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Preface

This textbook is designed to teach the university mathematics student the basics of
the subject of linear algebra. There are no prerequisites other than ordinary algebra,
but it is probably best used by a student who has the “mathematical maturity” of a
sophomore or junior.

The text has two goals: to teach the fundamental concepts and techniques of matrix
algebra and abstract vector spaces, and to teach the techniques associated with under-
standing the definitions and theorems forming a coherent area of mathematics. So there
is an emphasis on worked examples of nontrivial size and on proving theorems carefully.

This book is copyrighted. This means that governments have granted the author a
monopoly — the exclusive right to control the making of copies and derivative works for
many years (too many years in some cases). It also gives others limited rights, generally
referred to as “fair use,” such as the right to quote sections in a review without seeking
permission. However, the author licenses this book to anyone under the terms of the GNU
Free Documentation License (GFDL), which gives you more rights than most copyrights.
Loosely speaking, you may make as many copies as you like at no cost, and you may
distribute these unmodified copies if you please. You may modify the book for your own
use. The catch is that if you make modifications and you distribute the modified version,
or make use of portions in excess of fair use in another work, then you must also license
the new work with the GFDL. So the book has lots of inherent freedom, and no one
is allowed to distribute a derivative work that restricts these freedoms. (See the license
itself for all the exact details of the additional rights you have been given.)

Notice that initially most people are struck by the notion that this book is free (the
French would say gratis, at no cost). And it is. However, it is more important that the
book has freedom (the French would say liberté, liberty). It will never go “out of print”
nor will there ever be trivial updates designed only to frustrate the used book market.
Those considering teaching a course with this book can examine it thoroughly in advance.
Adding new exercises or new sections has been purposely made very easy, and the hope
is that others will contribute these modifications back for incorporation into the book,
for the benefit of all.

Depending on how you received your copy, you may want to check for the latest
version (and other news) at http://linear.ups.edu/.

Topics The first half of this text (through Chapter M [207]) is basically a course in
matrix algebra, though the foundation of some more advanced ideas is also being formed
in these early sections. Vectors are presented exclusively as column vectors (since we also
have the typographic freedom to avoid writing a column vector inline as the transpose of
a row vector), and linear combinations are presented very early. Spans, null spaces and
column spaces are also presented early, simply as sets, saving most of their vector space
properties for later, so they are familiar objects before being scrutinized carefully.

You cannot do everything early, so in particular matrix multiplication comes later
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than usual. However, with a definition built on linear combinations of column vectors,
it should seem more natural than the usual definition using dot products of rows with
columns. And this delay emphasizes that linear algebra is built upon vector addition and
scalar multiplication. Of course, matrix inverses must wait for matrix multiplication, but
this does not prevent nonsingular matrices from occurring sooner. Vector space properties
are hinted at when vector and matrix operations are first defined, but the notion of a
vector space is saved for a more axiomatic treatment later. Once bases and dimension
have been explored in the context of vector spaces, linear transformations and their
matrix representations follow. The goal of the book is to go as far as canonical forms
and matrix decompositions in the Core, with less central topics collected in a section of
Topics.

Linear algebra is an ideal subject for the novice mathematics student to learn how
to develop a topic precisely, with all the rigor mathematics requires. Unfortunately,
much of this rigor seems to have escaped the standard calculus curriculum, so for many
university students this is their first exposure to careful definitions and theorems, and
the expectation that they fully understand them, to say nothing of the expectation that
they become proficient in formulating their own proofs. We have tried to make this text
as helpful as possible with this transition. Every definition is stated carefully, set apart
from the text. Likewise, every theorem is carefully stated, and almost every one has a
complete proof. Theorems usually have just one conclusion, so they can be referenced
precisely later. Definitions and theorems are cataloged in order of their appearance in
the front of the book, and alphabetical order in the index at the back. Along the way,
there are discussions of some more important ideas relating to formulating proofs (Proof
Techniques), which is advice mostly.

Origin and History This book is the result of the confluence of several related events
and trends.

• At the University of Puget Sound we teach a one-semester, post-calculus linear
algebra course to students majoring in mathematics, computer science, physics,
chemistry and economics. Between January 1986 and June 2002, I taught this
course seventeen times. For the Spring 2003 semester, I elected to convert my
course notes to an electronic form so that it would be easier to incorporate the
inevitable and nearly-constant revisions. Central to my new notes was a collection
of stock examples that would be used repeatedly to illustrate new concepts. (These
would become the Archetypes, Appendix A [699].) It was only a short leap to then
decide to distribute copies of these notes and examples to the students in the two
sections of this course. As the semester wore on, the notes began to look less like
notes and more like a textbook.

• I used the notes again in the Fall 2003 semester for a single section of the course.
Simultaneously, the textbook I was using came out in a fifth edition. A new chapter
was added toward the start of the book, and a few additional exercises were added
in other chapters. This demanded the annoyance of reworking my notes and list
of suggested exercises to conform with the changed numbering of the chapters and
exercises. I had an almost identical experience with the third course I was teaching
that semester. I also learned that in the next academic year I would be teaching
a course where my textbook of choice had gone out of print. I felt there had to
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be a better alternative to having the organization of my courses buffeted by the
economics of traditional textbook publishing.

• I had used TEX and the Internet for many years, so there was little to stand in the
way of typesetting, distributing and “marketing” a free book. With recreational
and professional interests in software development, I had long been fascinated by the
open-source software movement, as exemplified by the success of GNU and Linux,
though public-domain TEX might also deserve mention. Obviously, this book is an
attempt to carry over that model of creative endeavor to textbook publishing.

• As a sabbatical project during the Spring 2004 semester, I embarked on the current
project of creating a freely-distributable linear algebra textbook. (Notice the im-
plied financial support of the University of Puget Sound to this project.) Most of
the material was written from scratch since changes in notation and approach made
much of my notes of little use. By August 2004 I had written half the material
necessary for our Math 232 course. The remaining half was written during the Fall
2004 semester as I taught another two sections of Math 232.

• I taught a single section of the course in the Spring 2005 semester, while my col-
league, Professor Martin Jackson, graciously taught another section from the con-
stantly shifting sands that was this project (version 0.30). His many suggestions
have helped immeasurably. For the Fall 2005 semester, I taught two sections of the
course from version 0.50.

However, much of my motivation for writing this book is captured by the sentiments
expressed by H.M. Cundy and A.P. Rollet in their Preface to the First Edition of Math-
ematical Models (1952), especially the final sentence,

This book was born in the classroom, and arose from the spontaneous interest
of a Mathematical Sixth in the construction of simple models. A desire to
show that even in mathematics one could have fun led to an exhibition of
the results and attracted considerable attention throughout the school. Since
then the Sherborne collection has grown, ideas have come from many sources,
and widespread interest has been shown. It seems therefore desirable to give
permanent form to the lessons of experience so that others can benefit by
them and be encouraged to undertake similar work.

How To Use This Book Chapters, Theorems, etc. are not numbered in this book,
but are instead referenced by acronyms. This means that Theorem XYZ will always be
Theorem XYZ, no matter if new sections are added, or if an individual decides to remove
certain other sections. Within sections, the subsections are acronyms that begin with the
acronym of the section. So Subsection XYZ.AB is the subsection AB in Section XYZ.
Acronyms are unique within their type, so for example there is just one Definition B, but
there is also a Section B. At first, all the letters flying around may be confusing, but with
time, you will begin to recognize the more important ones on sight. Furthermore, there
are lists of theorems, examples, etc. in the front of the book, and an index that contains
every acronym. If you are reading this in an electronic version (PDF or XML), you will
see that all of the cross-references are hyperlinks, allowing you to click to a definition
or example, and then use the back button to return. In printed versions, you must rely
on the page numbers. However, note that page numbers are not permanent! Different
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editions, different margins, or different sized paper will affect what content is on each
page. And in time, the addition of new material will affect the page numbering.

Chapter divisions are not critical to the organization of the book, as Sections are
the main organizational unit. Sections are designed to be the subject of a single lecture
or classroom session, though there is frequently more material than can be discussed
and illustrated in a fifty-minute session. Consequently, the instructor will need to be
selective about which topics to illustrate with other examples and which topics to leave
to the student’s reading. Many of the examples are meant to be large, such as using five
or six variables in a system of equations, so the instructor may just want to “walk” a
class through these examples. The book has been written with the idea that some may
work through it independently, so the hope is that students can learn some of the more
mechanical ideas on their own.

The highest level division of the book is the three Parts: Core, Topics, Applications.
The Core is meant to carefully describe the basic ideas required of a first exposure to
linear algebra. In the final sections of the Core, one should ask the question: which
previous Sections could be removed without destroying the logical development of the
subject? Hopefully, the answer is “none.” The goal of the book is to finish the Core with
the most general representations of linear transformations (Jordan and rational canonical
forms) and perhaps matrix decompositions (LU , QR, singular value). Of course, there
will not be universal agreement on what should, or should not, constitute the Core, but
the main idea will be to limit it to about forty sections. Topics is meant to contain those
subjects that are important in linear algebra, and which would make profitable detours
from the Core for those interested in pursuing them. Applications should illustrate the
power and widespread applicability of linear algebra to as many fields as possible. The
Archetypes (Appendix A [699]) cover many of the computational aspects of systems of
linear equations, matrices and linear transformations. The student should consult them
often, and this is encouraged by exercises that simply suggest the right properties to
examine at the right time. But what is more important, they are a repository that con-
tains enough variety to provide abundant examples of key theorems, while also providing
counterexamples to hypotheses or converses of theorems.

I require my students to read each Section prior to the day’s discussion on that section.
For some students this is a novel idea, but at the end of the semester a few always report
on the benefits, both for this course and other courses where they have adopted the
habit. To make good on this requirement, each section contains three Reading Questions.
These sometimes only require parroting back a key definition or theorem, or they require
performing a small example of a key computation, or they ask for musings on key ideas
or new relationships between old ideas. Answers are emailed to me the evening before
the lecture. Given the flavor and purpose of these questions, including solutions seems
foolish.

Formulating interesting and effective exercises is as difficult, or more so, than building
a narrative. But it is the place where a student really learns the material. As such, for
the student’s benefit, complete solutions should be given. As the list of exercises expands,
over time solutions will also be provided. Exercises and their solutions are referenced
with a section name, followed by a dot, then a letter (C,M, or T) and a number. The
letter ‘C’ indicates a problem that is mostly computational in nature, while the letter
‘T’ indicates a problem that is more theoretical in nature. A problem with a letter
‘M’ is somewhere in between (middle, mid-level, median, middling), probably a mix of
computation and applications of theorems. So “Solution MO.T34” is a solution to an

Version 0.85



v

exercise in Section MO that is theoretical in nature. The number ‘34’ has no intrinsic
meaning.

More on Freedom This book is freely-distributable under the terms of the GFDL,
along with the underlying TEX code from which the book is built. This arrangement
provides many benefits unavailable with traditional texts.

• No cost, or low cost, to students. With no physical vessel (i.e. paper, binding), no
transportation costs (Internet bandwidth being a negligible cost) and no marketing
costs (evaluation and desk copies are free to all), anyone with an Internet connection
can obtain it, and a teacher could make available paper copies in sufficient quantities
for a class. The cost to print a copy is not insignificant, but is just a fraction of
the cost of a traditional textbook. Students will not feel the need to sell back their
book, and in future years can even pick up a newer edition freely.

• The book will not go out of print. No matter what, a teacher can maintain their
own copy and use the book for as many years as they desire. Further, the naming
schemes for chapters, sections, theorems, etc. is designed so that the addition of
new material will not break any course syllabi or assignment list.

• With many eyes reading the book and with frequent postings of updates, the relia-
bility should become very high. Please report any errors you find that persist into
the latest version.

• For those with a working installation of the popular typesetting program TEX, the
book has been designed so that it can be customized. Page layouts, presence of exer-
cises, solutions, sections or chapters can all be easily controlled. Furthermore, many
variants of mathematical notation are achieved via TEX macros. So by changing a
single macro, one’s favorite notation can be reflected throughout the text. For ex-
ample, every transpose of a matrix is coded in the source as \transpose{A}, which
when printed will yield At. However by changing the definition of \transpose{ },
any desired alternative notation will then appear throughout the text instead.

• The book has also been designed to make it easy for others to contribute material.
Would you like to see a section on symmetric bilinear forms? Consider writing
one and contributing it to one of the Topics chapters. Does there need to be more
exercises about the null space of a matrix? Send me some. Historical Notes?
Contact me, and we will see about adding those in also.

• You have no legal obligation to pay for this book. It has been licensed with no
expectation that you pay for it. You do not even have a moral obligation to pay
for the book. Thomas Jefferson (1743 – 1826), the author of the United States
Declaration of Independence, wrote,

If nature has made any one thing less susceptible than all others of exclu-
sive property, it is the action of the thinking power called an idea, which
an individual may exclusively possess as long as he keeps it to himself; but
the moment it is divulged, it forces itself into the possession of every one,
and the receiver cannot dispossess himself of it. Its peculiar character,
too, is that no one possesses the less, because every other possesses the
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whole of it. He who receives an idea from me, receives instruction him-
self without lessening mine; as he who lights his taper at mine, receives
light without darkening me. That ideas should freely spread from one to
another over the globe, for the moral and mutual instruction of man, and
improvement of his condition, seems to have been peculiarly and benev-
olently designed by nature, when she made them, like fire, expansible
over all space, without lessening their density in any point, and like the
air in which we breathe, move, and have our physical being, incapable of
confinement or exclusive appropriation.

Letter to Isaac McPherson
August 13, 1813

However, if you feel a royalty is due the author, or if you would like to encourage
the author, or if you wish to show others that this approach to textbook publishing
can also bring financial gains, then donations are gratefully received. Moreover,
non-financial forms of help can often be even more valuable. A simple note of
encouragement, submitting a report of an error, or contributing some exercises or
perhaps an entire section for the Topics or Applications chapters are all important
ways you can acknowledge the freedoms accorded to this work by the copyright
holder and other contributors.

Conclusion Foremost, I hope that students find their time spent with this book prof-
itable. I hope that instructors find it flexible enough to fit the needs of their course. And
I hope that everyone will send me their comments and suggestions, and also consider the
myriad ways they can help (as listed on the book’s website at linear.ups.edu).

Robert A. Beezer
Tacoma, Washington

January, 2006
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-
cause free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Document is
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released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an other-
wise Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ
in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.)
To “Preserve the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are considered
to be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
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measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section
3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.
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You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT
WORKS
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A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version
of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or dis-
tribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents
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To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the title
page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.
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Chapter SLE: Systems of Linear
Equations

We will motivate our study of linear algebra by studying solutions to systems of linear
equations. While the focus of this chapter is on the practical matter of how to find, and
describe, these solutions, we will also be setting ourselves up for more theoretical ideas
that will appear later.

Section WILA

What is Linear Algebra?

Subsection LA
“Linear” + “Algebra”

The subject of linear algebra can be partially explained by the meaning of the two terms
comprising the title. “Linear” is a term you will appreciate better at the end of this
course, and indeed, attaining this appreciation could be taken as one of the primary
goals of this course. However for now, you can understand it to mean anything that is
“straight” or “flat.” For example in the xy-plane you might be accustomed to describing
straight lines (is there any other kind?) as the set of solutions to an equation of the
form y = mx + b, where the slope m and the y-intercept b are constants that together
describe the line. In multivariate calculus, you may have discussed planes. Living in three
dimensions, with coordinates described by triples (x, y, z), they can be described as the
set of solutions to equations of the form ax + by + cz = d, where a, b, c, d are constants
that together determine the plane. While we might describe planes as “flat,” lines in
three dimensions might be described as “straight.” From a multivariate calculus course
you will recall that lines are sets of points described by equations such as x = 3t − 4,
y = −7t + 2, z = 9t, where t is a parameter that can take on any value.

Another view of this notion of “flatness” is to recognize that the sets of points just
described are solutions to equations of a relatively simple form. These equations involve
addition and multiplication only. We will have a need for subtraction, and occasionally
we will divide, but mostly you can describe “linear” equations as involving only addition
and multiplication. Here are some examples of typical equations we will see in the next

3
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few sections:

2x + 3y − 4z = 13 4x1 + 5x2 − x3 + x4 + x5 = 0 9a− 2b + 7c + 2d = −7

What we will not see are equations like:

xy + 5yz = 13 x1 + x3
2/x4 − x3x4x

2
5 = 0 tan(ab) + log(c− d) = −7

The exception will be that we will on occasion need to take a square root.
You have probably heard the word “algebra” frequently in your mathematical prepa-

ration for this course. Most likely, you have spent a good ten to fifteen years learning
the algebra of the real numbers, along with some introduction to the very similar algebra
of complex numbers (see Section CNO [673]). However, there are many new algebras
to learn and use, and likely linear algebra will be your second algebra. Like learning a
second language, the necessary adjustments can be challenging at times, but the rewards
are many. And it will make learning your third and fourth algebras even easier. Perhaps
you have heard of “groups” and “rings” (or maybe you have studied them already), which
are excellent examples of other algebras with very interesting properties and applications.
In any event, prepare yourself to learn a new algebra and realize that some of the old
rules you used for the real numbers may no longer apply to this new algebra you will be
learning!

The brief discussion above about lines and planes suggests that linear algebra has
an inherently geometric nature, and this is true. Examples in two and three dimensions
can be used to provide valuable insight into important concepts of this course. However,
much of the power of linear algebra will be the ability to work with “flat” or “straight”
objects in higher dimensions, without concerning ourselves with visualizing the situation.
While much of our intuition will come from examples in two and three dimensions, we
will maintain an algebraic approach to the subject, with the geometry being secondary.
Others may wish to switch this emphasis around, and that can lead to a very fruitful
and beneficial course, but here and now we are laying our bias bare.

Subsection A
An application: packaging trail mix

We conclude this section with a rather involved example that will highlight some of the
power and techniques of linear algebra. Work through all of the details with pencil and
paper, until you believe all the assertions made. However, in this introductory example,
do not concern yourself with how some of the results are obtained or how you might be
expected to solve a similar problem. We will come back to this example later and expose
some of the techniques used and properties exploited. For now, use your background in
mathematics to convince yourself that everything said here really is correct.

