1)u1 + (αα2)u2 + (αα3)u3 + · · ·+ (ααt)ut Property SMA [274]

Since each ααi is again a scalar from C we have expressed the scalar multiple αx as a linear
combination of the vectors from S, and therefore by Definition SS [293] we can say that αx ∈ 〈S〉.

With the three conditions of Theorem TSS [288] met, we can say that 〈S〉 is a subspace (and
so is also vector space, Definition VS [273]). (See Exercise SS.T20 [125], Exercise SS.T21 [125],
Exercise SS.T22 [125].) �

Example SSP
Span of a set of polynomials
In Example SP4 [289] we proved that

W = {p(x) | p ∈ P4, p(2) = 0}

is a subspace of P4, the vector space of polynomials of degree at most 4. Since W is a vector space
itself, let’s construct a span within W . First let

S =
{
x4 − 4x3 + 5x2 − x− 2, 2x4 − 3x3 − 6x2 + 6x+ 4

}
and verify that S is a subset of W by checking that each of these two polynomials has x = 2 as a
root. Now, if we define U = 〈S〉, then Theorem SSS [293] tells us that U is a subspace of W . So
quite quickly we have built a chain of subspaces, U inside W , and W inside P4.

Rather than dwell on how quickly we can build subspaces, let’s try to gain a better understanding
of just how the span construction creates subspaces, in the context of this example. We can quickly
build representative elements of U ,

3(x4 − 4x3 + 5x2 − x− 2) + 5(2x4 − 3x3 − 6x2 + 6x+ 4) = 13x4 − 27x3 − 15x2 + 27x+ 14

and

(−2)(x4 − 4x3 + 5x2 − x− 2) + 8(2x4 − 3x3 − 6x2 + 6x+ 4) = 14x4 − 16x3 − 58x2 + 50x+ 36

and each of these polynomials must be in W since it is closed under addition and scalar mul-
tiplication. But you might check for yourself that both of these polynomials have x = 2 as a
root.

I can tell you that y = 3x4 − 7x3 − x2 + 7x − 2 is not in U , but would you believe me? A
first check shows that y does have x = 2 as a root, but that only shows that y ∈ W . What does
y have to do to gain membership in U = 〈S〉? It must be a linear combination of the vectors in
S, x4 − 4x3 + 5x2 − x − 2 and 2x4 − 3x3 − 6x2 + 6x + 4. So let’s suppose that y is such a linear
combination,

y = 3x4 − 7x3 − x2 + 7x− 2

= α1(x4 − 4x3 + 5x2 − x− 2) + α2(2x4 − 3x3 − 6x2 + 6x+ 4)

= (α1 + 2α2)x4 + (−4α1 − 3α2)x3 + (5α1 − 6α2)x2 + (−α1 + 6α2)x− (−2α1 + 4α2)
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Notice that operations above are done in accordance with the definition of the vector space of
polynomials (Example VSP [275]). Now, if we equate coefficients, which is the definition of equality
for polynomials, then we obtain the system of five linear equations in two variables

α1 + 2α2 = 3
−4α1 − 3α2 = −7

5α1 − 6α2 = −1
−α1 + 6α2 = 7
−2α1 + 4α2 = −2

Build an augmented matrix from the system and row-reduce,
1 2 3
−4 −3 −7
5 −6 −1
−1 6 7
−2 4 −2

 RREF−−−−→


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


With a leading 1 in the final column of the row-reduced augmented matrix, Theorem RCLS [48]
tells us the system of equations is inconsistent. Therefore, there are no scalars, α1 and α2, to
establish y as a linear combination of the elements in U . So y 6∈ U . �

Let’s again examine membership in a span.

Example SM32
A subspace of M32

The set of all 3 × 2 matrices forms a vector space when we use the operations of matrix addition
(Definition MA [179]) and scalar matrix multiplication (Definition MSM [180]), as was show in
Example VSM [275]. Consider the subset

S =


3 1

4 2
5 −5

 ,
 1 1

2 −1
14 −1

 ,
 3 −1
−1 2
−19 −11

 ,
 4 2

1 −2
14 −2

 ,
 3 1
−4 0
−17 7


and define a new subset of vectors W in M32 using the span (Definition SS [293]), W = 〈S〉. So by
Theorem SSS [293] we know that W is a subspace of M32. While W is an infinite set, and this is
a precise description, it would still be worthwhile to investigate whether or not W contains certain
elements.

First, is

y =

 9 3
7 3
10 −11


in W? To answer this, we want to determine if y can be written as a linear combination of the five
matrices in S. Can we find scalars, α1, α2, α3, α4, α5 so that 9 3

7 3
10 −11

 = α1

3 1
4 2
5 −5

+ α2

 1 1
2 −1
14 −1

+ α3

 3 −1
−1 2
−19 −11

+ α4

 4 2
1 −2
14 −2

+ α5

 3 1
−4 0
−17 7


=

 3α1 + α2 + 3α3 + 4α4 + 3α5 α1 + α2 − α3 + 2α4 + α5

4α1 + 2α2 − α3 + α4 − 4α5 2α1 − α2 + 2α3 − 2α4

5α1 + 14α2 − 19α3 + 14α4 − 17α5 −5α1 − α2 − 11α3 − 2α4 + 7α5


Using our definition of matrix equality (Definition ME [179]) we can translate this statement into
six equations in the five unknowns,

3α1 + α2 + 3α3 + 4α4 + 3α5 = 9
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α1 + α2 − α3 + 2α4 + α5 = 3
4α1 + 2α2 − α3 + α4 − 4α5 = 7

2α1 − α2 + 2α3 − 2α4 = 3
5α1 + 14α2 − 19α3 + 14α4 − 17α5 = 10
−5α1 − α2 − 11α3 − 2α4 + 7α5 = −11

This is a linear system of equations, which we can represent with an augmented matrix and row-
reduce in search of solutions. The matrix that is row-equivalent to the augmented matrix is

1 0 0 0 5
8 2

0 1 0 0 −19
4 −1

0 0 1 0 −7
8 0

0 0 0 1 17
8 1

0 0 0 0 0 0
0 0 0 0 0 0


So we recognize that the system is consistent since there is no leading 1 in the final column (Theorem
RCLS [48]), and compute n− r = 5− 4 = 1 free variables (Theorem FVCS [49]). While there are
infinitely many solutions, we are only in pursuit of a single solution, so let’s choose the free variable
α5 = 0 for simplicity’s sake. Then we easily see that α1 = 2, α2 = −1, α3 = 0, α4 = 1. So the
scalars α1 = 2, α2 = −1, α3 = 0, α4 = 1, α5 = 0 will provide a linear combination of the elements
of S that equals y, as we can verify by checking, 9 3

7 3
10 −11

 = 2

3 1
4 2
5 −5

+ (−1)

 1 1
2 −1
14 −1

+ (1)

 4 2
1 −2
14 −2


So with one particular linear combination in hand, we are convinced that y deserves to be a member
of W = 〈S〉. Second, is

x =

2 1
3 1
4 −2


in W? To answer this, we want to determine if x can be written as a linear combination of the five
matrices in S. Can we find scalars, α1, α2, α3, α4, α5 so that2 1

3 1
4 −2

 = α1

3 1
4 2
5 −5

+ α2

 1 1
2 −1
14 −1

+ α3

 3 −1
−1 2
−19 −11

+ α4

 4 2
1 −2
14 −2

+ α5

 3 1
−4 0
−17 7


=

 3α1 + α2 + 3α3 + 4α4 + 3α5 α1 + α2 − α3 + 2α4 + α5

4α1 + 2α2 − α3 + α4 − 4α5 2α1 − α2 + 2α3 − 2α4

5α1 + 14α2 − 19α3 + 14α4 − 17α5 −5α1 − α2 − 11α3 − 2α4 + 7α5


Using our definition of matrix equality (Definition ME [179]) we can translate this statement into
six equations in the five unknowns,

3α1 + α2 + 3α3 + 4α4 + 3α5 = 2
α1 + α2 − α3 + 2α4 + α5 = 1

4α1 + 2α2 − α3 + α4 − 4α5 = 3
2α1 − α2 + 2α3 − 2α4 = 1

5α1 + 14α2 − 19α3 + 14α4 − 17α5 = 4
−5α1 − α2 − 11α3 − 2α4 + 7α5 = −2
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This is a linear system of equations, which we can represent with an augmented matrix and row-
reduce in search of solutions. The matrix that is row-equivalent to the augmented matrix is

1 0 0 0 5
8 0

0 1 0 0 −38
8 0

0 0 1 0 −7
8 0

0 0 0 1 −17
8 0

0 0 0 0 0 1
0 0 0 0 0 0


With a leading 1 in the last column Theorem RCLS [48] tells us that the system is inconsistent.
Therefore, there are no values for the scalars that will place x in W , and so we conclude that
x 6∈W . �

Notice how Example SSP [294] and Example SM32 [295] contained questions about membership
in a span, but these questions quickly became questions about solutions to a system of linear
equations. This will be a common theme going forward.

Subsection SC
Subspace Constructions

Several of the subsets of vectors spaces that we worked with in Chapter M [179] are also subspaces
— they are closed under vector addition and scalar multiplication in Cm.

Theorem CSMS
Column Space of a Matrix is a Subspace
Suppose that A is an m× n matrix. Then C(A) is a subspace of Cm. �

Proof Definition CSM [231] shows us that C(A) is a subset of Cm, and that it is defined as the
span of a set of vectors from Cm (the columns of the matrix). Since C(A) is a span, Theorem SSS
[293] says it is a subspace. �

That was easy! Notice that we could have used this same approach to prove that the null space
is a subspace, since Theorem SSNS [118] provided a description of the null space of a matrix as
the span of a set of vectors. However, I much prefer the current proof of Theorem NSMS [291].
Speaking of easy, here is a very easy theorem that exposes another of our constructions as creating
subspaces.

Theorem RSMS
Row Space of a Matrix is a Subspace
Suppose that A is an m× n matrix. Then R(A) is a subspace of Cn. �

Proof Definition RSM [237] says R(A) = C
(
At
)
, so the row space of a matrix is a column space,

and every column space is a subspace by Theorem CSMS [297]. That’s enough. �

One more.

Theorem LNSMS
Left Null Space of a Matrix is a Subspace
Suppose that A is an m× n matrix. Then L(A) is a subspace of Cm. �

Proof Definition LNS [251] says L(A) = N
(
At
)
, so the left null space is a null space, and every

null space is a subspace by Theorem NSMS [291]. Done. �

So the span of a set of vectors, and the null space, column space, row space and left null
space of a matrix are all subspaces, and hence are all vector spaces, meaning they have all the
properties detailed in Definition VS [273] and in the basic theorems presented in Section VS [273].
We have worked with these objects as just sets in Chapter V [81] and Chapter M [179], but now we
understand that they have much more structure. In particular, being closed under vector addition
and scalar multiplication means a subspace is also closed under linear combinations.
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Subsection READ
Reading Questions

1. Summarize the three conditions that allow us to quickly test if a set is a subspace.

2. Consider the set of vectors

W =


ab
c

 ∣∣∣∣∣∣ 3a− 2b+ c = 5


Is the set W a subspace of C3? Explain your answer.

3. Name five general constructions of sets of column vectors (subsets of Cm) that we now know
as subspaces.
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Subsection EXC
Exercises

C20 Working within the vector space P3 of polynomials of degree 3 or less, determine if p(x) =
x3 + 6x+ 4 is in the subspace W below.

W =
〈{
x3 + x2 + x, x3 + 2x− 6, x2 − 5

}〉
Contributed by Robert Beezer Solution [300]

C21 Consider the subspace

W =
〈{[

2 1
3 −1

]
,

[
4 0
2 3

]
,

[
−3 1
2 1

]}〉

of the vector space of 2× 2 matrices, M22. Is C =
[
−3 3
6 −4

]
an element of W?

Contributed by Robert Beezer Solution [300]

C25 Show that the set W =
{[

x1

x2

] ∣∣∣∣ 3x1 − 5x2 = 12
}

from Example NSC2Z [290] fails Property

AC [273] and Property SC [273].
Contributed by Robert Beezer

C26 Show that the set Y =
{[

x1

x2

] ∣∣∣∣ x1 ∈ Z, x2 ∈ Z
}

from Example NSC2S [290] has Property

AC [273].
Contributed by Robert Beezer

M20 In C3, the vector space of column vectors of size 3, prove that the set Z is a subspace.

Z =


x1

x2

x3

 ∣∣∣∣∣∣ 4x1 − x2 + 5x3 = 0


Contributed by Robert Beezer Solution [300]

T20 A square matrix A of size n is upper triangular if [A]ij = 0 whenever i > j. Let UTn be the
set of all upper triangular matrices of size n. Prove that UTn is a subspace of the vector space of
all square matrices of size n, Mnn.
Contributed by Robert Beezer Solution [301]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [299]
The question is if p can be written as a linear combination of the vectors in W . To check this, we
set p equal to a linear combination and massage with the definitions of vector addition and scalar
multiplication that we get with P3 (Example VSP [275])

p(x) = a1(x3 + x2 + x) + a2(x3 + 2x− 6) + a3(x2 − 5)

x3 + 6x+ 4 = (a1 + a2)x3 + (a1 + a3)x2 + (a1 + 2a2)x+ (−6a2 − 5a3)

Equating coefficients of equal powers of x, we get the system of equations,

a1 + a2 = 1
a1 + a3 = 0
a1 + 2a2 = 6

−6a2 − 5a3 = 4

The augmented matrix of this system of equations row-reduces to
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


There is a leading 1 in the last column, so Theorem RCLS [48] implies that the system is inconsis-
tent. So there is no way for p to gain membership in W , so p 6∈W .

C21 Contributed by Robert Beezer Statement [299]
In order to belong to W , we must be able to express C as a linear combination of the elements in
the spanning set of W . So we begin with such an expression, using the unknowns a, b, c for the
scalars in the linear combination.

C =
[
−3 3
6 −4

]
= a

[
2 1
3 −1

]
+ b

[
4 0
2 3

]
+ c

[
−3 1
2 1

]
Massaging the right-hand side, according to the definition of the vector space operations in M22

(Example VSM [275]), we find the matrix equality,[
−3 3
6 −4

]
=
[
2a+ 4b− 3c a+ c
3a+ 2b+ 2c −a+ 3b+ c

]
Matrix equality allows us to form a system of four equations in three variables, whose augmented
matrix row-reduces as follows,

2 4 −3 −3
1 0 1 3
3 2 2 6
−1 3 1 −4

 RREF−−−−→


1 0 0 2
0 1 0 −1
0 0 1 1
0 0 0 0


Since this system of equations is consistent (Theorem RCLS [48]), a solution will provide values for
a, b and c that alllow us to recognize C as an element of W .

M20 Contributed by Robert Beezer Statement [299]
The membership criteria for Z is a single linear equation, which comprises a homogeneous system
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of equations. As such, we can recognize Z as the solutions to this system, and therefore Z is a null
space. Specifically, Z = N

([
4 −1 5

])
. Every null space is a subspace by Theorem NSMS [291].

A less direct solution appeals to Theorem TSS [288].

First, we want to be certain Z is non-empty. The zero vector of C3, 0 =

0
0
0

, is a good

candidate, since if it fails to be in Z, we will know that Z is not a vector space. Check that

4(0)− (0) + 5(0) = 0

so that 0 ∈ Z.

Suppose x =

x1

x2

x3

 and y =

y1

y2

y3

 are vectors from Z. Then we know that these vectors

cannot be totally arbitrary, they must have gained membership in Z by virtue of meeting the
membership test. For example, we know that x must satisfy 4x1 − x2 + 5x3 = 0 while y must
satisfy 4y1 − y2 + 5y3 = 0. Our second criteria asks the question, is x + y ∈ Z? Notice first that

x + y =

x1

x2

x3

+

y1

y2

y3

 =

x1 + y1

x2 + y2

x3 + y3


and we can test this vector for membership in Z as follows,

4(x1 + y1)− 1(x2 + y2) + 5(x3 + y3)
= 4x1 + 4y1 − x2 − y2 + 5x3 + 5y3

= (4x1 − x2 + 5x3) + (4y1 − y2 + 5y3)
= 0 + 0 x ∈ Z, y ∈ Z
= 0

and by this computation we see that x + y ∈ Z.
If α is a scalar and x ∈ Z, is it always true that αx ∈ Z? To check our third criteria, we

examine

αx = α

x1

x2

x3

 =

αx1

αx2

αx3


and we can test this vector for membership in Z with

4(αx1)− (αx2) + 5(αx3)
= α(4x1 − x2 + 5x3)
= α0 x ∈ Z
= 0

and we see that indeed αx ∈ Z. With the three conditions of Theorem TSS [288] fulfilled, we can
conclude that Z is a subspace of C3.

T20 Contributed by Robert Beezer Statement [299]
Apply Theorem TSS [288].

First, the zero vector of Mnn is the zero matrix, O, whose entries are all zero (Definition ZM
[182]). This matrix then meets the condition that [O]ij = 0 for i > j and so is an element of UTn.

Suppose A,B ∈ UTn. Is A+B ∈ UTn? We examine the entries of A+B “below” the diagonal.
That is, in the following, assume that i > j.

[A+B]ij = [A]ij + [B]ij Definition MA [179]

= 0 + 0 A,B ∈ UTn
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= 0

which qualifies A+B for membership in UTn.
Suppose α ∈ C and A ∈ UTn. Is αA ∈ UTn? We examine the entries of αA “below” the

diagonal. That is, in the following, assume that i > j.

[αA]ij = α [A]ij Definition MSM [180]

= α0 A ∈ UTn
= 0

which qualifies αA for membership in UTn.
Having fulfilled the three conditions of Theorem TSS [288] we see that UTn is a subspace of

Mnn.
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Section LISS
Linear Independence and Spanning Sets

A vector space is defined as a set with two operations, meeting ten properties (Definition VS [273]).
Just as the definition of span of a set of vectors only required knowing how to add vectors and how
to multiply vectors by scalars, so it is with linear independence. A definition of a linear independent
set of vectors in an arbitrary vector space only requires knowing how to form linear combinations
and equating these with the zero vector. Since every vector space must have a zero vector (Property
Z [273]), we always have a zero vector at our disposal.

In this section we will also put a twist on the notion of the span of a set of vectors. Rather
than beginning with a set of vectors and creating a subspace that is the span, we will instead begin
with a subspace and look for a set of vectors whose span equals the subspace.

The combination of linear independence and spanning will be very important going forward.

Subsection LI
Linear Independence

Our previous definition of linear independence (Definition LI [303]) employed a relation of linear
dependence that was a linear combination on one side of an equality and a zero vector on the
other side. As a linear combination in a vector space (Definition LC [292]) depends only on vector
addition and scalar multiplication, and every vector space must have a zero vector (Property Z
[273]), we can extend our definition of linear independence from the setting of Cm to the setting
of a general vector space V with almost no changes. Compare these next two definitions with
Definition RLDCV [133] and Definition LICV [133].

Definition RLD
Relation of Linear Dependence
Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , un}, an equation of
the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e.
αi = 0, 1 ≤ i ≤ n, then we say it is a trivial relation of linear dependence on S. 4

Definition LI
Linear Independence
Suppose that V is a vector space. The set of vectors S = {u1, u2, u3, . . . , un} from V is linearly
dependent if there is a relation of linear dependence on S that is not trivial. In the case where
the only relation of linear dependence on S is the trivial one, then S is a linearly independent
set of vectors. 4

Notice the emphasis on the word “only.” This might remind you of the definition of a nonsingular
matrix, where if the matrix is employed as the coefficient matrix of a homogeneous system then
the only solution is the trivial one.

Example LIP4
Linear independence in P4

In the vector space of polynomials with degree 4 or less, P4 (Example VSP [275]) consider the set

S =
{

2x4 + 3x3 + 2x2 − x+ 10, −x4 − 2x3 + x2 + 5x− 8, 2x4 + x3 + 10x2 + 17x− 2
}
.

Is this set of vectors linearly independent or dependent? Consider that

3
(
2x4 + 3x3 + 2x2 − x+ 10

)
+ 4

(
−x4 − 2x3 + x2 + 5x− 8

)
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+ (−1)
(
2x4 + x3 + 10x2 + 17x− 2

)
= 0x4 + 0x3 + 0x2 + 0x+ 0 = 0

This is a nontrivial relation of linear dependence (Definition RLD [303]) on the set S and so
convinces us that S is linearly dependent (Definition LI [303]).

Now, I hear you say, “Where did those scalars come from?” Do not worry about that right
now, just be sure you understand why the above explanation is sufficient to prove that S is linearly
dependent. The remainder of the example will demonstrate how we might find these scalars if they
had not been provided so readily. Let’s look at another set of vectors (polynomials) from P4. Let

T =
{

3x4 − 2x3 + 4x2 + 6x− 1, −3x4 + 1x3 + 0x2 + 4x+ 2,

4x4 + 5x3 − 2x2 + 3x+ 1, 2x4 − 7x3 + 4x2 + 2x+ 1
}

Suppose we have a relation of linear dependence on this set,

0 = 0x4 + 0x3 + 0x2 + 0x+ 0

= α1

(
3x4 − 2x3 + 4x2 + 6x− 1

)
+ α2

(
−3x4 + 1x3 + 0x2 + 4x+ 2

)
+ α3

(
4x4 + 5x3 − 2x2 + 3x+ 1

)
+ α4

(
2x4 − 7x3 + 4x2 + 2x+ 1

)
Using our definitions of vector addition and scalar multiplication in P4 (Example VSP [275]), we
arrive at,

0x4 + 0x3 + 0x2 + 0x+ 0 = (3α1 − 3α2 + 4α3 + 2α4)x4 + (−2α1 + α2 + 5α3 − 7α4)x3

+ (4α1 +−2α3 + 4α4)x2 + (6α1 + 4α2 + 3α3 + 2α4)x
+ (−α1 + 2α2 + α3 + α4) .

Equating coefficients, we arrive at the homogeneous system of equations,

3α1 − 3α2 + 4α3 + 2α4 = 0
−2α1 + α2 + 5α3 − 7α4 = 0

4α1 +−2α3 + 4α4 = 0
6α1 + 4α2 + 3α3 + 2α4 = 0
−α1 + 2α2 + α3 + α4 = 0

We form the coefficient matrix of this homogeneous system of equations and row-reduce to find
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


We expected the system to be consistent (Theorem HSC [57]) and so can compute n−r = 4−4 = 0
and Theorem CSRN [49] tells us that the solution is unique. Since this is a homogeneous system,
this unique solution is the trivial solution (Definition TSHSE [57]), α1 = 0, α2 = 0, α3 = 0, α4 = 0.
So by Definition LI [303] the set T is linearly independent.

A few observations. If we had discovered infinitely many solutions, then we could have used one
of the non-trivial ones to provide a linear combination in the manner we used to show that S was
linearly dependent. It is important to realize that it is not interesting that we can create a relation
of linear dependence with zero scalars — we can always do that — but that for T , this is the only
way to create a relation of linear dependence. It was no accident that we arrived at a homogeneous
system of equations in this example, it is related to our use of the zero vector in defining a relation of
linear dependence. It is easy to present a convincing statement that a set is linearly dependent (just
exhibit a nontrivial relation of linear dependence) but a convincing statement of linear independence
requires demonstrating that there is no relation of linear dependence other than the trivial one.
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Notice how we relied on theorems from Chapter SLE [3] to provide this demonstration. Whew!
There’s a lot going on in this example. Spend some time with it, we’ll be waiting patiently right
here when you get back. �

Example LIM32
Linear independence in M32

Consider the two sets of vectors R and S from the vector space of all 3×2 matrices, M32 (Example
VSM [275])

R =


3 −1

1 4
6 −6

 ,
−2 3

1 −3
−2 −6

 ,
 6 −6
−1 0
7 −9

 ,
 7 9
−4 −5
2 5


S =


2 0

1 −1
1 3

 ,
−4 0
−2 2
−2 −6

 ,
 1 1
−2 1
2 4

 ,
 −5 3
−10 7

2 0


One set is linearly independent, the other is not. Which is which? Let’s examine R first. Build a
generic relation of linear dependence (Definition RLD [303]),

α1

3 −1
1 4
6 −6

+ α2

−2 3
1 −3
−2 −6

+ α3

 6 −6
−1 0
7 −9

+ α4

 7 9
−4 −5
2 5

 = 0

Massaging the left-hand side with our definitions of vector addition and scalar multiplication in
M32 (Example VSM [275]) we obtain,3α1 − 2α2 + 6α3 + 7α4 −1α1 + 3α2 − 6α3 + 9α4

1α1 + 1α2 − α3 − 4α4 4α1 − 3α2 +−5α4

6α1 − 2α2 + 7α3 + 2α4 −6α1 − 6α2 − 9α3 + 5α4

 =

0 0
0 0
0 0


Using our definition of matrix equality (Definition ME [179]) and equating corresponding entries
we get the homogeneous system of six equations in four variables,

3α1 − 2α2 + 6α3 + 7α4 = 0
−1α1 + 3α2 − 6α3 + 9α4 = 0

1α1 + 1α2 − α3 − 4α4 = 0
4α1 − 3α2 +−5α4 = 0

6α1 − 2α2 + 7α3 + 2α4 = 0
−6α1 − 6α2 − 9α3 + 5α4 = 0

Form the coefficient matrix of this homogeneous system and row-reduce to obtain

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


Analyzing this matrix we are led to conclude that α1 = 0, α2 = 0, α3 = 0, α4 = 0. This means
there is only a trivial relation of linear dependence on the vectors of R and so we call R a linearly
independent set (Definition LI [303]).

So it must be that S is linearly dependent. Let’s see if we can find a non-trivial relation of
linear dependence on S. We will begin as with R, by constructing a relation of linear dependence
(Definition RLD [303]) with unknown scalars,

α1

2 0
1 −1
1 3

+ α2

−4 0
−2 2
−2 −6

+ α3

 1 1
−2 1
2 4

+ α4

 −5 3
−10 7

2 0

 = 0
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Massaging the left-hand side with our definitions of vector addition and scalar multiplication in
M32 (Example VSM [275]) we obtain, 2α1 − 4α2 + α3 − 5α4 α3 + 3α4

α1 − 2α2 − 2α3 − 10α4 −α1 + 2α2 + α3 + 7α4

α1 − 2α2 + 2α3 + 2α4 3α1 − 6α2 + 4α3

 =

0 0
0 0
0 0


Using our definition of matrix equality (Definition ME [179]) and equating corresponding entries
we get the homogeneous system of six equations in four variables,

2α1 − 4α2 + α3 − 5α4 = 0
+α3 + 3α4 = 0

α1 − 2α2 − 2α3 − 10α4 = 0
−α1 + 2α2 + α3 + 7α4 = 0
α1 − 2α2 + 2α3 + 2α4 = 0

3α1 − 6α2 + 4α3 = 0

Form the coefficient matrix of this homogeneous system and row-reduce to obtain

1 −2 0 −4
0 0 1 3
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Analyzing this we see that the system is consistent (we expected this since the system is homoge-
neous, Theorem HSC [57]) and has n− r = 4− 2 = 2 free variables, namely α2 and α4. This means
there are infinitely many solutions, and in particular, we can find a non-trivial solution, so long as
we do not pick all of our free variables to be zero. The mere presence of a nontrivial solution for
these scalars is enough to conclude that S is a linearly dependent set (Definition LI [303]). But
let’s go ahead and explicitly construct a non-trivial relation of linear dependence.

Choose α2 = 1 and α4 = −1. There is nothing special about this choice, there are infinitely
many possibilities, some “easier” than this one, just avoid picking both variables to be zero. Then
we find the corresponding dependent variables to be α1 = −2 and α3 = 3. So the relation of linear
dependence,

(−2)

2 0
1 −1
1 3

+ (1)

−4 0
−2 2
−2 −6

+ (3)

 1 1
−2 1
2 4

+ (−1)

 −5 3
−10 7

2 0

 =

0 0
0 0
0 0


is an iron-clad demonstration that S is linearly dependent. Can you construct another such demon-
stration? �

Example LIC
Linearly independent set in the crazy vector space
Is the set R = {(1, 0), (6, 3)} linearly independent in the crazy vector space C (Example CVS
[277])? We begin with an arbitrary relation of linear independence on R

0 = a1(1, 0) + a2(6, 3) Definition RLD [303]

and then massage it to a point where we can apply the definition of equality in C. Recall the
definitions of vector addition and scalar multiplication in C are not what you would expect.

(−1, −1) = 0 Example CVS [277]
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= a1(1, 0) + a2(6, 3) Definition RLD [303]
= (1a1 + a1 − 1, 0a1 + a1 − 1) + (6a2 + a2 − 1, 3a2 + a2 − 1) Example CVS [277]
= (2a1 − 1, a1 − 1) + (7a2 − 1, 4a2 − 1)
= (2a1 − 1 + 7a2 − 1 + 1, a1 − 1 + 4a2 − 1 + 1) Example CVS [277]
= (2a1 + 7a2 − 1, a1 + 4a2 − 1)

Equality in C (Example CVS [277]) then yields the two equations,

2a1 + 7a2 − 1 = −1
a1 + 4a2 − 1 = −1

which becomes the homogeneous system

2a1 + 7a2 = 0
a1 + 4a2 = 0

Since the coefficient matrix of this system is nonsingular (check this!) the system has only the
trivial solution a1 = a2 = 0. By Definition LI [303] the set R is linearly independent. Notice that
even though the zero vector of C is not what we might first suspected, a question about linear
independence still concludes with a question about a homogeneous system of equations. Hmmm.
�

Subsection SS
Spanning Sets

In a vector space V , suppose we are given a set of vectors S ⊆ V . Then we can immediately
construct a subspace, 〈S〉, using Definition SS [293] and then be assured by Theorem SSS [293]
that the construction does provide a subspace. We now turn the situation upside-down. Suppose
we are first given a subspace W ⊆ V . Can we find a set S so that 〈S〉 = W? Typically W is infinite
and we are searching for a finite set of vectors S that we can combine in linear combinations and
“build” all of W .

I like to think of S as the raw materials that are sufficient for the construction of W . If you
have nails, lumber, wire, copper pipe, drywall, plywood, carpet, shingles, paint (and a few other
things), then you can combine them in many different ways to create a house (or infinitely many
different houses for that matter). A fast-food restaurant may have beef, chicken, beans, cheese,
tortillas, taco shells and hot sauce and from this small list of ingredients build a wide variety of
items for sale. Or maybe a better analogy comes from Ben Cordes — the additive primary colors
(red, green and blue) can be combined to create many different colors by varying the intensity of
each. The intensity is like a scalar multiple, and the combination of the three intensities is like
vector addition. The three individual colors, red, green and blue, are the elements of the spanning
set.

Because we will use terms like “spanned by” and “spanning set,” there is the potential for
confusion with “the span.” Come back and reread the first paragraph of this subsection whenever
you are uncertain about the difference. Here’s the working definition.

Definition TSVS
To Span a Vector Space
Suppose V is a vector space. A subset S of V is a spanning set for V if 〈S〉 = V . In this case,
we also say S spans V . 4

The definition of a spanning set requires that two sets (subspaces actually) be equal. If S is a
subset of V , then 〈S〉 ⊆ V , always. Thus it is usually only necessary to prove that V ⊆ 〈S〉. Now
would be a good time to review Definition SE [666].
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Example SSP4
Spanning set in P4

In Example SP4 [289] we showed that

W = {p(x) | p ∈ P4, p(2) = 0}

is a subspace of P4, the vector space of polynomials with degree at most 4 (Example VSP [275]).
In this example, we will show that the set

S =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a spanning set for W . To do this, we require that W = 〈S〉. This is an equality of sets. We
can check that every polynomial in S has x = 2 as a root and therefore S ⊆W . Since W is closed
under addition and scalar multiplication, 〈S〉 ⊆W also.

So it remains to show that W ⊆ 〈S〉 (Definition SE [666]). To do this, begin by choosing an
arbitrary polynomial in W , say r(x) = ax4 + bx3 + cx2 + dx + e ∈ W . This polynomial is not as
arbitrary as it would appear, since we also know it must have x = 2 as a root. This translates to

0 = a(2)4 + b(2)3 + c(2)2 + d(2) + e = 16a+ 8b+ 4c+ 2d+ e

as a condition on r.
We wish to show that r is a polynomial in 〈S〉, that is, we want to show that r can be written

as a linear combination of the vectors (polynomials) in S. So let’s try.

r(x) = ax4 + bx3 + cx2 + dx+ e

= α1 (x− 2) + α2

(
x2 − 4x+ 4

)
+ α3

(
x3 − 6x2 + 12x− 8

)
+ α4

(
x4 − 8x3 + 24x2 − 32x+ 16

)
= α4x

4 + (α3 − 8α4)x3 + (α2 − 6α3 + 24α2)x2

+ (α1 − 4α2 + 12α3 − 32α4)x+ (−2α1 + 4α2 − 8α3 + 16α4)

Equating coefficients (vector equality in P4) gives the system of five equations in four variables,

α4 = a

α3 − 8α4 = b

α2 − 6α3 + 24α2 = c

α1 − 4α2 + 12α3 − 32α4 = d

−2α1 + 4α2 − 8α3 + 16α4 = e

Any solution to this system of equations will provide the linear combination we need to determine
if r ∈ 〈S〉, but we need to be convinced there is a solution for any values of a, b, c, d, e that qualify
r to be a member of W . So the question is: is this system of equations consistent? We will form
the augmented matrix, and row-reduce. (We probably need to do this by hand, since the matrix is
symbolic — reversing the order of the first four rows is the best way to start). We obtain a matrix
in reduced row-echelon form

1 0 0 0 32a+ 12b+ 4c+ d

0 1 0 0 24a+ 6b+ c

0 0 1 0 8a+ b

0 0 0 1 a
0 0 0 0 16a+ 8b+ 4c+ 2d+ e

 =


1 0 0 0 32a+ 12b+ 4c+ d

0 1 0 0 24a+ 6b+ c

0 0 1 0 8a+ b

0 0 0 1 a
0 0 0 0 0


For your results to match our first matrix, you may find it necessary to mutiply the final row of
your row-reduced matrix by the appropriate scalar, and/or add multiples of this row to some of
the other rows. To obtain the second version of the matrix, the last entry of the last column has
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been simplified to zero according to the one condition we were able to impose on an arbitrary
polynomial from W . So with no leading 1’s in the last column, Theorem RCLS [48] tells us this
system is consistent. Therefore, any polynomial from W can be written as a linear combination of
the polynomials in S, so W ⊆ 〈S〉. Therefore, W = 〈S〉 and S is a spanning set for W by Definition
TSVS [307].

Notice that an alternative to row-reducing the augmented matrix by hand would be to appeal
to Theorem FS [257] by expressing the column space of the coefficient matrix as a null space, and
then verifying that the condition on r guarantees that r is in the column space, thus implying that
the system is always consistent. Give it a try, we’ll wait. This has been a complicated example,
but worth studying carefully. �

Given a subspace and a set of vectors, as in Example SSP4 [308] it can take some work to
determine that the set actually is a spanning set. An even harder problem is to be confronted
with a subspace and required to construct a spanning set with no guidance. We will now work an
example of this flavor, but some of the steps will be unmotivated. Fortunately, we will have some
better tools for this type of problem later on.

Example SSM22
Spanning set in M22

In the space of all 2× 2 matrices, M22 consider the subspace

Z =
{[

a b
c d

] ∣∣∣∣ a+ 3b− c− 5d = 0, −2a− 6b+ 3c+ 14d = 0
}

and find a spanning set for Z.
We need to construct a limited number of matrices in Z so that every matrix in Z can be

expressed as a linear combination of this limited number of matrices. Suppose that B =
[
a b
c d

]
is

a matrix in Z. Then we can form a column vector with the entries of B and write
a
b
c
d

 ∈ N([ 1 3 −1 −5
−2 −6 3 14

])

Row-reducing this matrix and applying Theorem REMES [27] we obtain the equivalent statement,
a
b
c
d

 ∈ N([ 1 3 0 −1
0 0 1 4

])

We can then express the subspace Z in the following equal forms,

Z =
{[

a b
c d

] ∣∣∣∣ a+ 3b− c− 5d = 0, −2a− 6b+ 3c+ 14d = 0
}

=
{[

a b
c d

] ∣∣∣∣ a+ 3b− d = 0, c+ 4d = 0
}

=
{[

a b
c d

] ∣∣∣∣ a = −3b+ d, c = −4d
}

=
{[
−3b+ d b
−4d d

] ∣∣∣∣ b, d ∈ C
}

=
{[
−3b b

0 0

]
+
[
d 0
−4d d

] ∣∣∣∣ b, d ∈ C
}

=
{
b

[
−3 1
0 0

]
+ d

[
1 0
−4 1

] ∣∣∣∣ b, d ∈ C
}
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=
〈{[

−3 1
0 0

]
,

[
1 0
−4 1

]}〉
So the set

Q =
{[
−3 1
0 0

]
,

[
1 0
−4 1

]}
spans Z by Definition TSVS [307]. �

Example SSC
Spanning set in the crazy vector space
In Example LIC [306] we determined that the set R = {(1, 0), (6, 3)} is linearly independent in
the crazy vector space C (Example CVS [277]). We now show that R is a spanning set for C.

Given an arbitrary vector (x, y) ∈ C we desire to show that it can be written as a linear
combination of the elements of R. In other words, are there scalars a1 and a2 so that

(x, y) = a1(1, 0) + a2(6, 3)

We will act as if this equation is true and try to determine just what a1 and a2 would be (as
functions of x and y).

(x, y) = a1(1, 0) + a2(6, 3)
= (1a1 + a1 − 1, 0a1 + a1 − 1) + (6a2 + a2 − 1, 3a2 + a2 − 1) Scalar mult in C

= (2a1 − 1, a1 − 1) + (7a2 − 1, 4a2 − 1)
= (2a1 − 1 + 7a2 − 1 + 1, a1 − 1 + 4a2 − 1 + 1) Addition in C

= (2a1 + 7a2 − 1, a1 + 4a2 − 1)

Equality in C then yields the two equations,

2a1 + 7a2 − 1 = x

a1 + 4a2 − 1 = y

which becomes the linear system with a matrix representation[
2 7
1 4

] [
a1

a2

]
=
[
x+ 1
y + 1

]
The coefficient matrix of this system is nonsingular, hence invertible (Theorem NI [223]), and we
can employ its inverse to find a solution (Theorem TTMI [210], Theorem SNCM [223]),[

a1

a2

]
=
[
2 7
1 4

]−1 [
x+ 1
y + 1

]
=
[

4 −7
−1 2

] [
x+ 1
y + 1

]
=
[

4x− 7y − 3
−x+ 2y + 1

]
We could chase through the above implications backwards and take the existence of these solutions
as sufficient evidence for R being a spanning set for C. Instead, let us view the above as simply
scratchwork and now get serious with a simple direct proof that R is a spanning set. Ready?
Suppose (x, y) is any vector from C, then compute the following linear combination using the
definitions of the operations in C,

(4x− 7y − 3)(1, 0) + (−x+ 2y + 1)(6, 3)
= (1(4x− 7y − 3) + (4x− 7y − 3)− 1, 0(4x− 7y − 3) + (4x− 7y − 3)− 1) +

(6(−x+ 2y + 1) + (−x+ 2y + 1)− 1, 3(−x+ 2y + 1) + (−x+ 2y + 1)− 1)
= (8x− 14y − 7, 4x− 7y − 4) + (−7x+ 14y + 6, −4x+ 8y + 3)
= ((8x− 14y − 7) + (−7x+ 14y + 6) + 1, (4x− 7y − 4) + (−4x+ 8y + 3) + 1)
= (x, y)

This final sequence of computations in C is sufficient to demonstrate that any element of C can
be written (or expressed) as a linear combination of the two vectors in R, so C ⊆ 〈R〉. Since the
reverse inclusion 〈R〉 ⊆ C is trivially true, C = 〈R〉 and we say R spans C (Definition TSVS [307]).
Notice that this demonstration is no more or less valid if we hide from the reader our scratchwork
that suggested a1 = 4x− 7y − 3 and a2 = −x+ 2y + 1. �
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Subsection VR
Vector Representation

In Chapter R [517] we will take up the matter of representations fully, where Theorem VRRB [311]
will be critical for Definition VR [517]. We will now motivate and prove a critical theorem that
tells us how to “represent” a vector. This theorem could wait, but working with it now will provide
some extra insight into the nature of linearly independent spanning sets. First an example, then
the theorem.

Example AVR
A vector representation
Consider the set

S =


−7

5
1

 ,
−6

5
0

 ,
−12

7
4


from the vector space C3. Let A be the matrix whose columns are the set S, and verify that
A is nonsingular. By Theorem NMLIC [138] the elements of S form a linearly independent set.
Suppose that b ∈ C3. Then LS(A, b) has a (unique) solution (Theorem NMUS [70]) and hence
is consistent. By Theorem SLSLC [92], b ∈ 〈S〉. Since b is arbitrary, this is enough to show that
〈S〉 = C3, and therefore S is a spanning set for C3 (Definition TSVS [307]). (This set comes from
the columns of the coefficient matrix of Archetype B [689].)

Now examine the situation for a particular choice of b, say b =

−33
24
5

. Because S is a spanning

set for C3, we know we can write b as a linear combination of the vectors in S,−33
24
5

 = (−3)

−7
5
1

+ (5)

−6
5
0

+ (2)

−12
7
4

 .
The nonsingularity of the matrix A tells that the scalars in this linear combination are unique.
More precisely, it is the linear independence of S that provides the uniqueness. We will refer to the
scalars a1 = −3, a2 = 5, a3 = 2 as a “representation of b relative to S.” In other words, once we
settle on S as a linearly independent set that spans C3, the vector b is recoverable just by knowing
the scalars a1 = −3, a2 = 5, a3 = 2 (use these scalars in a linear combination of the vectors in S).
This is all an illustration of the following important theorem, which we prove in the setting of a
general vector space. �

Theorem VRRB
Vector Representation Relative to a Basis
Suppose that V is a vector space and B = {v1, v2, v3, . . . , vm} is a linearly independent set that
spans V . Let w be any vector in V . Then there exist unique scalars a1, a2, a3, . . . , am such that

w = a1v1 + a2v2 + a3v3 + · · ·+ amvm.

�

Proof That w can be written as a linear combination of the vectors in B follows from the spanning
property of the set (Definition TSVS [307]). This is good, but not the meat of this theorem. We
now know that for any choice of the vector w there exist some scalars that will create w as a
linear combination of the basis vectors. The real question is: Is there more than one way to write
w as a linear combination of {v1, v2, v3, . . . , vm}? Are the scalars a1, a2, a3, . . . , am unique?
(Technique U [674])

Assume there are two ways to express w as a linear combination of {v1, v2, v3, . . . , vm}. In
other words there exist scalars a1, a2, a3, . . . , am and b1, b2, b3, . . . , bm so that

w = a1v1 + a2v2 + a3v3 + · · ·+ amvm
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w = b1v1 + b2v2 + b3v3 + · · ·+ bmvm.

Then notice that

0 = w + (−w) Property AI [274]
= w + (−1)w Theorem AISM [281]
= (a1v1 + a2v2 + a3v3 + · · ·+ amvm)+

(−1)(b1v1 + b2v2 + b3v3 + · · ·+ bmvm)
= (a1v1 + a2v2 + a3v3 + · · ·+ amvm)+

(−b1v1 − b2v2 − b3v3 − . . .− bmvm) Property DVA [274]
= (a1 − b1)v1 + (a2 − b2)v2 + (a3 − b3)v3+
· · ·+ (am − bm)vm Property C [273], Property DSA [274]

But this is a relation of linear dependence on a linearly independent set of vectors (Definition RLD
[303])! Now we are using the other assumption about B, that {v1, v2, v3, . . . , vm} is a linearly
independent set. So by Definition LI [303] it must happen that the scalars are all zero. That is,

(a1 − b1) = 0 (a2 − b2) = 0 (a3 − b3) = 0 . . . (am − bm) = 0
a1 = b1 a2 = b2 a3 = b3 . . . am = bm.

And so we find that the scalars are unique. �

This is a very typical use of the hypothesis that a set is linearly independent — obtain a relation
of linear dependence and then conclude that the scalars must all be zero. The result of this theorem
tells us that we can write any vector in a vector space as a linear combination of the vectors in a
linearly independent spanning set, but only just. There is only enough raw material in the spanning
set to write each vector one way as a linear combination. So in this sense, we could call a linearly
independent spanning set a “minimal spanning set.” These sets are so important that we will give
them a simpler name (“basis”) and explore their properties further in the next section.

Subsection READ
Reading Questions

1. Is the set of matrices below linearly independent or linearly dependent in the vector space
M22? Why or why not? {[

1 3
−2 4

]
,

[
−2 3
3 −5

]
,

[
0 9
−1 3

]}
2. Explain the difference between the following two uses of the term “span”:

(a) S is a subset of the vector space V and the span of S is a subspace of V .
(b) W is subspace of the vector space Y and T spans W .

3. The set

S =


6

2
1

 ,
 4
−3
1

 ,
5

8
2


is linearly independent and spans C3. Write the vector x =

−6
2
2

 a linear combination of the

elements of S. Quote the relevant theorem that tells you how many ways are there to answer
this question.
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Subsection EXC
Exercises

C20 In the vector space of 2×2 matrices, M22, determine if the set S below is linearly independent.

S =
{[

2 −1
1 3

]
,

[
0 4
−1 2

]
,

[
4 2
1 3

]}

Contributed by Robert Beezer Solution [315]

C21 In the crazy vector space C (Example CVS [277]), is the set S = {(0, 2), (2, 8)} linearly
independent?
Contributed by Robert Beezer Solution [315]

C22 In the vector space of polynomials P3, determine if the set S is linearly independent or
linearly dependent.

S =
{

2 + x− 3x2 − 8x3, 1 + x+ x2 + 5x3, 3− 4x2 − 7x3
}

Contributed by Robert Beezer Solution [315]

C23 Determine if the set S = {(3, 1), (7, 3)} is linearly independent in the crazy vector space C
(Example CVS [277]).
Contributed by Robert Beezer Solution [316]

C30 In Example LIM32 [305], find another nontrivial relation of linear dependence on the linearly
dependent set of 3× 2 matrices, S.
Contributed by Robert Beezer

C40 Determine if the set T =
{
x2 − x+ 5, 4x3 − x2 + 5x, 3x+ 2

}
spans the vector space of

polynomials with degree 4 or less, P4.
Contributed by Robert Beezer Solution [316]

C41 The set W is a subspace of M22, the vector space of all 2 × 2 matrices. Prove that S is a
spanning set for W .

W =
{[

a b
c d

] ∣∣∣∣ 2a− 3b+ 4c− d = 0
}

S =
{[

1 0
0 2

]
,

[
0 1
0 −3

]
,

[
0 0
1 4

]}

Contributed by Robert Beezer Solution [316]

C42 Determine if the set S = {(3, 1), (7, 3)} spans the crazy vector space C (Example CVS
[277]).
Contributed by Robert Beezer Solution [317]

M10 Halfway through Example SSP4 [308], we need to show that the system of equations

LS




0 0 0 1
0 0 1 −8
0 1 −6 24
1 −4 12 −32
−2 4 −8 16

 ,

a
b
c
d
e




is consistent for every choice of the vector of constants satisying 16a+ 8b+ 4c+ 2d+ e = 0.
Express the column space of the coefficient matrix of this system as a null space, using Theorem

FS [257]. From this use Theorem CSCS [232] to establish that the system is always consistent.
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Notice that this approach removes from Example SSP4 [308] the need to row-reduce a symbolic
matrix.
Contributed by Robert Beezer Solution [317]

T40 Prove the following variation of Theorem EMMVP [193]: Suppose thatB = {u1, u2, u3, . . . , un}
is a basis for Cn. Suppose also that A and B are m × n matrices such that Aui = Bui for every
1 ≤ i ≤ n. Then A = B. Can you modify the hypothesis further and obtain a generalization of
Theorem EMMVP [193]?
Contributed by Robert Beezer
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [313]
Begin with a relation of linear dependence on the vectors in S and massage it according to the
definitions of vector addition and scalar multiplication in M22,

O = a1

[
2 −1
1 3

]
+ a2

[
0 4
−1 2

]
+ a3

[
4 2
1 3

]
[
0 0
0 0

]
=
[

2a1 + 4a3 −a1 + 4a2 + 2a3

a1 − a2 + a3 3a1 + 2a2 + 3a3

]
By our definition of matrix equality (Definition ME [179]) we arrive at a homogeneous system of
linear equations,

2a1 + 4a3 = 0
−a1 + 4a2 + 2a3 = 0

a1 − a2 + a3 = 0
3a1 + 2a2 + 3a3 = 0

The coefficient matrix of this system row-reduces to the matrix,
1 0 0
0 1 0
0 0 1
0 0 0


and from this we conclude that the only solution is a1 = a2 = a3 = 0. Since the relation of linear
dependence (Definition RLD [303]) is trivial, the set S is linearly independent (Definition LI [303]).

C21 Contributed by Robert Beezer Statement [313]
We begin with a relation of linear dependence using unknown scalars a and b. We wish to know
if these scalars must both be zero. Recall that the zero vector in C is (−1, −1) and that the
definitions of vector addition and scalar multiplication are not what we might expect.

0 = (−1, −1)
= a(0, 2) + b(2, 8) Definition RLD [303]
= (0a+ a− 1, 2a+ a− 1) + (2b+ b− 1, 8b+ b− 1) Scalar mult., Example CVS [277]
= (a− 1, 3a− 1) + (3b− 1, 9b− 1)
= (a− 1 + 3b− 1 + 1, 3a− 1 + 9b− 1 + 1) Vector addition, Example CVS [277]
= (a+ 3b− 1, 3a+ 9b− 1)

From this we obtain two equalities, which can be converted to a homogeneous system of equations,

−1 = a+ 3b− 1 a+ 3b = 0
−1 = 3a+ 9b− 1 3a+ 9b = 0

This homogeneous system has a singular coefficient matrix (Theorem SMZD [381]), and so has
more than just the trivial solution (Definition NM [67]). Any nontrivial solution will give us a
nontrivial relation of linear dependence on S. So S is linearly dependent (Definition LI [303]).

C22 Contributed by Robert Beezer Statement [313]
Begin with a relation of linear dependence (Definition RLD [303]),

a1

(
2 + x− 3x2 − 8x3

)
+ a2

(
1 + x+ x2 + 5x3

)
+ a3

(
3− 4x2 − 7x3

)
= 0
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Massage according to the definitions of scalar multiplication and vector addition in the definition
of P3 (Example VSP [275]) and use the zero vector dro this vector space,

(2a1 + a2 + 3a3) + (a1 + a2)x+ (−3a1 + a2 − 4a3)x2 + (−8a1 + 5a2 − 7a3)x3 = 0 + 0x+ 0x2 + 0x3

The definition of the equality of polynomials allows us to deduce the following four equations,

2a1 + a2 + 3a3 = 0
a1 + a2 = 0

−3a1 + a2 − 4a3 = 0
−8a1 + 5a2 − 7a3 = 0

Row-reducing the coefficient matrix of this homogeneous system leads to the unique solution a1 =
a2 = a3 = 0. So the only relation of linear dependence on S is the trivial one, and this is linear
independence for S (Definition LI [303]).

C23 Contributed by Robert Beezer Statement [313]
Notice, or discover, that the following gives a nontrivial relation of linear dependence on S in C,
so by Definition LI [303], the set S is linearly dependent.

2(3, 1) + (−1)(7, 3) = (7, 3) + (−9, −5) = (−1, −1) = 0

C40 Contributed by Robert Beezer Statement [313]
The polynomial x4 is an element of P4. Can we write this element as a linear combination of the
elements of T? To wit, are there scalars a1, a2, a3 such that

x4 = a1

(
x2 − x+ 5

)
+ a2

(
4x3 − x2 + 5x

)
+ a3 (3x+ 2)

Massaging the right side of this equation, according to the definitions of Example VSP [275], and
then equating coefficients, leads to an inconsistent system of equations (check this!). As such, T is
not a spanning set for P4.

C41 Contributed by Robert Beezer Statement [313]
We want to show that W = 〈S〉 (Definition TSVS [307]), which is an equality of sets (Definition
SE [666]).

First, show that 〈S〉 ⊆W . Begin by checking that each of the three matrices in S is a member
of the set W . Then, since W is a vector space, the closure properties (Property AC [273], Property
SC [273]) guarantee that every linear combination of elements of S remains in W .

Second, show that W ⊆ 〈S〉. We want to convince ourselves that an arbitrary element of W is
a linear combination of elements of S. Choose

x =
[
a b
c d

]
∈W

The values of a, b, c, d are not totally arbitary, since membership inW requires that 2a−3b+4c−d =
0. Now, rewrite as follows,

x =
[
a b
c d

]
=
[
a b
c 2a− 3b+ 4c

]
2a− 3b+ 4c− d = 0

=
[
a 0
0 2a

]
+
[
0 b
0 −3b

]
+
[
0 0
c 4c

]
Definition MA [179]

= a

[
1 0
0 2

]
+ b

[
0 1
0 −3

]
+ c

[
0 0
1 4

]
Definition MSM [180]

∈ 〈S〉 Definition SS [293]

Version 1.30



Subsection LISS.SOL Solutions 317

C42 Contributed by Robert Beezer Statement [313]
We will try to show that S spans C. Let (x, y) be an arbitrary element of C and search for scalars
a1 and a2 such that

(x, y) = a1(3, 1) + a2(7, 3)
= (4a1 − 1, 2a1 − 1) + (8a2 − 1, 4a2 − 1)
= (4a1 + 8a2 − 1, 2a1 + 4a2 − 1)

Equality in C leads to the system

4a1 + 8a2 = x+ 1
2a1 + 4a2 = y + 1

This system has a singular coefficient matrix whose column space is simply
〈[

2
1

]〉
. So any choice

of x and y that causes the column vector
[
x+ 1
y + 1

]
to lie outside the column space will lead to an

inconsistent system, and hence create an element (x, y) that is not in the span of S. So S does not
span C.

For example, choose x = 0 and y = 5, and then we can see that
[
1
6

]
6∈
〈[

2
1

]〉
and we know

that (0, 5) cannot be written as a linear combination of the vectors in S. A shorter solution might
begin by asserting that (0, 5) is not in 〈S〉 and then establishing this claim alone.

M10 Contributed by Robert Beezer Statement [313]
Theorem FS [257] provides the matrix

L =
[

1 1
2

1
4

1
8

1
16

]
and so if A denotes the coefficient matrix of the system, then C(A) = N (L). The single homogeneous
equation in LS(L, 0) is equivalent to the condition on the vector of constants (use a, b, c, d, e as
variables and then multiply by 16).
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Section B
Bases

A basis of a vector space is one of the most useful concepts in linear algebra. It often provides a
concise, finite description of an infinite vector space.

Subsection B
Bases

We now have all the tools in place to define a basis of a vector space.

Definition B
Basis
Suppose V is a vector space. Then a subset S ⊆ V is a basis of V if it is linearly independent and
spans V . 4

So, a basis is a linearly independent spanning set for a vector space. The requirement that
the set spans V insures that S has enough raw material to build V , while the linear independence
requirement insures that we do not have any more raw material than we need. As we shall see soon
in Section D [333], a basis is a minimal spanning set.

You may have noticed that we used the term basis for some of the titles of previous theorems
(e.g. Theorem BNS [140], Theorem BCS [234], Theorem BRS [240]) and if you review each of these
theorems you will see that their conclusions provide linearly independent spanning sets for sets that
we now recognize as subspaces of Cm. Examples associated with these theorems include Example
NSLIL [141], Example CSOCD [234] and Example IAS [240]. As we will see, these three theorems
will continue to be powerful tools, even in the setting of more general vector spaces.

Furthermore, the archetypes contain an abundance of bases. For each coefficient matrix of
a system of equations, and for each archetype defined simply as a matrix, there is a basis for
the null space, three bases for the column space, and a basis for the row space. For this reason,
our subsequent examples will concentrate on bases for vector spaces other than Cm. Notice that
Definition B [319] does not preclude a vector space from having many bases, and this is the case,
as hinted above by the statement that the archetypes contain three bases for the column space of
a matrix. More generally, we can grab any basis for a vector space, multiply any one basis vector
by a non-zero scalar and create a slightly different set that is still a basis. For “important” vector
spaces, it will be convenient to have a collection of “nice” bases. When a vector space has a single
particularly nice basis, it is sometimes called the standard basis though there is nothing precise
enough about this term to allow us to define it formally — it is a question of style. Here are some
nice bases for important vector spaces.

Theorem SUVB
Standard Unit Vectors are a Basis
The set of standard unit vectors for Cm (Definition SUV [169]), B = {e1, e2, e3, . . . , em} =
{ei | 1 ≤ i ≤ m} is a basis for the vector space Cm. �

Proof We must show that the set B is both linearly independent and a spanning set for Cm.
First, the vectors in B are, by Definition SUV [169], the columns of the identity matrix, which we
know is nonsingular (since it row-reduces to the identity matrix, Theorem NMRRI [68]). And the
columns of a nonsingular matrix are linearly independent by Theorem NMLIC [138].
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Suppose we grab an arbitrary vector from Cm, say

v =


v1

v2

v3
...
vm

 .

Can we write v as a linear combination of the vectors in B? Yes, and quite simply.
v1

v2

v3
...
vm

 = v1


1
0
0
...
0

+ v2


0
1
0
...
0

+ v3


0
0
1
...
0

+ · · ·+ vm


0
0
0
...
1


v = v1e1 + v2e2 + v3e3 + · · ·+ vmem

this shows that Cm ⊆ 〈B〉, which is sufficient to show that B is a spanning set for Cm. �

Example BP
Bases for Pn
The vector space of polynomials with degree at most n, Pn, has the basis

B =
{

1, x, x2, x3, . . . , xn
}
.

Another nice basis for Pn is

C =
{

1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, . . . , 1 + x+ x2 + x3 + · · ·+ xn
}
.

Checking that each of B and C is a linearly independent spanning set are good exercises. �

Example BM
A basis for the vector space of matrices
In the vector space Mmn of matrices (Example VSM [275]) define the matrices Bk`, 1 ≤ k ≤ m,
1 ≤ ` ≤ n by

[Bk`]ij =

{
1 if k = i, ` = j

0 otherwise

So these matrices have entries that are all zeros, with the exception of a lone entry that is one. The
set of all mn of them,

B = {Bk` | 1 ≤ k ≤ m, 1 ≤ ` ≤ n}

forms a basis for Mmn. �

The bases described above will often be convenient ones to work with. However a basis doesn’t
have to obviously look like a basis.

Example BSP4
A basis for a subspace of P4

In Example SSP4 [308] we showed that

S =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a spanning set for W = {p(x) | p ∈ P4, p(2) = 0}. We will now show that S is also linearly
independent in W . Begin with a relation of linear dependence,

0 + 0x+ 0x2 + 0x3 + 0x4 = α1 (x− 2) + α2

(
x2 − 4x+ 4

)
+ α3

(
x3 − 6x2 + 12x− 8

)
+ α4

(
x4 − 8x3 + 24x2 − 32x+ 16

)
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= α4x
4 + (α3 − 8α4)x3 + (α2 − 6α3 + 24α4)x2

+ (α1 − 4α2 + 12α3 − 32α4)x+ (−2α1 + 4α2 − 8α3 + 16α4)

Equating coefficients (vector equality in P4) gives the homogeneous system of five equations in four
variables,

α4 = 0
α3 − 8α4 = 0

α2 − 6α3 + 24α4 = 0
α1 − 4α2 + 12α3 − 32α4 = 0
−2α1 + 4α2 − 8α3 + 16α4 = 0

We form the coefficient matrix, and row-reduce to obtain a matrix in reduced row-echelon form
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


With only the trivial solution to this homogeneous system, we conclude that only scalars that
will form a relation of linear dependence are the trivial ones, and therefore the set S is linearly
independent (Definition LI [303]). Finally, S has earned the right to be called a basis for W
(Definition B [319]). �

Example BSM22
A basis for a subspace of M22

In Example SSM22 [309] we discovered that

Q =
{[
−3 1
0 0

]
,

[
1 0
−4 1

]}
is a spanning set for the subspace

Z =
{[

a b
c d

] ∣∣∣∣ a+ 3b− c− 5d = 0, −2a− 6b+ 3c+ 14d = 0
}

of the vector space of all 2×2 matrices, M22. If we can also determine that Q is linearly independent
in Z (or inM22), then it will qualify as a basis for Z. Let’s begin with a relation of linear dependence.[

0 0
0 0

]
= α1

[
−3 1
0 0

]
+ α2

[
1 0
−4 1

]
=
[
−3α1 + α2 α1

−4α2 α2

]
Using our definition of matrix equality (Definition ME [179]) we equate corresponding entries and
get a homogeneous system of four equations in two variables,

−3α1 + α2 = 0
α1 = 0

−4α2 = 0
α2 = 0

We could row-reduce the coefficient matrix of this homogeneous system, but it is not necessary. The
second and fourth equations tell us that α1 = 0, α2 = 0 is the only solution to this homogeneous
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system. This qualifies the set Q as being linearly independent, since the only relation of linear
dependence is trivial (Definition LI [303]). Therefore Q is a basis for Z (Definition B [319]). �

Example BC
Basis for the crazy vector space
In Example LIC [306] and Example SSC [310] we determined that the set R = {(1, 0), (6, 3)} from
the crazy vector space, C (Example CVS [277]), is linearly independent and is a spanning set for
C. By Definition B [319] we see that R is a basis for C. �

We have seen that several of the sets associated with a matrix are subspaces of vector spaces
of column vectors. Specifically these are the null space (Theorem NSMS [291]), column space
(Theorem CSMS [297]), row space (Theorem RSMS [297]) and left null space (Theorem LNSMS
[297]). As subspaces they are vector spaces (Definition S [287]) and it is natural to ask about
bases for these vector spaces. Theorem BNS [140], Theorem BCS [234], Theorem BRS [240] each
have conclusions that provide linearly independent spanning sets for (respectively) the null space,
column space, and row space. Notice that each of these theorems contains the word “basis” in its
title, even though we did not know the precise meaning of the word at the time. To find a basis for
a left null space we can use the definition of this subspace as a null space (Definition LNS [251]) and
apply Theorem BNS [140]. Or Theorem FS [257] tells us that the left null space can be expressed
as a row space and we can then use Theorem BRS [240].

Theorem BS [156] is another early result that provides a linearly independent spanning set (i.e.
a basis) as its conclusion. If a vector space of column vectors can be expressed as a span of a set
of column vectors, then Theorem BS [156] can be employed in a straightforward manner to quickly
yield a basis.

Subsection BSCV
Bases for Spans of Column Vectors

We have seen several examples of bases in different vector spaces. In this subsection, and the next
(Subsection B.BNM [324]), we will consider building bases for Cm and its subspaces.

Suppose we have a subspace of Cm that is expressed as the span of a set of vectors, S, and S is not
necessarily linearly independent, or perhaps not very attractive. Theorem REMRS [238] says that
row-equivalent matrices have identical row spaces, while Theorem BRS [240] says the nonzero rows
of a matrix in reduced row-echelon form are a basis for the row space. These theorems together give
us a great computational tool for quickly finding a basis for a subspace that is expressed originally
as a span.

Example RSB
Row space basis
When we first defined the span of a set of column vectors, in Example SCAD [121] we looked at
the set

W =

〈
 2
−3
1

 ,
1

4
1

 ,
 7
−5
4

 ,
−7
−6
−5


〉

with an eye towards realizing W as the span of a smaller set. By building relations of linear
dependence (though we did not know them by that name then) we were able to remove two vectors
and write W as the span of the other two vectors. These two remaining vectors formed a linearly
independent set, even though we did not know that at the time.

Now we know that W is a subspace and must have a basis. Consider the matrix, C, whose rows
are the vectors in the spanning set for W ,

C =


2 −3 1
1 4 1
7 −5 4
−7 −6 −5


Version 1.30



Subsection B.BSCV Bases for Spans of Column Vectors 323

Then, by Definition RSM [237], the row space of C will be W , R(C) = W . Theorem BRS [240] tells
us that if we row-reduce C, the nonzero rows of the row-equivalent matrix in reduced row-echelon
form will be a basis for R(C), and hence a basis for W . Let’s do it — C row-reduces to

1 0 7
11

0 1 1
11

0 0 0
0 0 0


If we convert the two nonzero rows to column vectors then we have a basis,

B =


 1

0
7
11

 ,
 0

1
1
11


and

W =

〈
 1

0
7
11

 ,
 0

1
1
11


〉

For aesthetic reasons, we might wish to multiply each vector in B by 11, which will not change the
spanning or linear independence properties of B as a basis. Then we can also write

W =

〈
11

0
7

 ,
 0

11
1


〉

�

Example IAS [240] provides another example of this flavor, though now we can notice that X is
a subspace, and that the resulting set of three vectors is a basis. This is such a powerful technique
that we should do one more example.

Example RS
Reducing a span
In Example RSC5 [152] we began with a set of n = 4 vectors from C5,

R = {v1, v2, v3, v4} =




1
2
−1
3
2

 ,


2
1
3
1
2

 ,


0
−7
6
−11
−2

 ,


4
1
2
1
6




and defined V = 〈R〉. Our goal in that problem was to find a relation of linear dependence on the
vectors in R, solve the resulting equation for one of the vectors, and re-express V as the span of a
set of three vectors.

Here is another way to accomplish something similar. The row space of the matrix

A =


1 2 −1 3 2
2 1 3 1 2
0 −7 6 −11 −2
4 1 2 1 6


is equal to 〈R〉. By Theorem BRS [240] we can row-reduce this matrix, ignore any zero rows, and
use the non-zero rows as column vectors that are a basis for the row space of A. Row-reducing A
creates the matrix 

1 0 0 − 1
17

30
17

0 1 0 25
17 − 2

17
0 0 1 − 2

17 − 8
17

0 0 0 0 0


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So 


1
0
0
− 1

17
30
17

 ,


0
1
0
25
17
− 2

17

 ,


0
0
1
− 2

17
− 8

17




is a basis for V . Our theorem tells us this is a basis, there is no need to verify that the subspace
spanned by three vectors (rather than four) is the identical subspace, and there is no need to verify
that we have reached the limit in reducing the set, since the set of three vectors is guaranteed to
be linearly independent. �

Subsection BNM
Bases and Nonsingular Matrices

A quick source of diverse bases for Cm is the set of columns of a nonsingular matrix.

Theorem CNMB
Columns of Nonsingular Matrix are a Basis
Suppose that A is a square matrix of size m. Then the columns of A are a basis of Cm if and only
if A is nonsingular. �

Proof (⇒) Suppose that the columns of A are a basis for Cm. Then Definition B [319] says the
set of columns is linearly independent. Theorem NMLIC [138] then says that A is nonsingular.

(⇐) Suppose that A is nonsingular. Then by Theorem NMLIC [138] this set of columns is
linearly independent. Theorem CSNM [236] says that for a nonsingular matrix, C(A) = Cm. This
is equivalent to saying that the columns of A are a spanning set for the vector space Cm. As a
linearly independent spanning set, the columns of A qualify as a basis for Cm (Definition B [319]).

�

Example CABAK
Columns as Basis, Archetype K
Archetype K [727] is the 5× 5 matrix

K =


10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20


which is row-equivalent to the 5× 5 identity matrix I5. So by Theorem NMRRI [68], K is nonsin-
gular. Then Theorem CNMB [324] says the set


10
12
−30
27
18

 ,


18
−2
−21
30
24

 ,


24
−6
−23
36
30

 ,


24
0
−30
37
30

 ,

−12
−18
39
−30
−20




is a (novel) basis of C5. �

Perhaps we should view the fact that the standard unit vectors are a basis (Theorem SUVB
[319]) as just a simple corollary of Theorem CNMB [324]? (See Technique LC [677].)

With a new equivalence for a nonsingular matrix, we can update our list of equivalences.

Theorem NME5
Nonsingular Matrix Equivalences, Round 5
Suppose that A is a square matrix of size n. The following are equivalent.
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1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

�

Proof With a new equivalence for a nonsingular matrix in Theorem CNMB [324] we can expand
Theorem NME4 [236]. �

Subsection OBC
Orthonormal Bases and Coordinates

We learned about orthogonal sets of vectors in Cm back in Section O [163], and we also learned that
orthogonal sets are automatically linearly independent (Theorem OSLI [170]). When an orthogonal
set also spans a subspace of Cm, then the set is a basis. And when the set is orthonormal, then the
set is an incredibly nice basis. We will back up this claim with a theorem, but first consider how
you might manufacture such a set.

Suppose thatW is a subspace of Cm with basisB. ThenB spansW and is a linearly independent
set of nonzero vectors. We can apply the Gram-Schmidt Procedure (Theorem GSP [171]) and obtain
a linearly independent set T such that 〈T 〉 = 〈B〉 = W and T is orthogonal. In other words, T is
a basis for W , and is an orthogonal set. By scaling each vector of T to norm 1, we can convert T
into an orthonormal set, without destroying the properties that make it a basis of W . In short,
we can convert any basis into an orthonormal basis. Example GSTV [172], followed by Example
ONTV [173], illustrates this process.

Unitary matrices (Definition UM [224]) are another good source of orthonormal bases (and vice
versa). Suppose that Q is a unitary matrix of size n. Then the n columns of Q form an orthonormal
set (Theorem CUMOS [225]) that is therefore linearly independent (Theorem OSLI [170]). Since
Q is invertible (Theorem UMI [224]), we know Q is nonsingular (Theorem NI [223]), and then the
columns of Q span Cn (Theorem CSNM [236]). So the columns of a unitary matrix of size n are
an orthonormal basis for Cn.

Why all the fuss about orthonormal bases? Theorem VRRB [311] told us that any vector in a
vector space could be written, uniquely, as a linear combination of basis vectors. For an orthonormal
basis, finding the scalars for this linear combination is extremely easy, and this is the content of the
next theorem. Furthermore, with vectors written this way (as linear combinations of the elements
of an orthonormal set) certain computations and analysis become much easier. Here’s the promised
theorem.

Theorem COB
Coordinates and Orthonormal Bases
Suppose that B = {v1, v2, v3, . . . , vp} is an orthonormal basis of the subspace W of Cm. For any
w ∈W ,

w = 〈w, v1〉v1 + 〈w, v2〉v2 + 〈w, v3〉v3 + · · ·+ 〈w, vp〉vp
�

Proof Because B is a basis of W , Theorem VRRB [311] tells us that we can write w uniquely
as a linear combination of the vectors in B. So it is not this aspect of the conclusion that makes
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this theorem interesting. What is interesting is that the particular scalars are so easy to compute.
No need to solve big systems of equations — just do an inner product of w with vi to arrive at the
coefficient of vi in the linear combination.

So begin the proof by writing w as a linear combination of the vectors in B, using unknown
scalars,

w = a1v1 + a2v2 + a3v3 + · · ·+ apvp

and compute,

〈w, vi〉 =

〈
p∑

k=1

akvk, vi

〉
Theorem VRRB [311]

=
p∑

k=1

〈akvk, vi〉 Theorem IPVA [165]

=
p∑

k=1

ak 〈vk, vi〉 Theorem IPSM [165]

= ai 〈vi, vi〉+
p∑
i=1
k 6=i

ak 〈vk, vi〉 Property C [273]

= ai(1) +
p∑
i=1
k 6=i

ak(0) Definition ONS [173]

= ai

So the (unique) scalars for the linear combination are indeed the inner products advertised in the
conclusion of the theorem’s statement. �

Example CROB4
Coordinatization relative to an orthonormal basis, C4

The set

{x1, x2, x3, x4} =




1 + i
1

1− i
i

 ,


1 + 5i
6 + 5i
−7− i
1− 6i

 ,

−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 ,

−2− 4i

6 + i
4 + 3i
6− i




was proposed, and partially verified, as an orthogonal set in Example AOS [169]. Let’s scale each
vector to norm 1, so as to form an orthonormal set in C4. Then by Theorem OSLI [170] the set
will be linearly independent, and by Theorem NME5 [324] the set will be a basis for C4. So, once
scalked to norm 1, the adjusted set will be an orthonormal basis of C4. The norms are,

‖x1‖ =
√

6 ‖x2‖ =
√

174 ‖x3‖ =
√

3451 ‖x4‖ =
√

119

So an orthonormal basis is

B = {v1, v2, v3, v4}

=


1√
6


1 + i

1
1− i
i

 , 1√
174


1 + 5i
6 + 5i
−7− i
1− 6i

 , 1√
3451


−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 , 1√
119


−2− 4i

6 + i
4 + 3i
6− i




Now, to illustrate Theorem COB [325], choose any vector from C4, say w =


2
−3
1
4

, and compute

〈w, v1〉 =
−5i√

6
, 〈w, v2〉 =

−19 + 30i√
174

, 〈w, v3〉 =
120− 211i√

3451
, 〈w, v4〉 =

6 + 12i√
119
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Then Theorem COB [325] guarantees that
2
−3
1
4

 =
−5i√

6

 1√
6


1 + i

1
1− i
i


+

−19 + 30i√
174

 1√
174


1 + 5i
6 + 5i
−7− i
1− 6i




+
120− 211i√

3451

 1√
3451


−7 + 34i
−8− 23i
−10 + 22i
30 + 13i


+

6 + 12i√
119

 1√
119


−2− 4i

6 + i
4 + 3i
6− i




as you might want to check (if you have unlimited patience). �

A slightly less intimidating example follows, in three dimensions and with just real numbers.

Example CROB3
Coordinatization relative to an orthonormal basis, C3

The set

{x1, x2, x3} =


1

2
1

 ,
−1

0
1

 ,
2

1
1


is a linearly independent set, which the Gram-Schmidt Process (Theorem GSP [171]) converts to
an orthogonal set, and which can then be converted to the orthonormal set,

B = {v1, v2, v3} =

 1√
6

1
2
1

 , 1√
2

−1
0
1

 , 1√
3

 1
−1
1


which is therefore an orthonormal basis of C3. With three vectors in C3, all with real number entries,
the inner product (Definition IP [164]) reduces to the usual “dot product” (or scalar product) and
the orthogonal pairs of vectors can be interpreted as perpendicular pairs of directions. So the
vectors in B serve as replacements for our usual 3-D axes, or the usual 3-D unit vectors ~i,~j and ~k.
We would like to decompose arbitrary vectors into “components” in the directions of each of these
basis vectors. It is Theorem COB [325] that tells us how to do this.

Suppose that we choose w =

 2
−1
5

. Compute

〈w, v1〉 =
5√
6

〈w, v2〉 =
3√
2

〈w, v3〉 =
8√
3

then Theorem COB [325] guarantees that 2
−1
5

 =
5√
6

 1√
6

1
2
1

+
3√
2

 1√
2

−1
0
1

+
8√
3

 1√
3

 1
−1
1


which you should be able to check easily, even if you do not have much patience. �

Not only do the columns of a unitary matrix form an orthonormal basis, but there is a deeper
connection between orthonormal bases and unitary matrices. Informally, the next theorem says
that if we transform each vector of an orthonormal basis by multiplying it by a unitary matrix,
then the resulting set will be another orthonormal basis. And more remarkably, any matrix with
this property must be unitary! As an equivalence (Technique E [672]) we could take this as our
defining property of a unitary matrix, though it might not have the same utility as Definition UM
[224].
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Theorem UMCOB
Unitary Matrices Convert Orthonormal Bases
Let A be an n × n matrix and B = {x1, x2, x3, . . . , xn} be an orthonormal basis of Cn. Define
C = {Ax1, Ax2, Ax3, . . . , Axn}. Then A is a unitary matrix if and only if C is an orthonormal
basis of Cn. �

Proof (⇒) Assume A is a unitary matrix and establish several facts about C. First we check
that C is an orthonormal set (Definition ONS [173]). By Theorem UMPIP [226], for i 6= j,

〈Axi, Axj〉 = 〈xi, xj〉 = 1

Similarly, Theorem UMPIP [226] also gives, for 1 ≤ i ≤ n,

‖Axi‖ = ‖xi‖ = 1

As C is an orthogonal set (Definition OSV [169]), Theorem OSLI [170] yields the linear independence
of C. Having established that the column vectors on C form a linearly independent set, a matrix
whose columns are the vectors of C is nonsingular (Theorem NMLIC [138]), and hence these vectors
form a basis of Cn by Theorem CNMB [324].

(⇐) Now assume that C is an orthonormal set. Let y be an arbitrary vector from Cn. Since
B spans Cn, there are scalars, a1, a2, a3, . . . , an, such that

y = a1x1 + a2x2 + a3x3 + · · ·+ anxn

Now

A∗Ay =
n∑
i=1

〈A∗Ay, xi〉xi Theorem COB [325]

=
n∑
i=1

〈
A∗A

n∑
j=1

ajxj , xi

〉
xi Definition TSVS [307]

=
n∑
i=1

〈
n∑
j=1

A∗Aajxj , xi

〉
xi Theorem MMDAA [197]

=
n∑
i=1

〈
n∑
j=1

ajA
∗Axj , xi

〉
xi Theorem MMSMM [198]

=
n∑
i=1

n∑
j=1

〈ajA∗Axj , xi〉xi Theorem IPVA [165]

=
n∑
i=1

n∑
j=1

aj 〈A∗Axj , xi〉xi Theorem IPSM [165]

=
n∑
i=1

n∑
j=1

aj 〈Axj , (A∗)∗ xi〉xi Theorem AIP [201]

=
n∑
i=1

n∑
j=1

aj 〈Axj , Axi〉xi Theorem AA [186]

=
n∑
i=1

n∑
j=1
j 6=i

aj 〈Axj , Axi〉xi +
n∑
`=1

a` 〈Ax`, Ax`〉x` Property C [273]

=
n∑
i=1

n∑
j=1
j 6=i

aj(0)xi +
n∑
`=1

a`(1)x` Definition ONS [173]

=
n∑
i=1

n∑
j=1
j 6=i

0 +
n∑
`=1

a`x` Theorem ZSSM [280]
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=
n∑
`=1

a`x` Property Z [273]

= y

= Iny Theorem MMIM [197]

Since the choice of y was arbitrary, Theorem EMMVP [193] tells us that A∗A = In, so A is unitary
(Definition UM [224]). �

Subsection READ
Reading Questions

1. The matrix below is nonsingular. What can you now say about its columns?

A =

−3 0 1
1 2 1
5 1 6



2. Write the vector w =

 6
6
15

 as a linear combination of the columns of the matrix A above.

How many ways are there to answer this question?

3. Why is an orthonormal basis desirable?
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Subsection EXC
Exercises

C40 From Example RSB [322], form an arbitrary (and nontrivial) linear combination of the four
vectors in the original spanning set for W . So the result of this computation is of course an element
of W . As such, this vector should be a linear combination of the basis vectors in B. Find the
(unique) scalars that provide this linear combination. Repeat with another linear combination of
the original four vectors.
Contributed by Robert Beezer Solution [332]

C80 Prove that {(1, 2), (2, 3)} is a basis for the crazy vector space C (Example CVS [277]).
Contributed by Robert Beezer

M20 In Example BM [320] provide the verifications (linear independence and spanning) to show
that B is a basis of Mmn.
Contributed by Robert Beezer Solution [331]
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Subsection SOL
Solutions

M20 Contributed by Robert Beezer Statement [330]
We need to establish the linear independence and spanning properties of the set

B = {Bk` | 1 ≤ k ≤ m, 1 ≤ ` ≤ n}

relative to the vector space Mmn.
This proof is more transparent if you write out individual matrices in the basis with lots of zeros

and dots and a lone one. But we don’t have room for that here, so we will use summation notation.
Think carefully about each step, especially when the double summations seem to “disappear.”
Begin with a relation of linear dependence, using double subscripts on the scalars to align with the
basis elements.

O =
m∑
k=1

n∑
`=1

αk`Bk`

Now consider the entry in row i and column j for these equal matrices,

0 = [O]ij Definition ZM [182]

=

[
m∑
k=1

n∑
`=1

αk`Bk`

]
ij

Definition ME [179]

=
m∑
k=1

n∑
`=1

[αk`Bk`]ij Definition MA [179]

=
m∑
k=1

n∑
`=1

αk` [Bk`]ij Definition MSM [180]

= αij [Bij ]ij [Bk`]ij = 0 when (k, `) 6= (i, j)

= αij(1) [Bij ]ij = 1

= αij

Since i and j were arbitrary, we find that each scalar is zero and so B is linearly independent
(Definition LI [303]).

To establish the spanning property of B we need only show that an arbitrary matrix A can be
written as a linear combination of the elements of B. So suppose that A is an arbitrary m × n
matrix and consider the matrix C defined as a linear combination of the elements of B by

C =
m∑
k=1

n∑
`=1

[A]k`Bk`

Then,

[C]ij =

[
m∑
k=1

n∑
`=1

[A]k`Bk`

]
ij

Definition ME [179]

=
m∑
k=1

n∑
`=1

[[A]k`Bk`]ij Definition MA [179]

=
m∑
k=1

n∑
`=1

[A]k` [Bk`]ij Definition MSM [180]

= [A]ij [Bij ]ij [Bk`]ij = 0 when (k, `) 6= (i, j)

= [A]ij (1) [Bij ]ij = 1
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= [A]ij

So by Definition ME [179], A = C, and therefore A ∈ 〈B〉. By Definition B [319], the set B is a
basis of the vector space Mmn.

C40 Contributed by Robert Beezer Statement [330]
An arbitrary linear combination is

y = 3

 2
−3
1

+ (−2)

1
4
1

+ 1

 7
−5
4

+ (−2)

−7
−6
−5

 =

 25
−10
15


(You probably used a different collection of scalars.) We want to write y as a linear combination
of

B =


 1

0
7
11

 ,
 0

1
1
11


We could set this up as vector equation with variables as scalars in a linear combination of the
vectors in B, but since the first two slots of B have such a nice pattern of zeros and ones, we can
determine the necessary scalars easily and then double-check our answer with a computation in the
third slot,

25

 1
0
7
11

+ (−10)

 0
1
1
11

 =

 25
−10

(25) 7
11 + (−10) 1

11

 =

 25
−10
15

 = y

Notice how the uniqueness of these scalars arises. They are forced to be 25 and −10.
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Section D
Dimension

Almost every vector space we have encountered has been infinite in size (an exception is Example
VSS [277]). But some are bigger and richer than others. Dimension, once suitably defined, will be
a measure of the size of a vector space, and a useful tool for studying its properties. You probably
already have a rough notion of what a mathematical definition of dimension might be — try to
forget these imprecise ideas and go with the new ones given here.

Subsection D
Dimension

Definition D
Dimension
Suppose that V is a vector space and {v1, v2, v3, . . . , vt} is a basis of V . Then the dimension
of V is defined by dim (V ) = t. If V has no finite bases, we say V has infinite dimension.
(This definition contains Notation D.) 4

This is a very simple definition, which belies its power. Grab a basis, any basis, and count up
the number of vectors it contains. That’s the dimension. However, this simplicity causes a problem.
Given a vector space, you and I could each construct different bases — remember that a vector
space might have many bases. And what if your basis and my basis had different sizes? Applying
Definition D [333] we would arrive at different numbers! With our current knowledge about vector
spaces, we would have to say that dimension is not “well-defined.” Fortunately, there is a theorem
that will correct this problem.

In a strictly logical progression, the next two theorems would precede the definition of dimension.
Many subsequent theorems will trace their lineage back to the following fundamental result.

Theorem SSLD
Spanning Sets and Linear Dependence
Suppose that S = {v1, v2, v3, . . . , vt} is a finite set of vectors which spans the vector space V .
Then any set of t+ 1 or more vectors from V is linearly dependent. �

Proof We want to prove that any set of t+1 or more vectors from V is linearly dependent. So we
will begin with a totally arbitrary set of vectors from V , R = {u1, u2, u3, . . . , um}, where m > t.
We will now construct a nontrivial relation of linear dependence on R.

Each vector u1, u2, u3, . . . , um can be written as a linear combination of v1, v2, v3, . . . , vt
since S is a spanning set of V . This means there exist scalars aij , 1 ≤ i ≤ t, 1 ≤ j ≤ m, so that

u1 = a11v1 + a21v2 + a31v3 + · · ·+ at1vt
u2 = a12v1 + a22v2 + a32v3 + · · ·+ at2vt
u3 = a13v1 + a23v2 + a33v3 + · · ·+ at3vt

...
um = a1mv1 + a2mv2 + a3mv3 + · · ·+ atmvt

Now we form, unmotivated, the homogeneous system of t equations in them variables, x1, x2, x3, . . . , xm,
where the coefficients are the just-discovered scalars aij ,

a11x1 + a12x2 + a13x3 + · · ·+ a1mxm = 0
a21x1 + a22x2 + a23x3 + · · ·+ a2mxm = 0
a31x1 + a32x2 + a33x3 + · · ·+ a3mxm = 0
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...
at1x1 + at2x2 + at3x3 + · · ·+ atmxm = 0

This is a homogeneous system with more variables than equations (our hypothesis is expressed as
m > t), so by Theorem HMVEI [59] there are infinitely many solutions. Choose a nontrivial solution
and denote it by x1 = c1, x2 = c2, x3 = c3, . . . , xm = cm. As a solution to the homogeneous system,
we then have

a11c1 + a12c2 + a13c3 + · · ·+ a1mcm = 0
a21c1 + a22c2 + a23c3 + · · ·+ a2mcm = 0
a31c1 + a32c2 + a33c3 + · · ·+ a3mcm = 0

...
at1c1 + at2c2 + at3c3 + · · ·+ atmcm = 0

As a collection of nontrivial scalars, c1, c2, c3, . . . , cm will provide the nontrivial relation of linear
dependence we desire,

c1u1 + c2u2 + c3u3 + · · ·+ cmum
= c1 (a11v1 + a21v2 + a31v3 + · · ·+ at1vt) S spans V

+ c2 (a12v1 + a22v2 + a32v3 + · · ·+ at2vt)
+ c3 (a13v1 + a23v2 + a33v3 + · · ·+ at3vt)

...
+ cm (a1mv1 + a2mv2 + a3mv3 + · · ·+ atmvt)

= c1a11v1 + c1a21v2 + c1a31v3 + · · ·+ c1at1vt Property DVA [274]
+ c2a12v1 + c2a22v2 + c2a32v3 + · · ·+ c2at2vt
+ c3a13v1 + c3a23v2 + c3a33v3 + · · ·+ c3at3vt

...
+ cma1mv1 + cma2mv2 + cma3mv3 + · · ·+ cmatmvt

= (c1a11 + c2a12 + c3a13 + · · ·+ cma1m) v1 Property DSA [274]
+ (c1a21 + c2a22 + c3a23 + · · ·+ cma2m) v2

+ (c1a31 + c2a32 + c3a33 + · · ·+ cma3m) v3

...
+ (c1at1 + c2at2 + c3at3 + · · ·+ cmatm) vt

= (a11c1 + a12c2 + a13c3 + · · ·+ a1mcm) v1 Commutativity in C
+ (a21c1 + a22c2 + a23c3 + · · ·+ a2mcm) v2

+ (a31c1 + a32c2 + a33c3 + · · ·+ a3mcm) v3

...
+ (at1c1 + at2c2 + at3c3 + · · ·+ atmcm) vt

= 0v1 + 0v2 + 0v3 + · · ·+ 0vt cj as solution
= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [280]
= 0 Property Z [273]

That does it. R has been undeniably shown to be a linearly dependent set. �

The proof just given has some rather monstrous expressions in it, mostly owing to the double
subscripts present. Now is a great opportunity to show the value of a more compact notation.
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We will rewrite the key steps of the previous proof using summation notation, resulting in a more
economical presentation, and even greater insight into the key aspects of the proof. So here is an
alternate proof — study it carefully. Proof (Alternate Proof of Theorem SSLD) We want
to prove that any set of t+ 1 or more vectors from V is linearly dependent. So we will begin with a
totally arbitrary set of vectors from V , R = {uj | 1 ≤ j ≤ m}, where m > t. We will now construct
a nontrivial relation of linear dependence on R.

Each vector uj, 1 ≤ j ≤ m can be written as a linear combination of vi, 1 ≤ i ≤ t since S is a
spanning set of V . This means there are scalars aij , 1 ≤ i ≤ t, 1 ≤ j ≤ m, so that

uj =
t∑
i=1

aijvi 1 ≤ j ≤ m

Now we form, unmotivated, the homogeneous system of t equations in the m variables, xj , 1 ≤ j ≤
m, where the coefficients are the just-discovered scalars aij ,

m∑
j=1

aijxj = 0 1 ≤ i ≤ t

This is a homogeneous system with more variables than equations (our hypothesis is expressed
as m > t), so by Theorem HMVEI [59] there are infinitely many solutions. Choose one of these
solutions that is not trivial and denote it by xj = cj , 1 ≤ j ≤ m. As a solution to the homogeneous
system, we then have

∑m
j=1 aijcj = 0 for 1 ≤ i ≤ t. As a collection of nontrivial scalars, cj ,

1 ≤ j ≤ m, will provide the nontrivial relation of linear dependence we desire,

m∑
j=1

cjuj =
m∑
j=1

cj

(
t∑
i=1

aijvi

)
S spans V

=
m∑
j=1

t∑
i=1

cjaijvi Property DVA [274]

=
t∑
i=1

m∑
j=1

cjaijvi Commutativity in C

=
t∑
i=1

m∑
j=1

aijcjvi Commutativity in C

=
t∑
i=1

 m∑
j=1

aijcj

vi Property DSA [274]

=
t∑
i=1

0vi cj as solution

=
t∑
i=1

0 Theorem ZSSM [280]

= 0 Property Z [273]

That does it. R has been undeniably shown to be a linearly dependent set. �

Notice how the swap of the two summations is so much easier in the third step above, as opposed
to all the rearranging and regrouping that takes place in the previous proof. In about half the space.
And there are no ellipses (. . .).

Theorem SSLD [333] can be viewed as a generalization of Theorem MVSLD [138]. We know
that Cm has a basis with m vectors in it (Theorem SUVB [319]), so it is a set of m vectors that
spans Cm. By Theorem SSLD [333], any set of more than m vectors from Cm will be linearly
dependent. But this is exactly the conclusion we have in Theorem MVSLD [138]. Maybe this is
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not a total shock, as the proofs of both theorems rely heavily on Theorem HMVEI [59]. The beauty
of Theorem SSLD [333] is that it applies in any vector space. We illustrate the generality of this
theorem, and hint at its power, in the next example.

Example LDP4
Linearly dependent set in P4

In Example SSP4 [308] we showed that

S =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a spanning set for W = {p(x) | p ∈ P4, p(2) = 0}. So we can apply Theorem SSLD [333] to W
with t = 4. Here is a set of five vectors from W , as you may check by verifying that each is a
polynomial of degree 4 or less and has x = 2 as a root,

T = {p1, p2, p3, p4, p5} ⊆W

p1 = x4 − 2x3 + 2x2 − 8x+ 8

p2 = −x3 + 6x2 − 5x− 6

p3 = 2x4 − 5x3 + 5x2 − 7x+ 2

p4 = −x4 + 4x3 − 7x2 + 6x

p5 = 4x3 − 9x2 + 5x− 6

By Theorem SSLD [333] we conclude that T is linearly dependent, with no further computations.
�

Theorem SSLD [333] is indeed powerful, but our main purpose in proving it right now was to
make sure that our definition of dimension (Definition D [333]) is well-defined. Here’s the theorem.

Theorem BIS
Bases have Identical Sizes
Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have
the same size. �

Proof Suppose that C has more vectors than B. (Allowing for the possibility that C is infinite,
we can replace C by a subset that has more vectors than B.) As a basis, B is a spanning set for
V (Definition B [319]), so Theorem SSLD [333] says that C is linearly dependent. However, this
contradicts the fact that as a basis C is linearly independent (Definition B [319]). So C must also
be a finite set, with size less than, or equal to, that of B.

Suppose that B has more vectors than C. As a basis, C is a spanning set for V (Definition B
[319]), so Theorem SSLD [333] says that B is linearly dependent. However, this contradicts the
fact that as a basis B is linearly independent (Definition B [319]). So C cannot be strictly smaller
than B.

The only possibility left for the sizes of B and C is for them to be equal. �

Theorem BIS [336] tells us that if we find one finite basis in a vector space, then they all have
the same size. This (finally) makes Definition D [333] unambiguous.

Subsection DVS
Dimension of Vector Spaces

We can now collect the dimension of some common, and not so common, vector spaces.

Theorem DCM
Dimension of Cm
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The dimension of Cm (Example VSCV [275]) is m. �

Proof Theorem SUVB [319] provides a basis with m vectors. �

Theorem DP
Dimension of Pn
The dimension of Pn (Example VSP [275]) is n+ 1. �

Proof Example BP [320] provides two bases with n+ 1 vectors. Take your pick. �

Theorem DM
Dimension of Mmn

The dimension of Mmn (Example VSM [275]) is mn. �

Proof Example BM [320] provides a basis with mn vectors. �

Example DSM22
Dimension of a subspace of M22

It should now be plausible that

Z =
{[

a b
c d

] ∣∣∣∣ 2a+ b+ 3c+ 4d = 0, −a+ 3b− 5c− d = 0
}

is a subspace of the vector space M22 (Example VSM [275]). (It is.) To find the dimension of Z
we must first find a basis, though any old basis will do.

First concentrate on the conditions relating a, b, c and d. They form a homogeneous system of
two equations in four variables with coefficient matrix[

2 1 3 4
−1 3 −5 −1

]
We can row-reduce this matrix to obtain[

1 0 2 2
0 1 −1 0

]
Rewrite the two equations represented by each row of this matrix, expressing the dependent vari-
ables (a and b) in terms of the free variables (c and d), and we obtain,

a = −2c− 2d
b = c

We can now write a typical entry of Z strictly in terms of c and d, and we can decompose the
result, [

a b
c d

]
=
[
−2c− 2d c

c d

]
=
[
−2c c
c 0

]
+
[
−2d 0

0 d

]
= c

[
−2 1
1 0

]
+ d

[
−2 0
0 1

]
this equation says that an arbitrary matrix in Z can be written as a linear combination of the two
vectors in

S =
{[
−2 1
1 0

]
,

[
−2 0
0 1

]}
so we know that

Z = 〈S〉 =
〈{[

−2 1
1 0

]
,

[
−2 0
0 1

]}〉
Are these two matrices (vectors) also linearly independent? Begin with a relation of linear depen-
dence on S,

a1

[
−2 1
1 0

]
+ a2

[
−2 0
0 1

]
= O
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[
−2a1 − 2a2 a1

a1 a2

]
=
[
0 0
0 0

]
From the equality of the two entries in the last row, we conclude that a1 = 0, a2 = 0. Thus the
only possible relation of linear dependence is the trivial one, and therefore S is linearly independent
(Definition LI [303]). So S is a basis for V (Definition B [319]). Finally, we can conclude that
dim (Z) = 2 (Definition D [333]) since S has two elements. �

Example DSP4
Dimension of a subspace of P4

In Example BSP4 [320] we showed that

S =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a basis for W = {p(x) | p ∈ P4, p(2) = 0}. Thus, the dimension of W is four, dim (W ) = 4. �

Example DC
Dimension of the crazy vector space
In Example BC [322] we determined that the set R = {(1, 0), (6, 3)} from the crazy vector space,
C (Example CVS [277]), is a basis for C. By Definition D [333] we see that C has dimension 2,
dim (C) = 2. �

It is possible for a vector space to have no finite bases, in which case we say it has infinite
dimension. Many of the best examples of this are vector spaces of functions, which lead to con-
structions like Hilbert spaces. We will focus exclusively on finite-dimensional vector spaces. OK,
one infinite-dimensional example, and then we will focus exclusively on finite-dimensional vector
spaces.

Example VSPUD
Vector space of polynomials with unbounded degree
Define the set P by

P = {p | p(x) is a polynomial in x}

Our operations will be the same as those defined for Pn (Example VSP [275]).
With no restrictions on the possible degrees of our polynomials, any finite set that is a candidate

for spanning P will come up short. We will give a proof by contradiction (Technique CD [673]).
To this end, suppose that the dimension of P is finite, say dim (P ) = n.

The set T =
{

1, x, x2, . . . , xn
}

is a linearly independent set (check this!) containing n + 1
polynomials from P . However, a basis of P will be a spanning set of P containing n vectors. This
situation is a contradiction of Theorem SSLD [333], so our assumption that P has finite dimension
is false. Thus, we say dim (P ) =∞. �

Subsection RNM
Rank and Nullity of a Matrix

For any matrix, we have seen that we can associate several subspaces — the null space (Theorem
NSMS [291]), the column space (Theorem CSMS [297]), row space (Theorem RSMS [297]) and the
left null space (Theorem LNSMS [297]). As vector spaces, each of these has a dimension, and for
the null space and column space, they are important enough to warrant names.

Definition NOM
Nullity Of a Matrix
Suppose that A is an m×n matrix. Then the nullity of A is the dimension of the null space of A,
n (A) = dim (N (A)).
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(This definition contains Notation NOM.) 4

Definition ROM
Rank Of a Matrix
Suppose that A is an m× n matrix. Then the rank of A is the dimension of the column space of
A, r (A) = dim (C(A)).
(This definition contains Notation ROM.) 4

Example RNM
Rank and nullity of a matrix
Let’s compute the rank and nullity of

A =



2 −4 −1 3 2 1 −4
1 −2 0 0 4 0 1
−2 4 1 0 −5 −4 −8
1 −2 1 1 6 1 −3
2 −4 −1 1 4 −2 −1
−1 2 3 −1 6 3 −1


To do this, we will first row-reduce the matrix since that will help us determine bases for the null
space and column space. 

1 −2 0 0 4 0 1
0 0 1 0 3 0 −2
0 0 0 1 −1 0 −3
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


From this row-equivalent matrix in reduced row-echelon form we record D = {1, 3, 4, 6} and
F = {2, 5, 7}.

For each index in D, Theorem BCS [234] creates a single basis vector. In total the basis will
have 4 vectors, so the column space of A will have dimension 4 and we write r (A) = 4.

For each index in F , Theorem BNS [140] creates a single basis vector. In total the basis will
have 3 vectors, so the null space of A will have dimension 3 and we write n (A) = 3. �

There were no accidents or coincidences in the previous example — with the row-reduced version
of a matrix in hand, the rank and nullity are easy to compute.

Theorem CRN
Computing Rank and Nullity
Suppose that A is an m× n matrix and B is a row-equivalent matrix in reduced row-echelon form
with r nonzero rows. Then r (A) = r and n (A) = n− r. �

Proof Theorem BCS [234] provides a basis for the column space by choosing columns of A that
correspond to the dependent variables in a description of the solutions to LS(A, 0). In the analysis
of B, there is one dependent variable for each leading 1, one per nonzero row, or one per pivot
column. So there are r column vectors in a basis for C(A).

Theorem BNS [140] provide a basis for the null space by creating basis vectors of the null space
of A from entries of B, one for each independent variable, one per column with out a leading 1. So
there are n− r column vectors in a basis for n (A).

�

Every archetype (Appendix A [681]) that involves a matrix lists its rank and nullity. You may
have noticed as you studied the archetypes that the larger the column space is the smaller the null
space is. A simple corollary states this trade-off succinctly. (See Technique LC [677].)
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Theorem RPNC
Rank Plus Nullity is Columns
Suppose that A is an m× n matrix. Then r (A) + n (A) = n. �

Proof Let r be the number of nonzero rows in a row-equivalent matrix in reduced row-echelon
form. By Theorem CRN [339],

r (A) + n (A) = r + (n− r) = n

�

When we first introduced r as our standard notation for the number of nonzero rows in a matrix
in reduced row-echelon form you might have thought r stood for “rows.” Not really — it stands
for “rank”!

Subsection RNNM
Rank and Nullity of a Nonsingular Matrix

Let’s take a look at the rank and nullity of a square matrix.

Example RNSM
Rank and nullity of a square matrix
The matrix

E =



0 4 −1 2 2 3 1
2 −2 1 −1 0 −4 −3
−2 −3 9 −3 9 −1 9
−3 −4 9 4 −1 6 −2
−3 −4 6 −2 5 9 −4
9 −3 8 −2 −4 2 4
8 2 2 9 3 0 9


is row-equivalent to the matrix in reduced row-echelon form,

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


With n = 7 columns and r = 7 nonzero rows Theorem CRN [339] tells us the rank is r (E) = 7 and
the nullity is n (E) = 7− 7 = 0. �

The value of either the nullity or the rank are enough to characterize a nonsingular matrix.

Theorem RNNM
Rank and Nullity of a Nonsingular Matrix
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. The rank of A is n, r (A) = n.

3. The nullity of A is zero, n (A) = 0.
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�

Proof (1⇒ 2) Theorem CSNM [236] says that if A is nonsingular then C(A) = Cn. If C(A) = Cn,
then the column space has dimension n by Theorem DCM [336], so the rank of A is n.
(2 ⇒ 3) Suppose r (A) = n. Then Theorem RPNC [340] gives

n (A) = n− r (A) Theorem RPNC [340]
= n− n Hypothesis
= 0

(3 ⇒ 1) Suppose n (A) = 0, so a basis for the null space of A is the empty set. This implies that
N (A) = {0} and Theorem NMTNS [70] says A is nonsingular. �

With a new equivalence for a nonsingular matrix, we can update our list of equivalences (The-
orem NME5 [324]) which now becomes a list requiring double digits to number.

Theorem NME6
Nonsingular Matrix Equivalences, Round 6
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

�

Proof Building on Theorem NME5 [324] we can add two of the statements from Theorem RNNM
[340]. �

Subsection READ
Reading Questions

1. What is the dimension of the vector space P6, the set of all polynomials of degree 6 or less?

2. How are the rank and nullity of a matrix related?

3. Explain why we might say that a nonsingular matrix has “full rank.”
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Subsection EXC
Exercises

C20 The archetypes listed below are matrices, or systems of equations with coefficient matrices.
For each, compute the nullity and rank of the matrix. This information is listed for each archetype
(along with the number of columns in the matrix, so as to illustrate Theorem RPNC [340]), and
notice how it could have been computed immediately after the determination of the sets D and F
associated with the reduced row-echelon form of the matrix.

Archetype A [685]
Archetype B [689]
Archetype C [694]
Archetype D [698]/Archetype E [702]
Archetype F [705]
Archetype G [710]/Archetype H [714]
Archetype I [718]
Archetype J [722]
Archetype K [727]
Archetype L [731]
Contributed by Robert Beezer

C30 For the matrix A below, compute the dimension of the null space of A, dim (N (A)).

A =


2 −1 −3 11 9
1 2 1 −7 −3
3 1 −3 6 8
2 1 2 −5 −3


Contributed by Robert Beezer Solution [344]

C31 The set W below is a subspace of C4. Find the dimension of W .

W =

〈


2
−3
4
1

 ,


3
0
1
−2

 ,

−4
−3
2
5



〉

Contributed by Robert Beezer Solution [344]

C40 In Example LDP4 [336] we determined that the set of five polynomials, T , is linearly de-
pendent by a simple invocation of Theorem SSLD [333]. Prove that T is linearly dependent from
scratch, beginning with Definition LI [303].
Contributed by Robert Beezer

M20 M22 is the vector space of 2 × 2 matrices. Let S22 denote the set of all 2 × 2 symmetric
matrices. That is

S22 =
{
A ∈M22 | At = A

}
(a) Show that S22 is a subspace of M22.
(b) Exhibit a basis for S22 and prove that it has the required properties.
(c) What is the dimension of S22?
Contributed by Robert Beezer Solution [344]

M21 A 2 × 2 matrix B is upper triangular if [B]21 = 0. Let UT2 be the set of all 2 × 2 upper
triangular matrices. Then UT2 is a subspace of the vector space of all 2 × 2 matrices, M22 (you
may assume this). Determine the dimension of UT2 providing all of the necessary justifications for
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your answer.
Contributed by Robert Beezer Solution [345]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [342]
Row reduce A,

A
RREF−−−−→


1 0 0 1 1
0 1 0 −3 −1
0 0 1 −2 −2
0 0 0 0 0


So r = 3 for this matrix. Then

dim (N (A)) = n (A) Definition NOM [338]
= (n (A) + r (A))− r (A)
= 5− r (A) Theorem RPNC [340]
= 5− 3 Theorem CRN [339]
= 2

We could also use Theorem BNS [140] and create a basis for N (A) with n− r = 5− 3 = 2 vectors
(because the solutions are described with 2 free variables) and arrive at the dimension as the size
of this basis.

C31 Contributed by Robert Beezer Statement [342]
We will appeal to Theorem BS [156] (or you could consider this an appeal to Theorem BCS [234]).
Put the three columnn vectors of this spanning set into a matrix as columns and row-reduce.

2 3 −4
−3 0 −3
4 1 2
1 −2 5

 RREF−−−−→


1 0 1
0 1 −2
0 0 0
0 0 0


The pivot columns are D = {1, 2} so we can “keep” the vectors corresponding to the pivot columns
and set

T =




2
−3
4
1

 ,


3
0
1
−2




and conclude that W = 〈T 〉 and T is linearly independent. In other words, T is a basis with two
vectors, so W has dimension 2.

M20 Contributed by Robert Beezer Statement [342]
(a) We will use the three criteria of Theorem TSS [288]. The zero vector of M22 is the zero matrix,
O (Definition ZM [182]), which is a symmetric matrix. So S22 is not empty, since O ∈ S22.

Suppose that A and B are two matrices in S22. Then we know that At = A and Bt = B. We
want to know if A+B ∈ S22, so test A+B for membership,

(A+B)t = At +Bt Theorem TMA [183]
= A+B A, B ∈ S22

So A+B is symmetric and qualifies for membership in S22.
Suppose that A ∈ S22 and α ∈ C. Is αA ∈ S22? We know that At = A. Now check that,

αAt = αAt Theorem TMSM [183]
= αA A ∈ S22
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So αA is also symmetric and qualifies for membership in S22.
With the three criteria of Theorem TSS [288] fulfilled, we see that S22 is a subspace of M22.

(b) An arbitrary matrix from S22 can be written as
[
a b
b d

]
. We can express this matrix as

[
a b
b d

]
=
[
a 0
0 0

]
+
[
0 b
b 0

]
+
[
0 0
0 d

]
= a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ d

[
0 0
0 1

]
this equation says that the set

T =
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
spans S22. Is it also linearly independent?

Write a relation of linear dependence on S,

O = a1

[
1 0
0 0

]
+ a2

[
0 1
1 0

]
+ a3

[
0 0
0 1

]
[
0 0
0 0

]
=
[
a1 a2

a2 a3

]
The equality of these two matrices (Definition ME [179]) tells us that a1 = a2 = a3 = 0, and the
only relation of linear dependence on T is trivial. So T is linearly independent, and hence is a basis
of S22.

(c) The basis T found in part (b) has size 3. So by Definition D [333], dim (S22) = 3.

M21 Contributed by Robert Beezer Statement [342]
A typical matrix from UT2 looks like [

a b
0 c

]
where a, b, c ∈ C are arbitrary scalars. Observing this we can then write[

a b
0 c

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
0 1

]
which says that

R =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]}
is a spanning set for UT2 (Definition TSVS [307]). Is R is linearly independent? If so, it is a basis
for UT2. So consider a relation of linear dependence on R,

α1

[
1 0
0 0

]
+ α2

[
0 1
0 0

]
+ α3

[
0 0
0 1

]
= O =

[
0 0
0 0

]
From this equation, one rapidly arrives at the conclusion that α1 = α2 = α3 = 0. So R is a linearly
independent set (Definition LI [303]), and hence is a basis (Definition B [319]) for UT2. Now, we
simply count up the size of the set R to see that the dimension of UT2 is dim (UT2) = 3.
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Section PD
Properties of Dimension

Once the dimension of a vector space is known, then the determination of whether or not a set of
vectors is linearly independent, or if it spans the vector space, can often be much easier. In this
section we will state a workhorse theorem and then apply it to the column space and row space of
a matrix. It will also help us describe a super-basis for Cm.

Subsection GT
Goldilocks’ Theorem

We begin with a useful theorem that we will need later, and in the proof of the main theorem in this
subsection. This theorem says that we can extend linearly independent sets, one vector at a time,
by adding vectors from outside the span of the linearly independent set, all the while preserving
the linear independence of the set.

Theorem ELIS
Extending Linearly Independent Sets
Suppose V is vector space and S is a linearly independent set of vectors from V . Suppose w is a
vector such that w 6∈ 〈S〉. Then the set S′ = S ∪ {w} is linearly independent. �

Proof Suppose S = {v1, v2, v3, . . . , vm} and begin with a relation of linear dependence on S′,

a1v1 + a2v2 + a3v3 + · · ·+ amvm + am+1w = 0.

There are two cases to consider. First suppose that am+1 = 0. Then the relation of linear depen-
dence on S′ becomes

a1v1 + a2v2 + a3v3 + · · ·+ amvm = 0.

and by the linear independence of the set S, we conclude that a1 = a2 = a3 = · · · = am = 0. So all
of the scalars in the relation of linear dependence on S′ are zero.

In the second case, suppose that am+1 6= 0. Then the relation of linear dependence on S′

becomes

am+1w = −a1v1 − a2v2 − a3v3 − · · · − amvm

w = − a1

am+1
v1 −

a2

am+1
v2 −

a3

am+1
v3 − · · · −

am
am+1

vm

This equation expresses w as a linear combination of the vectors in S, contrary to the assumption
that w 6∈ 〈S〉, so this case leads to a contradiction.

The first case yielded only a trivial relation of linear dependence on S′ and the second case led
to a contradiction. So S′ is a linearly independent set since any relation of linear dependence is
trivial. �

In the story Goldilocks and the Three Bears, the young girl Goldilocks visits the empty house
of the three bears while out walking in the woods. One bowl of porridge is too hot, the other too
cold, the third is just right. One chair is too hard, one too soft, the third is just right. So it is with
sets of vectors — some are too big (linearly dependent), some are too small (they don’t span), and
some are just right (bases). Here’s Goldilocks’ Theorem.

Theorem G
Goldilocks
Suppose that V is a vector space of dimension t. Let S = {v1, v2, v3, . . . , vm} be a set of vectors
from V . Then
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1. If m > t, then S is linearly dependent.

2. If m < t, then S does not span V .

3. If m = t and S is linearly independent, then S spans V .

4. If m = t and S spans V , then S is linearly independent.

�

Proof Let B be a basis of V . Since dim (V ) = t, Definition B [319] and Theorem BIS [336] imply
that B is a linearly independent set of t vectors that spans V .

1. Suppose to the contrary that S is linearly independent. Then B is a smaller set of vectors
that spans V . This contradicts Theorem SSLD [333].

2. Suppose to the contrary that S does span V . Then B is a larger set of vectors that is linearly
independent. This contradicts Theorem SSLD [333].

3. Suppose to the contrary that S does not span V . Then we can choose a vector w such
that w ∈ V and w 6∈ 〈S〉. By Theorem ELIS [347], the set S′ = S ∪ {w} is again linearly
independent. Then S′ is a set of m+ 1 = t+ 1 vectors that are linearly independent, while B
is a set of t vectors that span V . This contradicts Theorem SSLD [333].

4. Suppose to the contrary that S is linearly dependent. Then by Theorem DLDS [151] (which
can be upgraded, with no changes in the proof, to the setting of a general vector space), there
is a vector in S, say vk that is equal to a linear combination of the other vectors in S. Let
S′ = S \ {vk}, the set of “other” vectors in S. Then it is easy to show that V = 〈S〉 = 〈S′〉.
So S′ is a set of m− 1 = t− 1 vectors that spans V , while B is a set of t linearly independent
vectors in V . This contradicts Theorem SSLD [333].

�

There is a tension in the construction of basis. Make a set too big and you will end up with
relations of linear dependence among the vectors. Make a set too small and you will not have
enough raw material to span the entire vector space. Make a set just the right size (the dimension)
and you only need to have linear independence or spanning, and you get the other property for
free. These roughly-stated ideas are made precise by Theorem G [347].

The structure and proof of this theorem also deserve comment. The hypotheses seem innocuous.
We presume we know the dimension of the vector space in hand, then we mostly just look at the
size of the set S. From this we get big conclusions about spanning and linear independence. Each
of the four proofs relies on ultimately contradicting Theorem SSLD [333], so in a way we could
think of this entire theorem as a corollary of Theorem SSLD [333]. (See Technique LC [677].) The
proofs of the third and fourth parts parallel each other in style (add w, toss vk) and then turn on
Theorem ELIS [347] before contradicting Theorem SSLD [333].

Theorem G [347] is useful in both concrete examples and as a tool in other proofs. We will use
it often to bypass verifying linear independence or spanning.

Example BPR
Bases for Pn, reprised
In Example BP [320] we claimed that

B =
{

1, x, x2, x3, . . . , xn
}

C =
{

1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, . . . , 1 + x+ x2 + x3 + · · ·+ xn
}
.

were both bases for Pn (Example VSP [275]). Suppose we had first verified that B was a basis, so
we would then know that dim (Pn) = n+ 1. The size of C is n+ 1, the right size to be a basis. We
could then verify that C is linearly independent. We would not have to make any special efforts
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to prove that C spans Pn, since Theorem G [347] would allow us to conclude this property of C
directly. Then we would be able to say that C is a basis of Pn also. �

Example BDM22
Basis by dimension in M22

In Example DSM22 [337] we showed that

B =
{[
−2 1
1 0

]
,

[
−2 0
0 1

]}
is a basis for the subspace Z of M22 (Example VSM [275]) given by

Z =
{[

a b
c d

] ∣∣∣∣ 2a+ b+ 3c+ 4d = 0, −a+ 3b− 5c− d = 0
}

This tells us that dim (Z) = 2. In this example we will find another basis. We can construct two
new matrices in Z by forming linear combinations of the matrices in B.

2
[
−2 1
1 0

]
+ (−3)

[
−2 0
0 1

]
=
[
2 2
2 −3

]
3
[
−2 1
1 0

]
+ 1

[
−2 0
0 1

]
=
[
−8 3
3 1

]
Then the set

C =
{[

2 2
2 −3

]
,

[
−8 3
3 1

]}
has the right size to be a basis of Z. Let’s see if it is a linearly independent set. The relation of
linear dependence

a1

[
2 2
2 −3

]
+ a2

[
−8 3
3 1

]
= O[

2a1 − 8a2 2a1 + 3a2

2a1 + 3a2 −3a1 + a2

]
=
[
0 0
0 0

]
leads to the homogeneous system of equations whose coefficient matrix

2 −8
2 3
2 3
−3 1


row-reduces to 

1 0
0 1
0 0
0 0


So with a1 = a2 = 0 as the only solution, the set is linearly independent. Now we can apply
Theorem G [347] to see that C also spans Z and therefore is a second basis for Z. �

Example SVP4
Sets of vectors in P4

In Example BSP4 [320] we showed that

B =
{
x− 2, x2 − 4x+ 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x+ 16

}
is a basis for W = {p(x) | p ∈ P4, p(2) = 0}. So dim (W ) = 4.
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The set {
3x2 − 5x− 2, 2x2 − 7x+ 6, x3 − 2x2 + x− 2

}
is a subset of W (check this) and it happens to be linearly independent (check this, too). However,
by Theorem G [347] it cannot span W .

The set{
3x2 − 5x− 2, 2x2 − 7x+ 6, x3 − 2x2 + x− 2, −x4 + 2x3 + 5x2 − 10x, x4 − 16

}
is another subset of W (check this) and Theorem G [347] tells us that it must be linearly dependent.

The set {
x− 2, x2 − 2x, x3 − 2x2, x4 − 2x3

}
is a third subset of W (check this) and is linearly independent (check this). Since it has the right
size to be a basis, and is linearly independent, Theorem G [347] tells us that it also spans W , and
therefore is a basis of W .

�

A simple consequence of Theorem G [347] is the observation that proper subspaces have strictly
smaller dimensions. Hopefully this may seem intuitively obvious, but it still requires proof, and we
will cite this result later.

Theorem PSSD
Proper Subspaces have Smaller Dimension
Suppose that U and V are subspaces of the vector space W , such that U ( V . Then dim (U) <
dim (V ). �

Proof Suppose that dim (U) = m and dim (V ) = t. Then U has a basis B of size m. If m > t,
then by Theorem G [347], B is linearly dependent, which is a contradiction. If m = t, then by
Theorem G [347], B spans V . Then U = 〈B〉 = V , also a contradiction. All that remains is that
m < t, which is the desired conclusion. �

The final theorem of this subsection is an extremely powerful tool for establishing the equality
of two sets that are subspaces. Notice that the hypotheses include the equality of two integers
(dimensions) while the conclusion is the equality of two sets (subspaces). It is the extra “structure”
of a vector space and its dimension that makes possible this huge leap from an integer equality to
a set equality.

Theorem EDYES
Equal Dimensions Yields Equal Subspaces
Suppose that U and V are subspaces of the vector space W , such that U ⊆ V and dim (U) =
dim (V ). Then U = V . �

Proof We give a proof by contradiction (Technique CD [673]). Suppose to the contrary that
U 6= V . Since U ⊆ V , there must be a vector v such that v ∈ V and v 6∈ U . Let B =
{u1, u2, u3, . . . , ut} be a basis for U . Then, by Theorem ELIS [347], the set C = B ∪ {v} =
{u1, u2, u3, . . . , ut, v} is a linearly independent set of t+ 1 vectors in V . However, by hypothesis,
V has the same dimension as U (namely t) and therefore Theorem G [347] says that C is too big
to be linearly independent. This contradiction shows that U = V . �

Subsection RT
Ranks and Transposes

We now prove one of the most surprising theorems about matrices. Notice the paucity of hypotheses
compared to the precision of the conclusion.

Version 1.30



Subsection PD.DFS Dimension of Four Subspaces 351

Theorem RMRT
Rank of a Matrix is the Rank of the Transpose
Suppose A is an m× n matrix. Then r (A) = r

(
At
)
. �

Proof Suppose we row-reduce A to the matrix B in reduced row-echelon form, and B has r
non-zero rows. The quantity r tells us three things about B: the number of leading 1’s, the number
of non-zero rows and the number of pivot columns. For this proof we will be interested in the latter
two.

Theorem BRS [240] and Theorem BCS [234] each has a conclusion that provides a basis, for
the row space and the column space, respectively. In each case, these bases contain r vectors. This
observation makes the following go.

r (A) = dim (C(A)) Definition ROM [339]
= r Theorem BCS [234]
= dim (R(A)) Theorem BRS [240]
= dim

(
C
(
At
))

Theorem CSRST [241]
= r

(
At
)

Definition ROM [339]

Jacob Linenthal helped with this proof. �

This says that the row space and the column space of a matrix have the same dimension, which
should be very surprising. It does not say that column space and the row space are identical.
Indeed, if the matrix is not square, then the sizes (number of slots) of the vectors in each space are
different, so the sets are not even comparable.

It is not hard to construct by yourself examples of matrices that illustrate Theorem RMRT
[351], since it applies equally well to any matrix. Grab a matrix, row-reduce it, count the nonzero
rows or the leading 1’s. That’s the rank. Transpose the matrix, row-reduce that, count the nonzero
rows or the leading 1’s. That’s the rank of the transpose. The theorem says the two will be equal.
Here’s an example anyway.

Example RRTI
Rank, rank of transpose, Archetype I
Archetype I [718] has a 4× 7 coefficient matrix which row-reduces to

1 4 0 0 2 1 −3
0 0 1 0 1 −3 5
0 0 0 1 2 −6 6
0 0 0 0 0 0 0


so the rank is 3. Row-reducing the transpose yields

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

demonstrating that the rank of the transpose is also 3. �

Subsection DFS
Dimension of Four Subspaces

That the rank of a matrix equals the rank of its transpose is a fundamental and surprising result.
However, applying Theorem FS [257] we can easily determine the dimension of all four fundamental
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subspaces associated with a matrix.

Theorem DFS
Dimensions of Four Subspaces
Suppose that A is an m×n matrix, and B is a row-equivalent matrix in reduced row-echelon form
with r nonzero rows. Then

1. dim (N (A)) = n− r

2. dim (C(A)) = r

3. dim (R(A)) = r

4. dim (L(A)) = m− r

�

Proof If A row-reduces to a matrix in reduced row-echelon form with r nonzero rows, then the
matrix C of extended echelon form (Definition EEF [254]) will be an r × n matrix in reduced
row-echelon form with no zero rows and r pivot columns (Theorem PEEF [256]). Similarly, the
matrix L of extended echelon form (Definition EEF [254]) will be an m− r×m matrix in reduced
row-echelon form with no zero rows and m− r pivot columns (Theorem PEEF [256]).

dim (N (A)) = dim (N (C)) Theorem FS [257]
= n− r Theorem BNS [140]

dim (C(A)) = dim (N (L)) Theorem FS [257]
= m− (m− r) Theorem BNS [140]
= r

dim (R(A)) = dim (R(C)) Theorem FS [257]
= r Theorem BRS [240]

dim (L(A)) = dim (R(L)) Theorem FS [257]
= m− r Theorem BRS [240]

�

There are many different ways to state and prove this result, and indeed, the equality of the
dimensions of the column space and row space is just a slight expansion of Theorem RMRT [351].
However, we have restricted our techniques to applying Theorem FS [257] and then determining
dimensions with bases provided by Theorem BNS [140] and Theorem BRS [240]. This provides an
appealing symmetry to the results and the proof.

Subsection DS
Direct Sums

Some of the more advanced ideas in linear algebra are closely related to decomposing (Technique
DC [675]) vector spaces into direct sums of subspaces. With our previous results about bases and
dimension, now is the right time to state and collect a few results about direct sums, though we
will only mention these results in passing until we get to Section NLT [595], where they will get a
heavy workout.
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A direct sum is a short-hand way to describe the relationship between a vector space and two,
or more, of its subspaces. As we will use it, it is not a way to construct new vector spaces from
others.

Definition DS
Direct Sum
Suppose that V is a vector space with two subspaces U and W such that for every v ∈ V ,

1. There exists vectors u ∈ U , w ∈W such that v = u + w

2. If v = u1 + w1 and v = u2 + w2 where u1, u2 ∈ U , w1, w2 ∈W then u1 = u2 and w1 = w2.

Then V is the direct sum of U and W and we write V = U ⊕W .
(This definition contains Notation DS.) 4

Informally, when we say V is the direct sum of the subspaces U and W , we are saying that
each vector of V can always be expressed as the sum of a vector from U and a vector from W ,
and this expression can only be accomplished in one way (i.e. uniquely). This statement should
begin to feel something like our definitions of nonsingular matrices (Definition NM [67]) and linear
independence (Definition LI [303]). It should not be hard to imagine the natural extension of
this definition to the case of more than two subspaces. Could you provide a careful definition of
V = U1 ⊕ U2 ⊕ U3 ⊕ . . .⊕ Um (Exercise PD.M50 [358])?

Example SDS
Simple direct sum
In C3, define

v1 =

3
2
5

 v2 =

−1
2
1

 v3 =

 2
1
−2


Then C3 = 〈{v1, v2}〉 ⊕ 〈{v3}〉. This statement derives from the fact that B = {v1, v2, v3} is
basis for C3. The spanning property of B yields the decomposition of any vector into a sum of
vectors from the two subspaces, and the linear independence of B yields the uniqueness of the
decomposition. We will illustrate these claims with a numerical example.

Choose v =

10
1
6

. Then

v = 2v1 + (−2)v2 + 1v3 = (2v1 + (−2)v2) + (1v3)

where we have added parentheses for emphasis. Obviously 1v3 ∈ 〈{v3}〉, while 2v1 + (−2)v2 ∈
〈{v1, v2}〉. Theorem VRRB [311] provides the uniqueness of the scalars in these linear combina-
tions. �

Example SDS [353] is easy to generalize into a theorem.

Theorem DSFB
Direct Sum From a Basis
Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}. Define

U = 〈{v1, v2, v3, . . . , vm}〉 W = 〈{vm+1, vm+2, vm+3, . . . , vn}〉

Then V = U ⊕W . �

Proof Choose any vector v ∈ V . Then by Theorem VRRB [311] there are unique scalars,
a1, a2, a3, . . . , an such that

v = a1v1 + a2v2 + a3v3 + · · ·+ anvn
= (a1v1 + a2v2 + a3v3 + · · ·+ amvm) +
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(am+1vm+1 + am+2vm+2 + am+3vm+3 + · · ·+ anvn)
= u + w

where we have implicitly defined u and w in the last line. It should be clear that u ∈ U , and
similarly, w ∈W (and not simply by the choice of their names).

Suppose we had another decomposition of v, say v = u∗ + w∗. Then we could write u∗ as
a linear combination of v1 through vm, say using scalars b1, b2, b3, . . . , bm. And we could write
w∗ as a linear combination of vm+1 through vn, say using scalars c1, c2, c3, . . . , cn−m. These two
collections of scalars would then together give a linear combination of v1 through vn that equals
v. By the uniqueness of a1, a2, a3, . . . , an, ai = bi for 1 ≤ i ≤ m and am+i = ci for 1 ≤ i ≤ n−m.
From the equality of these scalars we conclude that u = u∗ and w = w∗. So with both conditions
of Definition DS [353] fulfilled we see that V = U ⊕W . �

Given one subspace of a vector space, we can always find another subspace that will pair with
the first to form a direct sum. The main idea of this theorem, and its proof, is the idea of extending
a linearly independent subset into a basis with repeated applications of Theorem ELIS [347].

Theorem DSFOS
Direct Sum From One Subspace
Suppose that U is a subspace of the vector space V . Then there exists a subspace W of V such
that V = U ⊕W . �

Proof If U = V , then choose W = {0}. Otherwise, choose a basis B = {v1, v2, v3, . . . , vm}
for U . Then since B is a linearly independent set, Theorem ELIS [347] tells us there is a vector
vm+1 in V , but not in U , such that B ∪ {vm+1} is linearly independent. Define the subspace
U1 = 〈B ∪ {vm+1}〉.

We can repeat this procedure, in the case were U1 6= V , creating a new vector vm+2 in V , but
not in U1, and a new subspace U2 = 〈B ∪ {vm+1, vm+2}〉. If we continue repeating this procedure,
eventually, Uk = V for some k, and we can no longer apply Theorem ELIS [347]. No matter, in
this case B ∪ {vm+1, vm+2, . . . , vm+k} is a linearly independent set that spans V , i.e. a basis for
V .

Define W = 〈{vm+1, vm+2, . . . , vm+k}〉. We now are exactly in position to apply Theorem
DSFB [353] and see that V = U ⊕W . �

There are several different ways to define a direct sum. Our next two theorems give equivalences
(Technique E [672]) for direct sums, and therefore could have been employed as definitions. The first
should further cement the notion that a direct sum has some connection with linear independence.

Theorem DSZV
Direct Sums and Zero Vectors
Suppose U and W are subspaces of the vector space V . Then V = U ⊕W if and only if

1. For every v ∈ V , there exists vectors u ∈ U , w ∈W such that v = u + w.

2. Whenever 0 = u + w with u ∈ U , w ∈W then u = w = 0.

�

Proof The first condition is identical in the definition and the theorem, so we only need to
establish the equivalence of the second conditions.

(⇒) Assume that V = U ⊕W , according to Definition DS [353]. By Property Z [273], 0 ∈ V
and 0 = 0 + 0. If we also assume that 0 = u + w, then the uniqueness of the decomposition gives
u = 0 and w = 0.

(⇐) Suppose that v ∈ V , v = u1 + w1 and v = u2 + w2 where u1, u2 ∈ U , w1, w2 ∈W . Then

0 = v − v Property AI [274]
= (u1 + w1)− (u2 + w2)
= (u1 − u2) + (w1 −w2) Property AA [273]
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By Property AC [273], u1 − u2 ∈ U and w1 − w2 ∈ W . We can now apply our hypothesis, the
second statement of the theorem, to conclude that

u1 − u2 = 0 w1 −w2 = 0

u1 = u2 w1 = w2

which establishes the uniqueness needed for the second condition of the definition. �

Our second equivalence lends further credence to calling a direct sum a decomposition. The
two subspaces of a direct sum have no (nontrivial) elements in common.

Theorem DSZI
Direct Sums and Zero Intersection
Suppose U and W are subspaces of the vector space V . Then V = U ⊕W if and only if

1. For every v ∈ V , there exists vectors u ∈ U , w ∈W such that v = u + w.

2. U ∩W = {0}.

�

Proof The first condition is identical in the definition and the theorem, so we only need to
establish the equivalence of the second conditions.

(⇒) Assume that V = U ⊕ W , according to Definition DS [353]. By Property Z [273] and
Definition SI [667], {0} ⊆ U ∩W . To establish the opposite inclusion, suppose that x ∈ U ∩W .
Then, since x is an element of both U and W , we can write two decompositions of x as a vector
from U plus a vector from W ,

x = x + 0 x = 0 + x

By the uniqeness of the decomposition, we see (twice) that x = 0 and U ∩W ⊆ {0}. Applying
Definition SE [666], we have U ∩W = {0}.

(⇐) Assume that U ∩W = {0}. And assume further that v ∈ V is such that v = u1 + w1 and
v = u2 + w2 where u1, u2 ∈ U , w1, w2 ∈ W . Define x = u1 − u2. then by Property AC [273],
x ∈ U . Also

x = u1 − u2

= (v −w1)− (v −w2)
= (v − v)− (w1 −w2)
= w2 −w1

So x ∈W by Property AC [273]. Thus, x ∈ U ∩W = {0} (Definition SI [667]). So x = 0 and

u1 − u2 = 0 w2 −w1 = 0

u1 = u2 w2 = w1

yielding the desired uniqueness of the second condition of the definition. �

If the statement of Theorem DSZV [354] did not remind you of linear independence, the next
theorem should establish the connection.

Theorem DSLI
Direct Sums and Linear Independence
Suppose U and W are subspaces of the vector space V with V = U ⊕W . Suppose that R is a
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linearly independent subset of U and S is a linearly independent subset of W . Then R ∪ S is a
linearly independent subset of V . �

Proof Let R = {u1, u2, u3, . . . , uk} and S = {w1, w2, w3, . . . , w`}. Begin with a relation of
linear dependence (Definition RLD [303]) on the set R ∪ S using scalars a1, a2, a3, . . . , ak and
b1, b2, b3, . . . , b`. Then,

0 = a1u1 + a2u2 + a3u3 + · · ·+ akuk + b1w1 + b2w2 + b3w3 + · · ·+ b`w`

= (a1u1 + a2u2 + a3u3 + · · ·+ akuk) + (b1w1 + b2w2 + b3w3 + · · ·+ b`w`)
= u + w

where we have made an implicit definition of the vectors u ∈ U , w ∈W . Applying Theorem DSZV
[354] we conclude that

u = a1u1 + a2u2 + a3u3 + · · ·+ akuk = 0

w = b1w1 + b2w2 + b3w3 + · · ·+ b`w` = 0

Now the linear independence of R and S (individually) yields

a1 = a2 = a3 = · · · = ak = 0 b1 = b2 = b3 = · · · = b` = 0

Forced to acknowledge that only a trivial linear combination yields the zero vector, Definition LI
[303] says the set R ∪ S is linearly independent in V . �

Our last theorem in this collection will go some ways towards explaining the word “sum” in the
moniker “direct sum,” while also partially explaining why these results appear in a section devoted
to a discussion of dimension.

Theorem DSD
Direct Sums and Dimension
Suppose U and W are subspaces of the vector space V with V = U ⊕ W . Then dim (V ) =
dim (U) + dim (W ). �

Proof We will establish this equality of positive integers with two inequalities. We will need a
basis of U (call it B) and a basis of W (call it C).

First, note that B and C have sizes equal to the dimensions of the respective subspaces. The
union of these two linearly independent sets, B ∪C will be linearly independent in V by Theorem
DSLI [355]. Further, the two bases have no vectors in common by Theorem DSZI [355], since
B∩C ⊆ {0} and the zero vector is never an element of a linearly independent set (Exercise LI.T10
[145]). So the size of the union is exactly the sum of the dimensions of U and W . By Theorem G
[347] the size of B ∪C cannot exceed the dimension of V without being linearly dependent. These
observations give us dim (U) + dim (W ) ≤ dim (V ).

Grab any vector v ∈ V . Then by Theorem DSZI [355] we can write v = u + w with u ∈ U
and w ∈ W . Individually, we can write u as a linear combination of the basis elements in B,
and similarly, we can write w as a linear combination of the basis elements in C, since the bases
are spanning sets for their respective subspaces. These two sets of scalars will provide a linear
combination of all of the vectors in B ∪C which will equal v. The upshot of this is that B ∪C is a
spanning set for V . By Theorem G [347], the size of B ∪ C cannot be smaller than the dimension
of V without failing to span V . These observations give us dim (U) + dim (W ) ≥ dim (V ). �

There is a certain appealling symmetry in the previous proof, where both linear independence
and spanning properties of the bases are used, both of the first two conclusions of Theorem G [347]
are employed, and we have quoted both of the two conditions of Theorem DSZI [355].

One final theorem tells us that we can successively decompose direct sums into sums of smaller
and smaller subspaces.

Version 1.30



Subsection PD.READ Reading Questions 357

Theorem RDS
Repeated Direct Sums
Suppose V is a vector space with subspaces U and W with V = U ⊕W . Suppose that X and Y
are subspaces of W with W = X ⊕ Y . Then V = U ⊕X ⊕ Y . �

Proof Suppose that v ∈ V . Then due to V = U ⊕W , there exist vectors u ∈ U and w ∈W such
that v = u + w. Due to W = X ⊕ Y , there exist vectors x ∈ X and y ∈ Y such that w = x + y.
All together,

v = u + w = u + x + y

which would be the first condition of a definition of a 3-way direct product. Now consider the
uniqueness. Suppose that

v = u1 + x1 + y1 v = u2 + x2 + y2

Because x1 + y1 ∈W , x2 + y2 ∈W , and V = U ⊕W , we conclude that

u1 = u2 x1 + y1 = x2 + y2

From the second equality, an application of W = X⊕Y yields the conclusions x1 = x2 and y1 = y2.
This establishes the uniqueness of the decomposition of v into a sum of vectors from U , X and Y .

�

Remember that when we write V = U⊕W there always needs to be a “superspace,” in this case
V . The statement U⊕W is meaningless. Writing V = U⊕W is simply a shorthand for a somewhat
complicated relationship between V , U and W , as described in the two conditions of Definition DS
[353], or Theorem DSZV [354], or Theorem DSZI [355]. Theorem DSFB [353] and Theorem DSFOS
[354] gives us sure-fire ways to build direct sums, while Theorem DSLI [355], Theorem DSD [356]
and Theorem RDS [357] tell us interesting properties of direct sums. This subsection has been long
on theorems and short on examples. If we were to use the term “lemma” we might have chosen
to label some of these results as such, since they will be important tools in other proofs, but may
not have much interest on their own (see Technique LC [677]). We will be referencing these results
heavily in later sections, and will remind you then to come back for a second look.

Subsection READ
Reading Questions

1. Why does Theorem G [347] have the title it does?

2. What is so surprising about Theorem RMRT [351]?

3. Row-reduce the matrix A to reduced row-echelon form. Without any further computations,
compute the dimensions of the four subspaces, N (A), C(A), R(A) and L(A).

A =


1 −1 2 8 5
1 1 1 4 −1
0 2 −3 −8 −6
2 0 1 8 4


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Subsection EXC
Exercises

C10 Example SVP4 [349] leaves several details for the reader to check. Verify these five claims.
Contributed by Robert Beezer

C40 Determine if the set T =
{
x2 − x+ 5, 4x3 − x2 + 5x, 3x+ 2

}
spans the vector space of

polynomials with degree 4 or less, P4. (Compare the solution to this exercise with Solution LISS.C40
[316].)
Contributed by Robert Beezer Solution [359]

M50 Mimic Definition DS [353] and construct a reasonable definition of V = U1⊕U2⊕U3⊕ . . .⊕
Um.
Contributed by Robert Beezer

T05 Trivially, if U and V are two subspaces of W , then dim (U) = dim (V ). Combine this
fact, Theorem PSSD [350], and Theorem EDYES [350] all into one grand combined theorem. You
might look to Theorem PIP [168] stylistic inspiration. (Notice this problem does not ask you to
prove anything. It just asks you to roll up three theorems into one compact, logically equivalent
statement.)
Contributed by Robert Beezer

T10 Prove the following theorem, which could be viewed as a reformulation of parts (3) and (4)
of Theorem G [347], or more appropriately as a corollary of Theorem G [347] (Technique LC [677]).

Suppose V is a vector space and S is a subset of V such that the number of vectors in S equals
the dimendion of V . Then S is linearly independent if and only if S spans V .
Contributed by Robert Beezer

T15 Suppose that A is an m × n matrix and let min(m,n) denote the minimum of m and n.
Prove that r (A) ≤ min(m,n).
Contributed by Robert Beezer

T20 Suppose that A is an m× n matrix and b ∈ Cm. Prove that the linear system LS(A, b) is
consistent if and only if r (A) = r ([A | b]).
Contributed by Robert Beezer Solution [359]

T25 Suppose that V is a vector space with finite dimension. Let W be any subspace of V . Prove
that W has finite dimension.
Contributed by Robert Beezer

T60 Suppose that W is a vector space with dimension 5, and U and V are subspaces of W , each
of dimension 3. Prove that U ∩ V contains a non-zero vector. State a more general result.
Contributed by Joe Riegsecker Solution [359]
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Subsection SOL
Solutions

C40 Contributed by Robert Beezer Statement [358]
The vector space P4 has dimension 5 by Theorem DP [337]. Since T contains only 3 vectors, and
3 < 5, Theorem G [347] tells us that T does not span P5.

T20 Contributed by Robert Beezer Statement [358]
(⇒) Suppose first that LS(A, b) is consistent. Then by Theorem CSCS [232], b ∈ C(A). This
means that C(A) = C([A | b]) and so it follows that r (A) = r ([A | b]).

(⇐) Adding a column to a matrix will only increase the size of its column space, so in all cases,
C(A) ⊆ C([A | b]). However, if we assume that r (A) = r ([A | b]), then by Theorem EDYES [350]
we conclude that C(A) = C([A | b]). Then b ∈ C([A | b]) = C(A) so by Theorem CSCS [232],
LS(A, b) is consistent.

T60 Contributed by Robert Beezer Statement [358]
Let {u1, u2, u3} and {v1, v2, v3} be bases for U and V (respectively). Then, the set {u1, u2, u3, v1, v2, v3}
is linearly dependent, since Theorem G [347] says we cannot have 6 linearly independent vectors
in a vector space of dimension 5. So we can assert that there is a non-trivial relation of linear
dependence,

a1u1 + a2u2 + a3u3 + b1v1 + b2v2 + b3v3 = 0

where a1, a2, a3 and b1, b2, b3 are not all zero.
We can rearrange this equation as

a1u1 + a2u2 + a3u3 = −b1v1 − b2v2 − b3v3

This is an equality of two vectors, so we can give this common vector a name, say w,

w = a1u1 + a2u2 + a3u3 = −b1v1 − b2v2 − b3v3

This is the desired non-zero vector, as we will now show.
First, since w = a1u1 +a2u2 +a3u3, we can see that w ∈ U . Similarly, w = −b1v1−b2v2−b3v3,

so w ∈ V . This establishes that w ∈ U ∩ V (Definition SI [667]).
Is w 6= 0? Suppose not, in other words, suppose w = 0. Then

0 = w = a1u1 + a2u2 + a3u3

Because {u1, u2, u3} is a basis for U , it is a linearly independent set and the relation of linear
dependence above means we must conclude that a1 = a2 = a3 = 0. By a similar process, we would
conclude that b1 = b2 = b3 = 0. But this is a contradiction since a1, a2, a3, b1, b2, b3 were chosen
so that some were nonzero. So w 6= 0.

How does this generalize? All we really needed was the original relation of linear dependence
that resulted because we had “too many” vectors in W . A more general statement would be:
Suppose that W is a vector space with dimension n, U is a subspace of dimension p and V is a
subspace of dimension q. If p+ q > n, then U ∩ V contains a non-zero vector.

Version 1.30



360 Section PD Properties of Dimension

Version 1.30



Annotated Acronyms PD.VS Vector Spaces 361

Annotated Acronyms VS
Vector Spaces

Definition VS [273]

The most fundamental object in linear algebra is a vector space. Or else the most fundamental
object is a vector, and a vector space is important because it is a collection of vectors. Either way,
Definition VS [273] is critical. All of our remaining theorems that assume we are working with a
vector space can trace their lineage back to this definition.

Theorem TSS [288]

Check all ten properties of a vector space (Definition VS [273]) can get tedious. But if you have
a subset of a known vector space, then Theorem TSS [288] considerably shortens the verification.
Also, proofs of closure (the last trwo conditions in Theorem TSS [288]) are a good way tp practice
a common style of proof.

Theorem VRRB [311]

The proof of uniqueness in this theorem is a very typical employment of the hypothesis of linear
independence. But that’s not why we mention it here. This theorem is critical to our first section
about representations, Section VR [517], via Definition VR [517].

Theorem CNMB [324]

Having just defined a basis (Definition B [319]) we discover that the columns of a nonsingular
matrix form a basis of Cm. Much of what we know about nonsingular matrices is either contained
in this statement, or much more evident because of it.

Theorem SSLD [333]

This theorem is a key juncture in our development of linear algebra. You have probably already
realized how useful Theorem G [347] is. All four parts of Theorem G [347] have proofs that finish
with an application of Theorem SSLD [333].

Theorem RPNC [340]

This simple relationship between the rank, nullity and number of columns of a matrix might be
surprising. But in simplicity comes power, as this theorem can be very useful. It will be generalized
in the very last theorem of Chapter LT [443], Theorem RPNDD [504].

Theorem G [347]

A whimsical title, but the intent is to make sure you don’t miss this one. Much of the interaction
between bases, dimension, linear independence and spanning is captured in this theorem.

Theorem RMRT [351]

This one is a real surprise. Why should a matrix, and its transpose, both row-reduce to the same
number of non-zero rows?
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Chapter D
Determinants

The determinant is a function that takes a square matrix as an input and produces a scalar as an
output. So unlike a vector space, it is not an algebraic structure. However, it has many beneficial
properties for studying vector spaces, matrices and systems of equations, so it is hard to ignore
(though some have tried). While the properties of a determinant can be very useful, they are also
complicated to prove.

Section DM
Determinant of a Matrix

First, a slight detour, as we introduce elementary matrices, which will bring us back to the beginning
of the course and our old friend, row operations.

Subsection EM
Elementary Matrices

Elementary matrices are very simple, as you might have suspected from their name. Their purpose is
to effect row operations (Definition RO [26]) on a matrix through matrix multiplication (Definition
MM [194]). Their definitions look more complicated than they really are, so be sure to read ahead
after you read the definition for some explanations and an example.

Definition ELEM
Elementary Matrices

1. Ei,j is the square matrix of size n with

[Ei,j ]k` =



0 k 6= i, k 6= j, ` 6= k

1 k 6= i, k 6= j, ` = k

0 k = i, ` 6= j

1 k = i, ` = j

0 k = j, ` 6= i

1 k = j, ` = i

2. Ei (α), for α 6= 0, is the square matrix of size n with

[Ei (α)]k` =


0 k 6= i, ` 6= k

1 k 6= i, ` = k

α k = i, ` = i
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3. Ei,j (α) is the square matrix of size n with

[Ei,j (α)]k` =



0 k 6= j, ` 6= k

1 k 6= j, ` = k

0 k = j, ` 6= i, ` 6= j

1 k = j, ` = j

α k = j, ` = i

(This definition contains Notation ELEM.)

4

Again, these matrices are not as complicated as they appear, since they are mostly pertubations
of the n×n identity matrix (Definition IM [68]). Ei,j is the identity matrix with rows (or columns)
i and j trading places, Ei (α) is the identity matrix where the diagonal entry in row i and column
i has been replaced by α, and Ei,j (α) is the identity matrix where the entry in row j and column
i has been replaced by α. (Yes, those subscripts look backwards in the description of Ei,j (α)).
Notice that our notation makes no reference to the size of the elementary matrix, since this will
always be apparent from the context, or unimportant.

The raison d’être for elementary matrices is to “do” row operations on matrices with matrix
multiplication. So here is an example where we will both see some elementary matrices and see
how they can accomplish row operations.

Example EMRO
Elementary matrices and row operations
We will perform a sequence of row operations (Definition RO [26]) on the 3 × 4 matrix A, while
also multiplying the matrix on the left by the appropriate 3× 3 elementary matrix.

A =

2 1 3 1
1 3 2 4
5 0 3 1



R1 ↔ R3 :

5 0 3 1
1 3 2 4
2 1 3 1

 E1,3 :

0 0 1
0 1 0
1 0 0

2 1 3 1
1 3 2 4
5 0 3 1

 =

5 0 3 1
1 3 2 4
2 1 3 1


2R2 :

5 0 3 1
2 6 4 8
2 1 3 1

 E2 (2) :

1 0 0
0 2 0
0 0 1

5 0 3 1
1 3 2 4
2 1 3 1

 =

5 0 3 1
2 6 4 8
2 1 3 1


2R3 +R1 :

9 2 9 3
2 6 4 8
2 1 3 1

 E3,1 (2) :

1 0 2
0 1 0
0 0 1

5 0 3 1
2 6 4 8
2 1 3 1

 =

9 2 9 3
2 6 4 8
2 1 3 1


�

The next three theorems establish that each elementary matrix effects a row operation via
matrix multiplication.

Theorem EMDRO
Elementary Matrices Do Row Operations
Suppose that A is an m × n matrix, and B is a matrix of the same size that is obtained from A
by a single row operation (Definition RO [26]). Then there is an elementary matrix of size m that
will convert A to B via matrix multiplication on the left. More precisely,

1. If the row operation swaps rows i and j, then B = Ei,jA.

2. If the row operation multiplies row i by α, then B = Ei (α)A.
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3. If the row operation multiplies row i by α and adds the result to row j, then B = Ei,j (α)A.

�

Proof In each of the three conclusions, performing the row operation on A will create the matrix
B where only one or two rows will have changed. So we will establish the equality of the matrix
entries row by row, first for the unchanged rows, then for the changed rows, showing in each case
that the result of the matrix product is the same as the result of the row operation. Here we go.

Row k of the product Ei,jA, where k 6= i, k 6= j, is unchanged from A,

[Ei,jA]k` =
n∑
p=1

[Ei,j ]kp [A]p` Theorem EMP [195]

= [Ei,j ]kk [A]k` +
n∑

p=1, p 6=k
[Ei,j ]kp [A]p`

= 1 [A]k` +
n∑

p=1, p 6=k
0 [A]p` Definition ELEM [363]

= [A]k`

Row i of the product Ei,jA is row j of A,

[Ei,jA]i` =
n∑
p=1

[Ei,j ]ip [A]p` Theorem EMP [195]

= [Ei,j ]ij [A]j` +
n∑

p=1, p 6=j
[Ei,j ]ip [A]p`

= 1 [A]j` +
n∑

p=1, p 6=j
0 [A]p` Definition ELEM [363]

= [A]j`

Row j of the product Ei,jA is row i of A,

[Ei,jA]j` =
n∑
p=1

[Ei,j ]jp [A]p` Theorem EMP [195]

= [Ei,j ]ji [A]i` +
n∑

p=1, p 6=i
[Ei,j ]jp [A]p`

= 1 [A]i` +
n∑

p=1, p 6=i
0 [A]p` Definition ELEM [363]

= [A]i`

So the matrix product Ei,jA is the same as the row operation that swaps rows i and j.
Row k of the product Ei (α)A, where k 6= i, is unchanged from A,

[Ei (α)A]k` =
n∑
p=1

[Ei (α)]kp [A]p` Theorem EMP [195]

= [Ei (α)]kk [A]k` +
n∑

p=1, p 6=k
[Ei (α)]kp [A]p`

= 1 [A]k` +
n∑

p=1, p 6=k
0 [A]p` Definition ELEM [363]
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= [A]k`

Row i of the product Ei (α)A is α times row i of A,

[Ei (α)A]i` =
n∑
p=1

[Ei (α)]ip [A]p` Theorem EMP [195]

= [Ei (α)]ii [A]i` +
n∑

p=1, p 6=i
[Ei (α)]ip [A]p`

= α [A]i` +
n∑

p=1, p 6=i
0 [A]p` Definition ELEM [363]

= α [A]i`

So the matrix product Ei (α)A is the same as the row operation that swaps multiplies row i by α.
Row k of the product Ei,j (α)A, where k 6= j, is unchanged from A,

[Ei,j (α)A]k` =
n∑
p=1

[Ei,j (α)]kp [A]p` Theorem EMP [195]

= [Ei,j (α)]kk [A]k` +
n∑

p=1, p 6=k
[Ei,j (α)]kp [A]p`

= 1 [A]k` +
n∑

p=1, p 6=k
0 [A]p` Definition ELEM [363]

= [A]k`

Row j of the product Ei,j (α)A, is α times row i of A and then added to row j of A,

[Ei,j (α)A]j` =
n∑
p=1

[Ei,j (α)]jp [A]p` Theorem EMP [195]

= [Ei,j (α)]jj [A]j` +

[Ei,j (α)]ji [A]i` +
n∑

p=1, p 6=j,i
[Ei,j (α)]jp [A]p`

= 1 [A]j` + α [A]i` +
n∑

p=1, p 6=j,i
0 [A]p` Definition ELEM [363]

= [A]j` + α [A]i`

So the matrix product Ei,j (α)A is the same as the row operation that multiplies row i by α and
adds the result to row j. �

Later in this section we will need two facts about elementary matrices.

Theorem EMN
Elementary Matrices are Nonsingular
If E is an elementary matrix, then E is nonsingular. �

Proof We can row-reduce each elementary matrix to the identity matrix. Given an elementary
matrix of the form Ei,j , perform the row operation that swaps row j with row i. Given an elementary
matrix of the form Ei (α), with α 6= 0, perform the row operation that multiplies row i by 1/α.
Given an elementary matrix of the form Ei,j (α), with α 6= 0, perform the row operation that
multiplies row i by −α and adds it to row j. In each case, the result of the single row operation
is the identity matrix. So each elementary matrix is row-equivalent to the identity matrix, and by
Theorem NMRRI [68] is nonsingular.

�
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Notice that we have now made use of the nonzero restriction on α in the definition of Ei (α).
One more key property of elementary matrices.

Theorem NMPEM
Nonsingular Matrices are Products of Elementary Matrices
Suppose that A is a nonsingular matrix. Then there exists elementary matrices E1, E2, E3, . . . , Et
so that A = E1E2E3 . . . Et. �

Proof Since A is nonsingular, it is row-equivalent to the identity matrix by Theorem NMRRI [68],
so there is a sequence of t row operations that converts I to A. For each of these row operations,
form the associated elementary matrix from Theorem EMDRO [364] and denote these matrices
by E1, E2, E3, . . . , Et. Applying the first row operation to I yields the matrix E1I. The second
row operation yields E2(E1I), and the third row operation creates E3E2E1I. The result of the full
sequence of t row operations will yield A, so

A = Et . . . E3E2E1I = Et . . . E3E2E1

Other than the cosmetic matter of re-indexing these elementary matrices in the opposite order, this
is the desired result. �

Subsection DD
Definition of the Determinant

We’ll now turn to the definition of a determinant and do some sample computations. The definition
of the determinant function is recursive, that is, the determinant of a large matrix is defined in
terms of the determinant of smaller matrices. To this end, we will make a few definitions.

Definition SM
SubMatrix
Suppose that A is an m× n matrix. Then the submatrix A (i|j) is the (m− 1)× (n− 1) matrix
obtained from A by removing row i and column j.
(This definition contains Notation SM.) 4

Example SS
Some submatrices
For the matrix

A =

1 −2 3 9
4 −2 0 1
3 5 2 1


we have the submatrices

A (2|3) =
[
1 −2 9
3 5 1

]
A (3|1) =

[
−2 3 9
−2 0 1

]
�

Definition DM
Determinant of a Matrix
Suppose A is a square matrix. Then its determinant, det (A) = |A|, is an element of C defined
recursively by:

If A is a 1× 1 matrix, then det (A) = [A]11.

If A is a matrix of size n with n ≥ 2, then

det (A) = [A]11 det (A (1|1))− [A]12 det (A (1|2)) + [A]13 det (A (1|3))−
[A]14 det (A (1|4)) + · · ·+ (−1)n+1 [A]1n det (A (1|n))
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(This definition contains Notation DM.) 4

So to compute the determinant of a 5 × 5 matrix we must build 5 submatrices, each of size 4.
To compute the determinants of each the 4×4 matrices we need to create 4 submatrices each, these
now of size 3 and so on. To compute the determinant of a 10× 10 matrix would require computing
the determinant of 10! = 10× 9× 8× 7× 6× 5× 4× 3× 2 = 3, 628, 800 1× 1 matrices. Fortunately
there are better ways. However this does suggest an excellent computer programming exercise to
write a recursive procedure to compute a determinant.

Let’s compute the determinant of a reasonable sized matrix by hand.

Example D33M
Determinant of a 3× 3 matrix
Suppose that we have the 3× 3 matrix

A =

 3 2 −1
4 1 6
−3 −1 2


Then

det (A) = |A| =

∣∣∣∣∣∣
3 2 −1
4 1 6
−3 −1 2

∣∣∣∣∣∣
= 3

∣∣∣∣ 1 6
−1 2

∣∣∣∣− 2
∣∣∣∣ 4 6
−3 2

∣∣∣∣+ (−1)
∣∣∣∣ 4 1
−3 −1

∣∣∣∣
= 3

(
1
∣∣2∣∣− 6

∣∣−1
∣∣)− 2

(
4
∣∣2∣∣− 6

∣∣−3
∣∣)− (4 ∣∣−1

∣∣− 1
∣∣−3

∣∣)
= 3 (1(2)− 6(−1))− 2 (4(2)− 6(−3))− (4(−1)− 1(−3))
= 24− 52 + 1
= −27

�

In practice it is a bit silly to decompose a 2 × 2 matrix down into a couple of 1 × 1 matrices
and then compute the exceedingly easy determinant of these puny matrices. So here is a simple
theorem.

Theorem DMST
Determinant of Matrices of Size Two

Suppose that A =
[
a b
c d

]
. Then det (A) = ad− bc �

Proof Applying Definition DM [367],∣∣∣∣a b
c d

∣∣∣∣ = a
∣∣d∣∣− b ∣∣c∣∣ = ad− bc

�

Do you recall seeing the expression ad− bc before? (Hint: Theorem TTMI [210])

Subsection CD
Computing Determinants

There are a variety of ways to compute the determinant. We will establish first that we can choose
to mimic our definition of the determinant, but by using matrix entries and submatrices based on
a row other than the first one.
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Theorem DER
Determinant Expansion about Rows
Suppose that A is a square matrix of size n. Then

det (A) = (−1)i+1 [A]i1 det (A (i|1)) + (−1)i+2 [A]i2 det (A (i|2))

+ (−1)i+3 [A]i3 det (A (i|3)) + · · ·+ (−1)i+n [A]in det (A (i|n)) 1 ≤ i ≤ n

which is known as expansion about row i. �

Proof First, the statement of the theorem coincides with Definition DM [367] when i = 1, so
throughout, we need only consider i > 1.

Given the recursive definition of the determinant, it should be no surprise that we will use
induction for this proof (Technique I [676]). When n = 1, there is nothing to prove since there is
but one row. When n = 2, we just examine expansion about the second row,

(−1)2+1 [A]21 det (A (2|1)) + (−1)2+2 [A]22 det (A (2|2))
= − [A]21 [A]12 + [A]22 [A]11 Definition DM [367]
= [A]11 [A]22 − [A]12 [A]21

= det (A) Theorem DMST [368]

So the theorem is true for matrices of size n = 1 and n = 2. Now assume the result is true for
all matrices of size n− 1 as we derive an expression for expansion about row i for a matrix of size
n. We will abuse our notation for a submatrix slightly, so A (i1, i2|j1, j2) will denote the matrix
formed by removing rows i1 and i2, along with removing columns j1 and j2. Also, as we take a
determinant of a submatrix, we will need to “jump up” the index of summation partway through
as we “skip over” a missing column. To do this smoothly we will set

ε`j =

{
0 ` < j

1 ` > j

Now,

det (A) =
n∑
j=1

(−1)1+j [A]1j det (A (1|j)) Definition DM [367]

=
n∑
j=1

(−1)1+j [A]1j
∑

1≤`≤n
6̀=j

(−1)i−1+`−ε`j [A]i` det (A (1, i|j, `)) Induction Hypothesis

=
n∑
j=1

∑
1≤`≤n
6̀=j

(−1)j+i+`−ε`j [A]1j [A]i` det (A (1, i|j, `)) Property DCN [662]

=
n∑
`=1

∑
1≤j≤n
j 6=`

(−1)j+i+`−ε`j [A]1j [A]i` det (A (1, i|j, `)) Property CACN [662]

=
n∑
`=1

(−1)i+` [A]i`
∑

1≤j≤n
j 6=`

(−1)j−ε`j [A]1j det (A (1, i|j, `)) Property DCN [662]

=
n∑
`=1

(−1)i+` [A]i`
∑

1≤j≤n
j 6=`

(−1)ε`j+j [A]1j det (A (i, 1|`, j)) 2ε`j is even

=
n∑
`=1

(−1)i+` [A]i` det (A (i|`)) Definition DM [367]
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�

We can also obtain a formula that computes a determinant by expansion about a column, but
this will be simpler if we first prove a result about the interplay of determinants and transposes.
Notice how the following proof makes use of the ability to compute a determinant by expanding
about any row.

Theorem DT
Determinant of the Transpose
Suppose that A is a square matrix. Then det

(
At
)

= det (A). �

Proof

det
(
At
)

=
1
n

n∑
i=1

det
(
At
)

=
1
n

n∑
i=1

n∑
j=1

(−1)i+j
[
At
]
ij

det
(
At (i|j)

)
Theorem DER [369]

=
1
n

n∑
i=1

n∑
j=1

(−1)i+j [A]ji det (A (j|i)) Definition TM [182]

=
1
n

n∑
j=1

n∑
i=1

(−1)j+i [A]ji det (A (j|i)) Property CACN [662]

=
1
n

n∑
j=1

det (A) Theorem DER [369]

= det (A)

�

Now we can easily get the result that a determinant can be computed by expansion about any
column as well.

Theorem DEC
Determinant Expansion about Columns
Suppose that A is a square matrix of size n. Then

det (A) = (−1)1+j [A]1j det (A (1|j)) + (−1)2+j [A]2j det (A (2|j))
+ (−1)3+j [A]3j det (A (3|j)) + · · ·+ (−1)n+j [A]nj det (A (n|j)) 1 ≤ j ≤ n

which is known as expansion about column j. �

Proof

det (A) = det
(
At
)

Theorem DT [370]

=
n∑
j=1

(−1)j+i
[
At
]
ji

det
(
At (j|i)

)
Theorem DER [369]

=
n∑
j=1

(−1)i+j [A]ij det (A (i|j)) Definition TM [182]

�

That the determinant of an n× n matrix can be computed in 2n different (albeit similar) ways
is nothing short of remarkable. For the doubters among us, we will do an example, computing a
4× 4 matrix in two different ways.
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Example TCSD
Two computations, same determinant
Let

A =


−2 3 0 1
9 −2 0 1
1 3 −2 −1
4 1 2 6


Then expanding about the fourth row (Theorem DER [369] with i = 4) yields,

|A| = (4)(−1)4+1

∣∣∣∣∣∣
3 0 1
−2 0 1
3 −2 −1

∣∣∣∣∣∣+ (1)(−1)4+2

∣∣∣∣∣∣
−2 0 1
9 0 1
1 −2 −1

∣∣∣∣∣∣
+ (2)(−1)4+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
1 3 −1

∣∣∣∣∣∣+ (6)(−1)4+4

∣∣∣∣∣∣
−2 3 0
9 −2 0
1 3 −2

∣∣∣∣∣∣
= (−4)(10) + (1)(−22) + (−2)(61) + 6(46) = 92

while expanding about column 3 (Theorem DEC [370] with j = 3) gives

|A| = (0)(−1)1+3

∣∣∣∣∣∣
9 −2 1
1 3 −1
4 1 6

∣∣∣∣∣∣+ (0)(−1)2+3

∣∣∣∣∣∣
−2 3 1
1 3 −1
4 1 6

∣∣∣∣∣∣+
(−2)(−1)3+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
4 1 6

∣∣∣∣∣∣+ (2)(−1)4+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
1 3 −1

∣∣∣∣∣∣
= 0 + 0 + (−2)(−107) + (−2)(61) = 92

Notice how much easier the second computation was. By choosing to expand about the third
column, we have two entries that are zero, so two 3× 3 determinants need not be computed at all!

�

When a matrix has all zeros above (or below) the diagonal, exploiting the zeros by expanding
about the proper row or column makes computing a determinant insanely easy.

Example DUTM
Determinant of an upper triangular matrix
Suppose that

T =


2 3 −1 3 3
0 −1 5 2 −1
0 0 3 9 2
0 0 0 −1 3
0 0 0 0 5


We will compute the determinant of this 5 × 5 matrix by consistently expanding about the first
column for each submatrix that arises and does not have a zero entry multiplying it.

det (T ) =

∣∣∣∣∣∣∣∣∣∣
2 3 −1 3 3
0 −1 5 2 −1
0 0 3 9 2
0 0 0 −1 3
0 0 0 0 5

∣∣∣∣∣∣∣∣∣∣
= 2(−1)1+1

∣∣∣∣∣∣∣∣
−1 5 2 −1
0 3 9 2
0 0 −1 3
0 0 0 5

∣∣∣∣∣∣∣∣
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= 2(−1)(−1)1+1

∣∣∣∣∣∣
3 9 2
0 −1 3
0 0 5

∣∣∣∣∣∣
= 2(−1)(3)(−1)1+1

∣∣∣∣−1 3
0 5

∣∣∣∣
= 2(−1)(3)(−1)(−1)1+1

∣∣5∣∣
= 2(−1)(3)(−1)(5) = 30

�

If you consult other texts in your study of determinants, you may run into the terms “minor”
and “cofactor,” especially in a discussion centered on expansion about rows and columns. We’ve
chosen not to make these definitions formally since we’ve been able to get along without them.
However, informally, a minor is a determinant of a submatrix, specifically det (A (i|j)) and is
usually referenced as the minor of [A]ij . A cofactor is a signed minor, specifically the cofactor of
[A]ij is (−1)i+j det (A (i|j)).

Subsection READ
Reading Questions

1. Construct the elementary matrix that will effect the row operation −6R2 + R3 on a 4 × 7
matrix.

2. Compute the determinant of the matrix2 3 −1
3 8 2
4 −1 −3


3. Compute the determinant of the matrix

3 9 −2 4 2
0 1 4 −2 7
0 0 −2 5 2
0 0 0 −1 6
0 0 0 0 4


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Subsection EXC
Exercises

C24 Doing the computations by hand, find the determinant of the matrix below.−2 3 −2
−4 −2 1
2 4 2


Contributed by Robert Beezer Solution [374]

C25 Doing the computations by hand, find the determinant of the matrix below.3 −1 4
2 5 1
2 0 6


Contributed by Robert Beezer Solution [374]

C26 Doing the computations by hand, find the determinant of the matrix A.

A =


2 0 3 2
5 1 2 4
3 0 1 2
5 3 2 1


Contributed by Robert Beezer Solution [374]
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Subsection SOL
Solutions

C24 Contributed by Robert Beezer Statement [373]
We’ll expand about the first row since there are no zeros to exploit,∣∣∣∣∣∣

−2 3 −2
−4 −2 1
2 4 2

∣∣∣∣∣∣ = (−2)
∣∣∣∣−2 1

4 2

∣∣∣∣+ (−1)(3)
∣∣∣∣−4 1

2 2

∣∣∣∣+ (−2)
∣∣∣∣−4 −2

2 4

∣∣∣∣
= (−2)((−2)(2)− 1(4)) + (−3)((−4)(2)− 1(2)) + (−2)((−4)(4)− (−2)(2))
= (−2)(−8) + (−3)(−10) + (−2)(−12) = 70

C25 Contributed by Robert Beezer Statement [373]
We can expand about any row or column, so the zero entry in the middle of the last row is attractive.
Let’s expand about column 2. By Theorem DER [369] and Theorem DEC [370] you will get the
same result by expanding about a different row or column. We will use Theorem DMST [368] twice.∣∣∣∣∣∣

3 −1 4
2 5 1
2 0 6

∣∣∣∣∣∣ = (−1)(−1)1+2

∣∣∣∣2 1
2 6

∣∣∣∣+ (5)(−1)2+2

∣∣∣∣3 4
2 6

∣∣∣∣+ (0)(−1)3+2

∣∣∣∣3 4
2 1

∣∣∣∣
= (1)(10) + (5)(10) + 0 = 60

C26 Contributed by Robert Beezer Statement [373]
With two zeros in column 2, we choose to expand about that column (Theorem DEC [370]),

det (A) =

∣∣∣∣∣∣∣∣
2 0 3 2
5 1 2 4
3 0 1 2
5 3 2 1

∣∣∣∣∣∣∣∣
= 0(−1)

∣∣∣∣∣∣
5 2 4
3 1 2
5 2 1

∣∣∣∣∣∣+ 1(1)

∣∣∣∣∣∣
2 3 2
3 1 2
5 2 1

∣∣∣∣∣∣+ 0(−1)

∣∣∣∣∣∣
2 3 2
5 2 4
5 2 1

∣∣∣∣∣∣+ 3(1)

∣∣∣∣∣∣
2 3 2
5 2 4
3 1 2

∣∣∣∣∣∣
= (1) (2(1(1)− 2(2))− 3(3(1)− 5(2)) + 2(3(2)− 5(1))) +

(3) (2(2(2)− 4(1))− 3(5(2)− 4(3)) + 2(5(1)− 3(2)))
= (−6 + 21 + 2) + (3)(0 + 6− 2) = 29
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Section PDM
Properties of Determinants of Matrices

We have seen how to compute the determinant of a matrix, and the incredible fact that we can
perform expansion about any row or column to make this computation. In this largely theoret-
ical section, we will state and prove several more intriguing properties about determinants. Our
main goal will be the two results in Theorem SMZD [381] and Theorem DRMM [383], but more
specifically, we will see how the value of a determinant will allow us to gain insight into the various
properties of a square matrix.

Subsection DRO
Determinants and Row Operations

We start easy with a straightforward theorem whose proof presages the style of subsequent proofs
in this subsection.

Theorem DZRC
Determinant with Zero Row or Column
Suppose that A is a square matrix with a row where every entry is zero, or a column where every
entry is zero. Then det (A) = 0. �

Proof Suppose that A is a square matrix of size n and row i has every entry equal to zero. We
compute det (A) via expansion about row i.

det (A) =
n∑
j=1

(−1)i+j [A]ij det (A (i|j)) Theorem DER [369]

=
n∑
j=1

(−1)i+j 0 det (A (i|j)) Row i is zeros

=
n∑
j=1

0 = 0

The proof for the case of a zero column is entirely similar, or could be derived from an application
of Theorem DT [370] employing the transpose of the matrix. �

Theorem DRCS
Determinant for Row or Column Swap
Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging
the location of two rows, or interchanging the location of two columns. Then det (B) = −det (A).

�

Proof Begin with the special case where A is a square matrix of size n and we form B by
swapping adjacent rows i and i + 1 for some 1 ≤ i ≤ n − 1. Notice that the assumption about
swapping adjacent rows means that B (i+ 1|j) = A (i|j) for all 1 ≤ j ≤ n, and [B]i+1,j = [A]ij for
all 1 ≤ j ≤ n. We compute det (B) via expansion about row i+ 1.

det (B) =
n∑
j=1

(−1)(i+1)+j [B]i+1,j det (B (i+ 1|j)) Theorem DER [369]

=
n∑
j=1

(−1)(i+1)+j [A]ij det (A (i|j)) Hypothesis
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=
n∑
j=1

(−1)1(−1)i+j [A]ij det (A (i|j))

= (−1)
n∑
j=1

(−1)i+j [A]ij det (A (i|j))

= −det (A) Theorem DER [369]

So the result holds for the special case where we swap adjacent rows of the matrix. As any
computer scientist knows, we can accomplish any rearrangement of an ordered list by swapping
adjacent elements. This principle can be demonstrated by näıve sorting algorithms such as “bubble
sort.” In any event, we don’t need to discuss every possible reordering, we just need to consider a
swap of two rows, say rows s and t with 1 ≤ s < t ≤ n.

Begin with row s, and repeatedly swap it with each row just below it, including row t and
stopping there. This will total t − s swaps. Now swap the former row t, which currently lives in
row t−1, with each row above it, stopping when it becomes row s. This will total another t− s−1
swaps. In this way, we create B through a sequence of 2(t− s)− 1 swaps of adjacent rows, each of
which adjusts det (A) by a multiplicative factor of −1. So

det (B) = (−1)2(t−s)−1 det (A) =
(
(−1)2

)t−s (−1)−1 det (A) = −det (A)

as desired.
The proof for the case of swapping two columns is entirely similar, or could be derived from an

application of Theorem DT [370] employing the transpose of the matrix. �

So Theorem DRCS [375] tells us the effect of the first row operation (Definition RO [26]) on
the determinant of a matrix. Here’s the effect of the second row operation.

Theorem DRCM
Determinant for Row or Column Multiples
Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying
a single row by the scalar α, or by multiplying a single column by the scalar α. Then det (B) =
α det (A). �

Proof Suppose that A is a square matrix of size n and we form the square matrix B by multiplying
each entry of row i of A by α. Notice that the other rows of A and B are equal, so A (i|j) = B (i|j),
for all 1 ≤ j ≤ n. We compute det (B) via expansion about row i.

det (B) =
n∑
j=1

(−1)i+j [B]ij det (B (i|j)) Theorem DER [369]

=
n∑
j=1

(−1)i+j [B]ij det (A (i|j)) Hypothesis

=
n∑
j=1

(−1)i+jα [A]ij det (A (i|j)) Hypothesis

= α

n∑
j=1

(−1)i+j [A]ij det (A (i|j))

= α det (A) Theorem DER [369]

The proof for the case of a multiple of a column is entirely similar, or could be derived from an
application of Theorem DT [370] employing the transpose of the matrix. �

Let’s go for understanding the effect of all three row operations. But first we need an interme-
diate result, but it is an easy one.
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Theorem DERC
Determinant with Equal Rows or Columns
Suppose that A is a square matrix with two equal rows, or two equal columns. Then det (A) = 0.
�

Proof Suppose that A is a square matrix of size n where the two rows s and t are equal. Form
the matrix B by swapping rows r and s. Notice that as a consequence of our hypothesis, A = B.
Then

det (A) =
1
2

(det (A) + det (A))

=
1
2

(det (A)− det (B)) Theorem DRCS [375]

=
1
2

(det (A)− det (A)) Hypothesis, A = B

=
1
2

(0) = 0

The proof for the case of two equal columns is entirely similar, or could be derived from an appli-
cation of Theorem DT [370] employing the transpose of the matrix. �

Now explain the third row operation. Here we go.

Theorem DRCMA
Determinant for Row or Column Multiples and Addition
Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a
row by the scalar α and then adding it to another row, or by multiplying a column by the scalar α
and then adding it to another column. Then det (B) = det (A). �

Proof Suppose that A is a square matrix of size n. Form the matrix B by multiplying row s by
α and adding it to row t. Let C be the auxiliary matrix where we replace row t of A by row s of
A. Notice that A (t|j) = B (t|j) = C (t|j) for all 1 ≤ j ≤ n. We compute the determinant of B by
expansion about row t.

det (B) =
n∑
j=1

(−1)t+j [B]tj det (B (t|j)) Theorem DER [369]

=
n∑
j=1

(−1)t+j
(
α [A]sj + [A]tj

)
det (B (t|j)) Hypothesis

=
n∑
j=1

(−1)t+jα [A]sj det (B (t|j))

+
n∑
j=1

(−1)t+j [A]tj det (B (t|j))

= α
n∑
j=1

(−1)t+j [A]sj det (B (t|j))

+
n∑
j=1

(−1)t+j [A]tj det (B (t|j))

= α

n∑
j=1

(−1)t+j [C]tj det (C (t|j))

+
n∑
j=1

(−1)t+j [A]tj det (A (t|j))

= α det (C) + det (A) Theorem DER [369]
= α 0 + det (A) = det (A) Theorem DERC [377]
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The proof for the case of adding a multiple of a column is entirely similar, or could be derived from
an application of Theorem DT [370] employing the transpose of the matrix. �

Is this what you expected? We could argue that the third row operation is the most popular,
and yet it has no effect whatsoever on the determinant of a matrix! We can exploit this, along with
our understanding of the other two row operations, to provide another approach to computing a
determinant. We’ll explain this in the context of an example.

Example DRO
Determinant by row operations
Suppose we desire the determinant of the 4× 4 matrix

A =


2 0 2 3
1 3 −1 1
−1 1 −1 2
3 5 4 0


We will perform a sequence of row operations on this matrix, shooting for an upper triangular
matrix, whose determinant will be simply the product of its diagonal entries. For each row opera-
tion, we will track the effect on the determinant via Theorem DRCS [375], Theorem DRCM [376],
Theorem DRCMA [377].

R1↔R2−−−−−→ A1 =


1 3 −1 1
2 0 2 3
−1 1 −1 2
3 5 4 0

 det (A) = −det (A1) Theorem DRCS [375]

−2R1+R2−−−−−−→ A2 =


1 3 −1 1
0 −6 4 1
−1 1 −1 2
3 5 4 0

 = −det (A2) Theorem DRCMA [377]

1R1+R3−−−−−→ A3 =


1 3 −1 1
0 −6 4 1
0 4 −2 3
3 5 4 0

 = −det (A3) Theorem DRCMA [377]

−3R1+R4−−−−−−→ A4 =


1 3 −1 1
0 −6 4 1
0 4 −2 3
0 −4 7 −3

 = −det (A4) Theorem DRCMA [377]

1R3+R2−−−−−→ A5 =


1 3 −1 1
0 −2 2 4
0 4 −2 3
0 −4 7 −3

 = −det (A5) Theorem DRCMA [377]

− 1
2
R2−−−−→ A6 =


1 3 −1 1
0 1 −1 −2
0 4 −2 3
0 −4 7 −3

 = 2 det (A6) Theorem DRCM [376]

−4R2+R3−−−−−−→ A7 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 −4 7 −3

 = 2 det (A7) Theorem DRCMA [377]

4R2+R4−−−−−→ A8 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 0 3 −11

 = 2 det (A8) Theorem DRCMA [377]
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−1R3+R4−−−−−−→ A9 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 0 1 −22

 = 2 det (A9) Theorem DRCMA [377]

−2R4+R3−−−−−−→ A10 =


1 3 −1 1
0 1 −1 −2
0 0 0 55
0 0 1 −22

 = 2 det (A10) Theorem DRCMA [377]

R3↔R4−−−−−→ A11 =


1 3 −1 1
0 1 −1 −2
0 0 1 −22
0 0 0 55

 = −2 det (A11) Theorem DRCS [375]

1
55
R4−−−→ A12 =


1 3 −1 1
0 1 −1 −2
0 0 1 −22
0 0 0 1

 = −110 det (A12) Theorem DRCM [376]

The matrix A12 is upper triangular, so expansion about the first column (repeatedly) will result in
det (A12) = (1)(1)(1)(1) = 1 (see Example DUTM [371]) and thus, det (A) = −110(1) = −110.

Notice that our sequence of row operations was somewhat ad hoc, such as the transformation
to A5. We could have been even more methodical, and strictly followed the process that converts
a matrix to reduced row-echelon form (Theorem REMEF [29]), eventually achieving the same
numerical result with a final matrix that equaled the 4 × 4 identity matrix. Notice too that we
could have stopped with A8, since at this point we could compute det (A8) by two expansions about
first columns, followed by a simple determinant of a 2× 2 matrix (Theorem DMST [368]).

The beauty of this approach is that computationally we should already have written a procedure
to convert matrices to reduced-row echelon form, so all we need to do is track the multiplicative
changes to the determinant as the algorithm procedes. Further, for a square matrix of size n this
approach requires on the order of n3 multiplications, while a recursive application of expansion
about a row or column (Theorem DER [369], Theorem DEC [370]) will require in the vicinity of
(n−1)(n!) multiplications. So even for very small matrices, a computational approach utilizing row
operations will have superior run-time. Tracking, and controlling, the effects of round-off errors is
another story, best saved for a numerical linear algebra course. �

Subsection DROEM
Determinants, Row Operations, Elementary Matrices

As a final preparation for our two most important theorems about determinants, we prove a handful
of facts about the interplay of row operations and matrix multiplication with elementary matrices
with regard to the determinant. But first, a simple, but crucial, fact about the identity matrix.

Theorem DIM
Determinant of the Identity Matrix
For every n ≥ 1, det (In) = 1. �

Proof It may be overkill, but this is a good situation to run through a proof by induction on n
(Technique I [676]). Is the result true when n = 1? Yes,

det (I1) = [I1]11 Definition DM [367]
= 1 Definition IM [68]
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Now assume the theorem is true for the identity matrix of size n−1 and investigate the determinant
of the identity matrix of size n with expansion about row 1,

det (In) =
n∑
j=1

(−1)1+j [In]1j det (In (1|j)) Definition DM [367]

= (−1)1+1 [In]11 det (In (1|1))

+
n∑
j=2

(−1)1+j [In]1j det (In (1|j))

= 1 det (In−1) +
n∑
j=2

(−1)1+j 0 det (In (1|j)) Definition IM [68]

= 1(1) +
n∑
j=2

0 = 1 Induction Hypothesis

�

Theorem DEM
Determinants of Elementary Matrices
For the three possible versions of an elementary matrix (Definition ELEM [363]) we have the
determinants,

1. det (Ei,j) = −1

2. det (Ei (α)) = α

3. det (Ei,j (α)) = 1

�

Proof Swapping rows i and j of the identity matrix will create Ei,j (Definition ELEM [363]), so

det (Ei,j) = −det (In) Theorem DRCS [375]
= −1 Theorem DIM [379]

Multiplying row i of the identity matrix by α will create Ei (α) (Definition ELEM [363]), so

det (Ei (α)) = α det (In) Theorem DRCM [376]
= α(1) = α Theorem DIM [379]

Multiplying row i of the identity matrix by α and adding to row j will create Ei (α) j (Definition
ELEM [363]), so

det (Ei (α) j) = det (In) Theorem DRCMA [377]
= 1 Theorem DIM [379]

�

Theorem DEMMM
Determinants, Elementary Matrices, Matrix Multiplication
Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

det (EA) = det (E) det (A)
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�

Proof The proof procedes in three parts, one for each type of elementary matrix, with each part
very similar to the other two. First, let B be the matrix obtained from A by swapping rows i and
j,

det (Ei,jA) = det (B) Theorem EMDRO [364]
= −det (A) Theorem DRCS [375]
= det (Ei,j) det (A) Theorem DEM [380]

Second, let B be the matrix obtained from A by multiplying row i by α,

det (Ei (α)A) = det (B) Theorem EMDRO [364]
= α det (A) Theorem DRCM [376]
= det (Ei (α)) det (A) Theorem DEM [380]

Third, let B be the matrix obtained from A by multiplying row i by α and adding to row j,

det (Ei,j (α)A) = det (B) Theorem EMDRO [364]
= det (A) Theorem DRCMA [377]
= det (Ei,j (α)) det (A) Theorem DEM [380]

Since the desired result holds for each variety of elementary matrix individually, we are done. �

Subsection DNMMM
Determinants, Nonsingular Matrices, Matrix Multiplication

If you asked someone with substantial experience working with matrices about the value of the
determinant, they’d be likely to quote the following theorem as the first thing to come to mind.

Theorem SMZD
Singular Matrices have Zero Determinants
Let A be a square matrix. Then A is singular if and only if det (A) = 0. �

Proof (⇒) Suppose that A is a singular matrix of size n. Then A is row-equivalent to a square
matrix B in reduced row-echelon form (Theorem REMEF [29]). Since A is singular, the matrix
B is not the identity matrix (Theorem NMRRI [68]). Therefore, the number of pivot columns is
strictly less than n, i.e. r < n, and so B has at least one row of all zeros.

There is a sequence of row operations R1, R2, R3, . . . , Rs that will convert B into A. For each
of these row operations, there is an elementary matrix Ei which effects the row operation by matrix
multiplication (Theorem EMDRO [364]). Repeated applications of Theorem EMDRO [364] allow
us to write

A = EsEs−1 . . . E2E1B

Then

det (A) = det (EsEs−1 . . . E2E1B)
= det (Es) det (Es−1) . . . det (E2) det (E1) det (B) Theorem DEMMM [380]
= det (Es) det (Es−1) . . . det (E2) det (E1) 0 Theorem DZRC [375]
= 0

(⇐) We will establish the contrapositive of this implication. So begin by assuming that A is
nonsingular. Then A is row-equivalent to the identity matrix by Theorem NMRRI [68]. As above,
there is a sequence of row operations that will convert In to A, which can be effected by matrix
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multiplication by elementary matrices and Theorem DEMMM [380] allows us to “distribute” the
determinant through this product. Mimicking the first half of the proof, we would arrive at

det (A) = det (Es) det (Es−1) . . . det (E2) det (E1) det (In)

We know that det (In) = 1 6= 0. From Theorem DEM [380] we can infer that the determinant of an
elementary matrix is never zero (note the ban on α = 0 for Ei (α) in Definition ELEM [363]). So
the product on the right is composed of nonzero scalars, and so is also nonzero. This is the result
we needed. �

For the case of 2× 2 matrices you might compare the application of Theorem SMZD [381] with
the combination of the results stated in Theorem DMST [368] and Theorem TTMI [210].

Example ZNDAB
Zero and nonzero determinant, Archetypes A and B
The coefficient matrix in Archetype A [685] has a zero determinant (check this!) while the coefficient
matrix Archetype B [689] has a nonzero determinant (check this, too). These matrices are singular
and nonsingular, respectively. This is exactly what Theorem SMZD [381] says, and continues our
list of contrasts between these two archetypes. �

Since Theorem SMZD [381] is an equivalence (Technique E [672]) we can expand on our growing
list of equivalences about nonsingular matrices. The addition of the condition det (A) 6= 0 is one
of the best motivations for learning about determinants.

Theorem NME7
Nonsingular Matrix Equivalences, Round 7
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

�

Proof Theorem SMZD [381] says A is singular if and only if det (A) = 0. If we negate each of
these statements, we arrive at two contrapositives that we can combine as the equivalence, A is
nonsingular if and only if det (A) 6= 0. This allows us to add a new statement to the list found in
Theorem NME6 [341]. �

Computationally, row-reducing a matrix is the most efficient way to determine if a matrix is
nonsingular, though the effect of using division in a computer can lead to round-off errors that
confuse small quantities with critical zero quantities. Conceptually, the determinant may seem the
most efficient way to determine if a matrix is nonsingular. The definition of a determinant uses
just addition, subtraction and multiplication, so division is never a problem. And the final test is
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easy: is the determinant zero or not? However, the number of operations involved in computing a
determinant by the definition very quickly becomes so excessive as to be impractical.

Now for the coup de grâce. We will generalize Theorem DEMMM [380] to the case of any two
square matrices. You may recall thinking that matrix multiplication was defined in a needlessly
complicated manner. For sure, the definition of a determinant seems even stranger. (Though
Theorem SMZD [381] might be forcing you to reconsider.) Read the statement of the next theorem
and contemplate how nicely matrix multiplication and determinants play with each other.

Theorem DRMM
Determinant Respects Matrix Multiplication
Suppose that A and B are square matrices of the same size. Then det (AB) = det (A) det (B). �

Proof Suppose that A or B is singular. Then either det (A) = 0 or det (B) = 0 by Theorem
SMZD [381]. In either case, det (A) det (B) = 0. By the contrapositive of Theorem NPNT [221],
we know AB is singular as well. So by Theorem SMZD [381], det (AB) = 0. So in this case, we
have the desired equality.

Now assume that A and B are both nonsingular. By Theorem NMPEM [367] there are elemen-
tary matrices E1, E2, E3 . . . , Es and Es+1, Es+2, Es+3 . . . , Es+t such that

A = E1E2E3 . . . Es B = Es+1Es+2Es+3 . . . Es+t

Then

det (AB) = det (E1E2 . . . EsEs+1Es+2 . . . Es+t)
= det (E1) det (E2) . . . det (Es) det (Es+1Es+2 . . . Es+t) Theorem DEMMM [380]
= det (E1E2 . . . Es) det (Es+1Es+2 . . . Es+t) Theorem DEMMM [380]
= det (A) det (B)

�

It’s an amazing thing that matrix multiplication and the determinant interact this way. Might
it also be true that det (A+B) = det (A) + det (B)? (See Exercise PDM.M30 [384].)

Subsection READ
Reading Questions

1. Condiser the two matrices below, and suppose you already have computed det (A) = −120.
What is det (B)? Why?

A =


0 8 3 −4
−1 2 −2 5
−2 8 4 3
0 −4 2 −3

 B =


0 8 3 −4
0 −4 2 −3
−2 8 4 3
−1 2 −2 5


2. State the theorem that allows us to make yet another extension to our NMEx series of theo-

rems.

3. What is amazing about the interaction between matrix multiplication and the determinant?
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Subsection EXC
Exercises

C30 Each of the archetypes below is a system of equations with a square coefficient matrix, or is
a square matrix itself. Compute the determinant of each matrix, noting how Theorem SMZD [381]
indicates when the matrix is singular or nonsingular.
Archetype A [685]
Archetype B [689]
Archetype F [705]
Archetype K [727]
Archetype L [731]

Contributed by Robert Beezer

M20 Construct a 3 × 3 nonsingular matrix and call it A. Then, for each entry of the matrix,
compute the corresponding cofactor, and create a new 3×3 matrix full of these cofactors by placing
the cofactor of an entry in the same location as the entry it was based on. Once complete, call this
matrix C. Compute ACt. Any observations? Repeat with a new matrix, or perhaps with a 4× 4
matrix.
Contributed by Robert Beezer Solution [385]

M30 Construct an example to show that the following statement is not true for all square matrices
A and B of the same size: det (A+B) = det (A) + det (B).
Contributed by Robert Beezer

T10 Theorem NPNT [221] says that if the product of square matrices AB is nonsingular, then
the individual matrices A and B are nonsingular also. Construct a new proof of this result making
use of theorems about determinants of matrices.
Contributed by Robert Beezer

T15 Use Theorem DRCM [376] to prove Theorem DZRC [375] as a corollary. (See Technique LC
[677].)
Contributed by Robert Beezer

T20 Suppose that A is a square matrix of size n and α ∈ C is a scalar. Prove that det (αA) =
αn det (A).
Contributed by Robert Beezer

T25 Employ Theorem DT [370] to construct the second half of the proof of Theorem DRCM
[376] (the portion about a multiple of a column).
Contributed by Robert Beezer
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Subsection SOL
Solutions

M20 Contributed by Robert Beezer Statement [384]
The result of these computations should be a matrix with the value of det (A) in the diagonal
entries and zeros elsewhere. The suggestion of using a nonsingular matrix was partially so that it
was obvious that the value of the determinant appears on the diagonal.

This result (which is true in general) provides a method for computing the inverse of a nonsin-
gular matrix. Since ACt = det (A) In, we can multiply by the reciprocal of the determinant (which
is nonzero!) and the inverse of A (it exists!) to arrive at an expression for the matrix inverse:

A−1 =
1

det (A)
Ct
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Annotated Acronyms D
Determinants

Theorem EMDRO [364]

The main purpose of elementary matrices is to provide a more formal foundation for row operations.
With this theorem we can convert the notion of “doing a row operation” into the slightly more
precise, and tractable, operation of matrix multiplication by an elementary matrix. The other big
results in this chapter are made possible by this connection and our previous understanding of the
behavior of matrix multiplication (such as results in Section MM [191]).

Theorem DER [369]

We define the determinant by expansion about the first row and then prove you can expand about
any row (and with Theorem DEC [370], about any column). Amazing. If the determinant seems
contrived, these results might begin to convince you that maybe something interesting is going on.

Theorem DRMM [383]

Theorem EMDRO [364] connects elementary matrices with matrix multiplication. Now we connect
determinants with matrix multiplication. If you thought the definition of matrix multiplication (as
exemplified by Theorem EMP [195]) was as outlandish as the definition of the determinant, then
no more. They seem to play together quite nicely.

Theorem SMZD [381]

This theorem provides a simple test for nonsingularity, even though it is stated and titled as a
theorem about singularity. It’ll be helpful, especially in concert with Theorem DRMM [383], in
establishing upcoming results about nonsingular matrices or creating alternative proofs of earlier
results. You might even use this theorem as an indicator of how often a matrix is singular. Create
a square matrix at random — what are the odds it is singular? This theorem says the determinant
has to be zero, which we might suspect is a rare occurrence. Of course, we have to be a lot more
careful about words like “random,” “odds,” and “rare” if we want precise answers to this question.
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Chapter E
Eigenvalues

When we have a square matrix of size n, A, and we multiply it by a vector x from Cn to form the
matrix-vector product (Definition MVP [191]), the result is another vector in Cn. So we can adopt
a functional view of this computation — the act of multiplying by a square matrix is a function that
converts one vector (x) into another one (Ax) of the same size. For some vectors, this seemingly
complicated computation is really no more complicated than scalar multiplication. The vectors
vary according to the choice of A, so the question is to determine, for an individual choice of A, if
there are any such vectors, and if so, which ones. It happens in a variety of situations that these
vectors (and the scalars that go along with them) are of special interest.

We will be solving polynomial equations in this chapter, which raises the specter of roots that
are complex numbers. This distinct possibility is our main reason for entertaining the complex
numbers throughout the course. You might be moved to revisit Section CNO [661] and Section O
[163].

Section EE
Eigenvalues and Eigenvectors

We start with the principal definition for this chapter.

Subsection EEM
Eigenvalues and Eigenvectors of a Matrix

Definition EEM
Eigenvalues and Eigenvectors of a Matrix
Suppose that A is a square matrix of size n, x 6= 0 is a vector in Cn, and λ is a scalar in C. Then

we say x is an eigenvector of A with eigenvalue λ if

Ax = λx

4

Before going any further, perhaps we should convince you that such things ever happen at all.
Understand the next example, but do not concern yourself with where the pieces come from. We
will have methods soon enough to be able to discover these eigenvectors ourselves.

Example SEE
Some eigenvalues and eigenvectors
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Consider the matrix

A =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28


and the vectors

x =


1
−1
2
5

 y =


−3
4
−10

4

 z =


−3
7
0
8

 w =


1
−1
4
0


Then

Ax =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28




1
−1
2
5

 =


4
−4
8
20

 = 4


1
−1
2
5

 = 4x

so x is an eigenvector of A with eigenvalue λ = 4. Also,

Ay =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28



−3
4
−10

4

 =


0
0
0
0

 = 0


−3
4
−10

4

 = 0y

so y is an eigenvector of A with eigenvalue λ = 0. Also,

Az =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28



−3
7
0
8

 =


−6
14
0
16

 = 2


−3
7
0
8

 = 2z

so z is an eigenvector of A with eigenvalue λ = 2. Also,

Aw =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28




1
−1
4
0

 =


2
−2
8
0

 = 2


1
−1
4
0

 = 2w

so w is an eigenvector of A with eigenvalue λ = 2.
So we have demonstrated four eigenvectors of A. Are there more? Yes, any nonzero scalar

multiple of an eigenvector is again an eigenvector. In this example, set u = 30x. Then

Au = A(30x)
= 30Ax Theorem MMSMM [198]
= 30(4x) x an eigenvector of A
= 4(30x) Property SMAM [181]
= 4u

so that u is also an eigenvector of A for the same eigenvalue, λ = 4.
The vectors z and w are both eigenvectors of A for the same eigenvalue λ = 2, yet this is not

as simple as the two vectors just being scalar multiples of each other (they aren’t). Look what
happens when we add them together, to form v = z + w, and multiply by A,

Av = A(z + w)
= Az +Aw Theorem MMDAA [197]
= 2z + 2w z, w eigenvectors of A
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= 2(z + w) Property DVAC [84]
= 2v

so that v is also an eigenvector of A for the eigenvalue λ = 2. So it would appear that the set of
eigenvectors that are associated with a fixed eigenvalue is closed under the vector space operations
of Cn. Hmmm.

The vector y is an eigenvector of A for the eigenvalue λ = 0, so we can use Theorem ZSSM
[280] to write Ay = 0y = 0. But this also means that y ∈ N (A). There would appear to be a
connection here also. �

Example SEE [389] hints at a number of intriguing properties, and there are many more. We
will explore the general properties of eigenvalues and eigenvectors in Section PEE [411], but in
this section we will concern ourselves with the question of actually computing eigenvalues and
eigenvectors. First we need a bit of background material on polynomials and matrices.

Subsection PM
Polynomials and Matrices

A polynomial is a combination of powers, multiplication by scalar coefficients, and addition (with
subtraction just being the inverse of addition). We never have occasion to divide when computing
the value of a polynomial. So it is with matrices. We can add and subtract matrices, we can
multiply matrices by scalars, and we can form powers of square matrices by repeated applications
of matrix multiplication. We do not normally divide matrices (though sometimes we can multiply
by an inverse). If a matrix is square, all the operations constituting a polynomial will preserve the
size of the matrix. So it is natural to consider evaluating a polynomial with a matrix, effectively
replacing the variable of the polynomial by a matrix. We’ll demonstrate with an example,

Example PM
Polynomial of a matrix
Let

p(x) = 14 + 19x− 3x2 − 7x3 + x4 D =

−1 3 2
1 0 −2
−3 1 1


and we will compute p(D). First, the necessary powers of D. Notice that D0 is defined to be the
multiplicative identity, I3, as will be the case in general.

D0 = I3 =

1 0 0
0 1 0
0 0 1


D1 = D =

−1 3 2
1 0 −2
−3 1 1


D2 = DD1 =

−1 3 2
1 0 −2
−3 1 1

−1 3 2
1 0 −2
−3 1 1

 =

−2 −1 −6
5 1 0
1 −8 −7


D3 = DD2 =

−1 3 2
1 0 −2
−3 1 1

−2 −1 −6
5 1 0
1 −8 −7

 =

19 −12 −8
−4 15 8
12 −4 11


D4 = DD3 =

−1 3 2
1 0 −2
−3 1 1

19 −12 −8
−4 15 8
12 −4 11

 =

 −7 49 54
−5 −4 −30
−49 47 43



Version 1.30



392 Section EE Eigenvalues and Eigenvectors

Then

p(D) = 14 + 19D − 3D2 − 7D3 +D4

= 14

1 0 0
0 1 0
0 0 1

+ 19

−1 3 2
1 0 −2
−3 1 1

− 3

−2 −1 −6
5 1 0
1 −8 −7


− 7

19 −12 −8
−4 15 8
12 −4 11

+

 −7 49 54
−5 −4 −30
−49 47 43


=

−139 193 166
27 −98 −124
−193 118 20


Notice that p(x) factors as

p(x) = 14 + 19x− 3x2 − 7x3 + x4 = (x− 2)(x− 7)(x+ 1)2

Because D commutes with itself (DD = DD), we can use distributivity of matrix multiplication
across matrix addition (Theorem MMDAA [197]) without being careful with any of the matrix
products, and just as easily evaluate p(D) using the factored form of p(x),

p(D) = 14 + 19D − 3D2 − 7D3 +D4 = (D − 2I3)(D − 7I3)(D + I3)2

=

−3 3 2
1 −2 −2
−3 1 −1

 −8 3 2
1 −7 −2
−3 1 −6

  0 3 2
1 1 −2
−3 1 2

2

=

−139 193 166
27 −98 −124
−193 118 20


This example is not meant to be too profound. It is meant to show you that it is natural to evaluate
a polynomial with a matrix, and that the factored form of the polynomial is as good as (or maybe
better than) the expanded form. And do not forget that constant terms in polynomials are really
multiples of the identity matrix when we are evaluating the polynomial with a matrix. �

Subsection EEE
Existence of Eigenvalues and Eigenvectors

Before we embark on computing eigenvalues and eigenvectors, we will prove that every matrix has
at least one eigenvalue (and an eigenvector to go with it). Later, in Theorem MNEM [418], we will
determine the maximum number of eigenvalues a matrix may have.

The determinant (Definition D [333]) will be a powerful tool in Subsection EE.CEE [395] when
it comes time to compute eigenvalues. However, it is possible, with some more advanced machinery,
to compute eigenvalues without ever making use of the determinant. Sheldon Axler does just that
in his book, Linear Algebra Done Right. Here and now, we give Axler’s “determinant-free” proof
that every matrix has an eigenvalue. The result is not too startling, but the proof is most enjoyable.

Theorem EMHE
Every Matrix Has an Eigenvalue
Suppose A is a square matrix. Then A has at least one eigenvalue. �

Proof Suppose that A has size n, and choose x as any nonzero vector from Cn. (Notice how
much latitude we have in our choice of x. Only the zero vector is off-limits.) Consider the set

S =
{
x, Ax, A2x, A3x, . . . , Anx

}
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This is a set of n+ 1 vectors from Cn, so by Theorem MVSLD [138], S is linearly dependent. Let
a0, a1, a2, . . . , an be a collection of n + 1 scalars from C, not all zero, that provide a relation of
linear dependence on S. In other words,

a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ anA
nx = 0

Some of the ai are nonzero. Suppose that just a0 6= 0, and a1 = a2 = a3 = · · · = an = 0. Then
a0x = 0 and by Theorem SMEZV [281], either a0 = 0 or x = 0, which are both contradictions. So
ai 6= 0 for some i ≥ 1. Let m be the largest integer such that am 6= 0. From this discussion we
know that m ≥ 1. We can also assume that am = 1, for if not, replace each ai by ai/am to obtain
scalars that serve equally well in providing a relation of linear dependence on S.

Define the polynomial

p(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ amx
m

Because we have consistently used C as our set of scalars (rather than R), we know that we can factor
p(x) into linear factors of the form (x− bi), where bi ∈ C. So there are scalars, b1, b2, b3, . . . , bm,
from C so that,

p(x) = (x− bm)(x− bm−1) · · · (x− b3)(x− b2)(x− b1)

Put it all together and

0 = a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ anA
nx

= a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ amA
mx ai = 0 for i > m

=
(
a0In + a1A+ a2A

2 + a3A
3 + · · ·+ amA

m
)
x Theorem MMDAA [197]

= p(A)x Definition of p(x)
= (A− bmIn)(A− bm−1In) · · · (A− b3In)(A− b2In)(A− b1In)x

Let k be the smallest integer such that

(A− bkIn)(A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x = 0.

From the preceding equation, we know that k ≤ m. Define the vector z by

z = (A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x

Notice that by the definition of k, the vector z must be nonzero. In the case where k = 1, we
understand that z is defined by z = x, and z is still nonzero. Now

(A− bkIn)z = (A− bkIn)(A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x = 0

which allows us to write

Az = (A+O)z Property ZM [181]
= (A− bkIn + bkIn)z Property AIM [181]
= (A− bkIn)z + bkInz Theorem MMDAA [197]
= 0 + bkInz Defining property of z

= bkInz Property ZM [181]
= bkz Theorem MMIM [197]

Since z 6= 0, this equation says that z is an eigenvector of A for the eigenvalue λ = bk (Definition
EEM [389]), so we have shown that any square matrix A does have at least one eigenvalue. �

The proof of Theorem EMHE [392] is constructive (it contains an unambiguous procedure that
leads to an eigenvalue), but it is not meant to be practical. We will illustrate the theorem with an
example, the purpose being to provide a companion for studying the proof and not to suggest this
is the best procedure for computing an eigenvalue.
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Example CAEHW
Computing an eigenvalue the hard way
This example illustrates the proof of Theorem EMHE [392], so will employ the same notation as
the proof — look there for full explanations. It is not meant to be an example of a reasonable
computational approach to finding eigenvalues and eigenvectors. OK, warnings in place, here we
go.

Let

A =


−7 −1 11 0 −4
4 1 0 2 0
−10 −1 14 0 −4

8 2 −15 −1 5
−10 −1 16 0 −6


and choose

x =


3
0
3
−5
4


It is important to notice that the choice of x could be anything, so long as it is not the zero vector.
We have not chosen x totally at random, but so as to make our illustration of the theorem as
general as possible. You could replicate this example with your own choice and the computations
are guaranteed to be reasonable, provided you have a computational tool that will factor a fifth
degree polynomial for you.

The set

S =
{
x, Ax, A2x, A3x, A4x, A5x

}

=




3
0
3
−5
4

 ,

−4
2
−4
4
−6

 ,


6
−6
6
−2
10

 ,

−10
14
−10
−2
−18

 ,


18
−30
18
10
34

 ,

−34
62
−34
−26
−66




is guaranteed to be linearly dependent, as it has six vectors from C5 (Theorem MVSLD [138]).
We will search for a non-trivial relation of linear dependence by solving a homogeneous system of
equations whose coefficient matrix has the vectors of S as columns through row operations,

3 −4 6 −10 18 −34
0 2 −6 14 −30 62
3 −4 6 −10 18 −34
−5 4 −2 −2 10 −26
4 −6 10 −18 34 −66

 RREF−−−−→


1 0 −2 6 −14 30
0 1 −3 7 −15 31
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


There are four free variables for describing solutions to this homogeneous system, so we have our
pick of solutions. The most expedient choice would be to set x3 = 1 and x4 = x5 = x6 = 0.
However, we will again opt to maximize the generality of our illustration of Theorem EMHE [392]
and choose x3 = −8, x4 = −3, x5 = 1 and x6 = 0. The leads to a solution with x1 = 16 and
x2 = 12.

This relation of linear dependence then says that

0 = 16x + 12Ax− 8A2x− 3A3x +A4x + 0A5x

0 =
(
16 + 12A− 8A2 − 3A3 +A4

)
x

So we define p(x) = 16 + 12x− 8x2 − 3x3 + x4, and as advertised in the proof of Theorem EMHE
[392], we have a polynomial of degree m = 4 > 1 such that p(A)x = 0. Now we need to factor p(x)
over C. If you made your own choice of x at the start, this is where you might have a fifth degree
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polynomial, and where you might need to use a computational tool to find roots and factors. We
have

p(x) = 16 + 12x− 8x2 − 3x3 + x4 = (x− 4)(x+ 2)(x− 2)(x+ 1)

So we know that
0 = p(A)x = (A− 4I5)(A+ 2I5)(A− 2I5)(A+ 1I5)x

We apply one factor at a time, until we get the zero vector, so as to determine the value of k
described in the proof of Theorem EMHE [392],

(A+ 1I5)x =


−6 −1 11 0 −4
4 2 0 2 0
−10 −1 15 0 −4

8 2 −15 0 5
−10 −1 16 0 −5




3
0
3
−5
4

 =


−1
2
−1
−1
−2



(A− 2I5)(A+ 1I5)x =


−9 −1 11 0 −4
4 −1 0 2 0
−10 −1 12 0 −4

8 2 −15 −3 5
−10 −1 16 0 −8



−1
2
−1
−1
−2

 =


4
−8
4
4
8



(A+ 2I5)(A− 2I5)(A+ 1I5)x =


−5 −1 11 0 −4
4 3 0 2 0
−10 −1 16 0 −4

8 2 −15 1 5
−10 −1 16 0 −4




4
−8
4
4
8

 =


0
0
0
0
0



So k = 3 and

z = (A− 2I5)(A+ 1I5)x =


4
−8
4
4
8


is an eigenvector of A for the eigenvalue λ = −2, as you can check by doing the computation Az. If
you work through this example with your own choice of the vector x (strongly recommended) then
the eigenvalue you will find may be different, but will be in the set {3, 0, 1, −1, −2}. See Exercise
EE.M60 [406] for a suggested starting vector. �

Subsection CEE
Computing Eigenvalues and Eigenvectors

Fortunately, we need not rely on the procedure of Theorem EMHE [392] each time we need an
eigenvalue. It is the determinant, and specifically Theorem SMZD [381], that provides the main
tool for computing eigenvalues. Here is an informal sequence of equivalences that is the key to
determining the eigenvalues and eigenvectors of a matrix,

Ax = λx ⇐⇒ Ax− λInx = 0 ⇐⇒ (A− λIn) x = 0

So, for an eigenvalue λ and associated eigenvector x 6= 0, the vector x will be a nonzero element
of the null space of A − λIn, while the matrix A − λIn will be singular and therefore have zero
determinant. These ideas are made precise in Theorem EMRCP [396] and Theorem EMNS [397],
but for now this brief discussion should suffice as motivation for the following definition and example.
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Definition CP
Characteristic Polynomial
Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the
polynomial pA (x) defined by

pA (x) = det (A− xIn)

4

Example CPMS3
Characteristic polynomial of a matrix, size 3
Consider

F =

−13 −8 −4
12 7 4
24 16 7


Then

pF (x) = det (F − xI3)

=

∣∣∣∣∣∣
−13− x −8 −4

12 7− x 4
24 16 7− x

∣∣∣∣∣∣ Definition CP [396]

= (−13− x)
∣∣∣∣7− x 4

16 7− x

∣∣∣∣+ (−8)(−1)
∣∣∣∣12 4
24 7− x

∣∣∣∣ Definition DM [367]

+ (−4)
∣∣∣∣12 7− x
24 16

∣∣∣∣
= (−13− x)((7− x)(7− x)− 4(16)) Theorem DMST [368]

+ (−8)(−1)(12(7− x)− 4(24))
+ (−4)(12(16)− (7− x)(24))

= 3 + 5x+ x2 − x3

= −(x− 3)(x+ 1)2

�

The characteristic polynomial is our main computational tool for finding eigenvalues, and will
sometimes be used to aid us in determining the properties of eigenvalues.

Theorem EMRCP
Eigenvalues of a Matrix are Roots of Characteristic Polynomials
Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if pA (λ) = 0. �

Proof Suppose A has size n.

λ is an eigenvalue of A
⇐⇒ there exists x 6= 0 so that Ax = λx Definition EEM [389]
⇐⇒ there exists x 6= 0 so that Ax− λx = 0

⇐⇒ there exists x 6= 0 so that Ax− λInx = 0 Theorem MMIM [197]
⇐⇒ there exists x 6= 0 so that (A− λIn)x = 0 Theorem MMDAA [197]
⇐⇒ A− λIn is singular Definition NM [67]
⇐⇒ det (A− λIn) = 0 Theorem SMZD [381]
⇐⇒ pA (λ) = 0 Definition CP [396]

�

Example EMS3
Eigenvalues of a matrix, size 3
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In Example CPMS3 [396] we found the characteristic polynomial of

F =

−13 −8 −4
12 7 4
24 16 7


to be pF (x) = −(x − 3)(x + 1)2. Factored, we can find all of its roots easily, they are x = 3 and
x = −1. By Theorem EMRCP [396], λ = 3 and λ = −1 are both eigenvalues of F , and these are
the only eigenvalues of F . We’ve found them all. �

Let us now turn our attention to the computation of eigenvectors.

Definition EM
Eigenspace of a Matrix
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for λ,
EA (λ), is the set of all the eigenvectors of A for λ, together with the inclusion of the zero vector.
4

Example SEE [389] hinted that the set of eigenvectors for a single eigenvalue might have some
closure properties, and with the addition of the non-eigenvector, 0, we indeed get a whole subspace.

Theorem EMS
Eigenspace for a Matrix is a Subspace
Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace EA (λ) is
a subspace of the vector space Cn. �

Proof We will check the three conditions of Theorem TSS [288]. First, Definition EM [397]
explicitly includes the zero vector in EA (λ), so the set is non-empty.

Suppose that x, y ∈ EA (λ), that is, x and y are two eigenvectors of A for λ. Then

A (x + y) = Ax +Ay Theorem MMDAA [197]
= λx + λy x, y eigenvectors of A
= λ (x + y) Property DVAC [84]

So either x + y = 0, or x + y is an eigenvector of A for λ (Definition EEM [389]). So, in either
event, x + y ∈ EA (λ), and we have additive closure.

Suppose that α ∈ C, and that x ∈ EA (λ), that is, x is an eigenvector of A for λ. Then

A (αx) = α (Ax) Theorem MMSMM [198]
= αλx x an eigenvector of A
= λ (αx) Property SMAC [84]

So either αx = 0, or αx is an eigenvector of A for λ (Definition EEM [389]). So, in either event,
αx ∈ EA (λ), and we have scalar closure.

With the three conditions of Theorem TSS [288] met, we know EA (λ) is a subspace. �

Theorem EMS [397] tells us that an eigenspace is a subspace (and hence a vector space in its
own right). Our next theorem tells us how to quickly construct this subspace.

Theorem EMNS
Eigenspace of a Matrix is a Null Space
Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

EA (λ) = N (A− λIn)

�

Proof The conclusion of this theorem is an equality of sets, so normally we would follow the
advice of Definition SE [666]. However, in this case we can construct a sequence of equivalences
which will together provide the two subset inclusions we need. First, notice that 0 ∈ EA (λ) by
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Definition EM [397] and 0 ∈ N (A− λIn) by Theorem HSC [57]. Now consider any nonzero vector
x ∈ Cn,

x ∈ EA (λ) ⇐⇒ Ax = λx Definition EM [397]
⇐⇒ Ax− λx = 0

⇐⇒ Ax− λInx = 0 Theorem MMIM [197]
⇐⇒ (A− λIn) x = 0 Theorem MMDAA [197]
⇐⇒ x ∈ N (A− λIn) Definition NSM [59]

�

You might notice the close parallels (and differences) between the proofs of Theorem EMRCP
[396] and Theorem EMNS [397]. Since Theorem EMNS [397] describes the set of all the eigenvectors
of A as a null space we can use techniques such as Theorem BNS [140] to provide concise descriptions
of eigenspaces. Theorem EMNS [397] also provides a trivial proof for Theorem EMS [397].

Example ESMS3
Eigenspaces of a matrix, size 3
Example CPMS3 [396] and Example EMS3 [396] describe the characteristic polynomial and eigen-
values of the 3× 3 matrix

F =

−13 −8 −4
12 7 4
24 16 7


We will now take the each eigenvalue in turn and compute its eigenspace. To do this, we row-reduce
the matrix F −λI3 in order to determine solutions to the homogeneous system LS(F − λI3, 0) and
then express the eigenspace as the null space of F − λI3 (Theorem EMNS [397]). Theorem BNS
[140] then tells us how to write the null space as the span of a basis.

λ = 3 F − 3I3 =

−16 −8 −4
12 4 4
24 16 4

 RREF−−−−→

 1 0 1
2

0 1 −1
2

0 0 0


EF (3) = N (F − 3I3) =

〈
−1

2
1
2
1


〉

=

〈
−1

1
2


〉

λ = −1 F + 1I3 =

−12 −8 −4
12 8 4
24 16 8

 RREF−−−−→

 1 2
3

1
3

0 0 0
0 0 0


EF (−1) = N (F + 1I3) =

〈
−2

3
1
0

 ,
−1

3
0
1


〉

=

〈
−2

3
0

 ,
−1

0
3


〉

Eigenspaces in hand, we can easily compute eigenvectors by forming nontrivial linear combinations
of the basis vectors describing each eigenspace. In particular, notice that we can “pretty up” our
basis vectors by using scalar multiples to clear out fractions. �

Subsection ECEE
Examples of Computing Eigenvalues and Eigenvectors

No theorems in this section, just a selection of examples meant to illustrate the range of possibilities
for the eigenvalues and eigenvectors of a matrix. These examples can all be done by hand, though
the computation of the characteristic polynomial would be very time-consuming and error-prone.
It can also be difficult to factor an arbitrary polynomial, though if we were to suggest that most
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of our eigenvalues are going to be integers, then it can be easier to hunt for roots. These examples
are meant to look similar to a concatenation of Example CPMS3 [396], Example EMS3 [396] and
Example ESMS3 [398]. First, we will sneak in a pair of definitions so we can illustrate them
throughout this sequence of examples.

Definition AME
Algebraic Multiplicity of an Eigenvalue
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity
of λ, αA (λ), is the highest power of (x− λ) that divides the characteristic polynomial, pA (x). 4

Since an eigenvalue λ is a root of the characteristic polynomial, there is always a factor of
(x−λ), and the algebraic multiplicity is just the power of this factor in a factorization of pA (x). So
in particular, αA (λ) ≥ 1. Compare the definition of algebraic multiplicity with the next definition.

Definition GME
Geometric Multiplicity of an Eigenvalue
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multiplicity
of λ, γA (λ), is the dimension of the eigenspace EA (λ). 4

Since every eigenvalue must have at least one eigenvector, the associated eigenspace cannot be
trivial, and so γA (λ) ≥ 1.

Example EMMS4
Eigenvalue multiplicities, matrix of size 4
Consider the matrix

B =


−2 1 −2 −4
12 1 4 9
6 5 −2 −4
3 −4 5 10


then

pB (x) = 8− 20x+ 18x2 − 7x3 + x4 = (x− 1)(x− 2)3

So the eigenvalues are λ = 1, 2 with algebraic multiplicities αB (1) = 1 and αB (2) = 3.
Computing eigenvectors,

λ = 1 B − 1I4 =


−3 1 −2 −4
12 0 4 9
6 5 −3 −4
3 −4 5 9

 RREF−−−−→


1 0 1

3 0
0 1 −1 0
0 0 0 1
0 0 0 0



EB (1) = N (B − 1I4) =

〈

−1

3
1
1
0



〉

=

〈

−1
3
3
0



〉

λ = 2 B − 2I4 =


−4 1 −2 −4
12 −1 4 9
6 5 −4 −4
3 −4 5 8

 RREF−−−−→


1 0 0 1/2
0 1 0 −1
0 0 1 1/2
0 0 0 0



EB (2) = N (B − 2I4) =

〈

−1

2
1
−1

2
1



〉

=

〈

−1
2
−1
2



〉

So each eigenspace has dimension 1 and so γB (1) = 1 and γB (2) = 1. This example is of interest
because of the discrepancy between the two multiplicities for λ = 2. In many of our examples the
algebraic and geometric multiplicities will be equal for all of the eigenvalues (as it was for λ = 1 in
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this example), so keep this example in mind. We will have some explanations for this phenomenon
later (see Example NDMS4 [432]). �

Example ESMS4
Eigenvalues, symmetric matrix of size 4
Consider the matrix

C =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


then

pC (x) = −3 + 4x+ 2x2 − 4x3 + x4 = (x− 3)(x− 1)2(x+ 1)

So the eigenvalues are λ = 3, 1, −1 with algebraic multiplicities αC (3) = 1, αC (1) = 2 and
αC (−1) = 1.

Computing eigenvectors,

λ = 3 C − 3I4 =


−2 0 1 1
0 −2 1 1
1 1 −2 0
1 1 0 −2

 RREF−−−−→


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0



EC (3) = N (C − 3I4) =

〈


1
1
1
1



〉

λ = 1 C − 1I4 =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 RREF−−−−→


1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0



EC (1) = N (C − 1I4) =

〈

−1
1
0
0

 ,


0
0
−1
1



〉

λ = −1 C + 1I4 =


2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2

 RREF−−−−→


1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0



EC (−1) = N (C + 1I4) =

〈

−1
−1
1
1



〉

So the eigenspace dimensions yield geometric multiplicities γC (3) = 1, γC (1) = 2 and γC (−1) = 1,
the same as for the algebraic multiplicities. This example is of interest because A is a symmetric
matrix, and will be the subject of Theorem HMRE [419]. �

Example HMEM5
High multiplicity eigenvalues, matrix of size 5
Consider the matrix

E =


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8

7 4 3 1 −3


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then
pE (x) = −16 + 16x+ 8x2 − 16x3 + 7x4 − x5 = −(x− 2)4(x+ 1)

So the eigenvalues are λ = 2, −1 with algebraic multiplicities αE (2) = 4 and αE (−1) = 1.
Computing eigenvectors,

λ = 2 E − 2I5 =


27 14 2 6 −9
−47 −24 −1 −11 13
19 10 3 4 −8
−19 −10 −3 −4 8

7 4 3 1 −5

 RREF−−−−→


1 0 0 1 0
0 1 0 −3

2 −1
2

0 0 1 0 −1
0 0 0 0 0
0 0 0 0 0



EE (2) = N (E − 2I5) =

〈


−1

3
2
0
1
0

 ,


0
1
2
1
0
1



〉

=

〈


−2
3
0
2
0

 ,


0
1
2
0
2



〉

λ = −1 E + 1I5 =


30 14 2 6 −9
−47 −21 −1 −11 13
19 10 6 4 −8
−19 −10 −3 −1 8

7 4 3 1 −2

 RREF−−−−→


1 0 0 2 0
0 1 0 −4 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0



EE (−1) = N (E + 1I5) =

〈


−2
4
−1
1
0



〉

So the eigenspace dimensions yield geometric multiplicities γE (2) = 2 and γE (−1) = 1. This
example is of interest because λ = 2 has such a large algebraic multiplicity, which is also not equal
to its geometric multiplicity. �

Example CEMS6
Complex eigenvalues, matrix of size 6
Consider the matrix

F =



−59 −34 41 12 25 30
1 7 −46 −36 −11 −29
−233 −119 58 −35 75 54
157 81 −43 21 −51 −39
−91 −48 32 −5 32 26
209 107 −55 28 −69 −50


then

pF (x) = −50 + 55x+ 13x2 − 50x3 + 32x4 − 9x5 + x6

= (x− 2)(x+ 1)(x2 − 4x+ 5)2

= (x− 2)(x+ 1)((x− (2 + i))(x− (2− i)))2

= (x− 2)(x+ 1)(x− (2 + i))2(x− (2− i))2

So the eigenvalues are λ = 2, −1, 2 + i, 2− i with algebraic multiplicities αF (2) = 1, αF (−1) = 1,
αF (2 + i) = 2 and αF (2− i) = 2.

Computing eigenvectors,

λ = 2
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F − 2I6 =



−61 −34 41 12 25 30
1 5 −46 −36 −11 −29
−233 −119 56 −35 75 54
157 81 −43 19 −51 −39
−91 −48 32 −5 30 26
209 107 −55 28 −69 −52


RREF−−−−→



1 0 0 0 0 1
5

0 1 0 0 0 0
0 0 1 0 0 3

5

0 0 0 1 0 −1
5

0 0 0 0 1 4
5

0 0 0 0 0 0



EF (2) = N (F − 2I6) =

〈




−1
5

0
−3

5
1
5
−4

5
1




〉

=

〈




−1
0
−3
1
−4
5




〉

λ = −1

F + 1I6 =



−58 −34 41 12 25 30
1 8 −46 −36 −11 −29
−233 −119 59 −35 75 54
157 81 −43 22 −51 −39
−91 −48 32 −5 33 26
209 107 −55 28 −69 −49


RREF−−−−→



1 0 0 0 0 1
2

0 1 0 0 0 −3
2

0 0 1 0 0 1
2

0 0 0 1 0 0
0 0 0 0 1 −1

2
0 0 0 0 0 0



EF (−1) = N (F + I6) =

〈




−1
2

3
2
−1

2
0
1
2
1




〉

=

〈




−1
3
−1
0
1
2




〉

λ = 2 + i

F − (2 + i)I6 =



−61− i −34 41 12 25 30
1 5− i −46 −36 −11 −29
−233 −119 56− i −35 75 54
157 81 −43 19− i −51 −39
−91 −48 32 −5 30− i 26
209 107 −55 28 −69 −52− i



RREF−−−−→



1 0 0 0 0 1
5(7 + i)

0 1 0 0 0 1
5(−9− 2i)

0 0 1 0 0 1
0 0 0 1 0 −1
0 0 0 0 1 1
0 0 0 0 0 0



EF (2 + i) = N (F − (2 + i)I6) =

〈




−1
5(7 + i)

1
5(9 + 2i)
−1
1
−1
1




〉

=

〈




−7− i
9 + 2i
−5
5
−5
5




〉
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λ = 2− i

F − (2− i)I6 =



−61 + i −34 41 12 25 30
1 5 + i −46 −36 −11 −29
−233 −119 56 + i −35 75 54
157 81 −43 19 + i −51 −39
−91 −48 32 −5 30 + i 26
209 107 −55 28 −69 −52 + i



RREF−−−−→



1 0 0 0 0 1
5(7− i)

0 1 0 0 0 1
5(−9 + 2i)

0 0 1 0 0 1
0 0 0 1 0 −1
0 0 0 0 1 1
0 0 0 0 0 0



EF (2− i) = N (F − (2− i)I6) =

〈




1
5(−7 + i)
1
5(9− 2i)
−1
1
−1
1




〉

=

〈




−7 + i
9− 2i
−5
5
−5
5




〉

So the eigenspace dimensions yield geometric multiplicities γF (2) = 1, γF (−1) = 1, γF (2 + i) = 1
and γF (2− i) = 1. This example demonstrates some of the possibilities for the appearance of
complex eigenvalues, even when all the entries of the matrix are real. Notice how all the numbers
in the analysis of λ = 2− i are conjugates of the corresponding number in the analysis of λ = 2 + i.
This is the content of the upcoming Theorem ERMCP [415]. �

Example DEMS5
Distinct eigenvalues, matrix of size 5
Consider the matrix

H =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10


then

pH (x) = −6x+ x2 + 7x3 − x4 − x5 = x(x− 2)(x− 1)(x+ 1)(x+ 3)

So the eigenvalues are λ = 2, 1, 0, −1, −3 with algebraic multiplicities αH (2) = 1, αH (1) = 1,
αH (0) = 1, αH (−1) = 1 and αH (−3) = 1.

Computing eigenvectors,

λ = 2 H − 2I5 =


13 18 −8 6 −5
5 1 1 −1 −3
0 −4 3 −4 −2
−43 −46 17 −16 15
26 30 −12 8 −12

 RREF−−−−→


1 0 0 0 −1
0 1 0 0 1
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0



EH (2) = N (H − 2I5) =

〈


1
−1
−2
−1
1



〉
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λ = 1 H − 1I5 =


14 18 −8 6 −5
5 2 1 −1 −3
0 −4 4 −4 −2
−43 −46 17 −15 15
26 30 −12 8 −11

 RREF−−−−→


1 0 0 0 −1

2

0 1 0 0 0
0 0 1 0 1

2

0 0 0 1 1
0 0 0 0 0



EH (1) = N (H − 1I5) =

〈


1
2
0
−1

2
−1
1



〉

=

〈


1
0
−1
−2
2



〉

λ = 0 H − 0I5 =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10

 RREF−−−−→


1 0 0 0 1
0 1 0 0 −2
0 0 1 0 −2
0 0 0 1 0
0 0 0 0 0



EH (0) = N (H − 0I5) =

〈


−1
2
2
0
1



〉

λ = −1 H + 1I5 =


16 18 −8 6 −5
5 4 1 −1 −3
0 −4 6 −4 −2
−43 −46 17 −13 15
26 30 −12 8 −9

 RREF−−−−→


1 0 0 0 −1/2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1/2
0 0 0 0 0



EH (−1) = N (H + 1I5) =

〈


1
2
0
0
−1

2
1



〉

=

〈


1
0
0
−1
2



〉

λ = −3 H + 3I5 =


18 18 −8 6 −5
5 6 1 −1 −3
0 −4 8 −4 −2
−43 −46 17 −11 15
26 30 −12 8 −7

 RREF−−−−→


1 0 0 0 −1
0 1 0 0 1

2

0 0 1 0 1
0 0 0 1 2
0 0 0 0 0



EH (−3) = N (H + 3I5) =

〈


1
−1

2
−1
−2
1



〉

=

〈


−2
1
2
4
−2



〉

So the eigenspace dimensions yield geometric multiplicities γH (2) = 1, γH (1) = 1, γH (0) = 1,
γH (−1) = 1 and γH (−3) = 1, identical to the algebraic multiplicities. This example is of interest
for two reasons. First, λ = 0 is an eigenvalue, illustrating the upcoming Theorem SMZE [412].
Second, all the eigenvalues are distinct, yielding algebraic and geometric multiplicities of 1 for each
eigenvalue, illustrating Theorem DED [433]. �
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Subsection READ
Reading Questions

Suppose A is the 2× 2 matrix

A =
[
−5 8
−4 7

]
1. Find the eigenvalues of A.

2. Find the eigenspaces of A.

3. For the polynomial p(x) = 3x2 − x+ 2, compute p(A).
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Subsection EXC
Exercises

C19 Find the eigenvalues, eigenspaces, algebraic multiplicities and geometric multiplicities for
the matrix below. It is possible to do all these computations by hand, and it would be instructive
to do so.

C =
[
−1 2
−6 6

]
Contributed by Robert Beezer Solution [407]

C20 Find the eigenvalues, eigenspaces, algebraic multiplicities and geometric multiplicities for
the matrix below. It is possible to do all these computations by hand, and it would be instructive
to do so.

B =
[
−12 30
−5 13

]
Contributed by Robert Beezer Solution [407]

C21 The matrix A below has λ = 2 as an eigenvalue. Find the geometric multiplicity of λ = 2
using your calculator only for row-reducing matrices.

A =


18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4


Contributed by Robert Beezer Solution [408]

C22 Without using a calculator, find the eigenvalues of the matrix B.

B =
[
2 −1
1 1

]

Contributed by Robert Beezer Solution [408]

M60 Repeat Example CAEHW [394] by choosing x =


0
8
2
1
2

 and then arrive at an eigenvalue and

eigenvector of the matrix A. The hard way.
Contributed by Robert Beezer Solution [408]

T10 A matrix A is idempotent if A2 = A. Show that the only possible eigenvalues of an idem-
potent matrix are λ = 0 and λ = 1. Then give an example of a matrix that is idempotent and has
both of these two values as eigenvalues.
Contributed by Robert Beezer Solution [409]

T20 Suppose that λ and ρ are two different eigenvalues of the square matrix A. Prove that the
intersection of the eigenspaces for these two eigenvalues is trivial. That is, EA (λ) ∩ EA (ρ) = {0}.
Contributed by Robert Beezer Solution [409]
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Subsection SOL
Solutions

C19 Contributed by Robert Beezer Statement [406]
First compute the characteristic polynomial,

pC (x) = det (C − xI2) Definition CP [396]

=
∣∣∣∣−1− x 2
−6 6− x

∣∣∣∣
= (−1− x)(6− x)− (2)(−6)

= x2 − 5x+ 6
= (x− 3)(x− 2)

So the eigenvalues of C are the solutions to pC (x) = 0, namely, λ = 2 and λ = 3.
To obtain the eigenspaces, construct the appropriate singular matrices and find expressions for

the null spaces of these matrices.

λ = 2

C − (2)I2 =
[
−3 2
−6 4

]
RREF−−−−→

[
1 −2

3
0 0

]
EC (2) = N (C − (2)I2) =

〈{[
2
3
1

]}〉
=
〈{[

2
3

]}〉

λ = 3

C − (3)I2 =
[
−4 2
−6 3

]
RREF−−−−→

[
1 −1

2
0 0

]
EC (3) = N (C − (3)I2) =

〈{[
1
2
1

]}〉
=
〈{[

1
2

]}〉

C20 Contributed by Robert Beezer Statement [406]
The characteristic polynomial of B is

pB (x) = det (B − xI2) Definition CP [396]

=
∣∣∣∣−12− x 30
−5 13− x

∣∣∣∣
= (−12− x)(13− x)− (30)(−5) Theorem DMST [368]

= x2 − x− 6
= (x− 3)(x+ 2)

From this we find eigenvalues λ = 3, −2 with algebraic multiplicities αB (3) = 1 and αB (−2) = 1.
For eigenvectors and geometric multiplicities, we study the null spaces of B − λI2 (Theorem

EMNS [397]).

λ = 3 B − 3I2 =
[
−15 30
−5 10

]
RREF−−−−→

[
1 2
0 0

]
EB (3) = N (B − 3I2) =

〈{[
2
1

]}〉

λ = −2 B + 2I2 =
[
−10 30
−5 15

]
RREF−−−−→

[
1 −3
0 0

]
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EB (−2) = N (B + 2I2) =
〈{[

3
1

]}〉
Each eigenspace has dimension one, so we have geometric multiplicities γB (3) = 1 and γB (−2) = 1.

C21 Contributed by Robert Beezer Statement [406]
If λ = 2 is an eigenvalue of A, the matrix A − 2I4 will be singular, and its null space will be the
eigenspace of A. So we form this matrix and row-reduce,

A− 2I4 =


16 −15 33 −15
−4 6 −6 6
−9 9 −18 9
5 −6 9 −6

 RREF−−−−→


1 0 3 0
0 1 1 1
0 0 0 0
0 0 0 0


With two free variables, we know a basis of the null space (Theorem BNS [140]) will contain two
vectors. Thus the null space of A − 2I4 has dimension two, and so the eigenspace of λ = 2 has
dimension two also (Theorem EMNS [397]), γA (2) = 2.

C22 Contributed by Robert Beezer Statement [406]
The characteristic polynomial (Definition CP [396]) is

pB (x) = det (B − xI2)

=
∣∣∣∣2− x −1

1 1− x

∣∣∣∣
= (2− x)(1− x)− (1)(−1) Theorem DMST [368]

= x2 − 3x+ 3

=
(
x− 3 + 3i

2

)(
x− 3− 3i

2

)
where the factorization can be obtained by finding the roots of pB (x) = 0 with the quadratic
equation. By Theorem EMRCP [396] the eigenvalues of B are the complex numbers λ1 = 3+3i

2 and
λ2 = 3−3i

2 .

M60 Contributed by Robert Beezer Statement [406]
Form the matrix C whose columns are x, Ax, A2x, A3x, A4x, A5x and row-reduce the matrix,

0 6 32 102 320 966
8 10 24 58 168 490
2 12 50 156 482 1452
1 −5 −47 −149 −479 −1445
2 12 50 156 482 1452

 RREF−−−−→


1 0 0 −3 −9 −30
0 1 0 1 0 1
0 0 1 3 10 30
0 0 0 0 0 0
0 0 0 0 0 0


The simplest possible relation of linear dependence on the columns of C comes from using scalars
α4 = 1 and α5 = α6 = 0 for the free variables in a solution to LS(C, 0). The remainder of this
solution is α1 = 3, α2 = −1, α3 = −3. This solution gives rise to the polynomial

p(x) = 3− x− 3x2 + x3 = (x− 3)(x− 1)(x+ 1)

which then has the property that p(A)x = 0.
No matter how you choose to order the factors of p(x), the value of k (in the language of

Theorem EMHE [392] and Example CAEHW [394]) is k = 2. For each of the three possibilities,
we list the resulting eigenvector and the associated eigenvalue:

(C − 3I5)(C − I5)z =


8
8
8
−24

8

 λ = −1
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(C − 3I5)(C + I5)z =


20
−20
20
−40
20

 λ = 1

(C + I5)(C − I5)z =


32
16
48
−48
48

 λ = 3

Note that each of these eigenvectors can be simplified by an appropriate scalar multiple, but we
have shown here the actual vector obtained by the product specified in the theorem.

T10 Contributed by Robert Beezer Statement [406]
Suppopse that λ is an eigenvalue of A. Then there is an eigenvector x, such that Ax = λx. We
have,

λx = Ax x eigenvector of A

= A2x A is idempotent
= A(Ax)
= A(λx) x eigenvector of A
= λ(Ax) Theorem MMSMM [198]
= λ(λx) x eigenvector of A

= λ2x

From this we get

0 = λ2x− λx

= (λ2 − λ)x Property DSAC [84]

Since x is an eigenvector, it is nonzero, and Theorem SMEZV [281] leaves us with the conclusion
that λ2− λ = 0, and the solutions to this quadratic polynomial equation in λ are λ = 0 and λ = 1.

The matrix [
1 0
0 0

]
is idempotent (check this!) and since it is a diagonal matrix, its eigenvalues are the diagonal entries,
λ = 0 and λ = 1, so each of these possible values for an eigenvalue of an idempotent matrix actually
occurs as an eigenvalue of some idempotent matrix.

T20 Contributed by Robert Beezer Statement [406]
This problem asks you to prove that two sets are equal, so use Definition SE [666].

First show that {0} ⊆ EA (λ) ∩ EA (ρ). Choose x ∈ {0}. Then x = 0. Eigenspaces are
subspaces (Theorem EMS [397]), so both EA (λ) and EA (ρ) contain the zero vector, and therefore
x ∈ EA (λ) ∩ EA (ρ) (Definition SI [667]).

To show that EA (λ)∩EA (ρ) ⊆ {0}, suppose that x ∈ EA (λ)∩EA (ρ). Then x is an eigenvector
of A for both λ and ρ (Definition SI [667]) and so

x = 1x Property O [274]

=
1

λ− ρ
(λ− ρ) x λ 6= ρ, λ− ρ 6= 0

=
1

λ− ρ
(λx− ρx) Property DSAC [84]
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=
1

λ− ρ
(Ax−Ax) x eigenvector of A for λ, ρ

=
1

λ− ρ
(0)

= 0 Theorem ZVSM [280]

So x = 0, and trivially, x ∈ {0}.
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Section PEE
Properties of Eigenvalues and Eigenvectors

The previous section introduced eigenvalues and eigenvectors, and concentrated on their existence
and determination. This section will be more about theorems, and the various properties eigenvalues
and eigenvectors enjoy. Like a good 4 × 100 meter relay, we will lead-off with one of our better
theorems and save the very best for the anchor leg.

Theorem EDELI
Eigenvectors with Distinct Eigenvalues are Linearly Independent
Suppose that A is an n×n square matrix and S = {x1, x2, x3, . . . , xp} is a set of eigenvectors with
eigenvalues λ1, λ2, λ3, . . . , λp such that λi 6= λj whenever i 6= j. Then S is a linearly independent
set. �

Proof If p = 1, then the set S = {x1} is linearly independent since eigenvectors are nonzero
(Definition EEM [389]), so assume for the remainder that p ≥ 2.

We will prove this result by contradiction (Technique CD [673]). Suppose to the contrary that
S is a linearly dependent set. Define Si = {x1, x2, x3, . . . , xi} and let k be an integer such that
Sk−1 = {x1, x2, x3, . . . , xk−1} is linearly independent and Sk = {x1, x2, x3, . . . , xk} is linearly
dependent. We have to ask if there is even such an integer k? First, since eigenvectors are nonzero,
the set {x1} is linearly independent. Since we are assuming that S = Sp is linearly dependent,
there must be an integer k, 2 ≤ k ≤ p, where the sets Si transistion from linear independence to
linear dependence (and stay that way). In other words, xk is the vector with the smallest index
that is a linear combination of just vectors with smaller indices.

Since {x1, x2, x3, . . . , xk} is linearly dependent there are scalars, a1, a2, a3, . . . , ak, some non-
zero (Definition LI [303]), so that

0 = a1x1 + a2x2 + a3x3 + · · ·+ akxk

Then,

0 = (A− λkIn) 0 Theorem ZVSM [280]
= (A− λkIn) (a1x1 + a2x2 + a3x3 + · · ·+ akxk) Definition RLD [303]
= (A− λkIn) a1x1 + (A− λkIn) a2x2 + · · ·+ (A− λkIn) akxk Theorem MMDAA [197]
= a1 (A− λkIn) x1 + a2 (A− λkIn) x2 + · · ·+ ak (A− λkIn) xk Theorem MMSMM [198]
= a1 (Ax1 − λkInx1) + a2 (Ax2 − λkInx2) + · · ·+ ak (Axk − λkInxk) Theorem MMDAA [197]
= a1 (Ax1 − λkx1) + a2 (Ax2 − λkx2) + · · ·+ ak (Axk − λkxk) Theorem MMIM [197]
= a1 (λ1x1 − λkx1) + a2 (λ2x2 − λkx2) + · · ·+ ak (λkxk − λkxk) Definition EEM [389]
= a1 (λ1 − λk) x1 + a2 (λ2 − λk) x2 + · · ·+ ak (λk − λk) xk Theorem MMDAA [197]
= a1 (λ1 − λk) x1 + a2 (λ2 − λk) x2 + · · ·+ ak (0) xk Property AICN [663]
= a1 (λ1 − λk) x1 + a2 (λ2 − λk) x2 + · · ·+ ak−1 (λk−1 − λk) xk−1 + 0 Theorem ZSSM [280]
= a1 (λ1 − λk) x1 + a2 (λ2 − λk) x2 + · · ·+ ak−1 (λk−1 − λk) xk−1 Property Z [273]

This is a relation of linear dependence on the linearly independent set {x1, x2, x3, . . . , xk−1}, so
the scalars must all be zero. That is, ai (λi − λk) = 0 for 1 ≤ i ≤ k − 1. However, we have
the hypothesis that the eigenvalues are distinct, so λi 6= λk for 1 ≤ i ≤ k − 1. Thus ai = 0 for
1 ≤ i ≤ k − 1.

This reduces the original relation of linear dependence on {x1, x2, x3, . . . , xk} to the simpler
equation akxk = 0. By Theorem SMEZV [281] we conclude that ak = 0 or xk = 0. Eigenvectors are
never the zero vector (Definition EEM [389]), so ak = 0. So all of the scalars ai, 1 ≤ i ≤ k are zero,
contradicting their introduction as the scalars creating a nontrivial relation of linear dependence on
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the set {x1, x2, x3, . . . , xk}. With a contradiction in hand, we conclude that S must be linearly
independent. �

There is a simple connection between the eigenvalues of a matrix and whether or not the matrix
is nonsingular.

Theorem SMZE
Singular Matrices have Zero Eigenvalues
Suppose A is a square matrix. Then A is singular if and only if λ = 0 is an eigenvalue of A. �

Proof We have the following equivalences:

A is singular ⇐⇒ there exists x 6= 0, Ax = 0 Definition NSM [59]
⇐⇒ there exists x 6= 0, Ax = 0x Theorem ZSSM [280]
⇐⇒ λ = 0 is an eigenvalue of A Definition EEM [389]

�

With an equivalence about singular matrices we can update our list of equivalences about
nonsingular matrices.

Theorem NME8
Nonsingular Matrix Equivalences, Round 8
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

�

Proof The equivalence of the first and last statements is the contrapositive of Theorem SMZE
[412], so we are able to improve on Theorem NME7 [382]. �

Certain changes to a matrix change its eigenvalues in a predictable way.

Theorem ESMM
Eigenvalues of a Scalar Multiple of a Matrix
Suppose A is a square matrix and λ is an eigenvalue of A. Then αλ is an eigenvalue of αA. �

Proof Let x 6= 0 be one eigenvector of A for λ. Then

(αA) x = α (Ax) Theorem MMSMM [198]
= α (λx) x eigenvector of A
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= (αλ) x Property SMAC [84]

So x 6= 0 is an eigenvector of αA for the eigenvalue αλ. �

Unfortunately, there are not parallel theorems about the sum or product of arbitrary matrices.
But we can prove a similar result for powers of a matrix.

Theorem EOMP
Eigenvalues Of Matrix Powers
Suppose A is a square matrix, λ is an eigenvalue of A, and s ≥ 0 is an integer. Then λs is an
eigenvalue of As. �

Proof Let x 6= 0 be one eigenvector of A for λ. Suppose A has size n. Then we proceed by
induction on s (Technique I [676]). First, for s = 0,

Asx = A0x

= Inx

= x Theorem MMIM [197]
= 1x Property OC [84]

= λ0x

= λsx

so λs is an eigenvalue of As in this special case. If we assume the theorem is true for s, then we
find

As+1x = AsAx

= As (λx) x eigenvector of A for λ
= λ (Asx) Theorem MMSMM [198]
= λ (λsx) Induction hypothesis
= (λλs) x Property SMAC [84]

= λs+1x

So x 6= 0 is an eigenvector of As+1 for λs+1, and induction tells us the theorem is true for all s ≥ 0.
�

While we cannot prove that the sum of two arbitrary matrices behaves in any reasonable way
with regard to eigenvalues, we can work with the sum of dissimilar powers of the same matrix. We
have already seen two connections between eigenvalues and polynomials, in the proof of Theorem
EMHE [392] and the characteristic polynomial (Definition CP [396]). Our next theorem strengthens
this connection.

Theorem EPM
Eigenvalues of the Polynomial of a Matrix
Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the variable
x. Then q(λ) is an eigenvalue of the matrix q(A). �

Proof Let x 6= 0 be one eigenvector of A for λ, and write q(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m.
Then

q(A)x =
(
a0A

0 + a1A
1 + a2A

2 + · · ·+ amA
m
)
x

= (a0A
0)x + (a1A

1)x + (a2A
2)x + · · ·+ (amAm)x Theorem MMDAA [197]

= a0(A0x) + a1(A1x) + a2(A2x) + · · ·+ am(Amx) Theorem MMSMM [198]

= a0(λ0x) + a1(λ1x) + a2(λ2x) + · · ·+ am(λmx) Theorem EOMP [413]

= (a0λ
0)x + (a1λ

1)x + (a2λ
2)x + · · ·+ (amλm)x Property SMAC [84]
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=
(
a0λ

0 + a1λ
1 + a2λ

2 + · · ·+ amλ
m
)
x Property DSAC [84]

= q(λ)x

So x 6= 0 is an eigenvector of q(A) for the eigenvalue q(λ). �

Example BDE
Building desired eigenvalues
In Example ESMS4 [400] the 4× 4 symmetric matrix

C =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


is shown to have the three eigenvalues λ = 3, 1, −1. Suppose we wanted a 4×4 matrix that has the
three eigenvalues λ = 4, 0, −2. We can employ Theorem EPM [413] by finding a polynomial that
converts 3 to 4, 1 to 0, and −1 to −2. Such a polynomial is called an interpolating polynomial,
and in this example we can use

r(x) =
1
4
x2 + x− 5

4
We will not discuss how to concoct this polynomial, but a text on numerical analysis should provide
the details or see Section CF [827]. For now, simply verify that r(3) = 4, r(1) = 0 and r(−1) = −2.

Now compute

r(C) =
1
4
C2 + C − 5

4
I4

=
1
4


3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

+


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

− 5
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=
1
2


1 1 3 3
1 1 3 3
3 3 1 1
3 3 1 1


Theorem EPM [413] tells us that if r(x) transforms the eigenvalues in the desired manner, then
r(C) will have the desired eigenvalues. You can check this by computing the eigenvalues of r(C)
directly. Furthermore, notice that the multiplicities are the same, and the eigenspaces of C and
r(C) are identical. �

Inverses and transposes also behave predictably with regard to their eigenvalues.

Theorem EIM
Eigenvalues of the Inverse of a Matrix
Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then 1

λ is an eigenvalue of
the matrix A−1. �

Proof Notice that since A is assumed nonsingular, A−1 exists by Theorem NI [223], but more
importantly, 1

λ does not involve division by zero since Theorem SMZE [412] prohibits this possibility.
Let x 6= 0 be one eigenvector of A for λ. Suppose A has size n. Then

A−1x = A−1(1x) Property OC [84]

= A−1(
1
λ
λx) Property MICN [663]

=
1
λ
A−1(λx) Theorem MMSMM [198]

=
1
λ
A−1(Ax) Definition EEM [389]
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=
1
λ

(A−1A)x Theorem MMA [198]

=
1
λ
Inx Definition MI [208]

=
1
λ

x Theorem MMIM [197]

So x 6= 0 is an eigenvector of A−1 for the eigenvalue 1
λ . �

The theorems above have a similar style to them, a style you should consider using when
confronted with a need to prove a theorem about eigenvalues and eigenvectors. So far we have
been able to reserve the characteristic polynomial for strictly computational purposes. However,
the next theorem, whose statement resembles the preceding theorems, has an easier proof if we
employ the characteristic polynomial and results about determinants.

Theorem ETM
Eigenvalues of the Transpose of a Matrix
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix
At. �

Proof Let x 6= 0 be one eigenvector of A for λ. Suppose A has size n. Then

pA (x) = det (A− xIn) Definition CP [396]

= det
(
(A− xIn)t

)
Theorem DT [370]

= det
(
At − (xIn)t

)
Theorem TMA [183]

= det
(
At − xItn

)
Theorem TMSM [183]

= det
(
At − xIn

)
Definition IM [68]

= pAt (x) Definition CP [396]

So A and At have the same characteristic polynomial, and by Theorem EMRCP [396], their eigen-
values are identical and have equal algebraic multiplicities. Notice that what we have proved here
is a bit stronger than the stated conclusion in the theorem. �

If a matrix has only real entries, then the computation of the characteristic polynomial (Def-
inition CP [396]) will result in a polynomial with coefficients that are real numbers. Complex
numbers could result as roots of this polynomial, but they are roots of quadratic factors with real
coefficients, and as such, come in conjugate pairs. The next theorem proves this, and a bit more,
without mentioning the characteristic polynomial.

Theorem ERMCP
Eigenvalues of Real Matrices come in Conjugate Pairs
Suppose A is a square matrix with real entries and x is an eigenvector of A for the eigenvalue λ.
Then x is an eigenvector of A for the eigenvalue λ. �

Proof

Ax = Ax A has real entries

= Ax Theorem MMCC [199]

= λx x eigenvector of A

= λx Theorem CRSM [163]

So x is an eigenvector of A for the eigenvalue λ. �

This phenomenon is amply illustrated in Example CEMS6 [401], where the four complex eigen-
values come in two pairs, and the two basis vectors of the eigenspaces are complex conjugates of
each other. Theorem ERMCP [415] can be a time-saver for computing eigenvalues and eigenvectors
of real matrices with complex eigenvalues, since the conjugate eigenvalue and eigenspace can be
inferred from the theorem rather than computed.
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Subsection ME
Multiplicities of Eigenvalues

A polynomial of degree n will have exactly n roots. From this fact about polynomial equations we
can say more about the algebraic multiplicities of eigenvalues.

Theorem DCP
Degree of the Characteristic Polynomial
Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, pA (x), has
degree n. �

Proof We will prove a more general result by induction (Technique I [676]). Then the theorem
will be true as a special case. We will carefully state this result as a proposition indexed by m,
m ≥ 1.

P (m): Suppose that A is an m × m matrix whose entries are complex numbers or linear
polynomials in the variable x of the form c−x, where c is a complex number. Suppose further that
there are exactly k entries that contain x and that no row or column contains more than one such
entry. Then, when k = m, det (A) is a polynomial in x of degree m, with leading coefficient ±1,
and when k < m, det (A) is a polynomial in x of degree k or less.

Base Case: Suppose A is a 1 × 1 matrix. Then its determinant is equal to the lone entry
(Definition DM [367]). When k = m = 1, the entry is of the form c−x, a polynomial in x of degree
m = 1 with leading coefficient −1. When k < m, then k = 0 and the entry is simply a complex
number, a polynomial of degree 0 ≤ k. So P (1) is true.

Induction Step: Assume P (m) is true, and that A is an (m+ 1)× (m+ 1) matrix with k entries
of the form c− x. There are two cases to consider.

Suppose k = m+ 1. Then every row and every column will contain an entry of the form c− x.
Suppose that for the first row, this entry is in column t. Compute the determinant of A by an
expansion about this first row (Definition DM [367]). The term associated with entry t of this row
will be of the form

(c− x)(−1)1+t det (A (1|t))

The submatrix A (1|t) is an m×m matrix with k = m terms of the form c− x, no more than one
per row or column. By the induction hypothesis, det (A (1|t)) will be a polynomial in x of degree m
with coefficient ±1. So this entire term is then a polynomial of degree m+1 with leading coefficient
±1.

The remaining terms (which constitute the sum that is the determinant of A) are products of
complex numbers from the first row with cofactors built from submatrices that lack the first row of
A and lack some column of A, other than column t. As such, these submatrices are m×m matrices
with k = m− 1 < m entries of the form c− x, no more than one per row or column. Applying the
induction hypothesis, we see that these terms are polynomials in x of degree m− 1 or less. Adding
the single term from the entry in column t with all these others, we see that det (A) is a polynomial
in x of degree m+ 1 and leading coefficient ±1.

The second case occurs when k < m+1. Now there is a row of A that does not contain an entry
of the form c− x. We consider the determinant of A by expanding about this row (Theorem DER
[369]), whose entries are all complex numbers. The cofactors employed are built from submatrices
that are m ×m matrices with either k or k − 1 entries of the form c − x, no more than one per
row or column. In either case, k ≤ m, and we can apply the induction hypothesis to see that the
determinants computed for the cofactors are all polynomials of degree k or less. Summing these
contributions to the determinant of A yields a polynomial in x of degree k or less, as desired.

Definition CP [396] tells us that the characteristic polynomial of an n× n matrix is the deter-
minant of a matrix having exactly n entries of the form c−x, no more than one per row or column.
As such we can apply P (n) to see that the characteristic polynomial has degree n. �

Theorem NEM
Number of Eigenvalues of a Matrix
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Suppose that A is a square matrix of size n with distinct eigenvalues λ1, λ2, λ3, . . . , λk. Then

k∑
i=1

αA (λi) = n

�

Proof By the definition of the algebraic multiplicity (Definition AME [399]), we can factor the
characteristic polynomial as

pA (x) = c(x− λ1)αA(λ1)(x− λ2)αA(λ2)(x− λ3)αA(λ3) · · · (x− λk)αA(λk)

where c is a nonzero constant. (We could prove that c = (−1)n, but we do not need that specificity
right now. See Exercise PEE.T30 [421]) The left-hand side is a polynomial of degree n by Theorem
DCP [416] and the right-hand side is a polynomial of degree

∑k
i=1 αA (λi). So the equality of the

polynomials’ degrees gives the equality
∑k

i=1 αA (λi) = n. �

Theorem ME
Multiplicities of an Eigenvalue
Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

1 ≤ γA (λ) ≤ αA (λ) ≤ n

�

Proof Since λ is an eigenvalue of A, there is an eigenvector of A for λ, x. Then x ∈ EA (λ), so
γA (λ) ≥ 1, since we can extend {x} into a basis of EA (λ) (Theorem ELIS [347]).

To show that γA (λ) ≤ αA (λ) is the most involved portion of this proof. To this end, let
g = γA (λ) and let x1, x2, x3, . . . , xg be a basis for the eigenspace of λ, EA (λ). Construct another
n− g vectors, y1, y2, y3, . . . , yn−g, so that

{x1, x2, x3, . . . , xg, y1, y2, y3, . . . , yn−g}

is a basis of Cn. This can be done by repeated applications of Theorem ELIS [347]. Finally, define
a matrix S by

S = [x1|x2|x3| . . . |xg|y1|y2|y3| . . . |yn−g] = [x1|x2|x3| . . . |xg|R]

where R is an n× (n− g) matrix whose columns are y1, y2, y3, . . . , yn−g. The columns of S are
linearly independent by design, so S is nonsingular (Theorem NMLIC [138]) and therefore invertible
(Theorem NI [223]). Then,

[e1|e2|e3| . . . |en] = In

= S−1S

= S−1[x1|x2|x3| . . . |xg|R]

= [S−1x1|S−1x2|S−1x3| . . . |S−1xg|S−1R]

So
S−1xi = ei 1 ≤ i ≤ g (∗)

Preparations in place, we compute the characteristic polynomial of A,

pA (x) = det (A− xIn) Definition CP [396]
= 1 det (A− xIn) Property OCN [663]
= det (In) det (A− xIn) Definition DM [367]

= det
(
S−1S

)
det (A− xIn) Definition MI [208]

= det
(
S−1

)
det (S) det (A− xIn) Theorem DRMM [383]
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= det
(
S−1

)
det (A− xIn) det (S) Property CMCN [662]

= det
(
S−1 (A− xIn)S

)
Theorem DRMM [383]

= det
(
S−1AS − S−1xInS

)
Theorem MMDAA [197]

= det
(
S−1AS − xS−1InS

)
Theorem MMSMM [198]

= det
(
S−1AS − xS−1S

)
Theorem MMIM [197]

= det
(
S−1AS − xIn

)
Definition MI [208]

= pS−1AS (x) Definition CP [396]

What can we learn then about the matrix S−1AS?

S−1AS = S−1A[x1|x2|x3| . . . |xg|R]

= S−1[Ax1|Ax2|Ax3| . . . |Axg|AR] Definition MM [194]

= S−1[λx1|λx2|λx3| . . . |λxg|AR] Definition EEM [389]

= [S−1λx1|S−1λx2|S−1λx3| . . . |S−1λxg|S−1AR] Definition MM [194]

= [λS−1x1|λS−1x2|λS−1x3| . . . |λS−1xg|S−1AR] Theorem MMSMM [198]

= [λe1|λe2|λe3| . . . |λeg|S−1AR] S−1S = In, ((∗) above)

Now imagine computing the characteristic polynomial of A by computing the characteristic poly-
nomial of S−1AS using the form just obtained. The first g columns of S−1AS are all zero, save
for a λ on the diagonal. So if we compute the determinant by expanding about the first column,
successively, we will get successive factors of (λ− x). More precisely, let T be the square matrix of
size n− g that is formed from the last n− g rows and last n− g columns of S−1AR. Then

pA (x) = pS−1AS (x) = (λ− x)gpT (x) .

This says that (x− λ) is a factor of the characteristic polynomial at least g times, so the algebraic
multiplicity of λ as an eigenvalue of A is greater than or equal to g (Definition AME [399]). In
other words,

γA (λ) = g ≤ αA (λ)

as desired.
Theorem NEM [416] says that the sum of the algebraic multiplicities for all the eigenvalues of A

is equal to n. Since the algebraic multiplicity is a positive quantity, no single algebraic multiplicity
can exceed n without the sum of all of the algebraic multiplicities doing the same. �

Theorem MNEM
Maximum Number of Eigenvalues of a Matrix
Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigenvalues.

�

Proof Suppose that A has k distinct eigenvalues, λ1, λ2, λ3, . . . , λk. Then

k =
k∑
i=1

1

≤
k∑
i=1

αA (λi) Theorem ME [417]

= n Theorem NEM [416]

�
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Subsection EHM
Eigenvalues of Hermitian Matrices

Recall that a matrix is Hermitian (or self-adjoint) if A = A∗ (Definition HM [201]). In the case
where A is a matrix whose entries are all real numbers, being Hermitian is identical to being
symmetric (Definition SYM [182]). Keep this in mind as you read the next two theorems. Their
hypotheses could be changed to “suppose A is a real symmetric matrix.”

Theorem HMRE
Hermitian Matrices have Real Eigenvalues
Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then λ ∈ R. �

Proof Let x 6= 0 be one eigenvector of A for the eigenvalue λ. Then by Theorem PIP [168] we
know 〈x, x〉 6= 0. So

λ =
1

〈x, x〉
λ 〈x, x〉 Property MICN [663]

=
1

〈x, x〉
〈λx, x〉 Theorem IPSM [165]

=
1

〈x, x〉
〈Ax, x〉 Definition EEM [389]

=
1

〈x, x〉
〈x, Ax〉 Theorem HMIP [202]

=
1

〈x, x〉
〈x, λx〉 Definition EEM [389]

=
1

〈x, x〉
λ 〈x, x〉 Theorem IPSM [165]

= λ Property MICN [663]

If a complex number is equal to its conjugate, then it has a complex part equal to zero, and therefore
is a real number. �

Notice the appealing symmetry to the justifications given for the steps of this proof. In the
center is the ability to pitch a Hermitian matrix from one side of the inner product to the other.

Look back and compare Example ESMS4 [400] and Example CEMS6 [401]. In Example CEMS6
[401] the matrix has only real entries, yet the characteristic polynomial has roots that are complex
numbers, and so the matrix has complex eigenvalues. However, in Example ESMS4 [400], the
matrix has only real entries, but is also symmetric, and hence Hermitian. So by Theorem HMRE
[419], we were guaranteed eigenvalues that are real numbers.

In many physical problems, a matrix of interest will be real and symmetric, or Hermitian. Then
if the eigenvalues are to represent physical quantities of interest, Theorem HMRE [419] guarantees
that these values will not be complex numbers.

The eigenvectors of a Hermitian matrix also enjoy a pleasing property that we will exploit later.

Theorem HMOE
Hermitian Matrices have Orthogonal Eigenvectors
Suppose that A is a Hermitian matrix and x and y are two eigenvectors of A for different eigenvalues.
Then x and y are orthogonal vectors. �

Proof Let x be an eigenvector of A for λ and let y be an eigenvector of A for a different eigenvalue
ρ. So we have λ− ρ 6= 0. Then

〈x, y〉 =
1

λ− ρ
(λ− ρ) 〈x, y〉 Property MICN [663]

=
1

λ− ρ
(λ 〈x, y〉 − ρ 〈x, y〉) Property MICN [663]
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=
1

λ− ρ
(〈λx, y〉 − 〈x, ρy〉) Theorem IPSM [165]

=
1

λ− ρ
(〈λx, y〉 − 〈x, ρy〉) Theorem HMRE [419]

=
1

λ− ρ
(〈Ax, y〉 − 〈x, Ay〉) Definition EEM [389]

=
1

λ− ρ
(〈Ax, y〉 − 〈Ax, y〉) Theorem HMIP [202]

=
1

λ− ρ
(0) Property AICN [663]

= 0

This equality says that x and y are orthogonal vectors (Definition OV [168]). �

Notice again how the key step in this proof is the fundamental property of a Hermitian matrix
(Theorem HMIP [202]) — the ability to swap A across the two arguments of the inner product.
We’ll build on these results and continue to see some more interesting properties in Section OD
[585].

Subsection READ
Reading Questions

1. How can you identify a nonsingular matrix just by looking at its eigenvalues?

2. How many different eigenvalues may a square matrix of size n have?

3. What is amazing about the eigenvalues of a Hermitian matrix and why is it amazing?
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Subsection EXC
Exercises

T10 Suppose that A is a square matrix. Prove that the constant term of the characteristic
polynomial of A is equal to the determinant of A.
Contributed by Robert Beezer Solution [422]

T20 Suppose that A is a square matrix. Prove that a single vector may not be an eigenvector of
A for two different eigenvalues.
Contributed by Robert Beezer Solution [422]

T22 Suppose that U is a unitary matrix with eigenvalue λ. Prove that λ had modulus 1, i.e.
|λ| = 1. This says that all of the eigenvalues of a unitary matrix lie on the unit circle of the complex
plane.
Contributed by Robert Beezer

T30 Theorem DCP [416] tells us that the characteristic polynomial of a square matrix of size n
has degree n. By suitably augmenting the proof of Theorem DCP [416] prove that the coefficient
of xn in the characteristic polynomial is (−1)n.
Contributed by Robert Beezer

T50 Theorem EIM [414] says that if λ is an eigenvalue of the nonsingular matrix A, then 1
λ is

an eigenvalue of A−1. Write an alternate proof of this theorem using the characteristic polynomial
and without making reference to an eigenvector of A for λ.
Contributed by Robert Beezer Solution [422]
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Subsection SOL
Solutions

T10 Contributed by Robert Beezer Statement [421]
Suppose that the characteristic polynomial of A is

pA (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

Then

a0 = a0 + a1(0) + a2(0)2 + · · ·+ an(0)n

= pA (0)
= det (A− 0In) Definition CP [396]
= det (A)

T20 Contributed by Robert Beezer Statement [421]
Suppose that the vector x 6= 0 is an eigenvector of A for the two eigenvalues λ and ρ, where λ 6= ρ.
Then λ− ρ 6= 0, and we also have

0 = Ax−Ax Property AIC [84]
= λx− ρx Definition EEM [389]
= (λ− ρ)x Property DSAC [84]

By Theorem SMEZV [281], either λ− ρ = 0 or x = 0, which are both contradictions.