Example TMP
Trail Mix Packaging

Suppose you are the production manager at a food-packaging plant and one of your
product lines is trail mix, a healthy snack popular with hikers and backpackers, containing
raisins, peanuts and hard-shelled chocolate pieces. By adjusting the mix of these three
ingredients, you are able to sell three varieties of this item. The fancy version is sold in
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Subsection WILA.A An application: packaging trail mix 5

half-kilogram packages at outdoor supply stores and has more chocolate and fewer raisins,
thus commanding a higher price. The standard version is sold in one kilogram packages
in grocery stores and gas station mini-markets. Since the standard version has roughly
equal amounts of each ingredient, it is not as expensive as the fancy version. Finally,
a bulk version is sold in bins at grocery stores for consumers to load into plastic bags
in amounts of their choosing. To appeal to the shoppers that like bulk items for their
economy and healthfulness, this mix has many more raisins (at the expense of chocolate)
and therefore sells for less.

Your production facilities have limited storage space and early each morning you
are able to receive and store 380 kilograms of raisins, 500 kilograms of peanuts and
620 kilograms of chocolate pieces. As production manager, one of your most important
duties is to decide how much of each version of trail mix to make every day. Clearly, you
can have up to 1500 kilograms of raw ingredients available each day, so to be the most
productive you will likely produce 1500 kilograms of trail mix each day. Also, you would
prefer not to have any ingredients leftover each day, so that your final product is as fresh
as possible and so that you can receive the maximum delivery the next morning. But
how should these ingredients be allocated to the mixing of the bulk, standard and fancy
versions?

First, we need a little more information about the mixes. Workers mix the ingredients
in 15 kilogram batches, and each row of the table below gives a recipe for a 15 kilogram
batch. There is some additional information on the costs of the ingredients and the price
the manufacturer can charge for the different versions of the trail mix.

Raisins Peanuts Chocolate Cost Sale Price
(kg/batch) (kg/batch) (kg/batch) ($/kg) ($/kg)

Bulk 7 6 2 3.69 4.99
Standard 6 4 5 3.86 5.50
Fancy 2 5 8 4.45 6.50

Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

As production manager, it is important to realize that you only have three decisions to
make — the amount of bulk mix to make, the amount of standard mix to make and the
amount of fancy mix to make. Everything else is beyond your control or is handled by
another department within the company. Principally, you are also limited by the amount
of raw ingredients you can store each day. Let us denote the amount of each mix to
produce each day, measured in kilograms, by the variable quantities b, s and f . Your
production schedule can be described as values of b, s and f that do several things. First,
we cannot make negative quantities of each mix, so

b ≥ 0 s ≥ 0 f ≥ 0.

Second, if we want to consume all of our ingredients each day, the storage capacities lead
to three (linear) equations, one for each ingredient,

7
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b +

6

15
s +

2
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f = 380 (raisins)

6

15
b +

4

15
s +

5

15
f = 500 (peanuts)
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2

15
b +

5

15
s +

8

15
f = 620 (chocolate)

It happens that this system of three equations has just one solution. In other words, as
production manager, your job is easy, since there is but one way to use up all of your
raw ingredients making trail mix. This single solution is

b = 300 kg s = 300 kg f = 900 kg.

We do not yet have the tools to explain why this solution is the only one, but it should
be simple for you to verify that this is indeed a solution. (Go ahead, we will wait.)
Determining solutions such as this, and establishing that they are unique, will be the
main motivation for our initial study of linear algebra.

So we have solved the problem of making sure that we make the best use of our
limited storage space, and each day use up all of the raw ingredients that are shipped
to us. Additionally, as production manager, you must report weekly to the CEO of
the company, and you know he will be more interested in the profit derived from your
decisions than in the actual production levels. So you compute,

300(4.99− 3.69) + 300(5.50− 3.86) + 900(6.50− 4.45) = 2727.00

for a daily profit of $2,727 from this production schedule. The computation of the daily
profit is also beyond our control, though it is definitely of interest, and it too looks like
a “linear” computation.

As often happens, things do not stay the same for long, and now the marketing de-
partment has suggested that your company’s trail mix products standardize on every mix
being one-third peanuts. Adjusting the peanut portion of each recipe by also adjusting
the chocolate portion, leads to revised recipes, and slightly different costs for the bulk
and standard mixes, as given in the following table.

Raisins Peanuts Chocolate Cost Sale Price
(kg/batch) (kg/batch) (kg/batch) ($/kg) ($/kg)

Bulk 7 5 3 3.70 4.99
Standard 6 5 4 3.85 5.50
Fancy 2 5 8 4.45 6.50

Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

In a similar fashion as before, we desire values of b, s and f so that

b ≥ 0, s ≥ 0, f ≥ 0

and
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It now happens that this system of equations has infinitely many solutions, as we will now
demonstrate. Let f remain a variable quantity. Then if we make f kilograms of the fancy
mix, we will make 4f − 3300 kilograms of the bulk mix and −5f + 4800 kilograms of the
standard mix. Let us now verify that, for any choice of f , the values of b = 4f−3300 and
s = −5f + 4800 will yield a production schedule that exhausts all of the day’s supply of
raw ingredients (right now, do not be concerned about how you might derive expressions
like these for b and s). Grab your pencil and paper and play along.

7

15
(4f − 3300) +

6

15
(−5f + 4800) +

2

15
f = 0f +

5700

15
= 380

5

15
(4f − 3300) +

5

15
(−5f + 4800) +

5

15
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7500

15
= 500

3

15
(4f − 3300) +

4

15
(−5f + 4800) +

8

15
f = 0f +

9300

15
= 620

Convince yourself that these expressions for b and s allow us to vary f and obtain
an infinite number of possibilities for solutions to the three equations that describe our
storage capacities. As a practical matter, there really are not an infinite number of
solutions, since we are unlikely to want to end the day with a fractional number of bags
of fancy mix, so our allowable values of f should probably be integers. More importantly,
we need to remember that we cannot make negative amounts of each mix! Where does
this lead us? Positive quantities of the bulk mix requires that

b ≥ 0 ⇒ 4f − 3300 ≥ 0 ⇒ f ≥ 825.

Similarly for the standard mix,

s ≥ 0 ⇒ −5f + 4800 ≥ 0 ⇒ f ≤ 960.

So, as production manager, you really have to choose a value of f from the finite set

{825, 826, . . . , 960}

leaving you with 136 choices, each of which will exhaust the day’s supply of raw ingredi-
ents. Pause now and think about which you would choose.

Recalling your weekly meeting with the CEO suggests that you might want to choose
a production schedule that yields the biggest possible profit for the company. So you
compute an expression for the profit based on your as yet undetermined decision for the
value of f ,

(4f − 3300)(4.99− 3.70)+ (−5f +4800)(5.50− 3.85)+ (f)(6.50− 4.45) = −1.04f +3663.

Since f has a negative coefficient it would appear that mixing fancy mix is detrimental
to your profit and should be avoided. So you will make the decision to set daily fancy
mix production at f = 825. This has the effect of setting b = 4(825)− 3300 = 0 and we
stop producing bulk mix entirely. So the remainder of your daily production is standard
mix at the level of s = −5(825) + 4800 = 675 kilograms and the resulting daily profit
is (−1.04)(825) + 3663 = 2805. It is a pleasant surprise that daily profit has risen to
$2,805, but this is not the most important part of the story. What is important here is
that there are a large number of ways to produce trail mix that use all of the day’s worth
of raw ingredients and you were able to easily choose the one that netted the largest
profit. Notice too how all of the above computations look “linear.”
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In the food industry, things do not stay the same for long, and now the sales depart-
ment says that increased competition has led to the decision to stay competitive and
charge just $5.25 for a kilogram of the standard mix, rather than the previous $5.50 per
kilogram. This decision has no effect on the possibilities for the production schedule,
but will affect the decision based on profit considerations. So you revisit just the profit
computation, suitably adjusted for the new selling price of standard mix,

(4f − 3300)(4.99− 3.70) + (−5f + 4800)(5.25− 3.85) + (f)(6.50− 4.45) = 0.21f + 2463.

Now it would appear that fancy mix is beneficial to the company’s profit since the value
of f has a positive coefficient. So you take the decision to make as much fancy mix as
possible, setting f = 960. This leads to s = −5(960) + 4800 = 0 and the increased
competition has driven you out of the standard mix market all together. The remainder
of production is therefore bulk mix at a daily level of b = 4(960)− 3300 = 540 kilograms
and the resulting daily profit is 0.21(960)+2463 = 2664.60. A daily profit of $2,664.60 is
less than it used to be, but as production manager, you have made the best of a difficult
situation and shown the sales department that the best course is to pull out of the highly
competitive standard mix market completely. �

This example is taken from a field of mathematics variously known by names such as
operations research, system science, or management science. More specifically, this is a
perfect example of problems that are solved by the techniques of “linear programming.”

There is a lot going on under the hood in this example. The heart of the matter is
the solution to systems of linear equations, which is the topic of the next few sections,
and a recurrent theme throughout this course. We will return to this example on several
occasions to reveal some of the reasons for its behavior.

Subsection READ
Reading Questions

1. Is the equation x2 + xy + tan(y3) = 0 linear or not? Why or why not?

2. Find all solutions to the system of two linear equations 2x + 3y = −8, x− y = 6.

3. Explain the importance of the procedures described in the trail mix application
(Subsection WILA.A [4]) from the point-of-view of the production manager.
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Subsection EXC
Exercises

C10 In Example TMP [4] the first table lists the cost (per kilogram) to manufacture
each of the three varieties of trail mix (bulk, standard, fancy). For example, it costs
$3.70 to make one kilogram of the bulk variety. Re-compute each of these three costs
and notice that the computations are linear in character.
Contributed by Robert Beezer

M70 In Example TMP [4] two different prices were considered for marketing standard
mix with the revised recipes (one-third peanuts in each recipe). Selling standard mix
at $5.50 resulted in selling the minimum amount of the fancy mix and no bulk mix. At
$5.25 it was best for profits to sell the maximum amount of fancy mix and then sell
no standard mix. Determine a selling price for standard mix that allows for maximum
profits while still selling some of each type of mix.
Contributed by Robert Beezer Solution [11]
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Subsection SOL
Solutions

M70 Contributed by Robert Beezer Statement [9]
If the price of standard mix is set at $5.292, then the profit function has a zero co-

efficient on the variable quantity f . So, we can set f to be any integer quantity in
{825, 826, . . . , 960}. All but the extreme values (f = 825, f = 960) will result in pro-
duction levels where some of every mix is manufactured. No matter what value of f is
chosen, the resulting profit will be the same, at $2,664.60.
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Section SSLE

Solving Systems of Linear Equations

We will motivate our study of linear algebra by considering the problem of solving several
linear equations simultaneously. The word “solve” tends to get abused somewhat, as
in “solve this problem.” When talking about equations we understand a more precise
meaning: find all of the values of some variable quantities that make an equation, or
several equations, true.

Example STNE
Solving two (nonlinear) equations

Suppose we desire the simultaneous solutions of the two equations,

x2 + y2 = 1

−x +
√

3y = 0

You can easily check by substitution that x =
√

3
2

, y = 1
2

and x = −
√

3
2

, y = −1
2

are both
solutions. We need to also convince ourselves that these are the only solutions. To see
this, plot each equation on the xy-plane, which means to plot (x, y) pairs that make an
individual equation true. In this case we get a circle centered at the origin with radius
1 and a straight line through the origin with slope 1√

3
. The intersections of these two

curves are our desired simultaneous solutions, and so we believe from our plot that the
two solutions we know already are the only ones. We like to write solutions as sets, so
in this case we write the set of solutions as

S = {(
√

3
2

, 1
2
), (−

√
3

2
, −1

2
)}

�

In order to discuss systems of linear equations carefully, we need a precise defini-
tion. And before we do that, we will introduce our periodic discussions about “Proof
Techniques,” which can be found back in Section PT [679] of Appendix P [673]. Linear
algebra is an excellent setting for learning how to read, understand and formulate proofs.
To help you in this process, we will reference these short essays about important aspects
of working with proofs. With a definition next, now is the time to read the first of these,
Technique D [680].

Definition SLE
System of Linear Equations
A system of linear equations is a collection of m equations in the variable quantities

x1, x2, x3, . . . , xn of the form,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
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14 Section SSLE Solving Systems of Linear Equations

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

where the values of aij, bi and xj are from the set of complex numbers, C. 4
Don’t let the mention of the complex numbers, C, rattle you. We will stick with real

numbers exclusively for many more sections, and it will sometimes seem like we only work
with integers! However, we want to leave the possibility of complex numbers open, and
there will be occasions in subsequent sections where they are necessary. You can review
the basic properties of complex numbers in Section CNO [673], but these facts will not
be critical until we reach Section O [191]. For now, here is an example to illustrate using
the notation introduced in Definition SLE [13].

Example NSE
Notation for a system of equations

Given the system of linear equations,

x1 + 2x2 + x4 = 7

x1 + x2 + x3 − x4 = 3

3x1 + x2 + 5x3 − 7x4 = 1

we have n = 4 variables and m = 3 equations. Also,

a11 = 1 a12 = 2 a13 = 0 a14 = 1 b1 = 7

a21 = 1 a22 = 1 a23 = 1 a24 = −1 b2 = 3

a31 = 3 a32 = 1 a33 = 5 a34 = −7 b3 = 1

Additionally, convince yourself that x1 = −2, x2 = 4, x3 = 2, x4 = 1 is one solution (but
it is not the only one!). �

We will often shorten the term “system of linear equations” to “system of equations”
leaving the linear aspect implied.

Subsection PSS
Possibilities for solution sets

The next example illustrates the possibilities for the solution set of a system of linear
equations. We will not be too formal here, and the necessary theorems to back up our
claims will come in subsequent sections. So read for feeling and come back later to revisit
this example.

Example TTS
Three typical systems

Consider the system of two equations with two variables,

2x1 + 3x2 = 3

x1 − x2 = 4

If we plot the solutions to each of these equations separately on the x1x2-plane, we get
two lines, one with negative slope, the other with positive slope. They have exactly one
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point in common, (x1, x2) = (3, −1), which is the solution x1 = 3, x2 = −1. From the
geometry, we believe that this is the only solution to the system of equations, and so we
say it is unique.

Now adjust the system with a different second equation,

2x1 + 3x2 = 3

4x1 + 6x2 = 6.

A plot of the solutions to these equations individually results in two lines, one on top of the
other! There are infinitely many pairs of points that make both equations true. We will
learn shortly how to describe this infinite solution set precisely (see Example SAA [38],
Theorem VFSLS [113]). Notice now how the second equation is just a multiple of the
first.

One more minor adjustment provides a third system of linear equations,

2x1 + 3x2 = 3

4x1 + 6x2 = 10.

A plot now reveals two lines with identical slopes, i.e. parallel lines. They have no points
in common, and so the system has a solution set that is empty, S = ∅. �

This example exhibits all of the typical behaviors of a system of equations. A sub-
sequent theorem will tell us that every system of linear equations has a solution set
that is empty, contains a single solution or contains infinitely many solutions (Theo-
rem PSSLS [57]). Example STNE [13] yielded exactly two solutions, but this does not
contradict the forthcoming theorem. The equations in Example STNE [13] are not linear
because they do not match the form of Definition SLE [13], and so we cannot apply
Theorem PSSLS [57] in this case.

Subsection ESEO
Equivalent systems and equation operations

With all this talk about finding solution sets for systems of linear equations, you might
be ready to begin learning how to find these solution sets yourself. We begin with our
first definition that takes a common word and gives it a very precise meaning in the
context of systems of linear equations.

Definition ESYS
Equivalent Systems

Two systems of linear equations are equivalent if their solution sets are equal. 4
Notice here that the two systems of equations could look very different (i.e. not be

equal), but still have equal solution sets, and we would then call the systems equivalent.
Two linear equations in two variables might be plotted as two lines that intersect in a
single point. A different system, with three equations in two variables might have a plot
that is three lines, all intersecting at a common point, with this common point identical
to the intersection point for the first system. By our definition, we could then say these
two very different looking systems of equations are equivalent, since they have identical
solution sets. It is really like a weaker form of equality, where we allow the systems to
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be different in some respects, but we use the term equivalent to highlight the situation
when their solution sets are equal.

With this definition, we can begin to describe our strategy for solving linear systems.
Given a system of linear equations that looks difficult to solve, we would like to have an
equivalent system that is easy to solve. Since the systems will have equal solution sets,
we can solve the “easy” system and get the solution set to the “difficult” system. Here
come the tools for making this strategy viable.

Definition EO
Equation Operations

Given a system of linear equations, the following three operations will transform the
system into a different one, and each is known as an equation operation.

1. Swap the locations of two equations in the list.

2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a
second equation, on both sides of the equality. Leave the first equation the same
after this operation, but replace the second equation by the new one.

4
These descriptions might seem a bit vague, but the proof or the examples that follow

should make it clear what is meant by each. We will shortly prove a key theorem about
equation operations and solutions to linear systems of equations. Now would be a good
time to read Technique T [681] In the theorem we are about to prove, the conclusion
is that two systems are equivalent. By Definition ESYS [15] this translates to requiring
that solution sets be equal for the two systems. So we are being asked to show that
two sets are equal. How do we do this? Well, there is a very standard technique, and
we will use it repeatedly through the course. If you have not done so already, head to
Section SET [677] and familiarize yourself with sets, their operations, and especially the
notion of set equality, Definition SE [678] and the nearby discussion about its use.

Theorem EOPSS
Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of Definition EO [16] to a system
of linear equations (Definition SLE [13]), then the original system and the transformed
system are equivalent. �

Proof We take each equation operation in turn and show that the solution sets of the
two systems are equal, using the definition of set equality (Definition SE [678]).

1. It will not be our habit in proofs to resort to saying statements are “obvious,” but
in this case, it should be. There is nothing about the order in which we write linear
equations that affects their solutions, so the solution set will be equal if the systems
only differ by a rearrangement of the order of the equations.

2. Suppose α 6= 0 is a number. Let’s choose to multiply the terms of equation i by α
to build the new system of equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2
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Subsection SSLE.ESEO Equivalent systems and equation operations 17

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

αai1x1 + αai2x2 + αai3x3 + · · ·+ αainxn = αbi

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm.

Let S denote the solutions to the system in the statement of the theorem, and let
T denote the solutions to the transformed system.