T50 Contributed by Robert Beezer Statement [421]
Since λ is an eigenvalue of a nonsingular matrix, λ 6= 0 (Theorem SMZE [412]). A is invertible
(Theorem NI [223]), and so −λA is invertible (Theorem MISM [215]). Thus −λA is nonsingular
(Theorem NI [223]) and det (−λA) 6= 0 (Theorem SMZD [381]).

pA−1

(
1
λ

)
= det

(
A−1 − 1

λ
In

)
Definition CP [396]

= 1 det
(
A−1 − 1

λ
In

)
Property OCN [663]

=
1

det (−λA)
det (−λA) det

(
A−1 − 1

λ
In

)
Property MICN [663]

=
1

det (−λA)
det
(

(−λA)
(
A−1 − 1

λ
In

))
Theorem DRMM [383]

=
1

det (−λA)
det
(
−λAA−1 − (−λA)

1
λ
In

)
Theorem MMDAA [197]

=
1

det (−λA)
det
(
−λIn − (−λA)

1
λ
In

)
Definition MI [208]

=
1

det (−λA)
det
(
−λIn + λ

1
λ
AIn

)
Theorem MMSMM [198]

=
1

det (−λA)
det (−λIn + 1AIn) Property MICN [663]

=
1

det (−λA)
det (−λIn +AIn) Property OCN [663]

=
1

det (−λA)
det (−λIn +A) Theorem MMIM [197]

=
1

det (−λA)
det (A− λIn) Property ACM [181]
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=
1

det (−λA)
pA (λ) Definition CP [396]

=
1

det (−λA)
0 Theorem EMRCP [396]

= 0 Property ZCN [662]

So 1
λ is a root of the characteristic polynomial of A−1 and so is an eigenvalue of A−1. This proof

is due to Sara Bucht.
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Section SD
Similarity and Diagonalization

This section’s topic will perhaps seem out of place at first, but we will make the connection soon
with eigenvalues and eigenvectors. This is also our first look at one of the central ideas of Chapter
R [517].

Subsection SM
Similar Matrices

The notion of matrices being “similar” is a lot like saying two matrices are row-equivalent. Two
similar matrices are not equal, but they share many important properties. This section, and later
sections in Chapter R [517] will be devoted in part to discovering just what these common properties
are.

First, the main definition for this section.

Definition SIM
Similar Matrices
Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a
nonsingular matrix of size n, S, such that A = S−1BS. 4

We will say “A is similar to B via S” when we want to emphasize the role of S in the relationship
between A and B. Also, it doesn’t matter if we say A is similar to B, or B is similar to A. If
one statement is true then so is the other, as can be seen by using S−1 in place of S (see Theorem
SER [426] for the careful proof). Finally, we will refer to S−1BS as a similarity transformation
when we want to emphasize the way S changes B. OK, enough about language, let’s build a few
examples.

Example SMS5
Similar matrices of size 5
If you wondered if there are examples of similar matrices, then it won’t be hard to convince you
they exist. Define

B =


−4 1 −3 −2 2
1 2 −1 3 −2
−4 1 3 2 2
−3 4 −2 −1 −3
3 1 −1 1 −4

 S =


1 2 −1 1 1
0 1 −1 −2 −1
1 3 −1 1 1
−2 −3 3 1 −2
1 3 −1 2 1


Check that S is nonsingular and then compute

A = S−1BS

=


10 1 0 2 −5
−1 0 1 0 0
3 0 2 1 −3
0 0 −1 0 1
−4 −1 1 −1 1



−4 1 −3 −2 2
1 2 −1 3 −2
−4 1 3 2 2
−3 4 −2 −1 −3
3 1 −1 1 −4




1 2 −1 1 1
0 1 −1 −2 −1
1 3 −1 1 1
−2 −3 3 1 −2
1 3 −1 2 1



=


−10 −27 −29 −80 −25
−2 6 6 10 −2
−3 11 −9 −14 −9
−1 −13 0 −10 −1
11 35 6 49 19


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So by this construction, we know that A and B are similar. �

Let’s do that again.

Example SMS3
Similar matrices of size 3
Define

B =

−13 −8 −4
12 7 4
24 16 7

 S =

 1 1 2
−2 −1 −3
1 −2 0


Check that S is nonsingular and then compute

A = S−1BS

=

−6 −4 −1
−3 −2 −1
5 3 1

−13 −8 −4
12 7 4
24 16 7

 1 1 2
−2 −1 −3
1 −2 0


=

−1 0 0
0 3 0
0 0 −1


So by this construction, we know that A and B are similar. But before we move on, look at how
pleasing the form of A is. Not convinced? Then consider that several computations related to A are
especially easy. For example, in the spirit of Example DUTM [371], det (A) = (−1)(3)(−1) = 3.
Similarly, the characteristic polynomial is straightforward to compute by hand, pA (x) = (−1 −
x)(3 − x)(−1 − x) = −(x − 3)(x + 1)2 and since the result is already factored, the eigenvalues
are transparently λ = 3, −1. Finally, the eigenvectors of A are just the standard unit vectors
(Definition SUV [169]). �

Subsection PSM
Properties of Similar Matrices

Similar matrices share many properties and it is these theorems that justify the choice of the word
“similar.” First we will show that similarity is an equivalence relation. Equivalence relations are
important in the study of various algebras and can always be regarded as a kind of weak version
of equality. Sort of alike, but not quite equal. The notion of two matrices being row-equivalent is
an example of an equivalence relation we have been working with since the beginning of the course
(see Exercise RREF.T11 [38]). Row-equivalent matrices are not equal, but they are a lot alike. For
example, row-equivalent matrices have the same rank. Formally, an equivalence relation requires
three conditions hold: reflexive, symmetric and transitive. We will illustrate these as we prove that
similarity is an equivalence relation.

Theorem SER
Similarity is an Equivalence Relation
Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)

2. If A is similar to B, then B is similar to A. (Symmetric)

3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

�

Proof To see that A is similar to A, we need only demonstrate a nonsingular matrix that effects a
similarity transformation of A to A. In is nonsingular (since it row-reduces to the identity matrix,
Theorem NMRRI [68]), and

I−1
n AIn = InAIn = A
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If we assume that A is similar to B, then we know there is a nonsingular matrix S so that A =
S−1BS by Definition SIM [425]. By Theorem MIMI [215], S−1 is invertible, and by Theorem NI
[223] is therefore nonsingular. So

(S−1)−1A(S−1) = SAS−1 Theorem MIMI [215]

= SS−1BSS−1 Definition SIM [425]

=
(
SS−1

)
B
(
SS−1

)
Theorem MMA [198]

= InBIn Definition MI [208]
= B Theorem MMIM [197]

and we see that B is similar to A.
Assume that A is similar to B, and B is similar to C. This gives us the existence of two

nonsingular matrices, S and R, such that A = S−1BS and B = R−1CR, by Definition SIM [425].
(Notice how we have to assume S 6= R, as will usually be the case.) Since S and R are invertible,
so too RS is invertible by Theorem SS [214] and then nonsingular by Theorem NI [223]. Now

(RS)−1C(RS) = S−1R−1CRS Theorem SS [214]

= S−1
(
R−1CR

)
S Theorem MMA [198]

= S−1BS Definition SIM [425]
= A

so A is similar to C via the nonsingular matrix RS. �

Here’s another theorem that tells us exactly what sorts of properties similar matrices share.

Theorem SMEE
Similar Matrices have Equal Eigenvalues
Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal,
that is, pA (x) = pB (x). �

Proof Let n denote the size of A and B. Since A and B are similar, there exists a nonsingular
matrix S, such that A = S−1BS (Definition SIM [425]). Then

pA (x) = det (A− xIn) Definition CP [396]

= det
(
S−1BS − xIn

)
Definition SIM [425]

= det
(
S−1BS − xS−1InS

)
Theorem MMIM [197]

= det
(
S−1BS − S−1xInS

)
Theorem MMSMM [198]

= det
(
S−1 (B − xIn)S

)
Theorem MMDAA [197]

= det
(
S−1

)
det (B − xIn) det (S) Theorem DRMM [383]

= det
(
S−1

)
det (S) det (B − xIn) Property CMCN [662]

= det
(
S−1S

)
det (B − xIn) Theorem DRMM [383]

= det (In) det (B − xIn) Definition MI [208]
= 1 det (B − xIn) Definition DM [367]
= pB (x) Definition CP [396]

�

So similar matrices not only have the same set of eigenvalues, the algebraic multiplicities of
these eigenvalues will also be the same. However, be careful with this theorem. It is tempting to
think the converse is true, and argue that if two matrices have the same eigenvalues, then they are
similar. Not so, as the following example illustrates.

Example EENS
Equal eigenvalues, not similar
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Define

A =
[
1 1
0 1

]
B =

[
1 0
0 1

]
and check that

pA (x) = pB (x) = 1− 2x+ x2 = (x− 1)2

and so A and B have equal characteristic polynomials. If the converse of Theorem SMEE [427]
were true, then A and B would be similar. Suppose this is the case. More precisely, suppose there
is a nonsingular matrix S so that A = S−1BS. Then

A = S−1BS = S−1I2S = S−1S = I2

Clearly A 6= I2 and this contradiction tells us that the converse of Theorem SMEE [427] is false. �

Subsection D
Diagonalization

Good things happen when a matrix is similar to a diagonal matrix. For example, the eigenvalues
of the matrix are the entries on the diagonal of the diagonal matrix. And it can be a much simpler
matter to compute high powers of the matrix. Diagonalizable matrices are also of interest in more
abstract settings. Here are the relevant definitions, then our main theorem for this section.

Definition DIM
Diagonal Matrix
Suppose that A is a square matrix. Then A is a diagonal matrix if [A]ij = 0 whenever i 6= j. 4

Definition DZM
Diagonalizable Matrix
Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix. 4

Example DAB
Diagonalization of Archetype B
Archetype B [689] has a 3× 3 coefficient matrix

B =

−7 −6 −12
5 5 7
1 0 4


and is similar to a diagonal matrix, as can be seen by the following computation with the nonsingular
matrix S,

S−1BS =

−5 −3 −2
3 2 1
1 1 1

−1 −7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1


=

−1 −1 −1
2 3 1
−1 −2 1

−7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1


=

−1 0 0
0 1 0
0 0 2


�

Example SMS3 [426] provides yet another example of a matrix that is subjected to a similarity
transformation and the result is a diagonal matrix. Alright, just how would we find the magic
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matrix S that can be used in a similarity transformation to produce a diagonal matrix? Before
you read the statement of the next theorem, you might study the eigenvalues and eigenvectors of
Archetype B [689] and compute the eigenvalues and eigenvectors of the matrix in Example SMS3
[426].

Theorem DC
Diagonalization Characterization
Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly
independent set S that contains n eigenvectors of A. �

Proof (⇐) Let S = {x1, x2, x3, . . . , xn} be a linearly independent set of eigenvectors of A for
the eigenvalues λ1, λ2, λ3, . . . , λn. Recall Definition SUV [169] and define

R = [x1|x2|x3| . . . |xn]

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
0 0 0 · · · λn

 = [λ1e1|λ2e2|λ3e3| . . . |λnen]

The columns of R are the vectors of the linearly independent set S and so by Theorem NMLIC
[138] the matrix R is nonsingular. By Theorem NI [223] we know R−1 exists.

R−1AR = R−1A [x1|x2|x3| . . . |xn]

= R−1[Ax1|Ax2|Ax3| . . . |Axn] Definition MM [194]

= R−1[λ1x1|λ2x2|λ3x3| . . . |λnxn] xi eigenvector of A for λi
= R−1[λ1Re1|λ2Re2|λ3Re3| . . . |λnRen] Definition MVP [191]

= R−1[R(λ1e1)|R(λ2e2)|R(λ3e3)| . . . |R(λnen)] Theorem MMSMM [198]

= R−1R[λ1e1|λ2e2|λ3e3| . . . |λnen] Definition MM [194]
= InD Definition MI [208]
= D Theorem MMIM [197]

This says that A is similar to the diagonal matrix D via the nonsingular matrix R. Thus A is
diagonalizable (Definition DZM [428]).

(⇒) Suppose that A is diagonalizable, so there is a nonsingular matrix of size n

T = [y1|y2|y3| . . . |yn]

and a diagonal matrix (recall Definition SUV [169])

E =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

...
0 0 0 · · · dn

 = [d1e1|d2e2|d3e3| . . . |dnen]

such that T−1AT = E. Then consider,

[Ay1|Ay2|Ay3| . . . |Ayn] = A [y1|y2|y3| . . . |yn] Definition MM [194]
= AT

= InAT Theorem MMIM [197]

= TT−1AT Definition MI [208]
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= TE Substitution
= T [d1e1|d2e2|d3e3| . . . |dnen]
= [T (d1e1)|T (d2e2)|T (d3e3)| . . . |T (dnen)] Definition MM [194]
= [d1Te1|d2Te2|d3Te3| . . . |dnTen] Definition MM [194]
= [d1y1|d2y2|d3y3| . . . |dnyn] Definition MVP [191]

This equality of matrices (Definition ME [179]) allows us to conclude that the individual columns
are equal vectors (Definition CVE [82]). That is, Ayi = diyi for 1 ≤ i ≤ n. In other words, yi is an
eigenvector of A for the eigenvalue di, 1 ≤ i ≤ n. (Why can’t yi = 0?). Because T is nonsingular,
the set containing T ’s columns, S = {y1, y2, y3, . . . , yn}, is a linearly independent set (Theorem
NMLIC [138]). So the set S has all the required properties. �

Notice that the proof of Theorem DC [429] is constructive. To diagonalize a matrix, we need
only locate n linearly independent eigenvectors. Then we can construct a nonsingular matrix using
the eigenvectors as columns (R) so that R−1AR is a diagonal matrix (D). The entries on the
diagonal of D will be the eigenvalues of the eigenvectors used to create R, in the same order as the
eigenvectors appear in R. We illustrate this by diagonalizing some matrices.

Example DMS3
Diagonalizing a matrix of size 3
Consider the matrix

F =

−13 −8 −4
12 7 4
24 16 7


of Example CPMS3 [396], Example EMS3 [396] and Example ESMS3 [398]. F ’s eigenvalues and
eigenspaces are

λ = 3 EF (3) =

〈
−1

2
1
2
1


〉

λ = −1 EF (−1) =

〈
−2

3
1
0

 ,
−1

3
0
1


〉

Define the matrix S to be the 3 × 3 matrix whose columns are the three basis vectors in the
eigenspaces for F ,

S =

−1
2 −2

3 −1
3

1
2 1 0
1 0 1


Check that S is nonsingular (row-reduces to the identity matrix, Theorem NMRRI [68] or has a
nonzero determinant, Theorem SMZD [381]). Then the three columns of S are a linearly indepen-
dent set (Theorem NMLIC [138]). By Theorem DC [429] we now know that F is diagonalizable.
Furthermore, the construction in the proof of Theorem DC [429] tells us that if we apply the matrix
S to F in a similarity transformation, the result will be a diagonal matrix with the eigenvalues of
F on the diagonal. The eigenvalues appear on the diagonal of the matrix in the same order as the
eigenvectors appear in S. So,

S−1FS =

−1
2 −2

3 −1
3

1
2 1 0
1 0 1

−1 −13 −8 −4
12 7 4
24 16 7

−1
2 −2

3 −1
3

1
2 1 0
1 0 1


=

 6 4 2
−3 −1 −1
−6 −4 −1

−13 −8 −4
12 7 4
24 16 7

−1
2 −2

3 −1
3

1
2 1 0
1 0 1


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=

3 0 0
0 −1 0
0 0 −1


Note that the above computations can be viewed two ways. The proof of Theorem DC [429] tells us
that the four matrices (F , S, F−1 and the diagonal matrix) will interact the way we have written
the equation. Or as an example, we can actually perform the computations to verify what the
theorem predicts. �

The dimension of an eigenspace can be no larger than the algebraic multiplicity of the eigenvalue
by Theorem ME [417]. When every eigenvalue’s eigenspace is this large, then we can diagonalize
the matrix, and only then. Three examples we have seen so far in this section, Example SMS5
[425], Example DAB [428] and Example DMS3 [430], illustrate the diagonalization of a matrix,
with varying degrees of detail about just how the diagonalization is achieved. However, in each
case, you can verify that the geometric and algebraic multiplicities are equal for every eigenvalue.
This is the substance of the next theorem.

Theorem DMFE
Diagonalizable Matrices have Full Eigenspaces
Suppose A is a square matrix. Then A is diagonalizable if and only if γA (λ) = αA (λ) for every
eigenvalue λ of A. �

Proof SupposeA has size n and k distinct eigenvalues, λ1, λ2, λ3, . . . , λk. Let Si =
{
xi1, xi2, xi3, . . . , xiγA(λi)

}
,

denote a basis for the eigenspace of λi, EA (λi), for 1 ≤ i ≤ k. Then

S = S1 ∪ S2 ∪ S3 ∪ · · · ∪ Sk

is a set of eigenvectors for A. A vector cannot be an eigenvector for two different eigenvalues (see
Exercise EE.T20 [406]) so Si ∩ Sj = ∅ whenever i 6= j. In other words, S is a disjoint union of Si,
1 ≤ i ≤ k.

(⇐) The size of S is

|S| =
k∑
i=1

γA (λi) S disjoint union of Si

=
k∑
i=1

αA (λi) Hypothesis

= n Theorem NEM [416]

We next show that S is a linearly independent set. So we will begin with a relation of linear
dependence on S, using doubly-subscripted scalars and eigenvectors,

0 =
(
a11x11 + a12x12 + · · ·+ a1γA(λ1)x1γA(λ1)

)
+
(
a21x21 + a22x22 + · · ·+ a2γA(λ2)x2γA(λ2)

)
+ · · ·+

(
ak1xk1 + ak2xk2 + · · ·+ akγA(λk)xkγA(λk)

)
Define the vectors yi, 1 ≤ i ≤ k by

y1 =
(
a11x11 + a12x12 + a13x13 + · · ·+ aγA(1λ1)x1γA(λ1)

)
y2 =

(
a21x21 + a22x22 + a23x23 + · · ·+ aγA(2λ2)x2γA(λ2)

)
y3 =

(
a31x31 + a32x32 + a33x33 + · · ·+ aγA(3λ3)x3γA(λ3)

)
...

yk =
(
ak1xk1 + ak2xk2 + ak3xk3 + · · ·+ aγA(kλk)xkγA(λk)

)
Then the relation of linear dependence becomes

0 = y1 + y2 + y3 + · · ·+ yk
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Since the eigenspace EA (λi) is closed under vector addition and scalar multiplication, yi ∈ EA (λi),
1 ≤ i ≤ k. Thus, for each i, the vector yi is an eigenvector of A for λi, or is the zero vector.
Recall that sets of eigenvectors whose eigenvalues are distinct form a linearly independent set
by Theorem EDELI [411]. Should any (or some) yi be nonzero, the previous equation would
provide a nontrivial relation of linear dependence on a set of eigenvectors with distinct eigenvalues,
contradicting Theorem EDELI [411]. Thus yi = 0, 1 ≤ i ≤ k.

Each of the k equations, yi = 0 is a relation of linear dependence on the corresponding set
Si, a set of basis vectors for the eigenspace EA (λi), which is therefore linearly independent. From
these relations of linear dependence on linearly independent sets we conclude that the scalars are
all zero, more precisely, aij = 0, 1 ≤ j ≤ γA (λi) for 1 ≤ i ≤ k. This establishes that our original
relation of linear dependence on S has only the trivial relation of linear dependence, and hence S
is a linearly independent set.

We have determined that S is a set of n linearly independent eigenvectors for A, and so by
Theorem DC [429] is diagonalizable.

(⇒) Now we assume that A is diagonalizable. Aiming for a contradiction (Technique CD [673]),
suppose that there is at least one eigenvalue, say λt, such that γA (λt) 6= αA (λt). By Theorem ME
[417] we must have γA (λt) < αA (λt), and γA (λi) ≤ αA (λi) for 1 ≤ i ≤ k, i 6= t.

Since A is diagonalizable, Theorem DC [429] guarantees a set of n linearly independent vectors,
all of which are eigenvectors of A. Let ni denote the number of eigenvectors in S that are eigenvec-
tors for λi, and recall that a vector cannot be an eigenvector for two different eigenvalues (Exercise
EE.T20 [406]). S is a linearly independent set, so the the subset Si containing the ni eigenvectors
for λi must also be linearly independent. Because the eigenspace EA (λi) has dimension γA (λi)
and Si is a linearly independent subset in EA (λi), Theorem G [347] tells us that ni ≤ γA (λi), for
1 ≤ i ≤ k. Putting all these facts together gives,

n = n1 + n2 + n3 + · · ·+ nt + · · ·+ nk Definition SU [667]
≤ γA (λ1) + γA (λ2) + γA (λ3) + · · ·+ γA (λt) + · · ·+ γA (λk) Theorem G [347]
< αA (λ1) + αA (λ2) + αA (λ3) + · · ·+ αA (λt) + · · ·+ αA (λk) Theorem ME [417]
= n Theorem NEM [416]

This is a contradiction (we can’t have n < n!) and so our assumption that some eigenspace had
less than full dimension was false. �

Example SEE [389], Example CAEHW [394], Example ESMS3 [398], Example ESMS4 [400],
Example DEMS5 [403], Archetype B [689], Archetype F [705], Archetype K [727] and Archetype L
[731] are all examples of matrices that are diagonalizable and that illustrate Theorem DMFE [431].
While we have provided many examples of matrices that are diagonalizable, especially among the
archetypes, there are many matrices that are not diagonalizable. Here’s one now.

Example NDMS4
A non-diagonalizable matrix of size 4
In Example EMMS4 [399] the matrix

B =


−2 1 −2 −4
12 1 4 9
6 5 −2 −4
3 −4 5 10


was determined to have characteristic polynomial

pB (x) = (x− 1)(x− 2)3

and an eigenspace for λ = 2 of

EB (2) =

〈

−1

2
1
−1

2
1



〉
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So the geometric multiplicity of λ = 2 is γB (2) = 1, while the algebraic multiplicity is αB (2) = 3.
By Theorem DMFE [431], the matrix B is not diagonalizable. �

Archetype A [685] is the lone archetype with a square matrix that is not diagonalizable, as
the algebraic and geometric multiplicities of the eigenvalue λ = 0 differ. Example HMEM5 [400]
is another example of a matrix that cannot be diagonalized due to the difference between the
geometric and algebraic multiplicities of λ = 2, as is Example CEMS6 [401] which has two complex
eigenvalues, each with differing multiplicities. Likewise, Example EMMS4 [399] has an eigenvalue
with different algebraic and geometric multiplicities and so cannot be diagonalized.

Theorem DED
Distinct Eigenvalues implies Diagonalizable
Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable. �

Proof Let λ1, λ2, λ3, . . . , λn denote the n distinct eigenvalues of A. Then by Theorem NEM
[416] we have n =

∑n
i=1 αA (λi), which implies that αA (λi) = 1, 1 ≤ i ≤ n. From Theorem ME

[417] it follows that γA (λi) = 1, 1 ≤ i ≤ n. So γA (λi) = αA (λi), 1 ≤ i ≤ n and Theorem DMFE
[431] says A is diagonalizable. �

Example DEHD
Distinct eigenvalues, hence diagonalizable
In Example DEMS5 [403] the matrix

H =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10


has characteristic polynomial

pH (x) = x(x− 2)(x− 1)(x+ 1)(x+ 3)

and so is a 5× 5 matrix with 5 distinct eigenvalues. By Theorem DED [433] we know H must be
diagonalizable. But just for practice, we exhibit the diagonalization itself. The matrix S contains
eigenvectors of H as columns, one from each eigenspace, guaranteeing linear independent columns
and thus the nonsingularity of S. The diagonal matrix has the eigenvalues of H in the same order
that their respective eigenvectors appear as the columns of S. Notice that we are using the versions
of the eigenvectors from Example DEMS5 [403] that have integer entries.

S−1HS

=


2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1


−1 

15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10




2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1



=


−3 −3 1 −1 1
−1 −2 1 0 1
−5 −4 1 −1 2
10 10 −3 2 −4
−7 −6 1 −1 3




15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10




2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1



=


−3 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2


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�

Archetype B [689] is another example of a matrix that has as many distinct eigenvalues as its
size, and is hence diagonalizable by Theorem DED [433].

Powers of a diagonal matrix are easy to compute, and when a matrix is diagonalizable, it is
almost as easy. We could state a theorem here perhaps, but we will settle instead for an example
that makes the point just as well.

Example HPDM
High power of a diagonalizable matrix
Suppose that

A =


19 0 6 13
−33 −1 −9 −21
21 −4 12 21
−36 2 −14 −28


and we wish to compute A20. Normally this would require 19 matrix multiplications, but since A
is diagonalizable, we can simplify the computations substantially. First, we diagonalize A. With

S =


1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0


we find

D = S−1AS =


−6 1 −3 −6
0 2 −2 −3
3 0 1 2
−1 −1 1 1




19 0 6 13
−33 −1 −9 −21
21 −4 12 21
−36 2 −14 −28




1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0



=


−1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1


Now we find an alternate expression for A20,

A20 = AAA . . . A

= InAInAInAIn . . . InAIn

=
(
SS−1

)
A
(
SS−1

)
A
(
SS−1

)
A
(
SS−1

)
. . .
(
SS−1

)
A
(
SS−1

)
= S

(
S−1AS

) (
S−1AS

) (
S−1AS

)
. . .
(
S−1AS

)
S−1

= SDDD . . .DS−1

= SD20S−1

and since D is a diagonal matrix, powers are much easier to compute,

= S


−1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1


20

S−1

= S


(−1)20 0 0 0

0 (0)20 0 0
0 0 (2)20 0
0 0 0 (1)20

S−1
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=


1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0




1 0 0 0
0 0 0 0
0 0 1048576 0
0 0 0 1



−6 1 −3 −6
0 2 −2 −3
3 0 1 2
−1 −1 1 1



=


6291451 2 2097148 4194297
−9437175 −5 −3145719 −6291441
9437175 −2 3145728 6291453
−12582900 −2 −4194298 −8388596


Notice how we effectively replaced the twentieth power of A by the twentieth power of D, and how
a high power of a diagonal matrix is just a collection of powers of scalars on the diagonal. The
price we pay for this simplification is the need to diagonalize the matrix (by computing eigenvalues
and eigenvectors) and finding the inverse of the matrix of eigenvectors. And we still need to do two
matrix products. But the higher the power, the greater the savings. �

We close this section with a comment about an important upcoming theorem that we prove in
Chapter R [517]. A consequence of Theorem OD [591] is that every Hermitian matrix (Definition
HM [201]) is diagonalizable (Definition DZM [428]), and the similarity transformation that accom-
plishes the diagonalization uses a unitary matrix (Definition UM [224]). This means that for every
Hermitian matrix of size n there is a basis of Cn that is composed entirely of eigenvectors for the
matrix and also forms an orthonormal set (Definition ONS [173]). Notice that for matrices with
only real entries, we only need the hypothesis that the matrix is symmetric (Definition SYM [182])
to reach this conclusion (Example ESMS4 [400]). Can you imagine a prettier basis for use with a
matrix? I can’t.

These results in Section OD [585] explain much of our recurring interest in orthogonality, and
make the section a high point in your study of linear algebra. A precise statement of this diagonal-
ization result applies to a slightly broader class of matrices, known as “normal” matrices (Definition
NRML [590]), which are matrices that commute with their adjoints. With this expanded category
of matrices, the result becomes an equivalence (Technique E [672]). See Theorem OD [591] and
Theorem OBNM [593] in Section OD [585] for all the details.

Subsection READ
Reading Questions

1. What is an equivalence relation?

2. State a condition that is equivalent to a matrix being diagonalizable, but is not the definition.

3. Find a diagonal matrix similar to

A =
[
−5 8
−4 7

]
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Subsection EXC
Exercises

C20 Consider the matrix A below. First, show that A is diagonalizable by computing the geo-
metric multiplicities of the eigenvalues and quoting the relevant theorem. Second, find a diagonal
matrix D and a nonsingular matrix S so that S−1AS = D. (See Exercise EE.C20 [406] for some
of the necessary computations.)

A =


18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4


Contributed by Robert Beezer Solution [437]

C21 Determine if the matrix A below is diagonalizable. If the matrix is diagonalizable, then find
a diagonal matrix D that is similar to A, and provide the invertible matrix S that perfoms the
similarity transformation. You should use your calculator to find the eigenvalues of the matrix, but
try only using the row-reducing function of your calculator to assist with finding eigenvectors.

A =


1 9 9 24
−3 −27 −29 −68
1 11 13 26
1 7 7 18


Contributed by Robert Beezer Solution [437]

C22 Consider the matrix A below. Find the eigenvalues of A using a calculator and use these
to construct the characteristic polynomial of A, pA (x). State the algebraic multiplicity of each
eigenvalue. Find all of the eigenspaces for A by computing expressions for null spaces, only using
your calculator to row-reduce matrices. State the geometric multiplicity of each eigenvalue. Is A
diagonalizable? If not, explain why. If so, find a diagonal matrix D that is similar to A.

A =


19 25 30 5
−23 −30 −35 −5

7 9 10 1
−3 −4 −5 −1


Contributed by Robert Beezer Solution [438]

T15 Suppose that A and B are similar matrices. Prove that A3 and B3 are similar matrices.
Generalize.
Contributed by Robert Beezer Solution [439]

T16 Suppose that A and B are similar matrices, with A nonsingular. Prove that B is nonsingular,
and that A−1 is similar to B−1.
Contributed by Robert Beezer

T17 Suppose that B is a nonsingular matrix. Prove that AB is similar to BA.
Contributed by Robert Beezer Solution [439]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [436]
Using a calculator, we find that A has three distinct eigenvalues, λ = 3, 2, −1, with λ = 2 having
algebraic multiplicity two, αA (2) = 2. The eigenvalues λ = 3, −1 have algebraic multiplicity one,
and so by Theorem ME [417] we can conclude that their geometric multiplicities are one as well.
Together with the computation of the geometric multiplicity of λ = 2 from Exercise EE.C20 [406],
we know

γA (3) = αA (3) = 1 γA (2) = αA (2) = 2 γA (−1) = αA (−1) = 1

This satisfies the hypotheses of Theorem DMFE [431], and so we can conclude that A is diagonal-
izable.

A calculator will give us four eigenvectors of A, the two for λ = 2 being linearly independent
presumably. Or, by hand, we could find basis vectors for the three eigenspaces. For λ = 3, −1
the eigenspaces have dimension one, and so any eigenvector for these eigenvalues will be multiples
of the ones we use below. For λ = 2 there are many different bases for the eigenspace, so your
answer could vary. Our eigenvectors are the basis vectors we would have obtained if we had actually
constructed a basis in Exercise EE.C20 [406] rather than just computing the dimension.

By the construction in the proof of Theorem DC [429], the required matrix S has columns
that are four linearly independent eigenvectors of A and the diagonal matrix has the eigenvalues
on the diagonal (in the same order as the eigenvectors in S). Here are the pieces, “doing” the
diagonalization,

−1 0 −3 6
−2 −1 −1 0
0 0 1 −3
1 1 0 1


−1 

18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4



−1 0 −3 6
−2 −1 −1 0
0 0 1 −3
1 1 0 1

 =


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −1


C21 Contributed by Robert Beezer Statement [436]
A calculator will provide the eigenvalues λ = 2, 2, 1, 0, so we can reconstruct the characteristic
polynomial as

pA (x) = (x− 2)2(x− 1)x

so the algebraic multiplicities of the eigenvalues are

αA (2) = 2 αA (1) = 1 αA (0) = 1

Now compute eigenspaces by hand, obtaining null spaces for each of the three eigenvalues by
constructing the correct singular matrix (Theorem EMNS [397]),

A− 2I4 =


−1 9 9 24
−3 −29 −29 −68
1 11 11 26
1 7 7 16

 RREF−−−−→


1 0 0 −3

2
0 1 1 5

2
0 0 0 0
0 0 0 0



EA (2) = N (A− 2I4) =

〈


3
2
−5

2
0
1

 ,


0
−1
1
0



〉

=

〈


3
−5
0
2

 ,


0
−1
1
0



〉

A− 1I4 =


0 9 9 24
−3 −28 −29 −68
1 11 12 26
1 7 7 17

 RREF−−−−→


1 0 0 −5

3
0 1 0 13

3
0 0 1 −5

3
0 0 0 0


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EA (1) = N (A− I4) =

〈


5
3
−13

3
5
3
1



〉

=

〈


5
−13

5
3



〉

A− 0I4 =


1 9 9 24
−3 −27 −29 −68
1 11 13 26
1 7 7 18

 RREF−−−−→


1 0 0 −3
0 1 0 5
0 0 1 −2
0 0 0 0



EA (0) = N (A− I4) =

〈


3
−5
2
1



〉

From this we can compute the dimensions of the eigenspaces to obtain the geometric multiplicities,

γA (2) = 2 γA (1) = 1 γA (0) = 1

For each eigenvalue, the algebraic and geometric multiplicities are equal and so by Theorem DMFE
[431] we now know that A is diagonalizable. The construction in Theorem DC [429] suggests we
form a matrix whose columns are eigenvectors of A

S =


3 0 5 3
−5 −1 −13 −5
0 1 5 2
2 0 3 1


Since det (S) = −1 6= 0, we know that S is nonsingular (Theorem SMZD [381]), so the columns of
S are a set of 4 linearly independent eigenvectors of A. By the proof of Theorem SMZD [381] we
know

S−1AS =


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0


a diagonal matrix with the eigenvalues of A along the diagonal, in the same order as the associated
eigenvectors appear as columns of S.

C22 Contributed by Robert Beezer Statement [436]
A calculator will report λ = 0 as an eigenvalue of algebraic multiplicity of 2, and λ = −1 as
an eigenvalue of algebraic multiplicity 2 as well. Since eigenvalues are roots of the characteristic
polynomial (Theorem EMRCP [396]) we have the factored version

pA (x) = (x− 0)2(x− (−1))2 = x2(x2 + 2x+ 1) = x4 + 2x3 + x2

The eigenspaces are then

λ = 0

A− (0)I4 =


19 25 30 5
−23 −30 −35 −5

7 9 10 1
−3 −4 −5 −1

 RREF−−−−→


1 0 −5 −5
0 1 5 4
0 0 0 0
0 0 0 0



EA (0) = N (C − (0)I4) =

〈


5
−5
1
0

 ,


5
−4
0
1



〉

λ = −1
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A− (−1)I4 =


20 25 30 5
−23 −29 −35 −5

7 9 11 1
−3 −4 −5 0

 RREF−−−−→


1 0 −1 4
0 1 2 −3
0 0 0 0
0 0 0 0



EA (−1) = N (C − (−1)I4) =

〈


1
−2
1
0

 ,

−4
3
0
1



〉

Each eigenspace above is described by a spanning set obtained through an application of Theorem
BNS [140] and so is a basis for the eigenspace. In each case the dimension, and therefore the
geometric multiplicity, is 2.

For each of the two eigenvalues, the algebraic and geometric multiplicities are equal. Theorem
DMFE [431] says that in this situation the matrix is diagonalizable. We know from Theorem DC
[429] that when we diagonalize A the diagonal matrix will have the eigenvalues of A on the diagonal
(in some order). So we can claim that

D =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1


T15 Contributed by Robert Beezer Statement [436]
By Definition SIM [425] we know that there is a nonsingular matrix S so that A = S−1BS. Then

A3 = (S−1BS)3

= (S−1BS)(S−1BS)(S−1BS)

= S−1B(SS−1)B(SS−1)BS Theorem MMA [198]

= S−1B(I3)B(I3)BS Definition MI [208]

= S−1BBBS Theorem MMIM [197]

= S−1B3S

This equation says that A3 is similar to B3 (via the matrix S).
More generally, if A is similar to B, and m is a non-negative integer, then Am is similar to Bm.

This can be proved using induction (Technique I [676]).

T17 Contributed by Robert Beezer Statement [436]
The nonsingular (invertible) matrix B will provide the desired similarity transformation,

B−1 (BA)B =
(
B−1B

)
(AB) Theorem MMA [198]

= InAB Definition MI [208]
= AB Theorem MMIM [197]
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Annotated Acronyms E
Eigenvalues

Theorem EMRCP [396]

Much of what we know about eigenvalues can be traced to analysis of the characteristic polynomial.
When we first defined eigenvalues, you might have wondered if they were scarce, or abundant. The
characteristic polynomial allows us to answer a question like this with a result like Theorem NEM
[416] which tells us there are always a few eigenvalues, but never too many.

Theorem EMNS [397]

If Theorem EMRCP [396] allows us to learn about eigenvalues through what we know about roots
of polynomials, then Theorem EMNS [397] allows us to learn about eigenvectors, and eigenspaces,
from what we already know about null spaces. These two theorems, along with Definition EEM
[389], provide the starting points for discerning the properties of eigenvalues and eigenvectors (to
say nothing of actually computing them).

Theorem HMRE [419]

As we have remarked before, we choose to include all of the complex numbers in our set of allowed
scalars, whereas many introductory texts restrict their attention to just the real numbers. Here
is one of the payoffs to this approach. Begin with a matrix, possibly containing complex entries,
and require the matrix to be Hermitian (Definition HM [201]). In the case of only real entries, this
boils down to just requiring the matrix to be symmetric (Definition SYM [182]). Generally, the
roots of a characteristic polynomial, even with all real coefficients, can have complex numbers as
roots. But for a Hermitian matrix, all of the eigenvalues are real numbers! When somebody tells
you mathematics can be beautiful, this is an example of what they are talking about.

Theorem DC [429]

Diagonalizing a matrix, or the question of if a matrix is diagonalizable, could be viewed as one of a
handful of central questions in linear algebra. Here we have an unequivocal answer to the question
of “if,” along with a proof containing a construction for the diagonalization. So this theorem is of
theoretical and computational interest. This topic will be important again in Chapter R [517].

Theorem DMFE [431]

Another unequivocal answer to the question of if a matrix is diagonalizable, with perhaps a simpler
condition to test. The proof also tells us how to construct the necessary set of n linearly independent
eigenvectors — just round up bases for each eigenspace and join them together. No need to test
the linear independence of the combined set.
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Chapter LT
Linear Transformations

In the next linear algebra course you take, the first lecture might be a reminder about what a vector
space is (Definition VS [273]), their ten properties, basic theorems and then some examples. The
second lecture would likely be all about linear transformations. While it may seem we have waited
a long time to present what must be a central topic, in truth we have already been working with
linear transformations for some time.

Functions are important objects in the study of calculus, but have been absent from this course
until now (well, not really, it just seems that way). In your study of more advanced mathematics
it is nearly impossible to escape the use of functions — they are as fundamental as sets are.

Section LT
Linear Transformations

Early in Chapter VS [273] we prefaced the definition of a vector space with the comment that it
was “one of the two most important definitions in the entire course.” He comes the other. Any
capsule summary of linear algebra would have to describe the subject as the interplay of linear
transformations and vector spaces. Here we go.

Subsection LT
Linear Transformations

Definition LT
Linear Transformation
A linear transformation, T : U 7→ V , is a function that carries elements of the vector space U
(called the domain) to the vector space V (called the codomain), and which has two additional
properties

1. T (u1 + u2) = T (u1) + T (u2) for all u1, u2 ∈ U

2. T (αu) = αT (u) for all u ∈ U and all α ∈ C

(This definition contains Notation LT.) 4

The two defining conditions in the definition of a linear transformation should “feel linear,”
whatever that means. Conversely, these two conditions could be taken as a exactly what it means
to be linear. As every vector space property derives from vector addition and scalar multiplication,
so too, every property of a linear transformation derives from these two defining properties. While
these conditions may be reminiscent of how we test subspaces, they really are quite different, so do
not confuse the two.
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444 Section LT Linear Transformations

Here are two diagrams that convey the essence of the two defining properties of a linear trans-
formation. In each case, begin in the upper left-hand corner, and follow the arrows around the
rectangle to the lower-right hand corner, taking two different routes and doing the indicated oper-
ations labeled on the arrows. There are two results there. For a linear transformation these two
expressions are always equal.

u1, u2
T−−−−→ T (u1) , T (u2)

+

y y+

u1 + u2
T−−−−→ T (u1) + T (u2),

T (u1 + u2)

u T−−−−→ T (u)

α

y yα
αu T−−−−→ αT (u),

T (αu)

A couple of words about notation. T is the name of the linear transformation, and should be used
when we want to discuss the function as a whole. T (u) is how we talk about the output of the
function, it is a vector in the vector space V . When we write T (x + y) = T (x) + T (y), the plus
sign on the left is the operation of vector addition in the vector space U , since x and y are elements
of U . The plus sign on the right is the operation of vector addition in the vector space V , since
T (x) and T (y) are elements of the vector space V . These two instances of vector addition might
be wildly different.

Let’s examine several examples and begin to form a catalog of known linear transformations to
work with.

Example ALT
A linear transformation
Define T : C3 7→ C2 by describing the output of the function for a generic input with the formula

T

x1

x2

x3

 =
[
2x1 + x3

−4x2

]

and check the two defining properties.

T (x + y) = T

x1

x2

x3

+

y1

y2

y3


= T

x1 + y1

x2 + y2

x3 + y3


=
[
2(x1 + y1) + (x3 + y3)

−4(x2 + y2)

]
=
[
(2x1 + x3) + (2y1 + y3)
−4x2 + (−4)y2

]
=
[
2x1 + x3

−4x2

]
+
[
2y1 + y3

−4y2

]

= T

x1

x2

x3

+ T

y1

y2

y3


= T (x) + T (y)
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and

T (αx) = T

α
x1

x2

x3


= T

αx1

αx2

αx3


=
[
2(αx1) + (αx3)
−4(αx2)

]
=
[
α(2x1 + x3)
α(−4x2)

]
= α

[
2x1 + x3

−4x2

]

= αT

x1

x2

x3


= αT (x)

So by Definition LT [443], T is a linear transformation. �

It can be just as instructive to look at functions that are not linear transformations. Since the
defining conditions must be true for all vectors and scalars, it is enough to find just one situation
where the properties fail.

Example NLT
Not a linear transformation
Define S : C3 7→ C3 by

S

x1

x2

x3

 =

 4x1 + 2x2

0
x1 + 3x3 − 2


This function “looks” linear, but consider

3S

1
2
3

 = 3

8
0
8

 =

24
0
24


while

S

3

1
2
3

 = S

3
6
9

 =

24
0
28



So the second required property fails for the choice of α = 3 and x =

1
2
3

 and by Definition LT

[443], S is not a linear transformation. It is just about as easy to find an example where the first
defining property fails (try it!). Notice that it is the “-2” in the third component of the definition
of S that prevents the function from being a linear transformation. �

Example LTPM
Linear transformation, polynomials to matrices
Define a linear transformation T : P3 7→M22 by

T
(
a+ bx+ cx2 + dx3

)
=
[
a+ b a− 2c
d b− d

]
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We verify the two defining conditions of a linear transformations.

T (x + y) = T
(
(a1 + b1x+ c1x

2 + d1x
3) + (a2 + b2x+ c2x

2 + d2x
3)
)

= T
(
(a1 + a2) + (b1 + b2)x+ (c1 + c2)x2 + (d1 + d2)x3

)
=
[
(a1 + a2) + (b1 + b2) (a1 + a2)− 2(c1 + c2)

d1 + d2 (b1 + b2)− (d1 + d2)

]
=
[
(a1 + b1) + (a2 + b2) (a1 − 2c1) + (a2 − 2c2)

d1 + d2 (b1 − d1) + (b2 − d2)

]
=
[
a1 + b1 a1 − 2c1

d1 b1 − d1

]
+
[
a2 + b2 a2 − 2c2

d2 b2 − d2

]
= T

(
a1 + b1x+ c1x

2 + d1x
3
)

+ T
(
a2 + b2x+ c2x

2 + d2x
3
)

= T (x) + T (y)

and

T (αx) = T
(
α(a+ bx+ cx2 + dx3)

)
= T

(
(αa) + (αb)x+ (αc)x2 + (αd)x3

)
=
[
(αa) + (αb) (αa)− 2(αc)

αd (αb)− (αd)

]
=
[
α(a+ b) α(a− 2c)
αd α(b− d)

]
= α

[
a+ b a− 2c
d b− d

]
= αT

(
a+ bx+ cx2 + dx3

)
= αT (x)

So by Definition LT [443], T is a linear transformation. �

Example LTPP
Linear transformation, polynomials to polynomials
Define a function S : P4 7→ P5 by

S(p(x)) = (x− 2)p(x)

Then

S (p(x) + q(x)) = (x− 2)(p(x) + q(x)) = (x− 2)p(x) + (x− 2)q(x) = S (p(x)) + S (q(x))
S (αp(x)) = (x− 2)(αp(x)) = (x− 2)αp(x) = α(x− 2)p(x) = αS (p(x))

So by Definition LT [443], S is a linear transformation. �

Linear transformations have many amazing properties, which we will investigate through the
next few sections. However, as a taste of things to come, here is a theorem we can prove now and
put to use immediately.

Theorem LTTZZ
Linear Transformations Take Zero to Zero
Suppose T : U 7→ V is a linear transformation. Then T (0) = 0. �

Proof The two zero vectors in the conclusion of the theorem are different. The first is from
U while the second is from V . We will subscript the zero vectors in this proof to highlight the
distinction. Think about your objects. (This proof is contributed by Mark Shoemaker).

T (0U ) = T (00U ) Theorem ZSSM [280] in U

= 0T (0U ) Definition LT [443]
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= 0V Theorem ZSSM [280] in V

�

Return to Example NLT [445] and compute S

0
0
0

 =

 0
0
−2

 to quickly see again that S is not

a linear transformation, while in Example LTPM [445] compute S
(
0 + 0x+ 0x2 + 0x3

)
=
[
0 0
0 0

]
as an example of Theorem LTTZZ [446] at work.

Subsection MLT
Matrices and Linear Transformations

If you give me a matrix, then I can quickly build you a linear transformation. Always. First a
motivating example and then the theorem.

Example LTM
Linear transformation from a matrix
Let

A =

3 −1 8 1
2 0 5 −2
1 1 3 −7


and define a function P : C4 7→ C3 by

P (x) = Ax

So we are using an old friend, the matrix-vector product (Definition MVP [191]) as a way to convert
a vector with 4 components into a vector with 3 components. Applying Definition MVP [191] allows
us to write the defining formula for P in a slightly different form,

P (x) = Ax =

3 −1 8 1
2 0 5 −2
1 1 3 −7



x1

x2

x3

x4

 = x1

3
2
1

+ x2

−1
0
1

+ x3

8
5
3

+ x4

 1
−2
−7


So we recognize the action of the function P as using the components of the vector (x1, x2, x3, x4)
as scalars to form the output of P as a linear combination of the four columns of the matrix A,
which are all members of C3, so the result is a vector in C3. We can rearrange this expression
further, using our definitions of operations in C3 (Section VO [81]).

P (x) = Ax Definition of P

= x1

3
2
1

+ x2

−1
0
1

+ x3

8
5
3

+ x4

 1
−2
−7

 Definition MVP [191]

=

3x1

2x1

x1

+

−x2

0
x2

+

8x3

5x3

3x3

+

 x4

−2x4

−7x4

 Definition CVSM [83]

=

3x1 − x2 + 8x3 + x4

2x1 + 5x3 − 2x4

x1 + x2 + 3x3 − 7x4

 Definition CVA [82]

You might recognize this final expression as being similar in style to some previous examples
(Example ALT [444]) and some linear transformations defined in the archetypes (Archetype M [734]
through Archetype R [746]). But the expression that says the output of this linear transformation
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is a linear combination of the columns of A is probably the most powerful way of thinking about
examples of this type.

Almost forgot — we should verify that P is indeed a linear transformation. This is easy with
two matrix properties from Section MM [191].

P (x + y) = A (x + y) Definition of P
= Ax +Ay Theorem MMDAA [197]
= P (x) + P (y) Definition of P

and

P (αx) = A (αx) Definition of P
= α (Ax) Theorem MMSMM [198]
= αP (x) Definition of P

So by Definition LT [443], P is a linear transformation. �

So the multiplication of a vector by a matrix “transforms” the input vector into an output
vector, possibly of a different size, by performing a linear combination. And this transformation
happens in a “linear” fashion. This “functional” view of the matrix-vector product is the most
important shift you can make right now in how you think about linear algebra. Here’s the theorem,
whose proof is very nearly an exact copy of the verification in the last example.

Theorem MBLT
Matrices Build Linear Transformations
Suppose that A is an m × n matrix. Define a function T : Cn 7→ Cm by T (x) = Ax. Then T is a
linear transformation. �

Proof

T (x + y) = A (x + y) Definition of T
= Ax +Ay Theorem MMDAA [197]
= T (x) + T (y) Definition of T

and

T (αx) = A (αx) Definition of T
= α (Ax) Theorem MMSMM [198]
= αT (x) Definition of T

So by Definition LT [443], T is a linear transformation. �

So Theorem MBLT [448] gives us a rapid way to construct linear transformations. Grab an m×n
matrix A, define T (x) = Ax and Theorem MBLT [448] tells us that T is a linear transformation
from Cn to Cm, without any further checking.

We can turn Theorem MBLT [448] around. You give me a linear transformation and I will give
you a matrix.

Example MFLT
Matrix from a linear transformation
Define the function R : C3 7→ C4 by

R

x1

x2

x3

 =


2x1 − 3x2 + 4x3

x1 + x2 + x3

−x1 + 5x2 − 3x3

x2 − 4x3


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You could verify that R is a linear transformation by applying the definition, but we will instead
massage the expression defining a typical output until we recognize the form of a known class of
linear transformations.

R

x1

x2

x3

 =


2x1 − 3x2 + 4x3

x1 + x2 + x3

−x1 + 5x2 − 3x3

x2 − 4x3



=


2x1

x1

−x1

0

+


−3x2

x2

5x2

x2

+


4x3

x3

−3x3

−4x3

 Definition CVA [82]

= x1


2
1
−1
0

+ x2


−3
1
5
1

+ x3


4
1
−3
−4

 Definition CVSM [83]

=


2 −3 4
1 1 1
−1 5 −3
0 1 −4


x1

x2

x3

 Definition MVP [191]

So if we define the matrix

B =


2 −3 4
1 1 1
−1 5 −3
0 1 −4


then R (x) = Bx. By Theorem MBLT [448], we can easily recognize R as a linear transformation
since it has the form described in the hypothesis of the theorem. �

Example MFLT [448] was not accident. Consider any one of the archetypes where both the
domain and codomain are sets of column vectors (Archetype M [734] through Archetype R [746])
and you should be able to mimic the previous example. Here’s the theorem, which is notable since
it is our first occasion to use the full power of the defining properties of a linear transformation
when our hypothesis includes a linear transformation.

Theorem MLTCV
Matrix of a Linear Transformation, Column Vectors
Suppose that T : Cn 7→ Cm is a linear transformation. Then there is an m× n matrix A such that
T (x) = Ax. �

Proof The conclusion says a certain matrix exists. What better way to prove something exists
than to actually build it? So our proof will be constructive (Technique C [671]), and the procedure
that we will use abstractly in the proof can be used concretely in specific examples.

Let e1, e2, e3, . . . , en be the columns of the identity matrix of size n, In (Definition SUV
[169]). Evaluate the linear transformation T with each of these standard unit vectors as an input,
and record the result. In other words, define n vectors in Cm, Ai, 1 ≤ i ≤ n by

Ai = T (ei)

Then package up these vectors as the columns of a matrix

A = [A1|A2|A3| . . . |An]

Does A have the desired properties? First, A is clearly an m× n matrix. Then

T (x) = T (Inx) Theorem MMIM [197]
= T ([e1|e2|e3| . . . |en] x) Definition SUV [169]
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= T ([x]1 e1 + [x]2 e2 + [x]3 e3 + · · ·+ [x]n en) Definition MVP [191]
= T ([x]1 e1) + T ([x]2 e2) + T ([x]3 e3) + · · ·+ T ([x]n en) Definition LT [443]
= [x]1 T (e1) + [x]2 T (e2) + [x]3 T (e3) + · · ·+ [x]n T (en) Definition LT [443]
= [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An Definition of Ai

= Ax Definition MVP [191]

as desired. �

So if we were to restrict our study of linear transformations to those where the domain and
codomain are both vector spaces of column vectors (Definition VSCV [81]), every matrix leads to a
linear transformation of this type (Theorem MBLT [448]), while every such linear transformation
leads to a matrix (Theorem MLTCV [449]). So matrices and linear transformations are fundamen-
tally the same. We call the matrix A of Theorem MLTCV [449] the matrix representation of
T .

We have defined linear transformations for more general vector spaces than just Cm, can we
extend this correspondence between linear transformations and matrices to more general linear
transformations (more general domains and codomains)? Yes, and this is the main theme of
Chapter R [517]. Stay tuned. For now, let’s illustrate Theorem MLTCV [449] with an example.

Example MOLT
Matrix of a linear transformation
Suppose S : C3 7→ C4 is defined by

S

x1

x2

x3

 =


3x1 − 2x2 + 5x3

x1 + x2 + x3

9x1 − 2x2 + 5x3

4x2


Then

C1 = S (e1) = S

1
0
0

 =


3
1
9
0



C2 = S (e2) = S

0
1
0

 =


−2
1
−2
4



C3 = S (e3) = S

0
0
1

 =


5
1
5
0


so define

C = [C1|C2|C3] =


3 −2 5
1 1 1
9 −2 5
0 4 0


and Theorem MLTCV [449] guarantees that S (x) = Cx.

As an illuminating exercise, let z =

 2
−3
3

 and compute S (z) two different ways. First, return

to the definition of S and evaluate S (z) directly. Then do the matrix-vector product Cz. In both

cases you should obtain the vector S (z) =


27
2
39
−12

. �
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Subsection LTLC
Linear Transformations and Linear Combinations

It is the interaction between linear transformations and linear combinations that lies at the heart
of many of the important theorems of linear algebra. The next theorem distills the essence of this.
The proof is not deep, the result is hardly startling, but it will be referenced frequently. We have
already passed by one occasion to employ it, in the proof of Theorem MLTCV [449]. Paraphrasing,
this theorem says that we can “push” linear transformations “down into” linear combinations, or
“pull” linear transformations “up out” of linear combinations. We’ll have opportunities to both
push and pull.

Theorem LTLC
Linear Transformations and Linear Combinations
Suppose that T : U 7→ V is a linear transformation, u1, u2, u3, . . . , ut are vectors from U and
a1, a2, a3, . . . , at are scalars from C. Then

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut)

�

Proof

T (a1u1 + a2u2 + a3u3 + · · ·+ atut)
= T (a1u1) + T (a2u2) + T (a3u3) + · · ·+ T (atut) Definition LT [443]
= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut) Definition LT [443]

�

Some authors, especially in more advanced texts, take the conclusion of Theorem LTLC [451] as
the defining condition of a linear transformation. This has the appeal of being a single condition,
rather than the two-part condition of Definition LT [443]. (See Exercise LT.T20 [461]).

Our next theorem says, informally, that it is enough to know how a linear transformation
behaves for inputs from any basis of the domain, and all the other outputs are described by a
linear combination of these few values. Again, the statement of the theorem, and its proof, are not
remarkable, but the insight that goes along with it is very fundamental.

Theorem LTDB
Linear Transformation Defined on a Basis
Suppose B = {u1, u2, u3, . . . , un} is a basis for the vector space U and v1, v2, v3, . . . , vn is a
list of vectors from the vector space V (which are not necessarily distinct). Then there is a unique
linear transformation, T : U 7→ V , such that T (ui) = vi, 1 ≤ i ≤ n. �

Proof To prove the existence of T , we construct a function and show that it is a linear trans-
formation (Technique C [671]). Suppose w ∈ U is an arbitrary element of the domain. Then by
Theorem VRRB [311] there are unique scalars a1, a2, a3, . . . , an such that

w = a1u1 + a2u2 + a3u3 + · · ·+ anun

Then define

T (w) = a1v1 + a2v2 + a3v3 + · · ·+ anvn

It should be clear that T behaves as required for n inputs from B. Since the scalars provided by
Theorem VRRB [311] are unique, there is no ambiguity in this definition, and T qualifies as a
function with domain U and codomain V (i.e. T is well-defined). But is T a linear transformation
as well?
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Let x ∈ U be a second element of the domain, and suppose the scalars provided by VRRB
(relative to B) are b1, b2, b3, . . . , bn. Then

T (w + x) = T (a1u1 + a2u2 + · · ·+ anun + b1u1 + b2u2 + · · ·+ bnun)
= T ((a1 + b1) u1 + (a2 + b2) u2 + · · ·+ (an + bn) un) Definition VS [273]
= (a1 + b1) v1 + (a2 + b2) v2 + · · ·+ (an + bn) vn Definition of T
= a1v1 + a2v2 + · · ·+ anvn + b1v1 + b2v2 + · · ·+ bnvn Definition VS [273]
= T (w) + T (x)

Let α ∈ C be any scalar. Then

T (αw) = T (α (a1u1 + a2u2 + a3u3 + · · ·+ anun))
= T (αa1u1 + αa2u2 + αa3u3 + · · ·+ αanun) Definition VS [273]
= αa1v1 + αa2v2 + αa3v3 + · · ·+ αanvn Definition of T
= α (a1v1 + a2v2 + a3v3 + · · ·+ anvn) Definition VS [273]
= αT (w)

So by Definition LT [443], T is a linear transformation.
Is T unique (among all linear transformations that take the ui to the vi)? Applying Technique

U [674], we posit the existence of a second linear transformation, S : U 7→ V such that S (ui) = vi,
1 ≤ i ≤ n. Again, let w ∈ U represent an arbitraty element of U and let a1, a2, a3, . . . , an be the
scalars provided by Theorem VRRB [311] (relative to B). We have,

T (w) = T (a1u1 + a2u2 + a3u3 + · · ·+ anun) Theorem VRRB [311]
= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ anT (un) Theorem LTLC [451]
= a1v1 + a2v2 + a3v3 + · · ·+ anvn Definition of T
= a1S (u1) + a2S (u2) + a3S (u3) + · · ·+ anS (un) Definition of S
= S (a1u1 + a2u2 + a3u3 + · · ·+ anun) Theorem LTLC [451]
= S (w) Theorem VRRB [311]

So the output of T and S agree on every input, which means they are equal as functions, T = S.
So T is unique. �

Notice that the statement of Theorem LTDB [451] asserts the existence of a linear transfor-
mation with certain properties, while the proof shows us exactly how to define the desired linear
transformation. The next examples how how to work with linear transformations that we find this
way.

Example LTDB1
Linear transformation defined on a basis
Consider the linear transformation T : C3 7→ C2 that is required to have the following three values,

T

1
0
0

 =
[
2
1

]
T

0
1
0

 =
[
−1
4

]
T

0
0
1

 =
[
6
0

]
Because

B =


1

0
0

 ,
0

1
0

 ,
0

0
1


is a basis for C3 (Theorem SUVB [319]), Theorem LTDB [451] says there is a unique linear trans-
formation T that behaves this way. How do we compute other values of T? Consider the input

w =

 2
−3
1

 = (2)

1
0
0

+ (−3)

0
1
0

+ (1)

0
0
1


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Then

T (w) = (2)
[
2
1

]
+ (−3)

[
−1
4

]
+ (1)

[
6
0

]
=
[

13
−10

]
Doing it again,

x =

 5
2
−3

 = (5)

1
0
0

+ (2)

0
1
0

+ (−3)

0
0
1


so

T (x) = (5)
[
2
1

]
+ (2)

[
−1
4

]
+ (−3)

[
6
0

]
=
[
−10
13

]
Any other value of T could be computed in a similar manner. So rather than being given a formula
for the outputs of T , the requirement that T behave in a certain way for the inputs chosen from
a basis of the domain, is as sufficient as a formula for computing any value of the function. You
might notice some parallels between this example and Example MOLT [450] or Theorem MLTCV
[449]. �

Example LTDB2
Linear transformation defined on a basis
Consider the linear transformation R : C3 7→ C2 with the three values,

R

1
2
1

 =
[

5
−1

]
R

−1
5
1

 =
[
0
4

]
R

3
1
4

 =
[
2
3

]

You can check that

D =


1

2
1

 ,
−1

5
1

 ,
3

1
4


is a basis for C3 (make the vectors the columns of a square matrix and check that the matrix is
nonsingular, Theorem CNMB [324]). By Theorem LTDB [451] we know there is a unique linear
transformation R with the three specified outputs. However, we have to work just a bit harder
to take an input vector and express it as a linear combination of the vectors in D. For example,
consider,

y =

 8
−3
5


Then we must first write y as a linear combination of the vectors in D and solve for the unknown
scalars, to arrive at

y =

 8
−3
5

 = (3)

1
2
1

+ (−2)

−1
5
1

+ (1)

3
1
4


Then the proof of Theorem LTDB [451] gives us

R (y) = (3)
[

5
−1

]
+ (−2)

[
0
4

]
+ (1)

[
2
3

]
=
[

17
−8

]
Any other value of R could be computed in a similar manner. �

Here is a third example of a linear transformation defined by its action on a basis, only with
more abstract vector spaces involved.

Example LTDB3
Linear transformation defined on a basis
The set W = {p(x) ∈ P3 | p(1) = 0, p(3) = 0} ⊆ P3 is a subspace of the vector space of polynomials
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P3. This subspace has C =
{

3− 4x+ x2, 12− 13x+ x3
}

as a basis (check this!). Suppose we
consider the linear transformation S : P3 7→M22 with values

S
(
3− 4x+ x2

)
=
[
1 −3
2 0

]
S
(
12− 13x+ x3

)
=
[
0 1
1 0

]
By Theorem LTDB [451] we know there is a unique linear transformation with these two values.
To illustrate a sample computation of S, consider q(x) = 9− 6x− 5x2 + 2x3. Verify that q(x) is an
element of W (does it have roots at x = 1 and x = 3?), then find the scalars needed to write it as
a linear combination of the basis vectors in C. Because

q(x) = 9− 6x− 5x2 + 2x3 = (−5)(3− 4x+ x2) + (2)(12− 13x+ x3)

The proof of Theorem LTDB [451] gives us

S (q) = (−5)
[
1 −3
2 0

]
+ (2)

[
0 1
1 0

]
=
[
−5 17
−8 0

]
And all the other outputs of S could be computed in the same manner. Every output of S will
have a zero in the second row, second column. Can you see why this is so? �

Informally, we can describe Theorem LTDB [451] by saying “it is enough to know what a linear
transformation does to a basis (of the domain).”

Subsection PI
Pre-Images

The definition of a function requires that for each input in the domain there is exactly one output
in the codomain. However, the correspondence does not have to behave the other way around.
A member of the codomain might have many inputs from the domain that create it, or it may
have none at all. To formalize our discussion of this aspect of linear transformations, we define the
pre-image.

Definition PI
Pre-Image
Suppose that T : U 7→ V is a linear transformation. For each v, define the pre-image of v to be
the subset of U given by

T−1 (v) = {u ∈ U | T (u) = v}

4

In other words, T−1 (v) is the set of all those vectors in the domain U that get “sent” to the
vector v.

Example SPIAS
Sample pre-images, Archetype S
Archetype S [749] is the linear transformation defined by

T : C3 7→M22, T

ab
c

 =
[

a− b 2a+ 2b+ c
3a+ b+ c −2a− 6b− 2c

]

We could compute a pre-image for every element of the codomain M22. However, even in a free
textbook, we do not have the room to do that, so we will compute just two.

Choose

v =
[
2 1
3 2

]
∈M22
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for no particular reason. What is T−1 (v)? Suppose u =

u1

u2

u3

 ∈ T−1 (v). The condition that

T (u) = v becomes[
2 1
3 2

]
= v = T (u) = T

u1

u2

u3

 =
[

u1 − u2 2u1 + 2u2 + u3

3u1 + u2 + u3 −2u1 − 6u2 − 2u3

]
Using matrix equality (Definition ME [179]), we arrive at a system of four equations in the three
unknowns u1, u2, u3 with an augmented matrix that we can row-reduce in the hunt for solutions,

1 −1 0 2
2 2 1 1
3 1 1 3
−2 −6 −2 2

 RREF−−−−→


1 0 1

4
5
4

0 1 1
4 −3

4
0 0 0 0
0 0 0 0


We recognize this system as having infinitely many solutions described by the single free variable
u3. Eventually obtaining the vector form of the solutions (Theorem VFSLS [98]), we can describe
the preimage precisely as,

T−1 (v) =
{

u ∈ C3
∣∣ T (u) = v

}
=


u1

u2

u3

 ∣∣∣∣∣∣ u1 =
5
4
− 1

4
u3, u2 = −3

4
− 1

4
u3


=


 5

4 −
1
4u3

−3
4 −

1
4u3

u3

 ∣∣∣∣∣∣ u3 ∈ C3


=


 5

4
−3

4
0

+ u3

−1
4
−1

4
1

 ∣∣∣∣∣∣ u3 ∈ C3


=

 5
4
−3

4
0

+

〈
−1

4
−1

4
1


〉

This last line is merely a suggestive way of describing the set on the previous line. You might
create three or four vectors in the preimage, and evaluate T with each. Was the result what you
expected? For a hint of things to come, you might try evaluating T with just the lone vector in
the spanning set above. What was the result? Now take a look back at Theorem PSPHS [103].
Hmmmm.

OK, let’s compute another preimage, but with a different outcome this time. Choose

v =
[
1 1
2 4

]
∈M22

What is T−1 (v)? Suppose u =

u1

u2

u3

 ∈ T−1 (v). That T (u) = v becomes

[
1 1
2 4

]
= v = T (u) = T

u1

u2

u3

 =
[

u1 − u2 2u1 + 2u2 + u3

3u1 + u2 + u3 −2u1 − 6u2 − 2u3

]
Using matrix equality (Definition ME [179]), we arrive at a system of four equations in the three
unknowns u1, u2, u3 with an augmented matrix that we can row-reduce in the hunt for solutions,

1 −1 0 1
2 2 1 1
3 1 1 2
−2 −6 −2 4

 RREF−−−−→


1 0 1

4 0
0 1 1

4 0
0 0 0 1
0 0 0 0


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By Theorem RCLS [48] we recognize this system as inconsistent. So no vector u is a member of
T−1 (v) and so

T−1 (v) = ∅

�

The preimage is just a set, it is almost never a subspace of U (you might think about just when
T−1 (v) is a subspace, see Exercise ILT.T10 [475]). We will describe its properties going forward,
and it will be central to the main ideas of this chapter.

Subsection NLTFO
New Linear Transformations From Old

We can combine linear transformations in natural ways to create new linear transformations. So we
will define these combinations and then prove that the results really are still linear transformations.
First the sum of two linear transformations.

Definition LTA
Linear Transformation Addition
Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same domain and
codomain. Then their sum is the function T + S : U 7→ V whose outputs are defined by

(T + S) (u) = T (u) + S (u)

4

Notice that the first plus sign in the definition is the operation being defined, while the second
one is the vector addition in V . (Vector addition in U will appear just now in the proof that T +S
is a linear transformation.) Definition LTA [456] only provides a function. It would be nice to know
that when the constituents (T , S) are linear transformations, then so too is T + S.

Theorem SLTLT
Sum of Linear Transformations is a Linear Transformation
Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same domain and
codomain. Then T + S : U 7→ V is a linear transformation. �

Proof We simply check the defining properties of a linear transformation (Definition LT [443]).
This is a good place to consistently ask yourself which objects are being combined with which
operations.

(T + S) (x + y) = T (x + y) + S (x + y) Definition LTA [456]
= T (x) + T (y) + S (x) + S (y) Definition LT [443]
= T (x) + S (x) + T (y) + S (y) Property C [273] in V

= (T + S) (x) + (T + S) (y) Definition LTA [456]

and

(T + S) (αx) = T (αx) + S (αx) Definition LTA [456]
= αT (x) + αS (x) Definition LT [443]
= α (T (x) + S (x)) Property DVA [274] in V

= α(T + S) (x) Definition LTA [456]

�

Example STLT
Sum of two linear transformations
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Suppose that T : C2 7→ C3 and S : C2 7→ C3 are defined by

T

([
x1

x2

])
=

 x1 + 2x2

3x1 − 4x2

5x1 + 2x2

 S

([
x1

x2

])
=

 4x1 − x2

x1 + 3x2

−7x1 + 5x2


Then by Definition LTA [456], we have

(T + S)
([
x1

x2

])
= T

([
x1

x2

])
+ S

([
x1

x2

])
=

 x1 + 2x2

3x1 − 4x2

5x1 + 2x2

+

 4x1 − x2

x1 + 3x2

−7x1 + 5x2

 =

 5x1 + x2

4x1 − x2

−2x1 + 7x2


and by Theorem SLTLT [456] we know T + S is also a linear transformation from C2 to C3. �

Definition LTSM
Linear Transformation Scalar Multiplication
Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then the scalar multiple is the
function αT : U 7→ V whose outputs are defined by

(αT ) (u) = αT (u)

4
Given that T is a linear transformation, it would be nice to know that αT is also a linear

transformation.

Theorem MLTLT
Multiple of a Linear Transformation is a Linear Transformation
Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then (αT ) : U 7→ V is a linear
transformation. �

Proof We simply check the defining properties of a linear transformation (Definition LT [443]).
This is another good place to consistently ask yourself which objects are being combined with which
operations.

(αT ) (x + y) = α (T (x + y)) Definition LTSM [457]
= α (T (x) + T (y)) Definition LT [443]
= αT (x) + αT (y) Property DVA [274] in V

= (αT ) (x) + (αT ) (y) Definition LTSM [457]

and

(αT ) (βx) = αT (βx) Definition LTSM [457]
= α (βT (x)) Definition LT [443]
= (αβ)T (x) Property SMA [274] in V

= (βα)T (x) Commutativity in C
= β (αT (x)) Property SMA [274] in V

= β ((αT ) (x)) Definition LTSM [457]

�

Example SMLT
Scalar multiple of a linear transformation
Suppose that T : C4 7→ C3 is defined by

T



x1

x2

x3

x4


 =

 x1 + 2x2 − x3 + 2x4

x1 + 5x2 − 3x3 + x4

−2x1 + 3x2 − 4x3 + 2x4


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For the sake of an example, choose α = 2, so by Definition LTSM [457], we have

αT



x1

x2

x3

x4


 = 2T



x1

x2

x3

x4


 = 2

 x1 + 2x2 − x3 + 2x4

x1 + 5x2 − 3x3 + x4

−2x1 + 3x2 − 4x3 + 2x4

 =

 2x1 + 4x2 − 2x3 + 4x4

2x1 + 10x2 − 6x3 + 2x4

−4x1 + 6x2 − 8x3 + 4x4


and by Theorem MLTLT [457] we know 2T is also a linear transformation from C4 to C3. �

Now, let’s imagine we have two vector spaces, U and V , and we collect every possible linear
transformation from U to V into one big set, and call it LT (U, V ). Definition LTA [456] and
Definition LTSM [457] tell us how we can “add” and “scalar multiply” two elements of LT (U, V ).
Theorem SLTLT [456] and Theorem MLTLT [457] tell us that if we do these operations, then the
resulting functions are linear transformations that are also in LT (U, V ). Hmmmm, sounds like a
vector space to me! A set of objects, an addition and a scalar multiplication. Why not?

Theorem VSLT
Vector Space of Linear Transformations
Suppose that U and V are vector spaces. Then the set of all linear transformations from U to
V , LT (U, V ) is a vector space when the operations are those given in Definition LTA [456] and
Definition LTSM [457]. �

Proof Theorem SLTLT [456] and Theorem MLTLT [457] provide two of the ten properties in
Definition VS [273]. However, we still need to verify the remaining eight properties. By and
large, the proofs are straightforward and rely on concocting the obvious object, or by reducing the
question to the same vector space property in the vector space V .

The zero vector is of some interest, though. What linear transformation would we add to any
other linear transformation, so as to keep the second one unchanged? The answer is Z : U 7→ V
defined by Z (u) = 0V for every u ∈ U . Notice how we do not need to know any of the specifics
about U and V to make this definition of Z. �

Definition LTC
Linear Transformation Composition
Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then the composition of S
and T is the function (S ◦ T ) : U 7→W whose outputs are defined by

(S ◦ T ) (u) = S (T (u))

4

Given that T and S are linear transformations, it would be nice to know that S ◦ T is also a
linear transformation.

Theorem CLTLT
Composition of Linear Transformations is a Linear Transformation
Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then (S ◦ T ) : U 7→ W is a
linear transformation. �

Proof We simply check the defining properties of a linear transformation (Definition LT [443]).

(S ◦ T ) (x + y) = S (T (x + y)) Definition LTC [458]
= S (T (x) + T (y)) Definition LT [443] for T
= S (T (x)) + S (T (y)) Definition LT [443] for S
= (S ◦ T ) (x) + (S ◦ T ) (y) Definition LTC [458]

and

(S ◦ T ) (αx) = S (T (αx)) Definition LTC [458]
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= S (αT (x)) Definition LT [443] for T
= αS (T (x)) Definition LT [443] for S
= α(S ◦ T ) (x) Definition LTC [458]

�

Example CTLT
Composition of two linear transformations
Suppose that T : C2 7→ C4 and S : C4 7→ C3 are defined by

T

([
x1

x2

])
=


x1 + 2x2

3x1 − 4x2

5x1 + 2x2

6x1 − 3x2

 S



x1

x2

x3

x4


 =

 2x1 − x2 + x3 − x4

5x1 − 3x2 + 8x3 − 2x4

−4x1 + 3x2 − 4x3 + 5x4


Then by Definition LTC [458]

(S ◦ T )
([
x1

x2

])
= S

(
T

([
x1

x2

]))

= S



x1 + 2x2

3x1 − 4x2

5x1 + 2x2

6x1 − 3x2




=

 2(x1 + 2x2)− (3x1 − 4x2) + (5x1 + 2x2)− (6x1 − 3x2)
5(x1 + 2x2)− 3(3x1 − 4x2) + 8(5x1 + 2x2)− 2(6x1 − 3x2)
−4(x1 + 2x2) + 3(3x1 − 4x2)− 4(5x1 + 2x2) + 5(6x1 − 3x2)


=

−2x1 + 13x2

24x1 + 44x2

15x1 − 43x2


and by Theorem CLTLT [458] S ◦ T is a linear transformation from C2 to C3. �

Here is an interesting exercise that will presage an important result later. In Example STLT
[456] compute (via Theorem MLTCV [449]) the matrix of T , S and T+S. Do you see a relationship
between these three matrices?

In Example SMLT [457] compute (via Theorem MLTCV [449]) the matrix of T and 2T . Do
you see a relationship between these two matrices?

Here’s the tough one. In Example CTLT [459] compute (via Theorem MLTCV [449]) the matrix
of T , S and S ◦ T . Do you see a relationship between these three matrices???

Subsection READ
Reading Questions

1. Is the function below a linear transformation? Why or why not?

T : C3 7→ C2, T

x1

x2

x3

 =
[
3x1 − x2 + x3

8x2 − 6

]

2. Determine the matrix representation of the linear transformation S below.

S : C2 7→ C3, S

([
x1

x2

])
=

3x1 + 5x2

8x1 − 3x2

−4x1


3. Theorem LTLC [451] has a fairly simple proof. Yet the result itself is very powerful. Comment

on why we might say this.
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Subsection EXC
Exercises

C15 The archetypes below are all linear transformations whose domains and codomains are vector
spaces of column vectors (Definition VSCV [81]). For each one, compute the matrix representation
described in the proof of Theorem MLTCV [449].
Archetype M [734]
Archetype N [736]
Archetype O [738]
Archetype P [741]
Archetype Q [743]
Archetype R [746]
Contributed by Robert Beezer

C20 Let w =

−3
1
4

. Referring to Example MOLT [450], compute S (w) two different ways. First

use the definition of S, then compute the matrix-vector product Cw (Definition MVP [191]).
Contributed by Robert Beezer Solution [462]

C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =
[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Verify that T is a linear transformation.
Contributed by Robert Beezer Solution [462]

C26 Verify that the function below is a linear transformation.

T : P2 7→ C2, T
(
a+ bx+ cx2

)
=
[
2a− b
b+ c

]

Contributed by Robert Beezer Solution [462]

C30 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =
[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Compute the preimages, T−1

([
2
3

])
and T−1

([
4
−8

])
.

Contributed by Robert Beezer Solution [462]

C31 For the linear transformation S compute the pre-images.

S : C3 7→ C3, S

ab
c

 =

 a− 2b− c
3a− b+ 2c
a+ b+ 2c



S−1

−2
5
3

 S−1

−5
5
7


Contributed by Robert Beezer Solution [463]
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M10 Define two linear transformations, T : C4 7→ C3 and S : C3 7→ C2 by

S

x1

x2

x3

 =
[
x1 − 2x2 + 3x3

5x1 + 4x2 + 2x3

]
T



x1

x2

x3

x4


 =

−x1 + 3x2 + x3 + 9x4

2x1 + x3 + 7x4

4x1 + 2x2 + x3 + 2x4


Using the proof of Theorem MLTCV [449] compute the matrix representations of the three linear
transformations T , S and S ◦ T . Discover and comment on the relationship between these three
matrices.
Contributed by Robert Beezer Solution [463]

T20 Use the conclusion of Theorem LTLC [451] to motivate a new definition of a linear trans-
formation. Then prove that your new definition is equivalent to Definition LT [443]. (Technique D
[669] and Technique E [672] might be helful if you are not sure what you are being asked to prove
here.)
Contributed by Robert Beezer
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [460]

In both cases the result will be S (w) =


9
2
−9
4

.

C25 Contributed by Robert Beezer Statement [460]
We can rewrite T as follows:

T

x1

x2

x3

 =
[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
= x1

[
2
−4

]
+ x2

[
−1
2

]
+ x3

[
5
−10

]
=
[

2 −1 5
−4 2 −10

]x1

x2

x3


and Theorem MBLT [448] tell us that any function of this form is a linear transformation.

C26 Contributed by Robert Beezer Statement [460]
Check the two conditions of Definition LT [443].

T (u + v) = T
((
a+ bx+ cx2

)
+
(
d+ ex+ fx2

))
= T

(
(a+ d) + (b+ e)x+ (c+ f)x2

)
=
[
2(a+ d)− (b+ e)
(b+ e) + (c+ f)

]
=
[
(2a− b) + (2d− e)
(b+ c) + (e+ f)

]
=
[
2a− b
b+ c

]
+
[
2d− e
e+ f

]
= T (u) + T (v)

and

T (αu) = T
(
α
(
a+ bx+ cx2

))
= T

(
(αa) + (αb)x+ (αc)x2

)
=
[
2(αa)− (αb)
(αb) + (αc)

]
=
[
α(2a− b)
α(b+ c)

]
= α

[
2a− b
b+ c

]
= αT (u)

So T is indeed a linear transformation.

C30 Contributed by Robert Beezer Statement [460]

For the first pre-image, we want x ∈ C3 such that T (x) =
[
2
3

]
. This becomes,[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
=
[
2
3

]
Vector equality gives a system of two linear equations in three variables, represented by the aug-
mented matrix [

2 −1 5 2
−4 2 −10 3

]
RREF−−−−→

[
1 −1

2
5
2 0

0 0 0 1

]
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so the system is inconsistent and the pre-image is the empty set. For the second pre-image the
same procedure leads to an augmented matrix with a different vector of constants[

2 −1 5 4
−4 2 −10 −8

]
RREF−−−−→

[
1 −1

2
5
2 2

0 0 0 0

]
This system is consistent and has infinitely many solutions, as we can see from the presence of the
two free variables (x2 and x3) both to zero. We apply Theorem VFSLS [98] to obtain

T−1

([
4
−8

])
=


2

0
0

+ x2

1
2
1
0

+ x3

−5
2

0
1

 ∣∣∣∣∣∣ x2, x3 ∈ C


C31 Contributed by Robert Beezer Statement [460]
We work from the definition of the pre-image, Definition PI [454]. Setting

S

ab
c

 =

−2
5
3


we arrive at a system of three equations in three variables, with an augmented matrix that we
row-reduce in a search for solutions,1 −2 −1 −2

3 −1 2 5
1 1 2 3

 RREF−−−−→

 1 0 1 0
0 1 1 0
0 0 0 1


With a leading 1 in the last column, this system is inconsistent (Theorem RCLS [48]), and there
are no values of a, b and c that will create an element of the pre-image. So the preimage is the
empty set.

We work from the definition of the pre-image, Definition PI [454]. Setting

S

ab
c

 =

−5
5
7


we arrive at a system of three equations in three variables, with an augmented matrix that we
row-reduce in a search for solutions,1 −2 −1 −5

3 −1 2 5
1 1 2 7

 RREF−−−−→

 1 0 1 3
0 1 1 4
0 0 0 0


The solution set to this system, which is also the desired pre-image, can be expressed using the
vector form of the solutions (Theorem VFSLS [98])

S−1

−5
5
7

 =


3

4
0

+ c

−1
−1
1

 ∣∣∣∣∣∣ c ∈ C

 =

3
4
0

+

〈
−1
−1
1


〉

Does the final expression for this set remind you of Theorem KPI [470]?

M10 Contributed by Robert Beezer Statement [461]

[
1 −2 3
5 4 2

]−1 3 1 9
2 0 1 7
4 2 1 2

 =
[

7 9 2 1
11 19 11 77

]
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Section ILT
Injective Linear Transformations

Some linear transformations possess one, or both, of two key properties, which go by the names
injective and surjective. We will see that they are closely related to ideas like linear independence
and spanning, and subspaces like the null space and the column space. In this section we will define
an injective linear transformation and analyze the resulting consequences. The next section will do
the same for the surjective property. In the final section of this chapter we will see what happens
when we have the two properties simultaneously.

As usual, we lead with a definition.

Definition ILT
Injective Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then T is injective if whenever T (x) = T (y),
then x = y. 4

Given an arbitrary function, it is possible for two different inputs to yield the same output (think
about the function f(x) = x2 and the inputs x = 3 and x = −3). For an injective function, this
never happens. If we have equal outputs (T (x) = T (y)) then we must have achieved those equal
outputs by employing equal inputs (x = y). Some authors prefer the term one-to-one where we
use injective, and we will sometimes refer to an injective linear transformation as an injection.

Subsection EILT
Examples of Injective Linear Transformations

It is perhaps most instructive to examine a linear transformation that is not injective first.

Example NIAQ
Not injective, Archetype Q
Archetype Q [743] is the linear transformation

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5


Notice that for

x =


1
3
−1
2
4

 y =


4
7
0
5
7


we have

T




1
3
−1
2
4


 =


4
55
72
77
31

 T




4
7
0
5
7


 =


4
55
72
77
31


So we have two vectors from the domain, x 6= y, yet T (x) = T (y), in violation of Definition ILT
[465]. This is another example where you should not concern yourself with how x and y were
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selected, as this will be explained shortly. However, do understand why these two vectors provide
enough evidence to conclude that T is not injective. �

To show that a linear transformation is not injective, it is enough to find a single pair of inputs
that get sent to the identical output, as in Example NIAQ [465]. However, to show that a linear
transformation is injective we must establish that this coincidence of outputs never occurs. Here
is an example that shows how to establish this.

Example IAR
Injective, Archetype R
Archetype R [746] is the linear transformation

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5


To establish that R is injective we must begin with the assumption that T (x) = T (y) and somehow
arrive from this at the conclusion that x = y. Here we go,

T (x) = T (y)

T



x1

x2

x3

x4

x5


 = T



y1

y2

y3

y4

y5





−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5

 =


−65y1 + 128y2 + 10y3 − 262y4 + 40y5

36y1 − 73y2 − y3 + 151y4 − 16y5

−44y1 + 88y2 + 5y3 − 180y4 + 24y5

34y1 − 68y2 − 3y3 + 140y4 − 18y5

12y1 − 24y2 − y3 + 49y4 − 5y5



−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5

−

−65y1 + 128y2 + 10y3 − 262y4 + 40y5

36y1 − 73y2 − y3 + 151y4 − 16y5

−44y1 + 88y2 + 5y3 − 180y4 + 24y5

34y1 − 68y2 − 3y3 + 140y4 − 18y5

12y1 − 24y2 − y3 + 49y4 − 5y5

 =


0
0
0
0
0



−65(x1 − y1) + 128(x2 − y2) + 10(x3 − y3)− 262(x4 − y4) + 40(x5 − y5)

36(x1 − y1)− 73(x2 − y2)− (x3 − y3) + 151(x4 − y4)− 16(x5 − y5)
−44(x1 − y1) + 88(x2 − y2) + 5(x3 − y3)− 180(x4 − y4) + 24(x5 − y5)
34(x1 − y1)− 68(x2 − y2)− 3(x3 − y3) + 140(x4 − y4)− 18(x5 − y5)

12(x1 − y1)− 24(x2 − y2)− (x3 − y3) + 49(x4 − y4)− 5(x5 − y5)

 =


0
0
0
0
0



−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5



x1 − y1

x2 − y2

x3 − y3

x4 − y4

x5 − y5

 =


0
0
0
0
0


Now we recognize that we have a homogeneous system of 5 equations in 5 variables (the terms
xi − yi are the variables), so we row-reduce the coefficient matrix to

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


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So the only solution is the trivial solution

x1 − y1 = 0 x2 − y2 = 0 x3 − y3 = 0 x4 − y4 = 0 x5 − y5 = 0

and we conclude that indeed x = y. By Definition ILT [465], T is injective. �

Let’s now examine an injective linear transformation between abstract vector spaces.

Example IAV
Injective, Archetype V
Archetype V [755] is defined by

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=
[
a+ b a− 2c
d b− d

]
To establish that the linear transformation is injective, begin by supposing that two polynomial
inputs yield the same output matrix,

T
(
a1 + b1x+ c1x

2 + d1x
3
)

= T
(
a2 + b2x+ c2x

2 + d2x
3
)

Then

O =
[
0 0
0 0

]
= T

(
a1 + b1x+ c1x

2 + d1x
3
)
− T

(
a2 + b2x+ c2x

2 + d2x
3
)

Hypothesis

= T
(
(a1 + b1x+ c1x

2 + d1x
3)− (a2 + b2x+ c2x

2 + d2x
3)
)

Definition LT [443]

= T
(
(a1 − a2) + (b1 − b2)x+ (c1 − c2)x2 + (d1 − d2)x3

)
Operations in P3

=
[
(a1 − a2) + (b1 − b2) (a1 − a2)− 2(c1 − c2)

(d1 − d2) (b1 − b2)− (d1 − d2)

]
Definition of T

This single matrix equality translates to the homogeneous system of equations in the variables
ai − bi,

(a1 − a2) + (b1 − b2) = 0
(a1 − a2)− 2(c1 − c2) = 0

(d1 − d2) = 0
(b1 − b2)− (d1 − d2) = 0

This system of equations can be rewritten as the matrix equation
1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0 −1




(a1 − a2)
(b1 − b2)
(c1 − c2)
(d1 − d2)

 =


0
0
0
0


Since the coefficient matrix is nonsingular (check this) the only solution is trivial, i.e.

a1 − a2 = 0 b1 − b2 = 0 c1 − c2 = 0 d1 − d2 = 0

so that

a1 = a2 b1 = b2 c1 = c2 d1 = d2

so the two inputs must be equal polynomials. By Definition ILT [465], T is injective. �
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Subsection KLT
Kernel of a Linear Transformation

For a linear transformation T : U 7→ V , the kernel is a subset of the domain U . Informally, it is
the set of all inputs that the transformation sends to the zero vector of the codomain. It will have
some natural connections with the null space of a matrix, so we will keep the same notation, and
if you think about your objects, then there should be little confusion. Here’s the careful definition.

Definition KLT
Kernel of a Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then the kernel of T is the set

K(T ) = {u ∈ U | T (u) = 0}

(This definition contains Notation KLT.) 4

Notice that the kernel of T is just the preimage of 0, T−1 (0) (Definition PI [454]). Here’s an
example.

Example NKAO
Nontrivial kernel, Archetype O
Archetype O [738] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3


To determine the elements of C3 in K(T ), find those vectors u such that T (u) = 0, that is,

T (u) = 0
−u1 + u2 − 3u3

−u1 + 2u2 − 4u3

u1 + u2 + u3

2u1 + 3u2 + u3

u1 + 2u3

 =


0
0
0
0
0


Vector equality (Definition CVE [82]) leads us to a homogeneous system of 5 equations in the
variables ui,

−u1 + u2 − 3u3 = 0
−u1 + 2u2 − 4u3 = 0

u1 + u2 + u3 = 0
2u1 + 3u2 + u3 = 0

u1 + 2u3 = 0

Row-reducing the coefficient matrix gives
1 0 2
0 1 −1
0 0 0
0 0 0
0 0 0


Version 1.30



Subsection ILT.KLT Kernel of a Linear Transformation 469

The kernel of T is the set of solutions to this homogeneous system of equations, which by Theorem
BNS [140] can be expressed as

K(T ) =

〈
−2

1
1


〉

�

We know that the span of a set of vectors is always a subspace (Theorem SSS [293]), so the
kernel computed in Example NKAO [468] is also a subspace. This is no accident, the kernel of a
linear transformation is always a subspace.

Theorem KLTS
Kernel of a Linear Transformation is a Subspace
Suppose that T : U 7→ V is a linear transformation. Then the kernel of T , K(T ), is a subspace of
U . �

Proof We can apply the three-part test of Theorem TSS [288]. First T (0U ) = 0V by Theorem
LTTZZ [446], so 0U ∈ K(T ) and we know that the kernel is non-empty.

Suppose we assume that x, y ∈ K(T ). Is x + y ∈ K(T )?

T (x + y) = T (x) + T (y) Definition LT [443]
= 0 + 0 x, y ∈ K(T )
= 0 Property Z [273]

This qualifies x + y for membership in K(T ). So we have additive closure.
Suppose we assume that α ∈ C and x ∈ K(T ). Is αx ∈ K(T )?

T (αx) = αT (x) Definition LT [443]
= α0 x ∈ K(T )
= 0 Theorem ZVSM [280]

This qualifies αx for membership in K(T ). So we have scalar closure and Theorem TSS [288] tells
us that K(T ) is a subspace of U .

�

Let’s compute another kernel, now that we know in advance that it will be a subspace.

Example TKAP
Trivial kernel, Archetype P
Archetype P [741] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 + x3

−x1 + 2x2 + 2x3

x1 + x2 + 3x3

2x1 + 3x2 + x3

−2x1 + x2 + 3x3


To determine the elements of C3 in K(T ), find those vectors u such that T (u) = 0, that is,

T (u) = 0
−u1 + u2 + u3

−u1 + 2u2 + 2u3

u1 + u2 + 3u3

2u1 + 3u2 + u3

−2u1 + u2 + 3u3

 =


0
0
0
0
0


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Vector equality (Definition CVE [82]) leads us to a homogeneous system of 5 equations in the
variables ui,

−u1 + u2 + u3 = 0
−u1 + 2u2 + 2u3 = 0
u1 + u2 + 3u3 = 0

2u1 + 3u2 + u3 = 0
−2u1 + u2 + 3u3 = 0

Row-reducing the coefficient matrix gives
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


The kernel of T is the set of solutions to this homogeneous system of equations, which is simply
the trivial solution u = 0, so

K(T ) = {0} = 〈{ }〉

�

Our next theorem says that if a preimage is a non-empty set then we can construct it by picking
any one element and adding on elements of the kernel.

Theorem KPI
Kernel and Pre-Image
Suppose T : U 7→ V is a linear transformation and v ∈ V . If the preimage T−1 (v) is non-empty,
and u ∈ T−1 (v) then

T−1 (v) = {u + z | z ∈ K(T )} = u +K(T )

�

Proof Let M = {u + z | z ∈ K(T )}. First, we show that M ⊆ T−1 (v). Suppose that w ∈M , so
w has the form w = u + z, where z ∈ K(T ). Then

T (w) = T (u + z)
= T (u) + T (z) Definition LT [443]

= v + 0 u ∈ T−1 (v) , z ∈ K(T )
= v Property Z [273]

which qualifies w for membership in the preimage of v, w ∈ T−1 (v).
For the opposite inclusion, suppose x ∈ T−1 (v). Then,

T (x− u) = T (x)− T (u) Definition LT [443]

= v − v x, u ∈ T−1 (v)
= 0

This qualifies x − u for membership in the kernel of T , K(T ). So there is a vector z ∈ K(T ) such
that x−u = z. Rearranging this equation gives x = u + z and so x ∈M . So T−1 (v) ⊆M and we
see that M = T−1 (v), as desired. �

This theorem, and its proof, should remind you very much of Theorem PSPHS [103]. Addi-
tionally, you might go back and review Example SPIAS [454]. Can you tell now which is the only
preimage to be a subspace?
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The next theorem is one we will cite frequently, as it characterizes injections by the size of the
kernel.

Theorem KILT
Kernel of an Injective Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then T is injective if and only if the kernel of
T is trivial, K(T ) = {0}. �

Proof (⇒) Suppose x ∈ K(T ). Then by Definition KLT [468], T (x) = 0. By Theorem LTTZZ
[446], T (0) = 0. Now, since T (x) = T (0), we can apply Definition ILT [465] to conclude that
x = 0. Therefore K(T ) = {0}.

(⇐) To establish that T is injective, appeal to Definition ILT [465] and begin with the assump-
tion that T (x) = T (y). Then

0 = T (x)− T (y) Hypothesis
= T (x− y) Definition LT [443]

so by Definition KLT [468] and the hypothesis that the kernel is trivial,

x− y ∈ K(T ) = {0}

which means that

0 = x− y

x = y

thus establishing that T is injective. �

Example NIAQR
Not injective, Archetype Q, revisited
We are now in a position to revisit our first example in this section, Example NIAQ [465]. In that
example, we showed that Archetype Q [743] is not injective by constructing two vectors, which when
used to evaluate the linear transformation provided the same output, thus violating Definition ILT
[465]. Just where did those two vectors come from?

The key is the vector

z =


3
4
1
3
3


which you can check is an element of K(T ) for Archetype Q [743]. Choose a vector x at random,
and then compute y = x + z (verify this computation back in Example NIAQ [465]). Then

T (y) = T (x + z)
= T (x) + T (z) Definition LT [443]
= T (x) + 0 z ∈ K(T )
= T (x) Property Z [273]

Whenever the kernel of a linear transformation is non-trivial, we can employ this device and con-
clude that the linear transformation is not injective. This is another way of viewing Theorem KILT
[471]. For an injective linear transformation, the kernel is trivial and our only choice for z is the
zero vector, which will not help us create two different inputs for T that yield identical outputs.
For every one of the archetypes that is not injective, there is an example presented of exactly this
form. �

Example NIAO
Not injective, Archetype O
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In Example NKAO [468] the kernel of Archetype O [738] was determined to be〈
−2

1
1


〉

a subspace of C3 with dimension 1. Since the kernel is not trivial, Theorem KILT [471] tells us
that T is not injective. �

Example IAP
Injective, Archetype P
In Example TKAP [469] it was shown that the linear transformation in Archetype P [741] has a
trivial kernel. So by Theorem KILT [471], T is injective. �

Subsection ILTLI
Injective Linear Transformations and Linear Independence

There is a connection between injective linear transformations and linearly independent sets that
we will make precise in the next two theorems. However, more informally, we can get a feel for
this connection when we think about how each property is defined. A set of vectors is linearly
independent if the only relation of linear dependence is the trivial one. A linear transformation is
injective if the only way two input vectors can produce the same output is if the trivial way, when
both input vectors are equal.

Theorem ILTLI
Injective Linear Transformations and Linear Independence
Suppose that T : U 7→ V is an injective linear transformation and S = {u1, u2, u3, . . . , ut} is a
linearly independent subset of U . Then R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)} is a linearly
independent subset of V . �

Proof Begin with a relation of linear dependence on R (Definition RLD [303], Definition LI [303]),

a1T (u1) + a2T (u2) + a3T (u3) + . . .+ atT (ut) = 0

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = 0 Theorem LTLC [451]
a1u1 + a2u2 + a3u3 + · · ·+ atut ∈ K(T ) Definition KLT [468]
a1u1 + a2u2 + a3u3 + · · ·+ atut ∈ {0} Theorem KILT [471]
a1u1 + a2u2 + a3u3 + · · ·+ atut = 0 Definition SET [665]

Since this is a relation of linear dependence on the linearly independent set S, we can conclude that

a1 = 0 a2 = 0 a3 = 0 . . . at = 0

and this establishes that R is a linearly independent set. �

Theorem ILTB
Injective Linear Transformations and Bases
Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a basis
of U . Then T is injective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)} is a linearly
independent subset of V . �

Proof (⇒) Assume T is injective. Since B is a basis, we know B is linearly independent (Definition
B [319]). Then Theorem ILTLI [472] says that C is a linearly independent subset of V .

(⇐) Assume that C is linearly independent. To establish that T is injective, we will show that
the kernel of T is trivial (Theorem KILT [471]). Suppose that u ∈ K(T ). As an element of U , we
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can write u as a linear combination of the basis vectors in B (uniquely). So there are are scalars,
a1, a2, a3, . . . , am, such that

u = a1u1 + a2u2 + a3u3 + · · ·+ amum

Then,

0 = T (u) u ∈ K(T )
= T (a1u1 + a2u2 + a3u3 + · · ·+ amum) B spans U
= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ amT (um) Theorem LTLC [451] Definition TSVS [307]

This is a relation of linear dependence (Definition RLD [303]) on the linearly independent set C,
so the scalars are all zero: a1 = a2 = a3 = · · · = am = 0. Then

u = a1u1 + a2u2 + a3u3 + · · ·+ amum
= 0u1 + 0u2 + 0u3 + · · ·+ 0um Theorem ZSSM [280]
= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [280]
= 0 Property Z [273]

Since u was chosen as an arbitrary vector from K(T ), we have K(T ) = {0} and Theorem KILT
[471] tells us that T is injective. �

Subsection ILTD
Injective Linear Transformations and Dimension

Theorem ILTD
Injective Linear Transformations and Dimension
Suppose that T : U 7→ V is an injective linear transformation. Then dim (U) ≤ dim (V ). �

Proof Suppose to the contrary that m = dim (U) > dim (V ) = t. Let B be a basis of U , which
will then contain m vectors. Apply T to each element of B to form a set C that is a subset of V . By
Theorem ILTB [472], C is linearly independent and therefore must contain m distinct vectors. So we
have found a set of m linearly independent vectors in V , a vector space of dimension t, with m > t.
However, this contradicts Theorem G [347], so our assumption is false and dim (U) ≤ dim (V ). �

Example NIDAU
Not injective by dimension, Archetype U
The linear transformation in Archetype U [753] is

T : M23 7→ C4, T

([
a b c
d e f

])
=


a+ 2b+ 12c− 3d+ e+ 6f

2a− b− c+ d− 11f
a+ b+ 7c+ 2d+ e− 3f
a+ 2b+ 12c+ 5e− 5f


Since dim (M23) = 6 > 4 = dim

(
C4
)
, T cannot be injective for then T would violate Theorem

ILTD [473]. �

Notice that the previous example made no use of the actual formula defining the function.
Merely a comparison of the dimensions of the domain and codomain are enough to conclude that
the linear transformation is not injective. Archetype M [734] and Archetype N [736] are two more
examples of linear transformations that have “big” domains and “small” codomains, resulting in
“collisions” of outputs and thus are non-injective linear transformations.
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Subsection CILT
Composition of Injective Linear Transformations

In Subsection LT.NLTFO [456] we saw how to combine linear transformations to build new linear
transformations, specifically, how to build the composition of two linear transformations (Definition
LTC [458]). It will be useful later to know that the composition of injective linear transformations
is again injective, so we prove that here.

Theorem CILTI
Composition of Injective Linear Transformations is Injective
Suppose that T : U 7→ V and S : V 7→W are injective linear transformations. Then (S◦T ) : U 7→W
is an injective linear transformation. �

Proof That the composition is a linear transformation was established in Theorem CLTLT [458],
so we need only establish that the composition is injective. Applying Definition ILT [465], choose
x, y from U . Then

Assume (S ◦ T ) (x) = (S ◦ T ) (y)
S (T (x)) = S (T (y)) Definition LTC [458]

⇒ T (x) = T (y) Definition ILT [465] for S
⇒ x = y Definition ILT [465] for T

�

Subsection READ
Reading Questions

1. Suppose T : C8 7→ C5 is a linear transformation. Why can’t T be injective?

2. Describe the kernel of an injective linear transformation.

3. Theorem KPI [470] should remind you of Theorem PSPHS [103]. Why do we say this?
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Subsection EXC
Exercises

C10 Each archetype below is a linear transformation. Compute the kernel for each.
Archetype M [734]
Archetype N [736]
Archetype O [738]
Archetype P [741]
Archetype Q [743]
Archetype R [746]
Archetype S [749]
Archetype T [751]
Archetype U [753]
Archetype V [755]
Archetype W [757]
Archetype X [759]

Contributed by Robert Beezer

C20 The linear transformation T : C4 7→ C3 is not injective. Find two inputs x, y ∈ C4 that yield
the same output (that is T (x) = T (y).)

T



x1

x2

x3

x4


 =

 2x1 + x2 + x3

−x1 + 3x2 + x3 − x4

3x1 + x2 + 2x3 − 2x4



Contributed by Robert Beezer Solution [477]

C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =
[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Find a basis for the kernel of T , K(T ). Is T injective?
Contributed by Robert Beezer Solution [477]

C40 Show that the linear transformation R is not injective by finding two different elements of
the domain, x and y, such that R (x) = R (y). (S22 is the vector space of symmetric 2×2 matrices.)

R : S22 7→ P1 R

([
a b
b c

])
= (2a− b+ c) + (a+ b+ 2c)x

Contributed by Robert Beezer Solution [478]

T10 Suppose T : U 7→ V is a linear transformation. For which vectors v ∈ V is T−1 (v) a subspace
of of U?
Contributed by Robert Beezer

T15 Suppose that that T : U 7→ V and S : V 7→W are linear transformations. Prove the following
relationship between null spaces.

K(T ) ⊆ K(S ◦ T )

Contributed by Robert Beezer Solution [478]

Version 1.30



476 Section ILT Injective Linear Transformations

T20 Suppose that A is an m× n matrix. Define the linear transformation T by

T : Cn 7→ Cm, T (x) = Ax

Prove that the kernel of T equals the null space of A, K(T ) = N (A).
Contributed by Andy Zimmer Solution [478]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [475]
A linear transformation that is not injective will have a non-trivial kernel (Theorem KILT [471]),
and this is the key to finding the desired inputs. We need one non-trivial element of the kernel, so
suppose that z ∈ C4 is an element of the kernel,0

0
0

 = 0 = T (z) =

 2z1 + z2 + z3

−z1 + 3z2 + z3 − z4

3z1 + z2 + 2z3 − 2z4


Vector equality Definition CVE [82] leads to the homogeneous system of three equations in four
variables,

2z1 + z2 + z3 = 0
−z1 + 3z2 + z3 − z4 = 0
3z1 + z2 + 2z3 − 2z4 = 0

The coefficient matrix of this system row-reduces as 2 1 1 0
−1 3 1 −1
3 1 2 −2

 RREF−−−−→

 1 0 0 1
0 1 0 1
0 0 1 −3


From this we can find a solution (we only need one), that is an element of K(T ),

z =


−1
−1
3
1


Now, we choose a vector x at random and set y = x + z,

x =


2
3
4
−2

 y = x + z =


2
3
4
−2

+


−1
−1
3
1

 =


1
2
7
−1


and you can check that

T (x) =

11
13
21

 = T (y)

A quicker solution is to take two elements of the kernel (in this case, scalar multiples of z) which
both get sent to 0 by T . Quicker yet, take 0 and z as x and y, which also both get sent to 0 by T .

C25 Contributed by Robert Beezer Statement [475]
To find the kernel, we require all x ∈ C3 such that T (x) = 0. This condition is[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
=
[
0
0

]
This leads to a homogeneous system of two linear equations in three variables, whose coefficient
matrix row-reduces to [

1 −1
2

5
2

0 0 0

]
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With two free variables Theorem BNS [140] yields the basis for the null space
−5

2
0
1

 ,
1

2
1
0


With n (T ) 6= 0, K(T ) 6= {0}, so Theorem KILT [471] says T is not injective.

C40 Contributed by Robert Beezer Statement [475]
We choose x to be any vector we like. A particularly cocky choice would be to choose x = 0, but
we will instead choose

x =
[

2 −1
−1 4

]
Then R (x) = 9 + 9x. Now compute the kernel of R, which by Theorem KILT [471] we expect to

be nontrivial. Setting R
([
a b
b c

])
equal to the zero vector, 0 = 0 + 0x, and equating coefficients

leads to a homogenous system of equations. Row-reducing the coefficient matrix of this system will
allow us to determine the values of a, b and c that create elements of the null space of R,[

2 −1 1
1 1 2

]
RREF−−−−→

[
1 0 1
0 1 1

]
We only need a single element of the null space of this coefficient matrix, so we will not compute
a precise description of the whole null space. Instead, choose the free variable c = 2. Then

z =
[
−2 −2
−2 2

]
is the corresponding element of the kernel. We compute the desired y as

y = x + z =
[

2 −1
−1 4

]
+
[
−2 −2
−2 2

]
=
[

0 −3
−3 6

]
Then check that R (y) = 9 + 9x.

T15 Contributed by Robert Beezer Statement [475]
We are asked to prove that K(T ) is a subset of K(S ◦ T ). Employing Definition SSET [665], choose
x ∈ K(T ). Then we know that T (x) = 0. So

(S ◦ T ) (x) = S (T (x)) Definition LTC [458]
= S (0) x ∈ K(T )
= 0 Theorem LTTZZ [446]

This qualifies x for membership in K(S ◦ T ).

T20 Contributed by Andy Zimmer Statement [476]
This is an equality of sets, so we want to establish two subset conditions (Definition SE [666]).

First, show N (A) ⊆ K(T ). Choose x ∈ N (A). Check to see if x ∈ K(T ),

T (x) = Ax Definition of T
= 0 x ∈ N (A)

So by Definition KLT [468], x ∈ K(T ) and thus N (A) ⊆ N (T ).
Now, show K(T ) ⊆ N (A). Choose x ∈ K(T ). Check to see if x ∈ N (A),

Ax = T (x) Definition of T
= 0 x ∈ K(T )

So by Definition NSM [59], x ∈ N (A) and thus N (T ) ⊆ N (A).
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Section SLT
Surjective Linear Transformations

The companion to an injection is a surjection. Surjective linear transformations are closely related
to spanning sets and ranges. So as you read this section reflect back on Section ILT [465] and note
the parallels and the contrasts. In the next section, Section IVLT [495], we will combine the two
properties.

As usual, we lead with a definition.

Definition SLT
Surjective Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then T is surjective if for every v ∈ V there exists
a u ∈ U so that T (u) = v. 4

Given an arbitrary function, it is possible for there to be an element of the codomain that is
not an output of the function (think about the function y = f(x) = x2 and the codomain element
y = −3). For a surjective function, this never happens. If we choose any element of the codomain
(v ∈ V ) then there must be an input from the domain (u ∈ U) which will create the output
when used to evaluate the linear transformation (T (u) = v). Some authors prefer the term onto
where we use surjective, and we will sometimes refer to a surjective linear transformation as a
surjection.

Subsection ESLT
Examples of Surjective Linear Transformations

It is perhaps most instructive to examine a linear transformation that is not surjective first.

Example NSAQ
Not surjective, Archetype Q
Archetype Q [743] is the linear transformation

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5


We will demonstrate that

v =


−1
2
3
−1
4


is an unobtainable element of the codomain. Suppose to the contrary that u is an element of the
domain such that T (u) = v. Then

−1
2
3
−1
4

 = v = T (u) = T



u1

u2

u3

u4

u5



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=


−2u1 + 3u2 + 3u3 − 6u4 + 3u5

−16u1 + 9u2 + 12u3 − 28u4 + 28u5

−19u1 + 7u2 + 14u3 − 32u4 + 37u5

−21u1 + 9u2 + 15u3 − 35u4 + 39u5

−9u1 + 5u2 + 7u3 − 16u4 + 16u5



=


−2 3 3 −6 3
−16 9 12 −28 28
−19 7 14 −32 37
−21 9 15 −35 39
−9 5 7 −16 16



u1

u2

u3

u4

u5


Now we recognize the appropriate input vector u as a solution to a linear system of equations.
Form the augmented matrix of the system, and row-reduce to

1 0 0 0 −1 0
0 1 0 0 −4

3 0
0 0 1 0 −1

3 0
0 0 0 1 −1 0
0 0 0 0 0 1


With a leading 1 in the last column, Theorem RCLS [48] tells us the system is inconsistent. From
the absence of any solutions we conclude that no such vector u exists, and by Definition SLT [479],
T is not surjective.

Again, do not concern yourself with how v was selected, as this will be explained shortly. How-
ever, do understand why this vector provides enough evidence to conclude that T is not surjective.

�

To show that a linear transformation is not surjective, it is enough to find a single element of
the codomain that is never created by any input, as in Example NSAQ [479]. However, to show
that a linear transformation is surjective we must establish that every element of the codomain
occurs as an output of the linear transformation for some appropriate input.

Example SAR
Surjective, Archetype R
Archetype R [746] is the linear transformation

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5


To establish that R is surjective we must begin with a totally arbitrary element of the codomain,
v and somehow find an input vector u such that T (u) = v. We desire,

T (u) = v
−65u1 + 128u2 + 10u3 − 262u4 + 40u5

36u1 − 73u2 − u3 + 151u4 − 16u5

−44u1 + 88u2 + 5u3 − 180u4 + 24u5

34u1 − 68u2 − 3u3 + 140u4 − 18u5

12u1 − 24u2 − u3 + 49u4 − 5u5

 =


v1

v2

v3

v4

v5



−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5



u1

u2

u3

u4

u5

 =


v1

v2

v3

v4

v5


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We recognize this equation as a system of equations in the variables ui, but our vector of constants
contains symbols. In general, we would have to row-reduce the augmented matrix by hand, due
to the symbolic final column. However, in this particular example, the 5 × 5 coefficient matrix is
nonsingular and so has an inverse (Theorem NI [223], Definition MI [208]).

−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5


−1

=


−47 92 1 −181 −14
27 −55 7

2
221
2 11

−32 64 −1 −126 −12
25 −50 3

2
199
2 9

9 −18 1
2

71
2 4


so we find that 

u1

u2

u3

u4

u5

 =


−47 92 1 −181 −14
27 −55 7

2
221
2 11

−32 64 −1 −126 −12
25 −50 3

2
199
2 9

9 −18 1
2

71
2 4



v1

v2

v3

v4

v5



=


−47v1 + 92v2 + v3 − 181v4 − 14v5

27v1 − 55v2 + 7
2v3 + 221

2 v4 + 11v5

−32v1 + 64v2 − v3 − 126v4 − 12v5

25v1 − 50v2 + 3
2v3 + 199

2 v4 + 9v5

9v1 − 18v2 + 1
2v3 + 71

2 v4 + 4v5


This establishes that if we are given any output vector v, we can use its components in this final
expression to formulate a vector u such that T (u) = v. So by Definition SLT [479] we now know
that T is surjective. You might try to verify this condition in its full generality (i.e. evaluate T
with this final expression and see if you get v as the result), or test it more specifically for some
numerical vector v (see Exercise SLT.C20 [491]). �

Let’s now examine a surjective linear transformation between abstract vector spaces.

Example SAV
Surjective, Archetype V
Archetype V [755] is defined by

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=
[
a+ b a− 2c
d b− d

]
To establish that the linear transformation is surjective, begin by choosing an arbitrary output. In
this example, we need to choose an arbitrary 2× 2 matrix, say

v =
[
x y
z w

]
and we would like to find an input polynomial

u = a+ bx+ cx2 + dx3

so that T (u) = v. So we have, [
x y
z w

]
= v

= T (u)

= T
(
a+ bx+ cx2 + dx3

)
=
[
a+ b a− 2c
d b− d

]
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Matrix equality leads us to the system of four equations in the four unknowns, x, y, z, w,

a+ b = x

a− 2c = y

d = z

b− d = w

which can be rewritten as a matrix equation,
1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0 −1



a
b
c
d

 =


x
y
z
w


The coefficient matrix is nonsingular, hence it has an inverse,

1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0− 1


−1

=


1 0 −1 −1
0 0 1 1
1
2 −1

2 −1
2 −1

2
0 0 1 0


so we have 

a
b
c
d

 =


1 0 −1 −1
0 0 1 1
1
2 −1

2 −1
2 −1

2
0 0 1 0



x
y
z
w



=


x− z − w
z + w

1
2(x− y − z − w)

z


So the input polynomial u = (x− z−w) + (z+w)x+ 1

2(x−y− z−w)x2 + zx3 will yield the output
matrix v, no matter what form v takes. This means by Definition SLT [479] that T is surjective.
All the same, let’s do a concrete demonstration and evaluate T with u,

T (u) = T

(
(x− z − w) + (z + w)x+

1
2

(x− y − z − w)x2 + zx3

)
=
[
(x− z − w) + (z + w) (x− z − w)− 2(1

2(x− y − z − w))
z (z + w)− z

]
=
[
x y
z w

]
= v

�

Subsection RLT
Range of a Linear Transformation

For a linear transformation T : U 7→ V , the range is a subset of the codomain V . Informally, it
is the set of all outputs that the transformation creates when fed every possible input from the
domain. It will have some natural connections with the column space of a matrix, so we will keep
the same notation, and if you think about your objects, then there should be little confusion. Here’s
the careful definition.
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Definition RLT
Range of a Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then the range of T is the set

R(T ) = {T (u) | u ∈ U}

(This definition contains Notation RLT.) 4

Example RAO
Range, Archetype O
Archetype O [738] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3


To determine the elements of C5 in R(T ), find those vectors v such that T (u) = v for some u ∈ C3,

v = T (u)

=


−u1 + u2 − 3u3

−u1 + 2u2 − 4u3

u1 + u2 + u3

2u1 + 3u2 + u3

u1 + 2u3



=


−u1

−u1

u1

2u1

u1

+


u2

2u2

u2

3u2

0

+


−3u3

−4u3

u3

u3

2u3



= u1


−1
−1
1
2
1

+ u2


1
2
1
3
0

+ u3


−3
−4
1
1
2


This says that every output of T (v) can be written as a linear combination of the three vectors

−1
−1
1
2
1




1
2
1
3
0



−3
−4
1
1
2


using the scalars u1, u2, u3. Furthermore, since u can be any element of C3, every such linear
combination is an output. This means that

R(T ) =

〈


−1
−1
1
2
1

 ,


1
2
1
3
0

 ,

−3
−4
1
1
2



〉

The three vectors in this spanning set for R(T ) form a linearly dependent set (check this!). So we
can find a more economical presentation by any of the various methods from Section CRS [231]
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and Section FS [251]. We will place the vectors into a matrix as rows, row-reduce, toss out zero
rows and appeal to Theorem BRS [240], so we can describe the range of T with a basis,

R(T ) =

〈


1
0
−3
−7
−2

 ,


0
1
2
5
1



〉

�

We know that the span of a set of vectors is always a subspace (Theorem SSS [293]), so the
range computed in Example RAO [483] is also a subspace. This is no accident, the range of a linear
transformation is always a subspace.

Theorem RLTS
Range of a Linear Transformation is a Subspace
Suppose that T : U 7→ V is a linear transformation. Then the range of T , R(T ), is a subspace of
V . �

Proof We can apply the three-part test of Theorem TSS [288]. First, 0U ∈ U and T (0U ) = 0V
by Theorem LTTZZ [446], so 0V ∈ R(T ) and we know that the range is non-empty.

Suppose we assume that x, y ∈ R(T ). Is x + y ∈ R(T )? If x, y ∈ R(T ) then we know there
are vectors w, z ∈ U such that T (w) = x and T (z) = y. Because U is a vector space, additive
closure (Property AC [273]) implies that w + z ∈ U . Then

T (w + z) = T (w) + T (z) Definition LT [443]
= x + y Definition of w and z

So we have found an input, w +z, which when fed into T creates x+y as an output. This qualifies
x + y for membership in R(T ). So we have additive closure.

Suppose we assume that α ∈ C and x ∈ R(T ). Is αx ∈ R(T )? If x ∈ R(T ), then there is
a vector w ∈ U such that T (w) = x. Because U is a vector space, scalar closure implies that
αw ∈ U . Then

T (αw) = αT (w) Definition LT [443]
= αx Definition of w

So we have found an input (αw) which when fed into T creates αx as an output. This qualifies αx
for membership in R(T ). So we have scalar closure and Theorem TSS [288] tells us that R(T ) is a
subspace of V .

�

Let’s compute another range, now that we know in advance that it will be a subspace.

Example FRAN
Full range, Archetype N
Archetype N [736] is the linear transformation

T : C5 7→ C3, T



x1

x2

x3

x4

x5


 =

2x1 + x2 + 3x3 − 4x4 + 5x5

x1 − 2x2 + 3x3 − 9x4 + 3x5

3x1 + 4x3 − 6x4 + 5x5



To determine the elements of C3 in R(T ), find those vectors v such that T (u) = v for some u ∈ C5,

v = T (u)
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=

2u1 + u2 + 3u3 − 4u4 + 5u5

u1 − 2u2 + 3u3 − 9u4 + 3u5

3u1 + 4u3 − 6u4 + 5u5


=

2u1

u1

3u1

+

 u2

−2u2

0

+

3u3

3u3

4u3

+

−4u4

−9u4

−6u4

+

5u5

3u5

5u5


= u1

2
1
3

+ u2

 1
−2
0

+ u3

3
3
4

+ u4

−4
−9
−6

+ u5

5
3
5



This says that every output of T (v) can be written as a linear combination of the five vectors2
1
3

  1
−2
0

 3
3
4

 −4
−9
−6

 5
3
5


using the scalars u1, u2, u3, u4, u5. Furthermore, since u can be any element of C5, every such
linear combination is an output. This means that

R(T ) =

〈
2

1
3

 ,
 1
−2
0

 ,
3

3
4

 ,
−4
−9
−6

 ,
5

3
5


〉

The five vectors in this spanning set for R(T ) form a linearly dependent set (Theorem MVSLD
[138]). So we can find a more economical presentation by any of the various methods from Section
CRS [231] and Section FS [251]. We will place the vectors into a matrix as rows, row-reduce, toss
out zero rows and appeal to Theorem BRS [240], so we can describe the range of T with a (nice)
basis,

R(T ) =

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

= C3

�

In contrast to injective linear transformations having small (trivial) kernels (Theorem KILT
[471]), surjective linear transformations have large ranges, as indicated in the next theorem.

Theorem RSLT
Range of a Surjective Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then T is surjective if and only if the range of
T equals the codomain, R(T ) = V . �

Proof (⇒) By Definition RLT [483], we know that R(T ) ⊆ V . To establish the reverse inclusion,
assume v ∈ V . Then since T is surjective (Definition SLT [479]), there exists a vector u ∈ U so
that T (u) = v. However, the existence of u gains v membership in R(T ), so V ⊆ R(T ). Thus,
R(T ) = V .

(⇐) To establish that T is surjective, choose v ∈ V . Since we are assuming that R(T ) = V ,
v ∈ R(T ). This says there is a vector u ∈ U so that T (u) = v, i.e. T is surjective. �

Example NSAQR
Not surjective, Archetype Q, revisited
We are now in a position to revisit our first example in this section, Example NSAQ [479]. In
that example, we showed that Archetype Q [743] is not surjective by constructing a vector in the
codomain where no element of the domain could be used to evaluate the linear transformation to
create the output, thus violating Definition SLT [479]. Just where did this vector come from?
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The short answer is that the vector

v =


−1
2
3
−1
4


was constructed to lie outside of the range of T . How was this accomplished? First, the range of
T is given by

R(T ) =

〈


1
0
0
0
1

 ,


0
1
0
0
−1

 ,


0
0
1
0
−1

 ,


0
0
0
1
2



〉

Suppose an element of the range v∗ has its first 4 components equal to −1, 2, 3,−1, in that order.
Then to be an element of R(T ), we would have

v∗ = (−1)


1
0
0
0
1

+ (2)


0
1
0
0
−1

+ (3)


0
0
1
0
−1

+ (−1)


0
0
0
1
2

 =


−1
2
3
−1
−8


So the only vector in the range with these first four components specified, must have −8 in the
fifth component. To set the fifth component to any other value (say, 4) will result in a vector (v in
Example NSAQ [479]) outside of the range. Any attempt to find an input for T that will produce
v as an output will be doomed to failure.

Whenever the range of a linear transformation is not the whole codomain, we can employ this
device and conclude that the linear transformation is not surjective. This is another way of viewing
Theorem RSLT [485]. For a surjective linear transformation, the range is all of the codomain and
there is no choice for a vector v that lies in V , yet not in the range. For every one of the archetypes
that is not surjective, there is an example presented of exactly this form. �

Example NSAO
Not surjective, Archetype O
In Example RAO [483] the range of Archetype O [738] was determined to be

R(T ) =

〈


1
0
−3
−7
−2

 ,


0
1
2
5
1



〉

a subspace of dimension 2 in C5. Since R(T ) 6= C5, Theorem RSLT [485] says T is not surjective.
�

Example SAN
Surjective, Archetype N
The range of Archetype N [736] was computed in Example FRAN [484] to be

R(T ) =

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

Since the basis for this subspace is the set of standard unit vectors for C3 (Theorem SUVB [319]),
we have R(T ) = C3 and by Theorem RSLT [485], T is surjective. �
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Subsection SSSLT
Spanning Sets and Surjective Linear Transformations

Just as injective linear transformations are allied with linear independence (Theorem ILTLI [472],
Theorem ILTB [472]), surjective linear transformations are allied with spanning sets.

Theorem SSRLT
Spanning Set for Range of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation and S = {u1, u2, u3, . . . , ut} spans U . Then

R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)}

spans R(T ). �

Proof We need to establish that R(T ) = 〈R〉, a set equality. First we establish that R(T ) ⊆ 〈R〉.
To this end, choose v ∈ R(T ). Then there exists a vector u ∈ U , such that T (u) = v (Definition
RLT [483]). Because S spans U there are scalars, a1, a2, a3, . . . , at, such that

u = a1u1 + a2u2 + a3u3 + · · ·+ atut

Then

v = T (u) Definition RLT [483]
= T (a1u1 + a2u2 + a3u3 + · · ·+ atut) Definition TSVS [307]
= a1T (u1) + a2T (u2) + a3T (u3) + . . .+ atT (ut) Theorem LTLC [451]

which establishes that v ∈ 〈R〉 (Definition SS [293]). So R(T ) ⊆ 〈R〉.
To establish the opposite inclusion, choose an element of the span of R, say v ∈ 〈R〉. Then

there are scalars b1, b2, b3, . . . , bt so that

v = b1T (u1) + b2T (u2) + b3T (u3) + · · ·+ btT (ut) Definition SS [293]
= T (b1u1 + b2u2 + b3u3 + · · ·+ btut) Theorem LTLC [451]

This demonstrates that v is an output of the linear transformation T , so v ∈ R(T ). Therefore
〈R〉 ⊆ R(T ), so we have the set equality R(T ) = 〈R〉 (Definition SE [666]). In other words, R
spans R(T ) (Definition TSVS [307]). �

Theorem SSRLT [487] provides an easy way to begin the construction of a basis for the range
of a linear transformation, since the construction of a spanning set requires simply evaluating the
linear transformation on a spanning set of the domain. In practice the best choice for a spanning
set of the domain would be as small as possible, in other words, a basis. The resulting spanning set
for the codomain may not be linearly independent, so to find a basis for the range might require
tossing out redundant vectors from the spanning set. Here’s an example.

Example BRLT
A basis for the range of a linear transformation
Define the linear transformation T : M22 7→ P2 by

T

([
a b
c d

])
= (a+ 2b+ 8c+ d) + (−3a+ 2b+ 5d)x+ (a+ b+ 5c)x2

A convenient spanning set for M22 is the basis

S =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
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So by Theorem SSRLT [487], a spanning set for R(T ) is

R =
{
T

([
1 0
0 0

])
, T

([
0 1
0 0

])
, T

([
0 0
1 0

])
, T

([
0 0
0 1

])}
=
{

1− 3x+ x2, 2 + 2x+ x2, 8 + 5x2, 1 + 5x
}

The set R is not linearly independent, so if we desire a basis for R(T ), we need to eliminate some
redundant vectors. Two particular relations of linear dependence on R are

(−2)(1− 3x+ x2) + (−3)(2 + 2x+ x2) + (8 + 5x2) = 0 + 0x+ 0x2 = 0

(1− 3x+ x2) + (−1)(2 + 2x+ x2) + (1 + 5x) = 0 + 0x+ 0x2 = 0

These, individually, allow us to remove 8+5x2 and 1 +5x from R with out destroying the property
that R spans R(T ). The two remaining vectors are linearly independent (check this!), so we can
write

R(T ) =
〈{

1− 3x+ x2, 2 + 2x+ x2
}〉

and see that dim (R(T )) = 2. �

Elements of the range are precisely those elements of the codomain with non-empty preimages.

Theorem RPI
Range and Pre-Image
Suppose that T : U 7→ V is a linear transformation. Then

v ∈ R(T ) if and only if T−1 (v) 6= ∅

�

Proof (⇒) If v ∈ R(T ), then there is a vector u ∈ U such that T (u) = v. This qualifies u for
membership in T−1 (v), and thus the preimage of v is not empty.

(⇐) Suppose the preimage of v is not empty, so we can choose a vector u ∈ U such that
T (u) = v. Then v ∈ R(T ). �

Theorem SLTB
Surjective Linear Transformations and Bases
Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a basis of U .
Then T is surjective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)} is a spanning set for
V . �

Proof (⇒) Assume T is surjective. Since B is a basis, we know B is a spanning set of U
(Definition B [319]). Then Theorem SSRLT [487] says that C spans R(T ). But the hypothesis that
T is surjective means V = R(T ) (Theorem RSLT [485]), so C spans V .

(⇐) Assume that C spans V . To establish that T is surjective, we will show that every element
of V is an output of T for some input (Definition SLT [479]). Suppose that v ∈ V . As an element
of V , we can write v as a linear combination of the spanning set C. So there are are scalars,
b1, b2, b3, . . . , bm, such that

v = b1T (u1) + b2T (u2) + b3T (u3) + · · ·+ bmT (um)

Now define the vector u ∈ U by

u = b1u1 + b2u2 + b3u3 + · · ·+ bmum

Then

T (u) = T (b1u1 + b2u2 + b3u3 + · · ·+ bmum)
= b1T (u1) + b2T (u2) + b3T (u3) + · · ·+ bmT (um) Theorem LTLC [451]
= v

So, given any choice of a vector v ∈ V , we can design an input u ∈ U to produce v as an output
of T . Thus, by Definition SLT [479], T is surjective. �
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Subsection SLTD
Surjective Linear Transformations and Dimension

Theorem SLTD
Surjective Linear Transformations and Dimension
Suppose that T : U 7→ V is a surjective linear transformation. Then dim (U) ≥ dim (V ). �

Proof Suppose to the contrary that m = dim (U) < dim (V ) = t. Let B be a basis of U , which
will then contain m vectors. Apply T to each element of B to form a set C that is a subset of V .
By Theorem SLTB [488], C is spanning set of V with m or fewer vectors. So we have a set of m
or fewer vectors that span V , a vector space of dimension t, with m < t. However, this contradicts
Theorem G [347], so our assumption is false and dim (U) ≥ dim (V ). �

Example NSDAT
Not surjective by dimension, Archetype T
The linear transformation in Archetype T [751] is

T : P4 7→ P5, T (p(x)) = (x− 2)p(x)

Since dim (P4) = 5 < 6 = dim (P5), T cannot be surjective for then it would violate Theorem SLTD
[489]. �

Notice that the previous example made no use of the actual formula defining the function.
Merely a comparison of the dimensions of the domain and codomain are enough to conclude that
the linear transformation is not surjective. Archetype O [738] and Archetype P [741] are two more
examples of linear transformations that have “small” domains and “big” codomains, resulting in an
inability to create all possible outputs and thus they are non-surjective linear transformations.

Subsection CSLT
Composition of Surjective Linear Transformations

In Subsection LT.NLTFO [456] we saw how to combine linear transformations to build new linear
transformations, specifically, how to build the composition of two linear transformations (Definition
LTC [458]). It will be useful later to know that the composition of surjective linear transformations
is again surjective, so we prove that here.

Theorem CSLTS
Composition of Surjective Linear Transformations is Surjective
Suppose that T : U 7→ V and S : V 7→W are surjective linear transformations. Then (S ◦ T ) : U 7→
W is a surjective linear transformation. �

Proof That the composition is a linear transformation was established in Theorem CLTLT [458],
so we need only establish that the composition is surjective. Applying Definition SLT [479], choose
w ∈W .

Because S is surjective, there must be a vector v ∈ V , such that S (v) = w. With the existence
of v established, that T is surjective guarantees a vector u ∈ U such that T (u) = v. Now,

(S ◦ T ) (u) = S (T (u)) Definition LTC [458]
= S (v) Definition of u

= w Definition of v

This establishes that any element of the codomain (w) can be created by evaluating S ◦T with the
right input (u). Thus, by Definition SLT [479], S ◦ T is surjective. �
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490 Section SLT Surjective Linear Transformations

Subsection READ
Reading Questions

1. Suppose T : C5 7→ C8 is a linear transformation. Why can’t T be surjective?

2. What is the relationship between a surjective linear transformation and its range?

3. Compare and contrast injective and surjective linear transformations.
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Subsection EXC
Exercises

C10 Each archetype below is a linear transformation. Compute the range for each.
Archetype M [734]
Archetype N [736]
Archetype O [738]
Archetype P [741]
Archetype Q [743]
Archetype R [746]
Archetype S [749]
Archetype T [751]
Archetype U [753]
Archetype V [755]
Archetype W [757]
Archetype X [759]

Contributed by Robert Beezer

C20 Example SAR [480] concludes with an expression for a vector u ∈ C5 that we believe will
create the vector v ∈ C5 when used to evaluate T . That is, T (u) = v. Verify this assertion by
actually evaluating T with u. If you don’t have the patience to push around all these symbols, try
choosing a numerical instance of v, compute u, and then compute T (u), which should result in v.
Contributed by Robert Beezer

C22 The linear transformation S : C4 7→ C3 is not surjective. Find an output w ∈ C3 that has
an empty pre-image (that is S−1 (w) = ∅.)

S



x1

x2

x3

x4


 =

2x1 + x2 + 3x3 − 4x4

x1 + 3x2 + 4x3 + 3x4

−x1 + 2x2 + x3 + 7x4


Contributed by Robert Beezer Solution [493]

C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =
[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Find a basis for the range of T , R(T ). Is T surjective?
Contributed by Robert Beezer Solution [493]

C40 Show that the linear transformation T is not surjective by finding an element of the codomain,
v, such that there is no vector u with T (u) = v. (15 points)

T : C3 7→ C3, T

ab
c

 =

2a+ 3b− c
2b− 2c
a− b+ 2c


Contributed by Robert Beezer Solution [494]

T15 Suppose that that T : U 7→ V and S : V 7→W are linear transformations. Prove the following
relationship between ranges. (15 points)

R(S ◦ T ) ⊆ R(S)
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Contributed by Robert Beezer Solution [494]

T20 Suppose that A is an m× n matrix. Define the linear transformation T by

T : Cn 7→ Cm, T (x) = Ax

Prove that the range of T equals the column space of A, R(T ) = C(A).
Contributed by Andy Zimmer Solution [494]
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Subsection SOL
Solutions

C22 Contributed by Robert Beezer Statement [491]
To find an element of C3 with an empty pre-image, we will compute the range of the linear trans-
formation R(S) and then find an element outside of this set.

By Theorem SSRLT [487] we can evaluate S with the elements of a spanning set of the domain
and create a spanning set for the range.

S




1
0
0
0


 =

 2
1
−1

 S




0
1
0
0


 =

1
3
2

 S




0
0
1
0


 =

3
4
1

 S




0
0
0
1


 =

−4
3
7


So

R(S) =

〈
 2

1
−1

 ,
1

3
2

 ,
3

4
1

 ,
−4

3
7


〉

This spanning set is obviously linearly dependent, so we can reduce it to a basis for R(S) using
Theorem BRS [240], where the elements of the spanning set are placed as the rows of a matrix.
The result is that

R(S) =

〈
 1

0
−1

 ,
0

1
1


〉

Therefore, the unique vector in R(S) with a first slot equal to 6 and a second slot equal to 15 will
be the linear combination

6

 1
0
−1

+ 15

0
1
1

 =

 6
15
9


So, any vector with first two components equal to 6 and 15, but with a third component different
from 9, such as

w =

 6
15
−63


will not be an element of the range of S and will therefore have an empty pre-image. Another
strategy on this problem is to guess. Almost any vector will lie outside the range of T , you have
to be unlucky to randomly choose an element of the range. This is because the codomain has
dimension 3, while the range is “much smaller” at a dimension of 2. You still need to check that
your guess lies outside of the range, which generally will involve solving a system of equations that
turns out to be inconsistent.

C25 Contributed by Robert Beezer Statement [491]
To find the range of T , apply T to the elements of a spanning set for C3 as suggested in Theorem
SSRLT [487]. We will use the standard basis vectors (Theorem SUVB [319]).

R(T ) = 〈{T (e1) , T (e2) , T (e3)}〉 =
〈{[

2
−4

]
,

[
−1
2

]
,

[
5
−10

]}〉
Each of these vectors is a scalar multiple of the others, so we can toss two of them in reducing the
spanning set to a linearly independent set (or be more careful and apply Theorem BCS [234] on a
matrix with these three vectors as columns). The result is the basis of the range,{[

1
−2

]}
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With r (T ) 6= 2, R(T ) 6= C2, so Theorem RSLT [485] says T is not surjective.

C40 Contributed by Robert Beezer Statement [491]
We wish to find an output vector v that has no associated input. This is the same as requiring
that there is no solution to the equality

v = T

ab
c

 =

2a+ 3b− c
2b− 2c
a− b+ 2c

 = a

2
0
1

+ b

 3
2
−1

+ c

−1
−2
2


In other words, we would like to find an element of C3 not in the set

Y =

〈
2

0
1

 ,
 3

2
−1

 ,
−1
−2
2


〉

If we make these vectors the rows of a matrix, and row-reduce, Theorem BRS [240] provides an
alternate description of Y ,

Y =

〈
2

0
1

 ,
 0

4
−5


〉

If we add these vectors together, and then change the third component of the result, we will create

a vector that lies outside of Y , say v =

2
4
9

.

T15 Contributed by Robert Beezer Statement [491]
This question asks us to establish that one set (R(S ◦ T )) is a subset of another (R(S)). Choose
an element in the “smaller” set, say w ∈ R(S ◦ T ). Then we know that there is a vector u ∈ U
such that

w = (S ◦ T ) (u) = S (T (u))

Now define v = T (u), so that then

S (v) = S (T (u)) = w

This statement is sufficient to show that w ∈ R(S), so w is an element of the “larger” set, and
R(S ◦ T ) ⊆ R(S).

T20 Contributed by Andy Zimmer Statement [492]
This is an equality of sets, so we want to establish two subset conditions (Definition SE [666]).

First, show C(A) ⊆ R(T ). Choose y ∈ C(A). Then by Definition CSM [231] and Definition
MVP [191] there is a vector x ∈ Cn such that Ax = y. Then

T (x) = Ax Definition of T
= y

This statement qualifies y as a member of R(T ) (Definition RLT [483]), so C(A) ⊆ R(T ).
Now, show R(T ) ⊆ C(A). Choose y ∈ R(T ). Then by Definition RLT [483], there is a vector

x in Cn such that T (x) = y. Then

Ax = T (x) Definition of T
= y

So by Definition CSM [231] and Definition MVP [191], y qualifies for membership in C(A) and so
R(T ) ⊆ C(A).
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Section IVLT
Invertible Linear Transformations

In this section we will conclude our introduction to linear transformations by bringing together
the twin properties of injectivity and surjectivity and consider linear transformations with both of
these properties.

Subsection IVLT
Invertible Linear Transformations

One preliminary definition, and then we will have our main definition for this section.

Definition IDLT
Identity Linear Transformation
The identity linear transformation on the vector space W is defined as

IW : W 7→W, IW (w) = w

4

Informally, IW is the “do-nothing” function. You should check that IW is really a linear trans-
formation, as claimed, and then compute its kernel and range to see that it is both injective and
surjective. All of these facts should be straightforward to verify (Exercise IVLT.T05 [510]). With
this in hand we can make our main definition.

Definition IVLT
Invertible Linear Transformations
Suppose that T : U 7→ V is a linear transformation. If there is a function S : V 7→ U such that

S ◦ T = IU T ◦ S = IV

then T is invertible. In this case, we call S the inverse of T and write S = T−1. 4

Informally, a linear transformation T is invertible if there is a companion linear transformation,
S, which “undoes” the action of T . When the two linear transformations are applied consecutively
(composition), in either order, the result is to have no real effect. It is entirely analogous to squaring
a positive number and then taking its (positive) square root.

Here is an example of a linear transformation that is invertible. As usual at the beginning of a
section, do not be concerned with where S came from, just understand how it illustrates Definition
IVLT [495].

Example AIVLT
An invertible linear transformation
Archetype V [755] is the linear transformation

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=
[
a+ b a− 2c
d b− d

]
Define the function S : M22 7→ P3 defined by

S

([
a b
c d

])
= (a− c− d) + (c+ d)x+

1
2

(a− b− c− d)x2 + cx3

Then

(T ◦ S)
([
a b
c d

])
= T

(
S

([
a b
c d

]))
Version 1.30



496 Section IVLT Invertible Linear Transformations

= T

(
(a− c− d) + (c+ d)x+

1
2

(a− b− c− d)x2 + cx3

)
=
[
(a− c− d) + (c+ d) (a− c− d)− 2(1

2(a− b− c− d))
c (c+ d)− c

]
=
[
a b
c d

]
= IM22

([
a b
c d

])
And

(S ◦ T )
(
a+ bx+ cx2 + dx3

)
= S

(
T
(
a+ bx+ cx2 + dx3

))
= S

([
a+ b a− 2c
d b− d

])
= ((a+ b)− d− (b− d)) + (d+ (b− d))x

+
(

1
2

((a+ b)− (a− 2c)− d− (b− d))
)
x2 + (d)x3

= a+ bx+ cx2 + dx3

= IP3

(
a+ bx+ cx2 + dx3

)
For now, understand why these computations show that T is invertible, and that S = T−1. Maybe
even be amazed by how S works so perfectly in concert with T ! We will see later just how to arrive
at the correct form of S (when it is possible). �

It can be as instructive to study a linear transformation that is not invertible.

Example ANILT
A non-invertible linear transformation
Consider the linear transformation T : C3 7→M22 defined by

T

ab
c

 =
[

a− b 2a+ 2b+ c
3a+ b+ c −2a− 6b− 2c

]

Suppose we were to search for an inverse function S : M22 7→ C3.

First verify that the 2 × 2 matrix A =
[
5 3
8 2

]
is not in the range of T . This will amount to

finding an input to T ,

ab
c

, such that

a− b = 5
2a+ 2b+ c = 3
3a+ b+ c = 8

−2a− 6b− 2c = 2

As this system of equations is inconsistent, there is no input column vector, and A 6∈ R(T ). How
should we define S (A)? Note that

T (S (A)) = (T ◦ S) (A) = IM22 (A) = A

So any definition we would provide for S (A) must then be a column vector that T sends to A and
we would have A ∈ R(T ), contrary to the definition of T . This is enough to see that there is no
function S that will allow us to conclude that T is invertible, since we cannot provide a consistent
definition for S (A) if we assume T is invertible.

Version 1.30



Subsection IVLT.IVLT Invertible Linear Transformations 497

Even though we now know that T is not invertible, let’s not leave this example just yet. Check
that

T

 1
−2
4

 =
[
3 2
5 2

]
= B T

 0
−3
8

 =
[
3 2
5 2

]
= B

How would we define S (B)?

S (B) = S

T
 1
−2
4

 = (S ◦ T )

 1
−2
4

 = IC3

 1
−2
4

 =

 1
−2
4


or

S (B) = S

T
 0
−3
8

 = (S ◦ T )

 0
−3
8

 = IC3

 0
−3
8

 =

 0
−3
8


Which definition should we provide for S (B)? Both are necessary. But then S is not a function.
So we have a second reason to know that there is no function S that will allow us to conclude that
T is invertible. It happens that there are infinitely many column vectors that S would have to take
to B. Construct the kernel of T ,

K(T ) =

〈
−1
−1
4


〉

Now choose either of the two inputs used above for T and add to it a scalar multiple of the basis
vector for the kernel of T . For example,

x =

 1
−2
4

+ (−2)

−1
−1
4

 =

 3
0
−4


then verify that T (x) = B. Practice creating a few more inputs for T that would be sent to B, and
see why it is hopeless to think that we could ever provide a reasonable definition for S (B)! There
is a “whole subspace’s worth” of values that S (B) would have to take on. �

In Example ANILT [496] you may have noticed that T is not surjective, since the matrix A was
not in the range of T . And T is not injective since there are two different input column vectors
that T sends to the matrix B. Linear transformations T that are not surjective lead to putative
inverse functions S that are undefined on inputs outside of the range of T . Linear transformations
T that are not injective lead to putative inverse functions S that are multiply-defined on each of
their inputs. We will formalize these ideas in Theorem ILTIS [498].

But first notice in Definition IVLT [495] that we only require the inverse (when it exists) to be
a function. When it does exist, it too is a linear transformation.

Theorem ILTLT
Inverse of a Linear Transformation is a Linear Transformation
Suppose that T : U 7→ V is an invertible linear transformation. Then the function T−1 : V 7→ U is
a linear transformation. �

Proof We work through verifying Definition LT [443] for T−1, using the fact that T is a linear
transformation to obtain the second equality in each half of the proof. To this end, suppose x, y ∈ V
and α ∈ C.

T−1 (x + y) = T−1
(
T
(
T−1 (x)

)
+ T

(
T−1 (y)

))
Definition IVLT [495]

= T−1
(
T
(
T−1 (x) + T−1 (y)

))
Definition LT [443]

= T−1 (x) + T−1 (y) Definition IVLT [495]
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Now check the second defining property of a linear transformation for T−1,

T−1 (αx) = T−1
(
αT
(
T−1 (x)

))
Definition IVLT [495]

= T−1
(
T
(
αT−1 (x)

))
Definition LT [443]

= αT−1 (x) Definition IVLT [495]

�

So T−1 fulfills the requirements of Definition LT [443] and is therefore a linear transformation.
So when T has an inverse, T−1 is also a linear transformation. Additionally, T−1 is invertible and
its inverse is what you might expect.

Theorem IILT
Inverse of an Invertible Linear Transformation
Suppose that T : U 7→ V is an invertible linear transformation. Then T−1 is an invertible linear
transformation and

(
T−1

)−1 = T . �

Proof Because T is invertible, Definition IVLT [495] tells us there is a function T−1 : V 7→ U
such that

T−1 ◦ T = IU T ◦ T−1 = IV

Additionally, Theorem ILTLT [497] tells us that T−1 is more than just a function, it is a linear
transformation. Now view these two statements as properties of the linear transformation T−1. In
light of Definition IVLT [495], they together say that T−1 is invertible (let T play the role of S in
the statement of the definition). Furthermore, the inverse of T−1 is then T , i.e.

(
T−1

)−1 = T . �

Subsection IV
Invertibility

We now know what an inverse linear transformation is, but just which linear transformations have
inverses? Here is a theorem we have been preparing for all chapter long.

Theorem ILTIS
Invertible Linear Transformations are Injective and Surjective
Suppose T : U 7→ V is a linear transformation. Then T is invertible if and only if T is injective and
surjective. �

Proof (⇒) Since T is presumed invertible, we can employ its inverse, T−1 (Definition IVLT [495]).
To see that T is injective, suppose x, y ∈ U and assume that T (x) = T (y),

x = IU (x) Definition IDLT [495]

=
(
T−1 ◦ T

)
(x) Definition IVLT [495]

= T−1 (T (x)) Definition LTC [458]

= T−1 (T (y)) Definition ILT [465]

=
(
T−1 ◦ T

)
(y) Definition LTC [458]

= IU (y) Definition IVLT [495]
= y Definition IDLT [495]

So by Definition ILT [465] T is injective. To check that T is surjective, suppose v ∈ V . Then
T−1 (v) is a vector in U . Compute

T
(
T−1 (v)

)
=
(
T ◦ T−1

)
(v) Definition LTC [458]

= IV (v) Definition IVLT [495]
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= v Definition IDLT [495]

So there is an element from U , when used as an input to T (namely T−1 (v)) that produces the
desired output, v, and hence T is surjective by Definition SLT [479].

(⇐) Now assume that T is both injective and surjective. We will build a function S : V 7→ U
that will establish that T is invertible. To this end, choose any v ∈ V . Since T is surjective,
Theorem RSLT [485] says R(T ) = V , so we have v ∈ R(T ). Theorem RPI [488] says that the
pre-image of v, T−1 (v), is nonempty. So we can choose a vector from the pre-image of v, say u.
In other words, there exists u ∈ T−1 (v).

Since T−1 (v) is non-empty, Theorem KPI [470] then says that

T−1 (v) = {u + z | z ∈ K(T )}

However, because T is injective, by Theorem KILT [471] the kernel is trivial, K(T ) = {0}. So the
pre-image is a set with just one element, T−1 (v) = {u}. Now we can define S by S (v) = u. This
is the key to this half of this proof. Normally the preimage of a vector from the codomain might be
an empty set, or an infinite set. But surjectivity requires that the preimage not be empty, and then
injectivity limits the preimage to a singleton. Since our choice of v was arbitrary, we know that
every pre-image for T is a set with a single element. This allows us to construct S as a function.
Now that it is defined, verifying that it is the inverse of T will be easy. Here we go.

Choose u ∈ U . Define v = T (u). Then T−1 (v) = {u}, so that S (v) = u and,

(S ◦ T ) (u) = S (T (u)) = S (v) = u = IU (u)

and since our choice of u was arbitrary we have function equality, S ◦ T = IU .
Now choose v ∈ V . Define u to be the single vector in the set T−1 (v), in other words, u = S (v).

Then T (u) = v, so
(T ◦ S) (v) = T (S (v)) = T (u) = v = IV (v)

and since our choice of v was arbitary we have function equality, T ◦ S = IV .
�

When a linear transformation is both injective and surjective, the pre-image of any element
of the codomain is a set of size one (a “singleton”). This fact allowed us to construct the inverse
linear transformation in one half of the proof of Theorem ILTIS [498] (see Technique C [671]). We
can follow this approach to construct the inverse of a specific linear transformation, as the next
example shows.

Example CIVLT
Computing the Inverse of a Linear Transformations
Consider the linear transformation T : S22 7→ P2 defined by

T

([
a b
b c

])
= (a+ b+ c) + (−a+ 2c)x+ (2a+ 3b+ 6c)x2

T is invertible, which you are able to verify, perhaps by determining that the kernel of T is empty
and the range of T is all of P2. This will be easier once we have Theorem RPNDD [504], which
appears later in this section.

By Theorem ILTIS [498] we know T−1 exists, and it will be critical shortly to realize that
T−1 is automatically known to be a linear transformation as well (Theorem ILTLT [497]). To
determine the complete behavior of T−1 : P2 7→ S22 we can simply determine its action on a basis
for the domain, P2. This is the substance of Theorem LTDB [451], and an excellent example of its
application. Choose any basis of P2, the simpler the better, such as B =

{
1, x, x2

}
. Values of T−1

for these three basis elements will be the single elements of their preimages. In turn, we have

T−1 (1) :

T

([
a b
b c

])
= 1 + 0x+ 0x2
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 1 1 1 1
−1 0 2 0
2 3 6 0

 RREF−−−−→

1 0 0 −6
0 1 0 10
0 0 1 −3


(preimage) T−1 (1) =

{[
−6 10
10 −3

]}
(function) T−1 (1) =

[
−6 10
10 −3

]
T−1 (x) :

T

([
a b
b c

])
= 0 + 1x+ 0x2

 1 1 1 0
−1 0 2 1
2 3 6 0

 RREF−−−−→

1 0 0 −3
0 1 0 4
0 0 1 −1


(preimage) T−1 (x) =

{[
−3 4
4 −1

]}
(function) T−1 (x) =

[
−3 4
4 −1

]
T−1

(
x2
)

:

T

([
a b
b c

])
= 0 + 0x+ 1x2

 1 1 1 0
−1 0 2 0
2 3 6 1

 RREF−−−−→

1 0 0 2
0 1 0 −3
0 0 1 1


(preimage) T−1

(
x2
)

=
{[

2 −3
−3 1

]}
(function) T−1

(
x2
)

=
[

2 −3
−3 1

]
Theorem LTDB [451] says, informally, “it is enough to know what a linear transformation does to
a basis.” Formally, we have the outputs of T−1 for a basis, so by Theorem LTDB [451] there is a
unique linear transformation with these outputs. So we put this information to work. The key step
here is that we can convert any element of P2 into a linear combination of the elements of the basis
B (Theorem VRRB [311]). We are after a “formula” for the value of T−1 on a generic element of
P2, say p+ qx+ rx2.

T−1
(
p+ qx+ rx2

)
= T−1

(
p(1) + q(x) + r(x2)

)
Theorem VRRB [311]

= pT−1 (1) + qT−1 (x) + rT−1
(
x2
)

Theorem LTLC [451]

= p

[
−6 10
10 −3

]
+ q

[
−3 4
4 −1

]
+ r

[
2 −3
−3 1

]
=
[
−6p− 3q + 2r 10p+ 4q − 3r
10p+ 4q − 3r −3p− q + r

]
Notice how a linear combination in the domain of T−1 has been translated into a linear combination
in the codomain of T−1 since we know T−1 is a linear transformation by Theorem ILTLT [497].

Also, notice how the augmented matrices used to determine the three pre-images could be
combined into one calculation of a matrix in extended echelon form, reminiscent of a procedure we
know for computing the inverse of a matrix (see Example CMI [211]). Hmmmm. �

We will make frequent use of the characterization of invertible linear transformations provided
by Theorem ILTIS [498]. The next theorem is a good example of this, and we will use it often, too.

Theorem CIVLT
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Composition of Invertible Linear Transformations
Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then the composi-
tion, (S ◦ T ) : U 7→W is an invertible linear transformation. �

Proof Since S and T are both linear transformations, S ◦ T is also a linear transformation by
Theorem CLTLT [458]. Since S and T are both invertible, Theorem ILTIS [498] says that S and T
are both injective and surjective. Then Theorem CILTI [474] says S ◦ T is injective, and Theorem
CSLTS [489] says S ◦ T is surjective. Now apply the “other half” of Theorem ILTIS [498] and
conclude that S ◦ T is invertible. �

When a composition is invertible, the inverse is easy to construct.

Theorem ICLT
Inverse of a Composition of Linear Transformations
Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then S ◦ T is
invertible and (S ◦ T )−1 = T−1 ◦ S−1. �

Proof Compute, for all w ∈W(
(S ◦ T ) ◦

(
T−1 ◦ S−1

))
(w) = S

(
T
(
T−1

(
S−1 (w)

)))
= S

(
IV
(
S−1 (w)

))
Definition IVLT [495]

= S
(
S−1 (w)

)
Definition IDLT [495]

= w Definition IVLT [495]
= IW (w) Definition IDLT [495]

so (S ◦ T ) ◦
(
T−1 ◦ S−1

)
= IW and also((

T−1 ◦ S−1
)
◦ (S ◦ T )

)
(u) = T−1

(
S−1 (S (T (u)))

)
= T−1 (IV (T (u))) Definition IVLT [495]

= T−1 (T (u)) Definition IDLT [495]
= u Definition IVLT [495]
= IU (u) Definition IDLT [495]

so
(
T−1 ◦ S−1

)
◦ (S ◦ T ) = IU . By Definition IVLT [495], S ◦ T is invertible and (S ◦ T )−1 =

T−1 ◦ S−1. �

Notice that this theorem not only establishes what the inverse of S ◦ T is, it also duplicates the
conclusion of Theorem CIVLT [501] and also establishes the invertibility of S ◦ T . But somehow,
the proof of Theorem CIVLT [501] is nicer way to get this property.

Does Theorem ICLT [501] remind you of the flavor of any theorem we have seen about matrices?
(Hint: Think about getting dressed.) Hmmmm.

Subsection SI
Structure and Isomorphism

A vector space is defined (Definition VS [273]) as a set of objects (“vectors”) endowed with a defi-
nition of vector addition (+) and a definition of scalar multiplication (written with juxtaposition).
Many of our definitions about vector spaces involve linear combinations (Definition LC [292]), such
as the span of a set (Definition SS [293]) and linear independence (Definition LI [303]). Other def-
initions are built up from these ideas, such as bases (Definition B [319]) and dimension (Definition
D [333]). The defining properties of a linear transformation require that a function “respect” the
operations of the two vector spaces that are the domain and the codomain (Definition LT [443]).
Finally, an invertible linear transformation is one that can be “undone” — it has a companion that
reverses its effect. In this subsection we are going to begin to roll all these ideas into one.
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A vector space has “structure” derived from definitions of the two operations and the require-
ment that these operations interact in ways that satisfy the ten properties of Definition VS [273].
When two different vector spaces have an invertible linear transformation defined between them,
then we can translate questions about linear combinations (spans, linear independence, bases, di-
mension) from the first vector space to the second. The answers obtained in the second vector space
can then be translated back, via the inverse linear transformation, and interpreted in the setting
of the first vector space. We say that these invertible linear transformations “preserve structure.”
And we say that the two vector spaces are “structurally the same.” The precise term is “isomor-
phic,” from Greek meaning “of the same form.” Let’s begin to try to understand this important
concept.

Definition IVS
Isomorphic Vector Spaces
Two vector spaces U and V are isomorphic if there exists an invertible linear transformation
T with domain U and codomain V , T : U 7→ V . In this case, we write U ∼= V , and the linear
transformation T is known as an isomorphism between U and V . 4

A few comments on this definition. First, be careful with your language (Technique L [670]).
Two vector spaces are isomorphic, or not. It is a yes/no situation and the term only applies to
a pair of vector spaces. Any invertible linear transformation can be called an isomorphism, it is
a term that applies to functions. Second, a given pair of vector spaces there might be several
different isomorphisms between the two vector spaces. But it only takes the existence of one to
call the pair isomorphic. Third, U isomorphic to V , or V isomorphic to U? Doesn’t matter, since
the inverse linear transformation will provide the needed isomorphism in the “opposite” direction.
Being “isomorphic to” is an equivalence relation on the set of all vector spaces (see Theorem SER
[426] for a reminder about equivalence relations).

Example IVSAV
Isomorphic vector spaces, Archetype V
Archetype V [755] is a linear transformation from P3 to M22,

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=
[
a+ b a− 2c
d b− d

]
Since it is injective and surjective, Theorem ILTIS [498] tells us that it is an invertible linear
transformation. By Definition IVS [502] we say P3 and M22 are isomorphic.

At a basic level, the term “isomorphic” is nothing more than a codeword for the presence of an
invertible linear transformation. However, it is also a description of a powerful idea, and this power
only becomes apparent in the course of studying examples and related theorems. In this example,
we are led to believe that there is nothing “structurally” different about P3 and M22. In a certain
sense they are the same. Not equal, but the same. One is as good as the other. One is just as
interesting as the other.

Here is an extremely basic application of this idea. Suppose we want to compute the following
linear combination of polynomials in P3,

5(2 + 3x− 4x2 + 5x3) + (−3)(3− 5x+ 3x2 + x3)

Rather than doing it straight-away (which is very easy), we will apply the transformation T to
convert into a linear combination of matrices, and then compute in M22 according to the definitions
of the vector space operations there (Example VSM [275]),

T
(
5(2 + 3x− 4x2 + 5x3) + (−3)(3− 5x+ 3x2 + x3)

)
= 5T

(
2 + 3x− 4x2 + 5x3

)
+ (−3)T

(
3− 5x+ 3x2 + x3

)
Theorem LTLC [451]

= 5
[
5 10
5 −2

]
+ (−3)

[
−2 −3
1 −6

]
Definition of T

=
[
31 59
22 8

]
Operations in M22
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Now we will translate our answer back to P3 by applying T−1, which we found in Example AIVLT
[495],

T−1 : M22 7→ P3, T−1

([
a b
c d

])
= (a− c− d) + (c+ d)x+

1
2

(a− b− c− d)x2 + cx3

We compute,

T−1

([
31 59
22 8

])
= 1 + 30x− 29x2 + 22x3

which is, as expected, exactly what we would have computed for the original linear combination
had we just used the definitions of the operations in P3 (Example VSP [275]). Notice this is meant
only as an illustration and not a suggested route for doing this particular computation. �

Checking the dimensions of two vector spaces can be a quick way to establish that they are not
isomorphic. Here’s the theorem.

Theorem IVSED
Isomorphic Vector Spaces have Equal Dimension
Suppose U and V are isomorphic vector spaces. Then dim (U) = dim (V ). �

Proof If U and V are isomorphic, there is an invertible linear transformation T : U 7→ V
(Definition IVS [502]). T is injective by Theorem ILTIS [498] and so by Theorem ILTD [473],
dim (U) ≤ dim (V ). Similarly, T is surjective by Theorem ILTIS [498] and so by Theorem SLTD
[489], dim (U) ≥ dim (V ). The net effect of these two inequalities is that dim (U) = dim (V ). �

The contrapositive of Theorem IVSED [503] says that if U and V have different dimensions,
then they are not isomorphic. Dimension is the simplest “structural” characteristic that will allow
you to distinguish non-isomorphic vector spaces. For example P6 is not isomorphic to M34 since
their dimensions (7 and 12, respectively) are not equal. With tools developed in Section VR [517]
we will be able to establish that the converse of Theorem IVSED [503] is true. Think about that
one for a moment.

Subsection RNLT
Rank and Nullity of a Linear Transformation

Just as a matrix has a rank and a nullity, so too do linear transformations. And just like the rank
and nullity of a matrix are related (they sum to the number of columns, Theorem RPNC [340]) the
rank and nullity of a linear transformation are related. Here are the definitions and theorems, see
the Archetypes (Appendix A [681]) for loads of examples.

Definition ROLT
Rank Of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then the rank of T , r (T ), is the dimension of
the range of T ,

r (T ) = dim (R(T ))

(This definition contains Notation ROLT.) 4

Definition NOLT
Nullity Of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then the nullity of T , n (T ), is the dimension
of the kernel of T ,

n (T ) = dim (K(T ))
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(This definition contains Notation NOLT.) 4

Here are two quick theorems.

Theorem ROSLT
Rank Of a Surjective Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then the rank of T is the dimension of V ,
r (T ) = dim (V ), if and only if T is surjective. �

Proof By Theorem RSLT [485], T is surjective if and only if R(T ) = V . Applying Definition
ROLT [503], R(T ) = V if and only if r (T ) = dim (R(T )) = dim (V ). �

Theorem NOILT
Nullity Of an Injective Linear Transformation
Suppose that T : U 7→ V is an injective linear transformation. Then the nullity of T is zero,
n (T ) = 0, if and only if T is injective. �

Proof By Theorem KILT [471], T is injective if and only if K(T ) = {0}. Applying Definition
NOLT [503], K(T ) = {0} if and only if n (T ) = 0. �

Just as injectivity and surjectivity come together in invertible linear transformations, there is
a clear relationship between rank and nullity of a linear transformation. If one is big, the other is
small.

Theorem RPNDD
Rank Plus Nullity is Domain Dimension
Suppose that T : U 7→ V is a linear transformation. Then

r (T ) + n (T ) = dim (U)

�

Proof Let r = r (T ) and s = n (T ). Suppose that R = {v1, v2, v3, . . . , vr} ⊆ V is a basis of the
range of T , R(T ), and S = {u1, u2, u3, . . . , us} ⊆ U is a basis of the kernel of T , K(T ). Note that
R and S are possibly empty, which means that some of the sums in this proof are “empty” and are
equal to the zero vector.

Because the elements of R are all in the range of T , each must have a non-empty pre-image by
Theorem RPI [488]. Choose vectors wi ∈ U , 1 ≤ i ≤ r such that wi ∈ T−1 (vi). So T (wi) = vi,
1 ≤ i ≤ r. Consider the set

B = {u1, u2, u3, . . . , us, w1, w2, w3, . . . , wr}

We claim that B is a basis for U .
To establish linear independence for B, begin with a relation of linear dependence on B. So

suppose there are scalars a1, a2, a3, . . . , as and b1, b2, b3, . . . , br

0 = a1u1 + a2u2 + a3u3 + · · ·+ asus + b1w1 + b2w2 + b3w3 + · · ·+ brwr

Then

0 = T (0) Theorem LTTZZ [446]
= T (a1u1 + a2u2 + a3u3 + · · ·+ asus+

b1w1 + b2w2 + b3w3 + · · ·+ brwr) Definition LI [303]
= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ asT (us) +

b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Theorem LTLC [451]
= a10 + a20 + a30 + · · ·+ as0+

b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Definition KLT [468]
= 0 + 0 + 0 + · · ·+ 0+

Version 1.30



Subsection IVLT.RNLT Rank and Nullity of a Linear Transformation 505

b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Theorem ZVSM [280]
= b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Property Z [273]
= b1v1 + b2v2 + b3v3 + · · ·+ brvr Definition PI [454]

This is a relation of linear dependence on R (Definition RLD [303]), and since R is a linearly
independent set (Definition LI [303]), we see that b1 = b2 = b3 = . . . = br = 0. Then the original
relation of linear dependence on B becomes

0 = a1u1 + a2u2 + a3u3 + · · ·+ asus + 0w1 + 0w2 + . . .+ 0wr

= a1u1 + a2u2 + a3u3 + · · ·+ asus + 0 + 0 + . . .+ 0 Theorem ZSSM [280]
= a1u1 + a2u2 + a3u3 + · · ·+ asus Property Z [273]

But this is again a relation of linear independence (Definition RLD [303]), now on the set S. Since
S is linearly independent (Definition LI [303]), we have a1 = a2 = a3 = . . . = ar = 0. Since we
now know that all the scalars in the relation of linear dependence on B must be zero, we have
established the linear independence of S through Definition LI [303].

To now establish that B spans U , choose an arbitrary vector u ∈ U . Then T (u) ∈ R(T ), so
there are scalars c1, c2, c3, . . . , cr such that

T (u) = c1v1 + c2v2 + c3v3 + · · ·+ crvr

Use the scalars c1, c2, c3, . . . , cr to define a vector y ∈ U ,

y = c1w1 + c2w2 + c3w3 + · · ·+ crwr

Then

T (u− y) = T (u)− T (y) Theorem LTLC [451]
= T (u)− T (c1w1 + c2w2 + c3w3 + · · ·+ crwr) Substitution
= T (u)− (c1T (w1) + c2T (w2) + · · ·+ crT (wr)) Theorem LTLC [451]

= T (u)− (c1v1 + c2v2 + c3v3 + · · ·+ crvr) wi ∈ T−1 (vi)
= T (u)− T (u) Substitution
= 0 Property AI [274]

So the vector u− y is sent to the zero vector by T and hence is an element of the kernel of T . As
such it can be written as a linear combination of the basis vectors for K(T ), the elements of the set
S. So there are scalars d1, d2, d3, . . . , ds such that

u− y = d1u1 + d2u2 + d3u3 + · · ·+ dsus

Then

u = (u− y) + y

= d1u1 + d2u2 + d3u3 + · · ·+ dsus + c1w1 + c2w2 + c3w3 + · · ·+ crwr

This says that for any vector, u, from U , there exist scalars (d1, d2, d3, . . . , ds, c1, c2, c3, . . . , cr)
that form u as a linear combination of the vectors in the set B. In other words, B spans U
(Definition SS [293]).

So B is a basis (Definition B [319]) of U with s+ r vectors, and thus

dim (U) = s+ r = n (T ) + r (T )

as desired. �

Theorem RPNC [340] said that the rank and nullity of a matrix sum to the number of columns
of the matrix. This result is now an easy consequence of Theorem RPNDD [504] when we consider
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the linear transformation T : Cn 7→ Cm defined with the m×n matrix A by T (x) = Ax. The range
and kernel of T are identical to the column space and null space of the matrix A (Exercise ILT.T20
[476], Exercise SLT.T20 [492]), so the rank and nullity of the matrix A are identical to the rank
and nullity of the linear transformation T . The dimension of the domain of T is the dimension of
Cn, exactly the number of columns for the matrix A.

This theorem can be especially useful in determining basic properties of linear transformations.
For example, suppose that T : C6 7→ C6 is a linear transformation and you are able to quickly
establish that the kernel is trivial. Then n (T ) = 0. First this means that T is injective by Theorem
NOILT [504]. Also, Theorem RPNDD [504] becomes

6 = dim
(
C6
)

= r (T ) + n (T ) = r (T ) + 0 = r (T )

So the rank of T is equal to the rank of the codomain, and by Theorem ROSLT [504] we know T
is surjective. Finally, we know T is invertible by Theorem ILTIS [498]. So from the determination
that the kernel is trivial, and consideration of various dimensions, the theorems of this section allow
us to conclude the existence of an inverse linear transformation for T .

Similarly, Theorem RPNDD [504] can be used to provide alternative proofs for Theorem ILTD
[473], Theorem SLTD [489] and Theorem IVSED [503]. It would be an interesting exercise to
construct these proofs.

It would be instructive to study the archetypes that are linear transformations and see how
many of their properties can be deduced just from considering only the dimensions of the domain
and codomain. Then add in just knowlege of either the nullity or rank, and so how much more you
can learn about the linear transformation. The table preceding all of the archetypes (Appendix A
[681]) could be a good place to start this analysis.

Subsection SLELT
Systems of Linear Equations and Linear Transformations

This subsection does not really belong in this section, or any other section, for that matter. It is
just the right time to have a discussion about the connections between the central topic of linear
algebra, linear transformations, and our motivating topic from Chapter SLE [3], systems of linear
equations. We will discuss several theorems we have seen already, but we will also make some
forward-looking statements that will be justified in Chapter R [517].

Archetype D [698] and Archetype E [702] are ideal examples to illustrate connections with linear
transformations. Both have the same coefficient matrix,

D =

 2 1 7 −7
−3 4 −5 −6
1 1 4 −5


To apply the theory of linear transformations to these two archetypes, employ matrix multiplication
(Definition MM [194]) and define the linear transformation,

T : C4 7→ C3, T (x) = Dx = x1

 2
−3
1

+ x2

1
4
1

+ x3

 7
−5
4

+ x4

−7
−6
−5


Theorem MBLT [448] tells us that T is indeed a linear transformation. Archetype D [698] asks

for solutions to LS(D, b), where b =

 8
−12
−4

. In the language of linear transformations this

is equivalent to asking for T−1 (b). In the language of vectors and matrices it asks for a linear

combination of the four columns of D that will equal b. One solution listed is w =


7
8
1
3

. With a
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non-empty preimage, Theorem KPI [470] tells us that the complete solution set of the linear system
is the preimage of b,

w +K(T ) = {w + z | z ∈ K(T )}

The kernel of the linear transformation T is exactly the null space of the matrix D (see Exercise
ILT.T20 [476]), so this approach to the solution set should be reminiscent of Theorem PSPHS
[103]. The kernel of the linear transformation is the preimage of the zero vector, exactly equal to
the solution set of the homogeneous system LS(D, 0). Since D has a null space of dimension two,
every preimage (and in particular the preimage of b) is as “big” as a subspace of dimension two
(but is not a subspace).

Archetype E [702] is identical to Archetype D [698] but with a different vector of constants,

d =

2
3
2

. We can use the same linear transformation T to discuss this system of equations since the

coefficient matrix is identical. Now the set of solutions to LS(D, d) is the pre-image of d, T−1 (d).
However, the vector d is not in the range of the linear transformation (nor is it in the column space
of the matrix, since these two sets are equal by Exercise SLT.T20 [492]). So the empty pre-image
is equivalent to the inconsistency of the linear system.

These two archetypes each have three equations in four variables, so either the resulting linear
systems are inconsistent, or they are consistent and application of Theorem CMVEI [50] tells us
that the system has infinitely many solutions. Considering these same parameters for the linear
transformation, the dimension of the domain, C4, is four, while the codomain, C3, has dimension
three. Then

n (T ) = dim
(
C4
)
− r (T ) Theorem RPNDD [504]

= 4− dim (R(T )) Definition ROLT [503]

≥ 4− 3 R(T ) subspace of C3

= 1

So the kernel of T is nontrivial simply by considering the dimensions of the domain (number of
variables) and the codomain (number of equations). Pre-images of elements of the codomain that
are not in the range of T are empty (inconsistent systems). For elements of the codomain that
are in the range of T (consistent systems), Theorem KPI [470] tells us that the pre-images are
built from the kernel, and with a non-trivial kernel, these pre-images are infinite (infinitely many
solutions).

When do systems of equations have unique solutions? Consider the system of linear equations
LS(C, f) and the linear transformation S (x) = Cx. If S has a trivial kernel, then pre-images
will either be empty or be finite sets with single elements. Correspondingly, the coefficient matrix
C will have a trivial null space and solution sets will either be empty (inconsistent) or contain a
single solution (unique solution). Should the matrix be square and have a trivial null space then we
recognize the matrix as being nonsingular. A square matrix means that the corresponding linear
transformation, T , has equal-sized domain and codomain. With a nullity of zero, T is injective, and
also Theorem RPNDD [504] tells us that rank of T is equal to the dimension of the domain, which
in turn is equal to the dimension of the codomain. In other words, T is surjective. Injective and
surjective, and Theorem ILTIS [498] tells us that T is invertible. Just as we can use the inverse of
the coefficient matrix to find the unique solution of any linear system with a nonsingular coefficient
matrix (Theorem SNCM [223]), we can use the inverse of the linear transformation to construct
the unique element of any pre-image (proof of Theorem ILTIS [498]).

The executive summary of this discussion is that to every coefficient matrix of a system of
linear equations we can associate a natural linear transformation. Solution sets for systems with
this coefficient matrix are preimages of elements of the codomain of the linear transformation. For
every theorem about systems of linear equations there is an analogue about linear transformations.
The theory of linear transformations provides all the tools to recreate the theory of solutions to
linear systems of equations.

We will continue this adventure in Chapter R [517].
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Subsection READ
Reading Questions

1. What conditions allow us to easily determine if a linear tranformation is invertible?

2. What does it mean to say two vector spaces are isomorphic? Both technically, and informally?

3. How do linear transformations relate to systems of linear equations?
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Subsection EXC
Exercises

C10 The archetypes below are linear transformations of the form T : U 7→ V that are invertible.
For each, the inverse linear transformation is given explicitly as part of the archetype’s description.
Verify for each linear transformation that

T−1 ◦ T = IU T ◦ T−1 = IV

Archetype R [746],
Archetype V [755],
Archetype W [757]
Contributed by Robert Beezer

C20 Determine if the linear transformation T : P2 7→ M22 is (a) injective, (b) surjective, (c)
invertible.

T
(
a+ bx+ cx2

)
=
[
a+ 2b− 2c 2a+ 2b
−a+ b− 4c 3a+ 2b+ 2c

]
Contributed by Robert Beezer Solution [511]

C21 Determine if the linear transformation S : P3 7→ M22 is (a) injective, (b) surjective, (c)
invertible.

S
(
a+ bx+ cx2 + dx3

)
=
[
−a+ 4b+ c+ 2d 4a− b+ 6c− d
a+ 5b− 2c+ 2d a+ 2c+ 5d

]
Contributed by Robert Beezer Solution [511]

C50 Consider the linear transformation S : M12 7→ P1 from the set of 1× 2 matrices to the set of
polynomials of degree at most 1, defined by

S
([
a b

])
= (3a+ b) + (5a+ 2b)x

Prove that S is invertible. Then show that the linear transformation

R : P1 7→M12, R (r + sx) =
[
(2r − s) (−5r + 3s)

]
is the inverse of S, that is S−1 = R.
Contributed by Robert Beezer Solution [512]

M30 The linear transformation S below is invertible. Find a formula for the inverse linear
transformation, S−1.

S : P1 7→M1,2, S (a+ bx) =
[
3a+ b 2a+ b

]
Contributed by Robert Beezer Solution [512]

M31 The linear transformation R : M12 7→M21 is invertible. Determine a formula for the inverse
linear transformation R−1 : M21 7→M12. (15 points)

R
([
a b

])
=
[
a+ 3b

4a+ 11b

]

Contributed by Robert Beezer Solution [513]

M50 Rework Example CIVLT [499], only in place of the basis B for P2, choose instead to use
the basis C =

{
1, 1 + x, 1 + x+ x2

}
. This will complicate wrting a generic element of the domain

of T−1 as a linear combination of the basis elements, and the algebra will be a bit messier, but in
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the end you should obtain the same formula for T−1. The inverse linear transformation is what it
is, and the choice of a particular basis should not influence the outcome.
Contributed by Robert Beezer

T05 Prove that the identity linear transformation (Definition IDLT [495]) is both injective and
surjective, and hence invertible.
Contributed by Robert Beezer

T15 Suppose that T : U 7→ V is a surjective linear transformation and dim (U) = dim (V ). Prove
that T is injective.
Contributed by Robert Beezer Solution [513]

T16 Suppose that T : U 7→ V is an injective linear transformation and dim (U) = dim (V ). Prove
that T is surjective.
Contributed by Robert Beezer

T30 Suppose that U and V are isomorphic vector spaces. Prove that there are infinitely many
isomophisms between U and V .
Contributed by Robert Beezer Solution [513]

Version 1.30



Subsection IVLT.SOL Solutions 511

Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [509]
(a) We will compute the kernel of T . Suppose that a+ bx+ cx2 ∈ K(T ). Then[

0 0
0 0

]
= T

(
a+ bx+ cx2

)
=
[
a+ 2b− 2c 2a+ 2b
−a+ b− 4c 3a+ 2b+ 2c

]
and matrix equality (Theorem ME [417]) yields the homogeneous system of four equations in three
variables,

a+ 2b− 2c = 0
2a+ 2b = 0

−a+ b− 4c = 0
3a+ 2b+ 2c = 0

The coefficient matrix of this system row-reduces as
1 2 −2
2 2 0
−1 1 −4
3 2 2

 RREF−−−−→


1 0 2
0 1 −2
0 0 0
0 0 0


From the existence of non-trivial solutions to this system, we can infer non-zero polynomials in
K(T ). By Theorem KILT [471] we then know that T is not injective.

(b) Since 3 = dim (P2) < dim (M22) = 4, by Theorem SLTD [489] T is not surjective.
(c) Since T is not surjective, it is not invertible by Theorem ILTIS [498].

C21 Contributed by Robert Beezer Statement [509]
(a) To check injectivity, we compute the kernel of S. To this end, suppose that a+ bx+ cx2 +dx3 ∈
K(S), so [

0 0
0 0

]
= S

(
a+ bx+ cx2 + dx3

)
=
[
−a+ 4b+ c+ 2d 4a− b+ 6c− d
a+ 5b− 2c+ 2d a+ 2c+ 5d

]
this creates the homogeneous system of four equations in four variables,

−a+ 4b+ c+ 2d = 0
4a− b+ 6c− d = 0
a+ 5b− 2c+ 2d = 0

a+ 2c+ 5d = 0

The coefficient matrix of this system row-reduces as,
−1 4 1 2
4 −1 6 −1
1 5 −2 2
1 0 2 5

 RREF−−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


We recognize the coefficient matrix as being nonsingular, so the only solution to the system is
a = b = c = d = 0, and the kernel of S is trivial, K(S) =

{
0 + 0x+ 0x2 + 0x3

}
. By Theorem KILT

[471], we see that S is injective.
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(b) We can establish that S is surjective by considering the rank and nullity of S.

r (S) = dim (P3)− n (S) Theorem RPNDD [504]
= 4− 0
= dim (M22)

So, R(S) is a subspace of M22 (Theorem RLTS [484]) whose dimension equals that of M22. By
Theorem EDYES [350], we gain the set equality R(S) = M22. Theorem RSLT [485] then implies
that S is surjective.

(c) Since S is both injective and surjective, Theorem ILTIS [498] says S is invertible.

C50 Contributed by Robert Beezer Statement [509]
Determine the kernel of S first. The condition that S

([
a b

])
= 0 becomes (3a+ b) + (5a+ 2b)x =

0 + 0x. Equating coefficients of these polynomials yields the system

3a+ b = 0
5a+ 2b = 0

This homogeneous system has a nonsingular coefficient matrix, so the only solution is a = 0, b = 0
and thus

K(S) =
{[

0 0
]}

By Theorem KILT [471], we know S is injective. With n (S) = 0 we employ Theorem RPNDD
[504] to find

r (S) = r (S) + 0 = r (S) + n (S) = dim (M12) = 2 = dim (P1)

Since R(S) ⊆ P1 and dim (R(S)) = dim (P1), we can apply Theorem EDYES [350] to obtain the
set equality R(S) = P1 and therefore S is surjective.

One of the two defining conditions of an invertible linear transformation is (Definition IVLT
[495])

(S ◦R) (a+ bx) = S (R (a+ bx))

= S
([

(2a− b) (−5a+ 3b)
])

= (3(2a− b) + (−5a+ 3b)) + (5(2a− b) + 2(−5a+ 3b))x
= ((6a− 3b) + (−5a+ 3b)) + ((10a− 5b) + (−10a+ 6b))x
= a+ bx

= IP1 (a+ bx)

That (R ◦ S)
([
a b

])
= IM12

([
a b

])
is similar.

M30 Contributed by Robert Beezer Statement [509]
(Another approach to this solution would follow Example CIVLT [499].)

Suppose that S−1 : M1,2 7→ P1 has a form given by

S−1
(
z w

)
= (rz + sw) + (pz + qw)x

where r, s, p, q are unknown scalars. Then

a+ bx = S−1 (S (a+ bx))

= S−1
([

3a+ b 2a+ b
])

= (r(3a+ b) + s(2a+ b)) + (p(3a+ b) + q(2a+ b))x
= ((3r + 2s)a+ (r + s)b) + ((3p+ 2q)a+ (p+ q)b)x

Equating coefficients of these two polynomials, and then equating coefficients on a and b, gives rise
to 4 equations in 4 variables,

3r + 2s = 1
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r + s = 0
3p+ 2q = 0
p+ q = 1

This system has a unique solution: r = 1, s = −1, p = −2, q = 3. So the desired inverse linear
transformation is

S−1
(
z w

)
= (z − w) + (−2z + 3w)x

Notice that the system of 4 equations in 4 variables could be split into two systems, each with two
equations in two variables (and identical coefficient matrices). After making this split, the solution
might feel like computing the inverse of a matrix (Theorem CINM [212]). Hmmmm.

M31 Contributed by Robert Beezer Statement [509]
(Another approach to this solution would follow Example CIVLT [499].)

We are given that R is invertible. The inverse linear transformation can be formulated by
considering the pre-image of a generic element of the codomain. With injectivity and surjectivity,
we know that the pre-image of any element will be a set of size one — it is this lone element that
will be the output of the inverse linear transformation.

Suppose that we set v =
[
x
y

]
as a generic element of the codomain, M21. Then if

[
r s

]
= w ∈

R−1 (v), [
x
y

]
= v = R (w)

=
[
r + 3s

4r + 11s

]
So we obtain the system of two equations in the two variables r and s,

r + 3s = x

4r + 11s = y

With a nonsingular coefficient matrix, we can solve the system using the inverse of the coefficient
matrix,

r = −11x+ 3y
s = 4x− y

So we define,

R−1 (v) = R−1

([
x
y

])
= w =

[
r s

]
=
[
−11x+ 3y 4x− y

]
T15 Contributed by Robert Beezer Statement [510]
If T is surjective, then Theorem RSLT [485] says R(T ) = V , so r (T ) = dim (V ). In turn, the
hypothesis gives r (T ) = dim (U). Then, using Theorem RPNDD [504],

n (T ) = (r (T ) + n (T ))− r (T ) = dim (U)− dim (U) = 0

With a null space of zero dimension, K(T ) = {0}, and by Theorem KILT [471] we see that T is
injective. T is both injective and surjective so by Theorem ILTIS [498], T is invertible.

T30 Contributed by Robert Beezer Statement [510]
Since U and V are isomorphic, there is at least one isomorphism between them (Definition IVS
[502]), say T : U 7→ V . As such, T is an invertible linear transformation.

For α ∈ C define the linear transformation S : V 7→ V by S (v) = αv. Convince yourself that
when α 6= 0, S is an invertible linear transformation (Definition IVLT [495]). Then the composition,
S ◦ T : U 7→ V , is an invertible linear transformation by Theorem CIVLT [501]. Once convinced
that each non-zero value of α gives rise to a different functions for S ◦ T , then we have constructed
infinitely many isomorphisms from U to V .
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Annotated Acronyms LT
Linear Transformations

Theorem MBLT [448]

You give me an m × n matrix and I’ll give you a linear transformation T : Cn 7→ Cm. This is our
first hint that there is some relationship between linear transformations and matrices.

Theorem MLTCV [449]

You give me a linear transformation T : Cn 7→ Cm and I’ll give you an m × n matrix. This
is our second hint that there is some relationship between linear transformations and matrices.
Generalizing this relationship to arbitrary vector spaces (i.e. not just Cn and Cm) will be the most
important idea of Chapter R [517].

Theorem LTLC [451]

A simple idea, and as described in Exercise LT.T20 [461], equivalent to the Definition LT [443].
The statement is really just for convenience, as we’ll quote this one often.

Theorem LTDB [451]

Another simple idea, but a powerful one. “It is enough to know what a linear transformation does
to a basis.” At the outset of Chapter R [517], Theorem VRRB [311] will help us define a very
important function, and then Theorem LTDB [451] will allow us to understand that this function
is also a linear transformation.

Theorem KPI [470]

The pre-image will be an important construction in this chapter, and this is one of the most
important descriptions of the pre-image. It should remind you of Theorem PSPHS [103], which is
described in Acronyms V [??]. See Theorem RPI [488], which is also described below.

Theorem KILT [471]

Kernels and injective linear transformations are intimately related. This result is the connection.
Compare with Theorem RSLT [485] below.

Theorem ILTB [472]

Injective linear transformations and linear independence are intimately related. This result is the
connection. Compare with Theorem SLTB [488] below.

Theorem RSLT [485]

Ranges and surjective linear transformations are intimately related. This result is the connection.
Compare with Theorem KILT [471] above.

Theorem SSRLT [487]

This theorem provides the most direct way of forming the range of a linear transformation. The
resulting spanning set might well be linearly dependent, and beg for some clean-up, but that
doesn’t stop us from having very quickly formed a reasonable description of the range. If you find
the determination of spanning sets or ranges difficult, this is one worth remembering. You can view
this as the analogue of forming a column space by a direct application of Definition CSM [231].

Theorem SLTB [488]

Surjective linear transformations and spanning sets are intimately related. This result is the con-
nection. Compare with Theorem ILTB [472] above.

Theorem RPI [488]
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This is the analogue of Theorem KPI [470]. Membership in the range is equivalent to nonempty
pre-images.

Theorem ILTIS [498]

Injectivity and surjectivity are independent concepts. You can have one without the other. But
when you have both, you get invertibility, a linear transformation that can be run “backwards.”
This result might explain the entire structure of the four sections in this chapter.

Theorem RPNDD [504]

This is the promised generalization of Theorem RPNC [340] about matrices. So the number of
columns of a matrix is the analogue of the dimension of the domain. This will become even more
precise in Chapter R [517]. For now, this can be a powerful result for determining dimensions of
kernels and ranges, and consequently, the injectivity or surjectivity of linear transformations. Never
underestimate a theorem that counts something.
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Chapter R
Representations

Previous work with linear transformations may have convinced you that we can convert most
questions about linear transformations into questions about systems of equations or properties of
subspaces of Cm. In this section we begin to make these vague notions precise. We have used
the word “representation” prior, but it will get a heavy workout in this chapter. In many ways,
everything we have studied so far was in preparation for this chapter.

Section VR
Vector Representations

We begin by establishing an invertible linear transformation between any vector space V of dimen-
sion m and Cm. This will allow us to “go back and forth” between the two vector spaces, no matter
how abstract the definition of V might be.

Definition VR
Vector Representation
Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}. Define a function ρB : V 7→
Cn as follows. For w ∈ V , find scalars a1, a2, a3, . . . , an so that

w = a1v1 + a2v2 + a3v3 + · · ·+ anvn

then define ρB (w) by setting

[ρB (w)]i = ai 1 ≤ i ≤ n

4

We need to show that ρB is really a function (since “find scalars” sounds like it could be
accomplished in many ways, or perhaps not at all) and right now we want to establish that ρB is a
linear transformation. We will wrap up both objectives in one theorem, even though the first part
is working backwards to make sure that ρB is well-defined.

Theorem VRLT
Vector Representation is a Linear Transformation
The function ρB (Definition VR [517]) is a linear transformation. �

Proof The definition of ρB (Definition VR [517]) appears to allow considerable latitude in selecting
the scalars a1, a2, a3, . . . , an. However, since B is a basis for V , Theorem VRRB [311] says this
can be done, and done uniquely. So despite appearances, ρB is indeed a function.

We will take a novel approach to establishing that ρB is a linear transformation. We will
construct another function, which we will easily determine is a linear transformation, and then
show that this second function is really ρB in disguise. Here we go.

517



518 Section VR Vector Representations

Since B is a basis, we can define T : V 7→ Cn to be the unique linear transformation such that
T (vi) = ei, 1 ≤ i ≤ n, as guaranteed by Theorem LTDB [451], and where the ei are the standard
unit vectors (Definition SUV [169]). Then suppose for an arbitrary w ∈ V

w = a1v1 + a2v2 + a3v3 + · · ·+ anvn

We have,

[T (w)]i =

T
 n∑
j=1

ajvj


i

Theorem VRRB [311]

=

 n∑
j=1

ajT (vj)


i

Theorem LTLC [451]

=

 n∑
j=1

ajej


i

Definition of T

=
n∑
j=1

[ajej ]i Definition CVA [82]

=
n∑
j=1

aj [ej ]i Definition CVSM [83]

= ai [ei]i +
n∑
j=1
j 6=i

aj [ej ]i Property CC [84]

= ai (1) +
n∑
j=1
j 6=i

aj (0) Definition SUV [169]

= ai

So, by Definition CVE [82], as elements of Cn, T (w) = ρB (w). Since w was arbitrary, T = ρB.
Now, since T is known to be a linear transformation, it must follow that ρB is also a linear
transformation. �

The proof of Theorem VRLT [517] provides an alternate definition of vector representation
relative to a basis B: it is the unique linear transformation that takes B to the standard unit basis.

Example VRC4
Vector representation in C4

Consider the vector y ∈ C4

y =


6
14
6
7


We will find several vector representations of y in this example. Notice that y never changes, but
the representations of y do change.

One basis for C4 is

B = {u1, u2, u3, u4} =



−2
1
2
−3

 ,


3
−6
2
−4

 ,


1
2
0
5

 ,


4
3
1
6




as can be seen by making these vectors the columns of a matrix, checking that the matrix is non-
singular and applying Theorem CNMB [324]. To find ρB (y), we need to find scalars, a1, a2, a3, a4

such that
y = a1u1 + a2u2 + a3u3 + a4u4
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Section VR Vector Representations 519

By Theorem SLSLC [92] the desired scalars are a solution to the linear system of equations with
a coefficient matrix whose columns are the vectors in B and with a vector of constants y. With a
nonsingular coefficient matrix, the solution is unique, but this is no surprise as this is the content
of Theorem VRRB [311]. This unique solution is

a1 = 2 a2 = −1 a3 = −3 a4 = 4

Then by Definition VR [517], we have

ρB (y) =


2
−1
−3
4


Suppose now that we construct a representation of y relative to another basis of C4,

C =



−15

9
−4
−2

 ,


16
−14

5
2

 ,

−26
14
−6
−3

 ,


14
−13

4
6




As with B, it is easy to check that C is a basis. Writing y as a linear combination of the vectors
in C leads to solving a system of four equations in the four unknown scalars with a nonsingular
coefficient matrix. The unique solution can be expressed as

y =


6
14
6
7

 = (−28)


−15

9
−4
−2

+ (−8)


16
−14

5
2

+ 11


−26
14
−6
−3

+ 0


14
−13

4
6


so that Definition VR [517] gives

ρC (y) =


−28
−8
11
0


We often perform representations relative to standard bases, but for vectors in Cm its a little silly.
Let’s find the vector representation of y relative to the standard basis (Theorem SUVB [319]),

D = {e1, e2, e3, e4}

Then, without any computation, we can check that

y =


6
14
6
7

 = 6e1 + 14e2 + 6e3 + 7e4

so by Definition VR [517],

ρD (y) =


6
14
6
7


which is not very exciting. Notice however that the order in which we place the vectors in the basis
is critical to the representation. Let’s keep the standard unit vectors as our basis, but rearrange
the order we place them in the basis. So a fourth basis is

E = {e3, e4, e2, e1}
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Then,

y =


6
14
6
7

 = 6e3 + 7e4 + 14e2 + 6e1

so by Definition VR [517],

ρE (y) =


6
7
14
6


So for every possible basis of C4 we could construct a different representation of y. �

Vector representations are most interesting for vector spaces that are not Cm.

Example VRP2
Vector representations in P2

Consider the vector u = 15 + 10x− 6x2 ∈ P2 from the vector space of polynomials with degree at
most 2 (Example VSP [275]). A nice basis for P2 is

B =
{

1, x, x2
}

so that
u = 15 + 10x− 6x2 = 15(1) + 10(x) + (−6)(x2)

so by Definition VR [517]

ρB (u) =

15
10
−6


Another nice basis for P2 is

B =
{

1, 1 + x, 1 + x+ x2
}

so that now it takes a bit of computation to determine the scalars for the representation. We want
a1, a2, a3 so that

15 + 10x− 6x2 = a1(1) + a2(1 + x) + a3(1 + x+ x2)

Performing the operations in P2 on the right-hand side, and equating coefficients, gives the three
equations in the three unknown scalars,

15 = a1 + a2 + a3

10 = a2 + a3

−6 = a3

The coefficient matrix of this sytem is nonsingular, leading to a unique solution (no surprise there,
see Theorem VRRB [311]),

a1 = 5 a2 = 16 a3 = −6

so by Definition VR [517]

ρC (u) =

 5
16
−6


While we often form vector representations relative to “nice” bases, nothing prevents us from
forming representations relative to “nasty” bases. For example, the set

D =
{
−2− x+ 3x2, 1− 2x2, 5 + 4x+ x2

}
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can be verified as a basis of P2 by checking linear independence with Definition LI [303] and then
arguing that 3 vectors from P2, a vector space of dimension 3 (Theorem DP [337]), must also be a
spanning set (Theorem G [347]). Now we desire scalars a1, a2, a3 so that

15 + 10x− 6x2 = a1(−2− x+ 3x2) + a2(1− 2x2) + a3(5 + 4x+ x2)

Performing the operations in P2 on the right-hand side, and equating coefficients, gives the three
equations in the three unknown scalars,

15 = −2a1 + a2 + 5a3

10 = −a1 + 4a3

−6 = 3a1 − 2a2 + a3

The coefficient matrix of this sytem is nonsingular, leading to a unique solution (no surprise there,
see Theorem VRRB [311]),

a1 = −2 a2 = 1 a3 = 2

so by Definition VR [517]

ρD (u) =

−2
1
2


�

Theorem VRI
Vector Representation is Injective
The function ρB (Definition VR [517]) is an injective linear transformation. �

Proof We will appeal to Theorem KILT [471]. Suppose U is a vector space of dimension n, so
vector representation is of the form ρB : U 7→ Cn. Let B = {u1, u2, u3, . . . , un} be the basis of U
used in the definition of ρB. Suppose u ∈ K(ρB). Finally, since B is a basis for U , by Theorem
VRRB [311] there are (unique) scalars, a1, a2, a3, . . . , an such that

u = a1u1 + a2u2 + a3u3 + · · ·+ anun

Then for 1 ≤ i ≤ n

ai = [ρB (u)]i Definition VR [517]
= [0]i Definition KLT [468]
= 0

So

u = a1u1 + a2u2 + a3u3 + · · ·+ anun
= 0u1 + 0u2 + 0u3 + · · ·+ 0un
= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [280]
= 0 Property Z [273]

Thus an arbitrary vector, u, from the kernel ,K(ρB), must equal the zero vector of U . So K(ρB) =
{0} and by Theorem KILT [471], ρB is injective. �

Theorem VRS
Vector Representation is Surjective
The function ρB (Definition VR [517]) is a surjective linear transformation. �

Proof We will appeal to Theorem RSLT [485]. Suppose U is a vector space of dimension n, so
vector representation is of the form ρB : U 7→ Cn. Let B = {u1, u2, u3, . . . , un} be the basis of U
used in the definition of ρB. Suppose v ∈ Cn. Define the vector u by

u = [v]1 u1 + [v]2 u2 + [v]3 u3 + · · ·+ [v]n un
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Then for 1 ≤ i ≤ n

[ρB (u)]i = [ρB ([v]1 u1 + [v]2 u2 + [v]3 u3 + · · ·+ [v]n un)]i
= [v]i Definition VR [517]

so the entries of vectors ρB (u) and v are equal and Definition CVE [82] yields the vector equality
ρB (u) = v. This demonstrates that v ∈ R(ρB), so Cn ⊆ R(ρB). Since R(ρB) ⊆ Cn by Definition
RLT [483], we have R(ρB) = Cn and Theorem RSLT [485] says ρB is surjective. �

We will have many occasions later to employ the inverse of vector representation, so we will
record the fact that vector representation is an invertible linear transformation.

Theorem VRILT
Vector Representation is an Invertible Linear Transformation
The function ρB (Definition VR [517]) is an invertible linear transformation. �

Proof The function ρB (Definition VR [517]) is a linear transformation (Theorem VRLT [517])
that is injective (Theorem VRI [521]) and surjective (Theorem VRS [521]) with domain V and
codomain Cn. By Theorem ILTIS [498] we then know that ρB is an invertible linear transformation.

�

Informally, we will refer to the application of ρB as coordinatizing a vector, while the appli-
cation of ρ−1

B will be referred to as un-coordinatizing a vector.

Subsection CVS
Characterization of Vector Spaces

Limiting our attention to vector spaces with finite dimension, we now describe every possible vector
space. All of them. Really.

Theorem CFDVS
Characterization of Finite Dimensional Vector Spaces
Suppose that V is a vector space with dimension n. Then V is isomorphic to Cn. �

Proof Since V has dimension n we can find a basis of V of size n (Definition D [333]) which we
will call B. The linear transformation ρB is an invertible linear transformation from V to Cn, so
by Definition IVS [502], we have that V and Cn are isomorphic. �

Theorem CFDVS [522] is the first of several surprises in this chapter, though it might be a
bit demoralizing too. It says that there really are not all that many different (finite dimensional)
vector spaces, and none are really any more complicated than Cn. Hmmm. The following examples
should make this point.

Example TIVS
Two isomorphic vector spaces
The vector space of polynomials with degree 8 or less, P8, has dimension 9 (Theorem DP [337]).
By Theorem CFDVS [522], P8 is isomorphic to C9. �

Example CVSR
Crazy vector space revealed
The crazy vector space, C of Example CVS [277], has dimension 2 by Example DC [338]. By
Theorem CFDVS [522], C is isomorphic to C2. Hmmmm. Not really so crazy after all? �

Example ASC
A subspace characterized
In Example DSP4 [338] we determined that a certain subspace W of P4 has dimension 4. By
Theorem CFDVS [522], W is isomorphic to C4. �

Theorem IFDVS
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Isomorphism of Finite Dimensional Vector Spaces
Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and
only if dim (U) = dim (V ). �

Proof (⇒) This is just the statement proved in Theorem IVSED [503].
(⇐) This is the advertised converse of Theorem IVSED [503]. We will assume U and V have

equal dimension and discover that they are isomorphic vector spaces. Let n be the common di-
mension of U and V . Then by Theorem CFDVS [522] there are isomorphisms T : U 7→ Cn and
S : V 7→ Cn.

T is therefore an invertible linear transformation by Definition IVS [502]. Similarly, S is an
invertible linear transformation, and so S−1 is an invertible linear transformation (Theorem IILT
[498]). The composition of invertible linear transformations is again invertible (Theorem CIVLT
[501]) so the composition of S−1 with T is invertible. Then

(
S−1 ◦ T

)
: U 7→ V is an invertible

linear transformation from U to V and Definition IVS [502] says U and V are isomorphic. �

Example MIVS
Multiple isomorphic vector spaces
C10, P9, M2,5 and M5,2 are all vector spaces and each has dimension 10. By Theorem IFDVS [523]
each is isomorphic to any other.

The subspace of M4,4 that contains all the symmetric matrices (Definition SYM [182]) has
dimension 10, so this subspace is also isomorphic to each of the four vector spaces above. �

Subsection CP
Coordinatization Principle

With ρB available as an invertible linear transformation, we can translate between vectors in a
vector space U of dimension m and Cm. Furthermore, as a linear transformation, ρB respects the
addition and scalar multiplication in U , while ρ−1

B respects the addition and scalar multiplication in
Cm. Since our definitions of linear independence, spans, bases and dimension are all built up from
linear combinations, we will finally be able to translate fundamental properties between abstract
vector spaces (U) and concrete vector spaces (Cm).

Theorem CLI
Coordinatization and Linear Independence
Suppose that U is a vector space with a basis B of size n. Then S = {u1, u2, u3, . . . , uk} is a
linearly independent subset of U if and only if R = {ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)} is a
linearly independent subset of Cn. �

Proof The linear transformation ρB is an isomorphism between U and Cn (Theorem VRILT
[522]). As an invertible linear transformation, ρB is an injective linear transformation (Theorem
ILTIS [498]), and ρ−1

B is also an injective linear transformation (Theorem IILT [498], Theorem
ILTIS [498]).

(⇒) Since ρB is an injective linear transformation and S is linearly independent, Theorem ILTLI
[472] says that R is linearly independent.

(⇐) If we apply ρ−1
B to each element of R, we will create the set S. Since we are assuming R is

linearly independent and ρ−1
B is injective, Theorem ILTLI [472] says that S is linearly independent.

�

Theorem CSS
Coordinatization and Spanning Sets
Suppose that U is a vector space with a basis B of size n. Then u ∈ 〈{u1, u2, u3, . . . , uk}〉 if and
only if ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉. �

Proof (⇒) Suppose u ∈ 〈{u1, u2, u3, . . . , uk}〉. Then there are scalars, a1, a2, a3, . . . , ak, such
that

u = a1u1 + a2u2 + a3u3 + · · ·+ akuk

Version 1.30



524 Section VR Vector Representations

Then,

ρB (u) = ρB (a1u1 + a2u2 + a3u3 + · · ·+ akuk)
= a1ρB (u1) + a2ρB (u2) + a3ρB (u3) + · · ·+ akρB (uk) Theorem LTLC [451]

which says that ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉.
(⇐) Suppose that ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉. Then there are scalars

b1, b2, b3, . . . , bk such that

ρB (u) = b1ρB (u1) + b2ρB (u2) + b3ρB (u3) + · · ·+ bkρB (uk)

Recall that ρB is invertible (Theorem VRILT [522]), so

u = IU (u) Definition IDLT [495]

=
(
ρ−1
B ◦ ρB

)
(u) Definition IVLT [495]

= ρ−1
B (ρB (u)) Definition LTC [458]

= ρ−1
B (b1ρB (u1) + b2ρB (u2) + b3ρB (u3) + · · ·+ bkρB (uk))

= b1ρ
−1
B (ρB (u1)) + b2ρ

−1
B (ρB (u2)) + b3ρ

−1
B (ρB (u3))

+ · · ·+ bkρ
−1
B (ρB (uk)) Theorem LTLC [451]

= b1IU (u1) + b2IU (u2) + b3IU (u3) + · · ·+ bkIU (uk) Definition IVLT [495]
= b1u1 + b2u2 + b3u3 + · · ·+ bkuk Definition IDLT [495]

which says that u ∈ 〈{u1, u2, u3, . . . , uk}〉. �

Here’s a fairly simple example that illustrates a very, very important idea.

Example CP2
Coordinatizing in P2

In Example VRP2 [520] we needed to know that

D =
{
−2− x+ 3x2, 1− 2x2, 5 + 4x+ x2

}
is a basis for P2. With Theorem CLI [523] and Theorem CSS [523] this task is much easier. First,
choose a known basis for P2, a basis that forms vector representations easily. We will choose

B =
{

1, x, x2
}

Now, form the subset of C3 that is the result of applying ρB to each element of D,

F =
{
ρB
(
−2− x+ 3x2

)
, ρB

(
1− 2x2

)
, ρB

(
5 + 4x+ x2

)}
=


−2
−1
3

 ,
 1

0
−2

 ,
5

4
1


and ask if F is a linearly independent spanning set for C3. This is easily seen to be the case by
forming a matrix A whose columns are the vectors of F , row-reducing A to the identity matrix I3,
and then using the nonsingularity of A to assert that F is a basis for C3 (Theorem CNMB [324]).
Now, since F is a basis for C3, Theorem CLI [523] and Theorem CSS [523] tell us that D is also a
basis for P2. �

Example CP2 [524] illustrates the broad notion that computations in abstract vector spaces
can be reduced to computations in Cm. You may have noticed this phenomenon as you worked
through examples in Chapter VS [273] or Chapter LT [443] employing vector spaces of matrices or
polynomials. These computations seemed to invariably result in systems of equations or the like
from Chapter SLE [3], Chapter V [81] and Chapter M [179]. It is vector representation, ρB, that
allows us to make this connection formal and precise.

Knowing that vector representation allows us to translate questions about linear combinations,
linear indepencence and spans from general vector spaces to Cm allows us to prove a great many
theorems about how to translate other properties. Rather than prove these theorems, each of the
same style as the other, we will offer some general guidance about how to best employ Theorem
VRLT [517], Theorem CLI [523] and Theorem CSS [523]. This comes in the form of a “principle”:
a basic truth, but most definitely not a theorem (hence, no proof).
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The Coordinatization Principle Suppose that U is a vector space with a basis B of size n.
Then any question about U , or its elements, which ultimately depends on the vector addition or
scalar multiplication in U , or depends on linear independence or spanning, may be translated into
the same question in Cn by application of the linear transformation ρB to the relevant vectors. Once
the question is answered in Cn, the answer may be translated back to U (if necessary) through
application of the inverse linear transformation ρ−1

B .

Example CM32
Coordinatization in M32

This is a simple example of the Coordinatization Principle [525], depending only on the fact that
coordinatizing is an invertible linear transformation (Theorem VRILT [522]). Suppose we have
a linear combination to perform in M32, the vector space of 3 × 2 matrices, but we are adverse
to doing the operations of M32 (Definition MA [179], Definition MSM [180]). More specifically,
suppose we are faced with the computation

6

 3 7
−2 4
0 −3

+ 2

−1 3
4 8
−2 5


We choose a nice basis for M32 (or a nasty basis if we are so inclined),

B =


1 0

0 0
0 0

 ,
0 0

1 0
0 0

 ,
0 0

0 0
1 0

 ,
0 1

0 0
0 0

 ,
0 0

0 1
0 0

 ,
0 0

0 0
0 1


and apply ρB to each vector in the linear combination. This gives us a new computation, now in
the vector space C6,

6



3
−2
0
7
4
−3

+ 2



−1
4
−2
3
8
5


which we can compute with the operations of C6 (Definition CVA [82], Definition CVSM [83]), to
arrive at 

16
−4
−4
48
40
−8


We are after the result of a computation in M32, so we now can apply ρ−1

B to obtain a 3×2 matrix,

16

1 0
0 0
0 0

+ (−4)

0 0
1 0
0 0

+ (−4)

0 0
0 0
1 0

+ 48

0 1
0 0
0 0

+ 40

0 0
0 1
0 0

+ (−8)

0 0
0 0
0 1

 =

16 48
−4 40
−4 −8


which is exactly the matrix we would have computed had we just performed the matrix operations
in the first place. So this was not meant to be an easier way to compute a linear combination of
two matrices, just a different way. �

Subsection READ
Reading Questions

1. The vector space of 3× 5 matrices, M3,5 is isomorphic to what fundamental vector space?
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2. A basis for C3 is

B =


 1

2
−1

 ,
 3
−1
2

 ,
1

1
1


Compute ρB

 5
8
−1

.

3. What is the first “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C10 In the vector space C3, compute the vector representation ρB (v) for the basis B and vector
v below.

B =


 2
−2
2

 ,
1

3
1

 ,
3

5
2

 v =

11
5
8


Contributed by Robert Beezer Solution [528]

C20 Rework Example CM32 [525] replacing the basis B by the basis

C =


−14 −9

10 10
−6 −2

 ,
−7 −4

5 5
−3 −1

 ,
−3 −1

0 −2
1 1

 ,
−7 −4

3 2
−1 0

 ,
 4 2
−3 −3
2 1

 ,
 0 0
−1 −2
1 1


Contributed by Robert Beezer Solution [528]

M10 Prove that the set S below is a basis for the vector space of 2 × 2 matrices, M22. Do this
choosing a natural basis for M22 and coordinatizing the elements of S with respect to this basis.
Examine the resulting set of column vectors from C4 and apply the Coordinatization Principle
[525].

S =
{[

33 99
78 −9

]
,

[
−16 −47
−36 2

]
,

[
10 27
17 3

]
,

[
−2 −7
−6 4

]}
Contributed by Andy Zimmer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [527]
We need to express the vector v as a linear combination of the vectors in B. Theorem VRRB [311]
tells us we will be able to do this, and do it uniquely. The vector equation

a1

 2
−2
2

+ a2

1
3
1

+ a3

3
5
2

 =

11
5
8


becomes (via Theorem SLSLC [92]) a system of linear equations with augmented matrix, 2 1 3 11

−2 3 5 5
2 1 2 8


This system has the unique solution a1 = 2, a2 = −2, a3 = 3. So by Definition VR [517],

ρB (v) = ρB

11
5
8

 = ρB

2

 2
−2
2

+ (−2)

1
3
1

+ 3

3
5
2

 =

 2
−2
3


C20 Contributed by Robert Beezer Statement [527]
The following computations replicate the computations given in Example CM32 [525], only using
the basis C.

ρC

 3 7
−2 4
0 −3

 =



−9
12
−6
7
−2
−1

 ρC

−1 3
4 8
−2 5

 =



−11
34
−4
−1
16
5



6



−9
12
−6
7
−2
−1

+ 2



−11
34
−4
−1
16
5

 =



−76
140
−44
40
20
4

 ρ−1
C





−76
140
−44
40
20
4



 =

16 48
−4 30
−4 −8


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Section MR
Matrix Representations

We have seen that linear transformations whose domain and codomain are vector spaces of columns
vectors have a close relationship with matrices (Theorem MBLT [448], Theorem MLTCV [449]).
In this section, we will extend the relationship between matrices and linear transformations to the
setting of linear transformations between abstract vector spaces.

Definition MR
Matrix Representation
Suppose that T : U 7→ V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis for U of
size n, and C is a basis for V of size m. Then the matrix representation of T relative to B and
C is the m× n matrix,

MT
B,C = [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]

4

Example OLTTR
One linear transformation, three representations
Consider the linear transformation

S : P3 7→M22, S
(
a+ bx+ cx2 + dx3

)
=
[

3a+ 7b− 2c− 5d 8a+ 14b− 2c− 11d
−4a− 8b+ 2c+ 6d 12a+ 22b− 4c− 17d

]
First, we build a representation relative to the bases,

B =
{

1 + 2x+ x2 − x3, 1 + 3x+ x2 + x3, −1− 2x+ 2x3, 2 + 3x+ 2x2 − 5x3
}

C =
{[

1 1
1 2

]
,

[
2 3
2 5

]
,

[
−1 −1
0 −2

]
,

[
−1 −4
−2 −4

]}
We evaluate S with each element of the basis for the domain, B, and coordinatize the result relative
to the vectors in the basis for the codomain, C.

ρC
(
S
(
1 + 2x+ x2 − x3

))
= ρC

([
20 45
−24 69

])

= ρC

(
(−90)

[
1 1
1 2

]
+ 37

[
2 3
2 5

]
+ (−40)

[
−1 −1
0 −2

]
+ 4

[
−1 −4
−2 −4

])
=


−90
37
−40

4


ρC
(
S
(
1 + 3x+ x2 + x3

))
= ρC

([
17 37
−20 57

])

= ρC

(
(−72)

[
1 1
1 2

]
+ 29

[
2 3
2 5

]
+ (−34)

[
−1 −1
0 −2

]
+ 3

[
−1 −4
−2 −4

])
=


−72
29
−34

3


ρC
(
S
(
−1− 2x+ 2x3

))
= ρC

([
−27 −58
32 −90

])

= ρC

(
114

[
1 1
1 2

]
+ (−46)

[
2 3
2 5

]
+ 54

[
−1 −1
0 −2

]
+ (−5)

[
−1 −4
−2 −4

])
=


114
−46
54
−5


ρC
(
S
(
2 + 3x+ 2x2 − 5x3

))
= ρC

([
48 109
−58 167

])
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= ρC

(
(−220)

[
1 1
1 2

]
+ 91

[
2 3
2 5

]
+−96

[
−1 −1
0 −2

]
+ 10

[
−1 −4
−2 −4

])
=


−220

91
−96
10



Thus, employing Definition MR [529]

MS
B,C =


−90 −72 114 −220
37 29 −46 91
−40 −34 54 −96

4 3 −5 10


Often we use “nice” bases to build matrix representations and the work involved is much easier.
Suppose we take bases

D =
{

1, x, x2, x3
}

E =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
The evaluation of S at the elements of D is easy and coordinatization relative to E can be done on
sight,

ρE (S (1)) = ρE

([
3 8
−4 12

])

= ρE

(
3
[
1 0
0 0

]
+ 8

[
0 1
0 0

]
+ (−4)

[
0 0
1 0

]
+ 12

[
0 0
0 1

])
=


3
8
−4
12


ρE (S (x)) = ρE

([
7 14
−8 22

])

= ρE

(
7
[
1 0
0 0

]
+ 14

[
0 1
0 0

]
+ (−8)

[
0 0
1 0

]
+ 22

[
0 0
0 1

])
=


7
14
−8
22


ρE
(
S
(
x2
))

= ρE

([
−2 −2
2 −4

])

= ρE

(
(−2)

[
1 0
0 0

]
+ (−2)

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ (−4)

[
0 0
0 1

])
=


−2
−2
2
−4


ρE
(
S
(
x3
))

= ρE

([
−5 −11
6 −17

])

= ρE

(
(−5)

[
1 0
0 0

]
+ (−11)

[
0 1
0 0

]
+ 6

[
0 0
1 0

]
+ (−17)

[
0 0
0 1

])
=


−5
−11

6
−17



So the matrix representation of S relative to D and E is

MS
D,E =


3 7 −2 −5
8 14 −2 −11
−4 −8 2 6
12 22 −4 −17


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One more time, but now let’s use bases

F =
{

1 + x− x2 + 2x3, −1 + 2x+ 2x3, 2 + x− 2x2 + 3x3, 1 + x+ 2x3
}

G =
{[

1 1
−1 2

]
,

[
−1 2
0 2

]
,

[
2 1
−2 3

]
,

[
1 1
0 2

]}
and evaluate S with the elements of F , then coordinatize the results relative to G,

ρG
(
S
(
1 + x− x2 + 2x3

))
= ρG

([
2 2
−2 4

])
= ρG

(
2
[

1 1
−1 2

])
=


2
0
0
0



ρG
(
S
(
−1 + 2x+ 2x3

))
= ρG

([
1 −2
0 −2

])
= ρG

(
(−1)

[
−1 2
0 2

])
=


0
−1
0
0



ρG
(
S
(
2 + x− 2x2 + 3x3

))
= ρG

([
2 1
−2 3

])
= ρG

([
2 1
−2 3

])
=


0
0
1
0



ρG
(
S
(
1 + x+ 2x3

))
= ρG

([
0 0
0 0

])
= ρG

(
0
[
1 1
0 2

])
=


0
0
0
0



So we arrive at an especially economical matrix representation,

MS
F,G =


2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0


�

We may choose to use whatever terms we want when we make a definition. Some are arbitrary,
while others make sense, but only in light of subsequent theorems. Matrix representation is in the
latter category. We begin with a linear transformation and produce a matrix. So what? Here’s the
theorem that justifies the term “matrix representation.”

Theorem FTMR
Fundamental Theorem of Matrix Representation
Suppose that T : U 7→ V is a linear transformation, B is a basis for U , C is a basis for V and MT

B,C

is the matrix representation of T relative to B and C. Then, for any u ∈ U ,

ρC (T (u)) = MT
B,C (ρB (u))

or equivalently
T (u) = ρ−1

C

(
MT
B,C (ρB (u))

)
�

Proof Let B = {u1, u2, u3, . . . , un} be the basis of U . Since u ∈ U , there are scalars
a1, a2, a3, . . . , an such that

u = a1u1 + a2u2 + a3u3 + · · ·+ anun
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Then,

MT
B,CρB (u)

= [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ] ρB (u) Definition MR [529]

= [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]


a1

a2

a3
...
an

 Definition VR [517]

= a1ρC (T (u1)) + a2ρC (T (u2)) + · · ·+ anρC (T (un)) Definition MVP [191]
= ρC (a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ anT (un)) Theorem LTLC [451]
= ρC (T (a1u1 + a2u2 + a3u3 + · · ·+ anun)) Theorem LTLC [451]
= ρC (T (u))

The alternative conclusion is obtained as

T (u) = IV (T (u)) Definition IDLT [495]

=
(
ρ−1
C ◦ ρC

)
(T (u)) Definition IVLT [495]

= ρ−1
C (ρC (T (u))) Definition LTC [458]

= ρ−1
C

(
MT
B,C (ρB (u))

)
�

This theorem says that we can apply T to u and coordinatize the result relative to C in V , or
we can first coordinatize u relative to B in U , then multiply by the matrix representation. Either
way, the result is the same. So the effect of a linear transformation can always be accomplished
by a matrix-vector product (Definition MVP [191]). That’s important enough to say again. The
effect of a linear transformation is a matrix-vector product.

u T−−−−→ T (u)

ρB

y yρC
ρB (u)

MT
B,C−−−−→

ρC (T (u)),
MT
B,CρB (u)

The alternative conclusion of this result might be even more striking. It says that to effect a linear
transformation (T ) of a vector (u), coordinatize the input (with ρB), do a matrix-vector product
(with MT

B,C), and un-coordinatize the result (with ρ−1
C ). So, absent some bookkeeping about vector

representations, a linear transformation is a matrix.
Here’s an example to illustrate how the “action” of a linear transformation can be effected by

matrix multiplication.

Example ALTMM
A linear transformation as matrix multiplication
In Example OLTTR [529] we found three representations of the linear transformation S. In this
example, we will compute a single output of S in four different ways. First “normally,” then three
times over using Theorem FTMR [531].

Choose p(x) = 3−x+2x2−5x3, for no particular reason. Then the straightforward application
of S to p(x) yields

S (p(x)) = S
(
3− x+ 2x2 − 5x3

)
=
[

3(3) + 7(−1)− 2(2)− 5(−5) 8(3) + 14(−1)− 2(2)− 11(−5)
−4(3)− 8(−1) + 2(2) + 6(−5) 12(3) + 22(−1)− 4(2)− 17(−5)

]
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=
[

23 61
−30 91

]
Now use the representation of S relative to the bases B and C and Theorem FTMR [531]. Note
that we will employ the following linear combination in moving from the second line to the third,

3− x+ 2x2 − 5x3 = 48(1 + 2x+ x2 − x3) + (−20)(1 + 3x+ x2 + x3)+

(−1)(−1− 2x+ 2x3) + (−13)(2 + 3x+ 2x2 − 5x3)

S (p(x)) = ρ−1
C

(
MS
B,CρB (p(x))

)
= ρ−1

C

(
MS
B,CρB

(
3− x+ 2x2 − 5x3

))
= ρ−1

C

MS
B,C


48
−20
−1
−13




= ρ−1
C



−90 −72 114 −220
37 29 −46 91
−40 −34 54 −96

4 3 −5 10




48
−20
−1
−13




= ρ−1
C



−134

59
−46

7




= (−134)
[
1 1
1 2

]
+ 59

[
2 3
2 5

]
+ (−46)

[
−1 −1
0 −2

]
+ 7

[
−1 −4
−2 −4

]
=
[

23 61
−30 91

]
Again, but now with “nice” bases like D and E, and the computations are more transparent.

S (p(x)) = ρ−1
E

(
MS
D,EρD (p(x))

)
= ρ−1

E

(
MS
D,EρD

(
3− x+ 2x2 − 5x3

))
= ρ−1

E

(
MS
D,EρD

(
3(1) + (−1)(x) + 2(x2) + (−5)(x3)

))
= ρ−1

E

MS
D,E


3
−1
2
−5




= ρ−1
E




3 7 −2 −5
8 14 −2 −11
−4 −8 2 6
12 22 −4 −17




3
−1
2
−5




= ρ−1
E




23
61
−30
91




= 23
[
1 0
0 0

]
+ 61

[
0 1
0 0

]
+ (−30)

[
0 0
1 0

]
+ 91

[
0 0
0 1

]
=
[

23 61
−30 91

]
OK, last time, now with the bases F and G. The coordinatizations will take some work this time,
but the matrix-vector product (Definition MVP [191]) (which is the actual action of the linear
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transformation) will be especially easy, given the diagonal nature of the matrix representation,
MS
F,G. Here we go,

S (p(x)) = ρ−1
G

(
MS
F,GρF (p(x))

)
= ρ−1

G

(
MS
F,GρF

(
3− x+ 2x2 − 5x3

))
= ρ−1

G

(
MS
F,GρF

(
32(1 + x− x2 + 2x3)− 7(−1 + 2x+ 2x3)− 17(2 + x− 2x2 + 3x3)− 2(1 + x+ 2x3)

))
= ρ−1

G

MS
F,G


32
−7
−17
−2




= ρ−1
G




2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0




32
−7
−17
−2




= ρ−1
G




64
7
−17

0




= 64
[

1 1
−1 2

]
+ 7

[
−1 2
0 2

]
+ (−17)

[
2 1
−2 3

]
+ 0

[
1 1
0 2

]
=
[

23 61
−30 91

]
This example is not meant to necessarily illustrate that any one of these four computations is
simpler than the others. Instead, it is meant to illustrate the many different ways we can arrive
at the same result, with the last three all employing a matrix representation to effect the linear
transformation. �

We will use Theorem FTMR [531] frequently in the next few sections. A typical application
will feel like the linear transformation T “commutes” with a vector representation, ρC , and as it
does the transformation morphs into a matrix, MT

B,C , while the vector representation changes to a
new basis, ρB. Or vice-versa.

Subsection NRFO
New Representations from Old

In Subsection LT.NLTFO [456] we built new linear transformations from other linear transfor-
mations. Sums, scalar multiples and compositions. These new linear transformations will have
matrix represntations as well. How do the new matrix representations relate to the old matrix
representations? Here are the three theorems.

Theorem MRSLT
Matrix Representation of a Sum of Linear Transformations
Suppose that T : U 7→ V and S : U 7→ V are linear transformations, B is a basis of U and C is a
basis of V . Then

MT+S
B,C = MT

B,C +MS
B,C

�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MT+S
B,C x = MT+S

B,C ρB (u) Substitution

= ρC ((T + S) (u)) Theorem FTMR [531]
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= ρC (T (u) + S (u)) Definition LTA [456]
= ρC (T (u)) + ρC (S (u)) Definition LT [443]

= MT
B,C (ρB (u)) +MS

B,C (ρB (u)) Theorem FTMR [531]

=
(
MT
B,C +MS

B,C

)
ρB (u) Theorem MMDAA [197]

=
(
MT
B,C +MS

B,C

)
x Substitution

Since the matrices MT+S
B,C and MT

B,C +MS
B,C have equal matrix-vector products for every vector in

Cn, by Theorem EMMVP [193] they are equal matrices. (Now would be a good time to double-back
and study the proof of Theorem EMMVP [193]. You did promise to come back to this theorem
sometime, didn’t you?) �

Theorem MRMLT
Matrix Representation of a Multiple of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation, α ∈ C, B is a basis of U and C is a basis of V .
Then

MαT
B,C = αMT

B,C

�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MαT
B,Cx = MαT

B,CρB (u) Substitution

= ρC ((αT ) (u)) Theorem FTMR [531]
= ρC (αT (u)) Definition LTSM [457]
= αρC (T (u)) Definition LT [443]

= α
(
MT
B,CρB (u)

)
Theorem FTMR [531]

=
(
αMT

B,C

)
ρB (u) Theorem MMSMM [198]

=
(
αMT

B,C

)
x Substitution

Since the matrices MαT
B,C and αMT

B,C have equal matrix-vector products for every vector in Cn, by
Theorem EMMVP [193] they are equal matrices. �

The vector space of all linear transformations from U to V is now isomorphic to the vector
space of all m× n matrices.

Theorem MRCLT
Matrix Representation of a Composition of Linear Transformations
Suppose that T : U 7→ V and S : V 7→W are linear transformations, B is a basis of U , C is a basis
of V , and D is a basis of W . Then

MS◦T
B,D = MS

C,DM
T
B,C

�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MS◦T
B,Dx = MS◦T

B,DρB (u) Substitution

= ρD ((S ◦ T ) (u)) Theorem FTMR [531]
= ρD (S (T (u))) Definition LTC [458]

= MS
C,DρC (T (u)) Theorem FTMR [531]

= MS
C,D

(
MT
B,CρB (u)

)
Theorem FTMR [531]

=
(
MS
C,DM

T
B,C

)
ρB (u) Theorem MMA [198]

=
(
MS
C,DM

T
B,C

)
x Substitution
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Since the matrices MS◦T
B,D and MS

C,DM
T
B,C have equal matrix-vector products for every vector in Cn,

by Theorem EMMVP [193] they are equal matrices. �

This is the second great surprise of introductory linear algebra. Matrices are linear transfor-
mations (functions, really), and matrix multiplication is function composition! We can form the
composition of two linear transformations, then form the matrix representation of the result. Or
we can form the matrix representation of each linear transformation separately, then multiply the
two representations together via Definition MM [194]. In either case, we arrive at the same result.

Example MPMR
Matrix product of matrix representations
Consider the two linear transformations,

T : C2 7→ P2 T

([
a
b

])
= (−a+ 3b) + (2a+ 4b)x+ (a− 2b)x2

S : P2 7→M22 S
(
a+ bx+ cx2

)
=
[
2a+ b+ 2c a+ 4b− c
−a+ 3c 3a+ b+ 2c

]
and bases for C2, P2 and M22 (respectively),

B =
{[

3
1

]
,

[
2
1

]}
C =

{
1− 2x+ x2, −1 + 3x, 2x+ 3x2

}
D =

{[
1 −2
1 −1

]
,

[
1 −1
1 2

]
,

[
−1 2
0 0

]
,

[
2 −3
2 2

]}
Begin by computing the new linear transformation that is the composition of T and S (Definition
LTC [458], Theorem CLTLT [458]), (S ◦ T ) : C2 7→M22,

(S ◦ T )
([
a
b

])
= S

(
T

([
a
b

]))
= S

(
(−a+ 3b) + (2a+ 4b)x+ (a− 2b)x2

)
=
[
2(−a+ 3b) + (2a+ 4b) + 2(a− 2b) (−a+ 3b) + 4(2a+ 4b)− (a− 2b)

−(−a+ 3b) + 3(a− 2b) 3(−a+ 3b) + (2a+ 4b) + 2(a− 2b)

]
=
[
2a+ 6b 6a+ 21b
4a− 9b a+ 9b

]
Now compute the matrix representations (Definition MR [529]) for each of these three linear trans-
formations (T , S, S ◦ T ), relative to the appropriate bases. First for T ,

ρC

(
T

([
3
1

]))
= ρC

(
10x+ x2

)
= ρC

(
28(1− 2x+ x2) + 28(−1 + 3x) + (−9)(2x+ 3x2)

)
=

28
28
−9


ρC

(
T

([
2
1

]))
= ρC (1 + 8x)

= ρC
(
33(1− 2x+ x2) + 32(−1 + 3x) + (−11)(2x+ 3x2)

)
=

 33
32
−11



So we have the matrix representation of T ,

MT
B,C =

28 33
28 32
−9 −11


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Now, a representation of S,

ρD
(
S
(
1− 2x+ x2

))
= ρD

([
2 −8
2 3

])
= ρD

(
(−11)

[
1 −2
1 −1

]
+ (−21)

[
1 −1
1 2

]
+ 0

[
−1 2
0 0

]
+ (17)

[
2 −3
2 2

])

=


−11
−21

0
17


ρD (S (−1 + 3x)) = ρD

([
1 11
1 0

])
= ρD

(
26
[
1 −2
1 −1

]
+ 51

[
1 −1
1 2

]
+ 0

[
−1 2
0 0

]
+ (−38)

[
2 −3
2 2

])

=


26
51
0
−38


ρD
(
S
(
2x+ 3x2

))
= ρD

([
8 5
9 8

])
= ρD

(
34
[
1 −2
1 −1

]
+ 67

[
1 −1
1 2

]
+ 1

[
−1 2
0 0

]
+ (−46)

[
2 −3
2 2

])

=


34
67
1
−46



So we have the matrix representation of S,

MS
C,D =


−11 26 34
−21 51 67

0 0 1
17 −38 −46


Finally, a representation of S ◦ T ,

ρD

(
(S ◦ T )

([
3
1

]))
= ρD

([
12 39
3 12

])
= ρD

(
114

[
1 −2
1 −1

]
+ 237

[
1 −1
1 2

]
+ (−9)

[
−1 2
0 0

]
+ (−174)

[
2 −3
2 2

])

=


114
237
−9
−174


ρD

(
(S ◦ T )

([
2
1

]))
= ρD

([
10 33
−1 11

])
= ρD

(
95
[
1 −2
1 −1

]
+ 202

[
1 −1
1 2

]
+ (−11)

[
−1 2
0 0

]
+ (−149)

[
2 −3
2 2

])

=


95
202
−11
−149


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So we have the matrix representation of S ◦ T ,

MS◦T
B,D =


114 95
237 202
−9 −11
−174 −149


Now, we are all set to verify the conclusion of Theorem MRCLT [535],

MS
C,DM

T
B,C =


−11 26 34
−21 51 67

0 0 1
17 −38 −46


28 33

28 32
−9 −11



=


114 95
237 202
−9 −11
−174 −149


= MS◦T

B,D

We have intentionally used non-standard bases. If you were to choose “nice” bases for the three
vector spaces, then the result of the theorem might be rather transparent. But this would still be
a worthwhile exercise — give it a go. �

A diagram, similar to ones we have seen earlier, might make the importance of this theorem
clearer,

S, T
Definition MR [529]−−−−−−−−−−−−→ MS

C,D, M
T
B,C

Definition LTC [458]

y yDefinition MM [194]

S ◦ T Definition MR [529]−−−−−−−−−−−−→
MS
C,DM

T
B,C ,

MS◦T
B,D

One of our goals in the first part of this book is to make the definition of matrix multiplication
(Definition MVP [191], Definition MM [194]) seem as natural as possible. However, many are
brought up with an entry-by-entry description of matrix multiplication (Theorem ME [417]) as
the definition of matrix multiplication, and then theorems about columns of matrices and linear
combinations follow from that definition. With this unmotivated definition, the realization that
matrix multiplication is function composition is quite remarkable. It is an interesting exercise to
begin with the question, “What is the matrix representation of the composition of two linear
transformations?” and then, without using any theorems about matrix multiplication, finally
arrive at the entry-by-entry description of matrix multiplication. Try it yourself (Exercise MR.T80
[549]).

Subsection PMR
Properties of Matrix Representations

It will not be a surprise to discover that the kernel and range of a linear transformation are closely
related to the null space and column space of the transformation’s matrix representation. Perhaps
this idea has been bouncing around in your head already, even before seeing the definition of a
matrix representation. However, with a formal definition of a matrix representation (Definition
MR [529]), and a fundamental theorem to go with it (Theorem FTMR [531]) we can be formal
about the relationship, using the idea of isomorphic vector spaces (Definition IVS [502]). Here are
the twin theorems.
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Theorem KNSI
Kernel and Null Space Isomorphism
Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C is a basis
for V . Then the kernel of T is isomorphic to the null space of MT

B,C ,

K(T ) ∼= N
(
MT
B,C

)
�

Proof To establish that two vector spaces are isomorphic, we must find an isomorphism between
them, an invertible linear transformation (Definition IVS [502]). The kernel of the linear transfor-
mation T , K(T ), is a subspace of U , while the null space of the matrix representation, N

(
MT
B,C

)
is a subspace of Cn. The function ρB is defined as a function from U to Cn, but we can just as well
employ the definition of ρB as a function from K(T ) to N

(
MT
B,C

)
.

We must first insure that if we choose an input for ρB from K(T ) that then the output will be
an element of N

(
MT
B,C

)
. So suppose that u ∈ K(T ). Then

MT
B,CρB (u) = ρC (T (u)) Theorem FTMR [531]

= ρC (0) Definition KLT [468]
= 0 Theorem LTTZZ [446]

This says that ρB (u) ∈ N
(
MT
B,C

)
, as desired.

The restriction in the size of the domain and codomain ρB will not affect the fact that ρB
is a linear transformation (Theorem VRLT [517]), nor will it affect the fact that ρB is injective
(Theorem VRI [521]). Something must be done though to verify that ρB is surjective. To this end,
appeal to the definition of surjective (Definition SLT [479]), and suppose that we have an element
of the codomain, x ∈ N

(
MT
B,C

)
⊆ Cn and we wish to find an element of the domain with x as

its image. We now show that the desired element of the domain is u = ρ−1
B (x). First, verify that

u ∈ K(T ),

T (u) = T
(
ρ−1
B (x)

)
= ρ−1

C

(
MT
B,C

(
ρB
(
ρ−1
B (x)

)))
Theorem FTMR [531]

= ρ−1
C

(
MT
B,C (ICn (x))

)
Definition IVLT [495]

= ρ−1
C

(
MT
B,Cx

)
Definition IDLT [495]

= ρ−1
C (0Cn) Definition KLT [468]

= 0V Theorem LTTZZ [446]

Second, verify that the proposed isomorphism, ρB, takes u to x,

ρB (u) = ρB
(
ρ−1
B (x)

)
Substitution

= ICn (x) Definition IVLT [495]
= x Definition IDLT [495]

With ρB demonstrated to be an injective and surjective linear transformation from K(T ) to
N
(
MT
B,C

)
, Theorem ILTIS [498] tells us ρB is invertible, and so by Definition IVS [502], we

say K(T ) and N
(
MT
B,C

)
are isomorphic. �

Example KVMR
Kernel via matrix representation
Consider the kernel of the linear transformation

T : M22 7→ P2, T

([
a b
c d

])
= (2a− b+ c− 5d) + (a+ 4b+ 5b+ 2d)x+ (3a− 2b+ c− 8d)x2
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We will begin with a matrix representation of T relative to the bases for M22 and P2 (respectively),

B =
{[

1 2
−1 −1

]
,

[
1 3
−1 −4

]
,

[
1 2
0 −2

]
,

[
2 5
−2 −4

]}
C =

{
1 + x+ x2, 2 + 3x, −1− 2x2

}
Then,

ρC

(
T

([
1 2
−1 −1

]))
= ρC

(
4 + 2x+ 6x2

)
= ρC

(
2(1 + x+ x2) + 0(2 + 3x) + (−2)(−1− 2x2)

)
=

 2
0
−2


ρC

(
T

([
1 3
−1 −4

]))
= ρC

(
18 + 28x2

)
= ρC

(
(−24)(1 + x+ x2) + 8(2 + 3x) + (−26)(−1− 2x2)

)
=

−24
8
−26


ρC

(
T

([
1 2
0 −2

]))
= ρC

(
10 + 5x+ 15x2

)
= ρC

(
5(1 + x+ x2) + 0(2 + 3x) + (−5)(−1− 2x2)

)
=

 5
0
−5


ρC

(
T

([
2 5
−2 −4

]))
= ρC

(
17 + 4x+ 26x2

)
= ρC

(
(−8)(1 + x+ x2) + (4)(2 + 3x) + (−17)(−1− 2x2)

)
=

 −8
4
−17


So the matrix representation of T (relative to B and C) is

MT
B,C =

 2 −24 5 −8
0 8 0 4
−2 −26 −5 −17


We know from Theorem KNSI [539] that the kernel of the linear transformation T is isomorphic
to the null space of the matrix representation MT

B,C and by studying the proof of Theorem KNSI
[539] we learn that ρB is an isomorphism between these null spaces. Rather than trying to compute
the kernel of T using definitions and techniques from Chapter LT [443] we will instead analyze the
null space of MT

B,C using techniques from way back in Chapter V [81]. First row-reduce MT
B,C , 2 −24 5 −8

0 8 0 4
−2 −26 −5 −17

 RREF−−−−→

 1 0 5
2 2

0 1 0 1
2

0 0 0 0


So, by Theorem BNS [140], a basis for N

(
MT
B,C

)
is

〈

−5

2
0
1
0

 ,

−2
−1

2
0
1



〉
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We can now convert this basis of N
(
MT
B,C

)
into a basis of K(T ) by applying ρ−1

B to each element
of the basis,

ρ−1
B



−5

2
0
1
0


 = (−5

2
)
[

1 2
−1 −1

]
+ 0

[
1 3
−1 −4

]
+ 1

[
1 2
0 −2

]
+ 0

[
2 5
−2 −4

]

=
[
−3

2 −3
5
2

1
2

]

ρ−1
B



−2
−1

2
0
1


 = (−2)

[
1 2
−1 −1

]
+ (−1

2
)
[

1 3
−1 −4

]
+ 0

[
1 2
0 −2

]
+ 1

[
2 5
−2 −4

]

=
[
−1

2 −1
2

1
2 0

]
So the set {[

−3
2 −3

5
2

1
2

]
,

[
−1

2 −1
2

1
2 0

]}
is a basis for K(T ) Just for fun, you might evaluate T with each of these two basis vectors and
verify that the output is the zero polynomial (Exercise MR.C10 [548]). �

An entirely similar result applies to the range of a linear transformation and the column space
of a matrix representation of the linear transformation.

Theorem RCSI
Range and Column Space Isomorphism
Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C is a basis
for V of size m. Then the range of T is isomorphic to the column space of MT

B,C ,

R(T ) ∼= C
(
MT
B,C

)
�

Proof To establish that two vector spaces are isomorphic, we must find an isomorphism between
them, an invertible linear transformation (Definition IVS [502]). The range of the linear transfor-
mation T , R(T ), is a subspace of V , while the column space of the matrix representation, C

(
MT
B,C

)
is a subspace of Cm. The function ρC is defined as a function from V to Cm, but we can just as
well employ the definition of ρC as a function from R(T ) to C

(
MT
B,C

)
.

We must first insure that if we choose an input for ρC from R(T ) that then the output will
be an element of C

(
MT
B,C

)
. So suppose that v ∈ R(T ). Then there is a vector u ∈ U , such that

T (u) = v. Consider

MT
B,CρB (u) = ρC (T (u)) Theorem FTMR [531]

= ρC (v) Definition RLT [483]

This says that ρC (v) ∈ C
(
MT
B,C

)
, as desired.

The restriction in the size of the domain and codomain will not affect the fact that ρC is a linear
transformation (Theorem VRLT [517]), nor will it affect the fact that ρC is injective (Theorem VRI
[521]). Something must be done though to verify that ρC is surjective. This all gets a bit confusing,
since the domain of our isomorphism is the range of the linear transformation, so think about
your objects as you go. To establish that ρC is surjective, appeal to the definition of a surjective
linear transformation (Definition SLT [479]), and suppose that we have an element of the codomain,
y ∈ C

(
MT
B,C

)
⊆ Cm and we wish to find an element of the domain with y as its image. Since
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y ∈ C
(
MT
B,C

)
, there exists a vector, x ∈ Cn with MT

B,Cx = y. We now show that the desired

element of the domain is v = ρ−1
C (y). First, verify that v ∈ R(T ) by applying T to u = ρ−1

B (x),

T (u) = T
(
ρ−1
B (x)

)
= ρ−1

C

(
MT
B,C

(
ρB
(
ρ−1
B (x)

)))
Theorem FTMR [531]

= ρ−1
C

(
MT
B,C (ICn (x))

)
Definition IVLT [495]

= ρ−1
C

(
MT
B,Cx

)
Definition IDLT [495]

= ρ−1
C (y) Definition CSM [231]

= v Substitution

Second, verify that the proposed isomorphism, ρC , takes v to y,

ρC (v) = ρC
(
ρ−1
C (y)

)
Substitution

= ICm (y) Definition IVLT [495]
= y Definition IDLT [495]

With ρC demonstrated to be an injective and surjective linear transformation from R(T ) to
C
(
MT
B,C

)
, Theorem ILTIS [498] tells us ρC is invertible, and so by Definition IVS [502], we say

R(T ) and C
(
MT
B,C

)
are isomorphic. �

Example RVMR
Range via matrix representation
In this example, we will recycle the linear transformation T and the bases B and C of Example
KVMR [539] but now we will compute the range of T ,

T : M22 7→ P2, T

([
a b
c d

])
= (2a− b+ c− 5d) + (a+ 4b+ 5b+ 2d)x+ (3a− 2b+ c− 8d)x2

With bases B and C,

B =
{[

1 2
−1 −1

]
,

[
1 3
−1 −4

]
,

[
1 2
0 −2

]
,

[
2 5
−2 −4

]}
C =

{
1 + x+ x2, 2 + 3x, −1− 2x2

}
we obtain the matrix representation

MT
B,C =

 2 −24 5 −8
0 8 0 4
−2 −26 −5 −17


We know from Theorem RCSI [541] that the range of the linear transformation T is isomorphic to
the column space of the matrix representation MT

B,C and by studying the proof of Theorem RCSI
[541] we learn that ρC is an isomorphism between these subspaces. Notice that since the range is a
subspace of the codomain, we will employ ρC as the isomorphism, rather than ρB, which was the
correct choice for an isomophism between the null spaces of Example KVMR [539].

Rather than trying to compute the range of T using definitions and techniques from Chapter
LT [443] we will instead analyze the column space of MT

B,C using techniques from way back in

Chapter M [179]. First row-reduce
(
MT
B,C

)t
,

2 0 −2
−24 8 −26

5 0 −5
−8 4 −17

 RREF−−−−→


1 0 −1
0 1 −25

4
0 0 0
0 0 0


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Now employ Theorem CSRST [241] and Theorem BRS [240] (there are other methods we could
choose here to compute the column space, such as Theorem BCS [234]) to obtain the basis for
C
(
MT
B,C

)
, 

 1
0
−1

 ,
 0

1
−25

4


We can now convert this basis of C

(
MT
B,C

)
into a basis of R(T ) by applying ρ−1

C to each element
of the basis,

ρ−1
C

 1
0
−1

 = (1 + x+ x2)− (−1− 2x2) = 2 + x+ 3x2

ρ−1
C

 0
1
−25

4

 = (2 + 3x)− 25
4

(−1− 2x2) =
33
4

+ 3x+
31
2
x2

So the set {
2 + 3x+ 3x2,

33
4

+ 3x+
31
2
x2

}
is a basis for R(T ). �

Theorem KNSI [539] and Theorem RCSI [541] can be viewed as further formal evidence for the
Coordinatization Principle [525], though they are not direct consequences.

Subsection IVLT
Invertible Linear Transformations

We have seen, both in theorems and in examples, that questions about linear transformations are
often equivalent to questions about matrices. It is the matrix representation of a linear transfor-
mation that makes this idea precise. Here’s our final theorem that solidifies this connection.

Theorem IMR
Invertible Matrix Representations
Suppose that T : U 7→ V is an invertible linear transformation, B is a basis for U and C is a basis
for V . Then the matrix representation of T relative to B and C, MT

B,C is an invertible matrix, and

MT−1

C,B =
(
MT
B,C

)−1

�

Proof This theorem states that the matrix representation of T−1 can be found by finding the
matrix inverse of the matrix representation of T (with suitable bases in the right places). It also
says that the matrix representation of T is an invertible matrix. We can establish the invertibility,
and precisely what the inverse is, by appealing to the definition of a matrix inverse, Definition MI
[208]. To this end, let B = {u1, u2, u3, . . . , un} and C = {v1, v2, v3, . . . , vn}. Then

MT−1

C,BM
T
B,C = MT−1◦T

B,B Theorem MRCLT [535]

= M IU
B,B Definition IVLT [495]

= [ρB (IU (u1))| ρB (IU (u2))| . . . |ρB (IU (un)) ] Definition MR [529]
= [ρB (u1)| ρB (u2)| ρB (u3)| . . . |ρB (un) ] Definition IDLT [495]
= [e1|e2|e3| . . . |en] Definition VR [517]
= In Definition IM [68]
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and

MT
B,CM

T−1

C,B = MT◦T−1

C,C Theorem MRCLT [535]

= M IV
C,C Definition IVLT [495]

= [ρC (IV (v1))| ρC (IV (v2))| . . . |ρC (IV (vn)) ] Definition MR [529]
= [ρC (v1)| ρC (v2)| ρC (v3)| . . . |ρC (vn) ] Definition IDLT [495]
= [e1|e2|e3| . . . |en] Definition VR [517]
= In Definition IM [68]

So by Definition MI [208], the matrix MT
B,C has an inverse, and that inverse is MT−1

C,B . �

Example ILTVR
Inverse of a linear transformation via a representation
Consider the linear transformation

R : P3 7→M22, R
(
a+ bx+ cx2 + x3

)
=
[
a+ b− c+ 2d 2a+ 3b− 2c+ 3d
a+ b+ 2d −a+ b+ 2c− 5d

]
If we wish to quickly find a formula for the inverse of R (presuming it exists), then choosing “nice”
bases will work best. So build a matrix representation of R relative to the bases B and C,

B =
{

1, x, x2, x3
}

C =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Then,

ρC (R (1)) = ρC

([
1 2
1 −1

])
=


1
2
1
−1



ρC (R (x)) = ρC

([
1 3
1 1

])
=


1
3
1
1



ρC
(
R
(
x2
))

= ρC

([
−1 −2
0 2

])
=


−1
−2
0
2



ρC
(
R
(
x3
))

= ρC

([
2 3
2 −5

])
=


2
3
2
−5


So a representation of R is

MR
B,C =


1 1 −1 2
2 3 −2 3
1 1 0 2
−1 1 2 −5


The matrix MR

B,C is invertible (as you can check) so we know by Theorem IMR [543] that R is
invertible. Furthermore,

MR−1

C,B =
(
MR
B,C

)−1
=


1 1 −1 2
2 3 −2 3
1 1 0 2
−1 1 2 −5


−1

=


20 −7 −2 3
−8 3 1 −1
−1 0 1 0
−6 2 1 −1


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We can use this representation of the inverse linear transformation, in concert with Theorem FTMR
[531], to determine an explicit formula for the inverse itself,

R−1

([
a b
c d

])
= ρ−1

B

(
MR−1

C,B ρC

([
a b
c d

]))
Theorem FTMR [531]

= ρ−1
B

((
MR
B,C

)−1
ρC

([
a b
c d

]))
Theorem IMR [543]

= ρ−1
B

(MR
B,C

)−1


a
b
c
d


 Definition VR [517]

= ρ−1
B




20 −7 −2 3
−8 3 1 −1
−1 0 1 0
−6 2 1 −1



a
b
c
d


 Definition MI [208]

= ρ−1
B




20a− 7b− 2c+ 3d
−8a+ 3b+ c− d

−a+ c
−6a+ 2b+ c− d


 Definition MVP [191]

= (20a− 7b− 2c+ 3d) + (−8a+ 3b+ c− d)x

+ (−a+ c)x2 + (−6a+ 2b+ c− d)x3 Definition VR [517]

You might look back at Example AIVLT [495], where we first witnessed the inverse of a linear
transformation and recognize that the inverse (S) was built from using the method of this example
on a matrix representation of T . �

Theorem IMILT
Invertible Matrices, Invertible Linear Transformation
Suppose that A is a square matrix of size n and T : Cn 7→ Cn is the linear transformation defined
by T (x) = Ax. Then A is invertible matrix if and only if T is an invertible linear transformation.

�

Proof Choose bases B = C = {e1, e2, e3, . . . , en} consisting of the standard unit vectors as a
basis of Cn (Theorem SUVB [319]) and build a matrix representation of T relative to B and C.
Then

ρC (T (ei)) = ρC (Aei)
= ρC (Ai)
= Ai

So then the matrix representation of T , relative to B and C, is simply MT
B,C = A. This is the basic

observation that makes the rest of this proof go.
(⇐) Suppose T is invertible. Then T is injective by Theorem ILTIS [498] and

n (A) = dim (N (A)) Definition NOM [338]

= dim
(
N
(
MT
B,C

))
= dim (kerT ) Theorem KNSI [539]
= dim ({0}) Theorem KILT [471]
= 0

Then Theorem RNNM [340] tells us that A is nonsingular, and therefore A is invertible (Theorem
NI [223]).
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(⇒) Suppose A is a nonsingular matrix, then A is invertible (Theorem NI [223]) and has zero
nullity (Theorem RNNM [340]). So

n (T ) = dim (K(T )) Definition NOLT [503]

= dim
(
N
(
MT
B,C

))
Theorem KNSI [539]

= dim (N (A))
= dim ({0}) Theorem NMTNS [70]
= 0

So T has zero nullity, and therefore has a trivial kernel and by Theorem KILT [471] T is injective.
Furthermore, by Theorem RPNDD [504],

r (T ) = dim (Cn)− n (T ) = n− 0 = n

So T has full rank and therefore the range of T is all of Cn and by Theorem RSLT [485] T is
surjective. Finally, with T known to be injective and surjective, Theorem ILTIS [498] says T is
invertible. �

This theorem looks like more work than you would imagine it to be. But by now, the connections
between matrices and linear transformations should be starting to become more transparent, and
you may have already recognized the invertiblity of a matrix as being tantamount to the invertiblity
of the associated matrix representation. See Exercise MR.T60 [549] as well.

We can update the NMEx series of theorems, yet again.

Theorem NME9
Nonsingular Matrix Equivalences, Round 9
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

13. The linear transformation T : Cn 7→ Cn defined by T (x) = Ax is invertible.

�

Proof By Theorem IMILT [545] the new addition to this list is equivalent to the statement that
A is invertible so we can expand Theorem NME8 [412]. �
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Subsection READ
Reading Questions

1. Why does Theorem FTMR [531] deserve the moniker “fundamental”?

2. Find the matrix representation, MT
B,C of the linear transformation

T : C2 7→ C2, T

([
x1

x2

])
=
[

2x1 − x2

3x1 + 2x2

]
relative to the bases

B =
{[

2
3

]
,

[
−1
2

]}
C =

{[
1
0

]
,

[
1
1

]}
3. What is the second “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C10 Example KVMR [539] concludes with a basis for the kernel of the linear transformation T .
Compute the value of T for each of these two basis vectors. Did you get what you expected?
Contributed by Robert Beezer

C20 Compute the matrix representation of T relative to the bases B and C.

T : P3 7→ C3, T
(
a+ bx+ cx2 + dx3

)
=

2a− 3b+ 4c− 2d
a+ b− c+ d
3a+ 2c− 3d


B =

{
1, x, x2, x3

}
C =


1

0
0

 ,
1

1
0

 ,
1

1
1


Contributed by Robert Beezer Solution [551]

C21 Find a matrix representation of the linear transformation T relative to the bases B and C.

T : P2 7→ C2, T (p(x)) =
[
p(1)
p(3)

]
B =

{
2− 5x+ x2, 1 + x− x2, x2

}
C =

{[
3
4

]
,

[
2
3

]}
Contributed by Robert Beezer Solution [551]

C22 Let S22 be the vector space of 2 × 2 symmetric matrices. Build the matrix representation
of the linear transformation T : P2 7→ S22 relative to the bases B and C and then use this matrix
representation to compute T

(
3 + 5x− 2x2

)
.

B =
{

1, 1 + x, 1 + x+ x2
}

C =
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
T
(
a+ bx+ cx2

)
=
[
2a− b+ c a+ 3b− c
a+ 3b− c a− c

]
Contributed by Robert Beezer Solution [551]

C25 Use a matrix representation to determine if the linear transformation T : P3 7→ M22 surjec-
tive.

T
(
a+ bx+ cx2 + dx3

)
=
[
−a+ 4b+ c+ 2d 4a− b+ 6c− d
a+ 5b− 2c+ 2d a+ 2c+ 5d

]
Contributed by Robert Beezer Solution [552]

C30 Find bases for the kernel and range of the linear transformation S below.

S : M22 7→ P2, S

([
a b
c d

])
= (a+ 2b+ 5c− 4d) + (3a− b+ 8c+ 2d)x+ (a+ b+ 4c− 2d)x2

Contributed by Robert Beezer Solution [553]

C40 Let S22 be the set of 2 × 2 symmetric matrices. Verify that the linear transformation R is
invertible and find R−1.

R : S22 7→ P2, R

([
a b
b c

])
= (a− b) + (2a− 3b− 2c)x+ (a− b+ c)x2
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Contributed by Robert Beezer Solution [553]

C41 Prove that the linear transformation S is invertible. Then find a formula for the inverse
linear transformation, S−1, by employing a matrix inverse. (15 points)

S : P1 7→M1,2, S (a+ bx) =
[
3a+ b 2a+ b

]
Contributed by Robert Beezer Solution [554]

C42 The linear transformation R : M12 7→ M21 is invertible. Use a matrix representation to
determine a formula for the inverse linear transformation R−1 : M21 7→M12.

R
([
a b

])
=
[
a+ 3b

4a+ 11b

]

Contributed by Robert Beezer Solution [554]

C50 Use a matrix representation to find a basis for the range of the linear transformation L. (15
points)

L : M22 7→ P2, T

([
a b
c d

])
= (a+ 2b+ 4c+ d) + (3a+ c− 2d)x+ (−a+ b+ 3c+ 3d)x2

Contributed by Robert Beezer Solution [555]

C51 Use a matrix representation to find a basis for the kernel of the linear transformation L. (15
points)

L : M22 7→ P2, T

([
a b
c d

])
= (a+ 2b+ 4c+ d) + (3a+ c− 2d)x+ (−a+ b+ 3c+ 3d)x2

Contributed by Robert Beezer

C52 Find a basis for the kernel of the linear transformation T : P2 7→M22.

T
(
a+ bx+ cx2

)
=
[
a+ 2b− 2c 2a+ 2b
−a+ b− 4c 3a+ 2b+ 2c

]

Contributed by Robert Beezer Solution [555]

M20 The linear transformation D performs differentiation on polynomials. Use a matrix repre-
sentation of D to find the rank and nullity of D.

D : Pn 7→ Pn, D (p(x)) = p′(x)

Contributed by Robert Beezer Solution [556]

T60 Create an entirely different proof of Theorem IMILT [545] that relies on Definition IVLT
[495] to establish the invertibility of T , and that relies on Definition MI [208] to establish the
invertibility of A.
Contributed by Robert Beezer

T80 Suppose that T : U 7→ V and S : V 7→ W are linear transformations, and that B, C and D
are bases for U , V , and W . Using only Definition MR [529] define matrix representations for T
and S. Using these two definitions, and Definition MR [529], derive a matrix representation for
the composition S ◦ T in terms of the entries of the matrices MT

B,C and MS
C,D. Explain how you
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would use this result to motivate a definition for matrix multiplication that is strikingly similar to
Theorem EMP [195].
Contributed by Robert Beezer Solution [557]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [548]
Apply Definition MR [529],

ρC (T (1)) = ρC

2
1
3

 = ρC

1

1
0
0

+ (−2)

1
1
0

+ 3

1
1
1

 =

 1
−2
3


ρC (T (x)) = ρC

−3
1
0

 = ρC

(−4)

1
0
0

+ 1

1
1
0

+ 0

1
1
1

 =

−4
1
0


ρC
(
T
(
x2
))

= ρC

 4
−1
2

 = ρC

5

1
0
0

+ (−3)

1
1
0

+ 2

1
1
1

 =

 5
−3
2


ρC
(
T
(
x3
))

= ρC

−2
1
−3

 = ρC

(−3)

1
0
0

+ 4

1
1
0

+ (−3)

1
1
1

 =

−3
4
−3


These four vectors are the columns of the matrix representation,

MT
B,C =

 1 −4 5 −3
−2 1 −3 4
3 0 2 −3


C21 Contributed by Robert Beezer Statement [548]
Applying Definition MR [529],

ρC
(
T
(
2− 5x+ x2

))
= ρC

([
−2
−4

])
= ρC

(
2
[
3
4

]
+ (−4)

[
2
3

])
=
[

2
−4

]
ρC
(
T
(
1 + x− x2

))
= ρC

([
1
−5

])
= ρC

(
13
[
3
4

]
+ (−19)

[
2
3

])
=
[

13
−19

]
ρC
(
T
(
x2
))

= ρC

([
1
9

])
= ρC

(
(−15)

[
3
4

]
+ 23

[
2
3

])
=
[
−15
23

]
So the resulting matrix representation is

MT
B,C =

[
2 13 −15
−4 −19 23

]

C22 Contributed by Robert Beezer Statement [548]
Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([
2 1
1 1

])
= ρC

(
2
[
1 0
0 0

]
+ 1

[
0 1
1 0

]
+ 1

[
0 0
0 1

])
=

2
1
1


ρC (T (1 + x)) = ρC

([
1 4
4 1

])
= ρC

(
1
[
1 0
0 0

]
+ 4

[
0 1
1 0

]
+ 1

[
0 0
0 1

])
=

1
4
1


ρC
(
T
(
1 + x+ x2

))
= ρC

([
2 3
3 0

])
= ρC

(
2
[
1 0
0 0

]
+ 3

[
0 1
1 0

]
+ 0

[
0 0
0 1

])
=

2
3
0


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Applying Definition MR [529] we have the matrix representation

MT
B,C =

2 1 2
1 4 3
1 1 0


To compute T

(
3 + 5x− 2x2

)
employ Theorem FTMR [531],

T
(
3 + 5x− 2x2

)
= ρ−1

C

(
MT
B,CρB

(
3 + 5x− 2x2

))
= ρ−1

C

(
MT
B,CρB

(
(−2)(1) + 7(1 + x) + (−2)(1 + x+ x2)

))
= ρ−1

C

2 1 2
1 4 3
1 1 0

−2
7
−2


= ρ−1

C

−1
20
5


= (−1)

[
1 0
0 0

]
+ 20

[
0 1
1 0

]
+ 5

[
0 0
0 1

]
=
[
−1 20
20 5

]
You can, of course, check your answer by evaluating T

(
3 + 5x− 2x2

)
directly.

C25 Contributed by Robert Beezer Statement [548]
Choose bases B and C for the matrix representation,

B =
{

1, x, x2, x3
}

C =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([
−1 4
1 1

])
= ρC

(
(−1)

[
1 0
0 0

]
+ 4

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 1

[
0 0
0 1

])
=


−1
4
1
1



ρC (T (x)) = ρC

([
4 −1
5 0

])
= ρC

(
4
[
1 0
0 0

]
+ (−1)

[
0 1
0 0

]
+ 5

[
0 0
1 0

]
+ 0

[
0 0
0 1

])
=


4
−1
5
0



ρC
(
T
(
x2
))

= ρC

([
1 6
−2 2

])
= ρC

(
1
[
1 0
0 0

]
+ 6

[
0 1
0 0

]
+ (−2)

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


1
6
−2
2



ρC
(
T
(
x3
))

= ρC

([
2 −1
2 5

])
= ρC

(
2
[
1 0
0 0

]
+ (−1)

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ 5

[
0 0
0 1

])
=


2
−1
2
5


Applying Definition MR [529] we have the matrix representation

MT
B,C =


−1 4 1 2
4 −1 6 −1
1 5 −2 2
1 0 2 5


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Properties of this matrix representation will translate to properties of the linear transformation The
matrix representation is nonsingular since it row-reduces to the identity matrix (Theorem NMRRI
[68]) and therefore has a column space equal to C4 (Theorem CNMB [324]). The column space of
the matrix representation is isomorphic to the range of the linear transformation (Theorem RCSI
[541]). So the range of T has dimension 4, equal to the dimension of the codomain M22. By
Theorem ROSLT [504], T is surjective.

C30 Contributed by Robert Beezer Statement [548]
These subspaces will be easiest to construct by analyzing a matrix representation of S. Since we
can use any matrix representation, we might as well use natural bases that allow us to construct
the matrix representation quickly and easily,

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
then we can practically build the matrix representation on sight,

MS
B,C =

1 2 5 −4
3 −1 8 2
1 1 4 −2


The first step is to find bases for the null space and column space of the matrix representation.
Row-reducing the matrix representation we find, 1 0 3 0

0 1 1 −2
0 0 0 0


So by Theorem BNS [140] and Theorem BCS [234], we have

N
(
MS
B,C

)
=

〈

−3
−1
1
0

 ,


0
2
0
1



〉

C
(
MS
B,C

)
=

〈
1

3
1

 ,
 2
−1
1


〉

Now, the proofs of Theorem KNSI [539] and Theorem RCSI [541] tell us that we can apply ρ−1
B

and ρ−1
C (respectively) to “un-coordinatize” and get bases for the kernel and range of the linear

transformation S itself,

K(S) =
〈{[

−3 −1
1 0

]
,

[
0 2
0 1

]}〉
R(S) =

〈{
1 + 3x+ x2, 2− x+ x2

}〉
C40 Contributed by Robert Beezer Statement [548]
The analysis of R will be easiest if we analyze a matrix representation of R. Since we can use any
matrix representation, we might as well use natural bases that allow us to construct the matrix
representation quickly and easily,

B =
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
then we can practically build the matrix representation on sight,

MR
B,C =

1 −1 0
2 −3 −2
1 −1 1


This matrix representation is invertible (it has a nonzero determinant of −1, Theorem SMZD [381],
Theorem NI [223]) so Theorem IMR [543] tells us that the linear transformation S is also invertible.
To find a formula for R−1 we compute,

R−1
(
a+ bx+ cx2

)
= ρ−1

B

(
MR−1

C,B ρC
(
a+ bx+ cx2

))
Theorem FTMR [531]
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= ρ−1
B

((
MR
B,C

)−1
ρC
(
a+ bx+ cx2

))
Theorem IMR [543]

= ρ−1
B

(MR
B,C

)−1

ab
c

 Definition VR [517]

= ρ−1
B

 5 −1 −2
4 −1 −2
−1 0 1

ab
c

 Definition MI [208]

= ρ−1
B

5a− b− 2c
4a− b− 2c
−a+ c

 Definition MVP [191]

=
[
5a− b− 2c 4a− b− 2c
4a− b− 2c −a+ c

]
Definition VR [517]

C41 Contributed by Robert Beezer Statement [549]
First, build a matrix representation of S (Definition MR [529]). We are free to choose whatever
bases we wish, so we should choose ones that are easy to work with, such as

B = {1, x}
C =

{[
1 0

]
,
[
0 1

]}
The resulting matrix representation is then

MT
B,C =

[
3 1
2 1

]
this matrix is invertible, since it has a nonzero determinant, so by Theorem IMR [543] the linear
transformation S is invertible. We can use the matrix inverse and Theorem IMR [543] to find a
formula for the inverse linear transformation,

S−1
([
a b

])
= ρ−1

B

(
MS−1

C,B ρC
([
a b

]))
Theorem FTMR [531]

= ρ−1
B

((
MS
B,C

)−1
ρC
([
a b

]))
Theorem IMR [543]

= ρ−1
B

((
MS
B,C

)−1
[
a
b

])
Definition VR [517]

= ρ−1
B

(([
3 1
2 1

])−1 [
a
b

])

= ρ−1
B

([
1 −1
−2 3

] [
a
b

])
Definition MI [208]

= ρ−1
B

([
a− b
−2a+ 3b

])
Definition MVP [191]

= (a− b) + (−2a+ 3b)x Definition VR [517]

C42 Contributed by Robert Beezer Statement [549]
Choose bases B and C for M12 and M21 (respectively),

B =
{[

1 0
]
,
[
0 1

]}
C =

{[
1
0

]
,

[
0
1

]}
The resulting matrix representation is

MR
B,C =

[
1 3
4 11

]
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This matrix is invertible (its determinant is nonzero, Theorem SMZD [381]), so by Theorem IMR
[543], we can compute the matrix representation of R−1 with a matrix inverse (Theorem TTMI
[210]),

MR−1

C,B =
[
1 3
4 11

]−1

=
[
−11 3

4 −1

]
To obtain a general formula for R−1, use Theorem FTMR [531],

R−1

([
x
y

])
= ρ−1

B

(
MR−1

C,B ρC

([
x
y

]))
= ρ−1

B

([
−11 3

4 −1

] [
x
y

])
= ρ−1

B

([
−11x+ 3y

4x− y

])
=
[
−11x+ 3y 4x− y

]
C50 Contributed by Robert Beezer Statement [549]
As usual, build any matrix representation of L, most likely using a “nice” bases, such as

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
Then the matrix representation (Definition MR [529]) is,

ML
B,C =

 1 2 4 1
3 0 1 −2
−1 1 3 3


Theorem RCSI [541] tells us that we can compute the column space of the matrix representation,
then use the isomorphism ρ−1

C to convert the column space of the matrix representation into the
range of the linear transformation. So we first analyze the matrix representation, 1 2 4 1

3 0 1 −2
−1 1 3 3

 RREF−−−−→

 1 0 0 −1
0 1 0 −1
0 0 1 1


With three nonzero rows in the reduced row-echelon form of the matrix, we know the column space
has dimension 3. Since P2 has dimension 3 (Theorem DP [337]), the range must be all of P2. So
any basis of P2 would suffice as a basis for the range. For instance, C itself would be a correct
answer.