(a) Show S ⊆ T . Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ S is a
solution to the original system. Ignoring the i-th equation for a moment, we
know it makes all the other equations of the transformed system true. We also
know that

ai1β1 + ai2β2 + ai3β3 + · · ·+ ainβn = bi

which we can multiply by α to get

αai1β1 + αai2β2 + αai3β3 + · · ·+ αainβn = αbi.

This says that the i-th equation of the transformed system is also true, so we
have established that (β1, β2, β3, . . . , βn) ∈ T , and therefore S ⊆ T .

(b) Now show T ⊆ S. Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ T is
a solution to the transformed system. Ignoring the i-th equation for a moment,
we know it makes all the other equations of the original system true. We also
know that

αai1β1 + αai2β2 + αai3β3 + · · ·+ αainβn = αbi

which we can multiply by 1
α
, since α 6= 0, to get

ai1β1 + ai2β2 + ai3β3 + · · ·+ ainβn = bi

This says that the i-th equation of the original system is also true, so we have
established that (β1, β2, β3, . . . , βn) ∈ S, and therefore T ⊆ S. Locate the
key point where we required that α 6= 0, and consider what would happen if
α = 0.

3. Suppose α is a number. Let’s choose to multiply the terms of equation i by α and
add them to equation j in order to build the new system of equations,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

a31x1 + a32x2 + · · ·+ a3nxn = b3

...

(αai1 + aj1)x1 + (αai2 + aj2)x2 + · · ·+ (αain + ajn)xn = αbi + bj
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18 Section SSLE Solving Systems of Linear Equations

...

am1x1 + am2x2 + · · ·+ amnxn = bm.

Let S denote the solutions to the system in the statement of the theorem, and let
T denote the solutions to the transformed system.

(a) Show S ⊆ T . Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ S is a
solution to the original system. Ignoring the j-th equation for a moment, we
know this solution makes all the other equations of the transformed system
true. Using the fact that the solution makes the i-th and j-th equations of the
original system true, we find

(αai1 + aj1)β1 + (αai2 + aj2)β2 + · · ·+ (αain + ajn)βn =

(αai1β1 + αai2β2 + · · ·+ αainβn) + (aj1β1 + aj2β2 + · · ·+ ajnβn) =

α(ai1β1 + ai2β2 + · · ·+ ainβn) + (aj1β1 + aj2β2 + · · ·+ ajnβn) = αbi + bj.

This says that the j-th equation of the transformed system is also true, so we
have established that (β1, β2, β3, . . . , βn) ∈ T , and therefore S ⊆ T .

(b) Now show T ⊆ S. Suppose (x1, x2, x3, . . . , xn) = (β1, β2, β3, . . . , βn) ∈ T
is a solution to the transformed system. Ignoring the j-th equation for a
moment, we know it makes all the other equations of the original system true.
We then find

aj1β1 + aj2β2 + · · ·+ ajnβn =

aj1β1 + aj2β2 + · · ·+ ajnβn + αbi − αbi =

aj1β1 + aj2β2 + · · ·+ ajnβn + (αai1β1 + αai2β2 + · · ·+ αainβn)− αbi =

aj1β1 + αai1β1 + aj2β2 + αai2β2 + · · ·+ ajnβn + αainβn − αbi =

(αai1 + aj1)β1 + (αai2 + aj2)β2 + · · ·+ (αain + ajn)βn − αbi =

αbi + bj − αbi = bj

This says that the j-th equation of the original system is also true, so we have
established that (β1, β2, β3, . . . , βn) ∈ S, and therefore T ⊆ S.

Why didn’t we need to require that α 6= 0 for this row operation? In other words,
how does the third statement of the theorem read when α = 0? Does our proof
require some extra care when α = 0? Compare your answers with the similar
situation for the second row operation.

�

Theorem EOPSS [16] is the necessary tool to complete our strategy for solving systems
of equations. We will use equation operations to move from one system to another, all
the while keeping the solution set the same. With the right sequence of operations, we
will arrive at a simpler equation to solve. The next two examples illustrate this idea,
while saving some of the details for later.

Example US
Three equations, one solution

We solve the following system by a sequence of equation operations.

x1 + 2x2 + 2x3 = 4
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Subsection SSLE.ESEO Equivalent systems and equation operations 19

x1 + 3x2 + 3x3 = 5

2x1 + 6x2 + 5x3 = 6

α = −1 times equation 1, add to equation 2:

x1 + 2x2 + 2x3 = 4

0x1 + 1x2 + 1x3 = 1

2x1 + 6x2 + 5x3 = 6

α = −2 times equation 1, add to equation 3:

x1 + 2x2 + 2x3 = 4

0x1 + 1x2 + 1x3 = 1

0x1 + 2x2 + 1x3 = −2

α = −2 times equation 2, add to equation 3:

x1 + 2x2 + 2x3 = 4

0x1 + 1x2 + 1x3 = 1

0x1 + 0x2 − 1x3 = −4

α = −1 times equation 3:

x1 + 2x2 + 2x3 = 4

0x1 + 1x2 + 1x3 = 1

0x1 + 0x2 + 1x3 = 4

which can be written more clearly as

x1 + 2x2 + 2x3 = 4

x2 + x3 = 1

x3 = 4

This is now a very easy system of equations to solve. The third equation requires that
x3 = 4 to be true. Making this substitution into equation 2 we arrive at x2 = −3, and
finally, substituting these values of x2 and x3 into the first equation, we find that x1 = 2.
Note too that this is the only solution to this final system of equations, since we were
forced to choose these values to make the equations true. Since we performed equation
operations on each system to obtain the next one in the list, all of the systems listed here
are all equivalent to each other by Theorem EOPSS [16]. Thus (x1, x2, x3) = (2,−3, 4)
is the unique solution to the original system of equations (and all of the other systems
of equations). �

Example IS
Three equations, infinitely many solutions

The following system of equations made an appearance earlier in this section (Ex-
ample NSE [14]), where we listed one of its solutions. Now, we will try to find all of

Version 0.85



20 Section SSLE Solving Systems of Linear Equations

the solutions to this system. Don’t concern yourself too much about why we choose this
particular sequence of equation operations, just believe that the work we do is all correct.

x1 + 2x2 + 0x3 + x4 = 7

x1 + x2 + x3 − x4 = 3

3x1 + x2 + 5x3 − 7x4 = 1

α = −1 times equation 1, add to equation 2:

x1 + 2x2 + 0x3 + x4 = 7

0x1 − x2 + x3 − 2x4 = −4

3x1 + x2 + 5x3 − 7x4 = 1

α = −3 times equation 1, add to equation 3:

x1 + 2x2 + 0x3 + x4 = 7

0x1 − x2 + x3 − 2x4 = −4

0x1 − 5x2 + 5x3 − 10x4 = −20

α = −5 times equation 2, add to equation 3:

x1 + 2x2 + 0x3 + x4 = 7

0x1 − x2 + x3 − 2x4 = −4

0x1 + 0x2 + 0x3 + 0x4 = 0

α = −1 times equation 2:

x1 + 2x2 + 0x3 + x4 = 7

0x1 + x2 − x3 + 2x4 = 4

0x1 + 0x2 + 0x3 + 0x4 = 0

α = −2 times equation 2, add to equation 1:

x1 + 0x2 + 2x3 − 3x4 = −1

0x1 + x2 − x3 + 2x4 = 4

0x1 + 0x2 + 0x3 + 0x4 = 0

which can be written more clearly as

x1 + 2x3 − 3x4 = −1

x2 − x3 + 2x4 = 4

0 = 0

What does the equation 0 = 0 mean? We can choose any values for x1, x2, x3, x4 and
this equation will be true, so we only need to consider further the first two equations,
since the third is true no matter what. We can analyze the second equation without
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consideration of the variable x1. It would appear that there is considerable latitude in
how we can choose x2, x3, x4 and make this equation true. Let’s choose x3 and x4 to be
anything we please, say x3 = β3 and x4 = β4.

Now we can take these arbitrary values for x3 and x4, substitute them in equation 1,
to obtain

x1 + 2β3 − 3β4 = −1

x1 = −1− 2β3 + 3β4

Similarly, equation 2 becomes

x2 − β3 + 2β4 = 4

x2 = 4 + β3 − 2β4

So our arbitrary choices of values for x3 and x4 (β3 and β4) translate into specific values
of x1 and x2. The lone solution given in Example NSE [14] was obtained by choosing
β3 = 2 and β4 = 1. Now we can easily and quickly find many more (infinitely more).
Suppose we choose β3 = 5 and β4 = −2, then we compute

x1 = −1− 2(5) + 3(−2) = −17

x2 = 4 + 5− 2(−2) = 13

and you can verify that (x1, x2, x3, x4) = (−17, 13, 5, −2) makes all three equations
true. The entire solution set is written as

S = {(−1− 2β3 + 3β4, 4 + β3 − 2β4, β3, β4) | β3 ∈ C, β4 ∈ C}

It would be instructive to finish off your study of this example by taking the general form
of the solutions given in this set and substituting them into each of the three equations
and verify that they are true in each case. �

In the next section we will describe how to use equation operations to systematically
solve any system of linear equations. But first, read one of our more important pieces of
advice about speaking and writing mathematics in Technique L [682]. This would also
be a good time to read some advice on getting started on the construction of a proof in
Technique GS [684].

Subsection READ
Reading Questions

1. How many solutions does the system of equations 3x + 2y = 4, 6x + 4y = 8 have?
Explain your answer.

2. How many solutions does the system of equations 3x+2y = 4, 6x+4y = −2 have?
Explain your answer.

3. What do we mean when we say mathematics is a language?

Version 0.85



22 Section SSLE Solving Systems of Linear Equations

Version 0.85



Subsection SSLE.EXC Exercises 23

Subsection EXC
Exercises

C10 Find a solution to the system in Example IS [19] where β3 = 6 and β4 = 2. Find
two other solutions to the system. Find a solution where β1 = −17 and β2 = 14. How
many possible answers are there to each of these questions?
Contributed by Robert Beezer

C20 Each archetype (Appendix A [699]) that is a system of equations begins by listing
some specific solutions. Verify the specific solutions listed in the following archetypes by
evaluating the system of equations with the solutions listed.
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]
Archetype E [721]
Archetype F [725]
Archetype G [730]
Archetype H [734]
Archetype I [739]
Archetype J [744]
Contributed by Robert Beezer

C50 A three-digit number has two properties. The tens-digit and the ones-digit add
up to 5. If the number is written with the digits in the reverse order, and then subtracted
from the original number, the result is 792. Use a system of equations to find all of the
three-digit numbers with these properties.
Contributed by Robert Beezer Solution [25]

M10 Each sentence below has at least two meanings. Identify the source of the double
meaning, and rewrite the sentence (at least twice) to clearly convey each meaning.

1. They are baking potatoes.

2. He bought many ripe pears and apricots.

3. She likes his sculpture.

4. I decided on the bus.

Contributed by Robert Beezer Solution [25]

M11 Discuss the diffence in meaning of each of the following three almost identical
sentences, which all have the same grammatical structure. (These are due to Keith
Devlin.)

1. She saw him in the park with a dog.

2. She saw him in the park with a fountain.
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3. She saw him in the park with a telescope.

Contributed by Robert Beezer Solution [26]

M12 The following sentence, due to Noam Chomsky, has a correct grammatical struc-
ture, but is meaningless. Critique its faults. “Colorless green ideas sleep furiously.”
(Chomsky, Noam. 1957. Syntactic Structures. The Hague/Paris: Mouton. p. 15)
Contributed by Robert Beezer Solution [26]

M13 Read the following sentence and form a mental picture of the situation.

The baby cried and the mother picked it up.

What assumptions did you make about the situation?
Contributed by Robert Beezer Solution [26]

M30 This problem appears in a middle-school mathematics textbook: Together Dan
and Diane have $20. Together Diane and Donna have $15. How much do the three of
them have in total? Problem 5–1.19, Transistion Mathematics, Second Edition, Scott
Foresman Addison Wesley, 1998.
Contributed by David Beezer Solution [26]

M40 Solutions to the system in Example IS [19] are given as

(x1, x2, x3, x4) = (−1− 2β3 + 3β4, 4 + β3 − 2β4, β3, β4)

Evaluate the three equations of the original system with these expressions in β3 and β4

and verify that each equation is true, no matter what values are chosen for β3 and β4.
Contributed by Robert Beezer

M70 We have seen in this section that systems of linear equations have limited pos-
sibilities for solution sets, and we will shortly prove Theorem PSSLS [57] that describes
these possibilities exactly. This exercise will show that if we relax the requirement that
our equations be linear, then the possibilities expand greatly. Consider a system of two
equations in the two variables x and y, where the departure from linearity involves simply
squaring the variables.

x2 − y2 = 1

x2 + y2 = 4

After solving this system of non-linear equations, replace the second equation in turn by
x2 + 2x + y2 = 3, x2 + y2 = 1, x2 − x + y2 = 0, 4x2 + 4y2 = 1 and solve each resulting
system of two equations in two variables.
Contributed by Robert Beezer Solution [26]

T20 Explain why the second equation operation in Definition EO [16] requires that
the scalar be nonzero, while in the third equation operation this prohibition on the scalar
is not present.
Contributed by Robert Beezer Solution [26]

T10 Technique D [680] asks you to formulate a definition of what it means for a whole
number to be odd. What is your definition? (Don’t say “the opposite of even.”) Is 6
odd? Is 11 odd? Justify your answers by using your definition.
Contributed by Robert Beezer Solution [26]
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Subsection SOL
Solutions

C50 Contributed by Robert Beezer Statement [23]
Let a be the hundreds digit, b the tens digit, and c the ones digit. Then the first condition
says that b + c = 5. The original number is 100a + 10b + c, while the reversed number is
100c + 10b + a. So the second condition is

792 = (100a + 10b + c)− (100c + 10b + a) = 99a− 99c

So we arrive at the system of equations

b + c = 5

99a− 99c = 792

Using equation operations, we arrive at the equivalent system

a− c = 8

b + c = 5

We can vary c and obtain infinitely many solutions. However, c must be a digit, restricting
us to ten values (0 – 9). Furthermore, if c > 2, then the first equation causes a > 9,
an impossibility. Setting c = 0, yields 850 as a solution, and setting c = 1 yields 941 as
another solution.

M10 Contributed by Robert Beezer Statement [23]

1. Is “baking” a verb or an adjective?
Potatoes are being baked.
Those are baking potatoes.

2. Are the apricots ripe, or just the pears? Parentheses could indicate just what the
adjective “ripe” is meant to modify. Were there many apricots as well, or just many
pears?
He bought many pears and many ripe apricots.
He bought apricots and many ripe pears.

3. Is “sculpture” a single physical object, or the sculptor’s style expressed over many
pieces and many years?
She likes his sculpture of the girl.
She likes his sculptural style.

4. Was a decision made while in the bus, or was the outcome of a decision to choose
the bus. Would the sentence “I decided on the car,” have a similar double meaning?
I made my decision while on the bus.
I decided to ride the bus.
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M11 Contributed by Robert Beezer Statement [23]
We know the dog belongs to the man, and the fountain belongs to the park. It is not

clear if the telescope belongs to the man, the woman, or the park.

M12 Contributed by Robert Beezer Statement [24]
In adjacent pairs the words are contradictory or inappropriate. Something cannot be

both green and colorless, ideas do not have color, ideas do not sleep, and it is hard to
sleep furiously.

M13 Contributed by Robert Beezer Statement [24]
Did you assume that the baby and mother are human?

Did you assume that the baby is the child of the mother?
Did you assume that the mother picked up the baby as an attempt to stop the crying?

M30 Contributed by Robert Beezer Statement [24]
If x, y and z represent the money held by Dan, Diane and Donna, then y = 15 − z

and x = 20 − y = 20 − (15 − z) = 5 + z. We can let z take on any value from 0 to 15
without any of the three amounts being negative, since presumably middle-schoolers are
too young to assume debt.

Then the total capital held by the three is x+ y + z = (5+ z)+ (15− z)+ z = 20+ z.
So their combined holdings can range anywhere from $20 (Donna is broke) to $35 (Donna
is flush).

We will have more to say about this situation in Section TSS [51], and specifically
Theorem CMVEI [57].

M70 Contributed by Robert Beezer Statement [24]
The equation x2 − y2 = 1 has a solution set by itself that has the shape of a hyperbola

when plotted. The five different second equations have solution sets that are circles
when plotted individually. Where the hyperbola and circle intersect are the solutions to
the system of two equations. As the size and location of the circle varies, the number
of intersections varies from four to none (in the order given). Sketching the relevant
equations would be instructive, as was discussed in Example STNE [13].

The exact solution sets are (according to the choice of the second equation),

x2 + y2 = 4 :

{(√
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2
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)}
x2 + 2x + y2 = 3 :

{
(1, 0), (−2,

√
3), (−2,−

√
3)
}

x2 + y2 = 1 : {(1, 0), (−1, 0)}
x2 − x + y2 = 0 : {(1, 0)}

4x2 + 4y2 = 1 : {}

T10 Contributed by Robert Beezer Statement [24]
We can say that an integer is odd if when it is divided by 2 there is a remainder of 1.

So 6 is not odd since 6 = 3× 2 + 0, while 11 is odd since 11 = 5× 2 + 1.

T20 Contributed by Robert Beezer Statement [24]
Definition EO [16] is engineered to make Theorem EOPSS [16] true. If we were to allow
a zero scalar to multiply an equation then that equation would be transformed to the
equation 0 = 0, which is true for any possible values of the variables. Any restrictions
on the solution set imposed by the original equation would be lost.
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However, in the third operation, it is allowed to choose a zero scalar, multiply an
equation by this scalar and add the transformed equation to a second equation (leaving
the first unchanged). The result? Nothing. The second equation is the same as it was
before. So the theorem is true in this case, the two systems are equivalent. But in
practice, this would be a silly thing to actually ever do! We still allow it though, in order
to keep our theorem as general as possible.

Notice the location in the proof of Theorem EOPSS [16] where the expression 1
α

appears — this explains the prohibition on α = 0 in the second equation operation.
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Section RREF

Reduced Row-Echelon Form

After solving a few systems of equations, you will recognize that it doesn’t matter so
much what we call our variables, as opposed to what numbers act as their coefficients.
A system in the variables x1, x2, x3 would behave the same if we changed the names of
the variables to a, b, c and kept all the constants the same and in the same places. In
this section, we will isolate the key bits of information about a system of equations into
something called a matrix, and then use this matrix to systematically solve the equations.
Along the way we will obtain one of our most important and useful computational tools.

Definition M
Matrix

An m × n matrix is a rectangular layout of numbers from C having m rows and n
columns. We will use upper-case Latin letters from the start of the alphabet (A, B, C, . . . )
to denote matrices and squared-off brackets to delimit the layout. Many use large paren-
theses instead of brackets — the distinction is not important. Rows of a matrix will be
referenced starting at the top and working down (i.e. row 1 is at the top) and columns
will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the
notation [A]ij will refer to the complex number in row i and column j of A.
(This definition contains Notation M.)
(This definition contains Notation ME.) 4

Be careful with this notation for individual entries, since it is easy to think that [A]ij
refers to the whole matrix. It does not. It is just a number, but is a convenient way to
talk about all the entries at once. This notation will get a heavy workout once we get to
Chapter M [207].

Example AM
A matrix

B =

−1 2 5 3
1 0 −6 1
−4 2 2 −2


is a matrix with m = 3 rows and n = 4 columns. We can say that [B]2,3 = −6 while
[B]3,4 = −2. �

A calculator or computer language can be a convenient way to perform calculations
with matrices. But first you have to enter the matrix. Here’s how it is done on various
computing platforms.

Computation Note ME.MMA
Matrix Entry (Mathematica)
Matrices are input as lists of lists, since a list is a basic data structure in Mathematica.

A matrix is a list of rows, with each row entered as a list. Mathematica uses braces
(({ , })) to delimit lists. So the input

a = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}
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would create a 3× 4 matrix named a that is equal to1 2 3 4
5 6 7 8
9 10 11 12


To display a matrix named a “nicely” in Mathematica, type MatrixForm[a] , and the
output will be displayed with rows and columns. If you just type a , then you will get
a list of lists, like how you input the matrix in the first place. ⊕

Computation Note ME.TI86
Matrix Entry (TI-86)

On the TI-86, press the MATRX key (Yellow-7) . Press the second menu key over,
F2 , to bring up the EDIT screen. Give your matrix a name, one letter or many, then
press ENTER . You can then change the size of the matrix (rows, then columns) and begin
editing individual entries (which are initially zero). ENTER will move you from entry to
entry, or the down arrow key will move you to the next row. A menu gives you extra
options for editing.

Matrices may also be entered on the home screen as follows. Use brackets ([ , ]) to
enclose rows with elements separated by commas. Group rows, in order, into a final set
of brackets (with no commas between rows). This can then be stored in a name with the
STO key. So, for example,

[[1, 2, 3, 4] [5, 6, 7, 8] [9, 10, 11, 12]]→ A

will create a matrix named A that is equal to1 2 3 4
5 6 7 8
9 10 11 12


⊕

Computation Note ME.TI83
Matrix Entry (TI-83)

Contributed by Douglas Phelps
On the TI-83, press the MATRX key. Press the right arrow key twice so that EDIT is
highlighted. Move the cursor down so that it is over the desired letter of the matrix and
press ENTER . For example, let’s call our matrix B , so press the down arrow once and
press ENTER . To enter a 2× 3 matrix, press 2 ENTER 3 ENTER . To create the matrix[

1 2 3
4 5 6

]
press 1 ENTER 2 ENTER 3 ENTER 4 ENTER 5 ENTER 6 ENTER . ⊕

Definition AM
Augmented Matrix

Suppose we have a system of m equations in the n variables x1, x2, x3, . . . , xn written
as

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1
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a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

then the augmented matrix of the system of equations is the m× (n + 1) matrix
a11 a12 a13 . . . a1n b1

a21 a22 a23 . . . a2n b2

a31 a32 a33 . . . a3n b3
...

am1 am2 am3 . . . amn bm


4

The augmented matrix represents all the important information in the system of
equations, since the names of the variables have been ignored, and the only connection
with the variables is the location of their coefficients in the matrix. It is important to
realize that the augmented matrix is just that, a matrix, and not a system of equations.
In particular, the augmented matrix does not have any “solutions,” though it will be
useful for finding solutions to the system of equations that it is associated with. (Think
about your objects, and review Technique L [682].) However, notice that an augmented
matrix always belongs to some system of equations, and vice versa, so it is tempting to
try and blur the distinction between the two. Here’s a quick example.

Example AMAA
Augmented matrix for Archetype A

Archetype A [703] is the following system of 3 equations in 3 variables.

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5

Here is its augmented matrix. 1 −1 2 1
2 1 1 8
1 1 0 5


�

An augmented matrix for a system of equations will save us the tedium of continually
writing down the names of the variables as we solve the system. It will also release us
from any dependence on the actual names of the variables. We have seen how certain
operations we can perform on equations (Definition EO [16]) will preserve their solutions
(Theorem EOPSS [16]). The next two definitions and the following theorem carry over
these ideas to augmented matrices.

Definition RO
Row Operations

The following three operations will transform an m× n matrix into a different matrix
of the same size, and each is known as a row operation.
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1. Swap the locations of two rows.

2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the
entries in the same columns of a second row. Leave the first row the same after
this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

1. Ri ↔ Rj: Swap the location of rows i and j.

2. αRi: Multiply row i by the nonzero scalar α.

3. αRi + Rj: Multiply row i by the scalar α and add to row j.

(This definition contains Notation RO.) 4

Definition REM
Row-Equivalent Matrices
Two matrices, A and B, are row-equivalent if one can be obtained from the other by

a sequence of row operations. 4

Example TREM
Two row-equivalent matrices

The matrices

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent as can be seen from2 −1 3 4

5 2 −2 3
1 1 0 6

 R1↔R3−−−−→

1 1 0 6
5 2 −2 3
2 −1 3 4


−2R1+R2−−−−−→

1 1 0 6
3 0 −2 −9
2 −1 3 4


We can also say that any pair of these three matrices are row-equivalent. �

Notice that each of the three row operations is reversible (Exercise RREF.T10 [45]),
so we do not have to be careful about the distinction between “A is row-equivalent to B”
and “B is row-equivalent to A.” (Exercise RREF.T11 [45]) The preceding definitions are
designed to make the following theorem possible. It says that row-equivalent matrices
represent systems of linear equations that have identical solution sets.

Theorem REMES
Row-Equivalent Matrices represent Equivalent Systems

Suppose that A and B are row-equivalent augmented matrices. Then the systems of
linear equations that they represent are equivalent systems. �
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Proof If we perform a single row operation on an augmented matrix, it will have the
same effect as if we did the analogous equation operation on the corresponding system of
equations. By exactly the same methods as we used in the proof of Theorem EOPSS [16]
we can see that each of these row operations will preserve the set of solutions for the
corresponding system of equations. �

So at this point, our strategy is to begin with a system of equations, represent it
by an augmented matrix, perform row operations (which will preserve solutions for the
corresponding systems) to get a “simpler” augmented matrix, convert back to a “simpler”
system of equations and then solve that system, knowing that its solutions are those of
the original system. Here’s a rehash of Example US [18] as an exercise in using our new
tools.

Example USR
Three equations, one solution, reprised

We solve the following system using augmented matrices and row operations. This is
the same system of equations solved in Example US [18] using equation operations.

x1 + 2x2 + 2x3 = 4

x1 + 3x2 + 3x3 = 5

2x1 + 6x2 + 5x3 = 6

Form the augmented matrix,

A =

1 2 2 4
1 3 3 5
2 6 5 6


and apply row operations,

−1R1+R2−−−−−→

1 2 2 4
0 1 1 1
2 6 5 6

 −2R1+R3−−−−−→

1 2 2 4
0 1 1 1
0 2 1 −2


−2R2+R3−−−−−→

1 2 2 4
0 1 1 1
0 0 −1 −4

 −1R3−−−→

1 2 2 4
0 1 1 1
0 0 1 4


So the matrix

B =

1 2 2 4
0 1 1 1
0 0 1 4


is row equivalent to A and by Theorem REMES [32] the system of equations below has
the same solution set as the original system of equations.

x1 + 2x2 + 2x3 = 4

x2 + x3 = 1

x3 = 4

Solving this “simpler” system is straightforward and is identical to the process in Exam-
ple US [18]. �
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The preceding example amply illustrates the definitions and theorems we have seen so
far. But it still leaves two questions unanswered. Exactly what is this “simpler” form for
a matrix, and just how do we get it? Here’s the answer to the first question, a definition
of reduced row-echelon form.

Definition RREF
Reduced Row-Echelon Form

A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero lies below any row that contains a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.

3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row i, column j
and the other located in row s, column t. If s > i, then t > j.

4

The principal feature of reduced row-echelon form is the pattern of leading 1’s guar-
anteed by conditions (2) and (4), reminiscent of a flight of geese, or steps in a staircase,
or water cascading down a mountain stream. Because we will make frequent reference to
reduced row-echelon form, we make precise definitions of three terms.

Definition ZRM
Zero Row of a Matrix

A row of a matrix where every entry is zero is called a zero row. 4

Definition LO
Leading Ones

For a matrix in reduced row-echelon form, the leftmost nonzero entry of any row that
is not a zero row will be called a leading 1. 4

Definition PC
Pivot Columns
For a matrix in reduced row-echelon form, a column containing a leading 1 will be called

a pivot column. 4

Example RREF
A matrix in reduced row-echelon form

The matrix C is in reduced row-echelon form.
1 −3 0 6 0 0 −5 9
0 0 0 0 1 0 3 −7
0 0 0 0 0 1 7 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


This matrix has two zero rows and three leading 1’s. Columns 1, 5, and 6 are pivot
columns. �
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Example NRREF
A matrix not in reduced row-echelon form
The matrix D is not in reduced row-echelon form, as it fails each of the four requirements

once. 
1 0 −3 0 6 0 7 −5 9
0 0 0 5 0 1 0 3 −7
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −4 2
0 0 0 0 0 0 1 7 3
0 0 0 0 0 0 0 0 0


�

Our next theorem has a “constructive” proof. Learn about the meaning of this term
in Technique C [685].

Theorem REMEF
Row-Equivalent Matrix in Echelon Form

Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.

2. B is in reduced row-echelon form.

�

Proof Suppose that A has m rows and n columns. We will describe a process for
converting A into B via row operations. This procedure is known as Gauss–Jordan
elimination. Tracing through this procedure will be easier if you recognize that i refers
to a row that is being converted, j refers to a column that is being converted, and r keeps
track of the number of nonzero rows. Here we go.

1. Set j = 0 and r = 0.

2. Increase j by 1. If j now equals n + 1, then stop.

3. Examine the entries of A in column j located in rows r + 1 through m.
If all of these entries are zero, then go to Step 2.

4. Choose a row from rows r + 1 through m with a nonzero entry in column j.
Let i denote the index for this row.

5. Increase r by 1.

6. Use the first row operation to swap rows i and r.

7. Use the second row operation to convert the entry in row r and column j to a 1.

8. Use the third row operation with row r to convert every other entry of column j
to zero.

9. Go to Step 2.
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The result of this procedure is that the matrix A is converted to a matrix in reduced
row-echelon form, which we will refer to as B. We need to now prove this claim by
showing that the converted matrix has the requisite properties of Definition RREF [34].
First, the matrix is only converted through row operations (Step 6, Step 7, Step 8), so
A and B are row-equivalent (Definition REM [32]).

It is a bit more work to be certain that B is in reduced row-echelon form. We claim
that as we begin Step 2, the first j columns of the matrix are in reduced row-echelon form
with r nonzero rows. Certainly this is true at the start when j = 0, since the matrix has
no columns and so vacuously meets the conditions of Definition RREF [34] with r = 0
nonzero rows.

In Step 2 we increase j by 1 and begin to work with the next column. There are two
possible outcomes for Step 3. Suppose that every entry of column j in rows r+1 through
m is zero. Then with no changes we recognize that the first j columns of the matrix has
its first r rows still in reduced-row echelon form, with the final m− r rows still all zero.

Suppose instead that the entry in row i of column j is nonzero. Notice that since
r + 1 ≤ i ≤ m, we know the first j − 1 entries of this row are all zero. Now, in Step 5 we
increase r by 1, and then embark on building a new nonzero row. In Step 6 we swap row
r and row i. In the first j columns, the first r − 1 rows remain in reduced row-echelon
form after the swap. In Step 7 we multiply row r by a nonzero scalar, creating a 1 in
the entry in column j of row i, and not changing any other rows. This new leading 1 is
the first nonzero entry in its row, and is located to the right of all the leading 1’s in the
preceding r − 1 rows. With Step 8 we insure that every entry in the column with this
new leading 1 is now zero, as required for reduced row-echelon form. Also, rows r + 1
through m are now all zeros in the first j columns, so we now only have one new nonzero
row, consistent with our increase of r by one. Furthermore, since the first j − 1 entries
of row r are zero, the employment of the third row operation does not destroy any of
the necessary features of rows 1 through r − 1 and rows r + 1 through m, in columns 1
through j − 1.

So at this stage, the first j columns of the matrix are in reduced row-echelon form.
When Step 2 finally increases j to n + 1, then the procedure is completed and the full
n columns of the matrix are in reduced row-echelon form, with the value of r correctly
recording the number of nonzero rows. �

The procedure given in the proof of Theorem REMEF [35] can be more precisely
described using a pseudo-code version of a computer program, as follows:

input m, n and A
r ← 0
for j ← 1 to n

i← r + 1
while i ≤ m and [A]ij = 0

i← i + 1
if i 6= m + 1

r ← r + 1
swap rows i and r of A (row op 1)
scale entry in row r, column j of A to a leading 1 (row op 2)
for k ← 1 to m, k 6= r

zero out entry in row k, column j of A (row op 3 using row r)
output r and A
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Notice that as a practical matter the “and” used in the conditional statement of the while
statement should be of the “short-circuit” variety so that the array access that follows is
not out-of-bounds.

So now we can put it all together. Begin with a system of linear equations (Defini-
tion SLE [13]), and represent the system by its augmented matrix (Definition AM [30]).
Use row operations (Definition RO [31]) to convert this matrix into reduced row-echelon
form (Definition RREF [34]), using the procedure outlined in the proof of Theorem RE-
MEF [35]. Theorem REMEF [35] also tells us we can always accomplish this, and that
the result is row-equivalent (Definition REM [32]) to the original augmented matrix.
Since the matrix in reduced-row echelon form has the same solution set, we can analyze
the row-reduced version instead of the original matrix, viewing it as the augmented ma-
trix of a different system of equations. The beauty of augmented matrices in reduced
row-echelon form is that the solution sets to their corresponding systems can be easily
determined, as we will see in the next few examples and in the next section.

We will see through the course that almost every interesting property of a matrix
can be discerned by looking at a row-equivalent matrix in reduced row-echelon form.
For this reason it is important to know that the matrix B guaranteed to exist by The-
orem REMEF [35] is also unique. We could prove this result right now, but the proof
will be much easier to state and understand a few sections from now when we have a
few more definitions. However, the proof we will provide does not explicitly require any
more theorems than we have right now, so we can, and will, make use of the uniqueness
of B between now and then by citing Theorem RREFU [122]. You might want to jump
forward now to read the statement of this important theorem and save studying its proof
for later, once the rest of us get there.

We will now run through some examples of using these definitions and theorems to
solve some systems of equations. From now on, when we have a matrix in reduced row-
echelon form, we will mark the leading 1’s with a small box. In your work, you can box
’em, circle ’em or write ’em in a different color — just identify ’em somehow. This device
will prove very useful later and is a very good habit to start developing right now.

Example SAB
Solutions for Archetype B

Let’s find the solutions to the following system of equations,

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

First, form the augmented matrix,−7 −6 −12 −33
5 5 7 24
1 0 4 5


and work to reduced row-echelon form, first with i = 1,

R1↔R3−−−−→

 1 0 4 5
5 5 7 24
−7 −6 −12 −33

 −5R1+R2−−−−−→

 1 0 4 5
0 5 −13 −1
−7 −6 −12 −33
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7R1+R3−−−−→

 1 0 4 5
0 5 −13 −1
0 −6 16 2


Now, with i = 2,

1
5
R2−−→

 1 0 4 5
0 1 −13

5
−1
5

0 −6 16 2

 6R2+R3−−−−→

 1 0 4 5

0 1 −13
5

−1
5

0 0 2
5

4
5


And finally, with i = 3,

5
2
R3−−→

 1 0 4 5

0 1 −13
5

−1
5

0 0 1 2

 13
5

R3+R2−−−−−→

 1 0 4 5

0 1 0 5
0 0 1 2


−4R3+R1−−−−−→

 1 0 0 −3

0 1 0 5

0 0 1 2


This is now the augmented matrix of a very simple system of equations, namely x1 = −3,
x2 = 5, x3 = 2, which has an obvious solution. Furthermore, we can see that this is the
only solution to this system, so we have determined the entire solution set. You might
compare this example with the procedure we used in Example US [18]. �

Archetypes A and B are meant to contrast each other in many respects. So let’s solve
Archetype A now.

Example SAA
Solutions for Archetype A

Let’s find the solutions to the following system of equations,

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5

First, form the augmented matrix, 1 −1 2 1
2 1 1 8
1 1 0 5


and work to reduced row-echelon form, first with i = 1,

−2R1+R2−−−−−→

1 −1 2 1
0 3 −3 6
1 1 0 5

 −1R1+R3−−−−−→

 1 −1 2 1
0 3 −3 6
0 2 −2 4


Now, with i = 2,

1
3
R2−−→

 1 −1 2 1
0 1 −1 2
0 2 −2 4

 1R2+R1−−−−→

 1 0 1 3
0 1 −1 2
0 2 −2 4
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−2R2+R3−−−−−→

 1 0 1 3

0 1 −1 2
0 0 0 0


The system of equations represented by this augmented matrix needs to be considered a
bit differently than that for Archetype B. First, the last row of the matrix is the equation
0 = 0, which is always true, so it imposes no restrictions on our possible solutions and
therefore we can safely ignore it as we analyze the other two equations. These equations
are,

x1 + x3 = 3

x2 − x3 = 2.