A more laborious approach would be to use Theorem BCS [234] and choose the first three
columns of the matrix representation as a basis for the range of the matrix representation. These
could then be “un-coordinatized” with ρ−1

C to yield a (“not nice”) basis for P2.

C52 Contributed by Robert Beezer Statement [549]
Choose bases B and C for the matrix representation,

B =
{

1, x, x2
}

C =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([
1 2
−1 3

])
= ρC

(
1
[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ (−1)

[
0 0
1 0

]
+ 3

[
0 0
0 1

])
=


1
2
−1
3


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ρC (T (x)) = ρC

([
2 2
1 2

])
= ρC

(
2
[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


2
2
1
2



ρC
(
T
(
x2
))

= ρC

([
−2 0
−4 2

])
= ρC

(
(−2)

[
1 0
0 0

]
+ 0

[
0 1
0 0

]
+ (−4)

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


−2
0
−4
2



Applying Definition MR [529] we have the matrix representation

MT
B,C =


1 2 −2
2 2 0
−1 1 −4
3 2 2


The null space of the matrix representation is isomorphic (via ρB) to the kernel of the linear
transformation (Theorem KNSI [539]). So we compute the null space of the matrix representation
by first row-reducing the matrix to, 

1 0 2
0 1 −2
0 0 0
0 0 0


Employing Theorem BNS [140] we have

N
(
MT
B,C

)
=

〈
−2

2
1


〉

We only need to uncoordinatize this one basis vector to get a basis for K(T ),

K(T ) =

〈ρ−1
B

−2
2
1


〉

=
〈{
−2 + 2x+ x2

}〉

M20 Contributed by Robert Beezer Statement [549]
Build a matrix representation (Definition MR [529]) with the set

B =
{

1, x, x2, . . . , xn
}

employed as a basis of both the domain and codomain. Then

ρB (D (1)) = ρB (0) =



0
0
0
...
0
0


ρB (D (x)) = ρB (1) =



1
0
0
...
0
0



ρB
(
D
(
x2
))

= ρB (2x) =



0
2
0
...
0
0


ρB
(
D
(
x3
))

= ρB
(
3x2
)

=



0
0
3
...
0
0


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...

ρB (D (xn)) = ρB
(
nxn−1

)
=



0
0
0
...
n
0



and the resulting matrix representation is

MD
B,B =



0 1 0 0 . . . 0 0
0 0 2 0 . . . 0 0
0 0 0 3 . . . 0 0

...
. . .

...
0 0 0 0 . . . 0 n
0 0 0 0 . . . 0 0


This (n + 1) × (n + 1) matrix is very close to being in reduced row-echelon form. Multiply row i
by 1

i , for 1 ≤ i ≤ n, to convert it to reduced row-echelon form. From this we can see that matrix
representation MD

B,B has rank n and nullity 1. Applying Theorem RCSI [541] and Theorem KNSI
[539] tells us that the linear transformation D will have the same values for the rank and nullity,
as well.

T80 Contributed by Robert Beezer Statement [549]
Suppose thatB = {u1, u2, u3, . . . , um}, C = {v1, v2, v3, . . . , vn} andD = {w1, w2, w3, . . . , wp}.
For convenience, set M = MT

B,C , mij = [M ]ij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and similarly, set N = MS
C,D,

nij = [N ]ij , 1 ≤ i ≤ p, 1 ≤ j ≤ n. We want to learn about the matrix representation of
S ◦T : V 7→W relative to B and D. We will examine a single (generic) entry of this representation.

[
MS◦T
B,D

]
ij

= [ρD ((S ◦ T ) (uj))]i Definition MR [529]

= [ρD (S (T (uj)))]i Definition LTC [458]

=

[
ρD

(
S

(
n∑
k=1

mkjvk

))]
i

Definition MR [529]

=

[
ρD

(
n∑
k=1

mkjS (vk)

)]
i

Theorem LTLC [451]

=

[
ρD

(
n∑
k=1

mkj

p∑
`=1

n`kw`

)]
i

Definition MR [529]

=

[
ρD

(
n∑
k=1

p∑
`=1

mkjn`kw`

)]
i

Property DVA [274]

=

[
ρD

(
p∑
`=1

n∑
k=1

mkjn`kw`

)]
i

Property C [273]

=

[
ρD

(
p∑
`=1

(
n∑
k=1

mkjn`k

)
w`

)]
i

Property DSA [274]

=
n∑
k=1

mkjnik Definition VR [517]

=
n∑
k=1

nikmkj Property CMCN [662]
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=
n∑
k=1

[
MS
C,D

]
ik

[
MT
B,C

]
kj

Property CMCN [662]

This formula for the entry of a matrix should remind you of Theorem EMP [195]. However, while the
theorem presumed we knew how to multiply matrices, the solution before us never uses any under-
standing of matrix products. It uses the definitions of vector and matrix representations, properties
of linear transformations and vector spaces. So if we began a course by first discussing vector space,
and then linear transformations between vector spaces, we could carry matrix representations into a
motivation for a definition of matrix multiplication that is grounded in function composition. That
is worth saying again — a definition of matrix representations of linear transformations results in
a matrix product being the representation of a composition of linear transformations.

This exercise is meant to explain why many authors take the formula in Theorem EMP [195] as
their definition of matrix multiplication, and why it is a natural choice when the proper motivation
is in place. If we first defined matrix multiplication in the style of Theorem EMP [195], then the
above argument, followed by a simple application of the definition of matrix equality (Definition
ME [179]), would yield Theorem MRCLT [535].
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Section CB
Change of Basis

We have seen in Section MR [529] that a linear transformation can be represented by a matrix, once
we pick bases for the domain and codomain. How does the matrix representation change if we choose
different bases? Which bases lead to especially nice representations? From the infinite possibilities,
what is the best possible representation? This section will begin to answer these questions. But
first we need to define eigenvalues for linear transformations and the change-of-basis matrix.

Subsection EELT
Eigenvalues and Eigenvectors of Linear Transformations

We now define the notion of an eigenvalue and eigenvector of a linear transformation. It should
not be too surprising, especially if you remind yourself of the close relationship between matrices
and linear transformations.

Definition EELT
Eigenvalue and Eigenvector of a Linear Transformation
Suppose that T : V 7→ V is a linear transformation. Then a nonzero vector v ∈ V is an eigenvector
of T for the eigenvalue λ if T (v) = λv. 4

We will see shortly the best method for computing the eigenvalues and eigenvectors of a linear
transformation, but for now, here are some examples to verify that such things really do exist.

Example ELTBM
Eigenvectors of linear transformation between matrices
Consider the linear transformation T : M22 7→M22 defined by

T

([
a b
c d

])
=
[
−17a+ 11b+ 8c− 11d −57a+ 35b+ 24c− 33d
−14a+ 10b+ 6c− 10d −41a+ 25b+ 16c− 23d

]
and the vectors

x1 =
[
0 1
0 1

]
x2 =

[
1 1
1 0

]
x3 =

[
1 3
2 3

]
x4 =

[
2 6
1 4

]
Then compute

T (x1) = T

([
0 1
0 1

])
=
[
0 2
0 2

]
= 2x1

T (x2) = T

([
1 1
1 0

])
=
[
2 2
2 0

]
= 2x2

T (x3) = T

([
1 3
2 3

])
=
[
−1 −3
−2 −3

]
= (−1)x3

T (x4) = T

([
2 6
1 4

])
=
[
−4 −12
−2 −8

]
= (−2)x4

So x1, x2, x3, x4 are eigenvectors of T with eigenvalues (respectively) λ1 = 2, λ2 = 2, λ3 = −1,
λ4 = −2. �

Here’s another.
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Example ELTBP
Eigenvectors of linear transformation between polynomials
Consider the linear transformation R : P2 7→ P2 defined by

R
(
a+ bx+ cx2

)
= (15a+ 8b− 4c) + (−12a− 6b+ 3c)x+ (24a+ 14b− 7c)x2

and the vectors

w1 = 1− x+ x2 w2 = x+ 2x2 w3 = 1 + 4x2

Then compute

R (w1) = R
(
1− x+ x2

)
= 3− 3x+ 3x2 = 3w1

R (w2) = R
(
x+ 2x2

)
= 0 + 0x+ 0x2 = 0w2

R (w3) = R
(
1 + 4x2

)
= −1− 4x2 = (−1)w3

So w1, w2, w3 are eigenvectors of R with eigenvalues (respectively) λ1 = 3, λ2 = 0, λ3 = −1.
Notice how the eigenvalue λ2 = 0 indicates that the eigenvector w2 is a non-trivial element of the
kernel of R, and therefore R is not injective (Exercise CB.T15 [580]). �

Of course, these examples are meant only to illustrate the definition of eigenvectors and eigen-
values for linear transformations, and therefore beg the question, “How would I find eigenvectors?”
We’ll have an answer before we finish this section. We need one more construction first.

Subsection CBM
Change-of-Basis Matrix

Given a vector space, we know we can usually find many different bases for the vector space, some
nice, some nasty. If we choose a single vector from this vector space, we can build many different
representations of the vector by constructing the representations relative to different bases. How
are these different representations related to each other? A change-of-basis matrix answers this
question.

Definition CBM
Change-of-Basis Matrix
Suppose that V is a vector space, and IV : V 7→ V is the identity linear transformation on V . Let
B = {v1, v2, v3, . . . , vn} and C be two bases of V . Then the change-of-basis matrix from B
to C is the matrix representation of IV relative to B and C,

CB,C = M IV
B,C

= [ρC (IV (v1))| ρC (IV (v2))| ρC (IV (v3))| . . . |ρC (IV (vn)) ]
= [ρC (v1)| ρC (v2)| ρC (v3)| . . . |ρC (vn) ]

4

Notice that this definition is primarily about a single vector space (V ) and two bases of V (B,
C). The linear transformation (IV ) is necessary but not critical. As you might expect, this matrix
has something to do with changing bases. Here is the theorem that gives the matrix its name (not
the other way around).

Theorem CB
Change-of-Basis
Suppose that v is a vector in the vector space V and B and C are bases of V . Then

ρC (v) = CB,CρB (v)
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�

Proof

ρC (v) = ρC (IV (v)) Definition IDLT [495]

= M IV
B,CρB (v) Theorem FTMR [531]

= CB,CρB (v) Definition CBM [560]

�

So the change-of-basis matrix can be used with matrix multiplication to convert a vector rep-
resentation of a vector (v) relative to one basis (ρB (v)) to a representation of the same vector
relative to a second basis (ρC (v)).

Theorem ICBM
Inverse of Change-of-Basis Matrix
Suppose that V is a vector space, and B and C are bases of V . Then the change-of-basis matrix
CB,C is nonsingular and

C−1
B,C = CC,B

�

Proof The linear transformation IV : V 7→ V is invertible, and its inverse is itself, IV (check
this!). So by Theorem IMR [543], the matrix M IV

B,C = CB,C is invertible. Theorem NI [223] says
an invertible matrix is nonsingular.

Then

C−1
B,C =

(
M IV
B,C

)−1
Definition CBM [560]

= M
I−1
V
C,B Theorem IMR [543]

= M IV
C,B Definition IDLT [495]

= CC,B Definition CBM [560]

�

Example CBP
Change of basis with polynomials
The vector space P4 (Example VSP [275]) has two nice bases (Example BP [320]),

B =
{

1, x, x2, x3, x4
}

C =
{

1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, 1 + x+ x2 + x3 + x4
}

To build the change-of-basis matrix between B and C, we must first build a vector representation
of each vector in B relative to C,

ρC (1) = ρC ((1) (1)) =


1
0
0
0
0



ρC (x) = ρC ((−1) (1) + (1) (1 + x)) =


−1
1
0
0
0


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ρC
(
x2
)

= ρC
(
(−1) (1 + x) + (1)

(
1 + x+ x2

))
=


0
−1
1
0
0



ρC
(
x3
)

= ρC
(
(−1)

(
1 + x+ x2

)
+ (1)

(
1 + x+ x2 + x3

))
=


0
0
−1
1
0



ρC
(
x4
)

= ρC
(
(−1)

(
1 + x+ x2 + x3

)
+ (1)

(
1 + x+ x2 + x3 + x4

))
=


0
0
0
−1
1


Then we package up these vectors as the columns of a matrix,

CB,C =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1


Now, to illustrate Theorem CB [560], consider the vector u = 5 − 3x + 2x2 + 8x3 − 3x4. We can
build the representation of u relative to B easily,

ρB (u) = ρB
(
5− 3x+ 2x2 + 8x3 − 3x4

)
=


5
−3
2
8
−3


Applying Theorem CB [560], we obtain a second representation of u, but now relative to C,

ρC (u) = CB,CρB (u) Theorem CB [560]

=


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1




5
−3
2
8
−3



=


8
−5
−6
11
−3

 Definition MVP [191]

We can check our work by unraveling this second representation,

u = ρ−1
C (ρC (u)) Definition IVLT [495]

= ρ−1
C




8
−5
−6
11
−3



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= 8(1) + (−5)(1 + x) + (−6)(1 + x+ x2)

+ (11)(1 + x+ x2 + x3) + (−3)(1 + x+ x2 + x3 + x4) Definition VR [517]

= 5− 3x+ 2x2 + 8x3 − 3x4

The change-of-basis matrix from C to B is actually easier to build. Grab each vector in the basis
C and form its representation relative to B

ρB (1) = ρB ((1)1) =


1
0
0
0
0



ρB (1 + x) = ρB ((1)1 + (1)x) =


1
1
0
0
0



ρB
(
1 + x+ x2

)
= ρB

(
(1)1 + (1)x+ (1)x2

)
=


1
1
1
0
0



ρB
(
1 + x+ x2 + x3

)
= ρB

(
(1)1 + (1)x+ (1)x2 + (1)x3

)
=


1
1
1
1
0



ρB
(
1 + x+ x2 + x3 + x4

)
= ρB

(
(1)1 + (1)x+ (1)x2 + (1)x3 + (1)x4

)
=


1
1
1
1
1



Then we package up these vectors as the columns of a matrix,

CC,B =


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1


We formed two representations of the vector u above, so we can again provide a check on our
computations by converting from the representation of u relative to C to the representation of u
relative to B,

ρB (u) = CC,BρC (u) Theorem CB [560]

=


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1




8
−5
−6
11
−3


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=


5
−3
2
8
−3

 Definition MVP [191]

One more computation that is either a check on our work, or an illustration of a theorem. The two
change-of-basis matrices, CB,C and CC,B, should be inverses of each other, according to Theorem
ICBM [561]. Here we go,

CB,CCC,B =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1




1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


�

The computations of the previous example are not meant to present any labor-saving devices,
but instead are meant to illustrate the utility of the change-of-basis matrix. However, you might
have noticed that CC,B was easier to compute than CB,C . If you needed CB,C , then you could first
compute CC,B and then compute its inverse, which by Theorem ICBM [561], would equal CB,C .

Here’s another illustrative example. We have been concentrating on working with abstract
vector spaces, but all of our theorems and techniques apply just as well to Cm, the vector space
of column vectors. We only need to use more complicated bases than the standard unit vectors
(Theorem SUVB [319]) to make things interesting.

Example CBCV
Change of basis with column vectors
For the vector space C4 we have the two bases,

B =




1
−2
1
−2

 ,

−1
3
1
1

 ,


2
−3
3
−4

 ,

−1
3
3
0


 C =




1
−6
−4
−1

 ,

−4
8
−5
8

 ,

−5
13
−2
9

 ,


3
−7
3
−6




The change-of-basis matrix from B to C requires writing each vector of B as a linear combination
the vectors in C,

ρC




1
−2
1
−2


 = ρC

(1)


1
−6
−4
−1

+ (−2)


−4
8
−5
8

+ (1)


−5
13
−2
9

+ (−1)


3
−7
3
−6


 =


1
−2
1
−1



ρC



−1
3
1
1


 = ρC

(2)


1
−6
−4
−1

+ (−3)


−4
8
−5
8

+ (3)


−5
13
−2
9

+ (0)


3
−7
3
−6


 =


2
−3
3
0



ρC




2
−3
3
−4


 = ρC

(1)


1
−6
−4
−1

+ (−3)


−4
8
−5
8

+ (1)


−5
13
−2
9

+ (−2)


3
−7
3
−6


 =


1
−3
1
−2



ρC



−1
3
3
0


 = ρC

(2)


1
−6
−4
−1

+ (−2)


−4
8
−5
8

+ (4)


−5
13
−2
9

+ (3)


3
−7
3
−6


 =


2
−2
4
3


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Then we package these vectors up as the change-of-basis matrix,

CB,C =


1 2 1 2
−2 −3 −3 −2
1 3 1 4
−1 0 −2 3



Now consider a single (arbitrary) vector y =


2
6
−3
4

. First, build the vector representation of y

relative to B. This will require writing y as a linear combination of the vectors in B,

ρB (y) = ρB




2
6
−3
4




= ρB

(−21)


1
−2
1
−2

+ (6)


−1
3
1
1

+ (11)


2
−3
3
−4

+ (−7)


−1
3
3
0


 =


−21

6
11
−7


Now, applying Theorem CB [560] we can convert the representation of y relative to B into a
representation relative to C,

ρC (y) = CB,CρB (y) Theorem CB [560]

=


1 2 1 2
−2 −3 −3 −2
1 3 1 4
−1 0 −2 3



−21

6
11
−7



=


−12

5
−20
−22

 Definition MVP [191]

We could continue further with this example, perhaps by computing the representation of y relative
to the basis C directly as a check on our work (Exercise CB.C20 [580]). Or we could choose another
vector to play the role of y and compute two different representations of this vector relative to the
two bases B and C.

�

Subsection MRS
Matrix Representations and Similarity

Here is the main theorem of this section. It looks a bit involved at first glance, but the proof should
make you realize it is not all that complicated. In any event, we are more interested in a special
case.

Theorem MRCB
Matrix Representation and Change of Basis
Suppose that T : U 7→ V is a linear transformation, B and C are bases for U , and D and E are
bases for V . Then

MT
B,D = CE,DM

T
C,ECB,C
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�

Proof

CE,DM
T
C,ECB,C = M IV

E,DM
T
C,EM

IU
B,C Definition CBM [560]

= M IV
E,DM

T◦IU
B,E Theorem MRCLT [535]

= M IV
E,DM

T
B,E Definition IDLT [495]

= M IV ◦T
B,D Theorem MRCLT [535]

= MT
B,D Definition IDLT [495]

�

We will be most interested in a special case of this theorem (Theorem SCB [568]), but here’s
an example that illustrates the full generality of Theorem MRCB [565].

Example MRCM
Matrix representations and change-of-basis matrices
Begin with two vector spaces, S2, the subspace of M22 containing all 2 × 2 symmetric matrices,
and P3 (Example VSP [275]), the vector space of all polynomials of degree 3 or less. Then define
the linear transformation Q : S2 7→ P3 by

Q

([
a b
b c

])
= (5a− 2b+ 6c) + (3a− b+ 2c)x+ (a+ 3b− c)x2 + (−4a+ 2b+ c)x3

Here are two bases for each vector space, one nice, one nasty. First for S2,

B =
{[

5 −3
−3 −2

]
,

[
2 −3
−3 0

]
,

[
1 2
2 4

]}
C =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
and then for P3,

D =
{

2 + x− 2x2 + 3x3, −1− 2x2 + 3x3, −3− x+ x3, −x2 + x3
}

E =
{

1, x, x2, x3
}

We’ll begin with a matrix representation of Q relative to C and E. We first find vector represen-
tations of the elements of C relative to E,

ρE

(
Q

([
1 0
0 0

]))
= ρE

(
5 + 3x+ x2 − 4x3

)
=


5
3
1
−4



ρE

(
Q

([
0 1
1 0

]))
= ρE

(
−2− x+ 3x2 + 2x3

)
=


−2
−1
3
2



ρE

(
Q

([
0 0
0 1

]))
= ρE

(
6 + 2x− x2 + x3

)
=


6
2
−1
1



So

MQ
C,E =


5 −2 6
3 −1 2
1 3 −1
−4 2 1


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Now we construct two change-of-basis matrices. First, CB,C requires vector representations of the
elements of B, relative to C. Since C is a nice basis, this is straightforward,

ρC

([
5 −3
−3 −2

])
= ρC

(
(5)
[
1 0
0 0

]
+ (−3)

[
0 1
1 0

]
+ (−2)

[
0 0
0 1

])
=

 5
−3
−2


ρC

([
2 −3
−3 0

])
= ρC

(
(2)
[
1 0
0 0

]
+ (−3)

[
0 1
1 0

]
+ (0)

[
0 0
0 1

])
=

 2
−3
0


ρC

([
1 2
2 4

])
= ρC

(
(1)
[
1 0
0 0

]
+ (2)

[
0 1
1 0

]
+ (4)

[
0 0
0 1

])
=

1
2
4


So

CB,C =

 5 2 1
−3 −3 2
−2 0 4


The other change-of-basis matrix we’ll compute is CE,D. However, since E is a nice basis (and D
is not) we’ll turn it around and instead compute CD,E and apply Theorem ICBM [561] to use an
inverse to compute CE,D.

ρE
(
2 + x− 2x2 + 3x3

)
= ρE

(
(2)1 + (1)x+ (−2)x2 + (3)x3

)
=


2
1
−2
3



ρE
(
−1− 2x2 + 3x3

)
= ρE

(
(−1)1 + (0)x+ (−2)x2 + (3)x3

)
=


−1
0
−2
3



ρE
(
−3− x+ x3

)
= ρE

(
(−3)1 + (−1)x+ (0)x2 + (1)x3

)
=


−3
−1
0
1



ρE
(
−x2 + x3

)
= ρE

(
(0)1 + (0)x+ (−1)x2 + (1)x3

)
=


0
0
−1
1


So, we can package these column vectors up as a matrix to obtain CD,E and then,

CE,D = (CD,E)−1 Theorem ICBM [561]

=


2 −1 −3 0
1 0 −1 0
−2 −2 0 −1
3 3 1 1


−1

=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0


We are now in a position to apply Theorem MRCB [565]. The matrix representation of Q relative
to B and D can be obtained as follows,

MQ
B,D = CE,DM

Q
C,ECB,C Theorem MRCB [565]
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=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0




5 −2 6
3 −1 2
1 3 −1
−4 2 1


 5 2 1
−3 −3 2
−2 0 4



=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0




19 16 25
14 9 9
−2 −7 3
−28 −14 4



=


−39 −23 14
62 34 −12
−53 −32 5
−44 −15 −7


Now check our work by computing MQ

B,D directly (Exercise CB.C21 [580]). �

Here is a special case of the previous theorem, where we choose U and V to be the same vector
space, so the matrix representations and the change-of-basis matrices are all square of the same
size.

Theorem SCB
Similarity and Change of Basis
Suppose that T : V 7→ V is a linear transformation and B and C are bases of V . Then

MT
B,B = C−1

B,CM
T
C,CCB,C

�

Proof In the conclusion of Theorem MRCB [565], replace D by B, and replace E by C,

MT
B,B = CC,BM

T
C,CCB,C Theorem MRCB [565]

= C−1
B,CM

T
C,CCB,C Theorem ICBM [561]

�

This is the third surprise of this chapter. Theorem SCB [568] considers the special case where
a linear transformation has the same vector space for the domain and codomain (V ). We build a
matrix representation of T using the basis B simultaneously for both the domain and codomain
(MT

B,B), and then we build a second matrix representation of T , now using the basis C for both
the domain and codomain (MT

C,C). Then these two representations are related via a similarity
transformation (Definition SIM [425]) using a change-of-basis matrix (CB,C)!

Example MRBE
Matrix representation with basis of eigenvectors
We return to the linear transfomation T : M22 7→M22 of Example ELTBM [559] defined by

T

([
a b
c d

])
=
[
−17a+ 11b+ 8c− 11d −57a+ 35b+ 24c− 33d
−14a+ 10b+ 6c− 10d −41a+ 25b+ 16c− 23d

]
In Example ELTBM [559] we showcased four eigenvectors of T . We will now put these four vectors
in a set,

B = {x1, x2, x3, x4} =
{[

0 1
0 1

]
,

[
1 1
1 0

]
,

[
1 3
2 3

]
,

[
2 6
1 4

]}
Check that B is a basis of M22 by first establishing the linear independence of B and then employing
Theorem G [347] to get the spanning property easily. Here is a second set of 2× 2 matrices, which
also forms a basis of M22 (Example BM [320]),

C = {y1, y2, y3, y4} =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
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We can build two matrix representations of T , one relative to B and one relative to C. Each is
easy, but for wildly different reasons. In our computation of the matrix representation relative to
B we borrow some of our work in Example ELTBM [559]. Here are the representations, then the
explanation.

ρB (T (x1)) = ρB (2x1) = ρB (2x1 + 0x2 + 0x3 + 0x4) =


2
0
0
0



ρB (T (x2)) = ρB (2x2) = ρB (0x1 + 2x2 + 0x3 + 0x4) =


0
2
0
0



ρB (T (x3)) = ρB ((−1)x3) = ρB (0x1 + 0x2 + (−1)x3 + 0x4) =


0
0
−1
0



ρB (T (x4)) = ρB ((−2)x4) = ρB (0x1 + 0x2 + 0x3 + (−2)x4) =


0
0
0
−2


So the resulting representation is

MT
B,B =


2 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −2


Very pretty. Now for the matrix representation relative to C first compute,

ρC (T (y1)) = ρC

([
−17 −57
−14 −41

])

= ρC

(
(−17)

[
1 0
0 0

]
+ (−57)

[
0 1
0 0

]
+ (−14)

[
0 0
1 0

]
+ (−41)

[
0 0
0 1

])
=


−17
−57
−14
−41


ρC (T (y2)) = ρC

([
11 35
10 25

])

= ρC

(
11
[
1 0
0 0

]
+ 35

[
0 1
0 0

]
+ 10

[
0 0
1 0

]
+ 25

[
0 0
0 1

])
=


11
35
10
25


ρC (T (y3)) = ρC

([
8 24
6 16

])

= ρC

(
8
[
1 0
0 0

]
+ 24

[
0 1
0 0

]
+ 6

[
0 0
1 0

]
+ 16

[
0 0
0 1

])
=


8
24
6
16


ρC (T (y4)) = ρC

([
−11 −33
−10 −23

])

= ρC

(
(−11)

[
1 0
0 0

]
+ (−33)

[
0 1
0 0

]
+ (−10)

[
0 0
1 0

]
+ (−23)

[
0 0
0 1

])
=


−11
−33
−10
−23


Version 1.30



570 Section CB Change of Basis

So the resulting representation is

MT
C,C =


−17 11 8 −11
−57 35 24 −33
−14 10 6 −10
−41 25 16 −23


Not quite as pretty. The purpose of this example is to illustrate Theorem SCB [568]. This theorem
says that the two matrix representations, MT

B,B and MT
C,C , of the one linear transformation, T , are

related by a similarity transformation using the change-of-basis matrix CB,C . Lets compute this
change-of-basis matrix. Notice that since C is such a nice basis, this is fairly straightforward,

ρC (x1) = ρC

([
0 1
0 1

])
= ρC

(
0
[
1 0
0 0

]
+ 1

[
0 1
0 0

]
+ 0

[
0 0
1 0

]
+ 1

[
0 0
0 1

])
=


0
1
0
1



ρC (x2) = ρC

([
1 1
1 0

])
= ρC

(
1
[
1 0
0 0

]
+ 1

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 0

[
0 0
0 1

])
=


1
1
1
0



ρC (x3) = ρC

([
1 3
2 3

])
= ρC

(
1
[
1 0
0 0

]
+ 3

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ 3

[
0 0
0 1

])
=


1
3
2
3



ρC (x4) = ρC

([
2 6
1 4

])
= ρC

(
2
[
1 0
0 0

]
+ 6

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 4

[
0 0
0 1

])
=


2
6
1
4


So we have,

CB,C =


0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


Now, according to Theorem SCB [568] we can write,

MT
B,B = C−1

B,CM
T
C,CCB,C

2 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −2

 =


0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


−1 
−17 11 8 −11
−57 35 24 −33
−14 10 6 −10
−41 25 16 −23




0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


This should look and feel exactly like the process for diagonalizing a matrix, as was described in
Section SD [425]. And it is. �

We can now return to the question of computing an eigenvalue or eigenvector of a linear trans-
formation. For a linear transformation of the form T : V 7→ V , we know that representations
relative to different bases are similar matrices. We also know that similar matrices have equal
characteristic polynomials by Theorem SMEE [427]. We will now show that eigenvalues of a linear
transformation T are precisely the eigenvalues of any matrix representation of T . Since the choice
of a different matrix representation leads to a similar matrix, there will be no “new” eigenvalues
obtained from this second representation. Similarly, the change-of-basis matrix can be used to
show that eigenvectors obtained from one matrix representation will be precisely those obtained
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from any other representation. So we can determine the eigenvalues and eigenvectors of a linear
transformation by forming one matrix representation, using any basis we please, and analyzing the
matrix in the manner of Chapter E [389].

Theorem EER
Eigenvalues, Eigenvectors, Representations
Suppose that T : V 7→ V is a linear transformation and B is a basis of V . Then v ∈ V is
an eigenvector of T for the eigenvalue λ if and only if ρB (v) is an eigenvector of MT

B,B for the
eigenvalue λ. �

Proof (⇒) Assume that v ∈ V is an eigenvector of T for the eigenvalue λ. Then

MT
B,BρB (v) = ρB (T (v)) Theorem FTMR [531]

= ρB (λv) Definition EELT [559]
= λρB (v) Theorem VRLT [517]

which by Definition EEM [389] says that ρB (v) is an eigenvector of the matrix MT
B,B for the

eigenvalue λ.
(⇐) Assume that ρB (v) is an eigenvector of MT

B,B for the eigenvalue λ. Then

T (v) = ρ−1
B (ρB (T (v))) Definition IVLT [495]

= ρ−1
B

(
MT
B,BρB (v)

)
Theorem FTMR [531]

= ρ−1
B (λρB (v)) Definition EEM [389]

= λρ−1
B (ρB (v)) Theorem ILTLT [497]

= λv Definition IVLT [495]

which by Definition EELT [559] says v is an eigenvector of T for the eigenvalue λ. �

Subsection CELT
Computing Eigenvectors of Linear Transformations

Knowing that the eigenvalues of a linear transformation are the eigenvalues of any representation,
no matter what the choice of the basis B might be, we could now unambigously define items such
as the characteristic polynomial of a linear transformation, rather than a matrix. We’ll say that
again — eigenvalues, eigenvectors, and characteristic polynomials are intrinsic properties of a linear
transformation, independent of the choice of a basis used to construct a matrix representation.

As a practical matter, how does one compute the eigenvalues and eigenvectors of a linear
transformation of the form T : V 7→ V ? Choose a nice basis B for V , one where the vector
representations of the values of the linear transformations necessary for the matrix representation
are easy to compute. Construct the matrix representation relative to this basis, and find the
eigenvalues and eigenvectors of this matrix using the techniques of Chapter E [389]. The resulting
eigenvalues of the matrix are precisely the eigenvalues of the linear transformation. The eigenvectors
of the matrix are column vectors that need to be converted to vectors in V through application of
ρ−1
B .

Now consider the case where the matrix representation of a linear transformation is diagonaliz-
able. The n linearly independent eigenvectors that must exist for the matrix (Theorem DC [429])
can be converted (via ρ−1

B ) into eigenvectors of the linear transformation. A matrix representation
of the linear transformation relative to a basis of eigenvectors will be a diagonal matrix — an espe-
cially nice representation! Though we did not know it at the time, the diagonalizations of Section
SD [425] were really finding especially pleasing matrix representations of linear transformations.

Here are some examples.
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Example ELTT
Eigenvectors of a linear transformation, twice
Consider the linear transformation S : M22 7→M22 defined by

S

([
a b
c d

])
=
[

−b− c− 3d −14a− 15b− 13c+ d
18a+ 21b+ 19c+ 3d −6a− 7b− 7c− 3d

]
To find the eigenvalues and eigenvectors of S we will build a matrix representation and analyze the
matrix. Since Theorem EER [571] places no restriction on the choice of the basis B, we may as
well use a basis that is easy to work with. So set

B = {x1, x2, x3, x4} =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Then to build the matrix representation of S relative to B compute,

ρB (S (x1)) = ρB

([
0 −14
18 −6

])
= ρB (0x1 + (−14)x2 + 18x3 + (−6)x4) =


0
−14
18
−6



ρB (S (x2)) = ρB

([
−1 −15
21 −7

])
= ρB ((−1)x1 + (−15)x2 + 21x3 + (−7)x4) =


−1
−15
21
−7



ρB (S (x3)) = ρB

([
−1 −13
19 −7

])
= ρB ((−1)x1 + (−13)x2 + 19x3 + (−7)x4) =


−1
−13
19
−7



ρB (S (x4)) = ρB

([
−3 1
3 −3

])
= ρB ((−3)x1 + 1x2 + 3x3 + (−3)x4) =


−3
1
3
−3


So by Definition MR [529] we have

M = MS
B,B =


0 −1 −1 −3
−14 −15 −13 1
18 21 19 3
−6 −7 −7 −3


Now compute eigenvalues and eigenvectors of the matrix representation of M with the techniques
of Section EE [389]. First the characteristic polynomial,

pM (x) = det (M − xI4) = x4 − x3 − 10x2 + 4x+ 24 = (x− 3)(x− 2)(x+ 2)2

We could now make statements about the eigenvalues of M , but in light of Theorem EER [571]
we can refer to the eigenvalues of S and mildly abuse (or extend) our notation for multiplicities to
write

αS (3) = 1 αS (2) = 1 αS (−2) = 2

Now compute the eigenvectors of M ,

λ = 3 M − 3I4 =


−3 −1 −1 −3
−14 −18 −13 1
18 21 16 3
−6 −7 −7 −6

 RREF−−−−→


1 0 0 1
0 1 0 −3
0 0 1 3
0 0 0 0


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EM (3) = N (M − 3I4) =

〈

−1
3
−3
1



〉

λ = 2 M − 2I4 =


−2 −1 −1 −3
−14 −17 −13 1
18 21 17 3
−6 −7 −7 −5

 RREF−−−−→


1 0 0 2
0 1 0 −4
0 0 1 3
0 0 0 0



EM (2) = N (M − 2I4) =

〈

−2
4
−3
1



〉

λ = −2 M − (−2)I4 =


2 −1 −1 −3
−14 −13 −13 1
18 21 21 3
−6 −7 −7 −1

 RREF−−−−→


1 0 0 −1
0 1 1 1
0 0 0 0
0 0 0 0



EM (−2) = N (M − (−2)I4) =

〈


0
−1
1
0

 ,


1
−1
0
1



〉

According to Theorem EER [571] the eigenvectors just listed as basis vectors for the eigenspaces
of M are vector representations (relative to B) of eigenvectors for S. So the application if the
inverse function ρ−1

B will convert these column vectors into elements of the vector space M22 (2× 2
matrices) that are eigenvectors of S. Since ρB is an isomorphism (Theorem VRILT [522]), so is
ρ−1
B . Applying the inverse function will then preserve linear independence and spanning properties,

so with a sweeping application of the Coordinatization Principle [525] and some extensions of our
previous notation for eigenspaces and geometric multiplicities, we can write,

ρ−1
B



−1
3
−3
1


 = (−1)x1 + 3x2 + (−3)x3 + 1x4 =

[
−1 3
−3 1

]

ρ−1
B



−2
4
−3
1


 = (−2)x1 + 4x2 + (−3)x3 + 1x4 =

[
−2 4
−3 1

]

ρ−1
B




0
−1
1
0


 = 0x1 + (−1)x2 + 1x3 + 0x4 =

[
0 −1
1 0

]

ρ−1
B




1
−1
0
1


 = 1x1 + (−1)x2 + 0x3 + 1x4 =

[
1 −1
0 1

]

So

ES (3) =
〈{[

−1 3
−3 1

]}〉
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ES (2) =
〈{[

−2 4
−3 1

]}〉
ES (−2) =

〈{[
0 −1
1 0

]
,

[
1 −1
0 1

]}〉
with geometric multiplicities given by

γS (3) = 1 γS (2) = 1 γS (−2) = 2

Suppose we now decided to build another matrix representation of S, only now relative to a linearly
independent set of eigenvectors of S, such as

C =
{[
−1 3
−3 1

]
,

[
−2 4
−3 1

]
,

[
0 −1
1 0

]
,

[
1 −1
0 1

]}
At this point you should have computed enough matrix representations to predict that the result
of representing S relative to C will be a diagonal matrix. Computing this representation is an
example of how Theorem SCB [568] generalizes the diagonalizations from Section SD [425]. For
the record, here is the diagonal representation,

MS
C,C =


3 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 −2


Our interest in this example is not necessarily building nice representations, but instead we want to
demonstrate how eigenvalues and eigenvectors are an intrinsic property of a linear transformation,
independent of any particular representation. To this end, we will repeat the foregoing, but replace
B by another basis. We will make this basis different, but not extremely so,

D = {y1, y2, y3, y4} =
{[

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]}
Then to build the matrix representation of S relative to D compute,

ρD (S (y1)) = ρD

([
0 −14
18 −6

])
= ρD (14y1 + (−32)y2 + 24y3 + (−6)y4) =


14
−32
24
−6



ρD (S (y2)) = ρD

([
−1 −29
39 −13

])
= ρD (28y1 + (−68)y2 + 52y3 + (−13)y4) =


28
−68
52
−13



ρD (S (y3)) = ρD

([
−2 −42
58 −20

])
= ρD (40y1 + (−100)y2 + 78y3 + (−20)y4) =


40
−100

78
−20



ρD (S (y4)) = ρD

([
−5 −41
61 −23

])
= ρD (36y1 + (−102)y2 + 84y3 + (−23)y4) =


36
−102

84
−23



So by Definition MR [529] we have

N = MS
D,D =


14 28 40 36
−32 −68 −100 −102
24 52 78 84
−6 −13 −20 −23


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Now compute eigenvalues and eigenvectors of the matrix representation of N with the techniques
of Section EE [389]. First the characteristic polynomial,

pN (x) = det (N − xI4) = x4 − x3 − 10x2 + 4x+ 24 = (x− 3)(x− 2)(x+ 2)2

Of course this is not news. We now know that M = MS
B,B and N = MS

D,D are similar matrices
(Theorem SCB [568]). But Theorem SMEE [427] told us long ago that similar matrices have
identical characteristic polynomials. Now compute eigenvectors for the matrix representation, which
will be different than what we found for M ,

λ = 3 N − 3I4 =


11 28 40 36
−32 −71 −100 −102
24 52 75 84
−6 −13 −20 −26

 RREF−−−−→


1 0 0 4
0 1 0 −6
0 0 1 4
0 0 0 0



EN (3) = N (N − 3I4) =

〈

−4
6
−4
1



〉

λ = 2 N − 2I4 =


12 28 40 36
−32 −70 −100 −102
24 52 76 84
−6 −13 −20 −25

 RREF−−−−→


1 0 0 6
0 1 0 −7
0 0 1 4
0 0 0 0



EN (2) = N (N − 2I4) =

〈

−6
7
−4
1



〉

λ = −2 N − (−2)I4 =


16 28 40 36
−32 −66 −100 −102
24 52 80 84
−6 −13 −20 −21

 RREF−−−−→


1 0 −1 −3
0 1 2 3
0 0 0 0
0 0 0 0



EN (−2) = N (N − (−2)I4) =

〈


1
−2
1
0

 ,


3
−3
0
1



〉

Employing Theorem EER [571] we can apply ρ−1
D to each of the basis vectors of the eigenspaces of

N to obtain eigenvectors for S that also form bases for eigenspaces of S,

ρ−1
D



−4
6
−4
1


 = (−4)y1 + 6y2 + (−4)y3 + 1y4 =

[
−1 3
−3 1

]

ρ−1
D



−6
7
−4
1


 = (−6)y1 + 7y2 + (−4)y3 + 1y4 =

[
−2 4
−3 1

]

ρ−1
D




1
−2
1
0


 = 1y1 + (−2)y2 + 1y3 + 0y4 =

[
0 −1
1 0

]
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ρ−1
D




3
−3
0
1


 = 3y1 + (−3)y2 + 0y3 + 1y4 =

[
1 −2
1 1

]

The eigenspaces for the eigenvalues of algebraic multiplicity 1 are exactly as before,

ES (3) =
〈{[

−1 3
−3 1

]}〉
ES (2) =

〈{[
−2 4
−3 1

]}〉
However, the eigenspace for λ = −2 would at first glance appear to be different. Here are the
two eigenspaces for λ = −2, first the eigenspace obtained from M = MS

B,B, then followed by the
eigenspace obtained from M = MS

D,D.

ES (−2) =
〈{[

0 −1
1 0

]
,

[
1 −1
0 1

]}〉
ES (−2) =

〈{[
0 −1
1 0

]
,

[
1 −2
1 1

]}〉
Subspaces generally have many bases, and that is the situation here. With a careful proof of set
equality, you can show that these two eigenspaces are equal sets. The key observation to make such
a proof go is that [

1 −2
1 1

]
=
[
0 −1
1 0

]
+
[
1 −1
0 1

]
which will establish that the second set is a subset of the first. With equal dimensions, Theorem
EDYES [350] will finish the task. So the eigenvalues of a linear transformation are independent of
the matrix representation employed to compute them! �

Another example, this time a bit larger and with complex eigenvalues.

Example CELT
Complex eigenvectors of a linear transformation
Consider the linear transformation Q : P4 7→ P4 defined by

Q
(
a+ bx+ cx2 + dx3 + ex4

)
= (−46a− 22b+ 13c+ 5d+ e) + (117a+ 57b− 32c− 15d− 4e)x+

(−69a− 29b+ 21c− 7e)x2 + (159a+ 73b− 44c− 13d+ 2e)x3+

(−195a− 87b+ 55c+ 10d− 13e)x4

Choose a simple basis to compute with, say

B =
{

1, x, x2, x3, x4
}

Then it should be apparent that the matrix representation of Q relative to B is

M = MQ
B,B =


−46 −22 13 5 1
117 57 −32 −15 −4
−69 −29 21 0 −7
159 73 −44 −13 2
−195 −87 55 10 −13


Compute the characteristic polynomial, eigenvalues and eigenvectors according to the techniques
of Section EE [389],

pQ (x) = −x5 + 6x4 − x3 − 88x2 + 252x− 208

Version 1.30



Subsection CB.CELT Computing Eigenvectors of Linear Transformations 577

= −(x− 2)2(x+ 4)
(
x2 − 6x+ 13

)
= −(x− 2)2(x+ 4) (x− (3 + 2i)) (x− (3− 2i))

αQ (2) = 2 αQ (−4) = 1 αQ (3 + 2i) = 1 αQ (3− 2i) = 1

λ = 2

M − (2)I5 =


−48 −22 13 5 1
117 55 −32 −15 −4
−69 −29 19 0 −7
159 73 −44 −15 2
−195 −87 55 10 −15

 RREF−−−−→


1 0 0 1

2 −1
2

0 1 0 −5
2 −5

2
0 0 1 −2 −6
0 0 0 0 0
0 0 0 0 0



EM (2) = N (M − (2)I5) =

〈


−1

2
5
2
2
1
0

 ,


1
2
5
2
6
0
1



〉

=

〈


−1
5
4
2
0

 ,


1
5
12
0
2



〉

λ = −4

M − (−4)I5 =


−42 −22 13 5 1
117 61 −32 −15 −4
−69 −29 25 0 −7
159 73 −44 −9 2
−195 −87 55 10 −9

 RREF−−−−→


1 0 0 0 1
0 1 0 0 −3
0 0 1 0 −1
0 0 0 1 −2
0 0 0 0 0



EM (−4) = N (M − (−4)I5) =

〈


−1
3
1
2
1



〉

λ = 3 + 2i

M − (3 + 2i)I5 =


−49− 2i −22 13 5 1

117 54− 2i −32 −15 −4
−69 −29 18− 2i 0 −7
159 73 −44 −16− 2i 2
−195 −87 55 10 −16− 2i

 RREF−−−−→


1 0 0 0 −3

4 + i
4

0 1 0 0 7
4 −

i
4

0 0 1 0 −1
2 + i

2
0 0 0 1 7

4 −
i
4

0 0 0 0 0



EM (3 + 2i) = N (M − (3 + 2i)I5) =

〈


3
4 −

i
4

−7
4 + i

4
1
2 −

i
2

−7
4 + i

4
1



〉

=

〈


3− i
−7 + i
2− 2i
−7 + i

4



〉

λ = 3− 2i

M − (3− 2i)I5 =


−49 + 2i −22 13 5 1

117 54 + 2i −32 −15 −4
−69 −29 18 + 2i 0 −7
159 73 −44 −16 + 2i 2
−195 −87 55 10 −16 + 2i

 RREF−−−−→


1 0 0 0 −3

4 −
i
4

0 1 0 0 7
4 + i

4
0 0 1 0 −1

2 −
i
2

0 0 0 1 7
4 + i

4
0 0 0 0 0


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EM (3− 2i) = N (M − (3− 2i)I5) =

〈


3
4 + i

4
−7

4 −
i
4

1
2 + i

2
−7

4 −
i
4

1



〉

=

〈


3 + i
−7− i
2 + 2i
−7− i

4



〉

It is straightforward to convert each of these basis vectors for eigenspaces of M back to elements
of P4 by applying the isomorphism ρ−1

B ,

ρ−1
B



−1
5
4
2
0


 = −1 + 5x+ 4x2 + 2x3

ρ−1
B




1
5
12
0
2


 = 1 + 5x+ 12x2 + 2x4

ρ−1
B



−1
3
1
2
1


 = −1 + 3x+ x2 + 2x3 + x4

ρ−1
B




3− i
−7 + i
2− 2i
−7 + i

4


 = (3− i) + (−7 + i)x+ (2− 2i)x2 + (−7 + i)x3 + 4x4

ρ−1
B




3 + i
−7− i
2 + 2i
−7− i

4


 = (3 + i) + (−7− i)x+ (2 + 2i)x2 + (−7− i)x3 + 4x4

So we apply Theorem EER [571] and the Coordinatization Principle [525] to get the eigenspaces
for Q,

EQ (2) =
〈{
−1 + 5x+ 4x2 + 2x3, 1 + 5x+ 12x2 + 2x4

}〉
EQ (−4) =

〈{
−1 + 3x+ x2 + 2x3 + x4

}〉
EQ (3 + 2i) =

〈{
(3− i) + (−7 + i)x+ (2− 2i)x2 + (−7 + i)x3 + 4x4

}〉
EQ (3− 2i) =

〈{
(3 + i) + (−7− i)x+ (2 + 2i)x2 + (−7− i)x3 + 4x4

}〉
with geometric multiplicities

γQ (2) = 2 γQ (−4) = 1 γQ (3 + 2i) = 1 γQ (3− 2i) = 1

�

Subsection READ
Reading Questions

1. The change-of-basis matrix is a matrix representation of which linear transformation?
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2. Find the change-of-basis matrix, CB,C , for the two bases of C2

B =
{[

2
3

]
,

[
−1
2

]}
C =

{[
1
0

]
,

[
1
1

]}
3. What is the third “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C20 In Example CBCV [564] we computed the vector representation of y relative to C, ρC (y),
as an example of Theorem CB [560]. Compute this same representation directly. In other words,
apply Definition VR [517] rather than Theorem CB [560].
Contributed by Robert Beezer

C21 Perform a check on Example MRCM [566] by computing MQ
B,D directly. In other words,

apply Definition MR [529] rather than Theorem MRCB [565].
Contributed by Robert Beezer Solution [581]

C30 Find a basis for the vector space P3 composed of eigenvectors of the linear transformation
T . Then find a matrix representation of T relative to this basis.

T : P3 7→ P3, T
(
a+ bx+ cx2 + dx3

)
= (a+ c+ d) + (b+ c+ d)x+ (a+ b+ c)x2 + (a+ b+ d)x3

Contributed by Robert Beezer Solution [581]

C40 Let S22 be the vector space of 2× 2 symmetric matrices. Find a basis B for S22 that yields
a diagonal matrix representation of the linear transformation R. (15 points)

R : S22 7→ S22, R

([
a b
b c

])
=
[
−5a+ 2b− 3c −12a+ 5b− 6c
−12a+ 5b− 6c 6a− 2b+ 4c

]

Contributed by Robert Beezer Solution [582]

C41 Let S22 be the vector space of 2× 2 symmetric matrices. Find a basis for S22 composed of
eigenvectors of the linear transformation Q : S22 7→ S22. (15 points)

Q

([
a b
b c

])
=
[

25a+ 18b+ 30c −16a− 11b− 20c
−16a− 11b− 20c −11a− 9b− 12c

]

Contributed by Robert Beezer Solution [583]

T10 Suppose that T : V 7→ V is an invertible linear transformation with a nonzero eigenvalue λ.

Prove that
1
λ

is an eigenvalue of T−1.

Contributed by Robert Beezer Solution [583]

T15 Suppose that V is a vector space and T : V 7→ V is a linear transformation. Prove that T is
injective if and only if λ = 0 is not an eigenvalue of T .
Contributed by Robert Beezer
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer Statement [580]
Apply Definition MR [529],

ρD

(
Q

([
5 −3
−3 −2

]))
= ρD

(
19 + 14x− 2x2 − 28x3

)
= ρD

(
(−39)(2 + x− 2x2 + 3x3) + 62(−1− 2x2 + 3x3) + (−53)(−3− x+ x3) + (−44)(−x2 + x3)

)
=


−39
62
−53
−44


ρD

(
Q

([
2 −3
−3 0

]))
= ρD

(
16 + 9x− 7x2 − 14x3

)
= ρD

(
(−23)(2 + x− 2x2 + 3x3) + (34)(−1− 2x2 + 3x3) + (−32)(−3− x+ x3) + (−15)(−x2 + x3)

)
=


−23
34
−32
−15


ρD

(
Q

([
1 2
2 4

]))
= ρD

(
25 + 9x+ 3x2 + 4x3

)
= ρD

(
(14)(2 + x− 2x2 + 3x3) + (−12)(−1− 2x2 + 3x3) + 5(−3− x+ x3) + (−7)(−x2 + x3)

)
=


14
−12

5
−7



These three vectors are the columns of the matrix representation,

MQ
B,D =


−39 −23 14
62 34 −12
−53 −32 5
−44 −15 −7


which coincides with the result obtained in Example MRCM [566].

C30 Contributed by Robert Beezer Statement [580]
With the domain and codomain being identical, we will build a matrix representation using the
same basis for both the domain and codomain. The eigenvalues of the matrix representation will
be the eigenvalues of the linear transformation, and we can obtain the eigenvectors of the linear
transformation by un-coordinatizing (Theorem EER [571]). Since the method does not depend on
which basis we choose, we can choose a natural basis for ease of computation, say,

B =
{

1, x, x2, x3
}

The matrix representation is then,

MT
B,B =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


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The eigenvalues and eigenvectors of this matrix were computed in Example ESMS4 [400]. A basis
for C4, composed of eigenvectors of the matrix representation is,

C =




1
1
1
1

 ,

−1
1
0
0

 ,


0
0
−1
1

 ,

−1
−1
1
1




Applying ρ−1
B to each vector of this set, yields a basis of P3 composed of eigenvectors of T ,

D =
{

1 + x+ x2 + x3,−1 + x, −x2 + x3, −1− x+ x2 + x3
}

The matrix representation of T relative to the basis D will be a diagonal matrix with the corre-
sponding eigenvalues along the diagonal, so in this case we get

MT
D,D =


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


C40 Contributed by Robert Beezer Statement [580]
Begin with a matrix representation of R, any matrix representation, but use the same basis for
both instances of S22. We’ll choose a basis that makes it easy to compute vector representations
in S22.

B =
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
Then the resulting matrix representation of R (Definition MR [529]) is

MR
B,B =

 −5 2 −3
−12 5 −6

6 −2 4


Now, compute the eigenvalues and eigenvectors of this matrix, with the goal of diagonalizing the
matrix (Theorem DC [429]),

λ = 2 EMR
B,B

(2) =

〈
−1
−2
1


〉

λ = 1 EMR
B,B

(1) =

〈
−1

0
2

 ,
1

3
0


〉

The three vectors that occur as basis elements for these eigenspaces will together form a linearly
independent set (check this!). So these column vectors may be employed in a matrix that will
diagonalize the matrix representation. If we “un-coordinatize” these three column vectors relative
to the basis B, we will find three linearly independent elements of S22 that are eigenvectors of the
linear transformation R (Theorem EER [571]). A matrix representation relative to this basis of
eigenvectors will be diagonal, with the eigenvalues (λ = 2, 1) as the diagonal elements. Here we go,

ρ−1
B

−1
−2
1

 = (−1)
[
1 0
0 0

]
+ (−2)

[
0 1
1 0

]
+ 1

[
0 0
0 1

]
=
[
−1 −2
−2 1

]

ρ−1
B

−1
0
2

 = (−1)
[
1 0
0 0

]
+ 0

[
0 1
1 0

]
+ 2

[
0 0
0 1

]
=
[
−1 0
0 2

]
Version 1.30



Subsection CB.SOL Solutions 583

ρ−1
B

1
3
0

 = 1
[
1 0
0 0

]
+ 3

[
0 1
1 0

]
+ 0

[
0 0
0 1

]
=
[
1 3
3 0

]

So the requested basis of S22, yielding a diagonal matrix representation of R, is{[
−1 −2
−2 1

] [
−1 0
0 2

]
,

[
1 3
3 0

]}

C41 Contributed by Robert Beezer Statement [580]
Use a single basis for both the domain and codomain, since they are equal.

B =
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
The matrix representation of Q relative to B is

M = MQ
B,B =

 25 18 30
−16 −11 −20
−11 −9 −12


We can analyze this matrix with the techniques of Section EE [389] and then apply Theorem EER
[571]. The eigenvalues of this matrix are λ = −2, 1, 3 with eigenspaces

EM (−2) =

〈
−6

4
3


〉

EM (1) =

〈
−2

1
1


〉

EM (3) =

〈
−3

2
1


〉

Because the three eigenvalues are distinct, the three basis vectors from the three eigenspaces for a
linearly independent set (Theorem EDELI [411]). Theorem EER [571] says we can uncoordinatize
these eigenvectors to obtain eigenvectors of Q. By Theorem ILTLI [472] the resulting set will remain
linearly independent. Set

C =

ρ−1
B

−6
4
3

 , ρ−1
B

−2
1
1

 , ρ−1
B

−3
2
1

 =
{[
−6 4
4 3

]
,

[
−2 1
1 1

]
,

[
−3 2
2 1

]}

Then C is a linearly independent set of size 3 in the vector space M22, which has dimension 3 as
well. By Theorem G [347], C is a basis of M22.

T10 Contributed by Robert Beezer Statement [580]
Let v be an eigenvector of T for the eigenvalue λ. Then,

T−1 (v) =
1
λ
λT−1 (v) λ 6= 0

=
1
λ
T−1 (λv) Theorem ILTLT [497]

=
1
λ
T−1 (T (v)) v eigenvector of T

=
1
λ
IV (v) Definition IVLT [495]

=
1
λ

v Definition IDLT [495]

which says that
1
λ

is an eigenvalue of T−1 with eigenvector v. Note that it is possible to prove
that any eigenvalue of an invertible linear transformation is never zero. So the hypothesis that λ
be nonzero is just a convenience for this problem.
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Section OD
Orthonormal Diagonalization

This Section Under Construction
Theorems & definitions complete, needs examples
We have seen in Section SD [425] that under the right conditions a square matrix is similar to a
diagonal matrix. We recognize now, via Theorem SCB [568], that a similarity transformation is a
change of basis on a matrix representation. So we can now discuss the choice of a basis used to
build a matrix representation, and decide if some bases are better than others for this purpose.
This will be the tone of this section. We will also see that every matrix has a reasonably useful
matrix representation, and we will discover a new class of diagonalizable linear transformations.
First we need some basic facts about triangular matrices.

Subsection TM
Triangular Matrices

An upper, or lower, triangular matrix is exactly what it sounds like it should be, but here are the
two relevant definitions.

Definition UTM
Upper Triangular Matrix
The n× n square matrix A is upper triangular if [A]ij = 0 whenever i > j. 4

Definition LTM
Lower Triangular Matrix
The n× n square matrix A is lower triangular if [A]ij = 0 whenever i < j. 4

Obviously, properties of a lower triangular matrices will have analogues for upper triangular
matrices. Rather than stating two very similar theorems, we will say that matrices are “triangular
of the same type” as a convenient shorthand to cover both possibilities and then give a proof for
just one type.

Theorem PTMT
Product of Triangular Matrices is Triangular
Suppose that A and B are square matrices of size n that are triangular of the same type. Then
AB is also triangular of that type. �

Proof We prove this for lower triangular matrices and leave the proof for upper triangular matrices
to you. Suppose that A and B are both lower triangular. We need only establish that certain entries
of the product AB are zero. Suppose that i < j, then

[AB]ij =
n∑
k=1

[A]ik [B]kj Theorem EMP [195]

=
j−1∑
k=1

[A]ik [B]kj +
n∑
k=j

[A]ik [B]kj Property AACN [662]

=
j−1∑
k=1

[A]ik 0 +
n∑
k=j

[A]ik [B]kj k < j, Definition LTM [585]

=
j−1∑
k=1

[A]ik 0 +
n∑
k=j

0 [B]kj i < j ≤ k, Definition LTM [585]
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=
j−1∑
k=1

0 +
n∑
k=j

0

= 0

Since [AB]ij = 0 whenever i < j, by Definition LTM [585], AB is lower triangular. �

The inverse of a triangular matrix is triangular, of the same type.

Theorem ITMT
Inverse of a Triangular Matrix is Triangular
Suppose that A is a nonsingular matrix of size n that is triangular. Then the inverse of A, A−1,
is triangular of the same type. Furthermore, the diagonal entries of A−1 are the reciprocals of the
corresonding diagonal entries of A. More precisely,

[
A−1

]
ii

= [A]−1
ii . �

Proof We give the proof for the case when A is lower triangular, and leave the case when A
is upper triangular for you. Consider the process for computing the inverse of a matrix that is
outlined in the proof of Theorem CINM [212]. We augment A with the size n identity matrix,
In, and row-reduce the n × 2n matrix to reduced row-echelon form via the algorithm in Theorem
REMEF [29]. The proof involves tracking the peculiarities of this process in the case of a lower
triangular matrix. Let M = [A | In].

First, none of the diagonal elements of A are zero. By repeated expansion about the first row,
the determinant of a lower triangular matrix can be seen to be the product of the diagonal entries
(Theorem DER [369]). If just one of these diagonal elements was zero, then the determinant of
A is zero and A is singular by Theorem SMZD [381]. Slightly violating the exact algorithm for
row reduction we can form a matrix, M ′, that is row-equivalent to M , by mutiplying row i by the
nonzero scalar [A]−1

ii , for 1 ≤ i ≤ n. This sets [M ′]ii = 1 and [M ′]i,n+1 = [A]−1
ii , and leaves every

zero entry of M unchanged.
Let Mj denote the matrix obtained form M ′ after converting column j to a pivot column. We

can convert column j of Mj−1 into a pivot column with a set of n − j − 1 row operations of the
form αRj +Rk with j+1 ≤ k ≤ n. The key observation here is that we add multiples of row j only
to higher-numbered rows. This means that none of the entries in rows 1 through j − 1 is changed,
and since row j has zeros in columns j + 1 through n, none of the entries in rows j + 1 through n
is changed in columns j + 1 through n. The first n columns of M ′ form a lower triangular matrix
with 1’s on the diagonal. In its conversion to the identity matrix through this sequence of row
operations, it remains lower triangular with 1’s on the diagonal.

What happens in columns n+ 1 through 2n of M ′? These columns began in M as the identity
matrix, and in M ′ each diagonal entry was scaled to a reciprocal of the corresponding diagonal
entry of A. Notice that trivially, these final n columns of M ′ form a lower triangular matrix. Just
as we argued for the first n columns, the row operations that convert Mj−1 into Mj will preserve the
lower triangular form in the final n columns and preserve the exact values of the diagonal entries.
By Theorem CINM [212], the final n columns of Mn is the inverse of A, and this matrix has the
necessary properties advertised in the conclusion of this theorem. �

Subsection UTMR
Upper Triangular Matrix Representation

Not every matrix is diagonalizable, but every linear transformation has a matrix representation
that is an upper triangular matrix, and the basis that achieves this representation is especially
pleasing. Here’s the theorem.

Theorem UTMR
Upper Triangular Matrix Representation
Suppose that T : V 7→ V is a linear transformation. Then there is a basis B for V such that the
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matrix representation of T relative to B, MT
B,B, is an upper triangular matrix. Each diagonal entry

is an eigenvalue of T , and if λ is an eigenvalue of T , then λ occurs αT (λ) times on the diagonal. �

Proof We begin with a proof by induction (Technique I [676]) of the first statement in the
conclusion of the theorem. We use induction on the dimension of V to show that if T : V 7→ V
is a linear transformation, then there is a basis B for V such that the matrix representation of T
relative to B, MT

B,B, is an upper triangular matrix.
To start suppose that dim (V ) = 1. Choose any nonzero vector v ∈ V and realize that V =

〈{v}〉. Then we can determine T uniquely by T (v) = βv for some β ∈ C (Theorem LTDB [451]).
This description of T also gives us a matrix representation relative to the basis B = {v} as the 1×1
matrix with lone entry equal to β. And this matrix representation is upper triangular (Definition
UTM [585]).

For the induction step let dim (V ) = m, and assume the theorem is true for every linear
transformation defined on a vector space of dimension less than m. By Theorem EMHE [392]
(suitably converted to the setting of a linear transformation), T has at least one eigenvalue, and
we denote this eigenvalue as λ. (We will remark later about how critical this step is.) We now
consider properties of the linear transformation T − λIV : V 7→ V .

Let x be an eigenvector of T for λ. By definition x 6= 0. Then

(T − λIV ) (x) = T (x)− λIV (x) Theorem VSLT [458]
= T (x)− λx Definition IDLT [495]
= λx− λx Definition EELT [559]
= 0 Property AI [274]

So T −λIV is not injective, as it has a nontrivial kernel (Theorem KILT [471]). With an application
of Theorem RPNDD [504] we bound the rank of T − λIV ,

r (T − λIV ) = dim (V )− n (T − λIV ) ≤ m− 1

Define W to be the subspace of V that is the range of T − λIV , W = R(T − λIV ). We define a
new linear transformation S, on W ,

S : W 7→W S (w) = T (w)

This does not look we have accomplished much, since the action of S is identical to the action of
T . For our purposes this will be a good thing. What is different is the domain and codomain. S
is defined on W , a vector space with dimension less than m, and so is susceptible to our induction
hypothesis. Verifying that S is really a linear transformation is almost entirely routine, with one
exception. Employing T in our definition of S raises the possibility that the outputs of S will not
be contained within W (but instead will lie inside V , but outside W ). To examine this possibility,
suppose that w ∈W .

S (w) = T (w)
= T (w) + 0 Property Z [273]
= T (w) + (λIV (w)− λIV (w)) Property AI [274]
= (T (w)− λIV (w)) + λIV (w) Property AA [273]
= (T (w)− λIV (w)) + λw Definition IDLT [495]
= (T − λIV ) (w) + λw Theorem VSLT [458]

Since W is the range of T − λIV , (T − λIV ) (w) ∈ W . And by Property SC [273], λw ∈ W .
Finally, applying Property AC [273] we see by closure that the sum is in W and so we conclude
that S (w) ∈W . This argument convinces us that it is legitimate to define S as we did with W as
the codomain.

S is a linear transformation defined on a vector space with dimension less than m, so we can
apply the induction hypothesis and conclude that W has a basis, C = {w1, w2, w3, . . . , wk}, such
that the matrix representation of S relative to C is an upper triangular matrix.
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By Theorem DSFOS [354] there exists a second subspace of V , which we will call U , so that
V is a direct sum of W and U , V = W ⊕ U . Choose a basis D = {u1, u2, u3, . . . , u`} for U . So
m = k + ` by Theorem DSD [356], and B = C ∪ D is basis for V by Theorem DSLI [355] and
Theorem G [347]. B is the basis we desire. What does a matrix representation of T look like,
relative to B?

Since the definition of T and S agree on W , the first k columns of MT
B,B will have the upper

triangular matrix representation of S in the first k rows. The remaining ` = m − k rows of these
first k columns will be all zeros since the outputs of T on C are all contained in W . The situation
for T on D is not quite as pretty, but it is close.

For 1 ≤ i ≤ `, consider

ρB (T (ui)) = ρB (T (ui) + 0) Property Z [273]
= ρB (T (ui) + (λIV (ui)− λIV (ui))) Property AI [274]
= ρB ((T (ui)− λIV (ui)) + λIV (ui)) Property AA [273]
= ρB ((T (ui)− λIV (ui)) + λui) Definition IDLT [495]
= ρB ((T − λIV ) (ui) + λui) Theorem VSLT [458]
= ρB (a1w1 + a2w2 + a3w3 + · · ·+ akwk + λui) Definition RLT [483]

=



a1

a2
...
ak
0
...
0
λ
0
...
0



Definition VR [517]

In the penultimate step of this proof, we have rewritten an element of the range of T − λIV
as a linear combination of the basis vectors, C, for the range of T − λIV , W , using the scalars
a1, a2, a3, . . . , ak. If we incorporate these ` column vectors into the matrix representation MT

B,B

we find ` occurences of λ on the diagonal, and any nonzero entries lying only in the first k rows.
Together with the k × k upper triangular representation in the upper left-hand corner, the entire
matrix representation is now clearly upper triangular. This completes the induction step, so for
any linear transformation there is a basis that creates an upper triangular matrix representation.

We have one more statement in the conclusion of the theorem to verify. The eigenvalues of
T , and their multiplicities, can be computed with the techniques of Chapter E [389] relative to
any matrix representation (Theorem EER [571]). We take this approach with our upper triangular
matrix representation MT

B,B. Let di be the diagonal entry of MT
B,B in row i and column i. Then

the characteristic polynomial, computed as a determinant (Definition CP [396]) with repeated
expansions about the first column, is

pMT
B,B

(x) = (d1 − x) (d2 − x) (d3 − x) · · · (dm − x)

The roots of the polynomial equation pMT
B,B

(x) = 0 are the eigenvalues of the linear transformation
(Theorem EMRCP [396]). So each diagonal entry is an eigenvalue, and is repeated on the diagonal
exactly αT (λ) times (Definition AME [399]). �

A key step in this proof was the construction of the subspace W with dimension strictly less
than that of V . This required an eigenvalue/eigenvector pair, which was guaranteed to us by
Theorem EMHE [392]. Digging deeper, the proof of Theorem EMHE [392] requires that we can
factor polynomials completely, into linear factors. This will not always happen if our set of scalars
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is the reals, R. So this is our final explanation of our choice of the complex numbers, C, as our set
of scalars. In C polynomials factor completely, so every matrix has at least one eigenvalue, and an
inductive argument will get us to upper triangular matrix representations.

In the case of linear transformations defined on Cm, we can use the inner product (Definition
IP [164]) profitably to fine-tune the basis that yields an upper triangular matrix representation.
Recall that the adjoint of matrix A (Definition A [186]) is written as A∗.

Theorem OBUTR
Orthonormal Basis for Upper Triangular Representation
Suppose that A is a square matrix. Then there is a unitary matrix U , and an upper triangular
matrix T , such that

U∗AU = T

and T has the eigenvalues of A as the entries of the diagonal. �

Proof This theorem is a statement about matrices and similarity. We can convert it to a
statement about linear transformations, matrix representations and bases (Theorem SCB [568]).
Suppose that A is an n×n matrix, and define the linear transformation S : Cn 7→ Cn by S (x) = Ax.
Then Theorem UTMR [586] gives us a basis B = {v1, v2, v3, . . . , vn} for Cn such that a matrix
representation of S relative to B, MS

B,B, is upper triangular.
Now convert the basis B into an orthogonal basis, C, by an application of the Gram-Schmidt

procedure (Theorem GSP [171]). This is a messy business computationally, but here we have an
excellent illustration of the power of the Gram-Schmidt procedure. We need only be sure that B is
linearly independent and spans Cn, and then we know that C is linearly independent, spans Cn and
is also an orthogonal set. We will now consider the matrix representation of S relative to C (rather
than B). Write the new basis as C = {y1, y2, y3, . . . , yn}. The application of the Gram-Schmidt
procedure creates each vector of C, say yj , as the difference of vj and a linear combination of
y1, y2, y3, . . . , yj−1. We are not concerned here with the actual values of the scalars in this linear
combination, so we will write

yj = vj −
j−1∑
k=1

bjkyk

where the bjk are shorthand for the scalars. The equation above is in a form useful for creating the
basis C from B. To better understand the relationship between B and C convert it to read

vj = yj +
j−1∑
k=1

bjkyk

In this form, we recognize that the change-of-basis matrix CB,C = M ICn
B,C (Definition CBM [560]) is

an upper triangular matrix. By Theorem SCB [568] we have

MS
C,C = CB,CM

S
B,BC

−1
B,C

The inverse of an upper triangular matrix is upper triangular (Theorem ITMT [586]), and the
product of two upper triangular matrices is again upper triangular (Theorem PTMT [585]). So
MS
C,C is an upper triangular matrix.

Now, multiply each vector of C by a nonzero scalar, so that the result has norm 1. In this
way we create a new basis D which is an orthonormal set (Definition ONS [173]). Note that the
change-of-basis matrix CC,D is a diagonal matrix with nonzero entries equal to the norms of the
vectors in C.

Now we can convert our results into the language of matrices. Let E be the basis of Cn formed
with the standard unit vectors (Definition SUV [169]). Then the matrix representation of S relative
to E is simply A, A = MS

E,E . The change-of-basis matrix CD,E has columns that are simply the
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vectors in D, the orthonormal basis. As such, Theorem CUMOS [225] tells us that CD,E is a unitary
matrix, and by Definition UM [224] has an inverse equal to its adjoint. Write U = CD,E . We have

U∗AU = U−1AU Theorem UMI [224]

= C−1
D,EM

S
E,ECD,E

= MS
D,D Theorem SCB [568]

= CC,DM
S
C,CC

−1
C,D Theorem SCB [568]

The inverse of a diagonal matrix is also a diagonal matrix, and so this final expression is the product
of three upper triangular matrices, and so is again upper triangular (Theorem PTMT [585]). Thus
the desired upper triangular matrix, T , is the matrix representation of S relative to the orthonormal
basis D, MS

D,D. �

Subsection NM
Normal Matrices

Normal matrices comprise a broad class of interesting matrices, many of which we have met already.
But they are most interesting since they define exactly which matrices we can diagonalize via a
unitary matrix. This is the upcoming Theorem OD [591]. Here’s the definition.

Definition NRML
Normal Matrix
The square matrix A is normal if A∗A = AA∗. 4

So a normal matrix commutes with its adjoint. Part of the beauty of this definition is that it
includes many other types of matrices. A diagonal matrix will commute with its adjoint, since the
adjoint is again diagonal and the entries are just conjugates of the entries of the original diagonal
matrix. A Hermitian (self-adjoint) matrix (Definition HM [201]) will trivially commute with its
adjoint, since the two matrices are the same. A real, symmeteric matrix is Hermitian, so these
matrices are also normal. A unitary matrix (Definition UM [224]) has its adjoint as its inverse, and
inverses commute (Theorem OSIS [222]), so unitary matrices are normal. Another class of normal
matrices is the skew-symmetric matrices. However, these broad descriptions still do not capture all
of the normal matrices, as the next example shows.

Example ANM
A normal matrix
Let

A =
[
1 −1
1 1

]
Then [

1 −1
1 1

] [
1 1
−1 1

]
=
[
2 0
0 2

]
=
[

1 1
−1 1

] [
1 −1
1 1

]
so we see by Definition NRML [590] that A is normal. However, A is not symmetric (hence, as a
real matrix, not Hermetian), not unitary, and not skew-symmetric. �

Subsection OD
Orthonormal Diagonalization

A diagonal matrix is very easy to work with in matrix multiplication (Example HPDM [434]) and
an orthonormal basis also has many advantages (Theorem COB [325]). How about converting a
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matrix to a diagonal matrix through a similarity transformation using a unitary matrix (i.e. build
a diagonal matrix representation with an orthonormal matrix)? That’d be fantastic! When can we
do this? We can always accomplish this feat when the matrix is normal, and normal matrices are
the only ones that behave this way. Here’s the theorem.

Theorem OD
Orthonormal Diagonalization
Suppose that A is a square matrix. Then there is a unitary matrix U and a diagonal matrix D,
with diagonal entries equal to the eigenvalues of A, such that U∗AU = D if and only if A is a
normal matrix. �

Proof (⇒) Suppose there is a unitary matrix U that diagonalizes A, resulting in D, i.e. U∗AU =
D. We check the normality of A,

A∗A = InA
∗InAIn Theorem MMIM [197]

= UU∗A∗UU∗AUU∗ Definition UM [224]
= UU∗A∗UDU∗

= UU∗A∗ (U∗)∗DU∗ Theorem AA [186]
= U (U∗AU)∗DU∗ Adjoint of a product
= UD∗DU∗

= U
(
D
)t
DU∗ Definition A [186]

= UDDU∗ Diagonal matrix

= UDDU∗ Property CMCN [662]

= UD
(
D
)t
U∗ Diagonal matrix

= UDD∗U∗ Definition A [186]
= UD (U∗AU)∗ U∗

= UDU∗A∗ (U∗)∗ U∗ Adjoint of a product
= UDU∗A∗UU∗ Theorem AA [186]
= UU∗AUU∗A∗UU∗

= InAInA
∗In Definition UM [224]

= AA∗ Theorem MMIM [197]

So by Definition NRML [590], A is a normal matrix.
(⇐) For the converse, suppose that A is a normal matrix. Whether or not A is normal,

Theorem OBUTR [589] provides a unitary matrix U and an upper triangular matrix T , whose
diagonal entries are the eigenvalues of A, and such that U∗AU = T . With the added condition
that A is normal, we will determine that the entries of T above the diagonal must be all zero. Here
we go. First we show that T is normal.

T ∗T = (U∗AU)∗ U∗AU
= U∗A∗ (U∗)∗ U∗AU Adjoint of a product
= U∗A∗UU∗AU Theorem AA [186]
= U∗A∗InAU Definition UM [224]
= U∗A∗AU Theorem MMIM [197]
= U∗AA∗U Definition NRML [590]
= U∗AInA

∗U Theorem MMIM [197]
= U∗AUU∗A∗U Definition UM [224]
= U∗AUU∗A∗ (U∗)∗ Theorem AA [186]
= U∗AU (U∗AU)∗ Adjoint of a product
= TT ∗
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So by Definition NRML [590], T is a normal matrix.
We can translate the normality of T into the statement TT ∗ − T ∗T = O. We now establish an

equality we will use repeatedly. For 1 ≤ i ≤ n,

0 = [O]ii Definition ZM [182]
= [TT ∗ − T ∗T ]ii Definition NRML [590]
= [TT ∗]ii − [T ∗T ]ii Definition MA [179]

=
n∑
k=1

[T ]ik [T ∗]ki −
n∑
k=1

[T ∗]ik [T ]ki Theorem EMP [195]

=
n∑
k=1

[T ]ik [T ]ik −
n∑
k=1

[T ]ki [T ]ki Definition A [186]

=
n∑
k=i

[T ]ik [T ]ik −
i∑

k=1

[T ]ki [T ]ki Definition UTM [585]

=
n∑
k=i

|[T ]ik|
2 −

i∑
k=1

|[T ]ki|
2 Definition MCN [664]

To conclude, we use the above equality repeatedly, beginning with i = 1, and discover, row by row,
that the entries above the diagonal of T are all zero. The key observation is that a sum of squares
can only equal zero when each term of the sum is zero. For i = 1 we have

0 =
n∑
k=1

|[T ]1k|
2 −

1∑
k=1

|[T ]k1|
2 =

n∑
k=2

|[T ]1k|
2

which forces the conclusions

[T ]12 = 0 [T ]13 = 0 [T ]14 = 0 · · · [T ]1n = 0

For i = 2 we use the same equality, but also incorporate the portion of the above conclusions that
says [T ]12 = 0,

0 =
n∑
k=2

|[T ]2k|
2 −

2∑
k=1

|[T ]k2|
2 =

n∑
k=2

|[T ]2k|
2 −

2∑
k=2

|[T ]k2|
2 =

n∑
k=3

|[T ]2k|
2

which forces the conclusions

[T ]23 = 0 [T ]24 = 0 [T ]25 = 0 · · · [T ]2n = 0

We can repeat this process for the subsequent values of i = 3, 4, 5 . . . , n−1. Notice that it is critical
we do this in order, since we need to employ portions of each of the previous conclusions about
rows having zero entries in order to successfully get the same conclusion for later rows. Eventually,
we conclude that all of the nondiagonal entries of T are zero, so the extra assumption of normality
forces T to be diagonal. �

We can rearrange the conclusion of this theorem to read A = UDU∗. Recall that a unitary
matrix can be viewed as a geometry-preserving transformation (isometry), or more loosely as a
rotation of sorts. Then a matrix-vector product, Ax, can be viewed instead as a sequence of three
transformations. U∗ is unitary, so is a rotation. Since D is diagonal, it just multiplies each entry
of a vector by a scalar. Diagonal entries that are postive or negative, with absolute values bigger
or smaller than 1 evoke descriptions like reflection, expansion and contraction. Generally we can
say that D “stretches” a vector in each component. Final multiplication by U undoes (inverts) the
rotation performed by U∗. So a normal matrix is a rotation-stretch-rotation transformation.

The orthonormal basis formed from the columns of U can be viewed as a system of mutually
perpendicular axes. The rotation by U∗ allows the transformation by A to be relaced by the simple
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transformation D along these axes, and then D brings the result back to the original coordinate
system. For this reason Theorem OD [591] is known as the Principal Axis Theorem.

The columns of the unitary matrix in Theorem OD [591] create an especially nice basis for use
with the normal matrix. We record this observation as a theorem.

Theorem OBNM
Orthonormal Bases and Normal Matrices
Suppose that A is a normal matrix of size n. Then there is an orthonormal basis of Cn composed

of eigenvectors of A. �

Proof Let U be the unitary matrix promised by Theorem OD [591] and let D be the resulting
diagonal matrix. The desired set of vectors is formed by collecting the columns of U into a set.
Theorem CUMOS [225] says this set of columns is orthonormal. Since U is nonsingular (Theorem
UMI [224]), Theorem CNMB [324] says the set is a basis.

Since A is diagonalized by U , the diagonal entries of the matrix D are the eigenvalues of A. An
argument exactly like the second half of the proof of Theorem DC [429] shows that each vector of
the basis is an eigenvector of A. �

In a vague way Theorem OBNM [593] is an improvement on Theorem HMOE [419] which said
that eigenvectors of a Hermitian matrix for different eigenvalues are always orthogonal. Hermitian
matrices are normal and we see that we can find at least one basis where every pair of eigenvectors
is orthogonal. Notice that this is not a generalization, since Theorem HMOE [419] states a weak
result which applies to many (but not all) pairs of eigenvectors, while Theorem OBNM [593] is
a seemingly stronger result, but only asserts that there is one collection of eigenvectors with the
stronger property.
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Section NLT
Nilpotent Linear Transformations

Draft: This Section Complete, But Subject To Change

We have seen that some matrices are diagonalizable and some are not. Some authors refer to
a non-diagonalizable matrix as defective, but we will study them carefully anyway. Examples
of such matrices include Example EMMS4 [399], Example HMEM5 [400], and Example CEMS6
[401]. Each of these matrices has at least one eigenvalue with geometric multiplicity strictly less
than its geometric multiplicity, and therefore Theorem DMFE [431] tells us these matrices are not
diagonalizable.

Given a square matrix A, it is likely similar to many, many other matrices. Of all these
possibilities, which is the best? “Best” is a subjective term, but we might agree that a diagonal
matrix is certainly a very nice choice. Unfortunately, as we have seen, this will not always be
possible. What form of a matrix is “next-best”? Our goal, which will take us several sections
to reach, is to show that every matrix is similar to a matrix that is “nearly-diagonal” (Section
JCF [631]). More precisely, every matrix is similar to a matrix with elements on the diagonal,
and zeros and ones on the diagonal just above the main diagonal (the “super diagonal”), with
zeros everywhere else. In the language of equivalence relations (see Theorem SER [426]), we are
determining a systematic representative for each equivalence class. Such a representative for a set
of similar matrices is called a canonical form.

We have just discussed the determination of a canonical form as a question about matrices.
However, we know that every square matrix creates a natural linear transformation (Theorem
MBLT [448]) and every linear transformation with identical domain and codomain has a square
matrix representation for each choice of a basis, with a change of basis creating a similarity trans-
formation (Theorem SCB [568]). So we will state, and prove, theorems using the language of
linear transformations on abstract vector spaces, while most of our examples will work with square
matrices. You can, and should, mentally translate between the two settings frequently and easily.

Subsection NLT
Nilpotent Linear Transformations

We will discover that nilpotent linear transformations are the essential obstacle in a non-diagonalizable
linear transformation. So we will study them carefully first, both as an object of inherent math-
ematical interest, but also as the object at the heart of the argument that leads to a pleasing
canonical form for any linear transformation. Once we understand these linear transformations
thoroughly, we will be able to easily analyze the structure of any linear transformation.

Definition NLT
Nilpotent Linear Transformation
Suppose that T : V 7→ V is a linear transformation such that there is an integer p > 0 such that
T p (v) = 0 for every v ∈ V . The smallest p for which this condition is met is called the index of
T . 4

Of course, the linear transformation T defined by T (v) = 0 will qualify as nilpotent of index 1.
But are there others?

Example NM64
Nilpotent matrix, size 6, index 4
Recall that our definitions and theorems are being stated for linear transformations on abstract vec-
tor spaces, while our examples will work with square matrices (and use the same terms interchange-
ably). In this case, to demonstrate the existence of nontrivial nilpotent linear transformations, we
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desire a matrix such that some power of the matrix is the zero matrix. Consider

A =



−3 3 −2 5 0 −5
−3 5 −3 4 3 −9
−3 4 −2 6 −4 −3
−3 3 −2 5 0 −5
−3 3 −2 4 2 −6
−2 3 −2 2 4 −7


and compute powers of A,

A2 =



1 −2 1 0 −3 4
0 −2 1 1 −3 4
3 0 0 −3 0 0
1 −2 1 0 −3 4
0 −2 1 1 −3 4
−1 −2 1 2 −3 4



A3 =



1 0 0 −1 0 0
1 0 0 −1 0 0
0 0 0 0 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0



A4 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Thus we can say that A is nilpotent of index 4.
Because it will presage some upcoming theorems, we will record some extra information about

the eigenvalues and eigenvectors of A here. A has just one eigenvalue, λ = 0, with algebraic
multiplicity 6 and geometric multiplicity 2. The eigenspace for this eigenvalue is

EA (0) =

〈


2
2
5
2
1
0

 ,


−1
−1
−5
−1
0
1


〉

If there were degrees of singularity, we might say this matrix was very singular, since zero is an
eigenvalue with maximum algebraic multiplicity (Theorem SMZE [412], Theorem ME [417]). Notice
too that A is “far” from being diagonalizable (Theorem DMFE [431]). �

Another example.

Example NM62
Nilpotent matrix, size 6, index 2
Consider the matrix

B =



−1 1 −1 4 −3 −1
1 1 −1 2 −3 −1
−9 10 −5 9 5 −15
−1 1 −1 4 −3 −1
1 −1 0 2 −4 2
4 −3 1 −1 −5 5


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and compute the second power of B,

B2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



So B is nilpotent of index 2. Again, the only eigenvalue of B is zero, with algebraic multiplicity 6.
The geometric multiplicity of the eigenvalue is 3, as seen in the eigenspace,

EB (0) =

〈


1
3
6
1
0
0

 ,


0
−4
−7
0
1
0

 ,


0
2
1
0
0
1


〉

Again, Theorem DMFE [431] tells us that B is far from being diagonalizable. �

On a first encounter with the definition of a nilpotent matrix, you might wonder if such a thing
was possible at all. That a high power of a nonzero object could be zero is so very different from our
experience with scalars that it seems very unnatural. Hopefully the two previous examples were
somewhat surprising. But we have seen that matrix algebra does not always behave the way we
expect (Example MMNC [195]), and we also now recognize matrix products not just as arithmetic,
but as function composition (Theorem MRCLT [535]). We will now turn to some examples of
nilpotent matrices which might be more transparent.

Definition JB
Jordan Block
Given the scalar λ ∈ C, the Jordan block Jn (λ) is the n× n matrix defined by

[Jn (λ)]ij =


λ i = j

1 j = i+ 1
0 otherwise

(This definition contains Notation JB.) 4

Example JB4
Jordan block, size 4
A simple example of a Jordan block,

J4 (5) =


5 1 0 0
0 5 1 0
0 0 5 1
0 0 0 5


�

We will return to general Jordan blocks later, but in this section we are just interested in Jordan
blocks where λ = 0. Here’s an example of why we are specializing in these matrices now.

Example NJB5
Nilpotent Jordan block, size 5
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Consider

J5 (0) =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


and compute powers,

(J5 (0))2 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



(J5 (0))3 =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(J5 (0))4 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(J5 (0))5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



So J5 (0) is nilpotent of index 5. As before, we record some information about the eigenvalues and
eigenvectors of this matrix. The only eigenvalue is zero, with algebraic multiplicity 5, the maximum
possible (Theorem ME [417]). The geometric multiplicity of this eigenvalue is just 1, the minimum
possible (Theorem ME [417]), as seen in the eigenspace,

EJ5(0) (0) =

〈
1
0
0
0
0


〉

There should not be any real surprises in this example. We can watch the ones in the powers
of J5 (0) slowly march off to the upper-right hand corner of the powers. In some vague way, the
eigenvalues and eigenvectors of this matrix are equally extreme. �

We can form combinations of Jordan blocks to build a variety of nilpotent matrices. Simply
place Jordan blocks on the diagonal of a matrix with zeros everywhere else, to create a block
diagonal matrix.

Example NM83
Nilpotent matrix, size 8, index 3
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Consider the matrix

C =

J3 (0) O O
O J3 (0) O
O O J2 (0)

 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


and compute powers,

C2 =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



C3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


So C is nilpotent of index 3. You should notice how block diagonal matrices behave in products
(much like diagonal matrices) and that it was the largest Jordan block that determined the index
of this combination. All eight eigenvalues are zero, and each of the three Jordan blocks contributes
one eigenvector to a basis for the eigenspace, resulting in zero having a geometric multiplicity of 3.

�

It would appear that nilpotent matrices only have zero as an eigenvalue, so the algebraic mul-
tiplicity will be the maximum possible. However, by creating block diagonal matrices with Jordan
blocks on the diagonal you should be able to attain any desired geometric multiplicity for this lone
eigenvalue. Likewise, the size of the largest Jordan block employed will determine the index of
the matrix. So nilpotent matrices with various combinations of index and geometric multiplicities
are easy to manufacture. The predictable properties of block diagonal matrices in matrix products
and eigenvector computations, along with the next theorem, make this possible. You might find
Example NJB5 [597] a useful companion to this proof.

Theorem NJB
Nilpotent Jordan Blocks
The Jordan block Jn (0) is nilpotent of index n. �

Proof While not phrased as an if-then statement, the statement in the theorem is understood
to mean that if we have a specific matrix (Jn (0)) then we need to establish it is nilpotent of a
specified index. The first column of Jn (0) is the zero vector, and the remaining n− 1 columns are
the standard unit vectors ei, 1 ≤ i ≤ n − 1 (Definition SUV [169]), which are also the first n − 1
columns of the size n identity matrix In. As shorthand, write J = Jn (0).

J = [0 |e1 |e2 |e3 |. . . |en−1 ]
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We will use the definition of matrix multiplication (Definition MM [194]), together with a proof by
induction (Technique I [676]), to study the powers of J . Our claim is that

Jk = [0 |0 |. . . |0 |e1 |e2 |. . . |en−k ]

for 1 ≤ k ≤ n. For the base case, k = 1, and the definition of J1 = Jn (0) establishes the claim.
For the induction step, first note that Je1 = 0 and Jei = ei−1 for 2 ≤ i ≤ n. Then, assuming the
claim is true for k, we examine the k + 1 case,

Jk+1 = JJk

= J [0 |0 |. . . |0 |e1 |e2 |. . . |en−k ] Induction Hypothesis
= [J0 |J0 |. . . |J0 |Je1 |Je2 |. . . |Jen−k ] Definition MM [194]
= [0 |0 |. . . |0 |0 |e1 |e2 |. . . |en−k−1 ] Definition MVP [191]
=
[
0 |0 |. . . |0 |e1 |e2 |. . .

∣∣en−(k+1)

]
This concludes the induction. So Jk has a nonzero entry (a one) in row n − k and column n, for
1 ≤ k ≤ n− 1, and is therefore a nonzero matrix. However, Jn = [0 |0 |. . . |0 ] = O. By Definition
NLT [595], J is nilpotent of index n. �

Subsection PNLT
Properties of Nilpotent Linear Transformations

In this subsection we collect some basic properties of nilpotent linear transformations. After study-
ing the examples in the previous section, some of these will be no surprise.

Theorem ENLT
Eigenvalues of Nilpotent Linear Transformations
Suppose that T : V 7→ V is a nilpotent linear transformation and λ is an eigenvalue of T . Then
λ = 0. �

Proof Let x be an eigenvector of T for the eigenvalue λ, and suppose that T is nilpotent with
index p. Then

0 = T p (x) Definition NLT [595]
= λpx Theorem EOMP [413]

Because x is an eigenvector, it is nonzero, and therefore Theorem SMEZV [281] tells us that λp = 0
and so λ = 0. �

Paraphrasing, all of the eigenvalues of a nilpotent linear transformation are zero. So in par-
ticular, the characteristic polynomial of a nilpotent linear transformation, T , on a vector space of
dimension n, is simply pT (x) = xn.

The next theorem is not critical for what follows, but it will explain our interest in nilpo-
tent linear transformations. More specifically, it is the first step in backing up the assertion that
nilpotent linear transformations are the essential obstacle in a non-diagonalizable linear transfor-
mation. While it is not obvious from the statement of the theorem, it says that a nilpotent linear
transformation is not diagonalizable, unless it is trivially so.

Theorem DNLT
Diagonalizable Nilpotent Linear Transformations
Suppose the linear transformation T : V 7→ V is nilpotent. Then T is diagonalizable if and only T
is the zero linear transformation. �

Proof We start with the easy direction. Let n = dim (V ).
(⇐) The linear transformation Z : V 7→ V defined by Z (v) = 0 for all v ∈ V is nilpotent

of index p = 1 and a matrix repesentation relative to any basis of V is the n × n zero matrix,
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O. Quite obviously, the zero matrix is a diagonal matrix (Definition DIM [428]) and hence Z is
diagonalizable (Definition DZM [428]).

(⇒) Assume now that T is diagonalizable, so γT (λ) = αT (λ) for every eigenvalue λ (Theorem
DMFE [431]). By Theorem ENLT [600], T has only one eigenvalue (zero), which therefore must
have algebraic multiplicity n (Theorem NEM [416]). So the geometric multiplicity of zero will be
n as well, γT (0) = n.

Let B be a basis for the eigenspace ET (0). Then B is a linearly independent subset of V of size
n, and by Theorem G [347] will be a basis for V . For any x ∈ B we have

T (x) = 0x Definition EM [397]
= 0 Theorem ZSSM [280]

So T is identically zero on a basis for B, and since the action of a linear transformation on a basis
determines all of the values of the linear transformation (Theorem LTDB [451]), it is easy to see
that T (v) = 0 for every v ∈ V . �

So, other than one trivial case (the zero matrix), every nilpotent linear transformation is not
diagonalizable. It remains to see what is so “essential” about this broad class of non-diagonalizable
linear transformations. For this we now turn to a discussion of kernels of powers of nilpotent
linear transformations, beginning with a result about general linear transformations that may not
necessarily be nilpotent.

Theorem KPLT
Kernels of Powers of Linear Transformations
Suppose T : V 7→ V is a linear transformation, where dim (V ) = n. Then there is an integer m,
0 ≤ m ≤ n, such that

{0} = K
(
T 0
)

( K
(
T 1
)

( K
(
T 2
)

( · · · ( K(Tm) = K
(
Tm+1

)
= K

(
Tm+2

)
= · · ·

�

Proof There are several items to verify in the conclusion as stated. First, we show that K
(
T k
)
⊆

K
(
T k+1

)
for any k. Choose z ∈ K

(
T k
)
. Then

T k+1 (z) = T
(
T k (z)

)
Definition LTC [458]

= T (0) Definition KLT [468]
= 0 Theorem LTTZZ [446]

So by Definition KLT [468], z ∈ K
(
T k+1

)
and by Definition SSET [665] we have K

(
T k
)
⊆ K

(
T k+1

)
.

Second, we demonstrate the existence of a power m where consecutive powers result in equal
kernels. A by-product will be the condition that m can be chosen so that m ≤ n. To the contrary,
suppose that

{0} = K
(
T 0
)

( K
(
T 1
)

( K
(
T 2
)

( · · · ( K
(
Tn−1

)
( K(Tn) ( K

(
Tn+1

)
( · · ·

Since K
(
T k
)

( K
(
T k+1

)
, Theorem PSSD [350] implies that dim

(
K
(
T k+1

))
≥ dim

(
K
(
T k
))

+ 1.
Repeated application of this observation yields

dim
(
K
(
Tn+1

))
≥ dim (K(Tn)) + 1

≥ dim
(
K
(
Tn−1

))
+ 2

...

≥ dim
(
K
(
T 0
))

+ (n+ 1)
= dim ({0}) + n+ 1
= n+ 1
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Thus, K
(
Tn+1

)
has a basis of size at least n+ 1, which is a linearly independent set of size greater

than n in the vector space V of dimension n. This contradicts Theorem G [347].
This contradiction yields the existence of an integer k such that K

(
T k
)

= K
(
T k+1

)
, so we can

define m to be smallest such integer with this property. From the argument above about dimensions
resulting from a strictly increasing chain of subspaces, it should be clear that m ≤ n.

It remains to show that once two consecutive kernels are equal, then all of the remaining kernels
are equal. More formally, if K(Tm) = K

(
Tm+1

)
, then K(Tm) = K

(
Tm+j

)
for all j ≥ 1. We will

give a proof by induction on j (Technique I [676]). The base case (j = 1) is precisely our defining
property for m.

In the induction step, we assume that K(Tm) = K
(
Tm+j

)
and endeavor to show that K(Tm) =

K
(
Tm+j+1

)
. At the outset of this proof we established that K(Tm) ⊆ K

(
Tm+j+1

)
. So Definition

SE [666] requires only that we establish the subset inclusion in the opposite direction. To wit,
choose z ∈ K

(
Tm+j+1

)
. Then

0 = Tm+j+1 (z) Definition KLT [468]

= Tm+j (T (z)) Definition LTC [458]
= Tm (T (z)) Induction Hypothesis

= Tm+1 (z) Definition LTC [458]
= Tm (z) Base Case

So by Definition KLT [468], z ∈ K(Tm) as desired. �

We now specialize Theorem KPLT [601] to the case of nilpotent linear transformations, which
buys us just a bit more precision in the conclusion.

Theorem KPNLT
Kernels of Powers of Nilpotent Linear Transformations
Suppose T : V 7→ V is a nilpotent linear transformation with index p and dim (V ) = n. Then
0 ≤ p ≤ n and

{0} = K
(
T 0
)

( K
(
T 1
)

( K
(
T 2
)

( · · · ( K(T p) = K
(
T p+1

)
= · · · = V

�

Proof Since T p = 0 it follows that T p+j = 0 for all j ≥ 0 and thus K
(
T p+j

)
= V for j ≥ 0.

So the value of m guaranteed by Theorem KPLT [601] is at most p. The only remaining aspect
of our conclusion that does not follow from Theorem KPLT [601] is that m = p. To see this we
must show that K

(
T k
)

( K
(
T k+1

)
for 0 ≤ k ≤ p − 1. If K

(
T k
)

= K
(
T k+1

)
for some k < p, then

K
(
T k
)

= K(T p) = V . This implies that T k = 0, violating the fact that T has index p. So the
smallest value of m is indeed p, and we learn that p < n. �

The structure of the kernels of powers of nilpotent linear transformations will be crucial to
what follows. But immediately we can see a practical benefit. Suppose we are confronted with the
question of whether or not an n × n matrix, A, is nilpotent or not. If we don’t quickly find a low
power that equals the zero matrix, when do we stop trying higher and higher powers? Theorem
KPNLT [602] gives us the answer: if we don’t see a zero matrix by the time we finish computing
An, then it is not going to ever happen. We’ll now take a look at one example of Theorem KPNLT
[602] in action.

Example KPNLT
Kernels of powers of a nilpotent linear transformation
We will recycle the nilpotent matrix A of index 4 from Example NM64 [595]. We now know that
would have only needed to look at the first 6 powers of A if the matrix had not been nilpotent. We
list bases for the null spaces of the powers of A. (Notice how we are using null spaces for matrices
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interchangeably with kernels of linear transformations, see Theorem KNSI [539] for justification.)

N (A) = N





−3 3 −2 5 0 −5
−3 5 −3 4 3 −9
−3 4 −2 6 −4 −3
−3 3 −2 5 0 −5
−3 3 −2 4 2 −6
−2 3 −2 2 4 −7



 =

〈




2
2
5
2
1
0

 ,


−1
−1
−5
−1
0
1




〉

N
(
A2
)

= N





1 −2 1 0 −3 4
0 −2 1 1 −3 4
3 0 0 −3 0 0
1 −2 1 0 −3 4
0 −2 1 1 −3 4
−1 −2 1 2 −3 4



 =

〈




0
1
2
0
0
0

 ,


2
1
0
2
0
0

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1




〉

N
(
A3
)

= N





1 0 0 −1 0 0
1 0 0 −1 0 0
0 0 0 0 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0
1 0 0 −1 0 0



 =

〈




0
1
0
0
0
0

 ,


0
0
1
0
0
0

 ,


1
0
0
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




〉

N
(
A4
)

= N





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



 =

〈




1
0
0
0
0
0

 ,


0
1
0
0
0
0

 ,


0
0
1
0
0
0

 ,


0
0
0
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




〉

With the exception of some convenience scaling of the basis vectors in N
(
A2
)

these are exactly
the basis vectors described in Theorem BNS [140]. We can see that the dimension of N (A) equals
the geometric multiplicity of the zero eigenvalue. Why is this not an accident? We can see the
dimensions of the kernels consistently increasing, and we can see that N

(
A4
)

= C6. But Theorem
KPNLT [602] says a little more. Each successive kernel should be a superset of the previous one.
We ought to be able to begin with a basis of N (A) and extend it to a basis of N

(
A2
)
. Then we

should be able to extend a basis of N
(
A2
)

into a basis of N
(
A3
)
, all with repeated applications of

Theorem ELIS [347]. Verify the following,

N (A) =

〈




2
2
5
2
1
0

 ,


−1
−1
−5
−1
0
1




〉

N
(
A2
)

=

〈




2
2
5
2
1
0

 ,


−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1




〉
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N
(
A3
)

=

〈




2
2
5
2
1
0

 ,


−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1

 ,


0
0
0
0
0
1




〉

N
(
A4
)

=

〈




2
2
5
2
1
0

 ,


−1
−1
−5
−1
0
1

 ,


0
−3
0
0
2
0

 ,


0
2
0
0
0
1

 ,


0
0
0
0
0
1

 ,


0
0
0
1
0
0




〉

Do not be concerned at the moment about how these bases were constructed since we are not
describing the applications of Theorem ELIS [347] here. Do verify carefully for each alleged basis
that, (1) it is a superset of the basis for the previous kernel, (2) the basis vectors really are members
of the kernel of the right power of A, (3) the basis is a linearly independent set, (4) the size of the
basis is equal to the size of the basis found previously for each kernel. With these verifications,
Theorem G [347] will tell us that we have successfully demonstrated what Theorem KPNLT [602]
guarantees. �

Subsection CFNLT
Canonical Form for Nilpotent Linear Transformations

Our main purpose in this section is to find a basis so that a nilpotent linear transformation will
have a pleasing, nearly-diagonal matrix representation. Of course, we will not have a definition
for “pleasing,” nor for “nearly-diagonal.” But the short answer is that our preferred matrix repre-
sentation will be built up from Jordan blocks, Jn (0). Here’s the theorem. You will find Example
CFNLT [608] helpful as you study this proof, since it uses the same notation, and is large enough
to (barely) illustrate the full generality of the theorem (see ).

Theorem CFNLT
Canonical Form for Nilpotent Linear Transformations
Suppose that T : V 7→ V is a nilpotent linear transformation of index p. Then there is a basis for V
so that the matrix representation, MT

B,B, is block diagonal with each block being a Jordan block,
Jn (0). The size of the largest block is the index p, and the total number of blocks is the nullity of
T , n (T ). �

Proof We will explicitly construct the desired basis, so the proof is constructive (Technique C
[671]), and can be used in practice. As we begin, the basis vectors will not be in the proper order,
but we will rearrange them at the end of the proof. For convenience, define ni = n

(
T i
)
, so for

example, n0 = 0, n1 = n (T ) and np = n (T p) = dim (V ). Define si = ni − ni−1, for 1 ≤ i ≤ p, so
we can think of si as “how much bigger” K

(
T i
)

is than K
(
T i−1

)
. In particular, Theorem KPNLT

[602] implies that si > 0 for 1 ≤ i ≤ p.
We are going to build a set of vectors zi,j , 1 ≤ i ≤ p, 1 ≤ j ≤ si. Each zi,j will be an element

of K
(
T i
)

and not an element of K
(
T i−1

)
. In total, we will obtain a linearly independent set of∑p

i=1 si =
∑p

i=1 ni − ni−1 = np − n0 = dim (V ) vectors that form a basis of V . We construct
this set in pieces, starting at the “wrong” end. Our procedure will build a series of subspaces, Zi,
each lying in between K

(
T i−1

)
and K

(
T i
)
, having bases zi,j , 1 ≤ j ≤ si, and which together equal

V as a direct sum. Now would be a good time to review the results on direct sums collected in
Subsection PD.DS [352]. OK, here we go.

We build the subspace Zp first (this is what we meant by “starting at the wrong end”). K
(
T p−1

)
is a proper subspace of K(T p) = V (Theorem KPNLT [602]). Theorem DSFOS [354] says that there
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Subsection NLT.CFNLT Canonical Form for Nilpotent Linear Transformations 605

is a subspace of V that will pair with the subspace K
(
T p−1

)
to form a direct sum of V . Call this

subspace Zp, and choose vectors zp,j , 1 ≤ j ≤ sp as a basis of Zp, which we will denote as Bp. Note
that we have a fair amount of freedom in how to choose these first basis vectors. Several observations
will be useful in the next step. First V = K

(
T p−1

)
⊕Zp. The basis Bp =

{
zp,1, zp,2, zp,3, . . . , zp,sp

}
is linearly independent. For 1 ≤ j ≤ si, zp,j ∈ K(T p) = V . Since the two subspaces of a direct sum
have no nonzero vectors in common (Theorem DSZI [355]), for 1 ≤ j ≤ si, zp,j 6∈ K

(
T p−1

)
. That

was comparably easy.
If obtaining Zp was easy, getting Zp−1 will be harder. We will repeat the next step p− 1 times,

and so will do it carefully the first time. Eventually, Zp−1 will have dimension sp−1. However, the
first sp vectors of a basis are straightforward. Define zp−1,j = T (zp,j), 1 ≤ j ≤ sp. Notice that we
have no choice in creating these vectors, they are a consequence of our choices for zp,j . In retrospect
(i.e. on a second reading of this proof), you will recognize this as the key step in realizing a matrix
representation of a nilpotent linear transformation with Jordan blocks. We need to know that this
set of vectors in linearly independent, so start with a relation of linear dependence (Definition RLD
[303]), and massage it,

0 = a1zp−1,1 + a2zp−1,2 + a3zp−1,3 + · · ·+ aspzp−1,sp

= a1T (zp,1) + a2T (zp,2) + a3T (zp,3) + · · ·+ aspT
(
zp,sp

)
= T

(
a1zp,1 + a2zp,2 + a3zp,3 + · · ·+ aspzp,sp

)
Theorem LTLC [451]

Define x = a1zp,1 +a2zp,2 +a3zp,3 + · · ·+aspzp,sp . The statement just above means that x ∈ K(T ) ⊆
K
(
T p−1

)
(Definition KLT [468], Theorem KPNLT [602]). As defined, x is a linear combination

of the basis vectors Bp, and therefore x ∈ Zp. Thus x ∈ K
(
T p−1

)
∩ Zp (Definition SI [667]).

Because V = K
(
T p−1

)
⊕ Zp, Theorem DSZI [355] tells us that x = 0. Now we recognize the

definition of x as a relation of linear dependence on the linearly independent set Bp, and therefore
a1 = a2 = · · · = asp = 0 (Definition LI [303]). This establishes the linear independence of zp−1,j ,
1 ≤ j ≤ sp (Definition LI [303]).

We also need to know where the vectors zp−1,j , 1 ≤ j ≤ sp live. First we demonstrate that they
are members of K

(
T p−1

)
.

T p−1 (zp−1,j) = T p−1 (T (zp,j))
= T p (zp,j)
= 0

So zp−1,j ∈ K
(
T p−1

)
, 1 ≤ j ≤ sp. However, we now show that these vectors are not elements of

K
(
T p−2

)
. Suppose to the contrary (Technique CD [673]) that zp−1,j ∈ K

(
T p−2

)
. Then

0 = T p−2 (zp−1,j)

= T p−2 (T (zp,j))

= T p−1 (zp,j)

which contradicts the earlier statement that zp,j 6∈ K
(
T p−1

)
. So zp−1,j 6∈ K

(
T p−2

)
, 1 ≤ j ≤ sp.

Now choose a basis Cp−2 =
{
u1, u2, u3, . . . , unp−2

}
for K

(
T p−2

)
. We want to extend this basis

by adding in the zp−1,j to span a subspace of K
(
T p−1

)
. But first we want to know that this set is

linearly independent. Let ak, 1 ≤ k ≤ np−2 and bj , 1 ≤ j ≤ sp be the scalars in a relation of linear
dependence,

0 = a1u1 + a2u2 + · · ·+ anp−2unp−2 + b1zp−1,1 + b2zp−1,2 + · · ·+ bspzp−1,sp

Then,

0 = T p−2 (0)
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= T p−2
(
a1u1 + a2u2 + · · ·+ anp−2unp−2 + b1zp−1,1 + b2zp−1,2 + · · ·+ bspzp−1,sp

)
= a1T

p−2 (u1) + a2T
p−2 (u2) + · · ·+ anp−2T

p−2
(
unp−2

)
+

b1T
p−2 (zp−1,1) + b2T

p−2 (zp−1,2) + · · ·+ bspT
p−2

(
zp−1,sp

)
= a10 + a20 + · · ·+ anp−20 + b1T

p−2 (zp−1,1) + b2T
p−2 (zp−1,2) + · · ·+ bspT

p−2
(
zp−1,sp

)
= b1T

p−2 (zp−1,1) + b2T
p−2 (zp−1,2) + · · ·+ bspT

p−2
(
zp−1,sp

)
= b1T

p−2 (T (zp,1)) + b2T
p−2 (T (zp,2)) + · · ·+ bspT

p−2
(
T
(
zp,sp

))
= b1T

p−1 (zp,1) + b2T
p−1 (zp,2) + · · ·+ bspT

p−1
(
zp,sp

)
= T p−1

(
b1zp,1 + b2zp,2 + · · ·+ bspzp,sp

)
Define y = b1zp,1 + b2zp,2 + · · · + bspzp,sp . The statement just above means that y ∈ K

(
T p−1

)
(Definition KLT [468]). As defined, y is a linear combination of the basis vectors Bp, and therefore
y ∈ Zp. Thus y ∈ K

(
T p−1

)
∩ Zp. Because V = K

(
T p−1

)
⊕ Zp, Theorem DSZI [355] tells us that

y = 0. Now we recognize the definition of y as a relation of linear dependence on the linearly
independent set Bp, and therefore b1 = b2 = · · · = bsp = 0 (Definition LI [303]). Return to the
full relation of linear dependence with both sets of scalars (the ai and bj). Now that we know
that bj = 0 for 1 ≤ j ≤ sp, this relation of linear dependence simplifies to a relation of linear
dependence on just the basis Cp−1. Therefore, ai = 0, 1 ≤ ai ≤ np−1 and we have the desired linear
independence.

Define a new subspace of K
(
T p−1

)
as

Qp−1 =
〈{

u1, u2, u3, . . . , unp−1 , zp−1,1, zp−1,2, zp−1,3, . . . , zp−1,sp

}〉
By Theorem DSFOS [354] there exists a subspace of K

(
T p−1

)
which will pair with Qp−1 to form a

direct sum. Call this subspace Rp−1, so by definition, K
(
T p−1

)
= Qp−1 ⊕Rp−1. We are interested

in the dimension of Rp−1. Note first, that since the spanning set of Qp−1 is linearly independent,
dim (Qp−1) = np−2 + sp. Then

dim (Rp−1) = dim
(
K
(
T p−1

))
− dim (Qp−1) Theorem DSD [356]

= np−1 − (np−2 + sp)
= (np−1 − np−2)− sp
= sp−1 − sp

Notice that if sp−1 = sp, then Rp−1 is trivial. Now choose a basis of Rp−1, and denote these sp−1−sp
vectors as zp−1,sp+1, zp−1,sp+2, zp−1,sp+3, . . . , zp−1,sp−1 . This is another occassion to notice that we
have some freedom in this choice.

We now have K
(
T p−1

)
= Qp−1 ⊕ Rp−1, and we have bases for each of the two subspaces. The

union of these two bases will therefore be a linearly independent set in K
(
T p−1

)
with size

(np−2 + sp) + (sp−1 − sp) = np−2 + sp−1

= np−2 + np−1 − np−2

= np−1 = dim
(
K
(
T p−1

))
So, by Theorem G [347], the following set is a basis of K

(
T p−1

)
,{

u1, u2, u3, . . . , unp−2 , zp−1,1, zp−1,2, . . . , zp−1,sp , zp−1,sp+1, zp−1,sp+2, . . . , zp−1,sp−1

}
We built up this basis in three parts, we will now split it in half. Define the subspace Zp−1 by

Zp−1 = 〈Bp−1〉 =
〈{

zp−1,1, zp−1,2, . . . , zp−1,sp−1

}〉
where we have implicitly denoted the basis as Bp−1. Then Theorem DSFB [353] allows us to split
up the basis for K

(
T p−1

)
as Cp−1 ∪Bp−1 and write

K
(
T p−1

)
= K

(
T p−2

)
⊕ Zp−1
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Whew! This is a good place to recap what we have achieved. The vectors zi,j form bases for the
subspaces Zi and right now

V = K
(
T p−1

)
⊕ Zp = K

(
T p−2

)
⊕ Zp−1 ⊕ Zp

The key feature of this decomposition of V is that the first sp vectors in the basis for Zp−1 are
outputs of the linear transformation T using the basis vectors of Zp as inputs.

Now we want to further decompose K
(
T p−2

)
(into K

(
T p−3

)
and Zp−2). The procedure is the

same as above, so we will only sketch the key steps. Checking the details procedes in the same
manner as above. Technically, we could have set up the preceding as the induction step in a proof
by induction (Technique I [676]), but this probably would make the proof harder to understand.

Hit each element of Bp−1 with T , to create vectors zp−2,j , 1 ≤ j ≤ sp−1. These vectors form
a linearly independent set, and each is an element of K

(
T p−2

)
, but not an element of K

(
T p−3

)
.

Grab a basis Cp−3 of K
(
T p−3

)
and tack on the newly-created vectors zp−2,j , 1 ≤ j ≤ sp−1. This

expanded set is linearly independent, and we can define a subspace Qp−2 using it as a basis.
Theorem DSFOS [354] gives us a subspace Rp−2 such that K

(
T p−2

)
= Qp−2 ⊕ Rp−2. Vectors

zp−2,j , sp−1 + 1 ≤ j ≤ sp−2 are chosen as a basis for Rp−2 once the relevant dimensions have been
verified. The union of Cp−3 and zp−2,j , 1 ≤ j ≤ sp−2 then form a basis of K

(
T p−2

)
, which can be

split into two parts to yield the decomposition

K
(
T p−2

)
= K

(
T p−3

)
⊕ Zp−2

Here Zp−2 is the subspace of K
(
T p−2

)
with basis Bp−2 = {zp−2,j | 1 ≤ j ≤ sp−2}. Finally,

V = K
(
T p−1

)
⊕ Zp = K

(
T p−2

)
⊕ Zp−1 ⊕ Zp = K

(
T p−3

)
⊕ Zp−2 ⊕ Zp−1 ⊕ Zp

Again, the key feature of this decomposition is that the first vectors in the basis of Zp−2 are outputs
of T using vectors from the basis Zp−1 as inputs (and in turn, some of these inputs are outputs of
T derived from inputs in Zp).

Now assume we repeat this procedure until we decompose K
(
T 2
)

into subspaces K(T ) and Z2.
Finally, decompose K(T ) into subspaces K

(
T 0
)

= K(In) = {0} and Z1, so that we recognize the
vectors z1,j , 1 ≤ j ≤ s1 = n1 as elements of K(T ). The set

B = B1 ∪B2 ∪B3 ∪ · · · ∪Bp = {zi,j | 1 ≤ i ≤ p, 1 ≤ j ≤ si}

is linearly independent by Theorem DSLI [355] and has size

p∑
i=1

si =
p∑
i=1

ni − ni−1 = np − n0 = dim (V )

So by Theorem G [347], B is a basis of V . We desire a matrix representation of T relative to B
(Definition MR [529]), but first we will reorder the elements of B. The following display lists the
elements of B in the desired order, when read across the rows right-to-left in the usual way. Notice
that we arrived at these vectors column-by-column, beginning on the right.

z1,1 z2,1 z3,1 · · · zd,1
z1,2 z2,2 z3,2 · · · zd,2

...
...

z1,sd z2,sd z3,sd · · · zd,sd
z1,sd+1 z2,sd+1 z3,sd+1 · · ·

...
...

z1,s3 z2,s3 z3,s3

...
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z1,s2 z2,s2

...
z1,s1

It is difficult to layout this table with the notation we have been using, nor would it be especially
useful to invent some notation to overcome the difficulty. (One approach would be to define
something like the inverse of the nonincreasing function, i→ si.) Do notice that there are s1 = n1

rows and d columns. Column i is the basis Bi. The vectors in the first column are elements of
K(T ). Each row is the same length, or shorter, than the one above it. If we apply T to any vector
in the table, other than those in the first column, the output is the preceding vector in the row.

Now contemplate the matrix representation of T relative to B as we read across the rows of
the table above. In the first row, T (z1,1) = 0, so the first column of the representation is the zero
column. Next, T (z2,1) = z1,1, so the second column of the representation is a vector with a single
one in the first entry, and zeros elsewhere. Next, T (z3,1) = z2,1, so column 3 of the representation
is a zero, then a one, then all zeros. Continuing in this vein, we obtain the first d columns of the
representation, which is the Jordan block Jd (0) followed by rows of zeros.

When we apply T to the basis vectors of the second row, what happens? Applying T to the
first vector, the result is the zero vector, so the representation gets a zero column. Applying T to
the second vector in the row, the output is simply the first vector in that row, making the next
column of the representation all zeros plus a lone one, sitting just above the diagonal. Continuing,
we create a Jordan block, sitting on the diagonal of the matrix representation. It is not possible in
general to state the size of this block, but since the second row is no longer than the first, it cannot
have size larger than d.

Since there are as many rows as the dimension of K(T ), the representation contains as many
Jordan blocks as the nullity of T , n (T ). Each successive block is smaller than the preceding one,
with the first, and largest, having size d. The blocks are Jordan blocks since the basis vectors zi,j
were often defined as the result of applying T to other elements of the basis already determined,
and then we rearranged the basis into an order that placed outputs of T just before their inputs,
excepting the start of each row, which was an element of K(T ). �

The proof of Theorem CFNLT [604] is constructive (Technique C [671]), so we can use it to
create bases of nilpotent linear transformations with pleasing matrix representations. Recall that
Theorem DNLT [600] told us that nilpotent linear transformations are almost never diagonalizable,
so this is progress. As we have hinted before, with a nice representation of nilpotent matrices, it
will not be difficult to build up representations of other non-diagonalizable matrices. Here is the
promised example which illustrates the previous theorem. It is a useful companion to your study
of the proof of Theorem CFNLT [604].

Example CFNLT
Canonical form for a nilpotent linear transformation
The 6 × 6 matrix, A, of Example NM64 [595] is nilpotent of index p = 4. If we define the linear
transformation T : C6 7→ C6 by T (x) = Ax, then T is nilpotent of index 4 and we can seek a basis
of C6 that yields a matrix representation with Jordan blocks on the diagonal. The nullity of T is
2, so from Theorem CFNLT [604] we can expect the largest Jordan block to be J4 (0), and there
will be just two blocks. This only leaves enough room for the second block to have size 2.

We will recycle the bases for the null spaces of the powers of A from Example KPNLT [602]
rather than recomputing them here. We will also use the same notation used in the proof of
Theorem CFNLT [604].

To begin, s4 = n4 − n3 = 6 − 5 = 1, so we need one vector of K
(
T 4
)

= C6, that is not in
K
(
T 3
)
, to be a basis for Z4. We have a lot of latitude in this choice, and we have not described any

sure-fire method for constructing a vector outside of a subspace. Looking at the basis for K
(
T 3
)

we see that if a vector is in this subspace, and has a nonzero value in the first entry, then it must
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also have a nonzero value in the fourth entry. So the vector

z4,1 =



1
0
0
0
0
0


will not be an element of K

(
T 3
)

(notice that many other choices could be made here, so our basis
will not be unique). This completes the determination of Zp = Z4.

Next, s3 = n3 − n2 = 5− 4 = 1, so we again need just a single basis vector for Z3. We start by
evaluating T with each basis vector of Z4,

z3,1 = T (z4,1) = Az4,1 =



−3
−3
−3
−3
−3
−2


Since s3 = s4, the subspace R3 is trivial, and there is nothing left to do, z3,1 is the lone basis vector
of Z3.

Now s2 = n2−n1 = 4−2 = 2, so the construction of Z2 will not be as simple as the construction
of Z3. We first apply T to the basis vector of Z2,

z2,1 = T (z3,1) = Az3,1 =



1
0
3
1
0
−1


The two basis vectors of K

(
T 1
)
, together with z2,1, form a basis for Q2. Because dim

(
K
(
T 2
))
−

dim (Q2) = 4−3 = 1 we need only find a single basis vector for R2. This vector must be an element
of K

(
T 2
)
, but not an element of Q2. Again, there is a variety of vectors that fit this description,

and we have no precise algorithm for finding them. Since they are plentiful, they are not too hard
to find. We add up the four basis vectors of K

(
T 2
)
, ensuring an element of K

(
T 2
)
. Then we check

to see if the vector is a linear combination of three vectors: the two basis vectors of K
(
T 1
)

and
z2,1. Having passed the tests, we have chosen

z2,2 =



2
1
2
2
2
1


Thus, Z2 = 〈{z2,1, z2,2}〉.

Lastly, s1 = n1 − n0 = 2 − 0 = 2. Since s2 = s1, we again have a trivial R1 and need only
complete our basis by evaluating the basis vectors of Z2 with T ,

z1,1 = T (z2,1) = Az2,1 =



1
1
0
1
1
1


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z1,2 = T (z2,2) = Az2,2 =



−2
−2
−5
−2
−1
0



Now we reorder these vectors as the desired basis,

B = {z1,1, z2,1, z3,1, z4,1, z1,2, z2,2}

We now apply Definition MR [529] to build a matrix representation of T relative to B,

ρB (T (z1,1)) = ρB (Az1,1) = ρB (0) =



0
0
0
0
0
0



ρB (T (z2,1)) = ρB (Az2,1) = ρB (z1,1) =



1
0
0
0
0
0



ρB (T (z3,1)) = ρB (Az3,1) = ρB (z2,1) =



0
1
0
0
0
0



ρB (T (z4,1)) = ρB (Az4,1) = ρB (z3,1) =



0
0
1
0
0
0



ρB (T (z1,2)) = ρB (Az1,2) = ρB (0) =



0
0
0
0
0
0



ρB (T (z2,2)) = ρB (Az2,2) = ρB (z1,2) =



0
0
0
0
1
0


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Installing these vectors as the columns of the matrix representation we have

MT
B,B =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


which is a block diagonal matrix with Jordan blocks J4 (0) and J2 (0). If we constructed the
matrix S having the vectors of B as columns, then Theorem SCB [568] tells us that a similarity
transformation with S relates the original matrix repreentation of T with the matrix representation
consisting of Jordan blocks., i.e. S−1AS = MT

B,B. �

Notice that constructing interesting examples of matrix representations requires domains with
dimensions bigger than just two or three. Going forward we will see several more big examples.
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Section IS
Invariant Subspaces

Draft: This Section Complete, But Subject To Change

We have seen in Section NLT [595] that nilpotent linear transformations are almost never
diagonalizable (Theorem DNLT [600]), yet have matrix representations that are very nearly diagonal
(Theorem CFNLT [604]). Our goal in this section, and the next (Section JCF [631]), is to obtain
a matrix representation of any linear transformation that is very nearly diagonal. A key step in
reaching this goal is an understanding of invariant subspaces, and a particular type of invariant
subspace that contains vectors known as “generalized eigenvectors.”

Subsection IS
Invariant Subspaces

As is often the case, we start with a definition.

Definition IS
Invariant Subspace
Suppose that T : V 7→ V is a linear transformation and W is a subspace of V . Suppose further
that T (w) ∈W for every w ∈W . Then W is an invariant subspace of V relative to T . 4

We do not have any special notation for an invariant subspace, so it is important to recognize
that an invariant subspace is always relative to both a superspace (V ) and a linear transformation
(T ), which will sometimes not be mentioned, yet will be clear from the context. Note also that the
linear transformation involved must have an equal domain and codomain — the definition would
not make much sense if our outputs were not of the same type as our inputs.

As usual, we begin with an example that demonstrates the existence of invariant subspaces. We
will return later to understand how this example was constructed, but for now, just understand
how we check the existence of the invariant subspaces.

Example TIS
Two invariant subspaces
Consider the linear transformation T : C4 7→ C4 defined by T (x) = Ax where A is given by

A =


−8 6 −15 9
−8 14 −10 18
1 1 3 0
3 −8 2 −11


Define (with zero motivation),

w1 =


−7
−2
3
0

 w2 =


−1
−2
0
1


and set W = 〈{w1, w2}〉. We verify that W is an invariant subspace of C4 with respect to T . By
the definition of W , any vector chosen from W can be written as a linear combination of w1 and
w2. Suppose that w ∈W , and then check the details of the following verification,

T (w) = T (a1w1 + a2w2) Definition SS [293]
= a1T (w1) + a2T (w2) Theorem LTLC [451]
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= a1


−1
−2
0
1

+ a2


5
−2
−3
2


= a1w2 + a2 ((−1)w1 + 2w2)
= (−a2)w1 + (a1 + 2a2)w2

∈W Definition SS [293]

So, by Definition IS [613], W is an invariant subspace of C4 relative to T . In an entirely similar
manner we construct another invariant subspace of T .

With zero motivation, define

x1 =


−3
−1
1
0

 x2 =


0
−1
0
1


and set X = 〈{x1, x2}〉. We verify that X is an invariant subspace of C4 with respect to T . By
the definition of X, any vector chosen from X can be written as a linear combination of x1 and x2.
Suppose that x ∈ X, and then check the details of the following verification,

T (x) = T (b1x1 + b2x2) Definition SS [293]
= b1T (x1) + b2T (x2) Theorem LTLC [451]

= b1


3
0
−1
1

+ b2


3
4
−1
−3


= b1 ((−1)x1 + x2) + b2 ((−1)x1 + (−3)x2)
= (−b1 − b2)x1 + (b1 − 3b2)x2

∈ X Definition SS [293]

So, by Definition IS [613], X is an invariant subspace of C4 relative to T .
There is a bit of magic in each of these verifications where the two outputs of T happen to equal

linear combinations of the two inputs. But this is the essential nature of an invariant subspace.
We’ll have a peek under the hood later, and it won’t look so magical after all.

As a hint of things to come, verify that B = {w1, w2, x1, x2} is a basis of C4. Splitting this
basis in half, Theorem DSFB [353], tells us that C4 = W ⊕X. To see why a decomposition of a
vector space into a direct sum of invariant subspaces might be interesting, construct the matrix
representation of T relative to B, MT

B,B. Hmmmmmm. �

Example TIS [613] is a bit mysterious at this stage. Do we know any other examples of invariant
subspaces? Yes, as it turns out, we have already seen quite a few. We’ll give some examples now,
and in more general situations, describe broad classes of invariant subspaces with theorems. First
up is eigenspaces.

Theorem EIS
Eigenspaces are Invariant Subspaces
Suppose that T : V 7→ V is a linear transformation with eigenvalue λ and associated eigenspace
ET (λ). Let W be any subspace of ET (λ). Then W is an invariant subspace of V relative to T . �

Proof Choose w ∈W . Then

T (w) = λw Definition EELT [559]
∈W Property SC [273]
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So by Definition IS [613], W is an invariant subspace of V relative to T . �

Theorem EIS [614] is general enough to determine that an entire eigenspace is an invariant
subspace, or that simply the span of a single eigenvector is an invariant subspace. It is not always
the case that any subspace of an invariant subspace is again an invariant subspace, but eigenspaces
do have this property. Here is an example of the theorem, which also allows us to very quickly
build several several invariant (4x4, 2 evs, 1 2x2 jordan, 1 2x2 diag)

Example EIS
Eigenspaces as invariant subspaces
Define the linear transformation S : M22 7→M22 by

S

([
a b
c d

])
=
[
−2a+ 19b− 33c+ 21d −3a+ 16b− 24c+ 15d
−2a+ 9b− 13c+ 9d −a+ 4b− 6c+ 5d

]
Build a matrix representation of S relative to the standard basis (Definition MR [529], Example
BM [320]) and compute eigenvalues and eigenspaces of S with the computational techniques of
Chapter E [389] in concert with Theorem EER [571]. Then

ES (1) =
〈{[

4 3
2 1

]}〉
ES (2) =

〈{[
6 3
1 0

]
,

[
−9 −3
0 1

]}〉
So by Theorem EIS [614], both ES (1) and ES (2) are invariant subspaces of M22 relative to S.
However, Theorem EIS [614] provides even more invariant subspaces. Since ES (1) has dimension
1, it has no interesting subspaces, however ES (2) has dimension 2 and has a plethora of subspaces.
For example, set

u = 2
[
6 3
1 0

]
+ 3

[
−9 −3
0 1

]
=
[
−6 −3
2 3

]
and define U = 〈{u}〉. Then since U is a subspace of ES (2), Theorem EIS [614] says that U is an
invariant subspace of M22 (or we could check this claim directly based simply on the fact that u is
an eigenvector of S). �

For every linear transformation there are some obvious, trivial invariant subspaces. Suppose
that T : V 7→ V is a linear transformation. Then simply because T is a function (Definition LT
[443]), the subspace V is an invariant subspace of T . In only a minor twist on this theme, the range
of T , R(T ), is an invariant subspace of T by Definition RLT [483]. Finally, Theorem LTTZZ [446]
provides the justification for claiming that {0} is an invariant subspace of T .

That the trivial subspace is always an invariant subspace is a special case of the next theorem.
As an easy exercise before reading the next theorem, prove that the kernel of a linear transformation
(Definition KLT [468]), K(T ), is an invariant subspace. We’ll wait.