While this system is fairly easy to solve, it also appears to have a multitude of solutions.
For example, choose x3 = 1 and see that then x1 = 2 and x2 = 3 will together form a
solution. Or choose x3 = 0, and then discover that x1 = 3 and x2 = 2 lead to a solution.
Try it yourself: pick any value of x3 you please, and figure out what x1 and x2 should be
to make the first and second equations (respectively) true. We’ll wait while you do that.
Because of this behavior, we say that x3 is a “free” or “independent” variable. But why
do we vary x3 and not some other variable? For now, notice that the third column of
the augmented matrix does not have any leading 1’s in its column. With this idea, we
can rearrange the two equations, solving each for the variable that corresponds to the
leading 1 in that row.

x1 = 3− x3

x2 = 2 + x3

To write the solutions in set notation, we have

S = {(3− x3, 2 + x3, x3) | x3 ∈ C}

We’ll learn more in the next section about systems with infinitely many solutions and
how to express their solution sets. Right now, you might look back at Example IS [19].
�

Example SAE
Solutions for Archetype E

Let’s find the solutions to the following system of equations,

2x1 + x2 + 7x3 − 7x4 = 2

−3x1 + 4x2 − 5x3 − 6x4 = 3

x1 + x2 + 4x3 − 5x4 = 2

First, form the augmented matrix, 2 1 7 −7 2
−3 4 −5 −6 3
1 1 4 −5 2
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and work to reduced row-echelon form, first with i = 1,

R1↔R3−−−−→

 1 1 4 −5 2
−3 4 −5 −6 3
2 1 7 −7 2

 3R1+R2−−−−→

1 1 4 −5 2
0 7 7 −21 9
2 1 7 −7 2


−2R1+R3−−−−−→

 1 1 4 −5 2
0 7 7 −21 9
0 −1 −1 3 −2


Now, with i = 2,

R2↔R3−−−−→

 1 1 4 −5 2
0 −1 −1 3 −2
0 7 7 −21 9

 −1R2−−−→

 1 1 4 −5 2
0 1 1 −3 2
0 7 7 −21 9


−1R2+R1−−−−−→

 1 0 3 −2 0
0 1 1 −3 2
0 7 7 −21 9

 −7R2+R3−−−−−→

 1 0 3 −2 0

0 1 1 −3 2
0 0 0 0 −5


And finally, with i = 3,

− 1
5
R3−−−→

 1 0 3 −2 0

0 1 1 −3 2
0 0 0 0 1

 −2R3+R2−−−−−→

 1 0 3 −2 0

0 1 1 −3 0

0 0 0 0 1


Let’s analyze the equations in the system represented by this augmented matrix. The
third equation will read 0 = 1. This is patently false, all the time. No choice of values
for our variables will ever make it true. We’re done. Since we cannot even make the last
equation true, we have no hope of making all of the equations simultaneously true. So
this system has no solutions, and its solution set is the empty set, ∅ = { }.

Notice that we could have reached this conclusion sooner. After performing the
row operation −7R2 + R3, we can see that the third equation reads 0 = −5, a false
statement. Since the system represented by this matrix has no solutions, none of the
systems represented has any solutions. However, for this example, we have chosen to
bring the matrix fully to reduced row-echelon form for the practice. �

These three examples (Example SAB [37], Example SAA [38], Example SAE [39])
illustrate the full range of possibilities for a system of linear equations — no solutions,
one solution, or infinitely many solutions. In the next section we’ll examine these three
scenarios more closely.

Definition RR
Row-Reducing

To row-reduce the matrix A means to apply row operations to A and arrive at a
row-equivalent matrix B in reduced row-echelon form. 4

So the term row-reduce is used as a verb. Theorem REMEF [35] tells us that this
process will always be successful and Theorem RREFU [122] tells us that the result will
be unambiguous. Typically, the analysis of A will proceed by analyzing B and applying
theorems whose hypotheses include the row-equivalence of A and B.

After some practice by hand, you will want to use your favorite computing device
to do the computations required to bring a matrix to reduced row-echelon form (Exer-
cise RREF.C30 [44]).
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Computation Note RR.MMA
Row Reduce (Mathematica)
If a is the name of a matrix in Mathematica, then the command RowReduce[a] will

output the reduced row-echelon form of the matrix. ⊕

Computation Note RR.TI86
Row Reduce (TI-86)

If A is the name of a matrix stored in the TI-86, then the command rref A will
return the reduced row-echelon form of the matrix. This command can also be found by
pressing the MATRX key, then F4 for OPS , and finally, F5 for rref .

Note that this command will not work for a matrix with more rows than columns.
(Ed. Not sure just why this is!) A work-around is to pad the matrix with extra columns
of zeros until the matrix is square. ⊕

Computation Note RR.TI83
Row Reduce (TI-83)

Contributed by Douglas Phelps
Suppose B is the name of a matrix stored in the TI-83. Press the MATRX key. Press the
right arrow key once so that MATH is highlighted. Press the down arrow eleven times so
that rref ( is highlighted, then press ENTER . to choose the matrix B , press MATRX ,
then the down arrow once followed by ENTER . Supply a right parenthesis ( ) ) and press
ENTER .

Note that this command will not work for a matrix with more rows than columns.
(Ed. Not sure just why this is!) A work-around is to pad the matrix with extra columns
of zeros until the matrix is square. ⊕

Subsection READ
Reading Questions

1. Is the matrix below in reduced row-echelon form? Why or why not?1 5 0 6 8
0 0 1 2 0
0 0 0 0 1


2. Use row operations to convert the matrix below to reduced row-echelon form and

report the final matrix.  2 1 8
−1 1 −1
−2 5 4


3. Find all the solutions to the system below by using an augmented matrix and row

operations. Report your final matrix in reduced row-echelon form and the set of
solutions.

2x1 + 3x2 − x3 = 0

x1 + 2x2 + x3 = 3

x1 + 3x2 + 3x3 = 7
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Subsection EXC
Exercises

C05 Each archetype below is a system of equations. Form the augmented matrix of the
system of equations, convert the matrix to reduced row-echelof form by using equation
operations and then describe the solution set of the original system of equations.
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]
Archetype E [721]
Archetype F [725]
Archetype G [730]
Archetype H [734]
Archetype I [739]
Archetype J [744]
Contributed by Robert Beezer

For problems C10–C16, find all solutions to the system of linear equations. Write the
solutions as a set, using correct set notation.
C10

2x1 − 3x2 + x3 + 7x4 = 14

2x1 + 8x2 − 4x3 + 5x4 = −1

x1 + 3x2 − 3x3 = 4

−5x1 + 2x2 + 3x3 + 4x4 = −19

Contributed by Robert Beezer Solution [47]

C11

3x1 + 4x2 − x3 + 2x4 = 6

x1 − 2x2 + 3x3 + x4 = 2

10x2 − 10x3 − x4 = 1

Contributed by Robert Beezer Solution [47]

C12

2x1 + 4x2 + 5x3 + 7x4 = −26

x1 + 2x2 + x3 − x4 = −4

−2x1 − 4x2 + x3 + 11x4 = −10

Contributed by Robert Beezer Solution [47]
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C13

x1 + 2x2 + 8x3 − 7x4 = −2

3x1 + 2x2 + 12x3 − 5x4 = 6

−x1 + x2 + x3 − 5x4 = −10

Contributed by Robert Beezer Solution [47]

C14

2x1 + x2 + 7x3 − 2x4 = 4

3x1 − 2x2 + 11x4 = 13

x1 + x2 + 5x3 − 3x4 = 1

Contributed by Robert Beezer Solution [48]

C15

2x1 + 3x2 − x3 − 9x4 = −16

x1 + 2x2 + x3 = 0

−x1 + 2x2 + 3x3 + 4x4 = 8

Contributed by Robert Beezer Solution [48]

C16

2x1 + 3x2 + 19x3 − 4x4 = 2

x1 + 2x2 + 12x3 − 3x4 = 1

−x1 + 2x2 + 8x3 − 5x4 = 1

Contributed by Robert Beezer Solution [48]

C30 Row-reduce the matrix below without the aid of a calculator, indicating the row
operations you are using at each step.2 1 5 10

1 −3 −1 −2
4 −2 6 12


Contributed by Robert Beezer Solution [49]

C31 Convert the matrix D to reduced row-echelon form by performing row operations
without the aid of a calculator. Indicate clearly which row operations you are doing at
each step.

D =

 1 2 −4
−3 −1 −3
−2 1 −7
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Contributed by Robert Beezer Solution [49]

M50 A parking lot has 66 vehicles (cars, trucks, motorcycles and bicycles) in it. There
are four times as many cars as trucks. The total number of tires (4 per car or truck, 2
per motorcycle or bicycle) is 252. How many cars are there? How many bicycles?
Contributed by Robert Beezer Solution [49]

T10 Prove that each of the three row operations (Definition RO [31]) is reversible.
More precisely, if the matrix B is obtained from A by application of a single row operation,
show that there is a single row operation that will transform B back into A.
Contributed by Robert Beezer Solution [50]

T11 Suppose that A, B and C are m×n matrices. Use the definition of row-equivalence
(Definition REM [32]) to prove the following three facts.

1. A is row-equivalent to A.

2. If A is row-equivalent to B, then B is row-equivalent to A.

3. If A is row-equivalent to B, and B is row-equivalent to C, then A is row-equivalent
to C.

A relationship that satisfies these three properties is known as an equivalence relation,
an important idea in the study of various algebras. This is a formal way of saying that
a relationship behaves like equality, without requiring the relationship to be as strict as
equality itself. We’ll see it again in Theorem SER [489].
Contributed by Robert Beezer

T12 Suppose that B is an m × n matrix in reduced row-echelon form. Build a new,
likely smaller, k× ` matrix C as follows. Keep any collection of k adjacent rows, k ≤ m.
From these rows, keep columns 1 through `, ` ≤ n. Prove that C is in reduced row-
echelon form.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [43]
The augmented matrix row-reduces to

1 0 0 0 1

0 1 0 0 −3

0 0 1 0 −4

0 0 0 1 1


and we see from the locations of the leading 1’s that the system is consistent (Theo-
rem RCLS [54]) and that n− r = 4−4 = 0 and so the system has no free variables (The-
orem CSRN [56]) and hence has a unique solution. This solution is {(1, −3, −4, 1)}.

C11 Contributed by Robert Beezer Statement [43]
The augmented matrix row-reduces to 1 0 1 4/5 0

0 1 −1 −1/10 0

0 0 0 0 1


and a leading 1 in the last column tells us that the system is inconsistent (Theo-
rem RCLS [54]). So the solution set is ∅ = {}.

C12 Contributed by Robert Beezer Statement [43]
The augmented matrix row-reduces to 1 2 0 −4 2

0 0 1 3 −6
0 0 0 0 0


(Theorem RCLS [54]) and (Theorem CSRN [56]) tells us the system is consistent and
the solution set can be described with n − r = 4 − 2 = 2 free variables, namely x2 and
x4. Solving for the dependent variables (D = {x1, x3}) the first and second equations
represented in the row-reduced matrix yields,

x1 = 2− 2x2 + 4x4

x3 = −6 − 3x4

As a set, we write this as

{(2− 2x2 + 4x4, x2, −6− 3x4, x4) | x2, x4 ∈ C}

C13 Contributed by Robert Beezer Statement [44]
The augmented matrix of the system of equations is 1 2 8 −7 −2

3 2 12 −5 6
−1 1 1 −5 −10
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which row-reduces to  1 0 2 1 0

0 1 3 −4 0

0 0 0 0 1


With a leading one in the last column Theorem RCLS [54] tells us the system of equations
is inconsistent, so the solution set is the empty set, ∅.

C14 Contributed by Robert Beezer Statement [44]
The augmented matrix of the system of equations is2 1 7 −2 4

3 −2 0 11 13
1 1 5 −3 1


which row-reduces to  1 0 2 1 3

0 1 3 −4 −2
0 0 0 0 0


Then D = {1, 2} and F = {3, 4, 5}, so the system is consistent (5 6∈ D) and can be
described by the two free variables x3 and x4. Rearranging the equations represented by
the two nonzero rows to gain expressions for the dependent variables x1 and x2, yields
the solution set,

S =




3− 2x3 − x4

−2− 3x3 + 4x4

x3

x4


∣∣∣∣∣∣∣∣ x3, x4 ∈ C


C15 Contributed by Robert Beezer Statement [44]
The augmented matrix of the system of equations is 2 3 −1 −9 −16

1 2 1 0 0
−1 2 3 4 8


which row-reduces to  1 0 0 2 3

0 1 0 −3 −5

0 0 1 4 7


Then D = {1, 2, 3} and F = {4, 5}, so the system is consistent (5 6∈ D) and can be
described by the one free variable x4. Rearranging the equations represented by the
three nonzero rows to gain expressions for the dependent variables x1, x2 and x3, yields
the solution set,

S =




3− 2x4

−5 + 3x4

7− 4x4

x4


∣∣∣∣∣∣∣∣ x4 ∈ C


C16 Contributed by Robert Beezer Statement [44]
The augmented matrix of the system of equations is 2 3 19 −4 2

1 2 12 −3 1
−1 2 8 −5 1
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which row-reduces to  1 0 2 1 0

0 1 5 −2 0

0 0 0 0 1


With a leading one in the last column Theorem RCLS [54] tells us the system of equations
is inconsistent, so the solution set is the empty set, ∅ = {}.

C30 Contributed by Robert Beezer Statement [44]

2 1 5 10
1 −3 −1 −2
4 −2 6 12

 R1↔R2−−−−→

1 −3 −1 −2
2 1 5 10
4 −2 6 12


−2R1+R2−−−−−→

1 −3 −1 −2
0 7 7 14
4 −2 6 12

 −4R1+R3−−−−−→

1 −3 −1 −2
0 7 7 14
0 10 10 20


1
7
R2−−→

1 −3 −1 −2
0 1 1 2
0 10 10 20

 3R2+R1−−−−→

1 0 2 4
0 1 1 2
0 10 10 20


−10R2+R3−−−−−−→

 1 0 2 4

0 1 1 2
0 0 0 0


C31 Contributed by Robert Beezer Statement [44]

 1 2 −4
−3 −1 −3
−2 1 −7

 3R1+R2−−−−→

 1 2 −4
0 5 −15
−2 1 −7


2R1+R3−−−−→

1 2 −4
0 5 −15
0 5 −15

 1
5
R2−−→

1 2 −4
0 1 −3
0 5 −15


−2R2+R1−−−−−→

1 0 2
0 1 −3
0 5 −15

 −5R2+R3−−−−−→

 1 0 2

0 1 −3
0 0 0


M50 Contributed by Robert Beezer Statement [45]
Let c, t, m, b denote the number of cars, trucks, motorcycles, and bicycles. Then the

statements from the problem yield the equations:

c + t + m + b = 66

c− 4t = 0

4c + 4t + 2m + 2b = 252

The augmented matrix for this system is1 1 1 1 66
1 −4 0 0 0
4 4 2 2 252
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which row-reduces to  1 0 0 0 48

0 1 0 0 12

0 0 1 1 6


c = 48 is the first equation represented in the row-reduced matrix so there are 48 cars.
m + b = 6 is the third equation represented in the row-reduced matrix so there are
anywhere from 0 to 6 bicycles. We can also say that b is a free variable, but the context
of the problem limits it to 7 integer values since cannot have a negative number of
motorcycles.

T10 Contributed by Robert Beezer Statement [45]
If we can reverse each row operation individually, then we can reverse a sequence of

row operations. The operations that reverse each operation are listed below, using our
shorthand notation,

Ri ↔ Rj Ri ↔ Rj

αRi, α 6= 0
1

α
Ri

αRi + Rj − αRi + Rj
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Section TSS

Types of Solution Sets

We will now be more careful about analyzing the reduced row-echelon form derived from
the augmented matrix of a system of linear equations. In particular, we will see how to
systematically handle the situation when we have infinitely many solutions to a system,
and we will prove that every system of linear equations has either zero, one or infinitely
many solutions. With these tools, we will be able to solve any system by a well-described
method.

The computer scientist Donald Knuth said, “Science is what we understand well
enough to explain to a computer. Art is everything else.” In this section we’ll remove
solving systems of equations from the realm of art, and into the realm of science. We
begin with a definition.

Definition CS
Consistent System

A system of linear equations is consistent if it has at least one solution. Otherwise,
the system is called inconsistent. 4

We will want to first recognize when a system is inconsistent or consistent, and in
the case of consistent systems we will be able to further refine the types of solutions
possible. We will do this by analyzing the reduced row-echelon form of a matrix, so we
now describe some useful notation that will help us talk about this form of a matrix.

Notation RREFA
r, D, F : Reduced Row-Echelon Form Analysis

Suppose that B is an m × n matrix that is in reduced row-echelon form. Let r equal
the number of rows of B that are not zero rows. Each of these r rows then contains a
leading 1, so let di equal the column number where row i’s leading 1 is located. In other
words, di is the location of the i-th pivot column. For columns without a leading 1, let
fi be the column number of the i-th column (reading from left to right) that does not
contain a leading 1. Define

D = {d1, d2, d3, . . . , dr} F = {f1, f2, f3, . . . , fn−r}

}

This notation can be a bit confusing, since we have subscripted variables that are
in turn equal to subscripts used to index the matrix. However, many questions about
matrices and systems of equations can be answered once we know r, D and F . The choice
of the letters D and F refer to our upcoming definition of dependent and free variables
(Definition IDV [53]). An example may help.

Example RREFN
Reduced row-echelon form notation
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For the 5× 9 matrix

B =


1 5 0 0 2 8 0 5 −1

0 0 1 0 4 7 0 2 0

0 0 0 1 3 9 0 3 −6

0 0 0 0 0 0 1 4 2
0 0 0 0 0 0 0 0 0


in reduced row-echelon form we have

r = 4

d1 = 1 d2 = 3 d3 = 4 d4 = 7

f1 = 2 f2 = 5 f3 = 6 f4 = 8 f5 = 9.

Notice that the sets D = {d1, d2, d3, d4} = {1, 3, 4, 7} and F = {f1, f2, f3, f4, f5} =
{2, 5, 6, 8, 9} have nothing in common and together account for all of the columns of B
(we say it is a partition of the set of column indices). �

The number r is the single most important piece of information we can get from the
reduced row-echelon form of a matrix. It is defined as the number of non-zero rows, but
since each non-zero row has a leading 1, it is also the number of leading 1’s present.
For each leading 1, we have a pivot column, so r is also the number of pivot columns.
Repeating ourselves, r is the number of leading 1’s, the number of non-zero rows and the
number of pivot columns. Across different situations, each of these interpretations of the
meaning of r will be useful.

Before proving some theorems about the possibilities for solution sets to systems of
equations, let’s analyze one particular system with an infinite solution set very carefully
as an example. We’ll use this technique frequently, and shortly we’ll refine it slightly.

Archetypes I and J are both fairly large for doing computations by hand (though not
impossibly large). Their properties are very similar, so we will frequently analyze the
situation in Archetype I, and leave you the joy of analyzing Archetype J yourself. So
work through Archetype I with the text, by hand and/or with a computer, and then
tackle Archetype J yourself (and check your results with those listed). Notice too that
the archetypes describing systems of equations each lists the values of r, D and F . Here
we go. . .

Example ISSI
Describing infinite solution sets, Archetype I

Archetype I [739] is the system of m = 4 equations in n = 7 variables.

x1 + 4x2 − x4 + 7x6 − 9x7 = 3

2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 9

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 1

−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 4

This system has a 4× 8 augmented matrix that is row-equivalent to the following matrix
(check this!), and which is in reduced row-echelon form (the existence of this matrix is
guaranteed by Theorem REMEF [35]),

1 4 0 0 2 1 −3 4

0 0 1 0 1 −3 5 2

0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0

 .
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So we find that r = 3 and

D = {d1, d2, d3} = {1, 3, 4} F = {f1, f2, f3, f4, f5} = {2, 5, 6, 7, 8} .

Let i denote one of the r = 3 non-zero rows, and then we see that we can solve the
corresponding equation represented by this row for the variable xdi

and write it as a
linear function of the variables xf1 , xf2 , xf3 , xf4 (notice that f5 = 8 does not reference a
variable). We’ll do this now, but you can already see how the subscripts upon subscripts
takes some getting used to.

(i = 1) xd1 = x1 = 4− 4x2 − 2x5 − x6 + 3x7

(i = 2) xd2 = x3 = 2− x5 + 3x6 − 5x7

(i = 3) xd3 = x4 = 1− 2x5 + 6x6 − 6x7

Each element of the set F = {f1, f2, f3, f4, f5} = {2, 5, 6, 7, 8} is the index of a variable,
except for f5 = 8. We refer to xf1 = x2, xf2 = x5, xf3 = x6 and xf4 = x7 as “free” (or
“independent”) variables since they are allowed to assume any possible combination of
values that we can imagine and we can continue on to build a solution to the system by
solving individual equations for the values of the other (“dependent”) variables.

Each element of the set D = {d1, d2, d3} = {1, 3, 4} is the index of a variable. We
refer to the variables xd1 = x1, xd2 = x3 and xd3 = x4 as “dependent” variables since they
depend on the independent variables. More precisely, for each possible choice of values
for the independent variables we get exactly one set of values for the dependent variables
that combine to form a solution of the system.

To express the solutions as a set , we write

{(4− 4x2 − 2x5 − x6 + 3x7, x2, 2− x5 + 3x6 − 5x7, 1− 2x5 + 6x6 − 6x7, x5, x6, x7) | x2, x5, x6, x7 ∈ C}

The condition that x2, x5, x6, x7 ∈ C is how we specify that the variables x2, x5, x6, x7

are “free” to assume any possible values.
This systematic approach to solving a system of equations will allow us to create a

precise description of the solution set for any consistent system once we have found the
reduced row-echelon form of the augmented matrix. It will work just as well when the
set of free variables is empty and we get just a single solution. And we could program a
computer to do it! Now have a whack at Archetype J (Exercise TSS.T10 [61]), mimicking
the discussion in this example. We’ll still be here when you get back. �

Using the reduced row-echelon form of the augmented matrix of a system of equations
to determine the nature of the solution set of the system is a very key idea. So let’s look
at one more example like the last one. But first a definition, and then the example. We
mix our metaphors a bit when we call variables free versus dependent. Maybe we should
call dependent variables “enslaved”?

Definition IDV
Independent and Dependent Variables
Suppose A is the augmented matrix of a consistent system of linear equations and B is

a row-equivalent matrix in reduced row-echelon form. Suppose j is the index of a column
of B that contains the leading 1 for some row (i.e. column j is a pivot column), and this
column is not the last column. Then the variable xj is dependent. A variable that is
not dependent is called independent or free. 4
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Example FDV
Free and dependent variables

Consider the system of five equations in five variables,

x1 − x2 − 2x3 + x4 + 11x5 = 13

x1 − x2 + x3 + x4 + 5x5 = 16

2x1 − 2x2 + x4 + 10x5 = 21

2x1 − 2x2 − x3 + 3x4 + 20x5 = 38

2x1 − 2x2 + x3 + x4 + 8x5 = 22

whose augmented matrix row-reduces to
1 −1 0 0 3 6

0 0 1 0 −2 1

0 0 0 1 4 9
0 0 0 0 0 0
0 0 0 0 0 0


There are leading 1’s in columns 1, 3 and 4, so D = {1, 3, 4}. From this we know that
the variables x1, x3 and x4 will be dependent variables, and each of the r = 3 nonzero
rows of the row-reduced matrix will yield an expression for one of these three variables.
The set F is all the remaining column indices, F = {2, 5, 6}. Since 6 ∈ F we know there
is no leading 1 in the final column, so the system is consistent by Theorem RCLS [54].
The remaining indices in F will correspond to free variables, so x2 and x5 are our free
variables. The resulting three equations that describe our solution set are then,

(xd1 = x1) x1 = 6 + x2 − 3x5

(xd2 = x3) x3 = 1 + 2x5

(xd3 = x4) x4 = 9− 4x5

Make sure you understand where these three equations came from, and notice how the
location of the leading 1’s determined the variables on the left-hand side of each equation.
We can compactly describe the solution set as,

S = {(6 + x2 − 3x5, x2, 1 + 2x5, 9− 4x5, x5) | x2, x5 ∈ C}

Notice how we express the freedom for x2 and x5: x2, x5 ∈ C. �

Sets are an important part of algebra, and we’ve seen a few already. Being comfortable
with sets is important for understanding and writing proofs. If you haven’t already, pay
a visit to TODO: Section XXXXXX. We can now use the values of m, n, r, and the
independent and dependent variables to categorize the solutions sets to linear systems
through a sequence of theorems. Through this sequence of proofs, you will want to consult
three proof techniques, Technique E [686], Technique N [687] and Technique CP [688].
First the distinction between consistent and inconsistent systems, after three explanations
of some proof techniques we will be using.

Theorem RCLS
Recognizing Consistency of a Linear System

Suppose A is the augmented matrix of a system of linear equations with m equations
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in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon
form with r rows that are not zero rows. Then the system of equations is inconsistent if
and only if the leading 1 of row r is located in column n + 1 of B. �

Proof (⇐) The first half of the proof begins with the assumption that the leading 1
of row r is located in column n + 1 of B. Then row r of B begins with n consecutive
zeros, finishing with the leading 1. This is a representation of the equation 0 = 1, which
is false. Since this equation is false for any collection of values we might choose for the
variables, there are no solutions for the system of equations, and it is inconsistent.

(⇒) For the second half of the proof, we wish to show that if we assume the system is
inconsistent, then the final leading 1 is located in the last column. But instead of proving
this directly, we’ll form the logically equivalent statement that is the contrapositive,
and prove that instead (see Technique CP [688]). Turning the implication around, and
negating each portion, we arrive at the logically equivalent statement: If the leading 1 of
row r is not in column n + 1, then the system of equations is consistent.

If the leading 1 for row r is located somewhere in columns 1 through n, then every
preceding row’s leading 1 is also located in columns 1 through n. In other words, since
the last leading 1 is not in the last column, no leading 1 for any row is in the last
column, due to the echelon layout of the leading 1’s. Let bi,n+1, 1 ≤ i ≤ r, denote the
entries of the last column of B for the first r rows. Employ our notation for columns
of the reduced row-echelon form of a matrix (see Notation RREFA [51]) to B and set
xfi

= 0, 1 ≤ i ≤ n − r and then set xdi
= bi,n+1, 1 ≤ i ≤ r. In other words, set the

dependent variables equal to the corresponding values in the final column and set all the
free variables to zero. These values for the variables make the equations represented by
the first r rows all true (convince yourself of this). Rows r + 1 through m (if any) are
all zero rows, hence represent the equation 0 = 0 and are also all true. We have now
identified one solution to the system, so we can say the system is consistent. �

The beauty of this theorem being an equivalence is that we can unequivocally test
to see if a system is consistent or inconsistent by looking at just a single entry of the
reduced row-echelon form matrix. We could program a computer to do it!

Notice that for a consistent system the row-reduced augmented matrix has n + 1 ∈
F , so the largest element of F does not refer to a variable. Also, for an inconsistent
system, n + 1 ∈ D, and it then does not make much sense to discuss whether or not
variables are free or dependent since there is no solution. With the characterization of
Theorem RCLS [54], we can explore the relationships between r and n in light of the
consistency of a system of equations. First, a situation where we can quickly conclude
the inconsistency of a system.

Theorem ISRN
Inconsistent Systems, r and n
Suppose A is the augmented matrix of a system of linear equations with m equations in

n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form
with r rows that are not completely zeros. If r = n + 1, then the system of equations is
inconsistent. �

Proof If r = n+1, then D = {1, 2, 3, . . . , n, n + 1} and every column of B contains a
leading 1 and is a pivot column. In particular, the entry of column n+1 for row r = n+1
is a leading 1. Theorem RCLS [54] then says that the system is inconsistent. �

Go check out Technique CV [689] right now, and do not confuse Theorem ISRN [55]
with its converse!
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Next, if a system is consistent, we can distinguish between a unique solution and
infinitely many solutions, and furthermore, we recognize that these are the only two
possibilities.

Theorem CSRN
Consistent Systems, r and n

Suppose A is the augmented matrix of a consistent system of linear equations with
m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced
row-echelon form with r rows that are not zero rows. Then r ≤ n. If r = n, then the
system has a unique solution, and if r < n, then the system has infinitely many solutions.
�

Proof This theorem contains three implications that we must establish. Notice first
that B has n + 1 columns, so there can be at most n + 1 pivot columns, i.e. r ≤ n + 1.
If r = n + 1, then Theorem ISRN [55] tells us that the system is inconsistent, contrary
to our hypothesis. We are left with r ≤ n.

When r = n, we find n − r = 0 free variables (i.e. F = {n + 1}) and any solution
must equal the unique solution given by the first n entries of column n + 1 of B.

When r < n, we have n − r > 0 free variables, corresponding to columns of B
without a leading 1, excepting the final column, which also does not contain a leading
1 by Theorem RCLS [54]. By varying the values of the free variables suitably, we can
demonstrate infinitely many solutions. �

The next theorem simply states a conclusion from the final paragraph of the previous
proof, allowing us to state explicitly the number of free variables for a consistent system.

Theorem FVCS
Free Variables for Consistent Systems

Suppose A is the augmented matrix of a consistent system of linear equations with
m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced
row-echelon form with r rows that are not completely zeros. Then the solution set can
be described with n− r free variables. �

Proof See the proof of Theorem CSRN [56]. �

Example CFV
Counting free variables
For each archetype that is a system of equations, the values of n and r are listed. Many

also contain a few sample solutions. We can use this information profitably, as illustrated
by four examples.

1. Archetype A [703] has n = 3 and r = 2. It can be seen to be consistent by the
sample solutions given. Its solution set then has n − r = 1 free variables, and
therefore will be infinite.

2. Archetype B [708] has n = 3 and r = 3. It can be seen to be consistent by the
single sample solution given. Its solution set can then be described with n− r = 0
free variables, and therefore will have just the single solution.

3. Archetype H [734] has n = 2 and r = 3. In this case, r = n + 1, so Theo-
rem ISRN [55] says the system is inconsistent. We should not try to apply Theo-
rem FVCS [56] to count free variables, since the theorem only applies to consistent
systems. (What would happen if you did?)
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4. Archetype E [721] has n = 4 and r = 3. However, by looking at the reduced row-
echelon form of the augmented matrix, we find a leading 1 in row 3, column 4. By
Theorem RCLS [54] we recognize the system is then inconsistent. (Why doesn’t
this example contradict Theorem ISRN [55]?)

�

We have accomplished a lot so far, but our main goal has been the following theorem,
which is now very simple to prove. The proof is so simple that we ought to call it a
corollary, but the result is important enough that it deserves to be called a theorem. (See
Technique LC [698].) Notice that this theorem was presaged first by Example TTS [14]
and further foreshadowed by other examples.

Theorem PSSLS
Possible Solution Sets for Linear Systems

A system of linear equations has no solutions, a unique solution or infinitely many
solutions. �

Proof By definition, a system is either inconsistent or consistent. The first case describes
systems with no solutions. For consistent systems, we have the remaining two possibilities
as guaranteed by, and described in, Theorem CSRN [56]. �

We have one more theorem to round out our set of tools for determining solution sets
to systems of linear equations.

Theorem CMVEI
Consistent, More Variables than Equations, Infinite solutions

Suppose a consistent system of linear equations has m equations in n variables. If
n > m, then the system has infinitely many solutions. �

Proof Suppose that the augmented matrix of the system of equations is row-equivalent
to B, a matrix in reduced row-echelon form with r nonzero rows. Because B has m rows
in total, the number that are nonzero rows is less. In other words, r ≤ m. Follow this
with the hypothesis that n > m and we find that the system has a solution set described
by at least one free variable because

n− r ≥ n−m > 0.

A consistent system with free variables will have an infinite number of solutions, as given
by Theorem CSRN [56]. �

Notice that to use this theorem we need only know that the system is consistent,
together with the values of m and n. We do not necessarily have to compute a row-
equivalent reduced row-echelon form matrix, even though we discussed such a matrix in
the proof. This is the substance of the following example.

Example OSGMD
One solution gives many, Archetype D

Archetype D is the system of m = 3 equations in n = 4 variables,

2x1 + x2 + 7x3 − 7x4 = 8

−3x1 + 4x2 − 5x3 − 6x4 = −12

x1 + x2 + 4x3 − 5x4 = 4
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and the solution x1 = 0, x2 = 1, x3 = 2, x4 = 1 can be checked easily by substitution.
Having been handed this solution, we know the system is consistent. This, together with
n > m, allows us to apply Theorem CMVEI [57] and conclude that the system has
infinitely many solutions. �

These theorems give us the procedures and implications that allow us to completely
solve any system of linear equations. The main computational tool is using row operations
to convert an augmented matrix into reduced row-echelon form. Here’s a broad outline
of how we would instruct a computer to solve a system of linear equations.

1. Represent a system of linear equations by an augmented matrix (an array is the
appropriate data structure in most computer languages).

2. Convert the matrix to a row-equivalent matrix in reduced row-echelon form using
the procedure from the proof of Theorem REMEF [35].

3. Determine r and locate the leading 1 of row r. If it is in column n + 1, output the
statement that the system is inconsistent and halt.

4. With the leading 1 of row r not in column n + 1, there are two possibilities:

(a) r = n and the solution is unique. It can be read off directly from the entries
in rows 1 through n of column n + 1.

(b) r < n and there are infinitely many solutions. If only a single solution is
needed, set all the free variables to zero and read off the dependent vari-
able values from column n + 1, as in the second half of the proof of Theo-
rem RCLS [54]. If the entire solution set is required, figure out some nice
compact way to describe it, since your finite computer is not big enough to
hold all the solutions (we’ll have such a way soon).

The above makes it all sound a bit simpler than it really is. In practice, row operations
employ division (usually to get a leading entry of a row to convert to a leading 1) and
that will introduce round-off errors. Entries that should be zero sometimes end up being
very, very small nonzero entries, or small entries lead to overflow errors when used as
divisors. A variety of strategies can be employed to minimize these sorts of errors, and
this is one of the main topics in the important subject known as numerical linear algebra.

Computation Note LS.MMA
Linear Solve (Mathematica)

Mathematica will solve a linear system of equations using the LinearSolve[ ] com-
mand. The inputs are a matrix with the coefficients of the variables (but not the column
of constants), and a list containing the constant terms of each equation. This will look a
bit odd, since the lists in the matrix are rows, but the column of constants is also input
as a list and so looks like a row rather than a column. The result will be a single solution
(even if there are infinitely many), reported as a list, or the statement that there is no
solution. When there are infinitely many, the single solution reported is exactly that
solution used in the proof of Theorem RCLS [54], where the free variables are all set to
zero, and the dependent variables come along with values from the final column of the
row-reduced matrix.

As an example, Archetype A [703] is

x1 − x2 + 2x3 = 1
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2x1 + x2 + x3 = 8

x1 + x2 = 5

To ask Mathematica for a solution, enter

LinearSolve[ {{1, −1, 2}, {2, 1, 1}, {1, 1, 0}}, {1, 8, 5} ]

and you will get back the single solution

{3, 2, 0}

We will see later how to coax Mathematica into giving us infinitely many solutions for
this system (Computation VFSS.MMA [140]). ⊕

In this section we’ve gained a foolproof procedure for solving any system of linear
equations, no matter how many equations or variables. We also have a handful of theo-
rems that allow us to determine partial information about a solution set without actually
constructing the whole set itself. Donald Knuth would be proud.

Subsection READ
Reading Questions

1. How do we recognize when a system of linear equations is inconsistent?

2. Suppose we have converted the augmented matrix of a system of equations into
reduced row-echelon form. How do we then identify the dependent and independent
(free) variables?

3. What are the possible solution sets for a system of linear equations?
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Subsection EXC
Exercises

C10 In the spirit of Example ISSI [52], describe the infinite solution set for Archetype J [744].

Contributed by Robert Beezer

M45 Prove that Archetype J [744] has infinitely many solutions without row-reducing
the augmented matrix.
Contributed by Robert Beezer Solution [63]

For Exercises M51–M54 say as much as possible about each system’s solution set.
Be sure to make it clear which theorems you are using to reach your conclusions.
M51 A consistent system of 8 equations in 6 variables.
Contributed by Robert Beezer Solution [63]

M52 A consistent system of 6 equations in 8 variables.
Contributed by Robert Beezer Solution [63]

M53 A system of 5 equations in 9 variables.
Contributed by Robert Beezer Solution [63]

M54 A system with 12 equations in 35 variables.
Contributed by Robert Beezer Solution [63]

M60 Without doing any computations, and without examining any solutions, say as
much as possible about the form of the solution set for each archetype that is a system
of equations.
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]
Archetype E [721]
Archetype F [725]
Archetype G [730]
Archetype H [734]
Archetype I [739]
Archetype J [744]
Contributed by Robert Beezer

T10 An inconsistent system may have r > n. If we try (incorrectly!) to apply
Theorem FVCS [56] to such a system, how many free variables would we discover?
Contributed by Robert Beezer Solution [63]
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Subsection SOL
Solutions

M45 Contributed by Robert Beezer Statement [61]
Demonstrate that the system is consistent by verifying any one of the four sample

solutions provided. Then because n = 9 > 6 = m, Theorem CMVEI [57] gives us the
conclusion that the system has infinitely many solutions.