Theorem KPIS
Kernels of Powers are Invariant Subspaces
Suppose that T : V 7→ V is a linear transformation. Then K

(
T k
)

is an invariant subspace of V . �

Proof Suppose that z ∈ K
(
T k
)
. Then

T k (T (z)) = T k+1 (z) Definition LTC [458]

= T
(
T k (z)

)
Definition LTC [458]

= T (0) Definition KLT [468]
= 0 Theorem LTTZZ [446]

So by Definition KLT [468], we see that T (z) ∈ K
(
T k
)
. Thus K

(
T k
)

is an invariant subspace of V
relative to T (Definition IS [613]). �

Two interesting special cases of Theorem KPIS [615] occur when choose k = 0 and k = 1.
Rather than give an example of this theorem, we will refer you back to Example KPNLT [602]
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where we work with null spaces of the first four powers of a nilpotent matrix. By Theorem KPIS
[615] each of these null spaces is an invariant subspace of the associated linear transformation.

Here’s one more example of invariant subspaces we have encountered previously.

Example ISJB
Invariant subspaces and Jordan blocks
Refer back to Example CFNLT [608]. We decomposed the vector space C6 into a direct sum of the
subspaces Z1, Z2, Z3, Z4. The union of the basis vectors for these subspaces is a basis of C6, which
we reordered prior to building a matrix representation of the linear transformation T . A principal
reason for this reordering was to create invariant subspaces (though it was not obvious then).

Define

X1 = 〈{z1,1, z2,1, z3,1, z4,1}〉 =

〈




1
1
0
1
1
1

 ,


1
0
3
1
0
−1

 ,


−3
−3
−3
−3
−3
−2

 ,


1
0
0
0
0
0




〉

X2 = 〈{z1,2, z2,2}〉 =

〈




−2
−2
−5
−2
−1
0

 ,


2
1
2
2
2
1




〉

Recall from the proof of Theorem CFNLT [604] or the computations in Example CFNLT [608] that
first elements of X1 and X2 are in the kernel of T , K(T ), and each element of X1 and X2 is the
output of T when evaluated with the subsequent element of the set. This was by design, and it
is this feature of these basis vectors that leads to the nearly diagonal matrix representation with
Jordan blocks. However, we also recognize now that this property of these basis vectors allow us
to conclude easily that X1 and X2 are invariant subspaces of C6 relative to T .

Furthermore, C6 = X1 ⊕X2 (Theorem DSFB [353]). So the domain of T is the direct sum of
invariant subspaces and the resulting matrix representation has a block diagonal form. Hmmmmm.

�

Subsection GEE
Generalized Eigenvectors and Eigenspaces

We now define a new type of invariant subspace and explore its key properties. This generalization
of eigenvalues and eigenspaces will allow us to move from diagonal matrix representations of diag-
onalizable matrices to nearly diagonal matrix representations of arbitrary matrices. Here are the
definitions.

Definition GEV
Generalized Eigenvector
Suppose that T : V 7→ V is a linear transformation. Suppose further that for x 6= 0, (T − λIV )k (x) =
0 for some k > 0. Then x is a generalized eigenvector of T with eigenvalue λ. 4

Definition GES
Generalized Eigenspace
Suppose that T : V 7→ V is a linear transformation. Define the generalized eigenspace of T for
λ as

GT (λ) =
{

x | (T − λIV )k (x) = 0 for some k ≥ 0
}
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(This definition contains Notation GES.) 4

So the generalized eigenspace is composed of generalized eigenvectors, plus the zero vector.
As the name implies, the generalized eigenspace is a subspace of V . But more topically, it is an
invariant subspace of V relative to T .

Theorem GESIS
Generalized Eigenspace is an Invariant Subspace
Suppose that T : V 7→ V is a linear transformation. Then the generalized eigenspace GT (λ) is an
invariant subspace of V relative to T . �

Proof First we establish that GT (λ) is a subspace of V . First (T − λIV )1 (0) = 0 by Theorem
LTTZZ [446], so 0 ∈ GT (λ).

Suppose that x, y ∈ GT (λ). Then there are integers k, ` such that (T − λIV )k (x) = 0 and
(T − λIV )` (y) = 0. Set m = k + `,

(T − λIV )m (x + y) = (T − λIV )m (x) + (T − λIV )m (y) Definition LT [443]

= (T − λIV )k+` (x) + (T − λIV )k+` (y)

= (T − λIV )`
(

(T − λIV )k (x)
)

+

(T − λIV )k
(

(T − λIV )` (y)
)

Definition LTC [458]

= (T − λIV )` (0) + (T − λIV )k (0) Definition GES [616]
= 0 + 0 Theorem LTTZZ [446]
= 0 Property Z [273]

So x + y ∈ GT (λ).
Suppose that x ∈ GT (λ) and α ∈ C. Then there is an integer k such that (T − λIV )k (x) = 0.

(T − λIV )k (αx) = α (T − λIV )k (x) Definition LT [443]
= α0 Definition GES [616]
= 0 Theorem ZVSM [280]

So αx ∈ GT (λ). By Theorem TSS [288], GT (λ) is a subspace of V .
Now we show that GT (λ) is invariant relative to T . Suppose that x ∈ GT (λ). Then there is an

integer k such that (T − λIV )k (x) = 0. Recognize also that (T − λIV )k is a polynomial in T , and
therefore commutes with T (that is, T ◦ p(T ) = p(T ) ◦ T for any polynomial p(x)). Now,

(T − λIV )k (T (x)) = T
(

(T − λIV )k (x)
)

= T (0) Definition GES [616]
= 0 Theorem LTTZZ [446]

This qualifies T (x) for membership in GT (λ), so by Definition GES [616], GT (λ) is invariant relative
to T . �

Before we compute some generalized eigenspaces, we state and prove one theorem that will
make it much easier to create a generalized eigenspace, since it will allow us to use tools we already
know well, and will remove some the ambiguity of the clause “for some k” in the definition.

Theorem GEK
Generalized Eigenspace as a Kernel
Suppose that T : V 7→ V is a linear transformation, dim (V ) = n, and λ is an eigenvalue of T . Then
GT (λ) = K((T − λIV )n). �

Proof The conclusion of this theorem is a set equality, so we will apply Definition SE [666] by
establishing two set inclusions. First, suppose that x ∈ GT (λ). Then there is an integer k such

Version 1.30



618 Section IS Invariant Subspaces

that (T − λIV )k (x) = 0. This is equivalent to the statement that x ∈ K
(

(T − λIV )k
)

. No matter
what the value of k is, Theorem KPLT [601] gives

x ∈ K
(

(T − λIV )k
)
⊆ K((T − λIV )n)

So, GT (λ) ⊆ K((T − λIV )n). For the opposite inclusion, suppose y ∈ K((T − λIV )n). Then
(T − λIV )n (y) = 0, so y ∈ GT (λ) and thus K((T − λIV )n) ⊆ GT (λ). By Definition SE [666] we
have the desired equality of sets. �

Theorem GEK [617] allows us to compute generalized eigenspaces as a single kernel (or null
space of a matrix representation) with tools like Theorem KNSI [539] and Theorem BNS [140].
Also, we do not need to consider all possible powers k and can simply consider the case where
k = n. It is worth noting that the “regular” eigenspace is a subspace of the generalized eigenspace
since

ET (λ) = K
(

(T − λIV )1
)
⊆ K((T − λIV )n) = GT (λ)

where the subset inclusion is a consequence of Theorem KPLT [601]. Also, there is no such thing
as a “generalized eigenvalue.” If λ is not an eigenvalue of T , then the kernel of T − λIV is trivial
and therefore subsequent powers of T − λIV also have trivial kernels (Theorem KPLT [601]). So
the generalized eigenspace of a scalar that is not already an eigenvalue would be trivial. Alright,
we know enough now to compute some generalized eigenspaces. We will record some information
about algebraic and geometric multiplicities of eigenvalues (Definition AME [399], Definition GME
[399]) as we go, since these observations will be of interest in light of some future theorems.

Example GE4
Generalized eigenspaces, dimension 4 domain
In Example TIS [613] we presented two invariant subspaces of C4. There was some mystery about
just how these were constructed, but we can now reveal that they are generalized eigenspaces.
Example TIS [613] featured T : C4 7→ C4 defined by T (x) = Ax with A given by

A =


−8 6 −15 9
−8 14 −10 18
1 1 3 0
3 −8 2 −11


A matrix representation of T relative to the standard basis (Definition SUV [169]) will equal A.
So we can analyze A with the techniques of Chapter E [389]. Doing so, we find two eigenvalues,
λ = 1, −2, with multiplicities,

αT (1) = 2 γT (1) = 1
αT (−2) = 2 γT (−2) = 1

To apply Theorem GEK [617] we subtract each eigenvalue from the diagonal entries of A, raise the
result to the power dim

(
C4
)

= 4, and compute a basis for the null space.

λ = −2 (A− (−2)I4)4 =


648 −1215 729 −1215
−324 486 −486 486
−405 729 −486 729
297 −486 405 −486

 RREF−−−−→


1 0 3 0
0 1 1 1
0 0 0 0
0 0 0 0



GT (−2) =

〈

−3
−1
1
0

 ,


0
−1
0
1



〉
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λ = 1 (A− (1)I4)4 =


81 −405 −81 −729
−108 −189 −378 −486
−27 135 27 243
135 54 351 243

 RREF−−−−→


1 0 7

3 1
0 1 2

3 2
0 0 0 0
0 0 0 0



GT (1) =

〈

−7
−2
3
0

 ,

−1
−2
0
1



〉

In Example TIS [613] we concluded that these two invariant subspaces formed a direct sum of C4,
only at that time, they were called X and W . Now we can write

C4 = GT (1)⊕ GT (−2)

This is no accident. Notice that the dimension of each of these invariant subspaces is equal to
the algebraic multiplicity of the associated eigenvalue. Not an accident either. (See the upcoming
Theorem GESD [631].) �

Example GE6
Generalized eigenspaces, dimension 6 domain
Define the linear transformation S : C6 7→ C6 by S (x) = Bx where

2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7


Then B will be the matrix representation of S relative to the standard basis (Definition SUV [169])
and we can use the techniques of Chapter E [389] applied to B in order to find the eigenvalues of
S.

αS (3) = 2 γS (3) = 1
αS (−1) = 4 γS (−1) = 2

To find the generalized eigenspaces of S we need to subtract an eigenvalue from the diagonal
elements of B, raise the result to the power dim

(
C6
)

= 6 and compute the null space. Here are
the results for the two eigenvalues of S,

λ = 3 (B − 3I6)6 =



64000 −152576 −59904 26112 −95744 133632
15872 −39936 −11776 8704 −29184 36352
12032 −30208 −9984 6400 −20736 26368
−1536 11264 −23040 17920 −17920 −1536
−9728 27648 −6656 9728 −1536 −17920
−7936 17920 5888 1792 4352 −14080



RREF−−−−→



1 0 0 0 −4 5
0 1 0 0 −1 1
0 0 1 0 −1 1
0 0 0 1 −2 1
0 0 0 0 0 0
0 0 0 0 0 0


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GS (3) =

〈




4
1
1
2
1
0

 ,


−5
−1
−1
−1
0
1




〉

λ = −1 (B − (−1)I6)6 =



6144 −16384 18432 −36864 57344 −18432
4096 −8192 4096 −16384 24576 −4096
4096 −8192 4096 −16384 24576 −4096
18432 −32768 6144 −61440 90112 −6144
14336 −24576 2048 −45056 65536 −2048
10240 −16384 −2048 −28672 40960 2048



RREF−−−−→



1 0 −5 2 −4 5
0 1 −3 3 −5 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



GS (−1) =

〈




5
3
1
0
0
0

 ,


−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,


−5
−3
0
0
0
1




〉

If we take the union of the two bases for these two invariant subspaces we obtain the set

C = {v1, v2, v3, v4, v5, v6}

=





4
1
1
2
1
0

 ,


−5
−1
−1
−1
0
1

 ,


5
3
1
0
0
0

 ,


−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,


−5
−3
0
0
0
1




You can check that this set is linearly independent (right now we have no guarantee this will
happen). Once this is verified, we have a linearly independent set of size 6 inside a vector space of
dimension 6, so by Theorem G [347], the set C is a basis for C6. This is enough to apply Theorem
DSFB [353] and conclude that

C6 = GS (3)⊕ GS (−1)

This is no accident. Notice that the dimension of each of these invariant subspaces is equal to
the algebraic multiplicity of the associated eigenvalue. Not an accident either. (See the upcoming
Theorem GESD [631].) �

Subsection RLT
Restrictions of Linear Transformations

Generalized eigenspaces will prove to be an important type of invariant subspace. A second reason
for our interest in invariant subspaces is they provide us with another method for creating new
linear transformations from old ones.
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Definition LTR
Linear Transformation Restriction
Suppose that T : V 7→ V is a linear transformation, and U is an invariant subspace of V relative to
T . Define the restriction of T to U by

T |U : U 7→ U T |U (u) = T (u)

(This definition contains Notation LTR.) 4
It might appear that this definition has not accomplished anything, as T |U would appear to

take on exactly the same values as T . And this is true. However, T |U differs from T in the choice of
domain and codomain. We tend to give little attention to the domain and codomain of functions,
while their defining rules get the spotlight. But the restriction of a linear transformation is all
about the choice of domain and codomain. We are restricting the rule of the function to a smaller
subspace. Notice the importance of only using this construction with an invariant subspace, since
otherwise we cannot be assured that the outputs of the function are even contained in the codomain.
Maybe this observation should be the key step in the proof of a theorem saying that T |U is also a
linear transformation, but we won’t bother.

Example LTRGE
Linear transformation restriction on generalized eigenspace
In order to gain some expereince with restrictions of linear transformations, we construct one
and then also construct a matrix representation for the restriction. Furthermore, we will use a
generalized eigenspace as the invariant subspace for the construction of the restriction.

Consider the linear transformation T : C5 7→ C5 defined by T (x) = Ax, where

A =


−22 −24 −24 −24 −46

3 2 6 0 11
−12 −16 −6 −14 −17

6 8 4 10 8
11 14 8 13 18


One of the eigenvalues of A is λ = 2, with geometric multiplicity γT (2) = 1, and algebraic multi-
plicity αT (2) = 3. We get the generalized eigenspace in the usual manner,

W = GT (2) = K
(

(T − 2IC5)5
)

=

〈


−2
1
1
0
0

 ,


0
−1
0
1
0

 ,

−4
2
0
0
1



〉

= 〈{w1, w2, w3}〉

By Theorem GESIS [617], we know W is invariant relative to T , so we can employ Definition LTR
[620] to form the restriction, T |W : W 7→W .

To better understand exactly what a restriction is (and isn’t), we’ll form a matrix representation
of T |W . This will also be a skill we will use in subsequent examples. For a basis of W we will use
C = {w1, w2, w3}. Notice that dim (W ) = 3, so our matrix representation will be a square matrix
of size 3. Applying Definition MR [529], we compute

ρC (T (w1)) = ρC (Aw1) = ρC



−4
2
2
0
0


 = ρC

2


−2
1
1
0
0

+ 0


0
−1
0
1
0

+ 0


−4
2
0
0
1


 =

2
0
0



ρC (T (w2)) = ρC (Aw2) = ρC




0
−2
2
2
−1


 = ρC

2


−2
1
1
0
0

+ 2


0
−1
0
1
0

+ (−1)


−4
2
0
0
1


 =

 2
2
−1


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ρC (T (w3)) = ρC (Aw3) = ρC



−6
3
−1
0
2


 = ρC

(−1)


−2
1
1
0
0

+ 0


0
−1
0
1
0

+ 2


−4
2
0
0
1


 =

−1
0
2



So the matrix representation of T |W relative to C is

M
T |W
C,C =

2 2 −1
0 2 0
0 −1 2


The question arises: how do we use a 3 × 3 matrix to compute with vectors from C5? To answer
this question, consider the randomly chosen vector

w =


−4
4
4
−2
−1


First check that w ∈ GT (2). There are two ways to do this, first verify that

(T − 2IC5)5 (w) = (A− 2I5)5 w = 0

meeting Definition GES [616] (with k = 5). Or, express w as a linear combination of the basis C
for W , to wit, w = 4w1 − 2w2 −w3. Now compute T |W (w) directly using Definition LTR [620],

T |W (w) = T (w) = Aw =


−10

9
5
−4
0


It was necessary to verify that w ∈ GT (2), and if we trust our work so far, then this output will
also be an element of W , but it would be wise to check this anyway (using either of the methods
we used for w). We’ll wait.

Now we will repeat this sample computation, but instead using the matrix representation of
T |W relative to C.

T |W (w) = ρ−1
C

(
M

T |W
C,C ρC (w)

)
Theorem FTMR [531]

= ρ−1
C

(
M

T |W
C,C ρC (4w1 − 2w2 −w3)

)
= ρ−1

C

2 2 −1
0 2 0
0 −1 2

 4
−2
−1

 Definition VR [517]

= ρ−1
C

 5
−4
0

 Definition MVP [191]

= 5w1 − 4w2 + 0w3 Definition VR [517]

= 5


−2
1
1
0
0

+ (−4)


0
−1
0
1
0

+ 0


−4
2
0
0
1


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=


−10

9
5
−4
0


which matches the previous computation. Notice how the “action” of T |W is accomplished by a
3 × 3 matrix multiplying a column vector of size 3. If you would like more practice with these
sorts of computations, mimic the above using the other eigenvalue of T , which is λ = −2. The
generalized eigenspace has dimension 2, so the matrix representation of the restriction to the
generalized eigenspace will be a 2× 2 matrix. �

Suppose that T : V 7→ V is a linear transformation and we can find a decomposition of V as a
direct sum, say V = U1⊕U2⊕U3⊕· · ·⊕Um where each Ui is an invariant subspace of V relative to
T . Then, for any v ∈ V there is a unique decomposition v = u1 + u2 + u3 + · · ·+ um with ui ∈ Ui,
1 ≤ i ≤ m and furthermore

T (v) = T (u1 + u2 + u3 + · · ·+ um) Definition DS [353]
= T (u1) + T (u2) + T (u3) + · · ·+ T (um) Theorem LTLC [451]
= T |U1 (u1) + T |U2 (u2) + T |U3 (u3) + · · ·+ T |Um (um)

So in a very real sense, we obtain a decomposition of the linear transformation T into the restrictions
T |Ui , 1 ≤ i ≤ m. If we wanted to be more careful, we could extend each restriction to a linear
transformation defined on V by setting the output of T |Ui to be the zero vector for inputs outside of
Ui. Then T would be exactly equal to the sum (Definition LTA [456]) of these extended restrictions.
However, the irony of extending our restrictions is more than we could handle right now.

Our real interest is in the matrix representation of a linear transformation when the domain
decomposes as a direct sum of invariant subspaces. Consider forming a basis B of V as the union
of bases Bi from the individual Ui, i.e. B = ∪mi=1Bi. Now form the matrix representation of T
relative to B. The result will be block diagonal, where each block is the matrix representation of a
restriction T |Ui relative to a basis Bi, M

T |Ui
Bi,Bi

. Though we did not have the definitions to describe
it then, this is exactly what was going on in the latter portion of the proof of Theorem CFNLT
[604]. Two examples should help to clarify these ideas.

Example ISMR4
Invariant subspaces, matrix representation, dimension 4 domain
Example TIS [613] and Example GE4 [618] describe a basis of C4 which is derived from bases for
two invariant subspaces (both generalized eigenspaces). In this example we will construct a matrix
representation of the linear transformation T relative to this basis. Recycling the notation from
Example TIS [613], we work with the basis,

B = {w1, w2, x1, x2} =



−7
−2
3
0

 ,

−1
−2
0
1

 ,

−3
−1
1
0

 ,


0
−1
0
1




Now we compute the matrix representation of T relative to B, borrowing some computations from
Example TIS [613],

ρB (T (w1)) = ρB



−1
−2
0
1


 = ρB ((0)w1 + (1)w2) =


0
1
0
0



ρB (T (w2)) = ρB




5
−2
−3
2


 = ρB ((−1)w1 + (2)w2) =


−1
2
0
0


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ρB (T (x1)) = ρB




3
0
−1
1


 = ρB ((−1)x1 + (1)x2) =


0
0
−1
1



ρB (T (x2)) = ρB




3
4
−1
−3


 = ρB ((−1)x1 + (−3)x2) =


0
0
−1
−3


Applying Definition MR [529], we have

MT
B,B =


0 −1 0 0
1 2 0 0
0 0 −1 −1
0 0 1 −3


The interesting feature of this representation is the two 2×2 blocks on the diagonal that arise from
the decomposition of C4 into a direct sum (of generalized eigenspaces). Or maybe the interesting
feature of this matrix is the two 2 × 2 submatrices in the “other” corners that are all zero. You
decide. �

Example ISMR6
Invariant subspaces, matrix representation, dimension 6 domain
In Example GE6 [619] we computed the generalized eigenspaces of the linear transformation
S : C6 7→ C6 by S (x) = Bx where

2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7


From this we found the basis

C = {v1, v2, v3, v4, v5, v6}

=





4
1
1
2
1
0

 ,


−5
−1
−1
−1
0
1

 ,


5
3
1
0
0
0

 ,


−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,


−5
−3
0
0
0
1




of C6 where {v1, v2} is a basis of GS (3) and {v3, v4, v5, v6} is a basis of GS (−1). We can
employ C in the construction of a matrix representation of S (Definition MR [529]). Here are the
computations,

ρC (S (v1)) = ρC





11
3
3
7
4
1



 = ρC (4v1 + 1v2) =



4
1
0
0
0
0



ρC (S (v2)) = ρC





−14
−3
−3
−4
−1
2



 = ρC ((−1)v1 + 2v2) =



−1
2
0
0
0
0


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ρC (S (v3)) = ρC





23
5
5
2
−2
−2



 = ρC (5v3 + 2v4 + (−2)v5 + (−2)v6) =



0
0
5
2
−2
−2



ρC (S (v4)) = ρC





−46
−11
−10
−2
5
4



 = ρC ((−10)v3 + (−2)v4 + 5v5 + 4v6) =



0
0
−10
−2
5
4



ρC (S (v5)) = ρC





78
19
17
1
−10
−7



 = ρC (17v3 + 1v4 + (−10)v5 + (−7)v6) =



0
0
17
1
−10
−7



ρC (S (v6)) = ρC





−35
−9
−8
2
6
3



 = ρC ((−8)v3 + 2v4 + 6v5 + 3v6) =



0
0
−8
2
6
3


These column vectors are the columns of the matrix representation, so we obtain

MS
C,C =



4 −1 0 0 0 0
1 2 0 0 0 0
0 0 5 −10 17 −8
0 0 2 −2 1 2
0 0 −2 5 −10 6
0 0 −2 4 −7 3


As before, the key feature of this representation is the 2× 2 and 4× 4 blocks on the diagonal. We
will discover in the final theorem of this section (Theorem RGEN [626]) that we already understand
these blocks fairly well. For now, we recognize them as arising from generalized eigenspaces and
suspect that their sizes are equal to the algebraic multiplicities of the eigenvalues. �

The paragraph prior to these last two examples is worth repeating. A basis derived from a
direct sum decomposition into invariant subspaces will provide a matrix representation of a linear
transformation with a block diagonal form.

Diagonalizing a linear transformation is the most extreme example of decomposing a vector
space into invariant subspaces. When a linear transformation is diagonalizable, then there is a
basis composed of eigenvectors (Theorem DC [429]). Each of these basis vectors can be used
individually as the lone element of a spanning set for an invariant subspace (Theorem EIS [614]).
So the domain decomposes into a direct sum of one-dimensional invariant subspaces (Theorem
DSFB [353]). The corresponding matrix representation is then block diagonal with all the blocks
of size 1, i.e. the matrix is diagonal. Section NLT [595], Section IS [613] and Section JCF [631] are
all devoted to generalizing this extreme situation when there are not enough eigenvectors available
to make such a complete decomposition and arrive at such an elegant matrix representation.

One last theorem will roll up much of this section and Section NLT [595] into one nice, neat
package.

Theorem RGEN
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Restriction to Generalized Eigenspace is Nilpotent
Suppose T : V 7→ V is a linear transformation with eigenvalue λ. Then the linear transformation
T |GT (λ) − λIGT (λ) is nilpotent. �

Proof Notice first that every subspace of V is invariant with respect to IV , so IGT (λ) = IV |GT (λ).
Let n = dim (V ) and choose v ∈ GT (λ). Then(

T |GT (λ) − λIGT (λ)

)n (v) = (T − λIV )n (v) Definition LTR [620]

= 0 Theorem GEK [617]

So by Definition NLT [595], T |GT (λ) − λIGT (λ) is nilpotent. �

The proof of Theorem RGEN [626] indicates that the index of the nilpotent linear transformation
is less than or equal to the dimension of V . In practice, it will be less than or equal to the dimension
of the domain of the linear transformation, GT (λ). In any event, the exact value of this index will
be of some interest, so we define it now. Notice that this is a property of the eigenvalue λ, similar
to the algebraic and geometric multiplicities (Definition AME [399], Definition GME [399]).

Definition IE
Index of an Eigenvalue
Suppose T : V 7→ V is a linear transformation with eigenvalue λ. Then the index of λ, ιT (λ), is
the index of the nilpotent linear transformation T |GT (λ) − λIGT (λ).
(This definition contains Notation IE.) 4

Example GENR6
Generalized eigenspaces and nilpotent restrictions, dimension 6 domain
In Example GE6 [619] we computed the generalized eigenspaces of the linear transformation
S : C6 7→ C6 defined by S (x) = Bx where

2 −4 25 −54 90 −37
2 −3 4 −16 26 −8
2 −3 4 −15 24 −7
10 −18 6 −36 51 −2
8 −14 0 −21 28 4
5 −7 −6 −7 8 7


The generalized eigenspace, GS (3), has dimension 2, while GS (−1), has dimension 4. We’ll inves-
tigate each thoroughly in turn, with the intent being to illustrate Theorem RGEN [626]. Much of
our computations will be repeats of those done in Example ISMR6 [624].

For U = GS (3) we compute a matrix representation of S|U using the basis found in Example
GE6 [619],

B = {u1, u2} =





4
1
1
2
1
0

 ,


−5
−1
−1
−1
0
1




Since B has size 2, we obtain a 2× 2 matrix representation (Definition MR [529]) from

ρB (S|U (u1)) = ρB





11
3
3
7
4
1



 = ρB (4u1 + u2) =
[
4
1

]
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ρB (S|U (u2)) = ρB





−14
−3
−3
−4
−1
2



 = ρB ((−1)u1 + 2u2) =
[
−1
2

]

Thus

M = M
S|U
U,U =

[
4 −1
1 2

]
Now we can illustrate Theorem RGEN [626] with powers of the matrix representation (rather than
the restriction itself),

M − 3I2 =
[
1 −1
1 −1

]
(M − 3I2)2 =

[
0 0
0 0

]
So M − 3I2 is a nilpotent matrix of index 2 (meaning that S|U − 3IU is a nilpotent linear transfor-
mation of index 2) and according to Definition IE [626] we say ιS (3) = 2.

For W = GS (−1) we compute a matrix representation of S|W using the basis found in Example
GE6 [619],

C = {w1, w2, w3, w4} =





5
3
1
0
0
0

 ,


−2
−3
0
1
0
0

 ,


4
5
0
0
1
0

 ,


−5
−3
0
0
0
1




Since C has size 4, we obtain a 4× 4 matrix representation (Definition MR [529]) from

ρC (S|W (w1)) = ρC





23
5
5
2
−2
−2



 = ρC (5w1 + 2w2 + (−2)w3 + (−2)w4) =


5
2
−2
−2



ρC (S|W (w2)) = ρC





−46
−11
−10
−2
5
4



 = ρC ((−10)w1 + (−2)w2 + 5w3 + 4w4) =


−10
−2
5
4



ρC (S|W (w3)) = ρC





78
19
17
1
−10
−7



 = ρC (17w1 + w2 + (−10)w3 + (−7)w4) =


17
1
−10
−7



ρC (S|W (w4)) = ρC





−35
−9
−8
2
6
3



 = ρC ((−8)w1 + 2w2 + 6w3 + 3w4) =


−8
2
6
3


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Thus

N = M
S|W
W,W =


5 −10 17 −8
2 −2 1 2
−2 5 −10 6
−2 4 −7 3


Now we can illustrate Theorem RGEN [626] with powers of the matrix representation (rather than
the restriction itself),

N − (−1)I4 =


6 −10 17 −8
2 −1 1 2
−2 5 −9 6
−2 4 −7 4



(N − (−1)I4)2 =


−2 3 −5 2
4 −6 10 −4
4 −6 10 −4
2 −3 5 −2



(N − (−1)I4)3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


So N − (−1)I4 is a nilpotent matrix of index 3 (meaning that S|W − (−1)IW is a nilpotent linear
transformation of index 3) and according to Definition IE [626] we say ιS (−1) = 3.

Notice that if we were to take the union of the two bases of the generalized eigenspaces, we
would have a basis for C6. Then a matrix representation of S relative to this basis would be the
same block diagonal matrix we found in Example ISMR6 [624], only we now understand each of
these blocks as being very close to being a nilpotent matrix. �

Invariant subspaces, and restrictions of linear transformations, are topics you will see again and
again if you continue with further study of linear algebra. Our reasons for discussing them now is
to arrive at a nice matrix representation of the restriction of a linear transformation to one of its
generalized eigenspaces. Here’s the theorem.

Theorem MRRGE
Matrix Representation of a Restriction to a Generalized Eigenspace
Suppose that T : V 7→ V is a linear transformation with eigenvalue λ. Then there is a basis of the
the generalized eigenspace GT (λ) such that the restriction T |GT (λ) : GT (λ) 7→ GT (λ) has a matrix
representation that is block diagonal where each block is a Jordan block of the form Jn (λ). �

Proof Theorem RGEN [626] tells us that T |GT (λ) − λIGT (λ) is a nilpotent linear transformation.
Theorem CFNLT [604] tells us that a nilpotent linear transformation has a basis for its domain that
yields a matrix representation that is block diagonal where the blocks are Jordan blocks of the form
Jn (0). Let B be a basis of GT (λ) that yields such a matrix representation for T |GT (λ) − λIGT (λ).

By Definition LTA [456], we can write

T |GT (λ) =
(
T |GT (λ) − λIGT (λ)

)
+ λIGT (λ)

The matrix representation of λIGT (λ) relative to the basis B is then simply the diagonal matrix
λIm, where m = dim (GT (λ)). By Theorem MRSLT [534] we have the rather unweildy expression,

M
T |GT (λ)

B,B = M
(T |GT (λ)−λIGT (λ))+λIGT (λ)

B,B

= M
T |GT (λ)−λIGT (λ)

B,B +M
IGT (λ)

B,B
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The first of these matrix representations has Jordan blocks with zero in every diagonal entry, while
the second matrix representation has λ in every diagonal entry. The result of adding the two
representations is to convert the Jordan blocks from the form Jn (0) to the form Jn (λ). �

Of course, Theorem CFNLT [604] provides some extra information on the sizes of the Jordan
blocks in a representation and we could carry over this information to Theorem MRRGE [628], but
will save that for a subsequent application of this result.
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Section JCF
Jordan Canonical Form

This Section is a Draft
We have seen in Section IS [613] that generalized eigenspaces are invariant subspaces that in
every instance have led to a direct sum decomposition of the domain of the associated linear
transformation. This allows us to create a block diagonal matrix representation (Example ISMR4
[623], Example ISMR6 [624]). We also know from Theorem RGEN [626] that the restriction of a
linear transformation to a generalized eigenspace is almost a nilpotent linear transformation. Of
course, we understand nilpotent linear transformations very well from Section NLT [595] and we
have carefully determined a nice matrix representation for them.

So here is the game plan for the final push. Prove that the domain of a linear transformation
always decomposes into a direct sum of generalized eigenspaces. We have unravelled Theorem
RGEN [626] at Theorem MRRGE [628] so that we can formulate the matrix representations of the
restrictions on the generalized eigenspaces using our storehouse of results about nilpotent linear
transformations. Arrive at a matrix representation of any linear transformation that is block
diagonal with each block being a Jordan block.

Subsection GESD
Generalized Eigenspace Decomposition

In Theorem UTMR [586] we were able to show that any linear transformation from V to V has
an upper triangular matrix representation (Definition UTM [585]). We will now show that we
can improve on the basis yielding this representation by massaging the basis so that the matrix
representation is also block diagonal. The subspaces associated with each block will be gener-
alized eigenspaces, so the most general result will be a decomposition of the domain of a linear
transformation into a direct sum of generalized eigenspaces.

Theorem GESD
Generalized Eigenspace Decomposition
Suppose that T (V )V is a linear transformation with distinct eigenvalues λ1, λ2, λ3, . . . , λm. Then

V = GT (λ1)⊕ GT (λ2)⊕ GT (λ3)⊕ · · · ⊕ GT (λm)

�

Proof Suppose that dim (V ) = n and the n (not necessarily distinct) eigenvalues of T are
scalarlistρn. We begin with a basis of V that yields an upper triangular matrix representation, as
guaranteed by Theorem UTMR [586], B = {x1, x2, x3, . . . , xn}. Since the matrix representation
is upper triangular, and the eigenvalues of the linear transformation are the diagonal elements we
can choose this basis so that there are then scalars aij , 1 ≤ j ≤ n, 1 ≤ i ≤ j − 1 such that

T (xj) =
j−1∑
i=1

aijxi + ρjxj

We now define a new basis for V which is just a slight variation in the basis B. Choose any k and
` such that 1 ≤ k < ` ≤ n and ρk 6= ρ`. Define the scalar α = akl/ (ρ` − ρk). The new basis is
C = {y1, y2, y3, . . . , yn} where

yj = xj , j 6= `, 1 ≤ j ≤ n y` = x` + αxk

We now compute the values of the linear transformation T with inputs from C, noting carefully
the changed scalars in the linear combinations of C describing the outputs. These changes will
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translate to minor changes in the matrix representation built using the basis C. There are three
cases to consider, depending on which column of the matrix representation we are examining. First,
assume j < `. Then

T (yj) = T (xj)

=
j−1∑
i=1

aijxi + ρjxj

=
j−1∑
i=1

aijyi + ρjyj

That seems a bit pointless. The first ` − 1 columns of the matrix representations of T relative to
B and C are identical. OK, if that was too easy, here’s the main act. Assume j = `. Then

T (y`) = T (x` + αxk)
= T (x`) + αT (xk)

=

(
`−1∑
i=1

ai`xi + ρ`x`

)
+ α

(
k−1∑
i=1

aikxi + ρkxk

)

=
`−1∑
i=1

ai`xi + ρ`x` +
k−1∑
i=1

αaikxi + αρkxk

=
`−1∑
i=1

ai`xi +
k−1∑
i=1

αaikxi + αρkxk + ρ`x`

=
`−1∑
i=1
i 6=k

ai`xi +
k−1∑
i=1

αaikxi + aklxk + αρkxk + ρ`x`

=
`−1∑
i=1
i 6=k

ai`xi +
k−1∑
i=1

αaikxi + aklxk + αρkxk − ρ`αxk + ρ`αxkρ`x`

=
`−1∑
i=1
i 6=k

ai`xi +
k−1∑
i=1

αaikxi + (akl + αρk − ρ`α) xk + ρ` (αxk + x`)

=
`−1∑
i=1
i 6=k

ai`xi +
k−1∑
i=1

αaikxi + (akl + α (ρk − ρ`)) xk + ρ` (x` + αxk)

=
`−1∑
i=1
i 6=k

ai`yi +
k−1∑
i=1

αaikyi + (akl + α (ρk − ρ`)) yk + ρ`y`

So how different are the matrix representations relative to B and C in column `? For i > k, the
coefficient of yi is aij , as in the representation relative to B. It is a different story for i ≤ k, where
the coefficients of yi may be very different. We are especially interested in the coefficient of yk. In
fact, this whole first part of this proof is about this particular entry of the matrix representation.
The coefficient of yk is

akl + α (ρk − ρ`) = akl +
akl

ρ` − ρk
(ρk − ρ`)

= akl + (−1)akl
= 0

If the definition of α was a mystery, then no more. In the matrix representation of T relative to C,
the entry in column `, row k is a zero. Nice. The only price we pay is that other entries in column
`, specifically rows 1 through k − 1, may also change in a way we can’t control.
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One more case to consider. Assume j > `. Then

T (yj) = T (xj)

=
j−1∑
i=1

aijxi + ρjxj

=
j−1∑
i=1
i 6=`,k

aijxi + a`jx` + akjxk + ρjxj

=
j−1∑
i=1
i 6=`,k

aijxi + a`jx` + αa`jxk − αa`jxk + akjxk + ρjxj

=
j−1∑
i=1
i 6=`,k

aijxi + a`j (x` + αxk) + (akj − αa`j) xk + ρjxj

=
j−1∑
i=1
i 6=`,k

aijyi + a`jy` + (akj − αa`j) yk + ρjyj

As before, we ask: how different are the matrix representations relative to B and C in column j?
Only yk has a coefficent different from the corresponding coefficient when the basis is B. So in the
matrix representations, the only entries to change are in row k, for columns `+ 1 through n.

What have we accomplished? With a change of basis, we can place a zero in a desired entry
(row k, column `) of the matrix representation, leaving most of the entries untouched. The only
entries to possibly change are above the new zero entry, or to the right of the new zero entry. S
Suppose we repeat this procedure, starting by “zeroing out” the entry above the diagonal in the
second column and first wow. Then we move right to the third column, and zero out the element
just above the diagonal in the second row. Next we zero out the element in the third column and
first row. Then tackle the fourth column, work upwards from the diagonal, zeroing out elements as
we go. Entries above, and to the right will repeatedly change, but newly created zeros will never
get wrecked, since they are below, or just to the left of the entry we are working on. Similarly the
values on the diagonal do not change either. This entire argument can be retooled in the language
of change-of-basis matrices and similarity transformations, and this is the approach taken by Noble
in his Applied Linear Algebra. It is interesting to concoct the change-of-basis matrix between the
matrices B and C and compute the inverse.

Perhaps you have noticed that we have to be just a bit more careful than the previous paragraph
suggests. The definition of α has a denominator that cannot be zero, which restricts our maneuvers
to zeroing out entries in row k and column ` only when ρk 6= ρ`. So we do not necessarily arrive at
a diagonal matrix. More carefully we can write

T (yj) =
j−1∑
i=1

i: ρi=ρj

bijyi + ρjyj

where the bij are our new coefficients after repeated changes, the yj are the new basis vectors, and
the condition “i : ρi = ρj” means that we only have terms in the sum involving vectors whose final
coefficients are identical diagonal values (the eigenvalues). Now reorder the basis vectors carefully.
Group together vectors that have equal diagonal entries in the matrix representation, but within
each group preserve the order of the precursor basis. This grouping will create a block diagonal
structure for the matrix representation, while otherwise preserving the order of the basis will retain
the upper triangular form of the representation. So we can arrive at a basis that yields a matrix
representation that is upper triangular and block diagonal, with the diagonal entries of each block
all equal to a common eigenvalue of the linear transformation.
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More carefully, employing the distinct eigenvalues of T , λi, 1 ≤ i ≤ m, we can assert there is a
set of basis vectors for V , uij , 1 ≤ i ≤ m, 1 ≤ j ≤ αT (λi), such that

T (uij) =
j−1∑
k=1

bijkuik + λiuij

So the subspace Ui = 〈{uij | 1 ≤ j ≤ αT (λi)}〉, 1 ≤ i ≤ m is an invariant subspace of V relative
to T and the restriction T |Ui has an upper triangular matrix representation relative to the basis
{uij | 1 ≤ j ≤ αT (λi)} where the diagonal entries are all equal to λi. Notice too that with this
definition,

V = U1 ⊕ U2 ⊕ U3 ⊕ · · · ⊕ Um

Whew. This is a good place to take a break, grab a cup of coffee, use the toilet, or go for a short
stroll, before we show that Ui is a subspace of the generalized eigenspace GT (λi). This will follow if
we can prove that each of the basis vectors for Ui is a generalized eigenvector of T for λi (Definition
GEV [616]). We need some power of T − λiIV that takes uij to the zero vector. We prove by
induction on j (Technique I [676]) the claim that (T − λiIV )j (uij) = 0. For j = 1 we have,

(T − λiIV ) (ui1) = T (ui1)− λiIV (ui1)
= T (ui1)− λiui1
= λiui1 − λiui1
= 0

For the induction step, assume that if k < j, then (T − λiIV )k takes uik to the zero vector. Then

(T − λiIV )j (uij) = (T − λiIV )j−1 ((T − λiIV ) (uij))

= (T − λiIV )j−1 (T (uij)− λiIV (uij))

= (T − λiIV )j−1 (T (uij)− λiuij)

= (T − λiIV )j−1

(
j−1∑
k=1

bijkuik + λiuij − λiuij

)

= (T − λiIV )j−1

(
j−1∑
k=1

bijkuik

)

=
j−1∑
k=1

bijk (T − λiIV )j−1 (uik)

=
j−1∑
k=1

bijk (T − λiIV )j−1−k
(

(T − λiIV )k (uik)
)

=
j−1∑
k=1

bijk (T − λiIV )j−1−k (0)

=
j−1∑
k=1

bijk0

= 0

This completes the induction step. Since every vector of the spaning set for Ui is an element of the
subspace GT (λi), Property AC [273] and Property SC [273] allow us to conclude that Ui ⊆ GT (λi).
Then by Definition S [287], Ui is a subspace of GT (λi). Notice that this inductive proof could be
interpreted to say that every element of Ui is a generalized eigenvector of T for λi, and the algebraic
multiplicity of λi is a sufficiently high power to demonstrate this via the definition for each vector.
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We are now prepared for our final argument in this long proof. We wish to establish that the
dimension of the subspace GT (λi) is the algebraic multiplicity of λi. This will be enough to show
that Ui and GT (λi) are equal, and will finally provide the desired direct sum decomposition.

We will prove by induction (Technique I [676]) the following claim. Suppose that T : V 7→ V is a
linear transformation and B is a basis for V that provides an upper triangular matrix representation
of T . The number of times any eigenvalue λ occurs on the diagonal of the representation is greater
than or equal to the dimension of the generalized eigenspace GT (λ).

We will use the symbol m for the dimension of V so as to avoid confusion with our notation for
the nullity. So dimV = m and our proof will proced by induction on m. Use the notation #T (λ)
to count the number of times λ occurs on the diagonal of a matrix representation of T . We want
to show that

#T (λ) ≥ dim (GT (λ))
= dim (K((T − λ)m)) Theorem GEK [617]
= n ((T − λ)m) Definition NOLT [503]

For the base case, dimV = 1. Every matrix representation of T is an upper triangular matrix with
the lone eigenvalue of T , λ, as the diagonal entry. So #T (λ) = 1. The generalized eigenspace of λ
is not trivial (since by Theorem GEK [617] it equals the regular eigenspace), and is a subspace of
V . With Theorem PSSD [350] we see that dim (GT (λ)) = 1.

Now for the induction step, assume the claim is true for any linear transformation defined on a
vector space with dimension m− 1 or less. Suppose that B = {v1, v2, v3, . . . , vm} is a basis for V
that yields a diagonal matrix representation for T with diagonal entries λ1, λ2, λ3, . . . , λm. Then
U = 〈{v1, v2, v3, . . . , vm−1}〉 is a subspace of V that is invariant relative to T . The restriction
T |U : U 7→ U is then a linear transformation defined on U , a vector space of dimension m − 1. A
matrix representation of T |U relative to the basis C = {v1, v2, v3, . . . , vm−1} will be an upper
triangular matrix with diagonal entries λ1, λ2, λ3, . . . , λm−1. We can therefore apply the induction
hypothesis to T |U and its representation relative to C.

Suppose that λ is any eigenvalue of T . Then suppose that v ∈ K((T − λV )m). As an element
of V , we can write v as a linear combination of the basis elements of B, or more compactly, there
is a vector u ∈ U and a scalar α such that v = u + αvm. Then,

α (λm − λ)m vm
= α (T − λIV )m (vm) Theorem EOMP [413]
= 0 + α (T − λIV )m (vm) Property Z [273]
= − (T − λIV )m (u) + (T − λIV )m (u) + α (T − λIV )m (vm) Property AI [274]
= − (T − λIV )m (u) + (T − λIV )m (u + αvm) Theorem LTLC [451]
= − (T − λIV )m (u) + (T − λIV )m (v) Theorem LTLC [451]
= − (T − λIV )m (u) + 0 Definition KLT [468]
= − (T − λIV )m (u) Property Z [273]

The final expression in this string of equalities is an element of U since U is invariant relative to
both T and IV . The expression at the beginning is a scalar multiple of vm, and as such cannot be
a nonzero element of U without violating the linear independence of B. So

α (λm − λ)m vm = 0

The vector vm is nonzero since B is linearly independent, so Theorem SMEZV [281] tells us that
α (λm − λ)m = 0. From the properties of scalar multiplication, we are confronted with two possi-
bilities.

Our first case is that λ 6= λm. Notice then that λ occurs the same number of times along the
diagonal in the representations of T |U and T . Now α = 0 and v = u+0vm = u. Since v was chosen

Version 1.30
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as an arbitrary element of K((T − λIV )m), Definition SSET [665] says that K((T − λIV )m) ⊆ U . It
is always the case that K((T |U − λIU )m) ⊆ K((T − λIV )m). However, we can also see that in this
case, the opposite set inclusion is true as well. By Definition SE [666] we have K((T |U − λIU )m) =
K((T − λIV )m). Then

#T (λ) = #T |U (λ)

≥ dim
(
GT |U (λ)

)
Induction Hypothesis

= dim
(
K
(

(T |U − λIU )m−1
))

Theorem GEK [617]

= dim (K((T |U − λIU )m)) Theorem KPLT [601]
= dim (K((T − λIV )m))
= dim (GT (λ)) Theorem GEK [617]

The second case is that λ = λm. Notice then that λ occurs one more time along the diagonal in
the representation of T compared to the representation of T |U . Then

(T |U − λIU )m (u) = (T − λIV )m (u)
= (T − λIV )m (u) + 0 Property Z [273]
= (T − λIV )m (u) + α(λm − λ)mvm Theorem ZSSM [280]
= (T − λIV )m (u) + α (T − λIV )m (vm) Theorem EOMP [413]
= (T − λIV )m (u + αvm) Theorem LTLC [451]
= (T − λIV )m (v)
= 0 Definition KLT [468]

So u ∈ K(T |U − λIU ). The vector v is an arbitrary member of K((T − λIV )m) and is also equal to
an element of K(T |U − λIU ) (u) plus a scalar multiple of the vector vm. This observation yields

dim (K((T − λIV )m)) ≤ dim (K(T |U − λIU )) + 1

Now count eigenvalues on the diagonal,

#T (λ) = #T |U (λ) + 1

≥ dim
(
GT |U (λ)

)
+ 1 Induction Hypothesis

= dim
(
K
(

(T |U − λIU )m−1
))

+ 1 Theorem GEK [617]

= dim (K((T |U − λIU )m)) + 1 Theorem KPLT [601]
≥ dim (K((T − λIV )m))
= dim (GT (λ)) Theorem GEK [617]

In Theorem UTMR [586] we constructed an upper triangular matrix represntation of T where each
eigenvalue occurred αT (λ) times on the diagonal. So

αT (λi) = #T (λi) Theorem UTMR [586]
≥ dim (GT (λi))
≥ dim (Ui) Theorem PSSD [350]
= αT (λi) Theorem PSSD [350]

Thus, dim (GT (λi)) = αT (λi) and by Theorem EDYES [350], Ui = GT (λi) and we can write

V = U1 ⊕ U2 ⊕ U3 ⊕ · · · ⊕ Um
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Subsection JCF.JCF Jordan Canonical Form 637

= GT (λ1)⊕ GT (λ2)⊕ GT (λ3)⊕ · · · ⊕ GT (λm)

�

Besides a nice decomposition into invariant subspaces, this proof has a bonus for us.

Theorem DGES
Dimension of Generalized Eigenspaces
Suppose T : V 7→ V is a linear transformation with eigenvalue λ. Then the dimension of the
generalized eigenspace for λ is the algebraic multiplicity of λ, dim (GT (λi)) = αT (λi). �

Proof At the very end of the proof of Theorem GESD [631] we obtain the inequalities

αT (λi) ≤ dim (GT (λi)) ≤ αT (λi)

which establishes the desired equality. �

Subsection JCF
Jordan Canonical Form

Now we are in a position to define what we (and others) regard as an especially nice matrix rep-
resentation. The word “canonical” has at its root, the word “canon,” which has various meanings.
One is the set of laws established by a church council. Another is a set of writings that are au-
thentic, important or representative. Here we take to to mean the accepted, or best, representative
among a variety of choices. Every linear transformation admits a variety of representations, and
will declare one as the best. Hopefully you will agree.

Definition JCF
Jordan Canonical Form
A square matrix is in Jordan canonical form if it meets the following requirements:

1. The matrix is block diagonal.

2. Each block is a Jordan block.

3. If ρ < λ then the block Jk (ρ) occupies rows with indices greater than the indices of the rows
occupied by J` (λ).

4. If ρ = λ and ` < k, then the block J` (λ) occupies rows with indices greater than the indices
of the rows occupied by Jk (λ).

4

Theorem JCFLT
Jordan Canonical Form for a Linear Transformation
Suppose T : V 7→ V is a linear transformation. Then there is a basis B for V such that the matrix
representation of T with the following properties:

1. The matrix representation is in Jordan canonical form.

2. If Jk (λ) is one of the Jordan blocks, then λ is an eigenvalue of T .

3. For a fixed value of λ, the largest block of the form Jk (λ) has size equal to the index of λ,
ιT (λ).

4. For a fixed value of λ, the number of blocks of the form Jk (λ) is the geometric multiplicity of
λ, γT (λ).

5. For a fixed value of λ, the number of rows occupied by blocks of the form Jk (λ) is the algebraic
multiplicity of λ, αT (λ).
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�

Proof This theorem is really just the consequence of applying to T , consecutively Theorem GESD
[631], Theorem MRRGE [628] and Theorem CFNLT [604].

Theorem GESD [631] gives us a decomposition of V into generalized eigenspaces, one for each
distinct eigenvalue. Since these generalized eigenspaces ar invariant relative to T , this provides a
block diagonal matrix representation where each block is the matrix representation of the restriction
of T to the generalized eigenspace.

Restricting T to a generalized eigenspace results in a “nearly nilpotent” linear transformation,
as stated more precisely in Theorem RGEN [626]. We unravel Theorem RGEN [626] in the proof
of Theorem MRRGE [628] so that we can apply Theorem CFNLT [604] about representations of
nilpotent linear transformations.

We know the dimension of a generalized eigenspace is the algebraic multiplicity of the eigenvalue
(Theorem DGES [637]), so the blocks associated with the generalized eigenspaces are square with
a size equal to the algebraic multiplicity. In refining the basis for this block, and producing Jordan
blocks the results of Theorem CFNLT [604] apply. The total number of blocks will be the nullity of
T |GT (λ) − λIGT (λ), which is the geometric multiplicity of λ as an eigenvalue of T (Definition GME
[399]). The largest of the Jordan blocks will have size equal to the index of the nilpotent linear
transformation T |GT (λ) − λIGT (λ), which is exactly the definition of the index of the eigenvalue λ
(Definition IE [626]). �

Before we do some examples of this result, notice how close Jordan canonical form is to a diagonal
matrix. Or, equivalently, notice how close we have come to diagonalizing a matrix (Definition DZM
[428]). We have a matrix representation which has diagonal entries that are the eigenvalues of a
matrix. Each occurs on the diagonal as many times as the algebraic multiplicity. However, when
the geometric multiplicty is strictly less than the algebraic multiplicity, we have some entries in
the representation just above the diagonal (the “superdiagonal”). Furthermore, we have some idea
how often this happens if we know the geometric multiplicity and the index of the eigenvalue.

We now recognize just how simple a diagonalizable linear transformation really is. For each
eigenvalue, the generalized eigenspace is just the regular eigenspace, and it decomposes into a direct
sum of one-dimensional subspaces, each spanned by a different eigenvector chosen from a basis of
eigenvectors for the eigenspace.

Some authors create matrix representations of nilpotent linear transformations where the Jordan
block has the ones just below the diagonal (the “subdiagonal”). No matter, it is really the same,
just different. We have also defined Jordan canonical form to place blocks for the larger eigenvalues
earlier, and for blocks with the same eigenvalue, we place the bigger ones earlier. This is fairly
standard, but there is no reason we couldn’t order the blocks differently. It’d be the same, just
different. The reason for choosing some ordering is to be assured that there is just one canonical
matrix representation for each linear transformation.

Example JCF10
Jordan canonical form, size 10
Suppose that T : C10 7→ C10 is the linear transformation defined by T (x) = Ax where

A =



−6 9 −7 −5 5 12 −22 14 8 21
−3 5 −3 −1 2 7 −12 9 1 12
8 −9 8 6 0 −14 25 −13 −4 −26
−7 9 −7 −5 0 13 −23 13 2 24
0 −1 0 −1 −3 −2 3 −4 −2 −3
3 2 1 2 9 −1 1 5 5 −5
−1 3 −3 −2 4 3 −6 4 4 3
3 −4 3 2 1 −5 9 −5 1 −9
0 2 0 0 2 2 −4 4 2 4
−4 4 −5 −4 −1 6 −11 4 1 10


We’ll find a basis for C10 that will yield a matrix representation of T in Jordan canonical form.
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Subsection JCF.JCF Jordan Canonical Form 639

First we find the eigenvalues, and their multiplicities, with the techniques of Chapter E [389].

λ = 2 αT (2) = 2 γT (2) = 2
λ = 0 αT (0) = 3 γT (−1) = 2
λ = −1 αT (−1) = 5 γT (−1) = 2

For each eigenvalue, we can compute a generalized eigenspace. By Theorem GESD [631] we know
that C10 will decompose into a direct sum of these eigenspaces, and we can restrict T to each part
of this decomposition. At this stage we know that the Jordan canonical form will be block diagonal
with blocks of size 2, 3 and 5, since the dimensions of the generalized eigenspaces are equal to the
algebraic multiplicities of the eigenvalues (Theorem DGES [637]). The geometric multiplicities tell
us how many Jordan blocks occupy each of the three larger blocks, but we will discuss this as we
analyze each eigenvalue. We do not yet know the index of each eigenalue (though we can easily
infer it for λ = 2) and even if we did have this information, it only determines the size of the largest
Jordan block (per eigenvalue). We will press ahead, considering each eigenvalue one at a time.

The eigenvalue λ = 2 has “full” geometric multiplicity, and is not an impediment to diagonal-
izing T . We will treat it in full generality anyway. First we compute the generalized eigenspace.
Since Theorem GEK [617] says that GT (2) = K

(
(T − 2IC10)10

)
we can compute this generalized

eigenspace as a null space derived from the matrix A,

(A− 2I10)10 RREF−−−−→



1 0 0 0 0 0 0 0 −2 −1
0 1 0 0 0 0 0 0 −1 −1
0 0 1 0 0 0 0 0 1 2
0 0 0 1 0 0 0 0 −1 −2
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 −2 1
0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



GT (2) = K
(

(A− 2I10)10
)

=

〈




2
1
−1
1
−1
2
1
0
1
0


,



1
1
−2
2
0
−1
0
−1
0
1





〉

The restriction of T to GT (2) relative to the two basis vectors above has a matrix representation
that is a 2 × 2 diagonal matrix with the eigenvalue λ = 2 as the diagonal entries. So these two
vectors will be the first two vectors in our basis for C10,

v1 =



2
1
−1
1
−1
2
1
0
1
0


v2 =



1
1
−2
2
0
−1
0
−1
0
1


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Notice that it was not strictly necessary to compute the 10-th power of A − 2I10. With αT (2) =
γT (2) the null space of the matrix A− 2I10 contains all of the generalized eigenvectors of T for the
eigenvalue λ = 2. But there was no harm in computing the 10-th power either. This discussion is
equivalent to the observation that the linear transformation T |GT (2) : GT (2) 7→ GT (2) is nilpotent
of index 1. In other words, ιT (2) = 1.

The eigenvalue λ = 0 will not be quite as simple, since the geometric multiplicity is strictly less
than the geometric multiplicity. As before, we first compute the generalized eigenspace. Since The-
orem GEK [617] says that GT (0) = K

(
(T − 0IC10)10

)
we can compute this generalized eigenspace

as a null space derived from the matrix A,

(A− 0I10)10 RREF−−−−→



1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 −1 0 −1 0
0 0 1 0 0 0 0 0 1 2
0 0 0 1 0 0 0 0 −2 −1
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 −1 0 −1 2
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



GT (0) = K
(

(A− 0I10)10
)

=

〈




0
1
0
0
0
1
1
0
0
0


,



1
1
−1
2
−1
1
0
−1
1
0


,



1
0
−2
1
0
−2
0
0
0
1





〉
= 〈F 〉

So dim (GT (0)) = 3 = αT (0), as expected. We will use these three basis vectors for the generalized
eigenspace to construct a matrix representation of T |GT (0), where F is being defined implicitly as
the basis of GT (0). We construct this representation as usual, applying Definition MR [529],

ρF


T |GT (0)





0
1
0
0
0
1
1
0
0
0






= ρF





−1
0
2
−1
0
2
0
0
0
−1




= ρF


(−1)



1
0
−2
1
0
−2
0
0
0
1




=

 0
0
−1



ρF


T |GT (0)





1
1
−1
2
−1
1
0
−1
1
0






= ρF





1
0
−2
1
0
−2
0
0
0
1




= ρF


(1)



1
0
−2
1
0
−2
0
0
0
1




=

0
0
1


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ρF


T |GT (0)





1
0
−2
1
0
−2
0
0
0
1






= ρF





0
0
0
0
0
0
0
0
0
0




=

0
0
0



So we have the matrix representation

M = M
T |GT (0)

F,F =

 0 0 0
0 0 0
−1 1 0


By Theorem RGEN [626] we can obtain a nilpotent matrix from this matrix representation by
subtracting the eigenvalue from the diagonal elements, and then we can apply Theorem CFNLT
[604] to M − (0)I3. First check that (M − (0)I3)2 = O, so we know that the index of M − (0)I3

as a nilpotent matrix, and that therefore λ = 0 is an eigenvalue of T with index 2, ιT (0) = 2. To
determine a basis of C3 that converts M − (0)I3 to canonical form, we need the null spaces of the
powers of M − (0)I3. For convenience, set N = M − (0)I3.

N
(
N1
)

=

〈
1

1
0

 ,
0

0
1


〉

N
(
N2
)

=

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

= C3

Then we choose a vector from N
(
N2
)

that is not an element of N
(
N1
)
. Any vector with unequal

first two entries will fit the bill, say

z2,1 =

1
0
0


where we are employing the notation in Theorem CFNLT [604]. The next step is to multiply this
vector by N to get part of the basis for N

(
N1
)
,

z1,1 = Nz2,1 =

 0 0 0
0 0 0
−1 1 0

1
0
0

 =

 0
0
−1


We need a vector to pair with z1,1 that will make a basis for the two-dimensional subspace N

(
N1
)
.

Examining the basis for N
(
N1
)

we see that a vector with its first two entries equal will do the job.

z1,2 =

1
1
0


Reordering, we find the basis,

C = {z1,1, z2,1, z1,2} =


 0

0
−1

 ,
1

0
0

 ,
1

1
0


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642 Section JCF Jordan Canonical Form

From this basis, we can get a matrix representation of N (when viewed as a linear transformation)
relative to the basis C for C3,

0 1 0
0 0 0
0 0 0

 =
[
J2 (0) O
O J1 (0)

]

Now we add back the eigenvalue λ = 0 to the representation of N to obtain a representation for
M . Of course, with an eigenvalue of zero, the change is not apparent, so we won’t display the same
matrix again. This is the second block of the Jordan canonical form for T . However, the three
vectors in C will not suffice as basis vectors for the domain of T — they have the wrong size! The
vectors in C are vectors in the domain of a linear transformation defined by the matrix M . But
M was a matrix representation of T |GT (0) − 0IGT (0) relative to the basis F for GT (0). We need to
“uncoordinatize” each of the basis vectors in C to produce a linear combination of vectors in F
that will be an element of the generalized eigenspace GT (0). These will be the next three vectors
of our final answer, a basis for C10 that has a pleasing matrix representation.

v3 = ρ−1
F

 0
0
−1

 = 0



0
1
0
0
0
1
1
0
0
0


+ 0



1
1
−1
2
−1
1
0
−1
1
0


+ (−1)



1
0
−2
1
0
−2
0
0
0
1


=



−1
0
2
−1
0
2
0
0
0
−1



v4 = ρ−1
F

1
0
0

 = 1



0
1
0
0
0
1
1
0
0
0


+ 0



1
1
−1
2
−1
1
0
−1
1
0


+ 0



1
0
−2
1
0
−2
0
0
0
1


=



0
1
0
0
0
1
1
0
0
0



v5 = ρ−1
F

1
1
0

 = 1



0
1
0
0
0
1
1
0
0
0


+ 1



1
1
−1
2
−1
1
0
−1
1
0


+ 0



1
0
−2
1
0
−2
0
0
0
1


=



1
2
−1
2
−1
2
1
−1
1
0



Five down, five to go. Basis vectors, that is. λ = −1 is the smallest eigenvalue, but it will require
the most computation. First we compute the generalized eigenspace. Since Theorem GEK [617]
says that GT (−1) = K

(
(T − (−1)IC10)10

)
we can compute this generalized eigenspace as a null
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Subsection JCF.JCF Jordan Canonical Form 643

space derived from the matrix A,

(A− (−1)I10)10 RREF−−−−→



1 0 1 0 1 0 −1 1 0 1
0 1 0 0 1 0 0 1 0 0
0 0 0 1 1 0 1 0 0 −2
0 0 0 0 0 1 −2 1 0 2
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



GT (−1) = K
(

(A− (−1)I10)10
)

=

〈




−1
0
1
0
0
0
0
0
0
0


,



−1
−1
0
−1
1
0
0
0
0
0


,



1
0
0
−1
0
2
1
0
0
0


,



−1
−1
0
0
0
−1
0
1
0
0


,



−1
0
0
2
0
−2
0
0
0
1





〉
= 〈F 〉

So dim (GT (−1)) = 5 = αT (−1), as expected. We will use these five basis vectors for the gener-
alized eigenspace to construct a matrix representation of T |GT (−1), where F is being recycled and
defined now implicitly as the basis of GT (−1). We construct this representation as usual, applying
Definition MR [529],

ρF


T |GT (−1)





−1
0
1
0
0
0
0
0
0
0






= ρF





−1
0
0
0
0
−2
−2
0
0
−1





= ρF


0



−1
0
1
0
0
0
0
0
0
0


+ 0



−1
−1
0
−1
1
0
0
0
0
0


+ (−2)



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ (−1)



−1
0
0
2
0
−2
0
0
0
1




=


0
0
−2
0
−1


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644 Section JCF Jordan Canonical Form

ρF


T |GT (−1)





−1
−1
0
−1
1
0
0
0
0
0






= ρF





7
1
−5
3
−1
2
4
0
0
3





= ρF


(−5)



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ 4



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ 3



−1
0
0
2
0
−2
0
0
0
1




=


−5
−1
4
0
3



ρF


T |GT (−1)





1
0
0
−1
0
2
1
0
0
0






= ρF





1
0
−1
1
0
0
1
0
0
1





= ρF


(−1)



−1
0
1
0
0
0
0
0
0
0


+ 0



−1
−1
0
−1
1
0
0
0
0
0


+ 1



1
0
0
−1
0
2
1
0
0
0


+ 0



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1




=


−1
0
1
0
1



ρF


T |GT (−1)





−1
−1
0
0
0
−1
0
1
0
0






= ρF





−1
0
2
−2
−1
1
−1
1
0
−2




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= ρF


2



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ (−1)



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ (−2)



−1
0
0
2
0
−2
0
0
0
1




=


2
−1
−1
1
−2



ρF


T |GT (−1)





−1
0
0
2
0
−2
0
0
0
1






= ρF





−7
−1
6
−5
−1
−2
−6
2
0
−6





= ρF


6



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ (−6)



1
0
0
−1
0
2
1
0
0
0


+ 2



−1
−1
0
0
0
−1
0
1
0
0


+ (−6)



−1
0
0
2
0
−2
0
0
0
1




=


6
−1
−6
2
−6



So we have the matrix representation of the restriction of T (again recycling and redefining the
matrix M)

M = M
T |GT (−1)

F,F =


0 −5 −1 2 6
0 −1 0 −1 −1
−2 4 1 −1 −6
0 0 0 1 2
−1 3 1 −2 −6


By Theorem RGEN [626] we can obtain a nilpotent matrix from this matrix representation by
subtracting the eigenvalue from the diagonal elements, and then we can apply Theorem CFNLT
[604] to M−(−1)I5. First check that (M − (−1)I5)3 = O, so we know that the index of M−(−1)I5

as a nilpotent matrix, and that therefore λ = −1 is an eigenvalue of T with index 3, ιT (−1) = 3.
To determine a basis of C5 that converts M − (−1)I5 to canonical form, we need the null spaces of
the powers of M − (−1)I5. Again, for convenience, set N = M − (−1)I5.

N
(
N1
)

=

〈


1
0
1
0
0

 ,

−3
1
0
−2
2



〉
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N
(
N2
)

=

〈


3
1
0
0
0

 ,


1
0
1
0
0

 ,


0
0
0
1
0

 ,

−3
0
0
0
1



〉

N
(
N3
)

=

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

= C5

Then we choose a vector from N
(
N3
)

that is not an element of N
(
N2
)
. The sum of the four basis

vectors for N
(
N2
)

sum to a vector with all five entries equal to 1. We will mess with the first entry
to create a vector not in N

(
N2
)
,

z3,1 =


0
1
1
1
1


where we are employing the notation in Theorem CFNLT [604]. The next step is to multiply this
vector by N to get a portion of the basis for N

(
N2
)
,

z2,1 = Nz3,1 =


1 −5 −1 2 6
0 0 0 −1 −1
−2 4 2 −1 −6
0 0 0 2 2
−1 3 1 −2 −5




0
1
1
1
1

 =


2
−2
−1
4
−3


We have a basis for the two-dimensional subspace N

(
N1
)

and we can add to that the vector z2,1

and we have three of four basis vectors for N
(
N2
)
. These three vectors span the subspace we call

Q2. We need a fourth vector outside of Q2 to complete a basis of the four-dimensional subspace
N
(
N2
)
. Check that the vector

z2,2 =


3
1
3
1
1


is an element of N

(
N2
)

that lies outside of the subspace Q2. This vector was constructed by getting
a nice basis for Q2 and forming a linear combination of this basis that specifies three of the five
entries of the result. Of the remaining two entries, one was changed to move the vector outside of
Q2 and this was followed by a change to the remaining entry to place the vector into N

(
N2
)
. The

vector z2,2 is the lone basis vector for the subspace we call R2.
The remaining two basis vectors are easy to come by. They are the result of applying N to each

of the two most recently determined basis vectors,

z1,1 = Nz2,1 =


3
−1
0
2
−2

 z1,2 = Nz2,2 =


3
−2
−3
4
−4


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Now we reorder these basis vectors, to arrive at the basis

C = {z1,1, z2,1, z3,1, z1,2, z2,2} =




3
−1
0
2
−2

 ,


2
−2
−1
4
−3

 ,


0
1
1
1
1

 ,


3
−2
−3
4
−4

 ,


3
1
3
1
1




A matrix representation of N relative to C is


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 =
[
J3 (0) O
O J2 (0)

]

To obtain a matrix representation of M , we add back in the matrix (−1)I5, placing the eigenvalue
back along the diagonal, and slightly mofifying the Jordan blocks,


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 0 0
0 0 0 −1 1
0 0 0 0 −1

 =
[
J3 (−1) O
O J2 (−1)

]

The basis C yields a pleasant matrix representation for the restriction of the linear transformation
T −(−1)I to the generalized eigenspace GT (−1). However, we must remember that these vectors in
C5 are representations of vectors in C10 relative to the basis F . Each needs to be “un-coordinatized”
before joining our final basis. Here we go,

v6 = ρ−1
F




3
−1
0
2
−2


 = 3



−1
0
1
0
0
0
0
0
0
0


+ (−1)



−1
−1
0
−1
1
0
0
0
0
0


+ 0



1
0
0
−1
0
2
1
0
0
0


+ 2



−1
−1
0
0
0
−1
0
1
0
0


+ (−2)



−1
0
0
2
0
−2
0
0
0
1


=



−2
−1
3
−3
−1
2
0
2
0
−2



v7 = ρ−1
F




2
−2
−1
4
−3


 = 2



−1
0
1
0
0
0
0
0
0
0


+ (−2)



−1
−1
0
−1
1
0
0
0
0
0


+ (−1)



1
0
0
−1
0
2
1
0
0
0


+ 4



−1
−1
0
0
0
−1
0
1
0
0


+ (−3)



−1
0
0
2
0
−2
0
0
0
1


=



−2
−2
2
−3
−2
0
−1
4
0
−3


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v8 = ρ−1
F




0
1
1
1
1


 = 0



−1
0
1
0
0
0
0
0
0
0


+ 1



−1
−1
0
−1
1
0
0
0
0
0


+ 1



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1


=



−2
−2
0
0
1
−1
1
1
0
1



v9 = ρ−1
F




3
−2
−3
4
−4


 = 3



−1
0
1
0
0
0
0
0
0
0


+ (−2)



−1
−1
0
−1
1
0
0
0
0
0


+ (−3)



1
0
0
−1
0
2
1
0
0
0


+ 4



−1
−1
0
0
0
−1
0
1
0
0


+ (−4)



−1
0
0
2
0
−2
0
0
0
1


=



−4
−2
3
−3
−2
−2
−3
4
0
−4



v10 = ρ−1
F




3
1
3
1
1


 = 3



−1
0
1
0
0
0
0
0
0
0


+ 1



−1
−1
0
−1
1
0
0
0
0
0


+ 3



1
0
0
−1
0
2
1
0
0
0


+ 1



−1
−1
0
0
0
−1
0
1
0
0


+ 1



−1
0
0
2
0
−2
0
0
0
1


=



−3
−2
3
−2
1
3
3
1
0
1


To summarize, we list the entire basis B = {v1, v2, v3, . . . , v10},

v1 =



2
1
−1
1
−1
2
1
0
1
0


v2 =



1
1
−2
2
0
−1
0
−1
0
1


v3 =



−1
0
2
−1
0
2
0
0
0
−1


v4 =



0
1
0
0
0
1
1
0
0
0


v5 =



1
2
−1
2
−1
2
1
−1
1
0



v6 =



−2
−1
3
−3
−1
2
0
2
0
−2


v7 =



−2
−2
2
−3
−2
0
−1
4
0
−3


v8 =



−2
−2
0
0
1
−1
1
1
0
1


v9 =



−4
−2
3
−3
−2
−2
−3
4
0
−4


v10 =



−3
−2
3
−2
1
3
3
1
0
1


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Subsection JCF.CHT Cayley-Hamilton Theorem 649

The resulting matrix representation is

MT
B,B =



2 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 −1


If you are not inclined to check all of these computations, here are a few that should convince you
of the amazing properties of the basis B. Compute the matrix-vector products Avi, 1 ≤ i ≤ 10.
In each case the result will be a vector of the form λvi + δvi−1, where λ is one of the eigenvalues
(you should be able to predict ahead of time which one) and δ ∈ {0, 1}.

Alternatively, if we can write inputs to the linear transformation T as linear combinations of
the vectors in B (which we can do uniquely since B is a basis, Theorem VRRB [311]), then the
“action” of T is reduced to a matrix-vector product with the exceedingly simple matrix that is the
Jordan canonical form. Wow! �

Subsection CHT
Cayley-Hamilton Theorem

Jordan was a French mathematician who was active in the late 1800’s. Cayley and Hamilton
were 19th-century contemporaries of Jordan from Britian. The theorem that bears their names is
perhaps one of the most celebrated in basic linear algebra. While our result applies only to vector
spaces and linear transformations with scalars from the set of complex numbers, C, the result is
equally true if we restrict our scalars to the real numbers, R. It says that every matrix satisfies its
own characteristic polynomial.

Theorem CHT
Cayley-Hamilton Theorem
Suppose A is a square matrix with characteristic polynomial pA (x). Then pA (A) = O. �

Proof Suppose B and C are similar matrices via the matrix S, B = S−1CS, and q(x) is any
polynomial. Then q (B) is similar to q (C) via S, q (B) = S−1q (C)S. (See Example HPDM [434]
for hints on how to convince yourself of this.)

By Theorem JCFLT [637] and Theorem SCB [568] we know A is similar to a matrix, J , in Jordan
canonical form. Suppose λ1, λ2, λ3, . . . , λm are the distinct eigenvalues of A (and are therefore
the eigenvalues and diagonal entries of J). Then by Theorem EMRCP [396] and Definition AME
[399], we can factor the characteristic polynomial as

pA (x) = (x− λ1)αA(λ1) (x− λ2)αA(λ2) (x− λ3)αA(λ3) · · · (x− λm)αA(λm)

On substituting the matrix J we have

pA (J) = (J − λ1I)αA(λ1) (J − λ2I)αA(λ2) (J − λ3I)αA(λ3) · · · (J − λmI)αA(λm)

The matrix J − λkI will be block diagonal, and the block arising from the generalized eigenspace
for λk will have zeros along the diagonal. Suitably adjusted for matrices (rather than linear trans-
formations), Theorem RGEN [626] tells us this matrix is nilpotent. Since the size of this nilpotent
matrix is equal to the algebraic multiplicity of λk, the power (J − λkI)αA(λk) will be a zero matrix
(Theorem KPNLT [602]) in the location of this block.
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650 Section JCF Jordan Canonical Form

Repeating this argument for each of the m eigenvalues will place a zero block in some term of
the product at every location on the diagonal. The entire product will then be zero blocks on the
diagonal, and zero off the diagonal. In other words, it will be the zero matrix. Since A and J are
similar, pA (A) = pA (J) = O. �

Version 1.30
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Annotated Acronyms R
Representations

Definition VR [517]

Matrix representations build on vector representations, so this is the definition that gets us started.
A representation depends on the choice of a single basis for the vector space. Theorem VRRB [311]
is what tells us this idea might be useful.

Theorem VRILT [522]

As an invertible linear transformation, vector representation allows us to translate, back and forth,
between abstract vector spaces (V ) and concrete vector spaces (Cn). This is key to all our notions
of representations in this chapter.

Theorem CFDVS [522]

Every vector space with finite dimension “looks like” a vector space of column vectors. Vector
representation is the isomorphism that establishes that these vector spaces are isomorphic.

Definition MR [529]

Building on the definition of a vector representation, we define a representation of a linear trans-
formation, determined by a choice of two bases, one for the domain and one for the codomain.
Notice that vectors are represented by columnar lists of scalars, while linear transformations are
represented by rectangular tables of scalars. Building a matrix representation is as important a
skill as row-reducing a matrix.

Theorem FTMR [531]

Definition MR [529] is not really very interesting until we have this theorem. The second form tells
us that we can compute outputs of linear transformations via matrix multiplication, along with
some bookkeeping for vector representations. Searching forward through the text on “FTMR” is an
interesting exercise. You will find reference to this result buried inside many key proofs at critical
points, and it also appears in numerous examples and solutions to exercises.

Theorem MRCLT [535]

Turns out that matrix multiplication is really a very natural operation, it is just the chaining
together (composition) of functions (linear transformations). Beautiful. Even if you don’t try to
work the problem, study Solution MR.T80 [557] for more insight.

Theorem KNSI [539]

Kernels “are” null spaces. For this reason you’ll see these terms used interchangeably.

Theorem RCSI [541]

Ranges “are” column spaces. For this reason you’ll see these terms used interchangeably.

Theorem IMR [543]

Invertible linear transformations are represented by invertible (nonsingular) matrices.

Theorem NME9 [546]

The NMEx series has always been important, but we’ve held off saying so until now. This is the
end of the line for this one, so it is a good time to contemplate all that it means.

Theorem SCB [568]

Diagonalization back in Section SD [425] was really a change of basis to achieve a diagonal matrix
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652 Section JCF Jordan Canonical Form

repesentation. Maybe we should be highlighting the more general Theorem MRCB [565] here, but
its overly technical description just isn’t as appealing. However, it will be important in some of the
matrix decompostions in Chapter MD [799].

Theorem EER [571]

This theorem, with the companion definition, Definition EELT [559], tells us that eigenvalues, and
eigenvectors, are fundamentally a characteristic of linear transformations (not matrices). If you
study matrix decompositions in Chapter MD [799] you will come to appreciate that almost all of a
matrix’s secrets can be unlocked with knowledge of the eigenvalues and eigenvectors.

Theorem OD [591]

Can you imagine anything nicer than an orthonormal diagonalization? A basis of pairwise orthog-
onal, unit norm, eigenvectors that provide a diagonal representation for a matrix? Here we learn
just when this can happen — precisely when a matrix is normal, which is a disarmingly simple
property to define.

Theorem CFNLT [604]

Nilpotent linear transformations are the fundamental obstacle to a matrix (or linear transformation)
being diagonalizable. This specialized representation theorem is the fundamental expression of just
how close we can come to surmounting the obstacle, i.e. how close we can come to a diagonal
representation.

Theorem DGES [637]

This theorem is a long time in coming, but perhaps it best explains our interest in generalized
eigenspaces. When the dimension of a “regular” eigenspace (the geometic multiplicity) does not
meet the algebraic multiplicity of the corresponding eigenvalue, then a matrix is not diagonalizable
(Theorem DMFE [431]). However, if we generalize the idea of an eigenspace (Definition GES
[616]), then we arrive at invariant subspaces that together give a complete decomposition of the
domain as a direct sum. And these subspaces have dimensions equal to the corresponding algebraic
multiplicities.

Theorem JCFLT [637]

If you can’t diagonalize, just how close can you come? This is an answer (there are others, like
rational canonical form). “Canonicalism” is in the eye of the beholder. But this is a good place to
conclude our study of a widely accepted canonical form that is possible for every matrix or linear
transformation.
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Appendix CN
Computation Notes

Section MMA
Mathematica

Computation Note ME.MMA
Matrix Entry

Matrices are input as lists of lists, since a list is a basic data structure in Mathematica. A matrix
is a list of rows, with each row entered as a list. Mathematica uses braces (({ , })) to delimit lists.
So the input

a = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

would create a 3× 4 matrix named a that is equal to1 2 3 4
5 6 7 8
9 10 11 12


To display a matrix named a “nicely” in Mathematica, type MatrixForm[a] , and the output
will be displayed with rows and columns. If you just type a , then you will get a list of lists, like
how you input the matrix in the first place.

Computation Note RR.MMA
Row Reduce

If a is the name of a matrix in Mathematica, then the command RowReduce[a] will output the
reduced row-echelon form of the matrix.

Computation Note LS.MMA
Linear Solve

Mathematica will solve a linear system of equations using the LinearSolve[ ] command. The
inputs are a matrix with the coefficients of the variables (but not the column of constants), and a
list containing the constant terms of each equation. This will look a bit odd, since the lists in the
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654 Section MMA Mathematica

matrix are rows, but the column of constants is also input as a list and so looks like a row rather
than a column. The result will be a single solution (even if there are infinitely many), reported as a
list, or the statement that there is no solution. When there are infinitely many, the single solution
reported is exactly that solution used in the proof of Theorem RCLS [48], where the free variables
are all set to zero, and the dependent variables come along with values from the final column of
the row-reduced matrix.

As an example, Archetype A [685] is

x1 − x2 + 2x3 = 1
2x1 + x2 + x3 = 8

x1 + x2 = 5

To ask Mathematica for a solution, enter

LinearSolve[ {{1, −1, 2}, {2, 1, 1}, {1, 1, 0}}, {1, 8, 5} ]

and you will get back the single solution

{3, 2, 0}

We will see later how to coax Mathematica into giving us infinitely many solutions for this system
(Computation VFSS.MMA [655]).

Computation Note VLC.MMA
Vector Linear Combinations

Contributed by Robert Beezer
Vectors in Mathematica are represented as lists, written and displayed horizontally. For example,
the vector

v =


1
2
3
4


would be entered and named via the command

v = {1, 2, 3, 4}

Vector addition and scalar multiplication are then very natural. If u and v are two lists of equal
length, then

2u + (−3)v

will compute the correct vector and return it as a list. If u and v have different sizes, then
Mathematica will complain about “objects of unequal length.”

Computation Note NS.MMA
Null Space

Given a matrix A, Mathematica will compute a set of column vectors whose span is the null space
of the matrix with the NullSpace[ ] command. Perhaps not coincidentally, this set is exactly
{zj | 1 ≤ j ≤ n− r}. However, Mathematica prefers to output the vectors in the opposite order
than one we have chosen. Here’s a small example.

Begin with the 3× 4 matrix A, and its row-reduced version B,

A =

 1 2 −1 0
3 4 1 −2
−1 1 −5 3

 RREF−−−−→ B =

 1 0 3 −2
0 1 −2 1
0 0 0 0


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Computation Note MMA.VFSS.MMA Vector Form of Solution Set 655

We could extract entries from B to build the vectors z1 and z2 according to Theorem SSNS [118]
and describe N (A) as a span of the set {z1, z2}. Instead, if a has been set to A, then executing
the command NullSpace[a] yields the list of lists (column vectors),

{{2,−1, 0, 1}, {−3, 2, 1, 0}}

Notice how our z1 is second in the list. To “correct” this we can use a list-processing command
from Mathematica, Reverse[ ] , as follows,

Reverse[NullSpace[a]]

and recieve the output in our preferred order. Give it a try yourself.

Computation Note VFSS.MMA
Vector Form of Solution Set

Suppose that A is an m × n matrix and b ∈ Cm is a column vector. We might wish to find all of
the solutions to the linear system LS(A, b). Mathematica’s LinearSolve[A, b] will return at
most one solution (Computation LS.MMA [653]). However, when the system is consistent, then
this one solution reported is exactly the vector c, described in the statement of Theorem VFSLS
[98].

The vectors uj , 1 ≤ j ≤ n− r of Theorem VFSLS [98] are exactly the output of Mathematica’s
NullSpace[ ] command, though Mathematica lists them in the opposite order from the order we
have chosen. These are the same vectors listed as zj , 1 ≤ j ≤ n − r in Theorem SSNS [118].
With c produced from the LinearSolve[ ] command, and the uj coming from the NullSpace[ ]
command we can use Mathematica’s symbolic manipulation commands to create an expression that
describes all of the solutions.

Begin with the system LS(A, b). Row-reduce A (Computation RR.MMA [653]) and identify
the free variables by determining the non-pivot columns. Suppose, for the sake of argument, that
we have the three free variables x3, x7 and x8. Then the following command will build an expression
for an arbitrary solution:

LinearSolve[A, b]+{x8, x7, x3}.NullSpace[A]

Be sure to include the “dot” right before the NullSpace[ ] command — it has the effect of creating
a linear combination of the vectors in the null space, using scalars that are symbols reminiscent of
the variables.

A concrete example should help here. Suppose we want a solution set for the linear system with
coefficient matrix A and vector of constants b,

A =

1 2 3 −5 1 −1 2
2 4 0 8 −4 1 −8
3 6 4 0 −2 5 7

 b =

 8
1
−5


If we were to apply Theorem VFSLS [98], we would extract the components of c and uj from
the row-reduced version of the augmented matrix of the system (obtained with Mathematica,
Computation RR.MMA [653]), 1 2 0 4 −2 0 −5 2

0 0 1 −3 1 0 3 1
0 0 0 0 0 1 2 −3


Instead, we will use this augmented matrix in reduced row-echelon form only to identify the free
variables. In this example, we locate the non-pivot columns and see that x2, x4, x5 and x7 are
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free. If we have set a to the coefficient matrix and b to the vector of constants, then we execute
the Mathematica command,

LinearSolve[a, b]+{x7, x5, x4, x2}.NullSpace[a]

As output we obtain the column vector (list),

2− 2 x2 − 4 x4 + 2 x5 + 5 x7
x2

1 + 3 x4 − x5 − 3 x7
x4
x5

−3− 2 x7
x7



Computation Note GSP.MMA
Gram-Schmidt Procedure

Mathematica has a built-in routine that will do the Gram-Schmidt procedure (Theorem GSP [171]).
The input is a set of vectors, which must be linearly independent. This is written as a list, containing
lists that are the vectors. Let a be such a list of lists, containing the vectors vi, 1 ≤ i ≤ p from the
statement of the theorem. You will need to first load the right Mathematica package — execute
<<LinearAlgebra‘Orthogonalization‘ to make this happen. Then execute GramSchmidt[a] .
The output will be another list of lists containing the vectors ui, 1 ≤ i ≤ p from the statement of
the theorem. Mathematica will complain if you do not provide a linearly independent set as input
(try it!).

An example. Suppose our linearly independent set (check this!) is

S =




−1
4
1
0
3

 ,


0
3
0
3
−3

 ,

−1
2
0
−1
−2

 ,

−1
−2
−3
1
4

 ,


1
6
−1
4
6




The output of the GramSchmidt[ ] command will be the set,

T =




− 1

3
√

3
4

3
√

3
1

3
√

3

0
1√
3

 ,


1
12
√

15
23

12
√

15

− 1
12
√

15

3
q

3
5

4

−
q

5
3

2


,



− 37
4
√

685
29

4
√

685

− 3
4
√

685

− 79
4
√

685

−
5

q
5

137

2


,


− 337

2
√

120423

− 37
6
√

120423

− 1763
6
√

120423
337

6
√

120423
50√

120423

 ,


23√
879
26

3
√

879

− 44
3
√

879

− 23
3
√

879
1√
879




Ugly, but true. At this stage, you might just as well be encouraged to think of the Gram-Schmidt
procedure as a computational black box, linearly independent set in, orthogonal span-preserving
set out.

To check that the output set is orthogonal, we can easily check the orthogonality of individual
pairs of vectors. Suppose the output was set equal to b (say via b=GramSchmidt[a] ). We can
extract the individual vectors of c as “parts” with syntax like c[[3]] , which would return the
third vector in the set. When our vectors have only real number entries, we can accomplish an
innerproduct with a “dot.” So, for example, you should discover that c[[3]].c[[5]] will return
zero. Try it yourself with another pair of vectors.
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Computation Note TM.MMA
Transpose of a Matrix

Contributed by Robert Beezer
Suppose a is the name of a matrix stored in Mathematica. Then Transpose[a] will create the
transpose of a .

Computation Note MM.MMA
Matrix Multiplication

If A and B are matrices defined in Mathematica, then A.B will return the product of the two
matrices (notice the dot between the matrices). If A is a matrix and v is a vector, then A.v
will return the vector that is the matrix-vector product of A and v. In every case the sizes of the
matrices and vectors need to be correct.

Some examples:

{{1, 2}, {3, 4}}.{{5, 6, 7}, {8, 9, 10}} = {{21, 24, 27}, {47, 54, 61}}
{{1, 2}, {3, 4}}.{{5}, {6}} = {{17}, {39}}

{{1, 2}, {3, 4}}.{5, 6} = {17, 39}

Understanding the difference between the last two examples will go a long way to explaining how
some Mathematica constructs work.

Computation Note MI.MMA
Matrix Inverse

If A is a matrix defined in Mathematica, then Inverse[A] will return the inverse of A, should it
exist. In the case where A does not have an inverse Mathematica will tell you the matrix is singular
(see Theorem NI [223]).

Section TI86
Texas Instruments 86

Computation Note ME.TI86
Matrix Entry

On the TI-86, press the MATRX key (Yellow-7) . Press the second menu key over, F2 , to bring
up the EDIT screen. Give your matrix a name, one letter or many, then press ENTER . You can
then change the size of the matrix (rows, then columns) and begin editing individual entries (which
are initially zero). ENTER will move you from entry to entry, or the down arrow key will move
you to the next row. A menu gives you extra options for editing.

Matrices may also be entered on the home screen as follows. Use brackets ([ , ]) to enclose rows
with elements separated by commas. Group rows, in order, into a final set of brackets (with no
commas between rows). This can then be stored in a name with the STO key. So, for example,

[[1, 2, 3, 4] [5, 6, 7, 8] [9, 10, 11, 12]]→ A
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will create a matrix named A that is equal to1 2 3 4
5 6 7 8
9 10 11 12



Computation Note RR.TI86
Row Reduce

If A is the name of a matrix stored in the TI-86, then the command rref A will return the
reduced row-echelon form of the matrix. This command can also be found by pressing the MATRX
key, then F4 for OPS , and finally, F5 for rref .

Note that this command will not work for a matrix with more rows than columns. (Ed. Not
sure just why this is!) A work-around is to pad the matrix with extra columns of zeros until the
matrix is square.

Computation Note VLC.TI86
Vector Linear Combinations

Contributed by Robert Beezer
Vector operations on the TI-86 can be accessed via the VECTR key, which is Yellow-8 . The EDIT
tool appears when the F2 key is pressed. After providing a name and giving a “dimension” (the
size) then you can enter the individual entries, one at a time. Vectors can also be entered on the
home screen using brackets ( [ , ] ). To create the vector

v =


1
2
3
4


use brackets and the store key ( STO ),

[1, 2, 3, 4]→ v

Vector addition and scalar multiplication are then very natural. If u and v are two vectors of
equal size, then

2 ∗ u + (−3) ∗ v

will compute the correct vector and display the result as a vector.

Computation Note TM.TI86
Transpose of a Matrix

Contributed by Eric Fickenscher
Suppose A is the name of a matrix stored in the TI-86. Use the command AT to transpose A .
This command can be found by pressing the MATRX key, then F3 for MATH , then F2 for T.
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Section TI83
Texas Instruments 83

Computation Note ME.TI83
Matrix Entry

Contributed by Douglas Phelps
On the TI-83, press the MATRX key. Press the right arrow key twice so that EDIT is highlighted.
Move the cursor down so that it is over the desired letter of the matrix and press ENTER . For
example, let’s call our matrix B , so press the down arrow once and press ENTER . To enter a 2× 3
matrix, press 2 ENTER 3 ENTER . To create the matrix[

1 2 3
4 5 6

]
press 1 ENTER 2 ENTER 3 ENTER 4 ENTER 5 ENTER 6 ENTER .

Computation Note RR.TI83
Row Reduce

Contributed by Douglas Phelps
Suppose B is the name of a matrix stored in the TI-83. Press the MATRX key. Press the right
arrow key once so that MATH is highlighted. Press the down arrow eleven times so that rref (
is highlighted, then press ENTER . to choose the matrix B , press MATRX , then the down arrow
once followed by ENTER . Supply a right parenthesis ( ) ) and press ENTER .

Note that this command will not work for a matrix with more rows than columns. (Ed. Not
sure just why this is!) A work-around is to pad the matrix with extra columns of zeros until the
matrix is square.

Computation Note VLC.TI83
Vector Linear Combinations

Contributed by Douglas Phelps
Entering a vector on the TI-83 is the same process as entering a matrix. You press 4 ENTER 3
ENTER for a 4×3 matrix. Likewise, you press 4 ENTER 1 ENTER for a vector of size 4. To multiply
a vector by 8, press the number 8, then press the MATRX key, then scroll down to the letter you
named your vector (A, B, C, etc) and press ENTER .

To add vectors A and B for example, press the MATRX key, then ENTER . Then press the +
key. Then press the MATRX key, then the down arrow once, then ENTER . [A] + [B] will appear
on the screen. Press ENTER .
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Appendix P
Preliminaries

This appendix contains important ideas about complex numbers, sets, and the logic and techniques
of forming proofs. It is not meant to be read straight through, but you should head here when you
need to review these ideas.

We choose to expand the set of scalars from the real numbers, R, to the set of complex numbers,
C. So basic operations with complex numbers (like addition and division) will be necessary. This
can be safely postponed until your arrival in Section O [163], and a refresher before Chapter E [389]
would be a good idea as well.

Sets are extremely important in all of mathematics, but maybe you have not had much exposure
to the basic operations. Check out Section SET [665]. The text will send you here frequently as
well. Visit often.

This book is as much about doing mathematics as it is about linear algebra. The “Proof
Techniques” are vignettes about logic, types of theorems, structure of proofs, or just plain old-
fashioned advice about how to do advanced mathematics. The text will frequently point to one of
these techniques in advance of their first use, and for specific instructions there will be additional
references. If you find constructing proofs difficult (we all did once), then head back here and
browse through the advice for second or third readings.

Section CNO
Complex Number Operations

In this section we review of the basics of working with complex numbers.

Subsection CNA
Arithmetic with complex numbers

A complex number is a linear combination of 1 and i =
√
−1, typically written in the form a+ bi.

Complex numbers can be added, subtracted, multiplied and divided, just like we are used to doing
with real numbers, including the restriction on division by zero. We will not define these operations
carefully, but instead illustrate with examples.

Example ACN
Arithmetic of complex numbers

(2 + 5i) + (6− 4i) = (2 + 6) + (5 + (−4))i = 8 + i

(2 + 5i)− (6− 4i) = (2− 6) + (5− (−4))i = −4 + 9i

(2 + 5i)(6− 4i) = (2)(6) + (5i)(6) + (2)(−4i) + (5i)(−4i) = 12 + 30i− 8i− 20i2
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= 12 + 22i− 20(−1) = 32 + 22i

Division takes just a bit more care. We multiply the denominator by a complex number chosen to
produce a real number and then we can produce a complex number as a result.

2 + 5i
6− 4i

=
2 + 5i
6− 4i

6 + 4i
6 + 4i

=
−8 + 38i

52
= − 8

52
+

38
52
i = − 2

13
+

19
26
i

�

In this example, we used 6 + 4i to convert the denominator in the fraction to a real number.
This number is known as the conjugate, which we define in the next section. We will often exploit
the basic properties of complex number addition, subtraction, multiplication and division, so we
will carefully define the two basic operations, together with a definition of equality, and then collect
nine basic properties in a theorem.

Definition CNE
Complex Number Equality
The complex numbers α = a+ bi and β = c+ di are equal, denoted α = β, if a = c and b = d.
(This definition contains Notation CNE.) 4

Definition CNA
Complex Number Addition
The sum of the complex numbers α = a+ bi and β = c+di , denoted α+β, is (a+ c) + (b+d)i.
(This definition contains Notation CNA.) 4

Definition CNM
Complex Number Multiplication
The product of the complex numbers α = a+bi and β = c+di , denoted αβ, is (ac−bd)+(ad+bc)i.

(This definition contains Notation CNM.) 4

Theorem PCNA
Properties of Complex Number Arithmetic
The operations of addition and multiplication of complex numbers have the following properties.

• ACCN Additive Closure, Complex Numbers
If α, β ∈ C, then α+ β ∈ C.

• MCCN Multiplicative Closure, Complex Numbers
If α, β ∈ C, then αβ ∈ C.

• CACN Commutativity of Addition, Complex Numbers
For any α, β ∈ C, α+ β = β + α.

• CMCN Commutativity of Multiplication, Complex Numbers
For any α, β ∈ C, αβ = βα.

• AACN Additive Associativity, Complex Numbers
For any α, β, γ ∈ C, α+ (β + γ) = (α+ β) + γ.

• MACN Multiplicative Associativity, Complex Numbers
For any α, β, γ ∈ C, α (βγ) = (αβ) γ.

• DCN Distributivity, Complex Numbers
For any α, β, γ ∈ C, α(β + γ) = αβ + αγ.

• ZCN Zero, Complex Numbers
There is a complex number 0 = 0 + 0i so that for any α ∈ C, 0 + α = α.
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• OCN One, Complex Numbers
There is a complex number 1 = 1 + 0i so that for any α ∈ C, 1α = α.

• AICN Additive Inverse, Complex Numbers
For every α ∈ C there exists −α ∈ C so that α+ (−α) = 0.

• MICN Multiplicative Inverse, Complex Numbers
For every α ∈ C, α 6= 0 there exists 1

α ∈ C so that α
(

1
α

)
= 1.

�

Proof We could derive each of these properties of complex numbers with a proof that builds on
the identical properties of the real numbers. The only proof that might be at all interesting would
be to show Property MICN [663] since we would need to trot out a conjugate. For this property,
and especially for the others, we might be tempted to construct proofs of the identical properties
for the reals. This would take us way too far afield, so we will draw a line in the sand right here
and just agree that these nine fundamental behaviors are true. OK?

Mostly we have stated these nine properties carefully so that we can make reference to them
later in other proofs. So we will be linking back here often. �

Subsection CCN
Conjugates of Complex Numbers

Definition CCN
Conjugate of a Complex Number
The conjugate of the complex number c = a+ bi ∈ C is the complex number c = a− bi.
(This definition contains Notation CCN.) 4

Example CSCN
Conjugate of some complex numbers

2 + 3i = 2− 3i 5− 4i = 5 + 4i −3 + 0i = −3 + 0i 0 + 0i = 0 + 0i

�

Notice how the conjugate of a real number leaves the number unchanged. The conjugate enjoys
some basic properties that are useful when we work with linear expressions involving addition and
multiplication.

Theorem CCRA
Complex Conjugation Respects Addition
Suppose that c and d are complex numbers. Then c+ d = c+ d. �

Proof Let c = a+ bi and d = r + si. Then

c+ d = (a+ r) + (b+ s)i = (a+ r)− (b+ s)i = (a− bi) + (r − si) = c+ d

�

Theorem CCRM
Complex Conjugation Respects Multiplication
Suppose that c and d are complex numbers. Then cd = cd. �

Proof Let c = a+ bi and d = r + si. Then

cd = (ar − bs) + (as+ br)i = (ar − bs)− (as+ br)i
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= (ar − (−b)(−s)) + (a(−s) + (−b)r)i = (a− bi)(r − si) = cd

�

Theorem CCT
Complex Conjugation Twice
Suppose that c is a complex number. Then c = c. �

Proof Let c = a+ bi. Then

c = a− bi = a− (−bi) = a+ bi = c

�

Subsection MCN
Modulus of a Complex Number

We define one more operation with complex numbers that may be new to you.

Definition MCN
Modulus of a Complex Number
The modulus of the complex number c = a+ bi ∈ C, is the nonnegative real number

|c| =
√
cc =

√
a2 + b2.

4

Example MSCN
Modulus of some complex numbers

|2 + 3i| =
√

13 |5− 4i| =
√

41 |−3 + 0i| = 3 |0 + 0i| = 0

�

The modulus can be interpreted as a version of the absolute value for complex numbers, as is
suggested by the notation employed. You can see this in how |−3| = |−3 + 0i| = 3. Notice too how
the modulus of the complex zero, 0 + 0i, has value 0.
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Section SET
Sets

Definition SET
Set
A set is an unordered collection of objects. If S is a set and x is an object that is in the set S, we
write x ∈ S. If x is not in S, then we write x 6∈ S. We refer to the objects in a set as its elements.

(This definition contains Notation SETM.) 4

Hard to get much more basic than that. Notice that the objects in a set can be anything, and
there is no notion of order among the elements of the set. A set can be finite as well as infinite. A
set can contain other sets as its objects. At a primitive level, a set is just a way to break up some
class of objects into two groupings: those objects in the set, and those objects not in the set.

Example SETM
Set membership
From the set of all possible symbols, construct the following set of three symbols,

S = {�, �, F}

Then the statement � ∈ S is true, while the statement N ∈ S is false. However, then the statement
N 6∈ S is true. �

A portion of a set is known as a subset. Notice how the following definition uses an implication
(if whenever. . . then. . . ). Note too how the definition of a subset relies on the definition of a set
through the idea of set membership.

Definition SSET
Subset
If S and T are two sets, then S is a subset of T , written S ⊆ T if whenever x ∈ S then x ∈ T .
(This definition contains Notation SSET.) 4

If we want to disallow the possibility that S is the same as T , we use the notation S ⊂ T and
we say that S is a proper subset of T . We’ll do an example, but first we’ll define a special set.

Definition ES
Empty Set
The empty set is the set with no elements. Its is denoted by ∅.
(This definition contains Notation ES.) 4

Example SSET
Subset
If S = {�, �, F}, T = {F, �}, R = {N, F}, then

T ⊆ S R 6⊆ T ∅ ⊆ S
T ⊂ S S ⊆ S S 6⊂ S

�

What does it mean for two sets to be equal? They must be the same. Well, that explanation
is not really too helpful, is it? How about: If A ⊆ B and B ⊆ A, then A equals B. This gives us
something to work with, if A is a subset of B, and vice versa, then they must really be the same set.
We will now make the symbol “=” do double-duty and extend its use to statements like A = B,
where A and B are sets. Here’s the definition, which we will reference often.
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Definition SE
Set Equality
Two sets, S and T , are equal, if S ⊆ T and T ⊆ S. In this case, we write S = T .
(This definition contains Notation SE.) 4

Sets are typically written inside of braces, as { }, as we have seen above. However, when
sets have more than a few elements, a description will typically have two components. The first
is a description of the general type of objects contained in a set, while the second is some sort of
restriction on the properties the objects have. Every object in the set must be of the type described
in the first part and it must satisfy the restrictions in the second part. Conversely, any object of
the proper type for the first part, that also meets the conditions of the second part, will be in the
set. These two parts are set off from each other somehow, often with a vertical bar (|) or a colon
(:).

I like to think of sets as clubs. The first part is some description of the type of people who might
belong to the club, the basic objects. For example, a bicycle club would describe its members as
being people who like to ride bicycles. The second part is like a membership committee, it restricts
the people who are allowed in the club. Continuing with our bicycle club analogy, we might decide
to limit ourselves to “serious” riders and only have members who can document having ridden 100
kilometers or more in a single day at least one time.

The restrictions on membership can migrate around some between the first and second part,
and there may be several ways to describe the same set of objects. Here’s a more mathematical
example, employing the set of all integers, Z, to describe the set of even integers.

E = {x ∈ Z | x is an even number}
= {x ∈ Z | 2 divides x evenly}
= {2k | k ∈ Z}

Notice how this set tells us that its objects are integer numbers (not, say, matrices or functions, for
example) and just those that are even. So we can write that 10 ∈ E, while 17 6∈ E once we check
the membership criteria. We also recognize the question[

1 −3 5
2 0 3

]
∈ E?

as being simply ridiculous.

Subsection SC
Set Cardinality

On occasion, we will be interested in the number of elements in a finite set. Here’s the definition
and the associated notation.

Definition C
Cardinality
Suppose S is a finite set. Then the number of elements in S is called the cardinality or size of S,
and is denoted |S|.
(This definition contains Notation C.) 4

Example CS
Cardinality and Size
If S = {�, F, �}, then |S| = 3. �
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Subsection SO
Set Operations

In this subsection we define and illustrate the three most common basic ways to manipulate sets
to create other sets. Since much of linear algebra is about sets, we will use these often.

Definition SU
Set Union
Suppose S and T are sets. Then the union of S and T , denoted S ∪ T , is the set whose elements
are those that are elements of S or of T , or both. More formally,

x ∈ S ∪ T if and only if x ∈ S or x ∈ T

(This definition contains Notation SU.) 4

Notice that the use of the word “or” in this definition is meant to be non-exclusive. That is, it
allows for x to be an element of both S and T and still qualify for membership in S ∪ T .

Example SU
Set union
If S = {�, F, �} and T = {�, F, N} then S ∪ T = {�, F, �, N}. �

Definition SI
Set Intersection
Suppose S and T are sets. Then the intersection of S and T , denoted S ∩ T , is the set whose
elements are only those that are elements of S and of T . More formally,

x ∈ S ∩ T if and only if x ∈ S and x ∈ T

(This definition contains Notation SI.) 4

Example SI
Set intersection
If S = {�, F, �} and T = {�, F, N} then S ∩ T = {�, F}. �

The union and intersection of sets are operations that begin with two sets and produce a third,
new, set. Our final operation is the set complement, which we usually think of as an operation that
takes a single set and creates a second, new, set. However, if you study the definition carefully, you
will see that it needs to be computed relative to some “universal” set.

Definition SC
Set Complement
Suppose S is a set that is a subset of a universal set U . Then the complement of S, denoted S,
is the set whose elements are those that are elements of U and not elements of S. More formally,

x ∈ S if and only if x ∈ U and x 6∈ S

(This definition contains Notation SC.) 4

Notice that there is nothing at all special about the universal set. This is simply a term that
suggests that U contains all of the possible objects we are considering. Often this set will be clear
from the context, and we won’t think much about it, nor reference it in our notation. In other cases
(rarely in our work in this course) the exact nature of the universal set must be made explicit, and
reference to it will possibly be carried through in our choice of notation.
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Example SC
Set complement
If U = {�, F, �, N} and S = {�, F, �} then S = {N}. �

There are many more natural operations that can be performed on sets, such as an exclusive-or
and the symmetric difference. Many of these can be defined in terms of the union, intersection and
complement. We will not have much need of them in this course, and so we will not give precise
descriptions here in this preliminary section.

There is also an interesting variety of basic results that describe the interplay of these operations
with each other. We mention just two as an example, these are known as DeMorgan’s Laws.

(S ∪ T ) = S ∩ T
(S ∩ T ) = S ∪ T

Besides having an appealing symmetry, we mention these two facts, since constructing the proofs
of each is a useful exercise that will require a solid understanding of all but one of the definitions
presented in this section. Give it a try.
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Section PT
Proof Techniques

In this section we collect many short essays designed to help you understand how to read, under-
stand and construct proofs. Some are very factual, while others consist of advice. They appear in
the order that they are first needed (or advisable) in the text, and are meant to be self-contained.
So you should not think of reading through this section in one sitting as you begin this course.
But be sure to head back here for a first reading whenever the text suggests it. Also think about
returning to browse at various points during the course, and especially as you struggle with becom-
ing an accomplished mathematician who is comfortable with the difficult process of designing new
proofs.

Proof Technique D
Definitions

A definition is a made-up term, used as a kind of shortcut for some typically more complicated
idea. For example, we say a whole number is even as a shortcut for saying that when we divide
the number by two we get a remainder of zero. With a precise definition, we can answer certain
questions unambiguously. For example, did you ever wonder if zero was an even number? Now the
answer should be clear since we have a precise definition of what we mean by the term even.

A single term might have several possible definitions. For example, we could say that the whole
number n is even if there is another whole number k such that n = 2k. We say this is an equivalent
definition since it categorizes even numbers the same way our first definition does.

Definitions are like two-way streets — we can use a definition to replace something rather compli-
cated by its definition (if it fits) and we can replace a definition by its more complicated description.
A definition is usually written as some form of an implication, such as “If something-nice-happens,
then blatzo.” However, this also means that “If blatzo, then something-nice-happens,” even though
this may not be formally stated. This is what we mean when we say a definition is a two-way street
— it is really two implications, going in opposite “directions.”

Anybody (including you) can make up a definition, so long as it is unambiguous, but the real
test of a definition’s utility is whether or not it is useful for describing interesting or frequent
situations.

We will talk about theorems later (and especially equivalences). For now, be sure not to confuse
the notion of a definition with that of a theorem.

In this book, we will display every new definition carefully set-off from the text, and the term
being defined will be written thus: definition. Additionally, there is a full list of all the defini-
tions, in order of their appearance located at the front of the book (Definitions [xi]). Finally, the
acronym for each definition can be found in the index (Index [??]). Definitions are critical to doing
mathematics and proving theorems, so we’ve given you lots of ways to locate a definition should
you forget its. . . uh, well, . . . definition.

Can you formulate a precise definition for what it means for a number to be odd? (Don’t just
say it is the opposite of even. Act as if you don’t have a definition for even yet.) Can you formulate
your definition a second, equivalent, way? Can you employ your definition to test an odd and an
even number for “odd-ness”?
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Proof Technique T
Theorems

Higher mathematics is about understanding theorems. Reading them, understanding them, apply-
ing them, proving them. Every theorem is a shortcut — we prove something in general, and then
whenever we find a specific instance covered by the theorem we can immediately say that we know
something else about the situation by applying the theorem. In many cases, this new information
can be gained with much less effort than if we did not know the theorem.

The first step in understanding a theorem is to realize that the statement of every theorem can be
rewritten using statements of the form “If something-happens, then something-else-happens.” The
“something-happens” part is the hypothesis and the “something-else-happens” is the conclusion.
To understand a theorem, it helps to rewrite its statement using this construction. To apply a
theorem, we verify that “something-happens” in a particular instance and immediately conclude
that “something-else-happens.” To prove a theorem, we must argue based on the assumption that
the hypothesis is true, and arrive through the process of logic that the conclusion must then also
be true.

Proof Technique L
Language

Like any science, the language of math must be understood before further study can
continue.

Erin Wilson, Student
September, 2004

Mathematics is a language. It is a way to express complicated ideas clearly, precisely, and unam-
biguously. Because of this, it can be difficult to read. Read slowly, and have pencil and paper at
hand. It will usually be necessary to read something several times. While reading can be difficult,
it is even harder to speak mathematics, and so that is the topic of this technique.

“Natural” language, in the present case English, is fraught with ambiguity. Consider the possible
meanings of the sentence: The fish is ready to eat. One fish, or two fish? Are the fish hungry, or
will the fish be eaten? (See Exercise SSLE.M10 [19], Exercise SSLE.M11 [19], Exercise SSLE.M12
[19], Exercise SSLE.M13 [20].) In your daily interactions with others, give some thought to how
many mis-understandings arise from the ambiguity of pronouns, modifiers and objects.

I am going to suggest a simple modification to the way you use language that will make it much,
much easier to become proficient at speaking mathematics and eventually it will become second
nature. Think of it as a training aid or practice drill you might use when learning to become skilled
at a sport.

First, eliminate pronouns from your vocabulary when discussing linear algebra, in class or with
your colleagues. Do not use: it, that, those, their or similar sources of confusion. This is the single
easiest step you can take to make your oral expression of mathematics clearer to others, and in
turn, it will greatly help your own understanding.

Now rid yourself of the word “thing” (or variants like “something”). When you are tempted to
use this word realize that there is some object you want to discuss, and we likely have a definition
for that object (see the discussion at Technique D [669]). Always “think about your objects” and
many aspects of the study of mathematics will get easier. Ask yourself: “Am I working with a set,
a number, a function, an operation, a differential equation, or what?” Knowing what an object
is will allow you to narrow down the procedures you may apply to it. If you have studied an
object-oriented computer programming language, then you will already have experience identifying
objects and thinking carefully about what procedures are allowed to be applied to them.
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Third, eliminate the verb “works” (as in “the equation works”) from your vocabulary. This
term is used as a substitute when we are not sure just what we are trying to accomplish. Usually
we are trying to say that some object fulfills some condition. The condition might even have a
definition associated with it, making it even easier to describe.

Last, speak slooooowly and thoughtfully as you try to get by without all these lazy words. It is
hard at first, but you will get better with practice. Especially in class, when the pressure is on and
all eyes are on you, don’t succumb to the temptation to use these weak words. Slow down, we’d all
rather wait for a slow, well-formed question or answer than a fast, sloppy, incomprehensible one.

You will find the improvement in your ability to speak clearly about complicated ideas will
greatly improve your ability to think clearly about complicated ideas. And I believe that you
cannot think clearly about complicated ideas if you cannot formulate questions or answers clearly
in the correct language. This is as applicable to the study of law, economics or philosophy as it is
to the study of science or mathematics.

So when you come to class, check your pronouns at the door, along with other weak words.
And when studying with friends, you might make a game of catching one another using pronouns,
“thing,” or “works.” I know I’ll be calling you on it!

Proof Technique GS
Getting Started

“I don’t know how to get started!” is often the lament of the novice proof-builder. Here are a few
pieces of advice.

1. As mentioned in Technique T [670], rewrite the statement of the theorem in an “if-then” form.
This will simplify identifying the hypothesis and conclusion, which are referenced in the next
few items.

2. Ask yourself what kind of statement you are trying to prove. This is always part of your
conclusion. Are you being asked to conclude that two numbers are equal, that a function is
differentiable or a set is a subset of another? You cannot bring other techniques to bear if you
do not know what type of conclusion you have.

3. Write down reformulations of your hypotheses. Interpret and translate each definition prop-
erly.

4. Write your hypothesis at the top of a sheet of paper and your conclusion at the bottom. See
if you can formulate a statement that precedes the conclusion and also implies it. Work down
from your hypothesis, and up from your conclusion, and see if you can meet in the middle.
When you are finished, rewrite the proof nicely, from hypothesis to conclusion, with verifiable
implications giving each subsequent statement.

5. As you work through your proof, think about what kinds of objects your symbols represent.
For example, suppose A is a set and f(x) is a real-valued function. Then the expression A+f
might make no sense if we have not defined what it means to “add” a set to a function, so we
can stop at that point and adjust accordingly. On the other hand we might understand 2f
to be the function whose rule is described by (2f)(x) = 2f(x). “Think about your objects”
means to always verify that your objects and operations are compatible.

Proof Technique C
Constructive Proofs

Conclusions of proofs come in a variety of types. Often a theorem will simply assert that something
exists. The best way, but not the only way, to show something exists is to actually build it. Such
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a proof is called constructive. The thing to realize about constructive proofs is that the proof
itself will contain a procedure that might be used computationally to construct the desired object.
If the procedure is not too cumbersome, then the proof itself is as useful as the statement of the
theorem.

Proof Technique E
Equivalences

When a theorem uses the phrase “if and only if” (or the abbreviation “iff”) it is a shorthand way
of saying that two if-then statements are true. So if a theorem says “P if and only if Q,” then it is
true that “if P, then Q” while it is also true that “if Q, then P.” For example, it may be a theorem
that “I wear bright yellow knee-high plastic boots if and only if it is raining.” This means that I
never forget to wear my super-duper yellow boots when it is raining and I wouldn’t be seen in such
silly boots unless it was raining. You never have one without the other. I’ve got my boots on and
it is raining or I don’t have my boots on and it is dry.

The upshot for proving such theorems is that it is like a 2-for-1 sale, we get to do two proofs.
Assume P and conclude Q, then start over and assume Q and conclude P . For this reason, “if and
only if” is sometimes abbreviated by ⇐⇒ , while proofs indicate which of the two implications
is being proved by prefacing each with ⇒ or ⇐. A carefully written proof will remind the reader
which statement is being used as the hypothesis, a quicker version will let the reader deduce it
from the direction of the arrow. Tradition dictates we do the “easy” half first, but that’s hard for
a student to know until you’ve finished doing both halves! Oh well, if you rewrite your proofs (a
good habit), you can then choose to put the easy half first.

Theorems of this type are called “equivalences” or “characterizations,” and they are some of the
most pleasing results in mathematics. They say that two objects, or two situations, are really the
same. You don’t have one without the other, like rain and my yellow boots. The more different P
and Q seem to be, the more pleasing it is to discover they are really equivalent. And if P describes
a very mysterious solution or involves a tough computation, while Q is transparent or involves easy
computations, then we’ve found a great shortcut for better understanding or faster computation.
Remember that every theorem really is a shortcut in some form. You will also discover that if
proving P ⇒ Q is very easy, then proving Q⇒ P is likely to be proportionately harder. Sometimes
the two halves are about equally hard. And in rare cases, you can string together a whole sequence
of other equivalences to form the one you’re after and you don’t even need to do two halves. In
this case, the argument of one half is just the argument of the other half, but in reverse.

One last thing about equivalences. If you see a statement of a theorem that says two things are
“equivalent,” translate it first into an “if and only if” statement.

Proof Technique N
Negation

When we construct the contrapositive of a theorem (Technique CP [673]), we need to negate the
two statements in the implication. And when we construct a proof by contradiction (Technique
CD [673]), we need to negate the conclusion of the theorem. One way to construct a converse
(Technique CV [673]) is to simultaneously negate the hypothesis and conclusion of an implication
(but remember that this is not guaranteed to be a true statement). So we often have the need to
negate statements, and in some situations it can be tricky.

If a statement says that a set is empty, then its negation is the statement that the set is
nonempty. That’s straightforward. Suppose a statement says “something-happens” for all i, or
every i, or any i. Then the negation is that “something-doesn’t-happen” for at least one value of i.
If a statement says that there exists at least one “thing,” then the negation is the statement that
there is no “thing.” If a statement says that a “thing” is unique, then the negation is that there is

Version 1.30



Proof Technique PT.CP Contrapositives 673

zero, or more than one, of the “thing.”
We are not covering all of the possibilities, but we wish to make the point that logical qualifiers

like “there exists” or “for every” must be handled with care when negating statements. Studying
the proofs which employ contradiction (as listed in Technique CD [673]) is a good first step towards
understanding the range of possibilities.

Proof Technique CP
Contrapositives

The contrapositive of an implication P ⇒ Q is the implication not(Q) ⇒ not(P ), where “not”
means the logical negation, or opposite. An implication is true if and only if its contrapositive is
true. In symbols, (P ⇒ Q) ⇐⇒ (not(Q) ⇒ not(P )) is a theorem. Such statements about logic,
that are always true, are known as tautologies.

For example, it is a theorem that “if a vehicle is a fire truck, then it has big tires and has a
siren.” (Yes, I’m sure you can conjure up a counterexample, but play along with me anyway.) The
contrapositive is “if a vehicle does not have big tires or does not have a siren, then it is not a
fire truck.” Notice how the “and” became an “or” when we negated the conclusion of the original
theorem.

It will frequently happen that it is easier to construct a proof of the contrapositive than of the
original implication. If you are having difficulty formulating a proof of some implication, see if the
contrapositive is easier for you. The trick is to construct the negation of complicated statements
accurately. More on that later.

Proof Technique CV
Converses

The converse of the implication P ⇒ Q is the implication Q⇒ P . There is no guarantee that the
truth of these two statements are related. In particular, if an implication has been proven to be a
theorem, then do not try to use its converse too, as if it were a theorem. Sometimes the converse
is true (and we have an equivalence, see Technique E [672]). But more likely the converse is false,
especially if it wasn’t included in the statement of the original theorem.

For example, we have the theorem, “if a vehicle is a fire truck, then it is has big tires and has
a siren.” The converse is false. The statement that “if a vehicle has big tires and a siren, then it
is a fire truck” is false. A police vehicle for use on a sandy public beach would have big tires and
a siren, yet is not equipped to fight fires.

We bring this up now, because Theorem CSRN [49] has a tempting converse. Does this theorem
say that if r < n, then the system is consistent? Definitely not, as Archetype E [702] has r = 3 <
4 = n, yet is inconsistent. This example is then said to be a counterexample to the converse.
Whenever you think a theorem that is an implication might actually be an equivalence, it is good
to hunt around for a counterexample that shows the converse to be false (the archetypes, Appendix
A [681], can be a good hunting ground).

Proof Technique CD
Contradiction

Another proof technique is known as “proof by contradiction” and it can be a powerful (and
satisfying) approach. Simply put, suppose you wish to prove the implication, “If A, then B.” As
usual, we assume that A is true, but we also make the additional assumption that B is false. If our
original implication is true, then these twin assumptions should lead us to a logical inconsistency.
In practice we assume the negation of B to be true (see Technique N [672]). So we argue from the
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assumptions A and not(B) looking for some obviously false conclusion such as 1 = 6, or a set is
simultaneously empty and nonempty, or a matrix is both nonsingular and singular.

You should be careful about formulating proofs that look like proofs by contradiction, but
really aren’t. This happens when you assume A and not(B) and proceed to give a “normal” and
direct proof that B is true by only using the assumption that A is true. Your last step is to then
claim that B is true and you then appeal to the assumption that not(B) is true, thus getting the
desired contradiction. Instead, you could have avoided the overhead of a proof by contradiction
and just run with the direct proof. This stylistic flaw is known, quite graphically, as “setting up
the strawman to knock him down.”

Here is a simple example of a proof by contradiction. There are direct proofs that are just about
as easy, but this will demonstrate the point, while narrowly avoiding knocking down the straw man.

Theorem: If a and b are odd integers, then their product, ab, is odd.

Proof: To begin a proof by contradiction, assume the hypothesis, that a and b are odd. Also
assume the negation of the conclusion, in this case, that ab is even. Then there are integers, j, k,
` so that a = 2j + 1, b = 2k + 1, ab = 2`. Then

0 = ab− ab
= (2j + 1)(2k + 1)− (2`)
= 4jk + 2j + 2k − 2`+ 1
= 2 (2jk + j + k − `) + 1

Notice how we used both our hypothesis and the negation of the conclusion in the second line. Now
divide the integer on each end of this string of equalities by 2. On the left we get a remainder of 0,
while on the right we see that the remainder will be 1. Both remainders cannot be correct, so this
is our desired contradiction. Thus, the conclusion (that ab is odd) is true.

Again, we do not offer this example as the best proof of this fact about even and odd numbers,
but rather it is a simple illustration of a proof by contradiction. You can find examples of proofs
by contradiction in Theorem NMUS [70], Theorem NPNT [221], Theorem RREFU [106], Theorem
TTMI [210], Theorem GSP [171], Theorem ELIS [347], Theorem EDYES [350], Theorem EMHE
[392], Theorem EDELI [411], and Theorem DMFE [431], in addition to several examples and
solutions to exercises.

Proof Technique U
Uniqueness

A theorem will sometimes claim that some object, having some desirable property, is unique. In
other words, there should be only one such object. To prove this, a standard technique is to
assume there are two such objects and proceed to analyze the consequences. The end result may
be a contradiction (Technique CD [673]), or the conclusion that the two allegedly different objects
really are equal.

Proof Technique ME
Multiple Equivalences

A very specialized form of a theorem begins with the statement “The following are equivalent. . . ,”
which is then followed by a list of statements. Informally, this lead-in sometimes gets abbreviated
by “TFAE.” This formulation means that any two of the statements on the list can be connected
with an “if and only if” to form a theorem. So if the list has n statements then, there are n(n−1)

2
possible equivalences that can be constructed (and are claimed to be true).
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Suppose a theorem of this form has statements denoted as A, B, C,. . .Z. To prove the entire
theorem, we can prove A ⇒ B, B ⇒ C, C ⇒ D,. . . , Y ⇒ Z and finally, Z ⇒ A. This circular
chain of n equivalences would allow us, logically, if not practically, to form any one of the n(n−1)

2
possible equivalences by chasing the equivalences around the circle as far as required.

Proof Technique PI
Proving Identities

Many theorems have conclusions that say two objects are equal. Perhaps one object is hard to
compute or understand, while the other is easy to compute or understand. This would make for a
pleasing theorem. Whether the result is pleasing or not, we take the same approach to formulate
a proof. Sometimes we need to employ specialized notions of equality, such as Definition SE [666]
or Definition CVE [82], but in other cases we can string together a list of equalities.

The wrong way to prove an identity is to begin by writing it down and then beating on it until
it reduces to an obvious identity. The first flaw is that you would be writing down the statement
you wish to prove, as if you already believed it to be true. But more dangerous is the possibility
that some of your maneuvers are not reversible. Here’s an example. Let’s prove that 3 = −3.

3 = −3 (This is a bad start)

32 = (−3)2 Square both sides
9 = 9
0 = 0 Subtract 9 from both sides

So because 0 = 0 is a true statement, does it follow that 3 = −3 is a true statement? Nope. Of
course, we didn’t really expect a legitimate proof of 3 = −3, but this attempt should illustrate the
dangers of this (incorrect) approach.

What you have just seen in the proof of Theorem VSPCV [84], and what you will see consistently
throughout this text, is proofs of the following form. To prove that A = D we write

A = B Theorem, Definition or Hypothesis justifying A = B

= C Theorem, Definition or Hypothesis justifying B = C

= D Theorem, Definition or Hypothesis justifying C = D

In your scratch work exploring possible approaches to proving a theorem you may massage a variety
of expressions, sometimes making connections to various bits and pieces, while some parts get
abandonded. Once you see a line of attack, rewrite your proof carefully mimicking this style.

Proof Technique DC
Decompositions

Much of your mathematical upbringing, especially once you began a study of algebra, revolved
around simplifying expressions — combining like terms, obtaining common denominators so as
to add fractions, factoring in order to solve polynomial equations. However, as often as not, we
will do the opposite. Many theorems and techniques will revolve around taking some object and
“decomposing” it into some combination of other objects, ostensibly in a more complicated fashion.
When we say something can “be written as” something else, we mean that the one object can be
decomposed into some combination of other objects. This may seem unnatural at first, but results
of this type will give us insight into the structure of the original object by exposing its inner
workings. An appropriate analogy might be stripping the wallboards away from the interior of a
building to expose the structural members supporting the whole building.

This is a major shift in thinking, so come back here often, especially when we say “can be
written as”, or “can be expressed as,” or “can be decomposed as.”
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Proof Technique I
Induction

“Induction” or “mathematical induction” is a framework for proving statements that are indexed by
integers. In other words, suppose you have a statement to prove that is really multiple statements,
one for n = 1, another for n = 2, a third for n = 3, and so on. If there is enough similarity between
the statements, then you can use a script (the framework) to prove them all at once.

For example, consider the theorem

Theorem 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
for n ≥ 1.

This is shorthand for the many statements 1 = 1(1+1)
2 , 1 + 2 = 2(2+1)

2 , 1 + 2 + 3 = 3(3+1)
2 ,

1 + 2 + 3 + 4 = 4(4+1)
2 , and so on. Forever. You can do the calculations in each of these statements

and verify that all four are true. We might not be surprised to learn that the fifth statement is
true as well (go ahead and check). However, do we think the theorem is true for n = 872? Or
n = 1, 234, 529?

To see that these questions are not so ridiculous, consider the following example from Rotman’s
Journey into Mathematics. The statement “n2 − n + 41 is prime” is true for integers 1 ≤ n ≤ 40
(check a few). However, when we check n = 41 we find 412 − 41 + 41 = 412, which is not prime.

So how do we prove infinitely many statements all at once? More formally, lets denote our
statements as P (n). Then, if we can prove the two assertions

1. P (1) is true.

2. If P (k) is true, then P (k + 1) is true.

then it follows that P (n) is true for all n ≥ 1. To understand this, I liken the process to climbing
an infinitely long ladder with equally spaced rungs. Confronted with such a ladder, suppose I tell
you that you are able to step up onto the first rung, and if you are on any particular rung, then
you are capable of stepping up to the next rung. It follows that you can climb the ladder as far
up as you wish. The first formal assertion above is akin to stepping onto the first rung, and the
second formal assertion is akin to assuming that if you are on any one rung then you can always
reach the next rung.

In practice, establishing that P (1) is true is called the “base case” and in most cases is straight-
forward. Establishing that P (k)⇒ P (k + 1) is referred to as the “induction step,” or in this book
(and elsewhere) we will typically refer to the assumption of P (k) as the “induction hypothesis.”
This is perhaps the most mysterious part of a proof by induction, since it looks like you are as-
suming (P (k)) what you are trying to prove (P (n)). Sometimes it is even worse, since as you get
more comfortable with induction, we often don’t bother to use a different letter (k) for the index
(n) in the induction step. Notice that the second formal assertion never says that P (k) is true, it
simply says that if P (k) were true, what might logically follow. We can establish statements like
“If I lived on the moon, then I could pole-vault over a bar 12 meters high.” This may be a true
statement, but it does not say we live on the moon, and indeed we may never live there.

Enough generalities. Lets work an example and prove the theorem above about sums of integers.

Formally, our statement is P (n) : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Proof: Base Case. P (1) is the statement 1 = 1(1+1)
2 , which we see simplifies to the true

statement 1 = 1.
Induction Step: We will assume P (k) is true, and will try to prove P (k + 1). Given what we

want to accomplish, it is natural to begin by examining the sum of the first k + 1 integers.

1 + 2 + 3 + · · ·+ (k + 1)
= (1 + 2 + 3 + · · ·+ k) + (k + 1)
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=
k(k + 1)

2
+ (k + 1) Induction Hypothesis

=
k2 + k

2
=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
=

(k + 1)((k + 1) + 1)
2

We then recognize the two ends of this chain of equalities as P (k + 1). So, by mathematical
induction, the theorem is true for all n.

How do you recognize when to use induction? The first clue is a statement that is really many
statements, one for each integer. The second clue would be that you begin a more standard proof
and you find yourself using words like “and so on” (as above!) or lots of ellipses (dots) to establish
patterns that you are convinced continue on and on forever. However, there are many minor
instances where induction might be warranted but we don’t bother.

Induction is important enough, and used often enough, that it appers in various variations. The
base case sometimes begins with n = 0, or perhaps an integer greater than n. Some formulate the
induction step as P (k − 1) ⇒ P (k). There is also a “strong form” of induction where we assume
all of P (1), P (2), P (3), . . .P (k) as a hypothesis for showing the conclusion P (k + 1).
You can find examples of induction in the proofs of Theorem GSP [171], Theorem DER [369],
Theorem DT [370], Theorem DIM [379], Theorem EOMP [413], Theorem DCP [416], and Theorem
KPLT [601].

Proof Technique P
Practice

Here is a technique used by many practicing mathematicians when they are teaching themselves
new mathematics. As they read a textbook, monograph or research article, they attempt to prove
each new theorem themselves, before reading the proof. Often the proofs can be very difficult, so it
is wise not to spend too much time on each. Maybe limit your losses and try each proof for 10 or
15 minutes. Even if the proof is not found, it is time well-spent. You become more familiar with
the definitions involved, and the hypothesis and conclusion of the theorem. When you do work
through the proof, it might make more sense, and you will gain added insight about just how to
construct a proof.

Proof Technique LC
Lemmas and Corollaries

Theorems often go by different titles. Two of the most popular being “lemma” and “corollary.”
Before we describe the fine distinctions, be aware that lemmas, corollaries, propositions, claims
and facts are all just theorems. And every theorem can be rephrased as an “if-then” statement, or
perhaps a pair of “if-then” statements expressed as an equivalence (Technique E [672]).

A lemma is a theorem that is not too interesting in its own right, but is important for proving
other theorems. It might be a generalization or abstraction of a key step of several different proofs.
For this reason you often hear the phrase “technical lemma” though some might argue that the
adjective “technical” is redundant.

A corollary is a theorem that follows very easily from another theorem. For this reason, corol-
laries frequently do not have proofs. You are expected to easily and quickly see how a previous
theorem implies the corollary.

A proposition or fact is really just a codeword for a theorem. A claim might be similar, but
some authors like to use claims within a proof to organize key steps. In a similar manner, some
long proofs are organized as a series of lemmas.
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In order to not confuse the novice, we have just called all our theorems theorems. It is also an
organizational convenience. With only theorems and definitions, the theoretical backbone of the
course is laid bare in the two lists of Definitions [xi] and Theorems [xiii].
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Appendix A
Archetypes

The American Heritage Dictionary of the English Language (Third Edition) gives two definitions of
the word “archetype”: 1. An original model or type after which other similar things are patterned;
a prototype; and 2. An ideal example of a type; quintessence.