Notice that we only know the system will have at least 9 − 6 = 3 free variables, but
very well could have more. We do not know know that r = 6, only that r ≤ 6.

M51 Contributed by Robert Beezer Statement [61]
Consistent means there is at least one solution (Definition CS [51]). It will have either

a unique solution or infinitely many solutions (Theorem PSSLS [57]).

M52 Contributed by Robert Beezer Statement [61]
With 6 rows in the augmented matrix, the row-reduced version will have r ≤ 6. Since

the system is consistent, apply Theorem CSRN [56] to see that n−r ≥ 2 implies infinitely
many solutions.

M53 Contributed by Robert Beezer Statement [61]
The system could be inconsistent. If it is consistent, then because it has more vari-

ables than equations Theorem CMVEI [57] implies that there would be infinitely many
solutions. So, of all the possibilities in Theorem PSSLS [57], only the case of a unique
solution can be ruled out.

M54 Contributed by Robert Beezer Statement [61]
The system could be inconsistent. If it is consistent, then Theorem CMVEI [57] tells us
the solution set will be infinite. So we can be certain that there is not a unique solution.

T10 Contributed by Robert Beezer Statement [61]
Theorem FVCS [56] will indicate a negative number of free variables, but we can say

even more. If r > n, then the only possibility is that r = n + 1, and then we compute
n− r = n− (n + 1) = −1 free variables.
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Section HSE

Homogeneous Systems of Equations

In this section we specialize to systems of linear equations where every equation has a
zero as its constant term. Along the way, we will begin to express more and more ideas
in the language of matrices and begin a move away from writing out whole systems of
equations. The ideas initiated in this section will carry through the remainder of the
course.

Subsection SHS
Solutions of Homogeneous Systems

As usual, we begin with a definition.

Definition HS
Homogeneous System
A system of linear equations is homogeneous if each equation has a 0 for its constant

term. Such a system then has the form

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = 0

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = 0

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = 0

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = 0

4

Example AHSAC
Archetype C as a homogeneous system

For each archetype that is a system of equations, we have formulated a similar, yet
different, homogeneous system of equations by replacing each equation’s constant term
with a zero. To wit, for Archetype C [713], we can convert the original system of equations
into the homogeneous system,

2x1 − 3x2 + x3 − 6x4 = 0

4x1 + x2 + 2x3 + 9x4 = 0

3x1 + x2 + x3 + 8x4 = 0

Can you quickly find a solution to this system without row-reducing the augmented
matrix? �

As you might have discovered by studying Example AHSAC [65], setting each variable
to zero will always be a solution of a homogeneous system. This is the substance of the
following theorem.
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Theorem HSC
Homogeneous Systems are Consistent

Suppose that a system of linear equations is homogeneous. Then the system is consis-
tent. �

Proof Set each variable of the system to zero. When substituting these values into each
equation, the left-hand side evaluates to zero, no matter what the coefficients are. Since
a homogeneous system has zero on the right-hand side of each equation as the constant
term, each equation is true. With one demonstrated solution, we can call the system
consistent. �

Since this solution is so obvious, we now define it as the trivial solution.

Definition TSHSE
Trivial Solution to Homogeneous Systems of Equations
Suppose a homogeneous system of linear equations has n variables. The solution x1 = 0,

x2 = 0,. . . , xn = 0 is called the trivial solution. 4
Here are three typical examples, which we will reference throughout this section.

Work through the row operations as we bring each to reduced row-echelon form. Also
notice what is similar in each example, and what differs.

Example HUSAB
Homogeneous, unique solution, Archetype B

Archetype B can be converted to the homogeneous system,

−11x1 + 2x2 − 14x3 = 0

23x1 − 6x2 + 33x3 = 0

14x1 − 2x2 + 17x3 = 0

whose augmented matrix row-reduces to 1 0 0 0

0 1 0 0

0 0 1 0


By Theorem HSC [66], the system is consistent, and so the computation n−r = 3−3 = 0
means the solution set contains just a single solution. Then, this lone solution must be
the trivial solution. �

Example HISAA
Homogeneous, infinite solutions, Archetype A

Archetype A [703] can be converted to the homogeneous system,

x1 − x2 + 2x3 = 0

2x1 + x2 + x3 = 0

x1 + x2 = 0

whose augmented matrix row-reduces to 1 0 1 0

0 1 −1 0
0 0 0 0
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By Theorem HSC [66], the system is consistent, and so the computation n−r = 3−2 = 1
means the solution set contains one free variable by Theorem FVCS [56], and hence has
infinitely many solutions. We can describe this solution set using the free variable x3,

S = {(x1, x2, x3) | x1 = −x3, x2 = x3} = {(−x3, x3, x3) | x3 ∈ C}

Geometrically, these are points in three dimensions that lie on a line through the origin.
�

Example HISAD
Homogeneous, infinite solutions, Archetype D

Archetype D [717] (and identically, Archetype E [721]) can be converted to the homo-
geneous system,

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

whose augmented matrix row-reduces to 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0


By Theorem HSC [66], the system is consistent, and so the computation n−r = 4−2 = 2
means the solution set contains two free variables by Theorem FVCS [56], and hence has
infinitely many solutions. We can describe this solution set using the free variables x3

and x4,

S = {(x1, x2, x3, x4) | x1 = −3x3 + 2x4, x2 = −x3 + 3x4}
= {(−3x3 + 2x4, −x3 + 3x4, x3, x4) | x3, x4 ∈ C}

�

After working through these examples, you might perform the same computations for
the slightly larger example, Archetype J [744].

Example HISAD [67] suggests the following theorem.

Theorem HMVEI
Homogeneous, More Variables than Equations, Infinite solutions
Suppose that a homogeneous system of linear equations has m equations and n variables

with n > m. Then the system has infinitely many solutions. �

Proof We are assuming the system is homogeneous, so Theorem HSC [66] says it is
consistent. Then the hypothesis that n > m, together with Theorem CMVEI [57], gives
infinitely many solutions. �

Example HUSAB [66] and Example HISAA [66] are concerned with homogeneous
systems where n = m and expose a fundamental distinction between the two examples.
One has a unique solution, while the other has infinitely many. These are exactly the only
two possibilities for a homogeneous system and illustrate that each is possible (unlike the
case when n > m where Theorem HMVEI [67] tells us that there is only one possibility
for a homogeneous system).
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Subsection MVNSE
Matrix and Vector Notation for Systems of Equations

Notice that when we do row operations on the augmented matrix of a homogeneous
system of linear equations the last column of the matrix is all zeros. Any one of the three
allowable row operations will convert zeros to zeros and thus, the final column of the
matrix in reduced row-echelon form will also be all zeros. This observation might suffice
as a first explanation of the reason for some of the following definitions.

Definition CV
Column Vector
A column vector of size m is an ordered list of m numbers, which is written in order

vertically, starting at the top and proceeding to the bottom. At times, we will refer to a
column vector as simply a vector. Column vectors will be written in bold, usually with
lower case Latin letter from the end of the alphabet such as u, v, w, x, y, z. Some books
like to write vectors with arrows, such as ~u. Writing by hand, some like to put arrows
on top of the symbol, or a tilde underneath the symbol, as in u

∼
. To refer to the entry

or component that is number i in the list that is the vector v we write [v]i.
(This definition contains Notation V.)
(This definition contains Notation VE.) 4

Be careful with this notation. While the symbols [v]i might look somewhat substan-
tial, as an object this represents just one component of a vector, which is just a single
complex number.

Definition ZV
Zero Vector

The zero vector of size m is the column vector of size m where each entry is the
number zero,

0 =


0
0
0
...
0


or more compactly, [0]i = 0 for 1 ≤ i ≤ m.
(This definition contains Notation ZV.) 4

Definition CM
Coefficient Matrix

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm
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the coefficient matrix is the m× n matrix

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

am1 am2 am3 . . . amn


4

Definition VOC
Vector of Constants

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the vector of constants is the column vector of size m

b =


b1

b2

b3
...

bm


4

Definition SV
Solution Vector

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the solution vector is the column vector of size n

x =


x1

x2

x3
...

xn
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4

The solution vector may do double-duty on occasion. It might refer to a list of variable
quantities at one point, and subsequently refer to values of those variables that actually
form a particular solution to that system.

Notation LS
LS(A, b): Linear System

If A is the coefficient matrix of a system of linear equations and b is the vector of
constants, then we will write LS(A, b) as a shorthand expression for the system of linear
equations. }

Notation AM
[A | b]: Augmented Matrix

If A is the coefficient matrix of a system of linear equations and b is the vector of
constants, then we will write the augmented matrix of the system as [A | b]. }

Example NSLE
Notation for systems of linear equations

The system of linear equations

2x1 + 4x2 − 3x3 + 5x4 + x5 = 9

3x1 + x2 + x4 − 3x5 = 0

−2x1 + 7x2 − 5x3 + 2x4 + 2x5 = −3

has coefficient matrix

A =

 2 4 −3 5 1
3 1 0 1 −3
−2 7 −5 2 2


and vector of constants

b =

 9
0
−3


and so will be referenced as LS(A, b). �

With these definitions and notation a homogeneous system will be indicated by
LS(A, 0). Its augmented matrix will be [A | 0], which when converted to reduced row-
echelon form will still have the final column of zeros. So in this case, we may be as likely
to just reference only the coefficient matrix.

Subsection NSM
Null Space of a Matrix

The set of solutions to a homogeneous system (which by Theorem HSC [66] is never
empty) is of enough interest to warrant its own name. However, we define it as a property
of the coefficient matrix, not as a property of some system of equations.
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Definition NSM
Null Space of a Matrix

The null space of a matrix A, denoted N (A), is the set of all the vectors that are
solutions to the homogeneous system LS(A, 0). 4

Notation NSM
N (A): Null Space of a Matrix

The null space of a matrix A is denoted N (A). }

In the Archetypes (Appendix A [699]) each example that is a system of equations
also has a corresponding homogeneous system of equations listed, and several sample
solutions are given. These solutions will be elements of the null space of the coefficient
matrix. We’ll look at one example.

Example NSEAI
Null space elements of Archetype I
The write-up for Archetype I [739] lists several solutions of the corresponding homoge-

neous system. Here are two, written as solution vectors. We can say that they are in the
null space of the coefficient matrix for the system of equations in Archetype I [739].

x =



3
0
−5
−6
0
0
1


y =



−4
1
−3
−2
1
1
1


However, the vector

z =



1
0
0
0
0
0
2


is not in the null space, since it is not a solution to the homogeneous system. For example,
it fails to even make the first equation true. �

Here are two (prototypical) examples of the computation of the null space of a matrix.
Notice that we will now begin writing solutions as vectors.

Example CNS1
Computing a null space, #1

Let’s compute the null space of

A =

2 −1 7 −3 −8
1 0 2 4 9
2 2 −2 −1 8
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which we write as N (A). Translating Definition NSM [71], we simply desire to solve the
homogeneous system LS(A, 0). So we row-reduce the augmented matrix to obtain 1 0 2 0 1 0

0 1 −3 0 4 0

0 0 0 1 2 0


The variables (of the homogeneous system) x3 and x5 are free (since columns 1, 2 and
4 are pivot columns), so we arrange the equations represented by the matrix in reduced
row-echelon form to

x1 = −2x3 − x5

x2 = 3x3 − 4x5

x4 = −2x5

So we can write the infinite solution set as sets using column vectors,

N (A) =




−2x3 − x5

3x3 − 4x5

x3

−2x5

x5


∣∣∣∣∣∣∣∣∣∣

x3, x5 ∈ C


�

Example CNS2
Computing a null space, #2

Let’s compute the null space of

C =


−4 6 1
−1 4 1
5 6 7
4 7 1


which we write as N (C). Translating Definition NSM [71], we simply desire to solve the
homogeneous system LS(C, 0). So we row-reduce the augmented matrix to obtain

1 0 0

0 1 0

0 0 1
0 0 0


There are no free variables in the homogenous system represented by the row-reduced
matrix, so there is only the trivial solution, the zero vector, 0. So we can write the
(trivial) solution set as

N (C) = {0} =


0

0
0


�
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Subsection READ
Reading Questions

1. What is always true of the solution set for a homogenous system of equations?

2. Suppose a homogenous sytem of equations has 13 variables and 8 equations. How
many solutions will it have? Why?

3. Describe in words (not symbols) the null space of a matrix.
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Subsection EXC
Exercises

C10 Each archetype (Appendix A [699]) that is a system of equations has a corre-
sponding homogeneous system with the same coefficient matrix. Compute the set of
solutions for each. Notice that these solution sets are the null spaces of the coefficient
matrices.
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/ Archetype H [734]
Archetype I [739]
and Archetype J [744]
Contributed by Robert Beezer

C20 Archetype K [749] and Archetype L [753] are simply 5× 5 matrices (i.e. they are
not systems of equations). Compute the null space of each matrix.
Contributed by Robert Beezer

C30 Compute the null space of the matrix A, N (A).

A =


2 4 1 3 8
−1 −2 −1 −1 1
2 4 0 −3 4
2 4 −1 −7 4


Contributed by Robert Beezer Solution [77]

M45 Without doing any computations, and without examining any solutions, say
as much as possible about the form of the solution set for corresponding homogeneous
system of equations of each archetype that is a system of equations.
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]
Contributed by Robert Beezer

For Exercises M50–M52 say as much as possible about each system’s solution set.
Be sure to make it clear which theorems you are using to reach your conclusions.
M50 A homogeneous system of 8 equations in 8 variables.
Contributed by Robert Beezer Solution [77]

M51 A homogeneous system of 8 equations in 9 variables.
Contributed by Robert Beezer Solution [77]
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M52 A homogeneous system of 8 equations in 7 variables.
Contributed by Robert Beezer Solution [77]

T10 Prove or disprove: A system of linear equations is homogeneous if and only if the
system has the zero vector as a solution.
Contributed by Martin Jackson Solution [77]

T20 Consider the homogeneous system of linear equations LS(A, 0), and suppose that

u =


u1

u2

u3
...

un

 is one solution to the system of equations. Prove that v =


4u1

4u2

4u3
...

4un

 is also a

solution to LS(A, 0).
Contributed by Robert Beezer Solution [78]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [75]
Definition NSM [71] tells us that the null space of A is the solution set to the homogeneous
system LS(A, 0). The augmented matrix of this system is

2 4 1 3 8 0
−1 −2 −1 −1 1 0
2 4 0 −3 4 0
2 4 −1 −7 4 0


To solve the system, we row-reduce the augmented matrix and obtain,

1 2 0 0 5 0

0 0 1 0 −8 0

0 0 0 1 2 0
0 0 0 0 0 0


This matrix represents a system with equations having three dependent variables (x1,
x3, and x4) and two independent variables (x2 and x5). These equations rearrange to

x1 = −2x2 − 5x5 x3 = 8x5 x4 = −2x5

So we can write the solution set (which is the requested null space) as

N (A) =




−2x2 − 5x5

x2

8x5

−2x5

x5


∣∣∣∣∣∣∣∣∣∣

x2, x5 ∈ C


M50 Contributed by Robert Beezer Statement [75]
Since the system is homogeneous, we know it has the trivial solution (Theorem HSC [66]).
We cannot say anymore based on the information provided, except to say that there
is either a unique solution or infinitely many solutions (Theorem PSSLS [57]). See
Archetype A [703] and Archetype B [708] to understand the possibilities.

M51 Contributed by Robert Beezer Statement [75]
Since there are more variables than equations, Theorem HMVEI [67] applies and tells

us that the solution set is infinite. From the proof of Theorem HSC [66] we know that
the zero vector is one solution.

M52 Contributed by Robert Beezer Statement [76]
By Theorem HSC [66], we know the system is consistent because the zero vector is

always a solution of a homogeneous system. There is no more that we can say, since both
a unique solution and infinitely many solutions are possibilities.

T10 Contributed by Robert Beezer Statement [76]
This is a true statement. A proof is:
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(⇐) Suppose we have a homogeneous system LS(A, 0). Then by substituting the
scalar zero for each variable, we arrive at true statements for each equation. So the zero
vector is a solution. This is the content of Theorem HSC [66].

(⇒) Suppose now that we have a generic (i.e. not necessarily homogeneous) system
of equations, LS(A, b) that has the zero vector as a solution. Upon substituting this
solution into the system, we discover that each component of b must also be zero. So
b = 0.

T20 Contributed by Robert Beezer Statement [76]
Suppose that a single equation from this system (the i-th one) has the form,

ai1x1 + ai2x2 + ai3x3 + · · ·+ ainxn = 0

Evaluate the left-hand side of this equation with the components of the proposed solution
vector v,

ai1 (4u1) + ai2 (4u2) + ai3 (4u3) + · · ·+ ain (4un)

= 4ai1u1 + 4ai2u2 + 4ai3u3 + · · ·+ 4ainun Commutativity

= 4 (ai1u1 + ai2u2 + ai3u3 + · · ·+ ainun) Distributivity

= 4(0) u solution to LS(A, 0)

= 0

So v makes each equation true, and so is a solution to the system.
Notice that this result is not true if we change LS(A, 0) from a homogeneous system

to a non-homogeneous system. Can you create an example of a (non-homogeneous)
system with a solution u such that v is not a solution?
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Section NSM

NonSingular Matrices

In this section we specialize and consider matrices with equal numbers of rows and
columns, which when considered as coefficient matrices lead to systems with equal num-
bers of equations and variables. We will see in the second half of the course (Chap-
ter D [413], Chapter E [445] Chapter LT [507], Chapter R [591]) that these matrices are
especially important.

Subsection NSM
NonSingular Matrices

Our theorems will now establish connections between systems of equations (homogeneous
or otherwise), augmented matrices representing those systems, coefficient matrices, con-
stant vectors, the reduced row-echelon form of matrices (augmented and coefficient) and
solution sets. Be very careful in your reading, writing and speaking about systems of
equations, matrices and sets of vectors. A system of equations is not a matrix, a ma-
trix is not a solution set, and a solution set is not a system of equations. Now would
be a good time to review the discussion about speaking and writing mathematics in
Technique L [682].