Either use might apply here. Our archetypes are typical examples of systems of equations,
matrices and linear transformations. They have been designed to demonstrate the range of possi-
bilities, allowing you to compare and contrast them. Several are of a size and complexity that is
usually not presented in a textbook, but should do a better job of being “typical.”

We have made frequent reference to many of these throughout the text, such as the frequent
comparisons between Archetype A [685] and Archetype B [689]. Some we have left for you to
investigate, such as Archetype J [722], which parallels Archetype I [718].

How should you use the archetypes? First, consult the description of each one as it is men-
tioned in the text. See how other facts about the example might illuminate whatever property or
construction is being described in the example. Second, each property has a short description that
usually includes references to the relevant theorems. Perform the computations and understand
the connections to the listed theorems. Third, each property has a small checkbox in front of it.
Use the archetypes like a workbook and chart your progress by “checking-off” those properties that
you understand.

The next page has a chart that summarizes some (but not all) of the properties described
for each archetype. Notice that while there are several types of objects, there are fundamental
connections between them. That some lines of the table do double-duty is meant to convey some
of these connections. Consult this table when you wish to quickly find an example of a certain
phenomenon.
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Archetype A

Summary Linear system of three equations, three unknowns. Singular coefficent matrix with
dimension 1 null space. Integer eigenvalues and a degenerate eigenspace for coefficient matrix.

A system of linear equations (Definition SLE [11]):

x1 − x2 + 2x3 = 1
2x1 + x2 + x3 = 8

x1 + x2 = 5

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 2, x2 = 3, x3 = 1

x1 = 3, x2 = 2, x3 = 0

Augmented matrix of the linear system of equations (Definition AM [26]):1 −1 2 1
2 1 1 8
1 1 0 5



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 1 3
0 1 −1 2
0 0 0 0



Analysis of the augmented matrix (Notation RREFA [29]):

r = 2 D = {1, 2} F = {3, 4}

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.x1

x2

x3

 =

3
2
0

+ x3

−1
1
1



Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.
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686 Archetype A

Properties of this new system will have precise relationships with various properties of the original
system.

x1 − x2 + 2x3 = 0
2x1 + x2 + x3 = 0
x1 + x2 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0, x3 = 0

x1 = −1, x2 = 1, x3 = 1

x1 = −5, x2 = 5, x3 = 5

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros: 1 0 1 0

0 1 −1 0
0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 2 D = {1, 2} F = {3, 4}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations.1 −1 2

2 1 1
1 1 0



Matrix brought to reduced row-echelon form: 1 0 1
0 1 −1
0 0 0



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 2 D = {1, 2} F = {3}
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Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [68]) at the same
time, examine the size of the set F above.Notice that this property does not apply to matrices that
are not square.

Singular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.〈

−1
1
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])〈

1
2
1

 ,
−1

1
1


〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[
1 −2 3

]
〈

−3
0
1

 ,
2

1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.〈

 1
0
−1

3

 ,
0

1
2
3


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])
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〈
1

0
1

 ,
 0

1
−1


〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if
the matrix is square, then the matrix must be nonsingular. (Definition MI [208], Theorem NI [223])

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 3 Rank: 2 Nullity: 1

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular
if and only if the determinant is nonzero (Theorem SMZD [381]). (Product of all eigenvalues?)

Determinant = 0

Eigenvalues, and bases for eigenspaces. (Definition EEM [389],Definition EM [397])

λ = 0 EA (0) =

〈
−1

1
1


〉

λ = 2 EA (2) =

〈
1

5
3


〉

Geometric and algebraic multiplicities. (Definition GME [399]Definition AME [399])

γA (0) = 1 αA (0) = 2
γA (2) = 1 αA (2) = 1

Diagonalizable? (Definition DZM [428])

No, γA (0) 6= αB (0), Theorem DMFE [431].
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Archetype B

Summary System with three equations, three unknowns. Nonsingular coefficent matrix. Dis-
tinct integer eigenvalues for coefficient matrix.

A system of linear equations (Definition SLE [11]):

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −3, x2 = 5, x3 = 2

Augmented matrix of the linear system of equations (Definition AM [26]):−7 −6 −12 −33
5 5 7 24
1 0 4 5



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 0 −3
0 1 0 5
0 0 1 2



Analysis of the augmented matrix (Notation RREFA [29]):

r = 3 D = {1, 2, 3} F = {4}

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.x1

x2

x3

 =

−3
5
2



Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.
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Properties of this new system will have precise relationships with various properties of the original
system.

−11x1 + 2x2 − 14x3 = 0
23x1 − 6x2 + 33x3 = 0
14x1 − 2x2 + 17x3 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0, x3 = 0

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros: 1 0 0 0

0 1 0 0
0 0 1 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 3 D = {1, 2, 3} F = {4}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations.−7 −6 −12

5 5 7
1 0 4



Matrix brought to reduced row-echelon form: 1 0 0
0 1 0
0 0 1



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 3 D = {1, 2, 3} F = { }

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [68]) at the same
time, examine the size of the set F above.Notice that this property does not apply to matrices that
are not square.
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Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])〈

−7
5
1

 ,
−6

5
0

 ,
−12

7
4


〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[]

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.〈

1
0
0

 ,
0

1
0

 ,
0

0
1


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])〈

1
0
0

 ,
0

1
0

 ,
0

0
1


〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if
the matrix is square, then the matrix must be nonsingular. (Definition MI [208], Theorem NI [223])
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−10 −12 −9
13
2 8 11

2
5
2 3 5

2



Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 3 Rank: 3 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular
if and only if the determinant is nonzero (Theorem SMZD [381]). (Product of all eigenvalues?)

Determinant = −2

Eigenvalues, and bases for eigenspaces. (Definition EEM [389],Definition EM [397])

λ = −1 EB (−1) =

〈
−5

3
1


〉

λ = 1 EB (1) =

〈
−3

2
1


〉

λ = 2 EB (2) =

〈
−2

1
1


〉

Geometric and algebraic multiplicities. (Definition GME [399]Definition AME [399])

γB (−1) = 1 αB (−1) = 1
γB (1) = 1 αB (1) = 1
γB (2) = 1 αB (2) = 1

Diagonalizable? (Definition DZM [428])

Yes, distinct eigenvalues, Theorem DED [433].

The diagonalization. (Theorem DC [429])−1 −1 −1
2 3 1
−1 −2 1

−7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1


=

−1 0 0
0 1 0
0 0 2


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Archetype C

Summary System with three equations, four variables. Consistent. Null space of coefficient
matrix has dimension 1.

A system of linear equations (Definition SLE [11]):

2x1 − 3x2 + x3 − 6x4 = −7
4x1 + x2 + 2x3 + 9x4 = −7
3x1 + x2 + x3 + 8x4 = −8

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −7, x2 = −2, x3 = 7, x4 = 1

x1 = −1, x2 = −7, x3 = 4, x4 = −2

Augmented matrix of the linear system of equations (Definition AM [26]):2 −3 1 −6 −7
4 1 2 9 −7
3 1 1 8 −8



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 0 2 −5
0 1 0 3 1
0 0 1 −1 6



Analysis of the augmented matrix (Notation RREFA [29]):

r = 3 D = {1, 2, 3} F = {4, 5}

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.
x1

x2

x3

x4

 =


−5
1
6
0

+ x4


−2
−3
1
1



Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.

Version 1.30



Archetype C 695

Properties of this new system will have precise relationships with various properties of the original
system.

2x1 − 3x2 + x3 − 6x4 = 0
4x1 + x2 + 2x3 + 9x4 = 0
3x1 + x2 + x3 + 8x4 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = −2, x2 = −3, x3 = 1, x4 = 1

x1 = −4, x2 = −6, x3 = 2, x4 = 2

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros: 1 0 0 2 0

0 1 0 3 0
0 0 1 −1 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 3 D = {1, 2, 3} F = {4, 5}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations.2 −3 1 −6

4 1 2 9
3 1 1 8



Matrix brought to reduced row-echelon form: 1 0 0 2
0 1 0 3
0 0 1 −1



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 3 D = {1, 2, 3} F = {4}
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This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈

−2
−3
1
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])〈

2
4
3

 ,
−3

1
1

 ,
1

2
1


〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[ ]

〈
1

0
0

 ,
0

1
0

 ,
0

0
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.〈

1
0
0

 ,
0

1
0

 ,
0

0
1


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])
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〈


1
0
0
2

 ,


0
1
0
3

 ,


0
0
1
−1



〉

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 4 Rank: 3 Nullity: 1
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Archetype D

Summary System with three equations, four variables. Consistent. Null space of coefficient
matrix has dimension 2. Coefficient matrix identical to that of Archetype E, vector of constants is
different.

A system of linear equations (Definition SLE [11]):

2x1 + x2 + 7x3 − 7x4 = 8
−3x1 + 4x2 − 5x3 − 6x4 = −12

x1 + x2 + 4x3 − 5x4 = 4

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 0, x2 = 1, x3 = 2, x4 = 1

x1 = 4, x2 = 0, x3 = 0, x4 = 0

x1 = 7, x2 = 8, x3 = 1, x4 = 3

Augmented matrix of the linear system of equations (Definition AM [26]): 2 1 7 −7 8
−3 4 −5 −6 −12
1 1 4 −5 4



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:

 1 0 3 −2 4
0 1 1 −3 0
0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [29]):

r = 2 D = {1, 2} F = {3, 4, 5}

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.

Version 1.30



Archetype D 699


x1

x2

x3

x4

 =


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1



Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.
Properties of this new system will have precise relationships with various properties of the original
system.

2x1 + x2 + 7x3 − 7x4 = 0
−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = −3, x2 = −1, x3 = 1, x4 = 0

x1 = 2, x2 = 3, x3 = 0, x4 = 1

x1 = −1, x2 = 2, x3 = 1, x4 = 1

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros: 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 2 D = {1, 2} F = {3, 4, 5}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations. 2 1 7 −7
−3 4 −5 −6
1 1 4 −5



Matrix brought to reduced row-echelon form: 1 0 3 −2
0 1 1 −3
0 0 0 0


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Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 2 D = {1, 2} F = {3, 4}

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈

−3
−1
1
0

 ,


2
3
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])〈

 2
−3
1

 ,
1

4
1


〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[
1 1

7 −11
7

]
〈

11
7
0
1

 ,
−1

7
1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.〈

 1
0
7
11

 ,
 0

1
1
11


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])
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〈


1
0
3
−2

 ,


0
1
1
−3



〉

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 4 Rank: 2 Nullity: 2
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Archetype E

Summary System with three equations, four variables. Inconsistent. Null space of coefficient
matrix has dimension 2. Coefficient matrix identical to that of Archetype D, constant vector is
different.

A system of linear equations (Definition SLE [11]):

2x1 + x2 + 7x3 − 7x4 = 2
−3x1 + 4x2 − 5x3 − 6x4 = 3

x1 + x2 + 4x3 − 5x4 = 2

Some solutions to the system of linear equations (not necessarily exhaustive):

None. (Why?)

Augmented matrix of the linear system of equations (Definition AM [26]): 2 1 7 −7 2
−3 4 −5 −6 3
1 1 4 −5 2



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 3 −2 0
0 1 1 −3 0
0 0 0 0 1



Analysis of the augmented matrix (Notation RREFA [29]):

r = 3 D = {1, 2, 5} F = {3, 4}

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.

Inconsistent system, no solutions exist.

Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.
Properties of this new system will have precise relationships with various properties of the original
system.

2x1 + x2 + 7x3 − 7x4 = 0
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−3x1 + 4x2 − 5x3 − 6x4 = 0
x1 + x2 + 4x3 − 5x4 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = 4, x2 = 13, x3 = 2, x4 = 5

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros: 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 2 D = {1, 2} F = {3, 4, 5}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations. 2 1 7 −7
−3 4 −5 −6
1 1 4 −5



Matrix brought to reduced row-echelon form: 1 0 3 −2
0 1 1 −3
0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 2 D = {1, 2} F = {3, 4}

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.
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〈

−3
−1
1
0

 ,


2
3
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])〈

 2
−3
1

 ,
1

4
1


〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[
1 1

7 −11
7

]
〈

11
7
0
1

 ,
−1

7
1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.〈

 1
0
7
11

 ,
 0

1
1
11


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])

〈


1
0
3
−2

 ,


0
1
1
−3



〉

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 4 Rank: 2 Nullity: 2
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Archetype F

Summary System with four equations, four variables. Nonsingular coefficient matrix. Integer
eigenvalues, one has “high” multiplicity.

A system of linear equations (Definition SLE [11]):

33x1 − 16x2 + 10x3 − 2x4 = −27
99x1 − 47x2 + 27x3 − 7x4 = −77
78x1 − 36x2 + 17x3 − 6x4 = −52
−9x1 + 2x2 + 3x3 + 4x4 = 5

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 1, x2 = 2, x3 = −2, x4 = 4

Augmented matrix of the linear system of equations (Definition AM [26]):
33 −16 10 −2 −27
99 −47 27 −7 −77
78 −36 17 −6 −52
−9 2 3 4 5



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 0 0 0 1
0 1 0 0 2
0 0 1 0 −2
0 0 0 1 4



Analysis of the augmented matrix (Notation RREFA [29]):

r = 4 D = {1, 2, 3, 4} F = {5}

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.
x1

x2

x3

x4

 =


1
2
−2
4



Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.

Version 1.30



706 Archetype F

Properties of this new system will have precise relationships with various properties of the original
system.

33x1 − 16x2 + 10x3 − 2x4 = 0
99x1 − 47x2 + 27x3 − 7x4 = 0
78x1 − 36x2 + 17x3 − 6x4 = 0
−9x1 + 2x2 + 3x3 + 4x4 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 4 D = {1, 2, 3, 4} F = {5}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations.

33 −16 10 −2
99 −47 27 −7
78 −36 17 −6
−9 2 3 4



Matrix brought to reduced row-echelon form:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 4 D = {1, 2, 3, 4} F = { }
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Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [68]) at the same
time, examine the size of the set F above.Notice that this property does not apply to matrices that
are not square.

Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])

〈


33
99
78
−9

 ,

−16
−47
−36

2

 ,


10
27
17
3

 ,

−2
−7
−6
4



〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[]

〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.

〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
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from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])

〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if
the matrix is square, then the matrix must be nonsingular. (Definition MI [208], Theorem NI [223])
−
(

86
3

)
38
3 −

(
11
3

)
7
3

−
(

129
2

)
86
3 −

(
17
2

)
31
6

−13 6 −2 1
−
(

45
2

)
29
3 −

(
5
2

)
13
6



Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 4 Rank: 4 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular
if and only if the determinant is nonzero (Theorem SMZD [381]). (Product of all eigenvalues?)

Determinant = −18

Eigenvalues, and bases for eigenspaces. (Definition EEM [389],Definition EM [397])

λ = −1 EF (−1) =

〈


1
2
0
1



〉

λ = 2 EF (2) =

〈


2
5
2
1



〉

λ = 3 EF (3) =

〈


1
1
0
7

 ,


17
45
21
0



〉

Geometric and algebraic multiplicities. (Definition GME [399]Definition AME [399])

γF (−1) = 1 αF (−1) = 1
γF (2) = 1 αF (2) = 1
γF (3) = 2 αF (3) = 2
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Diagonalizable? (Definition DZM [428])

Yes, full eigenspaces, Theorem DMFE [431].

The diagonalization. (Theorem DC [429])
12 −5 1 −1
−39 18 −7 3

27
7 −13

7
6
7 −1

7
26
7 −12

7
5
7 −2

7




33 −16 10 −2
99 −47 27 −7
78 −36 17 −6
−9 2 3 4




1 2 1 17
2 5 1 45
0 2 0 21
1 1 7 0



=


−1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3


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Archetype G

Summary System with five equations, two variables. Consistent. Null space of coefficient matrix
has dimension 0. Coefficient matrix identical to that of Archetype H, constant vector is different.

A system of linear equations (Definition SLE [11]):

2x1 + 3x2 = 6
−x1 + 4x2 = −14
3x1 + 10x2 = −2

3x1 − x2 = 20
6x1 + 9x2 = 18

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 6, x2 = −2

Augmented matrix of the linear system of equations (Definition AM [26]):
2 3 6
−1 4 −14
3 10 −2
3 −1 20
6 9 18



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:


1 0 6
0 1 −2
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix (Notation RREFA [29]):

r = 2 D = {1, 2} F = {3}

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.
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[
x1

x2

]
=
[

6
−2

]

Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.
Properties of this new system will have precise relationships with various properties of the original
system.

2x1 + 3x2 = 0
−x1 + 4x2 = 0
3x1 + 10x2 = 0

3x1 − x2 = 0
6x1 + 9x2 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros:

1 0 0
0 1 0
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 2 D = {1, 2} F = {3}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations.

2 3
−1 4
3 10
3 −1
6 9



Matrix brought to reduced row-echelon form:
1 0
0 1
0 0
0 0
0 0


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Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 2 D = {1, 2} F = { }

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])

〈


2
−1
3
3
6

 ,


3
4
10
−1
9



〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =

1 0 0 0 −1
3

0 1 0 1− 1
3

0 0 1 1 −1


〈


1
3
1
3
1
0
1

 ,


0
−1
−1
1
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.
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〈


1
0
2
1
3

 ,


0
1
1
−1
0



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])〈{[

1
0

]
,

[
0
1

]}〉

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 2 Rank: 2 Nullity: 0

Version 1.30



714 Archetype H

Archetype H

Summary System with five equations, two variables. Inconsistent, overdetermined. Null space
of coefficient matrix has dimension 0. Coefficient matrix identical to that of Archetype G, constant
vector is different.

A system of linear equations (Definition SLE [11]):

2x1 + 3x2 = 5
−x1 + 4x2 = 6
3x1 + 10x2 = 2

3x1 − x2 = −1
6x1 + 9x2 = 3

Some solutions to the system of linear equations (not necessarily exhaustive):

None. (Why?)

Augmented matrix of the linear system of equations (Definition AM [26]):
2 3 5
−1 4 6
3 10 2
3 −1 −1
6 9 3



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0



Analysis of the augmented matrix (Notation RREFA [29]):

r = 3 D = {1, 2, 3} F = { }

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.
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Inconsistent system, no solutions exist.

Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.
Properties of this new system will have precise relationships with various properties of the original
system.

2x1 + 3x2 = 0
−x1 + 4x2 = 0
3x1 + 10x2 = 0

3x1 − x2 = 0
6x1 + 9x2 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros:

1 0 0
0 1 0
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 2 D = {1, 2} F = {3}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations.

2 3
−1 4
3 10
3 −1
6 9



Matrix brought to reduced row-echelon form:
1 0
0 1
0 0
0 0
0 0


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Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 2 D = {1, 2} F = { }

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])

〈


2
−1
3
3
6

 ,


3
4
10
−1
9



〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[]

〈


1
3
1
3
1
0
1

 ,


0
−1
−1
1
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.
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〈


1
0
2
1
3

 ,


0
1
1
−1
0



〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =

1 0 0 0 −1
3

0 1 0 1− 1
3

0 0 1 1 −1


〈


1
3
1
3
1
0
1

 ,


0
−1
−1
1
0



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])〈{[

1
0

]
,

[
0
1

]}〉

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 2 Rank: 2 Nullity: 0
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Archetype I

Summary System with four equations, seven variables. Consistent. Null space of coefficient
matrix has dimension 4.

A system of linear equations (Definition SLE [11]):

x1 + 4x2 − x4 + 7x6 − 9x7 = 3
2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 9

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 1
−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 4

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −25, x2 = 4, x3 = 22, x4 = 29, x5 = 1, x6 = 2, x7 = −3

x1 = −7, x2 = 5, x3 = 7, x4 = 15, x5 = −4, x6 = 2, x7 = 1

x1 = 4, x2 = 0, x3 = 2, x4 = 1, x5 = 0, x6 = 0, x7 = 0

Augmented matrix of the linear system of equations (Definition AM [26]):
1 4 0 −1 0 7 −9 3
2 8 −1 3 9 −13 7 9
0 0 2 −3 −4 12 −8 1
−1 −4 2 4 8 −31 37 4



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:


1 4 0 0 2 1 −3 4
0 0 1 0 1 −3 5 2
0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [29]):

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7, 8}

Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.
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

x1

x2

x3

x4

x5

x6

x7


=



4
0
2
1
0
0
0


+ x2



−4
1
0
0
0
0
0


+ x5



−2
0
−1
−2
1
0
0


+ x6



−1
0
3
6
0
1
0


+ x7



3
0
−5
−6
0
0
1



Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.
Properties of this new system will have precise relationships with various properties of the original
system.

x1 + 4x2 − x4 + 7x6 − 9x7 = 0
2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 0

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 0
−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0

x1 = 3, x2 = 0, x3 = −5, x4 = −6, x5 = 0, x6 = 0, x7 = 1

x1 = −1, x2 = 0, x3 = 3, x4 = 6, x5 = 0, x6 = 1, x7 = 0

x1 = −2, x2 = 0, x3 = −1, x4 = −2, x5 = 1, x6 = 0, x7 = 0

x1 = −4, x2 = 1, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0

x1 = −4, x2 = 1, x3 = −3, x4 = −2, x5 = 1, x6 = 1, x7 = 1

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros:

1 4 0 0 2 1 −3 0
0 0 1 0 1 −3 5 0
0 0 0 1 2 −6 6 0
0 0 0 0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7, 8}

Coefficient matrix of original system of equations, and of associated homogenous system. This

Version 1.30



720 Archetype I

matrix will be the subject of further analysis, rather than the systems of equations.
1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37



Matrix brought to reduced row-echelon form:
1 4 0 0 2 1 −3
0 0 1 0 1 −3 5
0 0 0 1 2 −6 6
0 0 0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7}

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈




−4
1
0
0
0
0
0


,



−2
0
−1
−2
1
0
0


,



−1
0
3
6
0
1
0


,



3
0
−5
−6
0
0
1





〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])

〈


1
2
0
−1

 ,


0
−1
2
2

 ,

−1
3
−3
4



〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[
1 −12

31 −13
31

7
31

]
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〈

− 7

31
0
0
1

 ,


13
31
0
1
0

 ,


12
31
1
0
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.

〈


1
0
0
−31

7

 ,


0
1
0
12
7

 ,


0
0
1
13
7



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])

〈




1
4
0
0
2
1
−3


,



0
0
1
0
1
−3
5


,



0
0
0
1
2
−6
6





〉

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 7 Rank: 3 Nullity: 4
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Archetype J

Summary System with six equations, nine variables. Consistent. Null space of coefficient matrix
has dimension 5.

A system of linear equations (Definition SLE [11]):

x1 + 2x2 − 2x3 + 9x4 + 3x5 − 5x6 − 2x7 + x8 + 27x9 = −5
2x1 + 4x2 + 3x3 + 4x4 − x5 + 4x6 + 10x7 + 2x8 − 23x9 = 18

x1 + 2x2 + x3 + 3x4 + x5 + x6 + 5x7 + 2x8 − 7x9 = 6
2x1 + 4x2 + 3x3 + 4x4 − 7x5 + 2x6 + 4x7 − 11x9 = 20
x1 + 2x2 + 5x4 + 2x5 − 4x6 + 3x7 + 8x8 + 13x9 = −4

−3x1 − 6x2 − x3 − 13x4 + 2x5 − 5x6 − 4x7 + 13x8 + 10x9 = −29

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 6, x2 = 0, x3 = −1, x4 = 0, x5 = −1, x6 = 2, x7 = 0, x8 = 0, x9 = 0

x1 = 4, x2 = 1, x3 = −1, x4 = 0, x5 = −1, x6 = 2, x7 = 0, x8 = 0, x9 = 0

x1 = −17, x2 = 7, x3 = 3, x4 = 2, x5 = −1, x6 = 14, x7 = −1, x8 = 3, x9 = 2

x1 = −11, x2 = −6, x3 = 1, x4 = 5, x5 = −4, x6 = 7, x7 = 3, x8 = 1, x9 = 1

Augmented matrix of the linear system of equations (Definition AM [26]):

1 2 −2 9 3 −5 −2 1 27 −5
2 4 3 4 −1 4 10 2 −23 18
1 2 1 3 1 1 5 2 −7 6
2 4 3 4 −7 2 4 0 −11 20
1 2 0 5 2 −4 3 8 13 −4
−3 −6 −1 −13 2 −5 −4 13 10 −29



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:

1 2 0 5 0 0 1 −2 3 6
0 0 1 −2 0 0 3 5 −6 −1
0 0 0 0 1 0 1 1 −1 −1
0 0 0 0 0 1 0 −2 −3 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [29]):

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9, 10}
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Vector form of the solution set to the system of equations (Theorem VFSLS [98]). Notice the
relationship between the free variables and the set F above. Also, notice the pattern of 0’s and 1’s
in the entries of the vectors corresponding to elements of the set F for the larger examples.

x1

x2

x3

x4

x5

x6

x7

x8

x9


=



6
0
−1
0
−1
2
0
0
0


+ x2



−2
1
0
0
0
0
0
0
0


+ x4



−5
0
2
1
0
0
0
0
0


+ x7



−1
0
−3
0
−1
0
1
0
0


+ x8



2
0
−5
0
−1
2
0
1
0


+ x9



−3
0
6
0
1
3
0
0
1



Given a system of equations we can always build a new, related, homogeneous system (Definition
HS [57]) by converting the constant terms to zeros and retaining the coefficients of the variables.
Properties of this new system will have precise relationships with various properties of the original
system.

x1 + 2x2 − 2x3 + 9x4 + 3x5 − 5x6 − 2x7 + x8 + 27x9 = 0
2x1 + 4x2 + 3x3 + 4x4 − x5 + 4x6 + 10x7 + 2x8 − 23x9 = 0

x1 + 2x2 + x3 + 3x4 + x5 + x6 + 5x7 + 2x8 − 7x9 = 0
2x1 + 4x2 + 3x3 + 4x4 − 7x5 + 2x6 + 4x7 − 11x9 = 0
x1 + 2x2 + +5x4 + 2x5 − 4x6 + 3x7 + 8x8 + 13x9 = 0

−3x1 − 6x2 − x3 − 13x4 + 2x5 − 5x6 − 4x7 + 13x8 + 10x9 = 0

Some solutions to the associated homogenous system of linear equations (not necessarily ex-
haustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0

x1 = −2, x2 = 1, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0

x1 = −23, x2 = 7, x3 = 4, x4 = 2, x5 = 0, x6 = 12, x7 = −1, x8 = 3, x9 = 2

x1 = −17, x2 = −6, x3 = 2, x4 = 5, x5 = −3, x6 = 5, x7 = 3, x8 = 1, x9 = 1

Form the augmented matrix of the homogenous linear system, and use row operations to convert
to reduced row-echelon form. Notice how the entries of the final column remain zeros:

1 2 0 5 0 0 1 −2 3 0
0 0 1 −2 0 0 3 5 −6 0
0 0 0 0 1 0 1 1 −1 0
0 0 0 0 0 1 0 −2 −3 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [29]). Notice
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the slight variation for the same analysis of the original system only when the original system was
consistent:

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9, 10}

Coefficient matrix of original system of equations, and of associated homogenous system. This
matrix will be the subject of further analysis, rather than the systems of equations.

1 2 −2 9 3 −5 −2 1 27
2 4 3 4 −1 4 10 2 −23
1 2 1 3 1 1 5 2 −7
2 4 3 4 −7 2 4 0 −11
1 2 0 5 2 −4 3 8 13
−3 −6 −1 −13 2 −5 −4 13 10



Matrix brought to reduced row-echelon form:

1 2 0 5 0 0 1 −2 3
0 0 1 −2 0 0 3 5 −6
0 0 0 0 1 0 1 1 −1
0 0 0 0 0 1 0 −2 −3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9}

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈




−2
1
0
0
0
0
0
0
0


,



−5
0
2
1
0
0
0
0
0


,



−1
0
−3
0
−1
0
1
0
0


,



2
0
−5
0
−1
2
0
1
0


,



−3
0
6
0
1
3
0
0
1





〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])
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〈




1
2
1
2
1
−3

 ,


−2
3
1
3
0
−1

 ,


3
−1
1
−7
2
2

 ,


−5
4
1
2
−4
−5




〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[
1 0 186

131
51
131 −188

131
77
131

0 1 −272
131 − 45

131
58
131 − 14

131

]

〈




− 77
131
14
131
0
0
0
1

 ,


188
131
− 58

131
0
0
1
0

 ,


− 51
131
45
131
0
1
0
0

 ,


−186
131

272
131
1
0
0
0




〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.

〈




1
0
0
0
−1
−29

7

 ,


0
1
0
0
−11

2
−94

7

 ,


0
0
1
0
10
22

 ,


0
0
0
1
3
2
3




〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])

〈




1
2
0
5
0
0
1
−2
3


,



0
0
1
−2
0
0
3
5
−6


,



0
0
0
0
1
0
1
1
−1


,



0
0
0
0
0
1
0
−2
−3





〉

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
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[339]) Verify Theorem RPNC [340]

Matrix columns: 9 Rank: 4 Nullity: 5
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Archetype K

Summary Square matrix of size 5. Nonsingular. 3 distinct eigenvalues, 2 of multiplicity 2.

A matrix:


10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20



Matrix brought to reduced row-echelon form:


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 5 D = {1, 2, 3, 4, 5} F = { }

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [68]) at the same
time, examine the size of the set F above.Notice that this property does not apply to matrices that
are not square.

Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem
BCS [234])
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〈


10
12
−30
27
18

 ,


18
−2
−21
30
24

 ,


24
−6
−23
36
30

 ,


24
0
−30
37
30

 ,

−12
−18
39
−30
−20



〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[]

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if
the matrix is square, then the matrix must be nonsingular. (Definition MI [208], Theorem NI [223])
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
1 −

(
9
4

)
−
(

3
2

)
3 −6

21
2

43
4

21
2 9 −9

−15 −
(

21
2

)
−11 −15 39

2
9 15

4
9
2 10 −15

9
2

3
4

3
2 6 −

(
19
2

)



Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
[339]) Verify Theorem RPNC [340]

Matrix columns: 5 Rank: 5 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular
if and only if the determinant is nonzero (Theorem SMZD [381]). (Product of all eigenvalues?)

Determinant = 16

Eigenvalues, and bases for eigenspaces. (Definition EEM [389],Definition EM [397])

λ = −2 EK (−2) =

〈


2
−2
1
0
1

 ,

−1
2
−2
1
0



〉

λ = 1 EK (1) =

〈


4
−10

7
0
2

 ,

−4
18
−17

5
0



〉

λ = 4 EK (4) =

〈


1
−1
0
1
1



〉

Geometric and algebraic multiplicities. (Definition GME [399]Definition AME [399])

γK (−2) = 2 αK (−2) = 2
γK (1) = 2 αK (1) = 2
γK (4) = 1 αK (4) = 1

Diagonalizable? (Definition DZM [428])
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Yes, full eigenspaces, Theorem DMFE [431].

The diagonalization. (Theorem DC [429])
−4 −3 −4 −6 7
−7 −5 −6 −8 10
1 −1 −1 1 −3
1 0 0 1 −2
2 5 6 4 0




10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20




2 −1 4 −4 1
−2 2 −10 18 −1
1 −2 7 −17 0
0 1 0 5 1
1 0 2 0 1



=


−2 0 0 0 0
0 −2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 4


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Archetype L

Summary Square matrix of size 5. Singular, nullity 2. 2 distinct eigenvalues, each of “high”
multiplicity.

A matrix:
−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6



Matrix brought to reduced row-echelon form:
1 0 0 1 −2
0 1 0 −2 2
0 0 1 2 −1
0 0 0 0 0
0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [29]):

r = 5 D = {1, 2, 3} F = {4, 5}

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NMRRI [68]) at the same
time, examine the size of the set F above.Notice that this property does not apply to matrices that
are not square.

Singular.

This is the null space of the matrix. The set of vectors used in the span construction is a
linearly independent set of column vectors that spans the null space of the matrix (Theorem SSNS
[118], Theorem BNS [140]). Solve the homogenous system with this matrix as the coefficient matrix
and write the solutions in vector form (Theorem VFSLS [98]) to see these vectors arise.

〈


−1
2
−2
1
0

 ,


2
−2
1
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that
are also columns of the matrix. These columns have indices that form the set D above. (Theorem

Version 1.30



732 Archetype L

BCS [234])

〈


−2
−6
10
−7
−4

 ,

−1
−5
7
−5
−3

 ,

−2
−4
7
−6
−4



〉

The column space of the matrix, as it arises from the extended echelon form of the matrix.
The matrix L is computed as described in Definition EEF [254]. This is followed by the column
space described by a set of linearly independent vectors that span the null space of L, computed as
according to Theorem FS [257] and Theorem BNS [140]. When r = m, the matrix L has no rows
and the column space is all of Cm.

L =
[
1 0 −2 −6 5
0 1 4 10 −9

]

〈


−5
9
0
0
1

 ,


6
−10

0
1
0

 ,


2
−4
1
0
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors.
These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon
form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By
Theorem CSRST [241] and Theorem BRS [240], and in the style of Example CSROI [241], this
yields a linearly independent set of vectors that span the column space.

〈


1
0
0
9
4
5
2

 ,


0
1
0
5
4
3
2

 ,


0
0
1
1
2
1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained
from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS [240])

〈


1
0
0
1
−2

 ,


0
1
0
−2
2

 ,


0
0
1
2
−1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if
the matrix is square, then the matrix must be nonsingular. (Definition MI [208], Theorem NI [223])

Subspace dimensions associated with the matrix. (Definition NOM [338], Definition ROM
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[339]) Verify Theorem RPNC [340]

Matrix columns: 5 Rank: 3 Nullity: 2

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular
if and only if the determinant is nonzero (Theorem SMZD [381]). (Product of all eigenvalues?)

Determinant = 0

Eigenvalues, and bases for eigenspaces. (Definition EEM [389],Definition EM [397])

λ = −1 EL (−1) =

〈


−5
9
0
0
1

 ,


6
−10

0
1
0

 ,


2
−4
1
0
0



〉

λ = 0 EL (0) =

〈


2
−2
1
0
1

 ,

−1
2
−2
1
0



〉

Geometric and algebraic multiplicities. (Definition GME [399]Definition AME [399])

γL (−1) = 3 αL (−1) = 3
γL (0) = 2 αL (0) = 2

Diagonalizable? (Definition DZM [428])

Yes, full eigenspaces, Theorem DMFE [431].

The diagonalization. (Theorem DC [429])
4 3 4 6 −6
7 5 6 9 −10
−10 −7 −7 −10 13
−4 −3 −4 −6 7
−7 −5 −6 −8 10



−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6



−5 6 2 2 −1
9 −10 −4 −2 2
0 0 1 1 −2
0 1 0 0 1
1 0 0 1 0



=


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0


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Archetype M

Summary Linear transformation with bigger domain than codomain, so it is guaranteed to not
be injective. Happens to not be surjective.

A linear transformation: (Definition LT [443])

T : C5 7→ C3, T



x1

x2

x3

x4

x5


 =

x1 + 2x2 + 3x3 + 4x4 + 4x5

3x1 + x2 + 4x3 − 3x4 + 7x5

x1 − x2 − 5x4 + x5



A basis for the null space of the linear transformation: (Definition KLT [468])




−2
−1
0
0
1

 ,


2
−3
0
1
0

 ,

−1
−1
1
0
0




Injective: No. (Definition ILT [465])

Since the kernel is nontrivial Theorem KILT [471] tells us that the linear transformation is not
injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 2,
just from checking dimensions of the domain and the codomain. In particular, verify that

T




1
2
−1
4
5


 =

 38
24
−16

 T




0
−3
0
5
6


 =

 38
24
−16



This demonstration that T is not injective is constructed with the observation that
0
−3
0
5
6

 =


1
2
−1
4
5

+


−1
−5
1
1
1


and

z =


−1
−5
1
1
1

 ∈ K(T )
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so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):


1

3
1

 ,
 2

1
−1

 ,
3

4
0

 ,
 4
−3
−5

 ,
4

7
1


If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: 

 1
0
−4

5

 ,
0

1
3
5



Surjective: No. (Definition SLT [479])

Notice that the range is not all of C3 since its dimension 2, not 3. In particular, verify that3
4
5

 6∈ R(T ), by setting the output equal to this vector and seeing that the resulting system of

linear equations has no solution, i.e. is inconsistent. So the preimage, T−1

3
4
5

, is empty. This

alone is sufficient to see that the linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 5 Rank: 2 Nullity: 3

Invertible: No.

Not injective or surjective.

Matrix representation (Theorem MLTCV [449]):

T : C5 7→ C3, T (x) = Ax, A =

1 2 3 4 4
3 1 4 −3 7
1 −1 0 −5 1


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Archetype N

Summary Linear transformation with domain larger than its codomain, so it is guaranteed to
not be injective. Happens to be onto.

A linear transformation: (Definition LT [443])

T : C5 7→ C3, T



x1

x2

x3

x4

x5


 =

2x1 + x2 + 3x3 − 4x4 + 5x5

x1 − 2x2 + 3x3 − 9x4 + 3x5

3x1 + 4x3 − 6x4 + 5x5



A basis for the null space of the linear transformation: (Definition KLT [468])




1
−1
−2
0
1

 ,

−2
−1
3
1
0




Injective: No. (Definition ILT [465])

Since the kernel is nontrivial Theorem KILT [471] tells us that the linear transformation is not
injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 2,
just from checking dimensions of the domain and the codomain. In particular, verify that

T



−3
1
−2
−3
1


 =

 6
19
6

 T



−4
−4
−2
−1
4


 =

 6
19
6



This demonstration that T is not injective is constructed with the observation that
−4
−4
−2
−1
4

 =


−3
1
−2
−3
1

+


−1
−5
0
2
3


and

z =


−1
−5
0
2
3

 ∈ K(T )
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so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):


2

1
3

 ,
 1
−2
0

 ,
3

3
4

 ,
−4
−9
−6

 ,
5

3
5


If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: 

1
0
0

 ,
0

1
0

 ,
0

0
1



Surjective: Yes. (Definition SLT [479])

Notice that the basis for the range above is the standard basis for C3. So the range is all of C3 and
thus the linear transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 5 Rank: 3 Nullity: 2

Invertible: No.

Not surjective, and the relative sizes of the domain and codomain mean the linear transformation
cannot be injective. (Theorem ILTIS [498])

Matrix representation (Theorem MLTCV [449]):

T : C5 7→ C3, T (x) = Ax, A =

2 1 3 −4 5
1 −2 3 −9 3
3 0 4 −6 5


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Archetype O

Summary Linear transformation with a domain smaller than the codomain, so it is guaranteed
to not be onto. Happens to not be one-to-one.

A linear transformation: (Definition LT [443])

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3



A basis for the null space of the linear transformation: (Definition KLT [468])


−2

1
1



Injective: No. (Definition ILT [465])

Since the kernel is nontrivial Theorem KILT [471] tells us that the linear transformation is not
injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 2,
just from checking dimensions of the domain and the codomain. In particular, verify that

T

 5
−1
3

 =


−15
−19

7
10
11

 T

1
1
5

 =


−15
−19

7
10
11


This demonstration that T is not injective is constructed with the observation that1

1
5

 =

 5
−1
3

+

−4
2
2


and

z =

−4
2
2

 ∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
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SSRLT [487]):




−1
−1
1
2
1

 ,


1
2
1
3
0

 ,

−3
−4
1
1
2




If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: 


1
0
−3
−7
−2

 ,


0
1
2
5
1




Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 3 Rank: 2 Nullity: 1

Surjective: No. (Definition SLT [479])

The dimension of the range is 2, and the codomain (C5) has dimension 5. So the transformation
is not onto. Notice too that since the domain C3 has dimension 3, it is impossible for the range
to have a dimension greater than 3, and no matter what the actual definition of the function, it
cannot possibly be onto.

To be more precise, verify that


2
3
1
1
1

 6∈ R(T ), by setting the output equal to this vector and

seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the

preimage, T−1




2
3
1
1
1


, is empty. This alone is sufficient to see that the linear transformation is

not onto.

Invertible: No.

Not injective, and the relative dimensions of the domain and codomain prohibit any possibility of
being surjective.

Matrix representation (Theorem MLTCV [449]):
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T : C3 7→ C5, T (x) = Ax, A =


−1 1 −3
−1 2 −4
1 1 1
2 3 1
1 0 2


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Archetype P

Summary Linear transformation with a domain smaller that its codomain, so it is guaranteed
to not be surjective. Happens to be injective.

A linear transformation: (Definition LT [443])

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 + x3

−x1 + 2x2 + 2x3

x1 + x2 + 3x3

2x1 + 3x2 + x3

−2x1 + x2 + 3x3



A basis for the null space of the linear transformation: (Definition KLT [468])

{ }

Injective: Yes. (Definition ILT [465])

Since K(T ) = {0}, Theorem KILT [471] tells us that T is injective.

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):




−1
−1
1
2
−2

 ,


1
2
1
3
1

 ,


1
2
3
1
3




If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: 


1
0
0
−10

6

 ,


0
1
0
7
−3

 ,


0
0
1
−1
1




Surjective: No. (Definition SLT [479])
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The dimension of the range is 3, and the codomain (C5) has dimension 5. So the transformation is
not surjective. Notice too that since the domain C3 has dimension 3, it is impossible for the range
to have a dimension greater than 3, and no matter what the actual definition of the function, it
cannot possibly be surjective in this situation.

To be more precise, verify that


2
1
−3
2
6

 6∈ R(T ), by setting the output equal to this vector and

seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the

preimage, T−1




2
1
−3
2
6


, is empty. This alone is sufficient to see that the linear transformation is

not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 3 Rank: 3 Nullity: 0

Invertible: No.

The relative dimensions of the domain and codomain prohibit any possibility of being surjective,
so apply Theorem ILTIS [498].

Matrix representation (Theorem MLTCV [449]):

T : C3 7→ C5, T (x) = Ax, A =


−1 1 1
−1 2 2
1 1 3
2 3 1
−2 1 3


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Archetype Q

Summary Linear transformation with equal-sized domain and codomain, so it has the potential
to be invertible, but in this case is not. Neither injective nor surjective. Diagonalizable, though.

A linear transformation: (Definition LT [443])

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5



A basis for the null space of the linear transformation: (Definition KLT [468])




3
4
1
3
3




Injective: No. (Definition ILT [465])

Since the kernel is nontrivial Theorem KILT [471] tells us that the linear transformation is not
injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 2,
just from checking dimensions of the domain and the codomain. In particular, verify that

T




1
3
−1
2
4


 =


4
55
72
77
31

 T




4
7
0
5
7


 =


4
55
72
77
31


This demonstration that T is not injective is constructed with the observation that

4
7
0
5
7

 =


1
3
−1
2
4

+


3
4
1
3
3


and

z =


3
4
1
3
3

 ∈ K(T )
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so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):




−2
−16
−19
−21
−9

 ,


3
9
7
9
5

 ,


3
12
14
15
7

 ,

−6
−28
−32
−35
−16

 ,


3
28
37
39
16




If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: 


1
0
0
0
1

 ,


0
1
0
0
−1

 ,


0
0
1
0
−1

 ,


0
0
0
1
2




Surjective: No. (Definition SLT [479])

The dimension of the range is 4, and the codomain (C5) has dimension 5. So R(T ) 6= C5 and by
Theorem RSLT [485] the transformation is not surjective.

To be more precise, verify that


−1
2
3
−1
4

 6∈ R(T ), by setting the output equal to this vector and

seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the

preimage, T−1



−1
2
3
−1
4


, is empty. This alone is sufficient to see that the linear transformation is

not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 5 Rank: 4 Nullity: 1

Invertible: No.

Neither injective nor surjective. Notice that since the domain and codomain have the same dimen-
sion, either the transformation is both onto and one-to-one (making it invertible) or else it is both
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not onto and not one-to-one (as in this case) by Theorem RPNDD [504].

Matrix representation (Theorem MLTCV [449]):

T : C5 7→ C5, T (x) = Ax, A =


−2 3 3 −6 3
−16 9 12 −28 28
−19 7 14 −32 37
−21 9 15 −35 39
−9 5 7 −16 16



Eigenvalues and eigenvectors (Definition EELT [559], Theorem EER [571]):

λ = −1 ET (−1) =

〈


0
2
3
3
1



〉

λ = 0 ET (0) =

〈


3
4
1
3
3



〉

λ = 1 ET (1) =

〈


5
3
0
0
2

 ,

−3
1
0
2
0

 ,


1
−1
2
0
0



〉

Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

B =




0
2
3
3
1

 ,


3
4
1
3
3

 ,


5
3
0
0
2

 ,

−3
1
0
2
0

 ,


1
−1
2
0
0




MT
B,B =


−1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


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Archetype R

Summary Linear transformation with equal-sized domain and codomain. Injective, surjective,
invertible, diagonalizable, the works.

A linear transformation: (Definition LT [443])

T : C5 7→ C5, T



x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5



A basis for the null space of the linear transformation: (Definition KLT [468])

{ }

Injective: Yes. (Definition ILT [465])

Since the kernel is trivial Theorem KILT [471] tells us that the linear transformation is injective.

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):




−65
36
−44
34
12

 ,


128
−73
88
−68
−24

 ,


10
−1
5
−3
−1

 ,

−262
151
−180
140
49

 ,


40
−16
24
−18
−5




If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: 


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1




Surjective: Yes. (Definition SLT [479])

Version 1.30



Archetype R 747

A basis for the range is the standard basis of C5, so R(T ) = C5 and Theorem RSLT [485] tells us
T is surjective. Or, the dimension of the range is 5, and the codomain (C5) has dimension 5. So
the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 5 Rank: 5 Nullity: 0

Invertible: Yes.

Both injective and surjective (Theorem ILTIS [498]). Notice that since the domain and codomain
have the same dimesion, either the transformation is both injective and surjective (making it
invertible, as in this case) or else it is both not injective and not surjective.

Matrix representation (Theorem MLTCV [449]):

T : C5 7→ C5, T (x) = Ax, A =


−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5



The inverse linear transformation (Definition IVLT [495]):

T−1 : C5 → C5, T−1



x1

x2

x3

x4

x5


 =


−47x1 + 92x2 + x3 − 181x4 − 14x5

27x1 − 55x2 + 7
2x3 + 221

4 x4 + 11x5

−32x1 + 64x2 − x3 − 126x4 − 12x5

25x1 − 50x2 + 3
2x3 + 199

2 x4 + 9x5

9x1 − 18x2 + 1
2x3 + 71

2 x4 + 4x5


Verify that T

(
T−1 (x)

)
= x and T

(
T−1 (x)

)
= x, and notice that the representations of the

transformation and its inverse are matrix inverses (Theorem IMR [543], Definition MI [208]).

Eigenvalues and eigenvectors (Definition EELT [559], Theorem EER [571]):

λ = −1 ET (−1) =

〈


−57

0
−18
14
5

 ,


2
1
0
0
0



〉

λ = 1 ET (1) =

〈


−10
−5
−6
0
1

 ,


2
3
1
1
0



〉
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λ = 2 ET (2) =

〈


−6
3
−4
3
1



〉

Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

B =




−57

0
−18
14
5

 ,


2
1
0
0
0

 ,

−10
−5
−6
0
1

 ,


2
3
1
1
0

 ,

−6
3
−4
3
1




MT
B,B =


−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2


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Archetype S

Summary Domain is column vectors, codomain is matrices. Domain is dimension 3 and
codomain is dimension 4. Not injective, not surjective.

A linear transformation: (Definition LT [443])

T : C3 7→M22, T

ab
c

 =
[

a− b 2a+ 2b+ c
3a+ b+ c −2a− 6b− 2c

]

A basis for the null space of the linear transformation: (Definition KLT [468])


−1
−1
4



Injective: No. (Definition ILT [465])

Since the kernel is nontrivial Theorem KILT [471] tells us that the linear transformation is not
injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 1,
just from checking dimensions of the domain and the codomain. In particular, verify that

T

2
1
3

 =
[

1 9
10 −16

]
T

 0
−1
11

 =
[

1 9
10 −16

]
This demonstration that T is not injective is constructed with the observation that 0

−1
11

 =

2
1
3

+

−2
−2
8


and

z =

−2
−2
8

 ∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):

{[
1 2
3 −2

]
,

[
−1 2
1 −6

]
,

[
0 1
1 −2

]}
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If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: {[

1 0
1 2

]
,

[
0 1
1 −2

]}

Surjective: No. (Definition SLT [479])

The dimension of the range is 2, and the codomain (M22) has dimension 4. So the transformation
is not surjective. Notice too that since the domain C3 has dimension 3, it is impossible for the
range to have a dimension greater than 3, and no matter what the actual definition of the function,
it cannot possibly be surjective in this situation.

To be more precise, verify that
[
2 −1
1 3

]
6∈ R(T ), by setting the output of T equal to this matrix

and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the

preimage, T−1

([
2 −1
1 3

])
, is empty. This alone is sufficient to see that the linear transformation

is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 3 Rank: 2 Nullity: 1

Invertible: No.

Not injective (Theorem ILTIS [498]), and the relative dimensions of the domain and codomain
prohibit any possibility of being surjective.

Matrix representation (Definition MR [529]):

B =


1

0
0

 ,
0

1
0

 ,
0

0
1


C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

MT
B,C =


1 −1 0
2 2 1
3 1 1
−2 −6 −2


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Archetype T

Summary Domain and codomain are polynomials. Domain has dimension 5, while codomain
has dimension 6. Is injective, can’t be surjective.

A linear transformation: (Definition LT [443])

T : P4 7→ P5, T (p(x)) = (x− 2)p(x)

A basis for the null space of the linear transformation: (Definition KLT [468])

{ }

Injective: Yes. (Definition ILT [465])

Since the kernel is trivial Theorem KILT [471] tells us that the linear transformation is injective.

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):

{
x− 2, x2 − 2x, x3 − 2x2, x4 − 2x3, x5 − 2x4, x6 − 2x5

}
If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: {

− 1
32
x5 + 1, − 1

16
x5 + x, −1

8
x5 + x2, −1

4
x5 + x3, −1

2
x5 + x4

}

Surjective: No. (Definition SLT [479])

The dimension of the range is 5, and the codomain (P5) has dimension 6. So the transformation is
not surjective. Notice too that since the domain P4 has dimension 5, it is impossible for the range
to have a dimension greater than 5, and no matter what the actual definition of the function, it
cannot possibly be surjective in this situation.

To be more precise, verify that 1 +x+x2 +x3 +x4 6∈ R(T ), by setting the output equal to this
vector and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent.
So the preimage, T−1

(
1 + x+ x2 + x3 + x4

)
, is nonempty. This alone is sufficient to see that the

linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
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results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 5 Rank: 5 Nullity: 0

Invertible: No.

The relative dimensions of the domain and codomain prohibit any possibility of being surjective,
so apply Theorem ILTIS [498].

Matrix representation (Definition MR [529]):

B =
{

1, x, x2, x3, x4
}

C =
{

1, x, x2, x3, x4, x5
}

MT
B,C =



−2 0 0 0 0
1 −2 0 0 0
0 1 −2 0 0
0 0 1 −2 0
0 0 0 1 −2
0 0 0 0 1


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Archetype U

Summary Domain is matrices, codomain is column vectors. Domain has dimension 6, while
codomain has dimension 4. Can’t be injective, is surjective.

A linear transformation: (Definition LT [443])

T : M23 7→ C4, T

([
a b c
d e f

])
=


a+ 2b+ 12c− 3d+ e+ 6f

2a− b− c+ d− 11f
a+ b+ 7c+ 2d+ e− 3f
a+ 2b+ 12c+ 5e− 5f



A basis for the null space of the linear transformation: (Definition KLT [468])

{[
3 −4 0
1 2 1

]
,

[
−2 −5 1
0 0 0

]}

Injective: No. (Definition ILT [465])

Since the kernel is nontrivial Theorem KILT [471] tells us that the linear transformation is not
injective. Also, since the rank can not exceed 4, we are guaranteed to have a nullity of at least 2,
just from checking dimensions of the domain and the codomain. In particular, verify that

T

([
1 10 −2
3 −1 1

])
=


−7
−14
−1
−13

 T

([
5 −3 −1
5 3 3

])
=


−7
−14
−1
−13


This demonstration that T is not injective is constructed with the observation that[

5 −3 −1
5 3 3

]
=
[
1 10 −2
3 −1 1

]
+
[
4 −13 1
2 4 2

]
and

z =
[
4 −13 1
2 4 2

]
∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):


1
2
1
1

 ,


2
−1
1
2

 ,


12
−1
7
12

 ,

−3
1
2
0

 ,


1
0
1
5

 ,


6
−11
−3
−5


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If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: 


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




Surjective: Yes. (Definition SLT [479])

A basis for the range is the standard basis of C4, so R(T ) = C4 and Theorem RSLT [485] tells us
T is surjective. Or, the dimension of the range is 4, and the codomain (C4) has dimension 4. So
the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 6 Rank: 4 Nullity: 2

Invertible: No.

The relative sizes of the domain and codomain mean the linear transformation cannot be injective.
(Theorem ILTIS [498])

Matrix representation (Definition MR [529]):

B =
{[

1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 1
0 0 0

]
,

[
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]}

C =




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




MT
B,C =


1 2 12 −3 1 6
2 −1 −1 1 0 −11
1 1 7 2 1 −3
1 2 12 0 5 −5


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Archetype V

Summary Domain is polynomials, codomain is matrices. Domain and codomain both have
dimension 4. Injective, surjective, invertible. Square matrix representation, but domain and
codomain are unequal, so no eigenvalue information.

A linear transformation: (Definition LT [443])

T : P3 7→M22, T
(
a+ bx+ cx2 + dx3

)
=
[
a+ b a− 2c
d b− d

]

A basis for the null space of the linear transformation: (Definition KLT [468])

{ }

Injective: Yes. (Definition ILT [465])

Since the kernel is trivial Theorem KILT [471] tells us that the linear transformation is injective.

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):

{[
1 1
0 0

]
,

[
1 0
0 1

]
,

[
0 −2
0 0

]
,

[
0 0
1 −1

]}
If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: {[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Surjective: Yes. (Definition SLT [479])

A basis for the range is the standard basis of M22, so R(T ) = M22 and Theorem RSLT [485] tells
us T is surjective. Or, the dimension of the range is 4, and the codomain (M22) has dimension 4.
So the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 4 Rank: 4 Nullity: 0
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Invertible: Yes.

Both injective and surjective (Theorem ILTIS [498]). Notice that since the domain and codomain
have the same dimesion, either the transformation is both injective and surjective (making it
invertible, as in this case) or else it is both not injective and not surjective.

Matrix representation (Definition MR [529]):

B =
{

1, x, x2, x3
}

C =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

MT
B,C =


1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0 −1



Since invertible, the inverse linear transformation. (Definition IVLT [495])

T−1 : M22 7→ P3, T−1

([
a b
c d

])
= (a− c− d) + (c+ d)x+

1
2

(a− b− c− d)x2 + cx3
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Archetype W

Summary Domain is polynomials, codomain is polynomials. Domain and codomain both have
dimension 3. Injective, surjective, invertible, 3 distinct eigenvalues, diagonalizable.

A linear transformation: (Definition LT [443])

T : P2 7→ P2, T
(
a+ bx+ cx2

)
= (19a+ 6b− 4c) + (−24a− 7b+ 4c) + (36a+ 12b− 9c)

A basis for the null space of the linear transformation: (Definition KLT [468])

{ }

Injective: Yes. (Definition ILT [465])

Since the kernel is trivial Theorem KILT [471] tells us that the linear transformation is injective.

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):

{
19− 24x+ 36x2, 6− 7x+ 12x2, −4 + 4x− 9x2

}
If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: {

1, x, x2
}

Surjective: Yes. (Definition SLT [479])

A basis for the range is the standard basis of C5, so R(T ) = C5 and Theorem RSLT [485] tells us
T is surjective. Or, the dimension of the range is 5, and the codomain (C5) has dimension 5. So
the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 3 Rank: 3 Nullity: 0

Invertible: Yes.
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Both injective and surjective (Theorem ILTIS [498]). Notice that since the domain and codomain
have the same dimesion, either the transformation is both injective and surjective (making it
invertible, as in this case) or else it is both not injective and not surjective.

Matrix representation (Definition MR [529]):

B =
{

1, x, x2
}

C =
{

1, x, x2
}

MT
B,C =

 19 6 −4
−24 −7 4
36 12 −9



Since invertible, the inverse linear transformation. (Definition IVLT [495])

T−1 : P2 7→ P2, T−1
(
a+ bx+ cx2

)
= (−5a− 2b+

4
3
c) + (24a+ 9b− 20

3
c)x+ (12a+ 4b− 11

3
c)x2

Eigenvalues and eigenvectors (Definition EELT [559], Theorem EER [571]):

λ = −1 ET (−1) =
〈{

2x+ 3x2
}〉

λ = 1 ET (1) = 〈{−1 + 3x}〉
λ = 3 ET (3) =

〈{
1− 2x+ x2

}〉
Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

B =
{

2x+ 3x2, −1 + 3x, 1− 2x+ x2
}

MT
B,B =

−1 0 0
0 1 0
0 0 3


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Archetype X

Summary Domain and codomain are square matrices. Domain and codomain both have dimen-
sion 4. Not injective, not surjective, not invertible, 3 distinct eigenvalues, diagonalizable.

A linear transformation: (Definition LT [443])

T : M22 7→M22, T

([
a b
c d

])
=
[
−2a+ 15b+ 3c+ 27d 10b+ 6c+ 18d

a− 5b− 9d −a− 4b− 5c− 8d

]

A basis for the null space of the linear transformation: (Definition KLT [468])

{[
−6 −3
2 1

]}

Injective: No. (Definition ILT [465])

Since the kernel is nontrivial Theorem KILT [471] tells us that the linear transformation is not
injective. In particular, verify that

T

([
−2 0
1 −4

])
=
[

115 78
−38 −35

]
T

([
4 3
−1 3

])
=
[

115 78
−38 −35

]
This demonstration that T is not injective is constructed with the observation that[

4 3
−1 3

]
=
[
−2 0
1 −4

]
+
[

6 3
−2 −1

]
and

z =
[

6 3
−2 −1

]
∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [483])

Evaluate the linear transformation on a standard basis to get a spanning set for the range (Theorem
SSRLT [487]):

{[
−2 0
1 −1

]
,

[
15 10
−5 −4

]
,

[
3 6
0 −5

]
,

[
27 18
−9 −8

]}
If the linear transformation is injective, then the set above is guaranteed to be linearly independent
(Theorem ILTLI [472]). This spanning set may be converted to a “nice” basis, by making the
vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and
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retaining the nonzero rows (Theorem BRS [240]), and perhaps un-coordinatizing. A basis for the
range is: {[

1 0
−1

2 0

]
,

[
0 1
1
4 0

]
,

[
0 0
0 1

]}

Surjective: No. (Definition SLT [479])

The dimension of the range is 3, and the codomain (M22) has dimension 5. So R(T ) 6= M22 and
by Theorem RSLT [485] the transformation is not surjective.

To be more precise, verify that
[
2 4
3 1

]
6∈ R(T ), by setting the output of T equal to this matrix

and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the

preimage, T−1

([
2 4
3 1

])
, is empty. This alone is sufficient to see that the linear transformation is

not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier
results for matrices. Verify Theorem RPNDD [504].

Domain dimension: 4 Rank: 3 Nullity: 1

Invertible: No.

Neither injective nor surjective (Theorem ILTIS [498]). Notice that since the domain and codomain
have the same dimesion, either the transformation is both injective and surjective or else it is both
not injective and not surjective (making it not invertible, as in this case).

Matrix representation (Definition MR [529]):

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

MT
B,C =


−2 15 3 27
0 10 6 18
1 −5 0 −9
−1 −4 −5 −8



Eigenvalues and eigenvectors (Definition EELT [559], Theorem EER [571]):

λ = 0 ET (0) =
〈{[

−6 −3
2 1

]}〉
λ = 1 ET (1) =

〈{[
−7 −2
3 0

]
,

[
−1 −2
0 1

]}〉
λ = 3 ET (3) =

〈{[
−3 −2
1 1

]}〉
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Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

B =
{[
−6 −3
2 1

]
,

[
−7 −2
3 0

]
,

[
−1 −2
0 1

]
,

[
−3 −2
1 1

]}

MT
B,B =


0 0 0 0
0 1 0 0
0 0 3 0
0 0 0 3


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Appendix GFDL
GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
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The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you
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must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modifi-
cation of the Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.
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I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of Invari-
ant Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
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unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if
the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
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The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Version 1.30



Part T
Topics

769





Section F
Fields

Draft: This Section Complete, But Subject To Change

We have chosen to present introductory linear algebra in the Core (Part C [3]) using scalars
from the set of complex numbers, C. We could have instead chosen to use scalars from the set
of real numbers, R. This would have presented certain difficulties when we encountered charac-
teristic polynomials with complex roots (Definition CP [396]) or when we needed to be sure every
matrix had at least one eigenvalue (Theorem EMHE [392]). However, much of the basics would
be unchanged. The definition of a vector space would not change, nor would the ideas of linear
independence, spanning, or bases. Linear transformations would still behave the same and we
would still obtain matrix representations, though our ideas about canonical forms would have to
be adjusted slightly.

The real numbers and the complex numbers are both examples of what are called fields, and we
can “do” linear algebra in just a bit more generality by letting our scalars take values from some
unspecified field. So in this section we will describe exactly what constitutes a field, give some
finite examples, and discuss another connection between fields and vector spaces. Vector spaces
over finite fields are very important in certain applications, so this is partially background for other
topics. As such, we will not prove every claim we make.

Subsection F
Fields

Like a vector space, a field is a set along with two binary operations. The distinction is that both
operations accept two elements of the set, and then produce a new element of the set. In a vector
space we have two sets — the vectors and the scalars, and scalar multiplication mixes one of each
to produce a vector. Here is the careful definition of a field.

Definition F
Field
Suppose that F is a set upon which we have defined two operations: (1) addition, which combines
two elements of F and is denoted by “+”, and (2) multiplication, which combines two elements
of F and is denoted by juxtaposition. Then F , along with the two operations, is a field if the
following properties hold.

• ACF Additive Closure, Field
If α, β ∈ F , then α+ β ∈ F .

• MCF Multiplicative Closure, Field
If α, β ∈ F , then αβ ∈ F .

• CAF Commutativity of Addition, Field
If α, β ∈ F , then α+ β = β + α.

• CMF Commutativity of Multiplication, Field
If α, β ∈ F , then αβ = βα.

• AAF Additive Associativity, Field
If α, β, γ ∈ V , then α+ (β + γ) = (α+ β) + γ.

• MAF Multiplicative Associativity, Field
If α, β, γ ∈ V , then α (βγ) = (αβ) γ.
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• DF Distributivity, Field
If α, β, γ ∈ F , then α(β + γ) = αβ + αγ.

• ZF Zero, Field
There is an element, 0 ∈ F , called zero, such that α+ 0 = α for all α ∈ F .

• OF One, Field
There is an element, 1 ∈ F , called one, such that α(1) = α for all α ∈ F .

• AIF Additive Inverse, Field
If α ∈ F , then there exists −α ∈ V so that α+ (−α) = 0.

• MIF Multiplicative Inverse, Field
If α ∈ F , α 6= 0, then there exists 1

α ∈ V so that α
(

1
α

)
= 1.

4
Mostly this definition says that all the good things you might expect, really do happen in a

field. The one technicality is that the special element, 0, the additive identity element, does not
have a multiplicative inverse. In other words, no dividing by zero.

This definition should remind you of Theorem PCNA [662], and indeed, Theorem PCNA [662]
provides the justification for the statement that the complex numbers form a field. Another example
of field is the set of rational numbers

Q =
{
p

q

∣∣∣∣ p, q are integers, q 6= 0
}

Of course, the real numbers, R, also form a field. It is this field that you probably studied for
many years. You began studying the integers (“counting”), then the rationals (“fractions”), then
the reals (“algebra”), along with some excursions in the complex numbers (“imaginary numbers”).
So you should have seen three fields already in your previous studies.

Our first observation about fields is that we can go back to our definition of a vector space
(Definition VS [273]) and replace every occurence of C by some general, unspecified field, F , and
all our subsequent definitions and theorems are still true, so long as we avoid roots of polynomials
(or equivalently, factoring polynomials). So if you consult more advanced texts on linear algebra,
you will see this sort of approach. You might study some of the first theorems we proved about
vector spaces in Subsection VS.VSP [279] and work through their proofs in the more general setting
of an arbitrary field. This exercise should convince you that very little changes when we move from
C to an arbitrary field F . (See Exercise F.T10 [776].)

Subsection FF
Finite Fields

It may sound odd at first, but there exist finite fields, and even finite vector spaces. We will find
certain of these important in subsequent applications, so we collect some ideas and properties here.

Definition IMP
Integers Modulo a Prime
Suppose that p is a prime number. Let Zp = {0, 1, 2, . . . , p− 1}. Add and multiply elements of
Zp as integers, but whenever a result lies outside of the set Zp, find its remainder after division by
p and replace the result by this remainder. 4

We have defined a set, and two binary operations. The result is a field.

Theorem FIMP
Field of Integers Modulo a Prime
The set of integers modulo a prime p, Zp, is a field. �

Example IM11
Integers mod 11
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Z11 is a field by Theorem FIMP [772]. Here we provide some sample calculations.

8 + 5 = 2 −8 = 3 5− 9 = 7

5(7) = 2
1
7

= 8
6
5

= 10

25 = 10 −1 = 10
1
0

= ?

�

We can now “do” linear algebra using scalars from a finite field.

Example VSIM5
Vector space over integers mod 5
Let (Z5)3 be the set of all column vectors of length 3 with entries from Z5. Use Z5 as the set of
scalars. Define addition and multiplication the usual way. We exhibit a few sample calculations.2

3
4

+

4
1
3

 =

1
4
2

 3

2
0
4

 =

1
0
2


We can, of course, build linear combinations, such as

2

1
3
0

− 4

2
1
1

+

1
2
4

 =

0
4
0


which almost looks like a relation of linear dependence. The set

1
3
1

 ,
2

2
0


is linearly independent, while the set 

1
3
1

 ,
2

2
0

 ,
4

3
2


is linearly dependent, as can be seen from the relation of linear dependence formed by the scalars
a1 = 2, a2 = 1 and a3 = 4. To find these scalars, one would take the same approach as Example
LDS [133], but in performing row operations to solve a homogeneous system, you would need to
take care that all scalar (field) operations are performed over Z5, especially when multiplying a row
by a scalar to make a leading entry equal to 1. One more observation about this example — the
set 

1
0
0

 ,
1

1
0

 ,
1

1
1


is a basis for (Z5)3, since it is both linearly independent and spans (Z5)3. �

In applications to computer science or electrical engineering, Z2 is the most important field,
since it can be used to describe the binary nature of logic, circuitry, communications and their
intertwined relationships. The vector space of column vectors with entries from Z2, (Z2)n, with
scalars taken from Z2 is the natural extension of this idea. Notice that Z2 has the minimum number
of elements to be a field, since any field must contain a zero and a one (Property ZF [772], Property
OF [772]).
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Example SM2Z7
Symmetric matrices of size 2 over Z7

We can employ the field of integers modulo a prime to build other examples of vector spaces with
novel fields of scalars. Define

S22 (Z7) =
{[

a b
b c

] ∣∣∣∣ a, b, c ∈ Z7

}
which is the set of all 2× 2 symmetric matrices with entries from Z7. Use the field Z7 as the set of
scalars, and define vector addition and scalar multiplication in the natural way. The result will be
a vector space.

Notice that the field of scalars is finite, as is the vector space, since there are 73 = 343 matrices
in S22 (Z7). The set {[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
is a basis, so dim (S22 (Z7)) = 3. �

In a more advanced algebra course it is possible to prove that the number of elements in a finite
field must be of the form pn, where p is a prime. We can’t go so far afield as to prove this here,
but we can demonstrate an example.

Example FF8
Finite field of size 8
Define the set F as F =

{
a+ bt+ ct2

∣∣ a, b, c ∈ Z2

}
. Add and multiply these quantities as poly-

nomials in the variable t, but replace any occurence of t3 by t+ 1.
This defines a set, and the two operations on elements of that set. Do not be concerned with

what t “is,” because it isn’t. t is just a handy device that makes the example a field. We’ll say
a bit more about t when we finish. But first, some examples. Remember that 1 + 1 = 0 in Z2.
Addition is quite simple, for example,(

1 + t+ t2
)

+
(
1 + t2

)
= (1 + 1) + (1 + 0)t+ (1 + 1)t2 = t

Multiplication gets more involved, for example,(
1 + t+ t2

) (
1 + t2

)
= 1 + t2 + t+ t3 + t2 + t4

= 1 + t+ (1 + 1)t2 + t3 (1 + t)
= 1 + t+ (1 + t) (1 + t)

= 1 + t+ 1 + t+ t+ t2

= (1 + 1) + (1 + 1 + 1)t+ t2

= t+ t2

Every element has a multiplicative inverse (Property MIF [772]). What is the inverse of t + t2?
Check that (

t+ t2
)

(1 + t) = t+ t2 + t2 + t3

= t+ (1 + 1)t2 + (1 + t)
= t+ 1 + t

= 1 + (1 + 1)t
= 1

So we can write 1
t+t2

= 1 + t. So that you may experiment, we give you the complete addition
and multiplication tables for this field. Addition is simple, while multiplication is more interesting,
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so verify a few entries of each table. Because of the commutativity of addition and multiplication
(Property CAF [771], Property CMF [771]), we have just listed half of each table.

+ 0 1 t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1
0 0 1 t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1
1 0 t+ 1 t2 + 1 t t2 + t+ 1 t2 + t t2

t 0 t2 + t 1 t2 t2 + 1 t2 + t+ 1
t2 0 t2 + t+ 1 t t+ 1 1
t+ 1 0 t2 + 1 t2 t2 + t
t2 + t 0 1 t+ 1
t2 + t+ 1 0 t
t2 + 1 0

· 0 1 t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1
0 0 0 0 0 0 0 0 0
1 1 t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1
t t2 t+ 1 t2 + t t2 + t+ 1 t2 + 1 1
t2 t2 + t t2 + t+ 1 t2 + 1 1 t
t+ 1 t2 + 1 1 t t2

t2 + t t t2 t+ 1
t2 + t+ 1 1 + t t2 + t
t2 + 1 t2 + t+ 1

Note that every element of F is a linear combination (with scalars from Z2) of the polynomials 1,
t, t2. So B =

{
1, t, t2

}
is a spanning set for F . Further, B is linearly independent since there

is no nontrivial relation of linear dependence, and B is a basis. So dim (F ) = 3. Of course, this
paragraph presumes that F is also a vector space over Z2 (which it is). �

The defining relation for t (t3 = t + 1) in Example FF8 [774] arises from the polynomial
t3+t+1, which has no factorization with coefficients from Z2. This is an example of an irreducible
polynomial, which involves considerable theory to fully understand. In the exercises, we provide
you with a few more irreducible polynomials to experiment with. See the suggested readings if you
would like to learn more.

Trivially, every field (finite or otherwise) is a vector space. Suppose we begin with a field F .
From this we know F has two binary operations defined on it. We need to somehow create a vector
space from F , in a general way. First we need a set of vectors. That’ll be F . We also need a set
of scalars. That’ll be F as well. How do we define the addition of two vectors? By the same rule
that we use to add them when they are in the field. How do we define scalar multiplication? Since
a scalar is an element of F , and a vector is an element of F , we can define scalar multiplication
to be the same rule that we use to multiply the two elements as members of the field. With these
definitions, F will be a vector space (Exercise F.T20 [777]). This is something of a trivial situation,
since the set of vectors and the set of scalars are identical. In particular, do not confuse this with
Example FF8 [774] where the set of vectors has eight elements, and the set of scalars has just two
elements.

Further Reading
Robert J. McEliece, Finite Fields for Scientists and Engineers. Kluwer Academic Publishers, 1987.

Rudolpf Lidl, Harald Niederreiter, Introduction to Finite Fields and Their Applications, Revised
Edition. Cambridge University Press, 1994.
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Subsection EXC
Exercises

C60 Consider the vector space (Z5)4 composed of column vectors of size 4 with entries from Z5.
The matrix A is a square matrix composed of four such column vectors.

A =


3 3 0 3
1 2 3 0
1 1 0 2
4 2 2 1


Find the inverse of A. Use this to find a solution to LS(A, b) when

b =


3
3
2
0


Contributed by Robert Beezer Solution [778]

M10 Suppose we relax the restriction in Definition IMP [772] to allow p to not be a prime. Will
the construction given still be a field? Is Z6 a field? Can you generalize?
Contributed by Robert Beezer

M40 Construct a finite field with 9 elements using the set

F = {a+ bt | a, b ∈ Z3}

where t2 is consistently replaced by 2t + 1 in any intermediate results obtained with polynomial
multiplication. Compute the first nine powers of t (t0 through t8). Use this information to aid you
in the construction of the multiplication table for this field. What is the multiplicative inverse of
2t?
Contributed by Robert Beezer

M45 Construct a finite field with 25 elements using the set

F = {a+ bt | a, b ∈ Z5}

where t2 is consistently replaced by t + 3 in any intermediate results obtained with polynomial
multiplication. Compute the first 25 powers of t (t0 through t24). Use this information to aid you
in computing in this field. What is the multiplicative inverse of 2t? What is the multiplicative
inverse of 4? What is the multiplicative inverse of 1 + 4t?

Find a basis for F as a vector space with Z5 used as the set of scalars.
Contributed by Robert Beezer

M50 Construct a finite field with 16 elements using the set

F =
{
a+ bt+ ct2 + dt3

∣∣ a, b, c, d ∈ Z2

}
where t4 is consistently replaced by t+1 in any intermediate results obtained with polynomial mul-
tiplication. Compute the first 16 powers of t (t0 through t15). Consider the set G =

{
0, 1, t5, t10

}
.

Then G will also be a finite field, a subfield of F . Construct the addition and multiplication tables
for G. Notice that since both G and F are vector spaces over Z2, and G ⊆ F , by Definition S [287],
G is a subspace of F .
Contributed by Robert Beezer

T10 Give a new proof of Theorem ZVSM [280] for a vector space whose scalars come from an
arbitrary field F .
Contributed by Robert Beezer
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T20 By applying Definition VS [273], prove that every field is also a vector space. (See the
construction at the end of this section.)
Contributed by Robert Beezer
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Subsection SOL
Solutions

C60 Contributed by Robert Beezer Statement [776]
Remember that every computation must be done with arithmetic in the field, reducing any inter-
mediate number outside of {0, 1, 2, 3, 4} to its remainder after division by 5.

The matrix inverse can be found with Theorem CINM [212] (and we discover along the way
that A is nonsingular). The inverse is

A−1 =


1 1 3 1
3 4 1 4
1 4 0 2
3 0 1 0


Then by an application of Theorem SNCM [223] the (unique) solution to the system will be

A−1b =


1 1 3 1
3 4 1 4
1 4 0 2
3 0 1 0




3
3
2
0

 =


2
3
0
1


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Section T
Trace

This section contributed by Andy Zimmer.

The matrix trace is a function that sends square matrices to scalars. In some ways it is reminis-
cent of the determinant. And like the determinant, it has many useful and surprising properties.

Definition T
Trace
Suppose A is a square matrix of size n. Then the trace of A, t (A), is the sum of the diagonal
entries of A. Symbolically,

t (A) =
n∑
i=1

[A]ii

(This definition contains Notation T.) 4

The next three proofs make for excellent practice. In some books they would be left as exercises
for the reader as they are all “trivial” in the sense they do not rely on anything but the definition
of the matrix trace.

Theorem TL
Trace is Linear
Suppose A and B are square matrices of size n. Then t (A+B) = t (A) + t (B). Furthermore, if
α ∈ C, then t (αA) = αt (A). �

Proof These properties are exactly those required for a linear transformation. To prove these
results we just manipulate sums,

t (A+B) =
n∑
k=1

[A+B]ii Definition T [779]

=
n∑
i=1

[A]ii + [B]ii Definition MA [179]

=
n∑
i=1

[A]ii +
n∑
i=1

[B]ii Property CACN [662]

= t (A) + t (B) Definition T [779]

The second part is as straightforward as the first,

t (αA) =
n∑
i=1

[αA]ii Definition T [779]

=
n∑
i=1

α [A]ii Definition MSM [180]

= α

n∑
i=1

[A]ii Property DCN [662]

= αt (A) Definition T [779]

�

Theorem TSRM
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Trace is Symmetric with Respect to Multiplication
Suppose A and B are square matrices of size n. Then t (AB) = t (BA). �

Proof

t (AB) =
n∑
k=1

[AB]kk Definition T [779]

=
n∑
k=1

n∑
`=1

[A]k` [B]`k Theorem EMP [195]

=
n∑
`=1

n∑
k=1

[A]k` [B]`k Property CACN [662]

=
n∑
`=1

n∑
k=1

[B]`k [A]k` Property CMCN [662]

=
n∑
`=1

[BA]`` Theorem EMP [195]

= t (BA) Definition T [779]

�

Theorem TIST
Trace is Invariant Under Similarity Transformations
Suppose A and S are square matrices of size n and S is invertible. Then t

(
S−1AS

)
= t (A). �

Proof Invariant means constant under some operation. In this case the operation is a similarity
transformation. A lengthy exercise (but possibly a educational one) would be to prove this result
without referencing Theorem TSRM [780]. But here we will,

t
(
S−1AS

)
= t
((
S−1A

)
S
)

Theorem MMA [198]

= t
(
S
(
S−1A

))
Theorem TSRM [780]

= t
((
SS−1

)
A
)

Theorem MMA [198]
= t (A) Definition MI [208]

�

Now we could define the trace of a linear transformation as the trace of any matrix represen-
tation of the transformation. Would this definition be well-defined? That is, will two different
representations of the same linear transformation always have the same trace? Why? (Think The-
orem SCB [568].) We will now prove one of the most interesting and surprising results about the
trace.

Theorem TSE
Trace is the Sum of the Eigenvalues
Suppose that A is a square matrix of size n with distinct eigenvalues λ1, λ2, λ3, . . . , λk. Then

t (A) =
k∑
i=1

αA (λi)λi

�

Proof It is amazing that the eigenvalues would have anything to do with the sum of the diagonal
entries. Our proof will rely on double counting. We will demonstrate two different ways of counting
the same thing therefore proving equality. Our object of interest is the coefficient of xn−1 in the
characteristic polynomial of A (Definition CP [396]), which will be denoted αn−1. From the proof
of Theorem NEM [416] we have,

pA (x) = (−1)n(x− λ1)αA(λ1)(x− λ2)αA(λ2)(x− λ3)αA(λ3) · · · (x− λk)αA(λk)
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First we want to prove that αn−1 is equal to (−1)n+1
∑k

i=1 αA (λi)λi and to do this we will use a
straight forward counting argument. Induction can be used here as well (try it), but the intuitive
approach is a much stronger technique. Let’s imagine creating each term one by one from the
extended product. How do we do this? From each (x− λi) we pick either a x or a λi. But we are
only interested in the terms that result in x to the power n − 1. As

∑k
i=1 αA (λi) = n, we have n

factors of the form (x − λi). Then to get terms with xn−1 we need to pick x’s in every (x − λi),
except one. Since we have n linear factors there are n ways to do this, namely each eigenvalue
represented as many times as it’s algebraic multiplicity. Now we have to take into account the sign
of each term. As we pick n − 1 x’s and one λi (which has a negative sign in the linear factor) we
get a factor of −1. Then we have to take into account the (−1)n in the characteristic polynomial.
Thus αn−1 is the sum of these terms,

αn−1 = (−1)n+1
k∑
i=1

αA (λi)λi

Now we will now show that αn−1 is also equal to (−1)n−1t (A). For this we will proceed by
induction on the size of A. If A is a 1× 1 square matrix then pA (x) = det (A− xIn) = ([A]11 − x)
and (−1)1−1t (A) = [A]11. With our base case in hand let’s assume A is a square matrix of size n.
By Definition CP [396]

pA (x) = det (A− xIn)
= [A− xIn]11 det ((A− xIn) (1|1))− [A− xIn]12 det ((A− xIn) (1|2)) +

[A− xIn]13 det ((A− xInn) (1|3))− · · ·+ (−1)n+1 [A− xIn]1n det ((A− xIn) (1|n))

First let’s consider the maximum degree of [A− xIn]1i det ((A− xIn) (1|i)) when i 6= 1. For polyno-
mials, the degree of f , denoted d(f), is the highest power of x in the expression f(x). A well known
result of this definition is: if f(x) = g(x)h(x) then d(f) = d(g) + d(h) (can you prove this?). Now
[A− xIn]1i has degree zero when i 6= 1. Furthermore (A− xIn) (1|i) has n− 1 rows, one of which
has all of its entries of degree zero, since column i is removed. The other n− 2 rows have one entry
with degree one and the remainer of degree zero. Then by Exercise T.T30 [783], the maximum
degree of [A− xIn]1i det ((A− xIn) (1|i)) is n − 2. So these terms will not affect the coefficient of
xn−1. Now we are free to focus all of our attention on the term [A− xIn]11 det ((A− xIn) (1|1)).
As A (1|1) is a (n− 1)× (n− 1) matrix the induction hypothesis tells us that det ((A− xIn) (1|1))
has a coefficient of (−1)n−2t (A (1|1)) for xn−2. We also note that the proof of Theorem NEM [416]
tells us that the leading coefficent of det ((A− xIn) (1|1)) is (−1)n−1. Then,

[A− xIn]11 det ((A− xIn) (1|1)) = ([A]11 − x)
(
(−1)n−1xn−1 + (−1)n−2t (A (1|1))xn−2 + . . .

)
Expanding the product shows αn−1 (the coefficient of xn−1) to be

αn−1 = (−1)n−1 [A]11 + (−1)n−1t (A (1|1))

= (−1)n−1 [A]11 + (−1)n−1
n−1∑
k=1

[A (1|1)]kk Definition T [779]

= (−1)n−1
(

[A]11 +
n−1∑
k=1

[A (1|1)]kk
)

Property DCN [662]

= (−1)n−1
(

[A]11 +
n∑
k=2

[A]kk
)

Definition SM [367]

= (−1)n−1t (A) Definition T [779]

With two expressions for αn−1, we have our result,

t (A) = (−1)n+1(−1)n−1t (A)

= (−1)n+1αn−1
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= (−1)n+1(−1)n+1
k∑
i=1

αA (λi)λi

=
k∑
i=1

αA (λi)λi

�

Version 1.30



Subsection T.EXC Exercises 783

Subsection EXC
Exercises

T10 Prove there are no square matrices A and B such that AB −BA = In.
Contributed by Andy Zimmer

T12 Assume A is a square matrix of size n matrix. Prove t (A) = t
(
At
)
.

Contributed by Andy Zimmer

T20 If Tn = {M ∈Mnn | t (M) = 0} then prove Tn is a subspace of Mnn and determine it’s
dimension.
Contributed by Andy Zimmer

T30 Assume A is a n × n matrix with polynomial entries. Define md(A, i) to be the maximum
degree of the entries in row i. Then d(det (A)) ≤ md(A, 1) +md(A, 2) + . . .+md(A,n). (Hint: If
f(x) = h(x) + g(x), then d(f) ≤ max{d(h), d(g)}.)
Contributed by Andy Zimmer Solution [784]

T40 If A is a square matrix, the matrix exponential is defined as

eA =
∞∑
i=0

Ai

i!

Prove that det
(
eA
)

= et(A). (You might want to give some thought to the convergence of the
infinite sum as well.)
Contributed by Andy Zimmer
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Subsection SOL
Solutions

T30 Contributed by Andy Zimmer Statement [783]
We will proceed by induction. If A is a square matrix of size 1, then clearly d(det (A)) ≤ md(A, 1).
Now assume A is a square matrix of size n then by Theorem DER [369],

det (A) = (−1)2 [A]1,1 det (A (1|1)) + (−1)3 [A]1,2 det (A (1|2))

+ (−1)4 [A]1,3 det (A (1|3)) + · · ·+ (−1)n+1 [A]1,n det (A (1|n))

Let’s consider the degree of term j, (−1)1+j [A]1,j det (A (1|j)). By definition of the function md,
d([A]1,j) ≤ md(A, j). We use our induction hypothesis to examine the other part of the product
which tells us that

d (det (A (1|j))) ≤ md(A (1|j) , 1) +md(A (1|j) , 2) + · · ·+md(A (1|j) , n− 1)

Furthermore by definition of A (1|j) (Definition SM [367]) row i of matrix A contains all the entries
of the corresponding row in A (1|j) then,

md(A (1|j) , 1) ≤ md(A, 1)
md(A (1|j) , 2) ≤ md(A, 2)

...
md(A (1|j) , j − 1) ≤ md(A, j − 1)

md(A (1|j) , j) ≤ md(A, j + 1)
...

md(A (1|j) , n− 1) ≤ md(A,n)

So,

d (det (A (1|j))) ≤ md(A (1|j) , 1) +md(A (1|j) , 2) + · · ·+md(A (1|j) , n− 1)
≤ md(A, 1) +md(A, 2) + · · ·+md(A, j − 1) +md(A, j + 1) + · · ·+md(A,n− 1)

Then using the property that if f(x) = g(x)h(x) then d(f) = d(g) + d(h),

d
(

(−1)1+j [A]1,j det (A (1|j))
)

= d
(

[A]1,j
)

+ d (det (A (1|j)))

≤ md(A, j) +md(A, 1) +md(A, 2) + · · ·+
md(A, j − 1) +md(A, j + 1) + · · ·+md(A,n)

= md(A, 1) +md(A, 2) + · · ·+md(A,n)

As j is arbitrary the degree of all terms in the determinant are so bounded. Finally using the fact
that if f(x) = g(x) + h(x) then d(f) ≤ max{d(h), d(g)} we have

d(det (A)) ≤ md(A, 1) +md(A, 2) + · · ·+md(A,n)

Version 1.30



Section HP Hadamard Product 785

Section HP
Hadamard Product

This section is contributed by Elizabeth Million.
You may have once thought that the natural definition for matrix multiplication would be en-

trywise multiplication, much in the same way that a young child might say, “I writed my name.”
The mistake is understandable, but it still makes us cringe. Unlike poor grammar, however, entry-
wise matrix multiplication has reason to be studied; it has nice properties in matrix analysis and
additionally plays a role with relative gain arrays in chemical engineering, covariance matrices in
probability and serves as an inertia preserver for Hermitian matrices in physics. Here we will only
expore the properties of the Hadamard product in matrix analysis.

Definition HP
Hadamard Product
Let A and B be m× n matrices. The Hadamard Product of A and B is defined by [A ◦B]ij =
[A]ij [B]ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
(This definition contains Notation HP.) 4

As we can see, the Hadamard product is simply “entrywise multiplication”. Because of this,
the Hadamard product inherits the same benefits (and restrictions) of multiplication in C. Note
also that both A and B need to be the same size, but not necessarily square. To avoid confusion,
juxtaposition of matrices will imply the “usual” matrix multiplication, and we will use “◦” for the
Hadamard product.

Example HP
Hadamard Product
Consider

A =
[
1 0 6
3 π 5

]
B =

[
3 13 i
1
3 2 4

]
Then

A ◦B =
[
(1)(3) (0)(13) (6)(i)
3(1

3) (π)(2) (5)(4)

]
=
[
3 0 6i
1 2π 20

]
.

�

Now we will explore some basics properties of the Hadamard Product.

Theorem HPC
Hadamard Product is Commutative
If A and B are m× n matrices then A ◦B = B ◦A. �

Proof The proof follows directly from the fact that multiplication in C is commutative. Let A
and B be m× n matrices. Then

[A ◦B]ij = [A]ij [B]ij Definition HP [785]

= [B]ij [A]ij Property CMCN [662]

= [B ◦A]ij Definition HP [785]

With equality of each entry of the matrices being equal we know by Definition ME [179] that the
two matrices are equal. �

Definition HID
Hadamard Identity
The Hadamard identity is the m × n matrix Jmn defined by [Jmn]ij = 1 for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.
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(This definition contains Notation HID.) 4

Theorem HPHID
Hadamard Product with the Hadamard Identity
Suppose A is an m× n matrix. Then A ◦ Jmn = Jmn ◦A = A. �

Proof

[A ◦ Jmn]ij = [Jmn ◦A]ij Theorem HPC [785]

= [Jmn]ij [A]ij Definition HP [785]

= (1) [A]ij Definition HID [785]

= [A]ij Property OCN [663]

With equality of each entry of the matrices being equal we know by Definition ME [179] that the
two matrices are equal. �

Definition HI
Hadamard Inverse
Let A be an m×n matrix and suppose [A]ij 6= 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then the Hadamard

Inverse, Â , is given by
[
Â
]
ij

= ([A]ij)
−1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(This definition contains Notation HI.) 4

Theorem HPHI
Hadamard Product with Hadamard Inverses
Let A be anm×nmatrix such that [A]ij 6= 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then A◦Â = Â◦A = Jmn.

�

Proof [
A ◦ Â

]
ij

=
[
Â ◦A

]
ij

Theorem HPC [785]

=
[
Â
]
ij

[A]ij Definition HP [785]

= ([A]ij)
−1 [A]ij Definition HI [786], [A]ij 6= 0

= 1 Property MICN [663]
= [Jmn]ij Definition HID [785]

With equality of each entry of the matrices being equal we know by Definition ME [179] that the
two matrices are equal. �

Since matrices have a different inverse and identity under the Hadamard product, we have
used special notation to distinguish them from what we have been using with “normal” matrix
multiplication. That is, compare “usual” matrix inverse, A−1, with the Hadamard inverse Â, and
the “usual” matrix identity, In, with the Hadamard identity, Jmn. The Hadamard identity matrix
and the Hadamard inverse are both more limiting than helpful, so we will not explore their use
further. One last fun fact for those of you who may be familiar with group theory: the set of m×n
matrices with nonzero entries form an abelian (commutative) group under the Hadamard product
(prove this!).

Theorem HPDAA
Hadamard Product Distributes Across Addition
Suppose A, B and C are m× n matrices. Then C ◦ (A+B) = C ◦A+ C ◦B. �

Proof

[C ◦ (A+B)]ij = [C]ij [A+B]ij Definition HP [785]
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= [C]ij ([A]ij + [B]ij) Definition MA [179]

= [C]ij [A]ij + [C]ij [B]ij Property DCN [662]

= [C ◦A]ij + [C ◦B]ij Definition HP [785]

= [C ◦A+ C ◦B]ij Definition MA [179]

With equality of each entry of the matrices being equal we know by Definition ME [179] that the
two matrices are equal. �

Theorem HPSMM
Hadamard Product and Scalar Matrix Multiplication
Suppose α ∈ C, and A and B are m× n matrices. Then α(A ◦B) = (αA) ◦B = A ◦ (αB). �

Proof

[αA ◦B]ij = α [A ◦B]ij Definition MSM [180]

= α [A]ij [B]ij Definition HP [785]

= [αA]ij [B]ij Definition MSM [180]

= [(αA) ◦B]ij Definition HP [785]

= α [A]ij [B]ij Definition MSM [180]

= [A]ij α [B]ij Property CMCN [662]

= [A]ij [αB]ij Definition MSM [180]

= [A ◦ (αB)]ij Definition HP [785]

With equality of each entry of the matrices being equal we know by Definition ME [179] that the
two matrices are equal. �

Subsection DMHP
Diagonal Matrices and the Hadamard Product

We can relate the Hadamard product with matrix multiplication by considering diagonal matrices,
since A ◦ B = AB if and only if both A and B are diagonal (Citation!!!). For example, a simple
calculation reveals that the Hadamard product relates the diagonal values of a diagonalizable matrix
A with its eigenvalues:

Theorem DMHP
Diagonalizable Matrices and the Hadamard Product
Let A be a diagonalizable matrix of size n with eigenvalues λ1, λ2, λ3, . . . , λn. Let D be a diagonal
matrix from the diagonalization of A, A = SDS−1, and d be a vector such that [D]ii =[d]i= λi for
all 1 ≤ i ≤ n. Then

[A]ii =
[
S ◦ (S−1)td

]
i

for all 1 ≤ i ≤ n.

That is, 
[A]11

[A]22

[A]33
...

[A]nn

 = S ◦ (S−1)t


λ1

λ2

λ3
...
λn


�

Proof [
S ◦ (S−1)td

]
i

=
n∑
k=1

[
S ◦ (S−1)t

]
ik

[d]k Definition MVP [191]
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=
n∑
k=1

[
S ◦ (S−1)t

]
ik
λk Definition of d

=
n∑
k=1

[S]ik
[
(S−1)t

]
ik
λk Definition HP [785]

=
n∑
k=1

[S]ik
[
S−1

]
ki
λk Definition TM [182]

=
n∑
k=1

[S]ik λk
[
S−1

]
ki

Property CMCN [662]

=
n∑
k=1

[S]ik [D]kk
[
S−1

]
ki

Definition of D

=
n∑
j=1

n∑
k=1

[S]ik [D]kj
[
S−1

]
ji

[D]kj = 0 for all k 6= j

=
n∑
j=1

[SD]ij
[
S−1

]
ji

Theorem EMP [195]

=
[
SDS−1

]
ii

Theorem EMP [195]

= [A]ii Definition ME [179]

With equality of each entry of the matrices being equal we know by Definition ME [179] that the
two matrices are equal. �

We obtain a similar result when we look at the singular value decomposition of square matrices
(see exercises).

Theorem DMMP
Diagonal Matrices and Matrix Products
Suppose A, B are m×n matrices, and D and E are diagonal matrices of size m and n, respectively.
Then,

D(A ◦B)E = (DAE) ◦B = (DA) ◦ (BE)

�

Proof

[D(A ◦B)E]ij =
m∑
k=1

[D]ik [(A ◦B)E]kj Theorem EMP [195]

=
m∑
k=1

n∑
l=1

[D]ik [A ◦B]kl [E]lj Theorem EMP [195]

=
m∑
k=1

n∑
l=1

[D]ik [A]kl [B]kl [E]lj Definition HP [785]

=
m∑
k=1

[D]ik [A]kj [B]kj [E]jj [E]lj = 0 for all l 6= j

= [D]ii [A]ij [B]ij [E]jj [D]ik = 0 for all i 6= k

= [D]ii [A]ij [E]jj [B]ij Property CMCN [662]

= [D]ii (
n∑
l=1

[A]il [E]lj) [B]ij [E]lj = 0 for all l 6= j

= [D]ii [AE]ij [B]ij Theorem EMP [195]

= (
m∑
k=1

[D]ik [AE]kj) [B]ij [D]ik = 0 for all i 6= k
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= [DAE]ij [B]ij Theorem EMP [195]

= [(DAE) ◦B]ij Definition HP [785]

With equality of each entry of the matrices being equal we know by Definition ME [179] that the
two matrices are equal.

Also,

[(DAE) ◦B]ij = [DAE]ij [B]ij Definition HP [785]

= (
n∑
k=1

[DA]ik [E]kj) [B]ij Theorem EMP [195]

= [DA]ij [E]jj [B]ij [E]kj = 0 for all k 6= j

= [DA]ij [B]ij [E]jj Property CMCN [662]

= [DA]ij (
n∑
k=1

[B]ik [E]kj) [E]kj = 0 for all k 6= j

= [DA]ij [BE]ij Theorem EMP [195]

= [(DA) ◦ (BE)]ij Definition HP [785]

With equality of each entry of the matrices being equal we know by Definition ME [179] that the
two matrices are equal. �
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Subsection EXC
Exercises

T10 Prove that A ◦B = AB if and only if both A and B are diagonal matrices.
Contributed by Elizabeth Million

T20 Suppose A, B are m × n matrices, and D and E are diagonal matrices of size m and n,
respectively. Prove both parts of the following equality hold:

D(A ◦B)E = (AE) ◦ (DB) = A ◦ (DBE)

Contributed by Elizabeth Million

T30 Let A be a square matrix of size n with singular values σ1, σ2, σ3, . . . , σn. Let D be a
diagonal matrix from the singular value decomposition of A, A = UDV ∗ (Theorem SVD [817]).
Define the vector d by [d]i = [D]ii = σi, 1 ≤ i ≤ n. Prove the following equality,

[A]ii =
[
(U ◦ V )d

]
i

Contributed by Elizabeth Million

T40 Suppose A, B and C are m× n matrices. Prove that for all 1 ≤ i ≤ m,[
(A ◦B)Ct

]
ii

=
[
(A ◦ C)Bt

]
ii

Contributed by Elizabeth Million

T50 Define the diagonal matrix D of size n with entries from a vector x ∈ Cn by

[D]ij =

{
[x]i if i = j

0 otherwise

Furthermore, suppose A, B are m× n matrices. Prove that
[
ADBt

]
ii

= [(A ◦B)x]i for all 1 ≤ i ≤
m.
Contributed by Elizabeth Million
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Section VM
Vandermonde Matrix

This Section is a Draft, Subject to Changes

Alexandre-Théophile Vandermonde was a French mathematician in the 1700’s who was among
the first to write about basic properties of the determinant (such as the effect of swapping two
rows). However, the determinant that bears his name (Theorem DVM [791]) does not appear in
any of his four published mathematical papers.

Definition VM
Vandermonde Matrix
An square matrix of size n, A, is a Vandermonde matrix if there are scalars, x1, x2, x3, . . . , xn
such that [A]ij = xj−1

i , 1 ≤ i ≤ n, 1 ≤ j ≤ n. 4

Example VM4
Vandermonde matrix of size 4

A =


1 2 4 8
1 −3 9 −27
1 1 1 1
1 4 16 64


is a Vandermonde matrix since it meets the definition with x1 = 2, x2 = −3, x3 = 1, x4 = 4. �

Vandermonde matrices are not very interesting as numerical matrices, but instead appear more
often in proofs and applications where the scalars xi are carried as symbols. Two such applications
are in the sections on secret-sharing (Section SAS [831]) and curve-fitting (Section CF [827]).
Principally, we would like to know when Vandermonde matrices are nonsingular, and the most
convenient way to check this is by determining when the determinant is nonzero (Theorem SMZD
[381]). As a bonus, the determinant of a Vandermonde matrix has an especially pleasing formula.

Theorem DVM
Determinant of a Vandermonde Matrix
Suppose that A is a Vandermonde matrix of size n built with the scalars x1, x2, x3, . . . , xn. Then

det (A) =
∏

1≤i<j≤n
(xj − xi)

�

Proof The proof is by induction (Technique I [676]) on n, the size of the matrix. An empty
product for a 1 × 1 matrix might make a good base case, but we’ll start at n = 2 instead. For a
2× 2 Vandermonde matrix, we have

det (A) =
∣∣∣∣1 x1

1 x2

∣∣∣∣ = x2 − x1 =
∏

1≤i<j≤2

(xj − xi)

For the induction step we will perform row operations on A to obtain the determinant of A as
multiple of the determinant of an (n − 1) × (n − 1) Vandermonde matrix. the notation in this
theorem tens to obscure your intuition about the changes effected by various row and column
manipulations. Construct a 4 × 4 Vandermonde matrix with four symbols as the scalars (x1, x2,
x2, x4, or perhaps a, b, c, d) and play along with the example as you study the proof.
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First we convert most of the first column to zeros. Subtract row n from each of the other n− 1
rows to form a matrix B. By Theorem DRCMA [377], B has the same determinant as A. The
entries of B, in the first n− 1 rows, i.e. for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, are

[B]ij = xj−1
i − xj−1

n = (xi − xn)
j−2∑
k=0

xj−2−k
i xkn

As the elements of row i, 1 ≤ i ≤ n−1, have the common factor (xi − xn), we form the new matrix
C that differs from B by the removal of this factor from each of the first n − 1 rows. This will
change the determinant, as we will track carefully in a moment. We also have a first column with
zeros in each location, except row n, so we can use it for a column expansion computation of the
determinant. We now know,

det (A) = det (B) Theorem DRCMA [377]
= (x1 − xn)(x2 − xn) · · · (xn−1 − xn) det (C) Theorem DRCM [376]

= (x1 − xn)(x2 − xn) · · · (xn−1 − xn)(1)(−1)n+1 det (C (n− 1|1)) Theorem DEC [370]

= (x1 − xn)(x2 − xn) · · · (xn−1 − xn)(−1)n−1 det (C (n− 1|1))
= (xn − x1)(xn − x2) · · · (xn − xn−1) det (C (n− 1|1))

For convenience, denote D = C (n− 1|1). Entries of this matrix are similar to those of B, but the
factors used to build C are gone, and since the first column is gone, there is a slight re-indexing
relative to the columns. For 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1,

[D]ij =
j−1∑
k=0

xj−1−k
i xkn

We will perform many column operations on the matrix D, always of the type where we multiply a
column by a scalar and add the result to another column. As such, Theorem DRCM [376] insures
that the determinant will remain constant. We will work column by column, left to right, to
convert D into a Vandermonde matrix with scalars x1, x2, x3, . . . , xn−1. More precisely, we will
build a sequence of matrices D = D1, D2, . . . , Dn−1, where each obtainable from the previous by a
sequence of determinant-preserving column operations and the first ` columns of D` are the first `
columns of a Vandermonde matrix with scalars x1, x2, x3, . . . , xn−1. We could establish this claim
by induction (Technique I [676]) on ` if we were to expand the claim to specify the exact values of
the final n− 1− ` columns as well. Since the claim is that matrices with certain properties exist,
we will instead establish the claim by constructing the desired matrices one-by-one procedurally.
The extension to an inductive proof should be clear, but not especially illuminating.

Set D1 = D to begin, and note that the entries of the first column of D1 are, for 1 ≤ i ≤ n− 1,

[D1]i1 =
1−1∑
k=0

x1−1−k
i xkn = 1 = x1−1

i

So the first column of D1 has the properties we desire. We will use this column of all 1’s to remove
the highest power of xn from each of the remaining columns and so build D2. Precisely, perform
the n− 2 column operations where column 1 is multiplied by xj−1

n and subtracted from column j,
for 2 ≤ j ≤ n − 1. Call the result D2, and examine its entries in columns 2 through n − 1. For
1 ≤ i ≤ n− 1, 2 ≤ j ≤ n− 1,

[D2]ij = −xj−1
n [D1]i1 + [D1]ij

= −xj−1
n (1) +

j−1∑
k=0

xj−1−k
i xkn

= −xj−1
n + x

j−1−(j−1)
i xj−1

n +
j−2∑
k=0

xj−1−k
i xkn
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=
j−2∑
k=0

xj−1−k
i xkn

In particular, we examine column 2 of D2. For 1 ≤ i ≤ n− 1,

[D2]i2 =
2−2∑
k=0

x2−1−k
i xkn = x1

i = x2−1
i

Now, form D3. Perform the n − 3 column operations where column 2 of D2 is multiplied by xj−2
n

and subtracted from column j, for 3 ≤ j ≤ n− 1. The result is D3, whose entries we now compute.
For 1 ≤ i ≤ n− 1,

[D3]ij = −xj−2
n [D2]i2 + [D2]ij

= −xj−2
n x1

i +
j−2∑
k=0

xj−1−k
i xkn

= −xj−2
n x1

i + x
j−1−(j−2)
i xj−2

n +
j−3∑
k=0

xj−1−k
i xkn

=
j−3∑
k=0

xj−1−k
i xkn

Specifically, we examine column 3 of D3. For 1 ≤ i ≤ n− 1,

[D3]i3 =
3−3∑
k=0

x3−1−k
i xkn = x2

i = x3−1
i

We could continue this procedure n − 4 more times, eventually totaling 1
2

(
n2 − 3n+ 2

)
column

operations, and arriving at Dn−1, the Vandermonde matrix of size n − 1 built from the scalars
x1, x2, x3, . . . , xn−1. Informally, we chop off the last term of every sum, until a single term is left
in a column, and it is of the right form for the Vandermonde matrix. This desired column is then
used in the next iteration to chop off some more final terms for columns to the right. Now we can
apply our induction hypothesis to the determinant of Dn−1 and arrive at an expression for detA,

det (A) = det (C)

=
n−1∏
k=1

(xn − xk) det (D)

=
n−1∏
k=1

(xn − xk) det (Dn−1)

=
n−1∏
k=1

(xn − xk)
∏

1≤i<j≤n−1

(xj − xi)

=
∏

1≤i<j≤n
(xj − xi)

which is the desired result. �

Before we had Theorem DVM [791] we could see that if two of the scalar values were equal,
then the Vandermonde matrix would have two equal rows and hence be singular (Theorem DERC
[377], Theorem SMZD [381]). But with this expression for the determinant, we can establish the
converse.
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Theorem NVM
Nonsingular Vandermonde Matrix
A Vandermonde matrix of size n with scalars x1, x2, x3, . . . , xn is nonsingular if and only if the
scalars are all different. �

Proof Let A denote the Vandermonde matrix with scalars x1, x2, x3, . . . , xn. By Theorem SMZD
[381], A is nonsingular if and only if the determinant of A is nonzero. The determinant is given by
Theorem DVM [791], and this product is nonzero if and only if each term of the product is nonzero.
This condition translates to xi − xj 6= 0 whenever i 6= j. In other words, the matrix is nonsingular
if and only if the scalars are all different. �
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Section PSM
Positive Semi-definite Matrices

This Section is a Draft, Subject to Changes
Needs Numerical Examples

Positive semi-definite matrices (and their cousins, positive definite matrices) are square matrices
which in many ways behave like non-negative (respectively, positive) real numbers. Results given
here are employed in the decompositions of Section SVD [813], Section SR [819] and Section PD
[347].

Subsection PSM
Positive Semi-Definite Matrices

Definition PSM
Positive Semi-Definite Matrix
A square matrix A of size n is positive semi-definite if A is Hermitian and for all x ∈ Cn,
〈Ax, x〉 ≥ 0. 4

For a definition of positive definite replace the inequality in the definition with a strict
inequality, and exclude the zero vector from the vectors x required to meet the condition. Similar
variations allow definitions of negative definite and negative semi-definite. Our first theorem
in this section gives us an easy way to build positive semi-definite matrices.

Theorem CPSM
Creating Positive Semi-Definite Matrices
Suppose that A is any m × n matrix. Then the matrices A∗A and AA∗ are positive semi-definite
matrices. �

Proof We will give the proof for the first matrix, the proof for the second is entirely similar. First
we check that A∗A is Hermitian,

(A∗A)∗ = A∗ (A∗)∗ Theorem MMAD [200]
= A∗A Theorem AA [186]

so by Definition HM [201], the matrix A∗A is Hermitian. Second, for any x ∈ Cn,

〈A∗Ax, x〉 = 〈Ax, (A∗)∗ x〉 Theorem AIP [201]
= 〈Ax, Ax〉 Theorem AA [186]
≥ 0 Theorem PIP [168]

which is the second criteria in the definition of a postive semi-definite matrix (Definition PSM
[795]). �

A statement very similar to the converse of this theorem is also true. Any positive semi-definite
matrix can be realized as the product of a square matrix, B, with its adjoint, B∗. (See Exercise
PSM.T20 [798] after studying this entire section.) The matrices A∗A and AA∗ will be important
later when we define singular values (Section SVD [813]).

Positive semi-definite matrices can also be characterized by their eigenvalues, without any men-
tion of inner products. This next result further reinforces the notion that positive semi-definite
matrices behave like non-negative real numbers.
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Theorem EPSM
Eigenvalues of Positive Semi-definite Matrices
Suppose that A is a Hermitian matrix. Then A is positive semi-definite matrix if and only if
whenever λ is an eigenvalue of A, then λ ≥ 0. �

Proof Notice first that since we are considering only Hermitian matrices in this theorem, it is
always possible to compare eigenvalues with the real number zero, since eigenvalues of Hermitian
matrices are all real numbers (Theorem HMRE [419]). Let n denote the size of A.

(⇒) Let x 6= 0 be an eigenvector of A for λ. Then by Theorem PIP [168] we know 〈x, x〉 6= 0.
So

λ =
1

〈x, x〉
λ 〈x, x〉 Property MICN [663]

=
1

〈x, x〉
〈λx, x〉 Theorem IPSM [165]

=
1

〈x, x〉
〈Ax, x〉 Definition EEM [389]

By Theorem PIP [168], 〈x, x〉 > 0 and by Definition PSM [795] we have 〈Ax, x〉 ≥ 0. With λ
expressed as the product of these two quantities, we have λ ≥ 0.

(⇐) Suppose now that λ1, λ2, λ3, . . . , λn are the (not necessarily distinct) eigenvalues of the
Hermitian matrix A, each of which is non-negative. Let B = {x1, x2, x3, . . . , xn} be a set of
associated eigenvectors for these eigenvalues. Since a Hermitian matrix is normal (Definition HM
[201], Definition NM [67]), Theorem OBNM [593] allows us to choose this set of eigenvectors to
also be an orthonormal basis of Cn. Choose any x ∈ Cn and let a1, a2, a3, . . . , an be the scalars
guaranteed by the spanning property of the basis B such that

x = a1x1 + a2x2 + a3x3 + · · ·+ anxn =
n∑
i=1

aixi

Since we have presumed A is Hermitian, we need only check the other defining property,

〈Ax, x〉 =

〈
A

n∑
i=1

aixi,
n∑
j=1

ajxj

〉
Definition TSVS [307]

=

〈
n∑
i=1

Aaixi,
n∑
j=1

ajxj

〉
Theorem MMDAA [197]

=

〈
n∑
i=1

aiAxi,
n∑
j=1

ajxj

〉
Theorem MMSMM [198]

=

〈
n∑
i=1

aiλixi,
n∑
j=1

ajxj

〉
Definition EEM [389]

=
n∑
i=1

n∑
j=1

〈aiλixi, ajxj〉 Theorem IPVA [165]

=
n∑
i=1

n∑
j=1

aiλiaj 〈xi, xj〉 Theorem IPSM [165]

=
n∑
i=1

aiλiai 〈xi, xi〉+
n∑
i=1

n∑
j=1
j 6=i

aiλiaj 〈xi, xj〉 Property CACN [662]

=
n∑
i=1

aiλiai(1) +
n∑
i=1

n∑
j=1
j 6=i

aiλiaj(0) Definition ONS [173]
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=
n∑
i=1

aiλiai

=
n∑
i=1

λi |ai|2 Definition MCN [664]

With non-negative values for each eigenvalue λi, 1 ≤ i ≤ n, and each modulus squared, it should
be clear that this sum is non-negative. Which is exactly what is required by Definition PSM [795]
to establish that A is positive semi-definite. �

As positive semi-definite matrices are defined to be Hermitian, they are then normal and subject
to orthonormal diagonalization (Theorem OD [591]). Now consider the interpretation of orthonor-
mal diagonalization as a rotation to principal axes, a stretch by a diagonal matrix and a rotation
back (Subsection OD.OD [590]). For a positive semi-definite matrix, the diagonal matrix has diag-
onal entries that are the non-negative eigenvalues of the original positive semi-definite matrix. So
the “stretching” along each axis is never a reflection.
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Subsection EXC
Exercises

T20 Suppose that A is a positive semi-definite matrix of size n. Prove that there is a square
matix B of size n such that A = BB∗.
Contributed by Robert Beezer
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Chapter MD
Matrix Decompositions

This chapter is about breaking up a matrix A into pieces that somehow combine to recreate A.
Usually the pieces are again matrices, and usually they are then combined via matrix multiplication
(Definition MM [194]). In some cases, the decomposition will be valid for any matrix, but often we
might need extra conditions on A, such as being square (Definition SQM [67]), nonsingular (Defini-
tion NM [67]) or diagonalizable (Definition DZM [428]) before we can guarantee the decomposition.
If you are comfortable with topics like decomposing a solution vector into linear combinations (Sub-
section LC.VFSS [93]) or decomposing vector spaces into direct sums (Subsection PD.DS [352]),
then we will be doing similar things in this chapter. If not, review these ideas and take another
look at Technique DC [675] on decompositions.

We have studied one matrix decomposition already, so we will review that here in this introduc-
tion, both as a way of previewing the topic in a familiar setting, but also since it does not deserve
another section all of its own.

A diagonalizable matrix (Definition DZM [428]) is defined to be a square matrix A such that
there is an invertible matrix S and a diagonal matrix D where S−1AS = D. We can re-write this
as A = SDS−1. Here we have a decomposition of A into three matrices, S, D and S−1, which
recombine through matrix multiplication to recreate A. We also know that the diagonal entries of
D are the eigenvalues of A. We cannot form this decomposition for just any matrix — A must be
square and we know from Theorem DC [429] that a matrix of size n is diagonalizable if and only
if there is a basis for Cn composed entirely of eigenvectors of A, or by Theorem DMFE [431] we
know that A is diagonalizable if and only if each eigenvalue of A has a geometric multiplicity equal
to its algebraic multiplicity. Some authors prefer to call this an eigen decomposition of A rather
than a matrix diagonalization.

Another decomposition, which is similar in flavor to matrix diagonalization, is orthonormal
diagonalization (Theorem OD [591]). Here we require the matrix A to be normal and we get the
decomposition A = UDU∗, where D is a diagonal matrix with the eigenvalues of A on the diagonal,
and U is unitary. The hypothesis that A is normal guarantees the decomposition and we get the
extra information that U is unitary.

Each section of this chapter features a different matrix decomposition, with the exception of Sec-
tion PSM [795], which presents background information on positive semi-definite matrices required
for singular value decompositions, square roots and polar decompositions.

Section ROD
Rank One Decomposition

This Section is a Draft, Subject to Changes

Our first decomposition applies only to diagonalizable (Definition DZM [428]) matrices, and
yields a decomposition into a sum of very simple matrices.
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Theorem ROD
Rank One Decomposition
Suppose that A is a diagonalizable matrix of size n and rank r. Then there are r square matrices
A1, A2, A3, . . . , Ar, each of size n and rank 1 such that

A = A1 +A2 +A3 + · · ·+Ar

Furthermore, if λ1, λ2, λ3, . . . , λr are the nonzero eigenvalues of A, then there are two sets of r
linearly independent vectors from Cn,

X = {x1, x2, x3, . . . , xr} Y = {y1, y2, y3, . . . , yr}

such that Ak = λkxkytk, 1 ≤ k ≤ r. �

Proof The proof is constructive. Generally, we will diagonalize A, creating a nonsingular matrix
S and a diagonal matrix D. Then we split up the diagonal matrix into a sum of matrices with
a single nonzero entry (on the diagonal). This fundamentally creates the decomposition in the
statement of the theorem, the remainder is just bookkeeping. The vectors in X and Y will result
from the columns of S and the rows of S−1.

Let λ1, λ2, λ3, . . . , λn be the eigenvalues of A (repeated according to their algebraic multiplic-
ity). If A has rank r, then dim (N (A)) = n − r (Theorem RPNC [340]). The null space of A is
the eigenspace of the eigenvalue λ = 0 (Theorem EMNS [397]), so it follows that the algebraic
multiplicity of λ = 0 is n − r, αA (0) = n − r. Presume that the complete list of eigenvalues is
ordered so that λk = 0 for r + 1 ≤ k ≤ n.

Since A is hypothesized to be diagonalizable, there exists a diagonal matrix D and an invertible
matrix S, such that D = S−1AS. We can rearrange tis equation to read, A = SDS−1. Also, the
proof of Theorem DC [429] says that the diagonal elements of D are the eigenvalues of A and we
have the flexibility to assume they lie on the diagonal in the same order as we have specified above.
Now, let X∗ = {x1, x2, x3, . . . , xn} be the columns of S, and let Y ∗ = {y1, y2, y3, . . . , yn} be
the rows of S−1 converted to column vectors. With little motivation other than the statement of
the theorem, define size n matrices Ak, 1 ≤ k ≤ n by Ak = λkxkytk. Finally, let Dk be the size n
matrix that is totally zero, other than having λk in row k and column k.

With everything in place, we compute entry-by-entry,

[A]ij =
[
SDS−1

]
ij

Definition DZM [428]

=

[
S

(
n∑
k=1

Dk

)
S−1

]
ij

Definition MA [179]

=

[
S

(
n∑
k=1

DkS
−1

)]
ij

Theorem MMDAA [197]

=

[
n∑
k=1

SDkS
−1

]
ij

Theorem MMDAA [197]

=
n∑
k=1

[
SDkS

−1
]
ij

Definition MA [179]

=
n∑
k=1

n∑
`=1

[SDk]i`
[
S−1

]
`j

Theorem EMP [195]

=
n∑
k=1

n∑
`=1

n∑
p=1

[S]ip [Dk]p`
[
S−1

]
`j

Theorem EMP [195]

=
n∑
k=1

[S]ik [Dk]kk
[
S−1

]
kj

[Dk]p` = 0 if p 6= k, or ` 6= k

=
n∑
k=1

[S]ik λk
[
S−1

]
kj

[Dk]kk = λk
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=
n∑
k=1

λk [S]ik
[
S−1

]
kj

Property CMCN [662]

=
n∑
k=1

λk [xk]i1
[
ytk
]
1j

Definition of X∗, Y ∗

=
n∑
k=1

λk

1∑
q=1

[xk]iq
[
ytk
]
qj

=
n∑
k=1

λk
[
xkytk

]
ij

Theorem EMP [195]

=
n∑
k=1

[
λkxkytk

]
ij

Definition MSM [180]

=
n∑
k=1

[Ak]ij Definition of Ak

=

[
n∑
k=1

Ak

]
ij

Definition MA [179]

So by Definition ME [179] we have the desired equality of matrices. The careful reader will have
noted that Ak = O, r+1 ≤ k ≤ n, since λk = 0 in these instances. To get the sets X and Y from X∗

and Y ∗, simply discard the last n−r vectors. We can safely ignore (or remove) Ar+1, Ar+2, . . . , An
from the summation just derived.

One last assertion to check. What is the rank of Ak, 1 ≤ k ≤ r? Every row of Ak is a
scalar multiple of ytk, row k of the nonsingular matrix S−1 (Theorem MIMI [215]). As a row of
a nonsingular matrix, ytk cannot be all zeros. In particular, row i of Ak is obtained as a scalar
multiple of ytk by the scalar αk [xk]i. We have restricted ourselves to the nonzero eigenvalues of A,
and as S is nonsingular, some entry of xk is nonzero. This all implies that some row of Ak will be
nonzero. Now consider row-reducing Ak. Swap the nonzero row up into row 1. Use scalar multiples
of this row to zero out every other row. This leaves a single nonzero row in the reduced row-echelon
form, so Ak has rank one. �

We record two observations that was not stated in our theorem above. First, the vectors in X,
chosen as columns of S, are eigenvectors of A. Second, the product of two vectors from X and Y
in the opposite order, by which we mean ytixj , is the entry in row i and column j of the matrix
product S−1S = In (Theorem EMP [195]). In particular,

ytixj =

{
1 if i = j

0 if i 6= j

We give two computational examples. One small, one a bit bigger.

Example ROD2
Rank one decomposition, size 2
Consider the 2× 2 matrix,

A =
[
−16 −6
45 17

]
By the techniques of Chapter E [389] we find the eigenvalues and eigenspaces,

λ1 = 2 EA (2) =
〈{[

−1
3

]}〉
λ2 = −1 EA (−1) =

〈{[
−2
5

]}〉
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With n = 2 distinct eigenvalues, Theorem DED [433] tells us that A is diagonalizable, and with
no zero eigenvalues we see that A has full rank. Theorem DC [429] says we can construct the
nonsingular matrix S with eigenvectors of A as columns, so we have

S =
[
−1 −2
3 5

]
S−1 =

[
5 2
−3 −1

]
From these matrices we obtain the sets of vectors

X =
{[
−1
3

]
,

[
−2
5

]}
Y =

{[
5
2

]
,

[
−3
−1

]}
And we have the matrices,

A1 = 2
[
−1
3

] [
5
2

]t
= 2

[
−5 −2
15 6

]
=
[
−10 −4
30 12

]
A2 = (−1)

[
−2
5

] [
−3
−1

]t
= (−1)

[
6 2
−15 −5

]
=
[
−6 −2
15 5

]
And you can easily verify that A = A1 +A2. �

Here’s a slightly larger example, and the matrix does not have full rank.

Example ROD4
Rank one decomposition, size 4
Consider the 4× 4 matrix,

B =


34 18 −1 −6
−44 −24 −1 9
36 18 −3 −6
36 18 −6 −3


By the techniques of Chapter E [389] we find the eigenvalues and eigenvectors,

λ1 = 3 EB (3) =

〈


1
−2
1
−1

 ,


1
−1
1
2



〉

λ2 = −2 EB (−2) =

〈

−1
2
0
0



〉

λ3 = 0 EA (0) =

〈


2
−3
2
2



〉

The algebraic and geometric multiplicities of each eigenvalue are equal, so Theorem DMFE [431]
tells us that A is diagonalizable. With a single zero eigenvalue we see that A has rank 4 − 1 = 3.
Theorem DC [429] says we can construct the nonsingular matrix S with eigenvectors of A as
columns, so we have

S =


1 1 −1 2
−2 −1 2 −3
1 1 0 2
−1 2 0 2

 S−1 =


4 2 0 −1
8 4 −1 −1
−1 0 1 0
−6 −3 1 1


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Since r = 3, we need only collect three vectors from each of these matrices,

X =




1
−2
1
−1

 ,


1
−1
1
2

 ,

−1
2
0
0


 Y =




4
2
0
−1

 ,


8
4
−1
−1

 ,

−1
0
1
0




And we obtain the matrices,

B1 = 3


1
−2
1
−1




4
2
0
−1


t

= 3


4 2 0 −1
−8 −4 0 2
4 2 0 −1
−4 −2 0 1

 =


12 6 0 −3
−24 −12 0 6
12 6 0 −3
−12 −6 0 3



B2 = 3


1
−1
1
2




8
4
−1
−1


t

= 3


8 4 −1 −1
−8 −4 1 1
8 4 −1 −1
16 8 −2 −2

 =


24 12 −3 −3
−24 −12 3 3
24 12 −3 −3
48 24 −6 −6



B3 = (−2)


−1
2
0
0



−1
0
1
0


t

= (−2)


1 0 −1 0
−2 0 2 0
0 0 0 0
0 0 0 0

 =


−2 0 2 0
4 0 −4 0
0 0 0 0
0 0 0 0


Then we verify that

B = B1 +B2 +B3

=


12 6 0 −3
−24 −12 0 6
12 6 0 −3
−12 −6 0 3

+


24 12 −3 −3
−24 −12 3 3
24 12 −3 −3
48 24 −6 −6

+


−2 0 2 0
4 0 −4 0
0 0 0 0
0 0 0 0



=


34 18 −1 −6
−44 −24 −1 9
36 18 −3 −6
36 18 −6 −3


�
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Section TD
Triangular Decomposition

This Section is a Draft, Subject to Changes

Our next decomposition will break a square matrix into a product of two matrices, one lower
triangular and the other upper triangular. So we will write A = LU , and hence many refer to this
as LU decomposition. We will see that this decomposition is very easy to compute and that
it has a direct application to solving systems of equations. Since this section is about triangular
matrices you might want to review the definitions and a couple of basic theorems back in Subsection
OD.TM [585].

Subsection TD
Triangular Decomposition

With a slight condition on the nonsingularity of certain submatrices, we can split a matrix into a
product of two triangular matrices.

Theorem TD
Triangular Decomposition
Suppose A is a square matrix of size n. Let Ak be the k × k matrix formed from A by taking the
first k rows and the first k columns. Suppose that Ak is nonsingular for all 1 ≤ k ≤ n. Then there
is a lower triangular matrix L with all of its diagonal entries equal to 1 and an upper triangular
matrix U such that A = LU . Furthermore, this decomposition is unique. �

Proof We will row reduce A to a row-equivalent upper triangular matrix through a series of row
operations, forming intermediate matrices A′j , 1 ≤ j ≤ n, that denote the state of the conversion
after working on column j. First, the lone entry of A1 is [A]11 and this scalar must be nonzero if A1

is nonsingular (Theorem SMZD [381]). We can use row operations Definition RO [26] of the form
αR1+Rk, 2 ≤ k ≤ n, where α = − [A]1k / [A]11 to place zeros in the first column below the diagonal.
The first two rows and columns of A′1 are a 2 × 2 upper triangular matrix whose determinant is
equal to the determinant of A2, since the matrices are row-equivalent through a sequence of row
operations strictly of the third type (Theorem DRCMA [377]). As such the diagonal entries of
this 2 × 2 submatrix of A′1 are nonzero. We can employ this nonzero diagonal element with row
operations of the form αR2 +Rk, 3 ≤ k ≤ n to place zeros below the diagonal in the second column.
We can continue this process, column by column. The key observations are that our hypothesis
on the nonsingularity of the Ak will guarantee a nonzero diagonal entry for each column when we
need it, that the row operations employed are always of the third type using a multiple of a row
to transform another row with a greater row index, and that the final result will be a nonsingular
upper triangular matrix. This is the desired matrix U .

Each row operation described in the previous paragraph can be accompished with matrix mul-
tiplication by the appropriate elementary matrix (Theorem EMDRO [364]). Since every row oper-
ation employed is adding a multiple of a row to a subsequent row these elementary matrices are of
the form Ej,k (α) with j < k. By Definition ELEM [363], these matrices are lower triangular with
every diagonal entry equal to 1. We know that the product of two such matrices will again be lower
triangular (Theorem PTMT [585]), but also, as you can also easily check using a proof with a style
similar to one above, that the product maintains all 1’s on the diagonal. Let E1, E2, E3, . . . , Em
denote the elementary matrices for this sequence of row operations. Then

U = EmEm−1 . . . E3E2E1A = L′A

where L′ is the product of the elementary matrices, and we know L′ is lower triangular with all 1’s
on the diagonal. Our desired matrix L is then L = (L′)−1. By Theorem ITMT [586], L is lower
triangular with all 1’s on the diagonal and A = LU , as desired.
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The process just described is deterministic. That is, the proof is constructive, with no freedom
for each of us to walk through it differently. But could there be other matrices with the same
properties as L and U that give such a decomposition of A. In other words, is the decomposition
unique (Technique U [674])? Suppose that we have two triangular decompositions, A = L1U1

and A = L2U2. Since A is nonsingular, two applications of Theorem NPNT [221] imply that
L1, L2, U1, U2 are all nonsingular. We have

L−1
2 L1 = L−1

2 InL1 Theorem MMIM [197]

= L−1
2 AA−1L1 Definition MI [208]

= L−1
2 L2U2 (L1U1)−1 L1

= L−1
2 L2U2U

−1
1 L−1

1 L1 Theorem SS [214]

= InU2U
−1
1 In Definition MI [208]

= U2U
−1
1 Theorem MMIM [197]

Theorem ITMT [586] tells us that L−1
2 is lower triangular and has 1’s as the diagonal entries. By

Theorem PTMT [585], the product L−1
2 L1 is again lower triangular, and it is simple to check (as

before) that the diagonal entries of the product are again all 1’s. By the entirely similar process we
can conclude that the product U2U

−1
1 is upper triangular. Because these two products are equal,

their common value is a matrix that is both lower triangular and upper triangular, with all 1’s on
the diagonal. The only matrix meeting these three requirements is the identity matrix (Definition
IM [68]). So, we have,

In = L−1
2 L1 ⇒ L2 = L1 In = U2U

−1
1 ⇒ U1 = U2

which establishes the uniqueness of the decomposition. �

Studying the proofs of some previous theorems will perhaps give you an idea for an approach
to computing a triangular decomposition. In the proof of Theorem CINM [212] we augmented a
nonsingular matrix with an identity matrix of the same size, and row-reduced until the original
matrix became the identity matrix (as we knew in advance would happen, since we knew Theorem
NMRRI [68]). Theorem PEEF [256] tells us about properties of extended echelon form, and in
particular, that B = JA, where A is the matrix that begins on the left, and B is the reduced
row-echelon form of A. The matrix J is the result on the right side of the augmented matrix, which
is the result of applying the same row operations to the identity matrix. We should recognize now
that J is just the product of the elementary matrices (Subsection DM.EM [363]) that perform these
row operations. Theorem ITMT [586] used the extended echelon form to discern properties of the
inverse of a triangular matrix. Theorem TD [805] proves the existence of a triangular decomposition
by applying specific row operations, and tracking the relevant elementary row operations. It is not
a great leap to combine these obervations into a computational procedure.

To find the triangular decomposition of A, augment A with the identity matrix of the same size
and call this new 2n×n matrix, M . Perform row operations on M that convert the first n columns
to an upper triangular matrix. Do this using only row operations that add a scalar multiple of one
row to another row with higher index (i.e. lower down). In this way, the last n columns of M will be
converted into a lower triangular matrix with 1’s on the diagonal (since M has 1’s in these locations
initially). We could think of this process as doing about half of the work required to compute the
inverse of A. Take the first n columns of the row-equivalent version of M and call this matrix U .
Take the final n columns of the row-equivalent version of M and call this matrix L′. Then by a
proof employing elementary matrices, or a proof similar in spirit to the one used to prove Theorem
PEEF [256], we arrive at a result similar to the second assertion of Theorem PEEF [256]. Namely,
U = L′A. Multiplication on the left, by the inverse of L′, will give us a decomposition of A (which
we know to be unique). Ready? Lets try it.

Example TD4
Triangular decomposition, size 4
In this example, we will illustrate the process for computing a triangular decomposition, as described
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Subsection TD.TDSSE Triangular Decomposition and Solving Systems of Equations 807

in the previous paragraphs. Consider the nonsingular square matrix A of size 4,

A =


−2 6 −8 7
−4 16 −14 15
−6 22 −23 26
−6 26 −18 17


We form M by augmenting A with the size 4 identity matrix I4. We will perform the allowed
operations, column by column, only reporting intermediate results as we finish converting each
column. It is easy to determine exactly which row operations we perform, since the final four
columns contain a record of each such operation. We will not verify our hypotheses about the
nonsingularity of the Ak, since if we do not have these conditions, we will reach a stage where a
diagonal entry is zero and we cannot create the row operations we need to zero out the bottom
portion of the associated column. In other words, we can boldly proceed and the necessity of our
hypotheses will become apparent.

M =


−2 6 −8 7 1 0 0 0
−4 16 −14 15 0 1 0 0
−6 22 −23 26 0 0 1 0
−6 26 −18 17 0 0 0 1



→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 4 1 5 −3 0 1 0
0 8 6 −4 −3 0 0 1



→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 0 −1 4 −1 −1 1 0
0 0 2 −6 1 −2 0 1



→


−2 6 −8 7 1 0 0 0
0 4 2 1 −2 1 0 0
0 0 −1 4 −1 −1 1 0
0 0 0 2 −1 −4 2 1


So at this point, we have U and L′,

U =


−2 6 −8 7
0 4 2 1
0 0 −1 4
0 0 0 2

 L′ =


1 0 0 0
−2 1 0 0
−1 −1 1 0
−1 −4 2 1


Then by whatever procedure we like (such as Theorem CINM [212]), we find

L =
(
L′
)−1 =


1 0 0 0
2 1 0 0
3 1 1 0
3 2 −2 1


It is instructive to verify that indeed LU = A. �

Subsection TDSSE
Triangular Decomposition and Solving Systems of Equations

In this section we give an explanation of why you might be interested in a triangular decomposition
for a matrix. Many of the computational problems in linear algebra revolve around solving large
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systems of equations, or nearly equivalently, finding inverses of large matrices. Suppose we have a
system of equations with coefficient matrix A and vector of constants b, and suppose further that
A has the triangular decomposition A = LU .

Let y be the solution to the linear system LS(L, b), so that by Theorem SLEMM [192], we
have Ly = b. Notice that since L is nonsingular, this solution is unique, and the form of L makes
it trivial to solve the system. The first component of y is determined easily, and we can continue
on through determining the components of y, without even ever dividing. Now, with y in hand,
consider the linear system, LS(U, y). Let x be the unique solution to this system, so by Theorem
SLEMM [192] we have Ux = y. Notice that a system of equations with U as a coefficient matrix
is also straightforward to solve, though we will compute the bottom entries of x first, and we will
need to divide. The upshot of all this is that x is a solution to LS(A, b), as we now show,

Ax = LUx = L (Ux) = Ly = b

An application of Theorem SLEMM [192] demonstrates that x is a solution to LS(A, b).

Example TDSSE
Triangular decomposition solves a system of equations
Here we illustrate the previous discussion, recycling the decomposition found previously in Example
TD4 [806]. Consider the linear system LS(A, b) with

A =


−2 6 −8 7
−4 16 −14 15
−6 22 −23 26
−6 26 −18 17

 b =


−10
−2
−1
−8


First we solve the system LS(L, b) (see Example TD4 [806] for L),

y1 = −10
2y1 + y2 = −2

3y1 + y2 + y3 = −1
3y1 + 2y2 − 2y3 + y4 = −8

Then

y1 = −10
y2 = −2− 2y1 = −2− 2(−10) = 18
y3 = −1− 3y1 − y2 = −1− 3(−10)− 18 = 11
y4 = −8− 3y1 − 2y2 + 2y3 = −8− 3(−10)− 2(18) + 2(11) = 8

so

y =


−10
18
11
8


Then we solve the system LS(U, y) (see Example TD4 [806] for U),

−2x1 + 6x2 − 8x3 + 7x4 = −10
4x2 + 2x3 + x4 = 18
−x3 + 4x4 = 11

2x4 = 8

Then

x4 = 8/2 = 4
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x3 = (11− 4x4) /(−1) = (11− 4(4)) /(−1) = 5
x2 = (18− 2x3 − x4) /4 = (18− 2(5)− 4) /4 = 1
x1 = (−10− 6x2 + 8x3 − 7x4) /(−2) = (−10− 6(1) + 8(5)− 7(4)) /(−2) = 2

And so

x =


4
5
1
2


is the solution to LS(U, y) and consequently is the unique solution to LS(A, b), as you can easily
verify. �

Subsection CTD
Computing Triangular Decompositions

It would be a simple matter to adjust the algorithm for converting a matrix to reduced row-echelon
form and obtain an algorithm to compute the triangular decomposition of the matrix, along the
lines of Example TD4 [806] and the discussion preceding this example. However, it is possible
to obtain relatively simple formulas for the entries of the decomposition, and if computed in the
proper order, an implemtation will be straightfoward. We will state the result as a theorem and
then give an example of its use.

Theorem TDEE
Triangular Decomposition, Entry by Entry
Suppose that A is a squarematrix of size n with a triangular decomposition A = LU , where L is
lower triangular with diagonal entries all equal to 1, and U is upper triangular. Then

[U ]ij = [A]ij −
i−1∑
k=1

[L]ik [U ]kj 1 ≤ i ≤ j ≤ n

[L]ij =
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj

)
1 ≤ j < i ≤ n

�

Proof Consider a single scalar product of an entry of L with an entry of U of the form [L]ik [U ]kj .
By Definition LTM [585], if k > i then [L]ik = 0, while Definition UTM [585], says that if k > j
then [U ]kj = 0. So we can combine these two facts to assert that if k > min(i, j), [L]ik [U ]kj = 0
since at least one term of the product will be zero. Employing this observation,

[A]ij =
n∑
k=1

[L]ik [U ]kj Theorem EMP [195]

=
min(i, j)∑
k=1

[L]ik [U ]kj

Now, assume that 1 ≤ i ≤ j ≤ n,

[U ]ij = [A]ij − [A]ij + [U ]ij

= [A]ij −
min(i, j)∑
k=1

[L]ik [U ]kj + [U ]ij
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= [A]ij −
i∑

k=1

[L]ik [U ]kj + [U ]ij

= [A]ij −
i−1∑
k=1

[L]ik [U ]kj − [L]ii [U ]ij + [U ]ij

= [A]ij −
i−1∑
k=1

[L]ik [U ]kj − [U ]ij + [U ]ij

= [A]ij −
i−1∑
k=1

[L]ik [U ]kj

And for 1 ≤ j < i ≤ n,

[L]ij =
1

[U ]jj

(
[L]ij [U ]jj

)
=

1
[U ]jj

(
[A]ij − [A]ij + [L]ij [U ]jj

)
=

1
[U ]jj

[A]ij −
min(i, j)∑
k=1

[L]ik [U ]kj + [L]ij [U ]jj


=

1
[U ]jj

(
[A]ij −

j∑
k=1

[L]ik [U ]kj + [L]ij [U ]jj

)

=
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj − [L]ij [U ]jj + [L]ij [U ]jj

)

=
1

[U ]jj

(
[A]ij −

j−1∑
k=1

[L]ik [U ]kj

)

�

At first glance, these formulas may look exceedingly complex. Upon closer examination, it looks
even worse. We have expressions for entries of U that depend on other entries of U and also on
entries of L. But then the formula for entries of L depend on entries from L and entries from U .
Do these formula have circular dependencies? Or perhaps equivalently, how do we get started?
The key is to be organized about the computations and employ these two (similar) formulas in a
specific order. First compute the first row of L, followed by the first column of U . Then the second
row of L, followed by the second column of U . And so on. In this way, all of the values required
for each new entry will have already been computed previously.

Of course, the formula for entries of L require division by diagonal entries of U . These entries
might be zero, but in this case A is nonsingular and does not have a triangular decomposition.
So we need not check the hypothesis carefully and can launch into the arithmetic dictated by the
formulas, confident that we will be reminded when a decomposition is not possible. Note that these
formula give us all of the values that we need for the decomposition, since we require that L has 1’s
on the diagonal. If we replace the 1’s on the diagonal of L by zeros, and add the matrix U , we get
an n× n matrix containing all the information we need to ressurect the triangular decomposition.
This is mostly a notational convenience, but it is a frequent way of presenting the information.
We’ll employ it in the next example.

Example TDEE6
Triangular decomposition, entry by entry, size 6
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We illustrate the application of the formulas in Theorem TDEE [809] for the 6× 6 matrix A.

A =



3 3 −3 −2 −1 0
−6 −4 5 2 4 2
9 9 −7 −7 0 1
−6 −10 8 10 −1 −7
6 4 −9 −2 −10 1
9 3 −12 −3 −21 −2


Using the notational convenience of packaging the two triangular matrices into one matrix, and
using the ordering of the computations mentioned above, we display the results after computing a
single row and column of each of the two triangular matrices.

3 3 −3 −2 −1 0
−2
3
−2
2
3





3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0
−2 −2
2 −1
3 −3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0
2 −1 −2
3 −3 −3





3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1
3 −3 −3 −3




3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1 1 2
3 −3 −3 −3 0





3 3 −3 −2 −1 0
−2 2 −1 −2 2 2
3 0 2 −1 3 1
−2 −2 0 2 1 −3
2 −1 −2 −1 1 2
3 −3 −3 −3 0 −2


Splitting out the pieces of this matrix, we have the decomposition,

L =



1 0 0 0 0 0
−2 1 0 0 0 0
3 0 1 0 0 0
−2 −2 0 1 0 0
2 −1 −2 −1 1 0
3 −3 −3 −3 0 1

 U =



3 3 −3 −2 −1 0
0 2 −1 −2 2 2
0 0 2 −1 3 1
0 0 0 2 1 −3
0 0 0 0 1 2
0 0 0 0 0 −2


�

The hypotheses of Theorem TD [805] can be weakened slightly to include matrices where not
every Ak is nonsingular. The introduces a rearrangement of the rows and columns of A to force
as many as possible of the smaller submatrices to be nonsingular. Then permutation matrices also
enter into the decomposition. We will not present the details here, but instead suggest consulting
a more advanced text on matrix analysis.
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Section SVD
Singular Value Decomposition

This Section is a Draft, Subject to Changes
Needs Numerical Examples

The singular value decomposition is one of the more useful ways to represent any matrix, even
rectangular ones. We can also view the singular values of a (rectangular) matrix as analogues of
the eigenvalues of a square matrix. Our definitions and theorems in this section rely heavily on the
properties of the matrix-adjoint products (A∗A and AA∗), which we first met in Theorem CPSM
[795]. We start by examining some of the basic properties of these two matrices. Now would be a
good time to review the basic facts about positive semi-definite matrices in Section PSM [795].

Subsection MAP
Matrix-Adjoint Product

Theorem EEMAP
Eigenvalues and Eigenvectors of Matrix-Adjoint Product
Suppose that A is an m × n matrix and A∗A has rank r. Let λ1, λ2, λ3, . . . , λp be the nonzero
distinct eigenvalues of A∗A and let ρ1, ρ2, ρ3, . . . , ρq be the nonzero distinct eigenvalues of AA∗.
Then,

1. p = q.

2. The distinct nonzero eigenvalues can be ordered such that λi = ρi, 1 ≤ i ≤ p.

3. Properly ordered, αA∗A (λi) = αAA∗ (ρi), 1 ≤ i ≤ p.

4. The rank of A∗A is equal to the rank of AA∗.

5. There is an orthonormal basis, {x1, x2, x3, . . . , xn} of Cn composed of eigenvectors of A∗A
and an orthonormal basis, {y1, y2, y3, . . . , ym} of Cm composed of eigenvectors of AA∗ with
the following properties. Order the eigenvectors so that xi, r+ 1 ≤ i ≤ n are the eigenvectors
of A∗A for the zero eigenvalue. Let δi, 1 ≤ i ≤ r denote the nonzero eigenvalues of A∗A.
Then Axi =

√
δiyi, 1 ≤ i ≤ r and Axi = 0, r + 1 ≤ i ≤ n. Finally, yi, r + 1 ≤ i ≤ m, are

eigenvectors of AA∗ for the zero eigenvalue.

�

Proof Suppose that x ∈ Cn is any eigenvector of A∗A for a nonzero eigenvalue λ. We will show
that Ax is an eigenvector of AA∗ for the same eigenvalue, λ. First, we ascertain that Ax is not the
zero vector.

〈Ax, Ax〉 = 〈Ax, (A∗)∗ x〉 Theorem AA [186]
= 〈A∗Ax, x〉 Theorem AIP [201]
= 〈λx, x〉 Definition EEM [389]
= λ 〈x, x〉 Theorem IPSM [165]

Since x is an eigenvector, x 6= 0, and by Theorem PIP [168], 〈x, x〉 6= 0. As λ was assumed to be
nonzero, we see that 〈Ax, Ax〉 6= 0. Again, Theorem PIP [168] tells us that Ax 6= 0.

Much of the sequel turns on the following simple computation. If you ever wonder what all the
fuss is about adjoints, Hermitian matrices, square roots, and singular values, return to this brief
computation, as it holds the key. There is much more to do in this proof, but after this it is mostly
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814 Section SVD Singular Value Decomposition

bookkeeping. Here we go. We check that Ax functions as an eigenvector of AA∗ for the eigenvalue
λ,

(AA∗)Ax = A (A∗A) x Theorem MMA [198]
= Aλx Definition EEM [389]
= λ (Ax) Theorem MMSMM [198]

That’s it. If x is an eigenvector of A∗A (for a nonzero eigenvalue), then Ax is an eigenvector for
AA∗ for the same eigenvalue. Let’s see what this buys us.

A∗A and AA∗ are Hermitian matrices (Definition HM [201]), and hence are normal (Definition
NRML [590]). This provides the existence of orthonormal bases of eigenvectors for each matrix
by Theorem OBNM [593]. Also, since each matrix is diagonalizable (Definition DZM [428]) by
Theorem OD [591] we can interchange algebraic and geometric multiplicities by Theorem DMFE
[431].

Our first step is to establish that an eigenvalue λ has the same geometric multiplicity for both
A∗A and AA∗. Suppose {x1, x2, x3, . . . , xs} is an orthonormal basis of eigenvectors of A∗A for
the eigenspace EA∗A (λ). Then for 1 ≤ i < j ≤ s, note

〈Axi, Axj〉 = 〈Axi, (A∗)∗ xj〉 Theorem AA [186]
= 〈A∗Axi, xj〉 Theorem AIP [201]
= 〈λxi, xj〉 Definition EEM [389]
= λ 〈xi, xj〉 Theorem IPSM [165]
= λ(0) Definition ONS [173]
= 0 Property ZCN [662]

Then the set E = {Ax1, Ax2, Ax3, . . . , Axs} is an orthogonal set of nonzero eigenvectors of AA∗

for the eigenvalue λ. By Theorem OSLI [170], the set E is linearly independent and so the geometric
multiplicity of λ as an eigenvalue of AA∗ is s or greater. We have

αA∗A (λ) = γA∗A (λ) ≤ γAA∗ (λ) = αAA∗ (λ)

This inequality applies to any matrix, so long as the eigenvalue is nonzero. We now apply it to the
matrix A∗,

αAA∗ (λ) = α(A∗)∗A∗ (λ) ≤ αA∗(A∗)∗ (λ) = αA∗A (λ)

So for a nonzero eigenvalue, its algebraic multiplicities as an eigenvalue of A∗A and AA∗ are equal.
This is enough to establish that p = q and the eigenvalues can be ordered such that λi = ρi for
1 ≤ i ≤ p.

For any matrix B, the null space is identical to the eigenspace of the zero eigenvalue, N (B) =
EB (0), and thus the nullity of the matrix is equal to the geometric multiplicity of the zero eigenvalue.
With this, we can examine the ranks of A∗A and AA∗.

r (A∗A) = n− n (A∗A) Theorem RPNC [340]

=

(
αA∗A (0) +

p∑
i=1

αA∗A (λi)

)
− n (A∗A) Theorem NEM [416]

=

(
αA∗A (0) +

p∑
i=1

αA∗A (λi)

)
− γA∗A (0) Definition GME [399]

=

(
αA∗A (0) +

p∑
i=1

αA∗A (λi)

)
− αA∗A (0) Theorem DMFE [431]

=
p∑
i=1

αA∗A (λi)
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=
p∑
i=1

αAA∗ (λi)

=

(
αAA∗ (0) +

p∑
i=1

αAA∗ (λi)

)
− αAA∗ (0)

=

(
αAA∗ (0) +

p∑
i=1

αAA∗ (λi)

)
− γAA∗ (0) Theorem DMFE [431]

=

(
αAA∗ (0) +

p∑
i=1

αAA∗ (λi)

)
− n (AA∗) Definition GME [399]

= m− n (AA∗) Theorem NEM [416]
= r (AA∗) Theorem RPNC [340]

When A is rectangular, the square matrices A∗A and AA∗ have different sizes. With equal al-
gebraic and geometric multiplicities for their common nonzero eigenvalues, the difference in their
sizes is manifest in different algebraic multiplicities for the zero eigenvalue and different nullities.
Specifically,

n (A∗A) = n− r n (AA∗) = m− r

Suppose that x1, x2, x3, . . . , xn is an orthonormal basis of Cn composed of eigenvectors of A∗A
and ordered so that xi, r + 1 ≤ i ≤ n are eigenvectors of AA∗ for the zero eigenvalue. Denote the
associated nonzero eigenvalues of A∗A for these eigenvectors by δi, 1 ≤ i ≤ r. Then define

yi =
1√
δi
Axi 1 ≤ i ≤ r

Let yr+1, yr+2, yr+2, . . . , ym be an orthonormal basis for the eigenspace EAA∗ (0), whose existence
is guaranteed by Theorem GSP [171]. As scalar multiples of demonstrated eigenvectors of AA∗, yi,
1 ≤ i ≤ r are also eigenvectors of AA∗, and yi, r + 1 ≤ i ≤ n have been chosen as eigenvectors of
AA∗. These eigenvectors also have norm 1, as we now show. For 1 ≤ i ≤ r,

‖yi‖ = ‖ 1√
δi
Axi‖

=

√〈
1√
δi
Axi,

1√
δi
Axi

〉
Theorem IPN [167]

=

√
1√
δi

1√
δi
〈Axi, Axi〉 Theorem IPSM [165]

=

√
1√
δi

1√
δi
〈Axi, Axi〉 Theorem HMRE [419]

=
1√
δi

√
〈Axi, Axi〉

=
1√
δi

√
〈Axi, (A∗)∗ xi〉 Theorem AA [186]

=
1√
δi

√
〈A∗Axi, xi〉 Theorem AIP [201]

=
1√
δi

√
〈δixi, xi〉 Definition EEM [389]

=
1√
δi

√
δi 〈xi, xi〉 Theorem IPSM [165]

=
1√
δi

√
δi(1) Definition ONS [173]
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= 1

For r + 1 ≤ i ≤ n, the yi have been chosen to have norm 1.
Finally we check orthogonality. Consider two eigenvectors yi and yj with 1 ≤ i < j ≤ m. If

these two vectors have different eigenvalues, then Theorem HMOE [419] establishes that the two
eigenvectors are orthogonal. If the two eigenvectors have a zero eigenvalue, then they are orthogonal
by the choice of the orthonormal basis of EAA∗ (0). If the two eigenvectors have identical, nonzero,
eigenvalues, then

〈yi, yj〉 =

〈
1√
δi
Axi,

1√
δj
Axj

〉

=
1√
δi

1√
δj
〈Axi, Axj〉 Theorem IPSM [165]

=
1√
δiδj
〈Axi, Axj〉 Theorem HMRE [419]

=
1√
δiδj
〈Axi, (A∗)∗ xj〉 Theorem AA [186]

=
1√
δiδj
〈A∗Axi, xj〉 Theorem AIP [201]

=
1√
δiδj
〈δixi, xj〉 Definition EEM [389]

=
δi√
δiδj
〈xi, xj〉 Theorem IPSM [165]

=
δi√
δiδj

(0) Definition ONS [173]

= 0

So {y1, y2, y3, . . . , ym} is an orthonormal set of eigenvectors for AA∗. The critical relationship
between these two orthonormal bases is present by design. For 1 ≤ i ≤ r,

Axi =
√
δi

1√
δi
Axi =

√
δiyi

For r + 1 ≤ i ≤ n we have

〈Axi, Axi〉 = 〈Axi, (A∗)∗ xi〉 Theorem AA [186]
= 〈A∗Axi, xi〉 Theorem AIP [201]
= 〈0, xi〉 Definition EEM [389]
= 0 Definition IP [164]

So by Theorem PIP [168], Axi = 0. �

Subsection SVD
Singular Value Decomposition

The square roots of the eigenvalues of A∗A (or almost equivalently, AA∗!) are known as the singular
values of A. Here is the definition.

Definition SV
Singular Values
Suppose A is an m× n matrix. If the eigenvalues of A∗A are δ1, δ2, δ3, . . . , δn, then the singular
values of A are

√
δ1,
√
δ2,
√
δ3, . . . ,

√
δn. 4

Theorem EEMAP [813] is a total setup for the singular value decomposition. This remarkable
theorem says that any matrix can be broken into a product of three matrices. Two are square, and
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unitary. In light of Theorem UMPIP [226], we can view these matrices as transforming vectors or
coordinates in a rotational fashion. The middle matrix of this decomposition is rectangular, but is
as close to being diagonal as a rectangular matrix can be. Viewed as a transformation, this matrix
effects, relections, contractions or expansions along axes — it stretches vectors. So any matrix,
viewed as a transformation is the product of a rotation, a stretch and a rotation.

The singular value theorem can also be viewed as an application of our most general statement
about matrix representations of linear transformations relative to different bases. Theorem MRCB
[565] concerns linear transformations T : U 7→ V where U and V are possibly different vector
spaces. When U and V have different dimensions, the resulting matrix representation will be
rectangular. In Section CB [559] we quickly specialized to the case where U = V and the matrix
representations are square with one of our most central results, Theorem SCB [568]. Theorem SVD
[817] is an application of the full generality of Theorem MRCB [565] where the relevant bases are
now orthonormal sets.

Theorem SVD
Singular Value Decomposition
Suppose A is an m × n matrix of rank r with nonzero singular values s1, s2, s3, . . . , sr. Then
A = UDV ∗ where U is a unitary matrix of size m, V is a unitary matrix of size n and D is an
m× n matrix given by

[D]ij =

{
si if 1 ≤ i = j ≤ r
0 otherwise

�

Proof Let x1, x2, x3, . . . , xn and y1, y2, y3, . . . , ym be the orthonormal bases described by the
conclusion of Theorem EEMAP [813]. Define U to be the m ×m matrix whose columns are yi,
1 ≤ i ≤ m, and define V to be the n×n matrix whose columns are xi, 1 ≤ i ≤ n. With orthonormal
sets of columns, by Theorem CUMOS [225] both U and V are unitary matrices.

Then for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[AV ]ij = [Axj ]i Definition MM [194]

=
[√

δjyj
]
i

Theorem EEMAP [813]

= [sjyj ]i Definition SV [816]
= [yj ]i sj Definition CVSM [83]
= [U ]ij [D]jj

=
m∑
k=1

[U ]ik [D]kj

= [UD]ij Theorem EMP [195]

So by Theorem ME [417], AV = UD and thus

A = AIn = AV V ∗ = UDV ∗

�
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Section SR
Square Roots

This Section is a Draft, Subject to Changes
Needs Numerical Examples

With all our results about Hermitian matrices, their eigenvalues and their diagonalizations, it
will be a nearly trivial matter to now construct a “square root” of a positive semi-definite matrix.
We will describe the square root of a matrix A as a matrix S such that A = S2. In general, a
matrix A might have many such square roots. But with a few results in hand we will be able to
impose an extra condition on S that will make a unique S such that A = S2. At that point we can
define the square root of A formally.

Subsection SRM
Square Root of a Matrix

Theorem PSMSR
Positive Semi-Definite Matrices and Square Roots
Suppose A is a square matrix. There is a positive semi-definite matrix S such that A = S2 if and
only if A is positive semi-definite. �

Proof Let n denote the size of A.
(⇐) Suppose that A is positive semi-definite. Since A is Hermitian (Definition PSM [795])

we know A is normal (Definition NRML [590]) and so by Theorem OD [591] there is a unitary
matrix U and a diagonal matrix D, whose diagonal entries are the eigenvalues of A, such that
D = U∗AU . The eigenvalues of A are all non-negative (Theorem EPSM [796]), which allows us to
define a diagonal matrix E whose diagonal entries are the positive square roots of the eigenvalues
of A, in the same order as they appear in D. More precisely, define E to be the diagonal matrix
with non-negative diagonal entries such that E2 = D. Set S = UEU∗, and compute

S2 = UEU∗UEU∗

= UEInEU
∗ Definition UM [224]

= UEEU∗ Theorem MMIM [197]
= UDU∗

= UU∗AUU∗ Theorem OD [591]
= InAIn Definition UM [224]
= A Theorem MMIM [197]

We need to first verify that S is Hermitian.

S∗ = (UEU∗)∗

= (UEU∗)∗

= (U∗)∗E∗U∗ Theorem MMAD [200]
= UE∗U∗ Theorem AA [186]

= U
(
E
)t
U∗ Definition A [186]

= UEtU∗ Theorem HMRE [419]
= UEU∗ Diagonal matrix
= S
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820 Section SR Square Roots

And finally, we want to check the use of S in an inner product. Notice that E is Hermitian since
it is a diagonal matrix with real entries. Furthermore, as a diagonal matrix, the eigenvalues of
E are precisely the diagonal entries, and since these were chosen to be positive, an application of
Theorem EPSM [796] tells us that E is positive semi-definite. Now, for any x ∈ Cn,

〈Sx, x〉 = 〈UEU∗x, x〉
= 〈EU∗x, U∗x〉 Theorem AIP [201]
= 〈E (U∗x) , U∗x〉
≥ 0 Definition PSM [795]

So, according to Definition PSM [795], S is positive semi-definite.
(⇒) Assume that A = S2, with S positive semi-definite. Then S is Hermitian, and we check

that A is Hermitian.

A∗ = (SS)∗

= S∗S∗ Theorem MMAD [200]
= SS Definition HM [201]
= A

Now for the use of A in an inner product. For any x ∈ Cn,

〈Ax, x〉 =
〈
S2x, x

〉
= 〈Sx, S∗x〉 Theorem AIP [201]
= 〈Sx, Sx〉 Definition HM [201]
≥ 0 Theorem PIP [168]

So by Definition PSM [795], A is positive semi-definite. �

There is a very close relationship between the eigenvalues and eigenspaces of a positive semi-
definite matrix and its positive semi-definite square root. The next theorem is interesting in its
own right, but is also an important technical step in some other important results, such as the
upcoming uniqueness of the square root (Theorem USR [821]).

Theorem EESR
Eigenvalues and Eigenspaces of a Square Root
Suppose that A is a positive semi-definite matrix and S is a positive semi-definite matrix such that
A = S2. If λ1, λ2, λ3, . . . , λp are the distinct eigenvalues of A, then the distinct eigenvalues of S
are
√
λ1,
√
λ2,
√
λ3, . . . ,

√
λp, and ES

(√
λi
)

= EA (λi) for 1 ≤ i ≤ p. �

Proof Let x be an eigenvector of S for an eigenvalue ρ. Then, in the style of Theorem EPM
[413],

Ax = S2x = S (Sx) = S (ρx) = ρSx = ρ2x

so ρ2 is an eigenvalue of A and must equal some λi. Furthermore, because S is positive semi-
definite, Theorem EPSM [796] tells us that ρ ≥ 0. The impact for us here is that we cannot have
two different eigenvalues of S whose squares equal the same eigenvalue of A, so we can pair each
eigenvalue of S with a different eigenvalue of A, equal to its square. (A good exercise is to track
through the rest of this proof in the situation where S is not assumed to be positive semi-definite
and we do not have this condition on the eigenvalues. Where does the proof then break down?)
Let ρi, 1 ≤ i ≤ q denote the q distinct eigenvalues of S. The discussion above implies that we can
order the eigenvalues of A and S so that λi = ρ2

i for 1 ≤ i ≤ q. Notice that at this point we know
that q ≤ p, though we will be showing that q = p.

Additionally, the equation above tells us that every eigenvector of S for ρi is again an eigenvector
of A for ρ2

i . So for 1 ≤ i ≤ q, the relevant eigenspaces are related by

ES
(√

λi

)
= ES (ρi) ⊆ EA

(
ρ2
i

)
= EA (λi)
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So the eigenspaces of S are subsets of the eigenspaces of A, for the related eigenvalues. However,
we will be showing that these sets are indeed equal to each other.

Both A and S are positive semi-definite, hence Hermitian and therefore normal. Theorem OD
[591] then tells us that each is diagonalizable (Definition DZM [428]). Then Theorem DMFE [431]
says that the algebraic multiplicity and geometric multiplicity of each eigenvalue are equal. Then,
if we let n denote the size of A,

n =
q∑
i=1

αS

(√
λi

)
Theorem NEM [416]

=
q∑
i=1

γS

(√
λi

)
Theorem DMFE [431]

=
q∑
i=1

dim
(
ES
(√

λi

))
Definition GME [399]

≤
q∑
i=1

dim (EA (λi)) Theorem PSSD [350]

≤
p∑
i=1

dim (EA (λi)) Definition D [333]

=
p∑
i=1

γA (λi) Definition GME [399]

=
p∑
i=1

αA (λi) Theorem DMFE [431]

= n Theorem NEM [416]

With equal values at the two ends of this chain of equalities and inequalities, we know that the two
inequalities are forced to actually be equalities. In particular, the second inequality implies that
p = q and the first, in conjunction with Theorem EDYES [350], implies that ES

(√
λi
)

= EA (λi)
for 1 ≤ i ≤ p. �

Notice that we defined the singular values of a matrix A as the square roots of the eigenvalues
of A∗A (Definition SV [816]). With Theorem EESR [820] in hand we recognize the singular values
of A as simply the eigenvalues of A∗A1/2. Indeed, many authors take this as the definition of
singular values, since it is equivalent to our definition. We have chosen not to wait for a discussion
of square roots before making a definition of singular values, allowing us to present the singular
value decomposition (Theorem SVD [817]) all the sooner.

In the first half of the proof of Theorem PSMSR [819] we could have chosen the matrix E
(which was the essential component of the desired matrix S) in a variety of ways. Any collection
of diagonal entries of E could be replaced by their negatives and we would maintain the property
that E2 = D. However, if we decide to enforce the entries of E as non-negative quantities then
E is positive semi-definite, and then S follows along as a positive semi-definite matrix. We now
show that of all the possible square roots of a positive semi-definite matrix, only one is itself again
positive semi-definite. In other words, the S of Theorem PSMSR [819] is unique.

Theorem USR
Unique Square Root
Suppose A is a positive semi-definite matrix. Then there is a unique positive semi-definite matrix
S such that A = S2. �

Proof Theorem PSMSR [819] gives us the existence of at least one positive semi-definite matrix
S such that A = S2. As usual, we will assume that S1 and S2 are positive semi-definite matrices
such that A = S2

1 = S2
2 (Technique U [674]).

As A is diagonalizable, there is a basis of Cn composed entirely of eigenvectors of A (Theorem
DC [429]), say B = {x1, x2, x3, . . . , xn}. Let δ1, δ2, δ3, . . . , δn denote the associated eigenvalues.
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Theorem EESR [820] allows to conclude that EA (δi) = ES1

(√
δi
)

= ES2

(√
δi
)
. So S1xi =

√
δixi =

S2xi for 1 ≤ i ≤ n.
Choose any x ∈ Cn. The spanning property of B allows us to conclude the existence of a set of

scalars, a1, a2, a3, . . . , an, yielding x as a linear combination of the vectors in B. So,

S1x = S1

n∑
i=1

aixi =
n∑
i=1

aiS1xi =
n∑
i=1

ai
√
δixi =

n∑
i=1

aiS2xi = S2

n∑
i=1

aixi = S2x

Since S1 and S2 have the same action on every vector, Theorem EMMVP [193] yields the conclusion
that S1 = S2. �

With a criteria that distinguishes one square root from all the rest (positive semi-definiteness)
we can now define the square root of a positive semi-definite matrix.

Definition SRM
Square Root of a Matrix
Suppose A is a positive semi-definite matrix and S is the positive semi-definite matrix such that
S2 = SS = A. Then S is the square root of A and we write S = A1/2.
(This definition contains Notation SRM.) 4
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Section POD
Polar Decomposition

This Section is a Draft, Subject to Changes
Needs Numerical Examples

The polar decomposition of a matrix writes any matrix as the product of a unitary matrix
(Definition UM [224])and a positive semi-definite matrix (Definition PSM [795]). It takes its name
from a special way to write complex numbers. If you’ve had a basic course in complex analysis, the
next paragraph will help explain the name. If the next paragraph makes no sense to you, there’s
no harm in skipping it.

Any complex number z ∈ C can be written as z = reiθ where r is a positive number (computed
as a square root of a function of the real amd imaginary parts of z) and θ is an angle of rotation
that converts 1 to the complex number eiθ = cos(θ) + i sin(θ). The polar form of a square matrix
is a product of a positive semi-definite matrix that is a square root of a function of the matrix
together with a unitary matrix, which can be viewed as achieving a rotation (Theorem UMPIP
[226]).

OK, enough preliminaries. We have all the tools in place to jump straight to our main theorem.

Theorem PDM
Polar Decomposition of a Matrix
Suppose that A is a square matrix. Then there is a unitary matrix U such that A = (AA∗)1/2 U .
�

Proof This theorem only claims the existence of a unitary matrix U that does a certain job. We
will manufacture U and check that it meets the requirements.

Suppose A has size n and rank r. We begin by applying Theorem EEMAP [813] to A. Let
B = {x1, x2, x3, . . . , xn} be the orthonormal basis of Cn composed of eigenvectors for A∗A, and
let C = {y1, y2, y3, . . . , yn} be the orthonormal basis of Cn composed of eigenvectors for AA∗.
We have Axi =

√
δixi, 1 ≤ i ≤ r, and Axi = 0, r + 1 ≤ i ≤ n, where δi, 1 ≤ i ≤ r are the distinct

nonzero eigenvalues of A∗A.
Define T : Cn 7→ Cn to be the unique linear transformation such that T (xi) = yi, 1 ≤ i ≤ n, as

guaranteed by Theorem LTDB [451]. Let E be the basis of standard unit vectors for Cn (Definition
SUV [169]), and define U to be the matrix representation (Definition MR [529]) of T with respect
to E, more carefully U = MT

E,E . This is the matrix we are after. Notice that

Uxi = MT
E,EρE (xi) Definition VR [517]

= ρE (T (xi)) Theorem FTMR [531]
= ρE (yi) Theorem FTMR [531]
= yi Definition VR [517]

Since B and C are orthonormal bases, and C is the reult of multiplying the vectors of B by U , we
conclude that U is unitary by Theorem UMCOB [328]. So once again, Theorem EEMAP [813] is
a big part of the setup for a decomposition.

Let x ∈ Cn be any vector. Since B is a basis of Cn, there are scalars a1, a2, a3, . . . , an expressing
x as a linear combination of the vectors in B. then

(AA∗)1/2 Ux = (AA∗)1/2 U
n∑
i=1

aixi Definition B [319]

=
n∑
i=1

(AA∗)1/2 Uaixi Theorem MMDAA [197]

=
n∑
i=1

ai (AA∗)1/2 Uxi Theorem MMSMM [198]
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=
n∑
i=1

ai (AA∗)1/2 yi

=
r∑
i=1

ai (AA∗)1/2 yi +
n∑

i=r+1

ai (AA∗)1/2 yi Property AAC [84]

=
r∑
i=1

ai
√
δiyi +

n∑
i=r+1

ai(0)yi Theorem EESR [820]

=
r∑
i=1

ai
√
δiyi +

n∑
i=r+1

ai0 Theorem ZSSM [280]

=
r∑
i=1

aiAxi +
n∑

i=r+1

aiAxi Theorem EEMAP [813]

=
n∑
i=1

aiAxi Property AAC [84]

=
n∑
i=1

Aaixi Theorem MMSMM [198]

= A
n∑
i=1

aixi Theorem MMDAA [197]

= Ax

So by Theorem EMMVP [193] we have the matrix equality (AA∗)1/2 U = A. �
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Section CF
Curve Fitting

This Section is Incomplete

Given two points in the plane, there is a unique line through them. Given three points in the
plane, and not in a line, there is a unique parabola through them. Given four points in the plane,
there is a unique polynomial, of degree 3 or less, passing through them. And so on. We can prove
this result, and give a procedure for finding the polynomial with the help of Vandermonde matrices
(Section VM [791]).

Theorem IP
Interpolating Polynomial
Suppose {(xi, yi) | 1 ≤ i ≤ n+ 1} is a set of n+ 1 points in the plane where the x-coordinates are
all different. Then there is a unique polynomial of degree n or less, p(x), such that p(xi) = yi,
1 ≤ i ≤ n+ 1. �

Proof Write p(x) = a0 + a1x + a2x
2 + · · · + anx

n. To meet the conclusion of the theorem, we
desire,

yi = p(xi) = a0 + a1xi + a2x
2
i + · · ·+ anx

n
i 1 ≤ i ≤ n+ 1

This is a system of n + 1 linear equations in the n + 1 variables a0, a1, a2, . . . , an. The vector of
conatants in this system is the vector containing the y-coordinates of the points. More importantly,
the coefficient matrix is a Vandermonde matrix (Definition VM [791]) built from the x-coordinates
x1, x2, x3, . . . , xn+1. Since we have required that these scalars all be different, Theorem NVM
[793] tells us that the coefficient matrix is nonsingular and Theorem NMUS [70] says the solution
for the coefficients of the polynomial exists, and is unique. As a practical matter, Theorem SNCM
[223] provides an expression for the solution. �

Example PTFP
Polynomial through five points
Suppose we have the following 5 points in the plane and we wish to pass a degree 4 polynomial
through them.

i 1 2 3 4 5
xi -3 -1 2 3 6
yi 276 16 31 144 2319

The required system of equations has a coefficient matrix that is the Vandermonde matrix where
row i is successive powers of xi

A =


1 −3 9 −27 81
1 −1 1 −1 1
1 2 4 8 16
1 3 9 27 81
1 6 36 216 1296


Theorem NMUS [70] provides a solution as

a0

a1

a2

a3

a4

 = A−1


276
16
31
144
2319

 =


− 1

15
9
14

9
10 −1

2
1
42

0 −3
7

3
4 −1

3
1
84

5
108 − 1

56 −1
4

17
72 − 11

756
− 1

54
1
21 − 1

12
1
18 − 1

756
1

540 − 1
168

1
60 − 1

72
1

756




276
16
31
144
2319

 =


3
−4
5
−2
2


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So the polynomial is p(x) = 3− 4x+ 5x2 − 2x3 + 2x4. �

The unique polynomial passing through a set of points is known as the interpolating poly-
nomial and it has many uses. Unfortunately, when confronted with data from an experiment the
situation may not be so simple or clear cut. Read on.

Subsection DF
Data Fitting

Suppose that we have n real variables, x1, x2, x3, . . . , xn, that we can measure in an experiment.
We believe that these variables combine, in a linear fashion, to equal another real variable, y. In
other words, we have reason to believe from our understanding of the experiment, that

y = a1x1 + a2x2 + a3x3 + · · ·+ anxn

where the scalars a1, a2, a3, . . . , an are not known to us, but are instead desirable. We would call
this our model of the situation. Then we run the experiment m times, collecting sets of values for
the variables of the experiment. For run number k we might denote these values as yk, xk1, xk2,
xk3, . . . , xkn. If we substitute these values into the model equation, we get m linear equations in
the unknown coefficients a1, a2, a3, . . . , an. If m = n, then we have a square coefficient matrix of
the system which might happen to be nonsingular and there would be a unique solution.

However, more likely m > n (the more data we collect, the greater our confidence in the
results) and the resulting system is inconsistent. It may be that our model is only an approximate
understanding of the relationship between the xi and y, or our measurements are not completely
accurate. Still we would like to understand the situation we are studying, and would like some best
answer for a1, a2, a3, . . . , an.

Let y denote the vector with [y]i = yi, 1 ≤ i ≤ m, let a denote the vector with [a]j = aj ,
1 ≤ j ≤ n, and let X denote the m × n matrix with [X]ij = xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then
the model equation, evaluated with each run of the experiment, translates to Xa = y. With the
presumption that this system has no solution, we can try to minimize the differecne between the
two side of the equation y −Xa. As a vector, it is hard to imagine what the minimum might be,
so we instead minimize the square of its norm

S = (y −Xa)t (y −Xa)

To keep the logical flow accurate, we will define the minimizing value and then give the proof that
it behaves as desired.

Definition LSS
Least Squares Solution
Given the equation Xa = y, where X is an m× n matrix of rank n, the least squares solution
for a is

(
XtX

)−1
Xty. 4

Theorem LSMR
Least Squares Minimizes Residuals
Suppose that X is an m × n matrix of rank n. The least squares solution of Xa = y, a′ =(
XtX

)−1
Xty, minimizes the expression

S = (y −Xa)t (y −Xa)

�

Proof We begin by finding the critical points of S. In preparation, let Xj denote column j of X,
for 1 ≤ j ≤ n and compute partial derivatives with respect to aj , 1 ≤ j ≤ n. A matrix product of
the form xty is a sum of products, so a derivative is a sum of applications of the product rule,

∂

∂aj
S =

∂

∂aj

(
(y −Xa)t (y −Xa)

)
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=
m∑
i=1

∂

∂aj
([y −Xa]i) [y −Xa]i + [y −Xa]i

∂

∂aj
([y −Xa]i)

= 2
m∑
i=1

∂

∂aj
([y −Xa]i) [y −Xa]i

= 2
m∑
i=1

∂

∂aj

(
[y]i −

n∑
k=1

[X]ik [a]k

)
[y −Xa]i

= 2
m∑
i=1

− [X]ij [y −Xa]i

= −2 (Xj)
t (y −Xa)

The first partial derivatives will allow us to find critical points, while second partial derivatives
will be needed to confirm that a critical point will yield a minimum. Return to the next-to-last
expression for the first partial derivative of S,

∂

∂a`aj
S =

∂

∂a`
2

m∑
i=1

− [X]ij [y −Xa]i

= −2
m∑
i=1

∂

∂a`
[X]ij [y −Xa]i

= −2
m∑
i=1

[X]ij
∂

∂a`

(
[y]i −

n∑
k=1

[X]ik [a]k

)

= −2
m∑
i=1

[X]ij (− [X]i`)

= 2
m∑
i=1

[X]ij [X]i`

= 2
m∑
i=1

[
Xt
]
ji

[X]i`

= 2
[
XtX

]
j`

For 1 ≤ j ≤ n, set ∂
∂aj

S = 0. This results in the n scalar equations

(Xj)
tXa = (Xj)

t y 1 ≤ j ≤ n

These n vector equations can be summarized in the single vector equation,

XtXa = Xty

XtX is an n × n matrix and since we have assumed that X has rank n, XtX will also have rank
n. Since XtX is invertible, we have a critical point at

a′ =
(
XtX

)−1
Xty

Is this lone critical point really a minimum? The matrix of second partial derivatives is constant,
and a positive multiple of XtX. Theorem CPSM [795] tells us that this matrix is positive semi-
definite. In an advanced course on multivariable calculus, it is shown that a minimum occurs
exactly where the matrix of second partial derivatives is positive semi-definite. You may have seen
this in the two-variable case, where a check on the positive semi-definiteness is disguised with a
determinant of the 2× 2 matrix of second partial derivatives. �

Version 1.30



830 Section CF Curve Fitting

Subsection EXC
Exercises

T20 Theorem IP [827] constructs a unique polynomial through a set of n+ 1 points in the plane,
{(xi, yi) | 1 ≤ i ≤ n+ 1}, where the x-coordinates are all different. Prove that the expression below
is the same polynomial and include an explanation of the necessity of the hypothesis that the x-
coordinates are all different.

p(x) =
n+1∑
i=1

yi

n+1∏
j=1
j 6=i

x− xj
xi − xj

This is known as the Lagrange form of the interpolating polynomial.
Contributed by Robert Beezer
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Section SAS
Sharing A Secret

This Section is a Draft, Subject to Changes

In this section we will see how to use solutions to systems of equations to share a secret among
a group of people. We will be able to break a secret up into, say 10 pieces, so as to distribute
the secret among 10 people. But rather than requiring all 10 people to collaborate on restoring
the secret, we can design the split so that any smaller group, of say just 4 of these people, can
collaborate and restore the secret. The numbers 10 and 4 here are arbitrary, we can choose them
to be anything.

Suppose we have a secret, S. This could be the combination to a lock, a password on an account,
or a recipe for chocolate chip cookies. If the secret is text, we will assume that the characters have
been translated into integers (say with the ASCII code), and these numbers have been rolled up into
one grand positive integer (perhaps by concatenating binary strings for the ASCII code numbers,
and interpreting the longer string as one big base 2 integer). So we will assume S is some positive
integer.

Suppose you wish to give parts of your secret to n people, and you wish to require that any
group of m (or more) of these people should be able to combine their parts and recover the secret.
Perhaps you are President and CEO of a small company and only you know the password that
authorizes large transfers of money among the company’s bank accounts. If you were to die or
become incapacitated, it would perhaps hamper the company’s ability to function if they couldn’t
quickly rearrange their assets, especially since they are also without a CEO. So you might wish to
give this secret to six of your trusted Vice-Presidents. But you don’t trust them that much and
you certainly don’t want any one of these people to be able to access the company’s accounts all by
themselves without anybody else in the company knowing about it. Simultaneously, you know that
in an emergency, it might not be possible to get all six Vice-Presidents together and maybe even
one or two of them have met the same unfortunate fate you did. So you would like any group of
three Vice-Presidents to be able to combine their parts and recover S. So you would choose n = 6
and m = 3.

We will describe the split, with no motivation. The explanation of how the secret recovery is
handled will explain our choices here. Choose a large prime number, p, bigger than any possible
secret. For a single number in a combination lock, p could be small. For a one-page recipe, p would
need to be huge. All of our subsequent arithmetic will be modulo p, so consult Subsection F.FF
[772] for a brief description of how we do linear algebra when our field is Zp. Build a polynomial,
r(x), of degree m−1 as follows. Set the constant term to S, and choose the other m−1 coefficients
at random from Zp. The quality of your random generator will ultimately affect the quality of how
hidden your secret remains.

Compute the pairs (i, r(i)), 1 ≤ i ≤ n. To person i, of the n persons you will give a part of your
secret, present the pair (i, r(i)), and instruct them to keep this secret, for all 1 ≤ i ≤ n. They could
perhaps encrypt their pairs with AES (Advanced Encryption Standard) using a password known
only to them individually. Or you could do this for each of them in advance and tell them the
chose password orally, in private. At any rate, each person gets a pair of integers, an input to the
polynomial, and the output of evaluating the polynomial, and they keep this information secret.
They do not know the polynomial itself, and certainly not the constant term S, so the secret is still
safe.

Now suppose that m of these people get together, in the event you are unable to act, or perhaps
without your permission. Suppose they pool all of their pairs, or even just turn them over to one
member of the group. What do they now know collectively? Suppose that

r(x) = a0 + a1x+ a2x
2 + · · ·+ am−1x

m−1
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832 Section SAS Sharing A Secret

where, of course, a0 = S is the secret. A single pair, (i, r(i)), results in a linear equation whose
unknowns are the m coefficients of r(x). With m pairs revealed, we now have m equations in m
variables. Furthermore, the coefficent matrix of this system is a Vandermonde matrix (Definition
VM [791]). With our inputs to the polynomial all different (we used 1, 2, 3, . . . , n), the Vander-
monde matrix is nonsingular (Theorem NVM [793]). Thus by Theorem NMUS [70] there is a unique
solution for the coefficients of r(x). We only desire the constant term — the other coefficients (the
randomly chosen ones) are of no interest, they were used to mask the secret as it was split into
parts.

A few practical considerations. If certain individuals in your group are more important, or more
trustworthy, you can give them more than one part. You could split a secret into 30 parts, giving
5 Vice-Presidents each 4 parts and give 10 department heads each 1 part. Then you might require
12 parts to be present. This way three Vice-Presidents could recover the secret, or 4 department
heads could stand-in for a Vice-President. Furthermore, the 10 department heads could not recover
the secret without having at least one Vice-President present.

The inputs do not have to be consecutive integers, starting at 1. Any set of different integers
will suffice. Why make it any easier for an attacker? Mix it up and choose the inputs randomly as
well, just keep them different.

Why do all this arithmetic over Zp? If we worked with polynomials having real number co-
efficients, properties of polynomials as continuous functions might give an attacker the ability to
compute the secret with a reasonable amount of computing time. For example, the magnitude of
the output is going to dominated by the term of r(x) having degree m − 1. Suppose an attacker
had a few of the pairs, but not a full set of m of them. Or even worse, suppose some group of fewer
than m of your trusted acquaintances were to conspire against you. It might be possible to guess
a limited range of values for the coeffiecent of the largest term. With a limited range of values
here, the next term might fall to a similar analysis. And so on. However, modular arithmetic is in
some ways very unpredictable looking and as high powers “wrap-around” this sort of analysis will
be frustrated. And we know it is no harder to do linear algebra in Zp than in C.

OK, here’s a non-trivial example.

Example SS6W
Sharing a secret 6 ways
Let’s return to the CEO and his six Vice-Presidents. Suppose the password for the company’s
accounts is a sequence of 5 two-digit numbers, which we will concatenate into a 10-digit number,
in this case S = 0603725962. For a prime p we choose the 11-digit prime number p = 22801761379.
From the requirement that m = 3 Vice-Presidents are needed to recover the secret, we need a
second-degree polynomial and so need two more coefficients, which we will construct at random
between 1 and p. The resulting polynomial is

r(x) = 603725962 + 22561982919x+ 8844088338x2

We will now build six pairs of inputs and outputs, where we will choose the inputs at random (not
allowing duplicates) and we do all our arithmetic modulo p,

VP x r(x)
Finance 20220406046 7205699654
Human Resources 8862377358 17357568951
Marketing 13747127957 18503158079
Legal 15835120319 14060705999
Research 6530855859 5628836054
Manufacturing 9222703664 2608052019

The two numbers of each row of the table are then given to the indicated Vice-President. Done.
The secret has been split six ways, and any three VP’s can jointly recover the secret.

Let’s test the recovery process, especially since it contains the relevant linear algebra. Suppose
we write the unknown polynomial as r(x) = a0 + a1x+ a2x

2 and the VP’s for Finance, Marketing
and Legal all get together to recover the secret. The equations we arrive at are,

Finance 7205699654 = r(20220406046)
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= a0 + a1(20220406046) + a2(20220406046)2

= a0 + 20220406046a1 + 7793596215a2

Marketing 18503158079 = r(13747127957)

= a0 + a1(13747127957) + a2(13747127957)2

= a0 + 13747127957a1 + 18840301370a2

Legal 14060705999 = r(15835120319)

= a0 + a1(15835120319) + a2(15835120319)2

= a0 + 15835120319a1 + 8874412999a2

So they have a linear system, LS(A, b) with

A =

1 20220406046 7793596215
1 13747127957 18840301370
1 15835120319 8874412999

 b =

 7205699654
18503158079
14060705999


With a Vandermonde matrix as the coefficient matrix, they know there is a solution, and it is
unique. By Theorem SNCM [223] (or through row-reducing the augmented matrix) they arrive at
the solution,

A−1b =

 5716900879 9234437646 7850422855
20952200747 16452595922 8198726089
17286943796 18018241597 10298337365

 7205699654
18503158079
14060705999

 =

 603725962
22561982919
8844088338


So the CEO’s password is the secret S = a0 = 603725962 = 0603725962 (as expected). �
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Archetype A
column space, 235
linearly dependent columns, 138
singular matrix, 67
solving homogeneous system, 58
system as linear combination, 91

archetype A
augmented matrix

example AMAA, 26
Archetype B

column space, 236
inverse

example CMIAB, 213
linearly independent columns, 138
nonsingular matrix, 68
not invertible

example MWIAA, 208
solutions via inverse

example SABMI, 207
solving homogeneous system, 57
system as linear combination, 90
vector equality, 82

archetype B
solutions

example SAB, 31
Archetype C

homogeneous system, 57
Archetype D

column space, original columns, 234
solving homogeneous system, 58
vector form of solutions, 93

Archetype I
column space from row operations, 241
null space, 59
row space, 237
vector form of solutions, 100

Archetype I:casting out vectors, 153
Archetype L

null space span, linearly independent, 141
vector form of solutions, 102

ASC (example), 522
augmented matrix

notation, 26
AVR (example), 311

B (archetype), 689
B (definition), 319
B (section), 319
B (subsection, section B), 319
basis

columns nonsingular matrix
example CABAK, 324

common size
theorem BIS, 336

crazy vector apace
example BC, 322

definition B, 319
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example BM, 320
example BSM22, 321

polynomials
example BP, 320
example BPR, 348
example BSP4, 320
example SVP4, 349

subspace of matrices
example BDM22, 349

BC (example), 322
BCS (theorem), 234
BDE (example), 414
BDM22 (example), 349
best cities

money magazine
example MBC, 192

BIS (theorem), 336
BM (example), 320
BNM (subsection, section B), 324
BNS (theorem), 140
BP (example), 320
BPR (example), 348
BRLT (example), 487
BRS (theorem), 240
BS (theorem), 156
BSCV (subsection, section B), 322
BSM22 (example), 321
BSP4 (example), 320

C (archetype), 694
C (definition), 666
C (notation), 666
C (part), 3
C (Property), 273
C (technique, section PT), 671
CABAK (example), 324
CACN (Property), 662
CAEHW (example), 394
CAF (Property), 771
canonical form

nilpotent linear transformation
example CFNLT, 608
theorem CFNLT, 604

CAV (subsection, section O), 163
Cayley-Hamilton

theorem CHT, 649
CB (section), 559
CB (theorem), 560
CBCV (example), 564
CBM (definition), 560
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CBM (subsection, section CB), 560
CBP (example), 561
CC (Property), 84
CCCV (definition), 163
CCCV (notation), 163
CCM (definition), 184
CCM (example), 184
CCM (notation), 184
CCM (theorem), 185
CCN (definition), 663
CCN (notation), 663
CCN (subsection, section CNO), 663
CCRA (theorem), 663
CCRM (theorem), 663
CCT (theorem), 664
CD (subsection, section DM), 368
CD (technique, section PT), 673
CEE (subsection, section EE), 395
CELT (example), 576
CELT (subsection, section CB), 571
CEMS6 (example), 401
CF (section), 827
CFDVS (theorem), 522
CFNLT (example), 608
CFNLT (subsection, section NLT), 604
CFNLT (theorem), 604
CFV (example), 50
change of basis

between polynomials
example CBP, 561

change-of-basis
between column vectors

example CBCV, 564
matrix representation

theorem MRCB, 565
similarity

theorem SCB, 568
theorem CB, 560

change-of-basis matrix
definition CBM, 560
inverse

theorem ICBM, 561
characteristic polynomial

definition CP, 396
degree

theorem DCP, 416
size 3 matrix

example CPMS3, 396
CHT (subsection, section JCF), 649
CHT (theorem), 649
CILT (subsection, section ILT), 474
CILTI (theorem), 474
CIM (subsection, section MISLE), 209
CINM (theorem), 212

CIVLT (example), 499
CIVLT (theorem), 501
CLI (theorem), 523
CLTLT (theorem), 458
CM (definition), 24
CM (Property), 181
CM32 (example), 525
CMCN (Property), 662
CMF (Property), 771
CMI (example), 211
CMIAB (example), 213
CMVEI (theorem), 50
CN (appendix), 653
CNA (definition), 662
CNA (notation), 662
CNA (subsection, section CNO), 661
CNE (definition), 662
CNE (notation), 662
CNM (definition), 662
CNM (notation), 662
CNMB (theorem), 324
CNO (section), 661
CNS1 (example), 60
CNS2 (example), 61
CNSV (example), 167
COB (theorem), 325
coefficient matrix

definition CM, 24
nonsingular

theorem SNCM, 223
column space

as null space
theorem FS, 257

Archetype A
example CSAA, 235

Archetype B
example CSAB, 236

as null space
example CSANS, 252

as null space, Archetype G
example FSAG, 263

as row space
theorem CSRST, 241

basis
theorem BCS, 234

consistent system
theorem CSCS, 232

consistent systems
example CSMCS, 231

isomorphic to range, 541
matrix, 231
nonsingular matrix

theorem CSNM, 236
notation, 231
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original columns, Archetype D
example CSOCD, 234

row operations, Archetype I
example CSROI, 241

subspace
theorem CSMS, 297

testing membership
example MCSM, 232

two computations
example CSTW, 233

column vector addition
notation, 82

column vector scalar multiplication
notation, 83

commutativity
column vectors

Property CC, 84
matrices

Property CM, 181
vectors

Property C, 273
complex m-space

example VSCV, 275
complex arithmetic

example ACN, 661
complex number

conjugate
example CSCN, 663

modulus
example MSCN, 664

complex number
conjugate

definition CCN, 663
modulus

definition MCN, 664
complex numbers

addition
definition CNA, 662
notation, 662

arithmetic properties
theorem PCNA, 662

equality
definition CNE, 662
notation, 662

multiplication
definition CNM, 662
notation, 662

complex vector space
dimension

theorem DCM, 336
composition

injective linear transformations
theorem CILTI, 474

surjective linear transformations

theorem CSLTS, 489
conjugate

addition
theorem CCRA, 663

column vector
definition CCCV, 163

matrix
definition CCM, 184
notation, 184

multiplication
theorem CCRM, 663

notation, 663
of conjugate of a matrix

theorem CCM, 185
scalar multiplication

theorem CRSM, 163
twice

theorem CCT, 664
vector addition

theorem CRVA, 163
conjugate of a vector

notation, 163
conjugation

matrix addition
theorem CRMA, 184

matrix scalar multiplication
theorem CRMSM, 185

matrix transpose
theorem MCT, 185

consistent linear system, 48
consistent linear systems

theorem CSRN, 49
consistent system

definition CS, 45
constructive proofs

technique C, 671
contradiction

technique CD, 673
contrapositive

technique CP, 673
converse

technique CV, 673
coordinates

orthonormal basis
theorem COB, 325

coordinatization
linear combination of matrices

example CM32, 525
linear independence

theorem CLI, 523
orthonormal basis

example CROB3, 327
example CROB4, 326

spanning sets
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theorem CSS, 523
coordinatization principle, 525
coordinatizing

polynomials
example CP2, 524

COV (example), 153
COV (subsection, section LDS), 153
CP (definition), 396
CP (subsection, section VR), 523
CP (technique, section PT), 673
CP2 (example), 524
CPMS3 (example), 396
CPSM (theorem), 795
crazy vector space

example CVSR, 522
properties

example PCVS, 281
CRMA (theorem), 184
CRMSM (theorem), 185
CRN (theorem), 339
CROB3 (example), 327
CROB4 (example), 326
CRS (section), 231
CRS (subsection, section FS), 252
CRSM (theorem), 163
CRVA (theorem), 163
CS (definition), 45
CS (example), 666
CS (subsection, section TSS), 45
CSAA (example), 235
CSAB (example), 236
CSANS (example), 252
CSCN (example), 663
CSCS (theorem), 232
CSIP (example), 164
CSLT (subsection, section SLT), 489
CSLTS (theorem), 489
CSM (definition), 231
CSM (notation), 231
CSMCS (example), 231
CSMS (theorem), 297
CSNM (subsection, section CRS), 235
CSNM (theorem), 236
CSOCD (example), 234
CSRN (theorem), 49
CSROI (example), 241
CSRST (theorem), 241
CSS (theorem), 523
CSSE (subsection, section CRS), 231
CSSOC (subsection, section CRS), 233
CSTW (example), 233
CTD (subsection, section TD), 809
CTLT (example), 459
CUMOS (theorem), 225

curve fitting
polynomial through 5 points

example PTFP, 827
CV (definition), 23
CV (notation), 24
CV (technique, section PT), 673
CVA (definition), 82
CVA (notation), 82
CVC (notation), 24
CVE (definition), 82
CVE (notation), 82
CVS (example), 277
CVS (subsection, section VR), 522
CVSM (definition), 83
CVSM (example), 83
CVSM (notation), 83
CVSR (example), 522

D (acronyms, section PDM), 387
D (archetype), 698
D (chapter), 363
D (definition), 333
D (notation), 333
D (section), 333
D (subsection, section D), 333
D (subsection, section SD), 428
D (technique, section PT), 669
D33M (example), 368
DAB (example), 428
DC (example), 338
DC (technique, section PT), 675
DC (theorem), 429
DCM (theorem), 336
DCN (Property), 662
DCP (theorem), 416
DD (subsection, section DM), 367
DEC (theorem), 370
decomposition

technique DC, 675
DED (theorem), 433
definition

A, 186
AM, 26
AME, 399
B, 319
C, 666
CBM, 560
CCCV, 163
CCM, 184
CCN, 663
CM, 24
CNA, 662
CNE, 662
CNM, 662
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CP, 396
CS, 45
CSM, 231
CV, 23
CVA, 82
CVE, 82
CVSM, 83
D, 333
DIM, 428
DM, 367
DS, 353
DZM, 428
EEF, 254
EELT, 559
EEM, 389
ELEM, 363
EM, 397
EO, 13
ES, 665
ESYS, 13
F, 771
GES, 616
GEV, 616
GME, 399
HI, 786
HID, 785
HM, 201
HP, 785
HS, 57
IDLT, 495
IDV, 47
IE, 626
ILT, 465
IM, 68
IMP, 772
IP, 164
IS, 613
IVLT, 495
IVS, 502
JB, 597
JCF, 637
KLT, 468
LC, 292
LCCV, 89
LI, 303
LICV, 133
LNS, 251
LSMR, 25
LSS, 828
LT, 443
LTA, 456
LTC, 458
LTM, 585
LTR, 620

LTSM, 457
M, 23
MA, 179
MCN, 664
ME, 179
MI, 208
MM, 194
MR, 529
MSM, 180
MVP, 191
NLT, 595
NM, 67
NOLT, 503
NOM, 338
NRML, 590
NSM, 59
NV, 167
ONS, 173
OSV, 169
OV, 168
PI, 454
PSM, 795
REM, 27
RLD, 303
RLDCV, 133
RLT, 483
RO, 26
ROLT, 503
ROM, 339
RR, 34
RREF, 28
RSM, 237
S, 287
SC, 667
SE, 666
SET, 665
SI, 667
SIM, 425
SLE, 11
SLT, 479
SM, 367
SOLV, 25
SQM, 67
SRM, 822
SS, 293
SSCV, 113
SSET, 665
SU, 667
SUV, 169
SV, 816
SYM, 182
T, 779
technique D, 669
TM, 182
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TS, 291
TSHSE, 57
TSVS, 307
UM, 224
UTM, 585
VM, 791
VOC, 24
VR, 517
VS, 273
VSCV, 81
VSM, 179
ZCV, 24
ZM, 182

DEHD (example), 433
DEM (theorem), 380
DEMMM (theorem), 380
DEMS5 (example), 403
DER (theorem), 369
DERC (theorem), 377
determinant

computed two ways
example TCSD, 371

definition DM, 367
equal rows or columns

theorem DERC, 377
expansion, columns

theorem DEC, 370
expansion, rows

theorem DER, 369
identity matrix

theorem DIM, 379
matrix multiplication

theorem DRMM, 383
nonsingular matrix, 381
notation, 368
row or column multiple

theorem DRCM, 376
row or column swap

theorem DRCS, 375
size 2 matrix

theorem DMST, 368
size 3 matrix

example D33M, 368
transpose

theorem DT, 370
via row operations

example DRO, 378
zero

theorem SMZD, 381
zero row or column

theorem DZRC, 375
zero versus nonzero

example ZNDAB, 382
determinant, upper triangular matrix

example DUTM, 371
determinants

elementary matrices
theorem DEMMM, 380

DF (Property), 771
DF (subsection, section CF), 828
DFS (subsection, section PD), 351
DFS (theorem), 352
DGES (theorem), 637
diagonal matrix

definition DIM, 428
diagonalizable

definition DZM, 428
distinct eigenvalues

example DEHD, 433
theorem DED, 433

full eigenspaces
theorem DMFE, 431

not
example NDMS4, 432

diagonalizable matrix
high power

example HPDM, 434
diagonalization

Archetype B
example DAB, 428

criteria
theorem DC, 429

example DMS3, 430
DIM (definition), 428
DIM (theorem), 379
dimension

crazy vector space
example DC, 338

definition D, 333
notation, 333
polynomial subspace

example DSP4, 338
proper subspaces

theorem PSSD, 350
subspace

example DSM22, 337
direct sum

decomposing zero vector
theorem DSZV, 354

definition DS, 353
dimension

theorem DSD, 356
example SDS, 353
from a basis

theorem DSFB, 353
from one subspace

theorem DSFOS, 354
notation, 353
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zero intersection
theorem DSZI, 355

direct sums
linear independence

theorem DSLI, 355
repeated

theorem RDS, 357
distributivity

complex numbers
Property DCN, 662

field
Property DF, 771

distributivity, matrix addition
matrices

Property DMAM, 181
distributivity, scalar addition

column vectors
Property DSAC, 84

matrices
Property DSAM, 181

vectors
Property DSA, 274

distributivity, vector addition
column vectors

Property DVAC, 84
vectors

Property DVA, 274
DLDS (theorem), 151
DM (definition), 367
DM (notation), 368
DM (section), 363
DM (theorem), 337
DMAM (Property), 181
DMFE (theorem), 431
DMHP (subsection, section HP), 787
DMHP (theorem), 787
DMMP (theorem), 788
DMS3 (example), 430
DMST (theorem), 368
DNLT (theorem), 600
DNMMM (subsection, section PDM), 381
DP (theorem), 337
DRCM (theorem), 376
DRCMA (theorem), 377
DRCS (theorem), 375
DRMM (theorem), 383
DRO (example), 378
DRO (subsection, section PDM), 375
DROEM (subsection, section PDM), 379
DS (definition), 353
DS (notation), 353
DS (subsection, section PD), 352
DSA (Property), 274
DSAC (Property), 84

DSAM (Property), 181
DSD (theorem), 356
DSFB (theorem), 353
DSFOS (theorem), 354
DSLI (theorem), 355
DSM22 (example), 337
DSP4 (example), 338
DSZI (theorem), 355
DSZV (theorem), 354
DT (theorem), 370
DUTM (example), 371
DVA (Property), 274
DVAC (Property), 84
DVM (theorem), 791
DVS (subsection, section D), 336
DZM (definition), 428
DZRC (theorem), 375

E (acronyms, section SD), 441
E (archetype), 702
E (chapter), 389
E (technique, section PT), 672
ECEE (subsection, section EE), 398
EDELI (theorem), 411
EDYES (theorem), 350
EE (section), 389
EEE (subsection, section EE), 392
EEF (definition), 254
EEF (subsection, section FS), 254
EELT (definition), 559
EELT (subsection, section CB), 559
EEM (definition), 389
EEM (subsection, section EE), 389
EEMAP (theorem), 813
EENS (example), 427
EER (theorem), 571
EESR (theorem), 820
EHM (subsection, section PEE), 419
eigenspace

as null space
theorem EMNS, 397

definition EM, 397
invariant subspace

theorem EIS, 614
subspace

theorem EMS, 397
eigenvalue

algebraic multiplicity
definition AME, 399

complex
example CEMS6, 401

definition EEM, 389
existence

example CAEHW, 394
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theorem EMHE, 392
geometric multiplicity

definition GME, 399
index, 626
linear transformation

definition EELT, 559
multiplicities

example EMMS4, 399
power

theorem EOMP, 413
root of characteristic polynomial

theorem EMRCP, 396
scalar multiple

theorem ESMM, 412
symmetric matrix

example ESMS4, 400
zero

theorem SMZE, 412
eigenvalues

building desired
example BDE, 414

complex, of a linear transformation
example CELT, 576

conjugate pairs
theorem ERMCP, 415

distinct
example DEMS5, 403

example SEE, 389
Hermitian matrices

theorem HMRE, 419
inverse

theorem EIM, 414
maximum number

theorem MNEM, 418
multiplicities

example HMEM5, 400
theorem ME, 417

number
theorem NEM, 416

of a polynomial
theorem EPM, 413

size 3 matrix
example EMS3, 396
example ESMS3, 398

transpose
theorem ETM, 415

eigenvalues, eigenvectors
vector, matrix representations

theorem EER, 571
eigenvector, 389

linear transformation, 559
eigenvectors, 390

conjugate pairs, 415
Hermitian matrices

theorem HMOE, 419
linear transformation

example ELTBM, 559
example ELTBP, 560

linearly independent
theorem EDELI, 411

of a linear transformation
example ELTT, 572

EILT (subsection, section ILT), 465
EIM (theorem), 414
EIS (example), 615
EIS (theorem), 614
ELEM (definition), 363
ELEM (notation), 364
elementary matrices

definition ELEM, 363
determinants

theorem DEM, 380
nonsingular

theorem EMN, 366
notation, 364
row operations

example EMRO, 364
theorem EMDRO, 364

ELIS (theorem), 347
ELTBM (example), 559
ELTBP (example), 560
ELTT (example), 572
EM (definition), 397
EM (subsection, section DM), 363
EMDRO (theorem), 364
EMHE (theorem), 392
EMMS4 (example), 399
EMMVP (theorem), 193
EMN (theorem), 366
EMNS (theorem), 397
EMP (theorem), 195
empty set, 665

notation, 665
EMRCP (theorem), 396
EMRO (example), 364
EMS (theorem), 397
EMS3 (example), 396
ENLT (theorem), 600
EO (definition), 13
EOMP (theorem), 413
EOPSS (theorem), 14
EPM (theorem), 413
EPSM (theorem), 796
equal matrices

via equal matrix-vector products
theorem EMMVP, 193

equation operations
definition EO, 13
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theorem EOPSS, 14
equivalence statements

technique E, 672
equivalences

technique ME, 674
equivalent systems

definition ESYS, 13
ERMCP (theorem), 415
ES (definition), 665
ES (notation), 665
ESEO (subsection, section SSLE), 13
ESLT (subsection, section SLT), 479
ESMM (theorem), 412
ESMS3 (example), 398
ESMS4 (example), 400
ESYS (definition), 13
ETM (theorem), 415
EVS (subsection, section VS), 274
example

AALC, 91
ABLC, 90
ABS, 113
ACN, 661
AHSAC, 57
AIVLT, 495
ALT, 444
ALTMM, 532
AM, 23
AMAA, 26
ANILT, 496
ANM, 590
AOS, 169
ASC, 522
AVR, 311
BC, 322
BDE, 414
BDM22, 349
BM, 320
BP, 320
BPR, 348
BRLT, 487
BSM22, 321
BSP4, 320
CABAK, 324
CAEHW, 394
CBCV, 564
CBP, 561
CCM, 184
CELT, 576
CEMS6, 401
CFNLT, 608
CFV, 50
CIVLT, 499
CM32, 525

CMI, 211
CMIAB, 213
CNS1, 60
CNS2, 61
CNSV, 167
COV, 153
CP2, 524
CPMS3, 396
CROB3, 327
CROB4, 326
CS, 666
CSAA, 235
CSAB, 236
CSANS, 252
CSCN, 663
CSIP, 164
CSMCS, 231
CSOCD, 234
CSROI, 241
CSTW, 233
CTLT, 459
CVS, 277
CVSM, 83
CVSR, 522
D33M, 368
DAB, 428
DC, 338
DEHD, 433
DEMS5, 403
DMS3, 430
DRO, 378
DSM22, 337
DSP4, 338
DUTM, 371
EENS, 427
EIS, 615
ELTBM, 559
ELTBP, 560
ELTT, 572
EMMS4, 399
EMRO, 364
EMS3, 396
ESMS3, 398
ESMS4, 400
FDV, 47
FF8, 774
FRAN, 484
FS1, 261
FS2, 261
FSAG, 263
GE4, 618
GE6, 619
GENR6, 626
GSTV, 172
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HISAA, 58
HISAD, 58
HMEM5, 400
HP, 785
HPDM, 434
HUSAB, 57
IAP, 472
IAR, 466
IAS, 240
IAV, 467
ILTVR, 544
IM, 68
IM11, 772
IS, 17
ISJB, 616
ISMR4, 623
ISMR6, 624
ISSI, 46
IVSAV, 502
JB4, 597
JCF10, 638
KPNLT, 602
KVMR, 539
LCM, 292
LDCAA, 138
LDHS, 136
LDP4, 336
LDRN, 137
LDS, 133
LIC, 306
LICAB, 138
LIHS, 135
LIM32, 305
LINSB, 139
LIP4, 303
LIS, 134
LLDS, 137
LNS, 251
LTDB1, 452
LTDB2, 453
LTDB3, 453
LTM, 447
LTPM, 445
LTPP, 446
LTRGE, 621
MA, 180
MBC, 192
MCSM, 232
MFLT, 448
MI, 209
MIVS, 523
MMNC, 195
MNSLE, 192
MOLT, 450

MPMR, 536
MRBE, 568
MRCM, 566
MSCN, 664
MSM, 180
MTV, 191
MWIAA, 208
NDMS4, 432
NIAO, 471
NIAQ, 465
NIAQR, 471
NIDAU, 473
NJB5, 597
NKAO, 468
NLT, 445
NM, 68
NM62, 596
NM64, 595
NM83, 598
NRREF, 29
NSAO, 486
NSAQ, 479
NSAQR, 485
NSC2A, 290
NSC2S, 290
NSC2Z, 290
NSDAT, 489
NSDS, 120
NSE, 12
NSEAI, 59
NSLE, 25
NSLIL, 141
NSNM, 69
NSR, 69
NSS, 69
OLTTR, 529
ONFV, 173
ONTV, 173
OSGMD, 51
OSMC, 225
PCVS, 281
PM, 391
PSHS, 104
PTFP, 827
PTM, 194
PTMEE, 196
RAO, 483
RES, 158
RNM, 339
RNSM, 340
ROD2, 801
ROD4, 802
RREF, 29
RREFN, 45
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RRTI, 351
RS, 323
RSAI, 237
RSB, 322
RSC5, 152
RSNS, 291
RSREM, 239
RSSC4, 157
RVMR, 542
S, 67
SAA, 32
SAB, 31
SABMI, 207
SAE, 33
SAN, 486
SAR, 480
SAV, 481
SC, 668
SC3, 287
SCAA, 115
SCAB, 117
SCAD, 121
SDS, 353
SEE, 389
SEEF, 255
SETM, 665
SI, 667
SM2Z7, 773
SM32, 295
SMLT, 457
SMS3, 426
SMS5, 425
SP4, 289
SPIAS, 454
SRR, 68
SS, 367
SS6W, 832
SSC, 310
SSET, 665
SSM22, 309
SSNS, 119
SSP, 294
SSP4, 308
STLT, 456
STNE, 11
SU, 667
SUVOS, 169
SVP4, 349
SYM, 182
TCSD, 371
TD4, 806
TDEE6, 810
TDSSE, 808
TIS, 613

TIVS, 522
TKAP, 469
TLC, 89
TM, 182
TMP, 4
TOV, 168
TREM, 27
TTS, 12
UM3, 224
UPM, 224
US, 16
USR, 27
VA, 83
VESE, 82
VFS, 95
VFSAD, 93
VFSAI, 100
VFSAL, 101
VM4, 791
VRC4, 518
VRP2, 520
VSCV, 275
VSF, 276
VSIM5, 773
VSIS, 276
VSM, 275
VSP, 275
VSPUD, 338
VSS, 277
ZNDAB, 382

EXC (subsection, section B), 330
EXC (subsection, section CB), 580
EXC (subsection, section CF), 830
EXC (subsection, section CRS), 243
EXC (subsection, section D), 342
EXC (subsection, section DM), 373
EXC (subsection, section EE), 406
EXC (subsection, section F), 776
EXC (subsection, section FS), 265
EXC (subsection, section HP), 790
EXC (subsection, section HSE), 62
EXC (subsection, section ILT), 475
EXC (subsection, section IVLT), 509
EXC (subsection, section LC), 108
EXC (subsection, section LDS), 160
EXC (subsection, section LI), 143
EXC (subsection, section LISS), 313
EXC (subsection, section LT), 460
EXC (subsection, section MINM), 228
EXC (subsection, section MISLE), 217
EXC (subsection, section MM), 203
EXC (subsection, section MO), 188
EXC (subsection, section MR), 548
EXC (subsection, section NM), 74
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EXC (subsection, section O), 175
EXC (subsection, section PD), 358
EXC (subsection, section PDM), 384
EXC (subsection, section PEE), 421
EXC (subsection, section PSM), 798
EXC (subsection, section RREF), 36
EXC (subsection, section S), 299
EXC (subsection, section SD), 436
EXC (subsection, section SLT), 491
EXC (subsection, section SS), 124
EXC (subsection, section SSLE), 19
EXC (subsection, section T), 783
EXC (subsection, section TSS), 53
EXC (subsection, section VO), 86
EXC (subsection, section VR), 527
EXC (subsection, section VS), 284
EXC (subsection, section WILA), 8
extended echelon form

submatrices
example SEEF, 255

extended reduced row-echelon form
properties

theorem PEEF, 256

F (archetype), 705
F (definition), 771
F (section), 771
F (subsection, section F), 771
FDV (example), 47
FF (subsection, section F), 772
FF8 (example), 774
field

definition F, 771
FIMP (theorem), 772
finite field

size 8
example FF8, 774

four subsets
example FS1, 261
example FS2, 261

four subspaces
dimension

theorem DFS, 352
FRAN (example), 484
free variables

example CFV, 50
free variables, number

theorem FVCS, 49
free, independent variables

example FDV, 47
FS (section), 251
FS (subsection, section FS), 257
FS (theorem), 257
FS1 (example), 261

FS2 (example), 261
FSAG (example), 263
FTMR (theorem), 531
FV (subsection, section TSS), 49
FVCS (theorem), 49

G (archetype), 710
G (theorem), 347
GE4 (example), 618
GE6 (example), 619
GEE (subsection, section IS), 616
GEK (theorem), 617
generalized eigenspace

as kernel
theorem GEK, 617

definition GES, 616
dimension

theorem DGES, 637
dimension 4 domain

example GE4, 618
dimension 6 domain

example GE6, 619
invariant subspace

theorem GESIS, 617
nilpotent restriction

theorem RGEN, 626
nilpotent restrictions, dimension 6 domain

example GENR6, 626
notation, 617

generalized eigenspace decomposition
theorem GESD, 631

generalized eigenvector
definition GEV, 616

GENR6 (example), 626
GES (definition), 616
GES (notation), 617
GESD (subsection, section JCF), 631
GESD (theorem), 631
GESIS (theorem), 617
GEV (definition), 616
GFDL (appendix), 763
GME (definition), 399
goldilocks

theorem G, 347
Gram-Schmidt

column vectors
theorem GSP, 171

three vectors
example GSTV, 172

gram-schmidt
mathematica, 656

GS (technique, section PT), 671
GSP (subsection, section O), 170
GSP (theorem), 171
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GSP.MMA (computation, section MMA), 656
GSTV (example), 172
GT (subsection, section PD), 347

H (archetype), 714
Hadamard Identity

notation, 785
Hadamard identity

definition HID, 785
Hadamard Inverse

notation, 786
Hadamard inverse

definition HI, 786
Hadamard Product

Diagonalizable Matrices
theorem DMHP, 787

notation, 785
Hadamard product

commutativity
theorem HPC, 785

definition HP, 785
diagonal matrices

theorem DMMP, 788
distributivity

theorem HPDAA, 786
example HP, 785
identity

theorem HPHID, 786
inverse

theorem HPHI, 786
scalar matrix multiplication

theorem HPSMM, 787
hermitian

definition HM, 201
Hermitian matrix

inner product
theorem HMIP, 202

HI (definition), 786
HI (notation), 786
HID (definition), 785
HID (notation), 785
HISAA (example), 58
HISAD (example), 58
HM (definition), 201
HM (subsection, section MM), 201
HMEM5 (example), 400
HMIP (theorem), 202
HMOE (theorem), 419
HMRE (theorem), 419
HMVEI (theorem), 59
homogeneous system

consistent
theorem HSC, 57

definition HS, 57

infinitely many solutions
theorem HMVEI, 59

homogeneous systems
linear independence, 135

homogenous system
Archetype C

example AHSAC, 57
HP (definition), 785
HP (example), 785
HP (notation), 785
HP (section), 785
HPC (theorem), 785
HPDAA (theorem), 786
HPDM (example), 434
HPHI (theorem), 786
HPHID (theorem), 786
HPSMM (theorem), 787
HS (definition), 57
HSC (theorem), 57
HSE (section), 57
HUSAB (example), 57

I (archetype), 718
I (technique, section PT), 676
IAP (example), 472
IAR (example), 466
IAS (example), 240
IAV (example), 467
ICBM (theorem), 561
ICLT (theorem), 501
identities

technique PI, 675
identity matrix

determinant, 379
example IM, 68
notation, 68

IDLT (definition), 495
IDV (definition), 47
IE (definition), 626
IE (notation), 626
IFDVS (theorem), 523
IILT (theorem), 498
ILT (definition), 465
ILT (section), 465
ILTB (theorem), 472
ILTD (subsection, section ILT), 473
ILTD (theorem), 473
ILTIS (theorem), 498
ILTLI (subsection, section ILT), 472
ILTLI (theorem), 472
ILTLT (theorem), 497
ILTVR (example), 544
IM (definition), 68
IM (example), 68
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IM (notation), 68
IM (subsection, section MISLE), 208
IM11 (example), 772
IMILT (theorem), 545
IMP (definition), 772
IMR (theorem), 543
inconsistent linear systems

theorem ISRN, 49
independent, dependent variables

definition IDV, 47
indesxstring

example SM2Z7, 773
example SSET, 665

index
eigenvalue

definition IE, 626
notation, 626

indexstring
theorem DRCMA, 377
theorem OBUTR, 589
theorem UMCOB, 328

induction
technique I, 676

infinite solution set
example ISSI, 46

infinite solutions, 3× 4
example IS, 17

injective
example IAP, 472
example IAR, 466
not

example NIAO, 471
example NIAQ, 465
example NIAQR, 471

not, by dimension
example NIDAU, 473

polynomials to matrices
example IAV, 467

injective linear transformation
bases

theorem ILTB, 472
injective linear transformations

dimension
theorem ILTD, 473

inner product
anti-commutative

theorem IPAC, 166
example CSIP, 164
norm

theorem IPN, 167
notation, 164
positive

theorem PIP, 168
scalar multiplication

theorem IPSM, 165
vector addition

theorem IPVA, 165
integers

mod p

definition IMP, 772
mod p, field

theorem FIMP, 772
mod 11

example IM11, 772
interpolating polynomial

theorem IP, 827
invariant subspace

definition IS, 613
eigenspace, 614
eigenspaces

example EIS, 615
example TIS, 613
Jordan block

example ISJB, 616
kernels of powers

theorem KPIS, 615
inverse

composition of linear transformations
theorem ICLT, 501

example CMI, 211
example MI, 209
notation, 208
of a matrix, 208

invertible linear transformation
defined by invertible matrix

theorem IMILT, 545
invertible linear transformations

composition
theorem CIVLT, 501

computing
example CIVLT, 499

IP (definition), 164
IP (notation), 164
IP (subsection, section O), 164
IP (theorem), 827
IPAC (theorem), 166
IPN (theorem), 167
IPSM (theorem), 165
IPVA (theorem), 165
IS (definition), 613
IS (example), 17
IS (section), 613
IS (subsection, section IS), 613
ISJB (example), 616
ISMR4 (example), 623
ISMR6 (example), 624
isomorphic

multiple vector spaces
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example MIVS, 523
vector spaces

example IVSAV, 502
isomorphic vector spaces

dimension
theorem IVSED, 503

example TIVS, 522
ISRN (theorem), 49
ISSI (example), 46
ITMT (theorem), 586
IV (subsection, section IVLT), 498
IVLT (definition), 495
IVLT (section), 495
IVLT (subsection, section IVLT), 495
IVLT (subsection, section MR), 543
IVS (definition), 502
IVSAV (example), 502
IVSED (theorem), 503

J (archetype), 722
JB (definition), 597
JB (notation), 597
JB4 (example), 597
JCF (definition), 637
JCF (section), 631
JCF (subsection, section JCF), 637
JCF10 (example), 638
JCFLT (theorem), 637
Jordan block

definition JB, 597
nilpotent

theorem NJB, 599
notation, 597
size 4

example JB4, 597
Jordan canonical form

definition JCF, 637
size 10

example JCF10, 638

K (archetype), 727
kernel

injective linear transformation
theorem KILT, 471

isomorphic to null space
theorem KNSI, 539

linear transformation
example NKAO, 468

notation, 468
of a linear transformation

definition KLT, 468
pre-image, 470
subspace

theorem KLTS, 469
trivial

example TKAP, 469
via matrix representation

example KVMR, 539
KILT (theorem), 471
KLT (definition), 468
KLT (notation), 468
KLT (subsection, section ILT), 468
KLTS (theorem), 469
KNSI (theorem), 539
KPI (theorem), 470
KPIS (theorem), 615
KPLT (theorem), 601
KPNLT (example), 602
KPNLT (theorem), 602
KVMR (example), 539

L (archetype), 731
L (technique, section PT), 670
LA (subsection, section WILA), 3
LC (definition), 292
LC (section), 89
LC (subsection, section LC), 89
LC (technique, section PT), 677
LCCV (definition), 89
LCM (example), 292
LDCAA (example), 138
LDHS (example), 136
LDP4 (example), 336
LDRN (example), 137
LDS (example), 133
LDS (section), 151
LDSS (subsection, section LDS), 151
least squares

minimizes residuals
theorem LSMR, 828

least squares solution
definition LSS, 828

left null space
as row space, 257
definition LNS, 251
example LNS, 251
notation, 251
subspace

theorem LNSMS, 297
lemma

technique LC, 677
LI (definition), 303
LI (section), 133
LI (subsection, section LISS), 303
LIC (example), 306
LICAB (example), 138
LICV (definition), 133
LIHS (example), 135
LIM32 (example), 305
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linear combination
system of equations

example ABLC, 90
definition LC, 292
definition LCCV, 89
example TLC, 89
linear transformation, 451
matrices

example LCM, 292
system of equations

example AALC, 91
linear combinations

solutions to linear systems
theorem SLSLC, 92

linear dependence
more vectors than size

theorem MVSLD, 138
linear independence

definition LI, 303
definition LICV, 133
homogeneous systems

theorem LIVHS, 135
injective linear transformation

theorem ILTLI, 472
matrices

example LIM32, 305
orthogonal, 170
r and n

theorem LIVRN, 137
linear solve

mathematica, 653
linear system

consistent
theorem RCLS, 48

matrix representation
definition LSMR, 25
notation, 25

linear systems
notation

example MNSLE, 192
example NSLE, 25

linear transformation
polynomials to polynomials

example LTPP, 446
addition

definition LTA, 456
theorem MLTLT, 457
theorem SLTLT, 456

as matrix multiplication
example ALTMM, 532

basis of range
example BRLT, 487

checking
example ALT, 444

composition
definition LTC, 458
theorem CLTLT, 458

defined by a matrix
example LTM, 447

defined on a basis
example LTDB1, 452
example LTDB2, 453
example LTDB3, 453
theorem LTDB, 451

definition LT, 443
identity

definition IDLT, 495
injection

definition ILT, 465
inverse

theorem ILTLT, 497
inverse of inverse

theorem IILT, 498
invertible

definition IVLT, 495
example AIVLT, 495

invertible, injective and surjective
theorem ILTIS, 498

Jordan canonical form
theorem JCFLT, 637

kernels of powers
theorem KPLT, 601

linear combination
theorem LTLC, 451

matrix of, 449
example MFLT, 448
example MOLT, 450

not
example NLT, 445

not invertible
example ANILT, 496

notation, 443
polynomials to matrices

example LTPM, 445
rank plus nullity

theorem RPNDD, 504
restriction

definition LTR, 620
notation, 621

scalar multiple
example SMLT, 457

scalar multiplication
definition LTSM, 457

spanning range
theorem SSRLT, 487

sum
example STLT, 456

surjection
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definition SLT, 479
vector space of, 458
zero vector

theorem LTTZZ, 446
linear transformation inverse

via matrix representation
example ILTVR, 544

linear transformation restriction
on generalized eigenspace

example LTRGE, 621
linear transformations

compositions
example CTLT, 459

from matrices
theorem MBLT, 448

linearly dependent
r < n

example LDRN, 137
via homogeneous system

example LDHS, 136
linearly dependent columns

Archetype A
example LDCAA, 138

linearly dependent set
example LDS, 133
linear combinations within

theorem DLDS, 151
polynomials

example LDP4, 336
linearly independent

crazy vector space
example LIC, 306

extending sets
theorem ELIS, 347

polynomials
example LIP4, 303

via homogeneous system
example LIHS, 135

linearly independent columns
Archetype B

example LICAB, 138
linearly independent set

example LIS, 134
example LLDS, 137

LINM (subsection, section LI), 138
LINSB (example), 139
LIP4 (example), 303
LIS (example), 134
LISS (section), 303
LISV (subsection, section LI), 133
LIVHS (theorem), 135
LIVRN (theorem), 137
LLDS (example), 137
LNS (definition), 251

LNS (example), 251
LNS (notation), 251
LNS (subsection, section FS), 251
LNSMS (theorem), 297
lower triangular matrix

definition LTM, 585
LS.MMA (computation, section MMA), 653
LSMR (definition), 25
LSMR (notation), 25
LSMR (theorem), 828
LSS (definition), 828
LT (acronyms, section IVLT), 515
LT (chapter), 443
LT (definition), 443
LT (notation), 443
LT (section), 443
LT (subsection, section LT), 443
LTA (definition), 456
LTC (definition), 458
LTDB (theorem), 451
LTDB1 (example), 452
LTDB2 (example), 453
LTDB3 (example), 453
LTLC (subsection, section LT), 451
LTLC (theorem), 451
LTM (definition), 585
LTM (example), 447
LTPM (example), 445
LTPP (example), 446
LTR (definition), 620
LTR (notation), 621
LTRGE (example), 621
LTSM (definition), 457
LTTZZ (theorem), 446

M (acronyms, section FS), 271
M (archetype), 734
M (chapter), 179
M (definition), 23
M (notation), 23
MA (definition), 179
MA (example), 180
MA (notation), 180
MACN (Property), 662
MAF (Property), 771
MAP (subsection, section SVD), 813
mathematica

gram-schmidt (computation), 656
linear solve (computation), 653
matrix entry (computation), 653
matrix inverse (computation), 657
matrix multiplication (computation), 657
null space (computation), 654
row reduce (computation), 653
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transpose of a matrix (computation), 656
vector form of solutions (computation), 655
vector linear combinations (computation), 654

mathematical language
technique L, 670

matrix
addition

definition MA, 179
notation, 180

augmented
definition AM, 26

column space
definition CSM, 231

complex conjugate
example CCM, 184

definition M, 23
equality

definition ME, 179
notation, 179

example AM, 23
identity

definition IM, 68
inverse

definition MI, 208
nonsingular

definition NM, 67
notation, 23
of a linear transformation

theorem MLTCV, 449
product

example PTM, 194
example PTMEE, 196

product with vector
definition MVP, 191

rectangular, 67
row space

definition RSM, 237
scalar multiplication

definition MSM, 180
notation, 180

singular, 67
square

definition SQM, 67
submatrices

example SS, 367
submatrix

definition SM, 367
symmetric

definition SYM, 182
transpose

definition TM, 182
unitary

definition UM, 224
unitary is invertible

theorem UMI, 224
zero

definition ZM, 182
matrix addition

example MA, 180
matrix components

notation, 23
matrix entry

mathematica, 653
ti83, 658
ti86, 657

matrix inverse
Archetype B, 213
computation

theorem CINM, 212
mathematica, 657
nonsingular matrix

theorem NI, 223
of a matrix inverse

theorem MIMI, 215
one-sided

theorem OSIS, 222
product

theorem SS, 214
scalar multiple

theorem MISM, 215
size 2 matrices

theorem TTMI, 210
transpose

theorem MIT, 215
uniqueness

theorem MIU, 214
matrix multiplication

adjoints
theorem MMAD, 200

associativity
theorem MMA, 198

complex conjugation
theorem MMCC, 199

definition MM, 194
distributivity

theorem MMDAA, 197
entry-by-entry

theorem EMP, 195
identity matrix

theorem MMIM, 197
inner product

theorem MMIP, 199
mathematica, 657
noncommutative

example MMNC, 195
scalar matrix multiplication

theorem MMSMM, 198
systems of linear equations
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theorem SLEMM, 192
transposes

theorem MMT, 200
zero matrix

theorem MMZM, 197
matrix product

as composition of linear transformations
example MPMR, 536

matrix representation
basis of eigenvectors

example MRBE, 568
composition of linear transformations

theorem MRCLT, 535
definition MR, 529
invertible

theorem IMR, 543
multiple of a linear transformation

theorem MRMLT, 535
restriction to generalized eigenspace

theorem MRRGE, 628
sum of linear transformations

theorem MRSLT, 534
theorem FTMR, 531
upper triangular

theorem UTMR, 586
matrix representations

converting with change-of-basis
example MRCM, 566

example OLTTR, 529
matrix scalar multiplication

example MSM, 180
matrix vector space

dimension
theorem DM, 337

matrix-adjoint product
eigenvalues, eigenvectors

theorem EEMAP, 813
matrix-vector product

example MTV, 191
notation, 191

MBC (example), 192
MBLT (theorem), 448
MC (notation), 23
MCC (subsection, section MO), 184
MCCN (Property), 662
MCF (Property), 771
MCN (definition), 664
MCN (subsection, section CNO), 664
MCSM (example), 232
MCT (theorem), 185
MD (chapter), 799
ME (definition), 179
ME (notation), 179
ME (subsection, section PEE), 416

ME (technique, section PT), 674
ME (theorem), 417
ME.MMA (computation, section MMA), 653
ME.TI83 (computation, section TI83), 658
ME.TI86 (computation, section TI86), 657
MEASM (subsection, section MO), 179
MFLT (example), 448
MI (definition), 208
MI (example), 209
MI (notation), 208
MI.MMA (computation, section MMA), 657
MICN (Property), 663
MIF (Property), 772
MIMI (theorem), 215
MINM (section), 221
MISLE (section), 207
MISM (theorem), 215
MIT (theorem), 215
MIU (theorem), 214
MIVS (example), 523
MLT (subsection, section LT), 447
MLTCV (theorem), 449
MLTLT (theorem), 457
MM (definition), 194
MM (section), 191
MM (subsection, section MM), 194
MM.MMA (computation, section MMA), 657
MMA (section), 653
MMA (theorem), 198
MMAD (theorem), 200
MMCC (theorem), 199
MMDAA (theorem), 197
MMEE (subsection, section MM), 195
MMIM (theorem), 197
MMIP (theorem), 199
MMNC (example), 195
MMSMM (theorem), 198
MMT (theorem), 200
MMZM (theorem), 197
MNEM (theorem), 418
MNSLE (example), 192
MO (section), 179
MOLT (example), 450
more variables than equations

example OSGMD, 51
theorem CMVEI, 50

MPMR (example), 536
MR (definition), 529
MR (section), 529
MRBE (example), 568
MRCB (theorem), 565
MRCLT (theorem), 535
MRCM (example), 566
MRMLT (theorem), 535
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MRRGE (theorem), 628
MRS (subsection, section CB), 565
MRSLT (theorem), 534
MSCN (example), 664
MSM (definition), 180
MSM (example), 180
MSM (notation), 180
MTV (example), 191
multiplicative associativity

complex numbers
Property MACN, 662

multiplicative closure
complex numbers

Property MCCN, 662
field

Property MCF, 771
multiplicative commuativity

complex numbers
Property CMCN, 662

multiplicative inverse
complex numbers

Property MICN, 663
MVNSE (subsection, section RREF), 23
MVP (definition), 191
MVP (notation), 191
MVP (subsection, section MM), 191
MVSLD (theorem), 138
MWIAA (example), 208

N (archetype), 736
N (subsection, section O), 166
N (technique, section PT), 672
NDMS4 (example), 432
negation of statements

technique N, 672
NEM (theorem), 416
NI (theorem), 223
NIAO (example), 471
NIAQ (example), 465
NIAQR (example), 471
NIDAU (example), 473
nilpotent

linear transformation
definition NLT, 595

NJB (theorem), 599
NJB5 (example), 597
NKAO (example), 468
NLT (definition), 595
NLT (example), 445
NLT (section), 595
NLT (subsection, section NLT), 595
NLTFO (subsection, section LT), 456
NM (definition), 67
NM (example), 68

NM (section), 67
NM (subsection, section NM), 67
NM (subsection, section OD), 590
NM62 (example), 596
NM64 (example), 595
NM83 (example), 598
NME1 (theorem), 72
NME2 (theorem), 139
NME3 (theorem), 223
NME4 (theorem), 236
NME5 (theorem), 324
NME6 (theorem), 341
NME7 (theorem), 382
NME8 (theorem), 412
NME9 (theorem), 546
NMI (subsection, section MINM), 221
NMLIC (theorem), 138
NMPEM (theorem), 367
NMRRI (theorem), 68
NMTNS (theorem), 70
NMUS (theorem), 70
NOILT (theorem), 504
NOLT (definition), 503
NOLT (notation), 503
NOM (definition), 338
NOM (notation), 338
nonsingular

columns as basis
theorem CNMB, 324

nonsingular matrices
linearly independent columns

theorem NMLIC, 138
nonsingular matrix

Archetype B
example NM, 68

column space, 236
elemntary matrices

theorem NMPEM, 367
equivalences

theorem NME1, 72
theorem NME2, 139
theorem NME3, 223
theorem NME4, 236
theorem NME5, 324
theorem NME6, 341
theorem NME7, 382
theorem NME8, 412
theorem NME9, 546

matrix inverse, 223
null space

example NSNM, 69
nullity, 340
product of nonsingular matrices

theorem NPNT, 221
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rank
theorem RNNM, 340

row-reduced
theorem NMRRI, 68

trivial null space
theorem NMTNS, 70

unique solutions
theorem NMUS, 70

nonsingular matrix, row-reduced
example NSR, 69

norm
example CNSV, 167
inner product, 167
notation, 167

normal matrix
definition NRML, 590
example ANM, 590
orthonormal basis, 593

notation
A, 186
AM, 26
C, 666
CCCV, 163
CCM, 184
CCN, 663
CNA, 662
CNE, 662
CNM, 662
CSM, 231
CV, 24
CVA, 82
CVC, 24
CVE, 82
CVSM, 83
D, 333
DM, 368
DS, 353
ELEM, 364
ES, 665
GES, 617
HI, 786
HID, 785
HP, 785
IE, 626
IM, 68
IP, 164
JB, 597
KLT, 468
LNS, 251
LSMR, 25
LT, 443
LTR, 621
M, 23
MA, 180

MC, 23
ME, 179
MI, 208
MSM, 180
MVP, 191
NOLT, 503
NOM, 338
NSM, 59
NV, 167
RLT, 483
RO, 27
ROLT, 503
ROM, 339
RREFA, 29
RSM, 237
SC, 667
SE, 666
SETM, 665
SI, 667
SM, 367
SRM, 822
SSET, 665
SSV, 113
SU, 667
SUV, 169
T, 779
TM, 182
VSCV, 81
VSM, 179
ZCV, 24
ZM, 182

notation for a linear system
example NSE, 12

NPNT (theorem), 221
NRFO (subsection, section MR), 534
NRML (definition), 590
NRREF (example), 29
NS.MMA (computation, section MMA), 654
NSAO (example), 486
NSAQ (example), 479
NSAQR (example), 485
NSC2A (example), 290
NSC2S (example), 290
NSC2Z (example), 290
NSDAT (example), 489
NSDS (example), 120
NSE (example), 12
NSEAI (example), 59
NSLE (example), 25
NSLIL (example), 141
NSM (definition), 59
NSM (notation), 59
NSM (subsection, section HSE), 59
NSMS (theorem), 291
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NSNM (example), 69
NSNM (subsection, section NM), 69
NSR (example), 69
NSS (example), 69
NSSLI (subsection, section LI), 139
Null space

as a span
example NSDS, 120

null space
Archetype I

example NSEAI, 59
basis

theorem BNS, 140
computation

example CNS1, 60
example CNS2, 61

isomorphic to kernel, 539
linearly independent basis

example LINSB, 139
mathematica, 654
matrix

definition NSM, 59
nonsingular matrix, 70
notation, 59
singular matrix, 69
spanning set

example SSNS, 119
theorem SSNS, 118

subspace
theorem NSMS, 291

null space span, linearly independent
Archetype L

example NSLIL, 141
nullity

computing, 339
injective linear transformation

theorem NOILT, 504
linear transformation

definition NOLT, 503
matrix, 339

definition NOM, 338
notation, 338, 503
square matrix, 340

NV (definition), 167
NV (notation), 167
NVM (theorem), 793

O (archetype), 738
O (Property), 274
O (section), 163
OBC (subsection, section B), 325
OBNM (theorem), 593
OBUTR (theorem), 589
OC (Property), 84

OCN (Property), 663
OD (section), 585
OD (subsection, section OD), 590
OD (theorem), 591
OF (Property), 772
OLTTR (example), 529
OM (Property), 181
one

column vectors
Property OC, 84

complex numbers
Property OCN, 663

field
Property OF, 772

matrices
Property OM, 181

vectors
Property O, 274

ONFV (example), 173
ONS (definition), 173
ONTV (example), 173
orthogonal

linear independence
theorem OSLI, 170

set
example AOS, 169

set of vectors
definition OSV, 169

vector pairs
definition OV, 168

orthogonal vectors
example TOV, 168

orthonormal
definition ONS, 173
matrix columns

example OSMC, 225
orthonormal basis

normal matrix
theorem OBNM, 593

orthonormal diagonalization
theorem OD, 591

orthonormal set
four vectors

example ONFV, 173
three vectors

example ONTV, 173
OSGMD (example), 51
OSIS (theorem), 222
OSLI (theorem), 170
OSMC (example), 225
OSV (definition), 169
OV (definition), 168
OV (subsection, section O), 168
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P (appendix), 661
P (archetype), 741
P (technique, section PT), 677
particular solutions

example PSHS, 104
PCNA (theorem), 662
PCVS (example), 281
PD (section), 347
PDM (section), 375
PDM (theorem), 823
PEE (section), 411
PEEF (theorem), 256
PI (definition), 454
PI (subsection, section LT), 454
PI (technique, section PT), 675
PIP (theorem), 168
PM (example), 391
PM (subsection, section EE), 391
PMI (subsection, section MISLE), 214
PMM (subsection, section MM), 196
PMR (subsection, section MR), 538
PNLT (subsection, section NLT), 600
POD (section), 823
polar decomposition

theorem PDM, 823
polynomial

of a matrix
example PM, 391

polynomial vector space
dimension

theorem DP, 337
positive semi-definite

creating
theorem CPSM, 795

positive semi-definite matrix
definition PSM, 795
eigenvalues

theorem EPSM, 796
practice

technique P, 677
pre-image

definition PI, 454
kernel

theorem KPI, 470
pre-images

example SPIAS, 454
principal axis theorem, 592
product of triangular matrices

theorem PTMT, 585
Property

AA, 273
AAC, 84
AACN, 662
AAF, 771

AAM, 181
AC, 273
ACC, 84
ACCN, 662
ACF, 771
ACM, 181
AI, 274
AIC, 84
AICN, 663
AIF, 772
AIM, 181
C, 273
CACN, 662
CAF, 771
CC, 84
CM, 181
CMCN, 662
CMF, 771
DCN, 662
DF, 771
DMAM, 181
DSA, 274
DSAC, 84
DSAM, 181
DVA, 274
DVAC, 84
MACN, 662
MAF, 771
MCCN, 662
MCF, 771
MICN, 663
MIF, 772
O, 274
OC, 84
OCN, 663
OF, 772
OM, 181
SC, 273
SCC, 84
SCM, 181
SMA, 274
SMAC, 84
SMAM, 181
Z, 273
ZC, 84
ZCN, 662
ZF, 772
ZM, 181

PSHS (example), 104
PSHS (subsection, section LC), 103
PSM (definition), 795
PSM (section), 795
PSM (subsection, section PSM), 795
PSM (subsection, section SD), 426
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PSMSR (theorem), 819
PSPHS (theorem), 103
PSS (subsection, section SSLE), 12
PSSD (theorem), 350
PSSLS (theorem), 50
PT (section), 669
PTFP (example), 827
PTM (example), 194
PTMEE (example), 196
PTMT (theorem), 585

Q (archetype), 743

R (acronyms, section JCF), 651
R (archetype), 746
R (chapter), 517
range

full
example FRAN, 484

isomorphic to column space
theorem RCSI, 541

linear transformation
example RAO, 483

notation, 483
of a linear transformation

definition RLT, 483
pre-image

theorem RPI, 488
subspace

theorem RLTS, 484
surjective linear transformation

theorem RSLT, 485
via matrix representation

example RVMR, 542
rank

computing
theorem CRN, 339

linear transformation
definition ROLT, 503

matrix
definition ROM, 339
example RNM, 339

notation, 339, 503
of transpose

example RRTI, 351
square matrix

example RNSM, 340
surjective linear transformation

theorem ROSLT, 504
transpose

theorem RMRT, 351
rank one decomposition

size 2
example ROD2, 801

size 4

example ROD4, 802
theorem ROD, 800

rank+nullity
theorem RPNC, 340

RAO (example), 483
RCLS (theorem), 48
RCSI (theorem), 541
RD (subsection, section VS), 282
RDS (theorem), 357
READ (subsection, section B), 329
READ (subsection, section CB), 578
READ (subsection, section CRS), 242
READ (subsection, section D), 341
READ (subsection, section DM), 372
READ (subsection, section EE), 405
READ (subsection, section FS), 264
READ (subsection, section HSE), 61
READ (subsection, section ILT), 474
READ (subsection, section IVLT), 508
READ (subsection, section LC), 107
READ (subsection, section LDS), 159
READ (subsection, section LI), 142
READ (subsection, section LISS), 312
READ (subsection, section LT), 459
READ (subsection, section MINM), 227
READ (subsection, section MISLE), 216
READ (subsection, section MM), 202
READ (subsection, section MO), 187
READ (subsection, section MR), 547
READ (subsection, section NM), 73
READ (subsection, section O), 174
READ (subsection, section PD), 357
READ (subsection, section PDM), 383
READ (subsection, section PEE), 420
READ (subsection, section RREF), 34
READ (subsection, section S), 298
READ (subsection, section SD), 435
READ (subsection, section SLT), 490
READ (subsection, section SS), 122
READ (subsection, section SSLE), 18
READ (subsection, section TSS), 51
READ (subsection, section VO), 85
READ (subsection, section VR), 525
READ (subsection, section VS), 282
READ (subsection, section WILA), 7
reduced row-echelon form

analysis
notation, 29

definition RREF, 28
example NRREF, 29
example RREF, 29
extended

definition EEF, 254
notation
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example RREFN, 45
unique

theorem RREFU, 106
reducing a span

example RSC5, 152
relation of linear dependence

definition RLD, 303
definition RLDCV, 133

REM (definition), 27
REMEF (theorem), 29
REMES (theorem), 27
REMRS (theorem), 238
RES (example), 158
RGEN (theorem), 626
RLD (definition), 303
RLDCV (definition), 133
RLT (definition), 483
RLT (notation), 483
RLT (subsection, section IS), 620
RLT (subsection, section SLT), 482
RLTS (theorem), 484
RMRT (theorem), 351
RNLT (subsection, section IVLT), 503
RNM (example), 339
RNM (subsection, section D), 338
RNNM (subsection, section D), 340
RNNM (theorem), 340
RNSM (example), 340
RO (definition), 26
RO (notation), 27
RO (subsection, section RREF), 26
ROD (section), 799
ROD (theorem), 800
ROD2 (example), 801
ROD4 (example), 802
ROLT (definition), 503
ROLT (notation), 503
ROM (definition), 339
ROM (notation), 339
ROSLT (theorem), 504
row operations

definition RO, 26
elementary matrices, 364
notation, 27

row reduce
mathematica, 653
ti83, 659
ti86, 658

row space
Archetype I

example RSAI, 237
as column space, 241
basis

example RSB, 322

theorem BRS, 240
matrix, 237
notation, 237
row-equivalent matrices

theorem REMRS, 238
subspace

theorem RSMS, 297
row-equivalent matrices

definition REM, 27
example TREM, 27
row space, 238
row spaces

example RSREM, 239
theorem REMES, 27

row-reduce
the verb

definition RR, 34
row-reduced matrices

theorem REMEF, 29
RPI (theorem), 488
RPNC (theorem), 340
RPNDD (theorem), 504
RR (definition), 34
RR.MMA (computation, section MMA), 653
RR.TI83 (computation, section TI83), 659
RR.TI86 (computation, section TI86), 658
RREF (definition), 28
RREF (example), 29
RREF (section), 23
RREF (subsection, section RREF), 28
RREFA (notation), 29
RREFN (example), 45
RREFU (theorem), 106
RRTI (example), 351
RS (example), 323
RSAI (example), 237
RSB (example), 322
RSC5 (example), 152
RSLT (theorem), 485
RSM (definition), 237
RSM (notation), 237
RSM (subsection, section CRS), 237
RSMS (theorem), 297
RSNS (example), 291
RSREM (example), 239
RSSC4 (example), 157
RT (subsection, section PD), 350
RVMR (example), 542

S (archetype), 749
S (definition), 287
S (example), 67
S (section), 287
SAA (example), 32
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SAB (example), 31
SABMI (example), 207
SAE (example), 33
SAN (example), 486
SAR (example), 480
SAS (section), 831
SAV (example), 481
SC (definition), 667
SC (example), 668
SC (notation), 667
SC (Property), 273
SC (subsection, section S), 297
SC (subsection, section SET), 666
SC3 (example), 287
SCAA (example), 115
SCAB (example), 117
SCAD (example), 121
scalar closure

column vectors
Property SCC, 84

matrices
Property SCM, 181

vectors
Property SC, 273

scalar multiple
matrix inverse, 215

scalar multiplication
zero scalar

theorem ZSSM, 280
zero vector

theorem ZVSM, 280
zero vector result

theorem SMEZV, 281
scalar multiplication associativity

column vectors
Property SMAC, 84

matrices
Property SMAM, 181

vectors
Property SMA, 274

SCB (theorem), 568
SCC (Property), 84
SCM (Property), 181
SD (section), 425
SDS (example), 353
SE (definition), 666
SE (notation), 666
secret sharing

6 ways
example SS6W, 832

SEE (example), 389
SEEF (example), 255
SER (theorem), 426
set

cardinality
definition C, 666
example CS, 666
notation, 666

complement
definition SC, 667
example SC, 668
notation, 667

definition SET, 665
empty

definition ES, 665
equality

definition SE, 666
notation, 666

intersection
definition SI, 667
example SI, 667
notation, 667

membership
example SETM, 665
notation, 665

size, 666
subset, 665
union

definition SU, 667
example SU, 667
notation, 667

SET (definition), 665
SET (section), 665
SETM (example), 665
SETM (notation), 665
shoes, 214
SHS (subsection, section HSE), 57
SI (definition), 667
SI (example), 667
SI (notation), 667
SI (subsection, section IVLT), 501
SIM (definition), 425
similar matrices

equal eigenvalues
example EENS, 427

eual eigenvalues
theorem SMEE, 427

example SMS3, 426
example SMS5, 425

similarity
definition SIM, 425
equivalence relation

theorem SER, 426
singular matrix

Archetype A
example S, 67

null space
example NSS, 69
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singular matrix, row-reduced
example SRR, 68

singular value decomposition
theorem SVD, 817

singular values
definition SV, 816

SLE (acronyms, section NM), 79
SLE (chapter), 3
SLE (definition), 11
SLE (subsection, section SSLE), 11
SLELT (subsection, section IVLT), 506
SLEMM (theorem), 192
SLSLC (theorem), 92
SLT (definition), 479
SLT (section), 479
SLTB (theorem), 488
SLTD (subsection, section SLT), 489
SLTD (theorem), 489
SLTLT (theorem), 456
SM (definition), 367
SM (notation), 367
SM (subsection, section SD), 425
SM2Z7 (example), 773
SM32 (example), 295
SMA (Property), 274
SMAC (Property), 84
SMAM (Property), 181
SMEE (theorem), 427
SMEZV (theorem), 281
SMLT (example), 457
SMS (theorem), 183
SMS3 (example), 426
SMS5 (example), 425
SMZD (theorem), 381
SMZE (theorem), 412
SNCM (theorem), 223
SO (subsection, section SET), 667
socks, 214
SOL (subsection, section B), 331
SOL (subsection, section CB), 581
SOL (subsection, section CRS), 247
SOL (subsection, section D), 344
SOL (subsection, section DM), 374
SOL (subsection, section EE), 407
SOL (subsection, section F), 778
SOL (subsection, section FS), 267
SOL (subsection, section HSE), 64
SOL (subsection, section ILT), 477
SOL (subsection, section IVLT), 511
SOL (subsection, section LC), 110
SOL (subsection, section LDS), 161
SOL (subsection, section LI), 146
SOL (subsection, section LISS), 315
SOL (subsection, section LT), 462

SOL (subsection, section MINM), 229
SOL (subsection, section MISLE), 219
SOL (subsection, section MM), 205
SOL (subsection, section MO), 190
SOL (subsection, section MR), 551
SOL (subsection, section NM), 76
SOL (subsection, section PD), 359
SOL (subsection, section PDM), 385
SOL (subsection, section PEE), 422
SOL (subsection, section RREF), 39
SOL (subsection, section S), 300
SOL (subsection, section SD), 437
SOL (subsection, section SLT), 493
SOL (subsection, section SS), 126
SOL (subsection, section SSLE), 21
SOL (subsection, section T), 784
SOL (subsection, section TSS), 55
SOL (subsection, section VO), 87
SOL (subsection, section VR), 528
SOL (subsection, section VS), 285
SOL (subsection, section WILA), 9
solution set

Archetype A
example SAA, 32

archetype E
example SAE, 33

theorem PSPHS, 103
solution sets

possibilities
theorem PSSLS, 50

solution vector
definition SOLV, 25

SOLV (definition), 25
solving homogeneous system

Archetype A
example HISAA, 58

Archetype B
example HUSAB, 57

Archetype D
example HISAD, 58

solving nonlinear equations
example STNE, 11

SP4 (example), 289
span

basic
example ABS, 113

basis
theorem BS, 156

definition SS, 293
definition SSCV, 113
improved

example IAS, 240
notation, 113
reducing
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example RSSC4, 157
reduction

example RS, 323
removing vectors

example COV, 153
reworking elements

example RES, 158
set of polynomials

example SSP, 294
subspace

theorem SSS, 293
span of columns

Archetype A
example SCAA, 115

Archetype B
example SCAB, 117

Archetype D
example SCAD, 121

spanning set
crazy vector space

example SSC, 310
definition TSVS, 307
matrices

example SSM22, 309
more vectors

theorem SSLD, 333
polynomials

example SSP4, 308
SPIAS (example), 454
SQM (definition), 67
square root

eigenvalues, eigenspaces
theorem EESR, 820

matrix
definition SRM, 822
notation, 822

positive semi-definite matrix
theorem PSMSR, 819

unique
theorem USR, 821

SR (section), 819
SRM (definition), 822
SRM (notation), 822
SRM (subsection, section SR), 819
SRR (example), 68
SS (definition), 293
SS (example), 367
SS (section), 113
SS (subsection, section LISS), 307
SS (theorem), 214
SS6W (example), 832
SSC (example), 310
SSCV (definition), 113
SSET (definition), 665

SSET (example), 665
SSET (notation), 665
SSLD (theorem), 333
SSLE (section), 11
SSM22 (example), 309
SSNS (example), 119
SSNS (subsection, section SS), 118
SSNS (theorem), 118
SSP (example), 294
SSP4 (example), 308
SSRLT (theorem), 487
SSS (theorem), 293
SSSLT (subsection, section SLT), 487
SSV (notation), 113
SSV (subsection, section SS), 113
standard unit vector

notation, 169
starting proofs

technique GS, 671
STLT (example), 456
STNE (example), 11
SU (definition), 667
SU (example), 667
SU (notation), 667
submatrix

notation, 367
subset

definition SSET, 665
notation, 665

subspace
as null space

example RSNS, 291
characterized

example ASC, 522
definition S, 287
in P4

example SP4, 289
not, additive closure

example NSC2A, 290
not, scalar closure

example NSC2S, 290
not, zero vector

example NSC2Z, 290
testing

theorem TSS, 288
trivial

definition TS, 291
verification

example SC3, 287
example SM32, 295

subspaces
equal dimension

theorem EDYES, 350
surjective
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Archetype N
example SAN, 486

example SAR, 480
not

example NSAQ, 479
example NSAQR, 485

not, Archetype O
example NSAO, 486

not, by dimension
example NSDAT, 489

polynomials to matrices
example SAV, 481

surjective linear transformation
bases

theorem SLTB, 488
surjective linear transformations

dimension
theorem SLTD, 489

SUV (definition), 169
SUV (notation), 169
SUVB (theorem), 319
SUVOS (example), 169
SV (definition), 816
SVD (section), 813
SVD (subsection, section SVD), 816
SVD (theorem), 817
SVP4 (example), 349
SYM (definition), 182
SYM (example), 182
symmetric matrices

theorem SMS, 183
symmetric matrix

example SYM, 182
system of equations

vector equality
example VESE, 82

system of linear equations
definition SLE, 11

T (archetype), 751
T (definition), 779
T (notation), 779
T (part), 771
T (section), 779
T (technique, section PT), 670
TCSD (example), 371
TD (section), 805
TD (subsection, section TD), 805
TD (theorem), 805
TD4 (example), 806
TDEE (theorem), 809
TDEE6 (example), 810
TDSSE (example), 808
TDSSE (subsection, section TD), 807

technique
C, 671
CD, 673
CP, 673
CV, 673
D, 669
DC, 675
E, 672
GS, 671
I, 676
L, 670
LC, 677
ME, 674
N, 672
P, 677
PI, 675
T, 670
U, 674

theorem
AA, 186
AIP, 201
AISM, 281
AIU, 280
AMA, 186
AMSM, 186
BCS, 234
BIS, 336
BNS, 140
BRS, 240
BS, 156
CB, 560
CCM, 185
CCRA, 663
CCRM, 663
CCT, 664
CFDVS, 522
CFNLT, 604
CHT, 649
CILTI, 474
CINM, 212
CIVLT, 501
CLI, 523
CLTLT, 458
CMVEI, 50
CNMB, 324
COB, 325
CPSM, 795
CRMA, 184
CRMSM, 185
CRN, 339
CRSM, 163
CRVA, 163
CSCS, 232
CSLTS, 489
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CSMS, 297
CSNM, 236
CSRN, 49
CSRST, 241
CSS, 523
CUMOS, 225
DC, 429
DCM, 336
DCP, 416
DEC, 370
DED, 433
DEM, 380
DEMMM, 380
DER, 369
DERC, 377
DFS, 352
DGES, 637
DIM, 379
DLDS, 151
DM, 337
DMFE, 431
DMHP, 787
DMMP, 788
DMST, 368
DNLT, 600
DP, 337
DRCM, 376
DRCMA, 377
DRCS, 375
DRMM, 383
DSD, 356
DSFB, 353
DSFOS, 354
DSLI, 355
DSZI, 355
DSZV, 354
DT, 370
DVM, 791
DZRC, 375
EDELI, 411
EDYES, 350
EEMAP, 813
EER, 571
EESR, 820
EIM, 414
EIS, 614
ELIS, 347
EMDRO, 364
EMHE, 392
EMMVP, 193
EMN, 366
EMNS, 397
EMP, 195
EMRCP, 396

EMS, 397
ENLT, 600
EOMP, 413
EOPSS, 14
EPM, 413
EPSM, 796
ERMCP, 415
ESMM, 412
ETM, 415
FIMP, 772
FS, 257
FTMR, 531
FVCS, 49
G, 347
GEK, 617
GESD, 631
GESIS, 617
GSP, 171
HMIP, 202
HMOE, 419
HMRE, 419
HMVEI, 59
HPC, 785
HPDAA, 786
HPHI, 786
HPHID, 786
HPSMM, 787
HSC, 57
ICBM, 561
ICLT, 501
IFDVS, 523
IILT, 498
ILTB, 472
ILTD, 473
ILTIS, 498
ILTLI, 472
ILTLT, 497
IMILT, 545
IMR, 543
IP, 827
IPAC, 166
IPN, 167
IPSM, 165
IPVA, 165
ISRN, 49
ITMT, 586
IVSED, 503
JCFLT, 637
KILT, 471
KLTS, 469
KNSI, 539
KPI, 470
KPIS, 615
KPLT, 601
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KPNLT, 602
LIVHS, 135
LIVRN, 137
LNSMS, 297
LSMR, 828
LTDB, 451
LTLC, 451
LTTZZ, 446
MBLT, 448
MCT, 185
ME, 417
MIMI, 215
MISM, 215
MIT, 215
MIU, 214
MLTCV, 449
MLTLT, 457
MMA, 198
MMAD, 200
MMCC, 199
MMDAA, 197
MMIM, 197
MMIP, 199
MMSMM, 198
MMT, 200
MMZM, 197
MNEM, 418
MRCB, 565
MRCLT, 535
MRMLT, 535
MRRGE, 628
MRSLT, 534
MVSLD, 138
NEM, 416
NI, 223
NJB, 599
NME1, 72
NME2, 139
NME3, 223
NME4, 236
NME5, 324
NME6, 341
NME7, 382
NME8, 412
NME9, 546
NMLIC, 138
NMPEM, 367
NMRRI, 68
NMTNS, 70
NMUS, 70
NOILT, 504
NPNT, 221
NSMS, 291
NVM, 793

OBNM, 593
OBUTR, 589
OD, 591
OSIS, 222
OSLI, 170
PCNA, 662
PDM, 823
PEEF, 256
PIP, 168
PSMSR, 819
PSPHS, 103
PSSD, 350
PSSLS, 50
PTMT, 585
RCLS, 48
RCSI, 541
RDS, 357
REMEF, 29
REMES, 27
REMRS, 238
RGEN, 626
RLTS, 484
RMRT, 351
RNNM, 340
ROD, 800
ROSLT, 504
RPI, 488
RPNC, 340
RPNDD, 504
RREFU, 106
RSLT, 485
RSMS, 297
SCB, 568
SER, 426
SLEMM, 192
SLSLC, 92
SLTB, 488
SLTD, 489
SLTLT, 456
SMEE, 427
SMEZV, 281
SMS, 183
SMZD, 381
SMZE, 412
SNCM, 223
SS, 214
SSLD, 333
SSNS, 118
SSRLT, 487
SSS, 293
SUVB, 319
SVD, 817
TD, 805
TDEE, 809
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technique T, 670
TIST, 780
TL, 779
TMA, 183
TMSM, 183
TSE, 780
TSRM, 780
TSS, 288
TT, 183
TTMI, 210
UMCOB, 328
UMI, 224
UMPIP, 226
USR, 821
UTMR, 586
VFSLS, 98
VRI, 521
VRILT, 522
VRLT, 517
VRRB, 311
VRS, 521
VSLT, 458
VSPCV, 84
VSPM, 180
ZSSM, 280
ZVSM, 280
ZVU, 279

ti83
matrix entry (computation), 658
row reduce (computation), 659
vector linear combinations (computation), 659

TI83 (section), 658
ti86

matrix entry (computation), 657
row reduce (computation), 658
transpose of a matrix (computation), 658
vector linear combinations (computation), 658

TI86 (section), 657
TIS (example), 613
TIST (theorem), 780
TIVS (example), 522
TKAP (example), 469
TL (theorem), 779
TLC (example), 89
TM (definition), 182
TM (example), 182
TM (notation), 182
TM (subsection, section OD), 585
TM.MMA (computation, section MMA), 656
TM.TI86 (computation, section TI86), 658
TMA (theorem), 183
TMP (example), 4
TMSM (theorem), 183
TOV (example), 168

trace
definition T, 779
linearity

theorem TL, 779
matrix multiplication

theorem TSRM, 780
notation, 779
similarity

theorem TIST, 780
sum of eigenvalues

theorem TSE, 780
trail mix

example TMP, 4
transpose

matrix scalar multiplication
theorem TMSM, 183

example TM, 182
matrix addition

theorem TMA, 183
matrix inverse, 215
notation, 182
scalar multiplication, 184

transpose of a matrix
mathematica, 656
ti86, 658

transpose of a transpose
theorem TT, 183

TREM (example), 27
triangular decomposition

entry by entry, size 6
example TDEE6, 810

entry by entry
theorem TDEE, 809

size 4
example TD4, 806

solving systems of equations
example TDSSE, 808

theorem TD, 805
triangular matrix

inverse
theorem ITMT, 586

trivial solution
system of equations

definition TSHSE, 57
TS (definition), 291
TS (subsection, section S), 288
TSE (theorem), 780
TSHSE (definition), 57
TSM (subsection, section MO), 182
TSRM (theorem), 780
TSS (section), 45
TSS (subsection, section S), 292
TSS (theorem), 288
TSVS (definition), 307
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TT (theorem), 183
TTMI (theorem), 210
TTS (example), 12
typical systems, 2× 2

example TTS, 12

U (archetype), 753
U (technique, section PT), 674
UM (definition), 224
UM (subsection, section MINM), 224
UM3 (example), 224
UMCOB (theorem), 328
UMI (theorem), 224
UMPIP (theorem), 226
unique solution, 3× 3

example US, 16
example USR, 27

uniqueness
technique U, 674

unit vectors
basis

theorem SUVB, 319
definition SUV, 169
orthogonal

example SUVOS, 169
unitary

permutation matrix
example UPM, 224

size 3
example UM3, 224

unitary matrices
columns

theorem CUMOS, 225
unitary matrix

inner product
theorem UMPIP, 226

UPM (example), 224
upper triangular matrix

definition UTM, 585
URREF (subsection, section LC), 105
US (example), 16
USR (example), 27
USR (theorem), 821
UTM (definition), 585
UTMR (subsection, section OD), 586
UTMR (theorem), 586

V (acronyms, section O), 177
V (archetype), 755
V (chapter), 81
VA (example), 83
Vandermonde matrix

definition VM, 791
vandermonde matrix

determinant

theorem DVM, 791
nonsingular

theorem NVM, 793
size 4

example VM4, 791
VEASM (subsection, section VO), 81
vector

addition
definition CVA, 82

column
definition CV, 23

equality
definition CVE, 82
notation, 82

inner product
definition IP, 164

norm
definition NV, 167

notation, 24
of constants

definition VOC, 24
product with matrix, 191, 194
scalar multiplication

definition CVSM, 83
vector addition

example VA, 83
vector component

notation, 24
vector form of solutions

Archetype D
example VFSAD, 93

Archetype I
example VFSAI, 100

Archetype L
example VFSAL, 101

example VFS, 95
mathematica, 655
theorem VFSLS, 98

vector linear combinations
mathematica, 654
ti83, 659
ti86, 658

vector representation
example AVR, 311
example VRC4, 518
injective

theorem VRI, 521
invertible

theorem VRILT, 522
linear transformation

definition VR, 517
theorem VRLT, 517

surjective
theorem VRS, 521
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theorem VRRB, 311
vector representations

polynomials
example VRP2, 520

vector scalar multiplication
example CVSM, 83

vector space
characterization

theorem CFDVS, 522
column vectors

definition VSCV, 81
definition VS, 273
infinite dimension

example VSPUD, 338
linear transformations

theorem VSLT, 458
over integers mod 5

example VSIM5, 773
vector space of column vectors

notation, 81
vector space of functions

example VSF, 276
vector space of infinite sequences

example VSIS, 276
vector space of matrices

definition VSM, 179
example VSM, 275
notation, 179

vector space of polynomials
example VSP, 275

vector space properties
column vectors

theorem VSPCV, 84
matrices

theorem VSPM, 180
vector space, crazy

example CVS, 277
vector space, singleton

example VSS, 277
vector spaces

isomorphic
definition IVS, 502
theorem IFDVS, 523

VESE (example), 82
VFS (example), 95
VFSAD (example), 93
VFSAI (example), 100
VFSAL (example), 101
VFSLS (theorem), 98
VFSS (subsection, section LC), 93
VFSS.MMA (computation, section MMA), 655
VLC.MMA (computation, section MMA), 654
VLC.TI83 (computation, section TI83), 659
VLC.TI86 (computation, section TI86), 658

VM (definition), 791
VM (section), 791
VM4 (example), 791
VO (section), 81
VOC (definition), 24
VR (definition), 517
VR (section), 517
VR (subsection, section LISS), 311
VRC4 (example), 518
VRI (theorem), 521
VRILT (theorem), 522
VRLT (theorem), 517
VRP2 (example), 520
VRRB (theorem), 311
VRS (theorem), 521
VS (acronyms, section PD), 361
VS (chapter), 273
VS (definition), 273
VS (section), 273
VS (subsection, section VS), 273
VSCV (definition), 81
VSCV (example), 275
VSCV (notation), 81
VSF (example), 276
VSIM5 (example), 773
VSIS (example), 276
VSLT (theorem), 458
VSM (definition), 179
VSM (example), 275
VSM (notation), 179
VSP (example), 275
VSP (subsection, section MO), 180
VSP (subsection, section VO), 84
VSP (subsection, section VS), 279
VSPCV (theorem), 84
VSPM (theorem), 180
VSPUD (example), 338
VSS (example), 277

W (archetype), 757
WILA (section), 3

X (archetype), 759

Z (Property), 273
ZC (Property), 84
ZCN (Property), 662
ZCV (definition), 24
ZCV (notation), 24
zero

complex numbers
Property ZCN, 662

field
Property ZF, 772

zero column vector
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definition ZCV, 24
notation, 24

zero matrix
notation, 182

zero vector
column vectors

Property ZC, 84
matrices

Property ZM, 181
unique

theorem ZVU, 279
vectors

Property Z, 273
ZF (Property), 772
ZM (definition), 182
ZM (notation), 182
ZM (Property), 181
ZNDAB (example), 382
ZSSM (theorem), 280
ZVSM (theorem), 280
ZVU (theorem), 279
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