Definition SQM
Square Matrix

A matrix with m rows and n columns is square if m = n. In this case, we say the
matrix has size n. To emphasize the situation when a matrix is not square, we will call
it rectangular. 4

We can now present one of the central definitions of linear algebra.

Definition NM
Nonsingular Matrix
Suppose A is a square matrix. Suppose further that the solution set to the homogeneous

linear system of equations LS(A, 0) is {0}, i.e. the system has only the trivial solution.
Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix.
4

We can investigate whether any square matrix is nonsingular or not, no matter if
the matrix is derived somehow from a system of equations or if it is simply a matrix.
The definition says that to perform this investigation we must construct a very specific
system of equations (homogeneous, with the matrix as the coefficient matrix) and look at
its solution set. We will have theorems in this section that connect nonsingular matrices
with systems of equations, creating more opportunities for confusion. Convince yourself
now of two observations, (1) we can decide nonsingularity for any square matrix, and (2)
the determination of nonsingularity involves the solution set for a certain homogenous
system of equations.
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Notice that it makes no sense to call a system of equations nonsingular (the term does
not apply to a system of equations), nor does it make any sense to call a 5 × 7 matrix
singular (the matrix is not square).

Example S
A singular matrix, Archetype A
Example HISAA [66] shows that the coefficient matrix derived from Archetype A [703],

specifically the 3× 3 matrix,

A =

1 −1 2
2 1 1
1 1 0


is a singular matrix since there are nontrivial solutions to the homogeneous system
LS(A, 0). �

Example NS
A nonsingular matrix, Archetype B
Example HUSAB [66] shows that the coefficient matrix derived from Archetype B [708],

specifically the 3× 3 matrix,

B =

−7 −6 −12
5 5 7
1 0 4


is a nonsingular matrix since the homogeneous system, LS(B, 0), has only the trivial
solution. �

Notice that we will not discuss Example HISAD [67] as being a singular or nonsingular
coefficient matrix since the matrix is not square.

The next theorem combines with our main computational technique (row-reducing a
matrix) to make it easy to recognize a nonsingular matrix. But first a definition.

Definition IM
Identity Matrix

The m×m identity matrix, Im is defined by

[Im]ij =

{
1 i = j

0 i 6= j

4

Example IM
An identity matrix

The 4× 4 identity matrix is

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

�

Notice that an identity matrix is square, and in reduced row-echelon form. So in
particular, if we were to arrive at the identity matrix while bringing a matrix to reduced
row-echelon form, then it would have all of the diagonal entries circled as leading 1’s.
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Theorem NSRRI
NonSingular matrices Row Reduce to the Identity matrix

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-
echelon form. Then A is nonsingular if and only if B is the identity matrix. �

Proof (⇐) Suppose B is the identity matrix. When the augmented matrix [A | 0]
is row-reduced, the result is [B | 0] = [In | 0]. The number of nonzero rows is equal
to the number of variables in the linear system of equations LS(A, 0), so n = r and
Theorem FVCS [56] gives n − r = 0 free variables. Thus, the homogeneous system
LS(A, 0) has just one solution, which must be the trivial solution. This is exactly the
definition of a nonsingular matrix.

(⇒) If A is nonsingular, then the homogeneous system LS(A, 0) has a unique solu-
tion, and has no free variables in the description of the solution set. The homogeneous
system is consistent (Theorem HSC [66]) so Theorem FVCS [56] applies and tells us there
are n− r free variables. Thus, n− r = 0, and so n = r. So B has n pivot columns among
its total of n columns. This is enough to force B to be the n× n identity matrix In. �

Notice that since this theorem is an equivalence it will always allow us to determine
if a matrix is either nonsingular or singular. Here are two examples of this, continuing
our study of Archetype A and Archetype B.

Example SRR
Singular matrix, row-reduced

The coefficient matrix for Archetype A [703] is

A =

1 −1 2
2 1 1
1 1 0


which when row-reduced becomes the row-equivalent matrix

B =

 1 0 1

0 1 −1
0 0 0

 .

Since this matrix is not the 3 × 3 identity matrix, Theorem NSRRI [81] tells us that A
is a singular matrix. �

Example NSRR
NonSingular matrix, row-reduced

The coefficient matrix for Archetype B [708] is

A =

−7 −6 −12
5 5 7
1 0 4


which when row-reduced becomes the row-equivalent matrix

B =

 1 0 0

0 1 0

0 0 1

 .
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Since this matrix is the 3 × 3 identity matrix, Theorem NSRRI [81] tells us that A is a
nonsingular matrix. �

Example NSS
Null space of a singular matrix

Given the coefficient matrix from Archetype A [703],

A =

1 −1 2
2 1 1
1 1 0


the null space is the set of solutions to the homogeneous system of equations LS(A, 0)
has a solution set and null space constructed in Example HISAA [66] as

N (A) =


−x3

x3

x3

 ∣∣∣∣∣∣ x3 ∈ C


�

Example NSNS
Null space of a nonsingular matrix

Given the coefficient matrix from Archetype B [708],

A =

−7 −6 −12
5 5 7
1 0 4


the homogeneous system LS(A, 0) has a solution set constructed in Example HUSAB [66]
that contains only the trivial solution, so the null space has only a single element,

N (A) =


0

0
0


�

These two examples illustrate the next theorem, which is another equivalence.

Theorem NSTNS
NonSingular matrices have Trivial Null Spaces
Suppose that A is a square matrix. Then A is nonsingular if and only if the null space

of A, N (A), contains only the zero vector, i.e. N (A) = {0}. �

Proof The null space of a square matrix, A, is equal to the set of solutions to the
homogeneous system, LS(A, 0). A matrix is nonsingular if and only if the set of solutions
to the homogeneous system, LS(A, 0), has only a trivial solution. These two observations
may be chained together to construct the two proofs necessary for each half of this
theorem. �

The next theorem pulls a lot of ideas together. But first, head out and read two
more proof techniques: Technique CD [690] and Technique U [691]. Then Theorem NS-
MUS [83] tells us that we can learn a lot about solutions to a system of linear equations
with a square coefficient matrix by examining a similar homogeneous system.
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Theorem NSMUS
NonSingular Matrices and Unique Solutions
Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system
LS(A, b) has a unique solution for every choice of the constant vector b. �

Proof (⇐) The hypothesis for this half of the proof is that the system LS(A, b)
has a unique solution for every choice of the constant vector b. We will make a very
specific choice for b: b = 0. Then we know that the system LS(A, 0) has a unique
solution. But this is precisely the definition of what it means for A to be nonsingular
(Definition NM [79]). That almost seems too easy! Notice that we have not used the full
power of our hypothesis, but there is nothing that says we must use a hypothesis to its
fullest.

If the first half of the proof seemed easy, perhaps we’ll have to work a bit harder to
get the implication in the opposite direction. We provide two different proofs for the
second half. The first is suggested by Asa Scherer and relies on the uniqueness of the
reduced row-echelon form of a matrix (Theorem RREFU [122]), a result that we could
have proven earlier, but we have decided to delay until later. The second proof is lengthier
and more involved, but does not rely on the uniqueness of the reduced row-echelon form
of a matrix, a result we have not proven yet. It is also a good example of the types of
proofs we will encounter throughout the course.

(⇒, Round 1) We assume that A is nonsingular, so we know there is a sequence of
row operations that will convert A into the identity matrix In (Theorem NSRRI [81]).
Form the augmented matrix A′ = [A | b] and apply this same sequence of row operations
to A′. The result will be the matrix B′ = [In | c], which is in reduced row-echelon form.
It should be clear that c is a solution to LS(A, b). Furthermore, since B′ is unique
(Theorem RREFU [122]), the vector c must be unique, and therefore is a unique solution
of LS(A, b).

(⇒, Round 2) We will assume A is nonsingular, and try to solve the system LS(A, b)
without making any assumptions about b. To do this we will begin by constructing a new
homogeneous linear system of equations that looks very much like the original. Suppose
A has size n (why must it be square?) and write the original system as,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

... (∗)
an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn

form the new, homogeneous system in n equations with n+1 variables, by adding a new
variable y, whose coefficients are the negatives of the constant terms,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn − b1y = 0

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn − b2y = 0

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn − b3y = 0

... (∗∗)
an1x1 + an2x2 + an3x3 + · · ·+ annxn − bny = 0
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Since this is a homogeneous system with more variables than equations (m = n+1 > n),
Theorem HMVEI [67] says that the system has infinitely many solutions. We will choose
one of these solutions, any one of these solutions, so long as it is not the trivial solution.
Write this solution as

x1 = c1 x2 = c2 x3 = c3 . . . xn = cn y = cn+1

We know that at least one value of the ci is nonzero, but we will now show that in
particular cn+1 6= 0. We do this using a proof by contradiction (Technique CD [690]). So
suppose the ci form a solution as described, and in addition that cn+1 = 0. Then we can
write the i-th equation of system (∗∗) as,

ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn − bi(0) = 0

which becomes

ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn = 0

Since this is true for each i, we have that x1 = c1, x2 = c2, x3 = c3, . . . , xn = cn is
a solution to the homogeneous system LS(A, 0) formed with a nonsingular coefficient
matrix. This means that the only possible solution is the trivial solution, so c1 = 0, c2 =
0, c3 = 0, . . . , cn = 0. So, assuming simply that cn+1 = 0, we conclude that all of the ci

are zero. But this contradicts our choice of the ci as not being the trivial solution to the
system (∗∗). So cn+1 6= 0.

We now propose and verify a solution to the original system (∗). Set

x1 =
c1

cn+1

x2 =
c2

cn+1

x3 =
c3

cn+1

. . . xn =
cn

cn+1

Notice how it was necessary that we know that cn+1 6= 0 for this step to succeed. Now,
evaluate the i-th equation of system (∗) with this proposed solution, and recognize in the
third line that c1 through cn+1 appear as if they were substituted into the left-hand side
of the i-th equation of system (∗∗),

ai1
c1

cn+1

+ ai2
c2

cn+1

+ ai3
c3

cn+1

+ · · ·+ ain
cn

cn+1

=
1

cn+1

(ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn)

=
1

cn+1

(ai1c1 + ai2c2 + ai3c3 + · · ·+ aincn − bicn+1) + bi

=
1

cn+1

(0) + bi

= bi

Since this equation is true for every i, we have found a solution to system (∗). To finish,
we still need to establish that this solution is unique.

With one solution in hand, we will entertain the possibility of a second solution. So
assume system (∗) has two solutions,

x1 = d1 x2 = d2 x3 = d3 . . . xn = dn
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x1 = e1 x2 = e2 x3 = e3 . . . xn = en

Then,

(ai1(d1 − e1) + ai2(d2 − e2) + ai3(d3 − e3) + · · ·+ ain(dn − en))

= (ai1d1 + ai2d2 + ai3d3 + · · ·+ aindn)− (ai1e1 + ai2e2 + ai3e3 + · · ·+ ainen)

= bi − bi

= 0

This is the i-th equation of the homogeneous system LS(A, 0) evaluated with xj = dj−ej,
1 ≤ j ≤ n. Since A is nonsingular, we must conclude that this solution is the trivial
solution, and so 0 = dj − ej, 1 ≤ j ≤ n. That is, dj = ej for all j and the two solutions
are identical, meaning any solution to (∗) is unique. �

This important theorem deserves several comments. First, notice that the proposed
solution (xi = ci

cn+1
) appeared in the Round 2 proof with no motivation whatsoever. This

is just fine in a proof. A proof should convince you that a theorem is true. It is your job
to read the proof and be convinced of every assertion. Questions like “Where did that
come from?” or “How would I think of that?” have no bearing on the validity of the
proof.

Second, this theorem helps to explain part of our interest in nonsingular matrices. If
a matrix is nonsingular, then no matter what vector of constants we pair it with, using
the matrix as the coefficient matrix will always yield a linear system of equations with
a solution, and the solution is unique. To determine if a matrix has this property (non-
singularity) it is enough to just solve one linear system, the homogeneous system with
the matrix as coefficient matrix and the zero vector as the vector of constants (or any
other vector of constants, see Exercise MM.T10 [235]).

Finally, formulating the negation of the second part of this theorem is a good ex-
ercise. A singular matrix has the property that for some value of the vector b, the
system LS(A, b) does not have a unique solution (which means that it has no solution
or infinitely many solutions). We will be able to say more about this case later (see the
discussion following Theorem PSPHS [119]). Square matrices that are nonsingular have
a long list of interesting properties, which we will start to catalog in the following, recur-
ring, theorem. Of course, singular matrices will then have all of the opposite properties.
The following theorem is a list of equivalences. Technique ME [692] expounds on this
type of theorem, and some approaches to proving them.

Theorem NSME1
NonSingular Matrix Equivalences, Round 1

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

�

Proof That A is nonsingular is equivalent to each of the subsequent statements by,
in turn, Theorem NSRRI [81], Theorem NSTNS [82] and Theorem NSMUS [83]. So the
statement of this theorem is just a convenient way to organize all these results. �
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Subsection READ
Reading Questions

1. What is the definition of a nonsingular matrix?

2. What is the easiest way to recognize a nonsingular matrix?

3. Suppose we have a system of equations and its coefficient matrix is nonsingular.
What can you say about the solution set for this system?
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Subsection EXC
Exercises

In Exercises C30–C33 determine if the matrix is nonsingular or singular. Give reasons
for your answer.
C30 

−3 1 2 8
2 0 3 4
1 2 7 −4
5 −1 2 0


Contributed by Robert Beezer Solution [89]

C31 
2 3 1 4
1 1 1 0
−1 2 3 5
1 2 1 3


Contributed by Robert Beezer Solution [89]

C32 9 3 2 4
5 −6 1 3
4 1 3 −5


Contributed by Robert Beezer Solution [89]

C33 
−1 2 0 3
1 −3 −2 4
−2 0 4 3
−3 1 −2 3


Contributed by Robert Beezer Solution [89]

C40 Each of the archetypes below is a system of equations with a square coefficient
matrix, or is itself a square matrix. Determine if these matrices are nonsingular, or
singular. Comment on the null space of each matrix.
Archetype A [703]
Archetype B [708]
Archetype F [725]
Archetype K [749]
Archetype L [753]
Contributed by Robert Beezer

For Exercises M51–M52 say as much as possible about each system’s solution set.
Be sure to make it clear which theorems you are using to reach your conclusions.
M51 6 equations in 6 variables, singular coefficient matrix.
Contributed by Robert Beezer Solution [89]
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M52 A system with a nonsingular coefficient matrix, not homogeneous.
Contributed by Robert Beezer Solution [89]

T10 Suppose that A is a singular matrix, and B is a matrix in reduced row-echelon
form that is row-equivalent to A. Prove that the last row of B is a zero row.
Contributed by Robert Beezer Solution [89]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [87]
The matrix row-reduces to 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


which is the 4× 4 identity matrix. By Theorem NSRRI [81] the original matrix must be
nonsingular.

C31 Contributed by Robert Beezer Statement [87]
Row-reducing the matrix yields, 

1 0 0 −2

0 1 0 3

0 0 1 −1
0 0 0 0


Since this is not the 4 × 4 identity matrix, Theorem NSRRI [81] tells us the matrix is
singular.

C32 Contributed by Robert Beezer Statement [87]
The matrix is not square, so neither term is applicable. See Definition NM [79], which

is stated for just square matrices.

C33 Contributed by Robert Beezer Statement [87]
Theorem NSRRI [81] tells us we can answer this question by simply row-reducing the

matrix. Doing this we obtain, 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Since the reduced row-echelon form of the matrix is the 4×4 identity matrix I4, we know
that B is nonsingular.

M51 Contributed by Robert Beezer Statement [87]
Theorem NSRRI [81] tells us that the coefficient matrix will not row-reduce to the

identity matrix. So if were to row-reduce the augmented matrix of this system of equa-
tions, we would not get a unique solution. So by Theorem PSSLS [57] there remaining
possibilities are no solutions, or infinitely many.

M52 Contributed by Robert Beezer Statement [88]
Any system with a nonsingular coefficient matrix will have a unique solution by The-

orem NSMUS [83]. If the system is not homogeneous, the solution cannot be the zero
vector (Exercise HSE.T10 [76]).

T10 Contributed by Robert Beezer Statement [88]
Let n denote the size of the square matrix A. By Theorem NSRRI [81] the hypothesis
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that A is singular implies that B is not the identity matrix In. If B has n pivot columns,
then it would have to be In, so B must have fewer than n pivot columns. But the number
of nonzero rows in B (r) is equal to the number of pivot columns as well. So the n rows
of B have fewer than n nonzero rows, and B must contain at least one zero row. By
Definition RREF [34], this row must be at the bottom of B.
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Chapter V: Vectors

We have worked extensively in the last chapter with matrices, and some with vectors.
In this chapter we will develop the properties of vectors, while preparing to study vector
spaces. Initially we will depart from our study of systems of linear equations, but in
Section LC [103] we will forge a connection between linear combinations and systems of
linear equations in Theorem SLSLC [106]. This connection will allow us to understand
systems of linear equations at a higher level, while consequently discussing them less
frequently.

Section VO

Vector Operations

In this section we define some new operations involving vectors, and collect some basic
properties of these operations. Begin by recalling our definition of a column vector as an
ordered list of complex numbers, written vertically (Definition CV [68]). The collection of
all possible vectors of a fixed size is a commonly used set, so we start with its definition.

Definition VSCV
Vector Space of Column Vectors
The vector space Cm is the set of all column vectors (Definition CV [68]) of size m with

entries from the set of complex numbers, C.
(This definition contains Notation VSCV.) 4

When a set similar to this is defined using only column vectors where all the entries
are from the real numbers, it is written as Rm and is known as Euclidean m-space.

The term “vector” is used in a variety of different ways. We have defined it as
an ordered list written vertically. It could simply be an ordered list of numbers, and
written as (2, 3, −1, 6). Or it could be interpreted as a point in m dimensions, such as
(3, 4, −2) representing a point in three dimensions relative to x, y and z axes. With an
interpretation as a point, we can construct an arrow from the origin to the point which
is consistent with the notion that a vector has direction and magnitude.

All of these ideas can be shown to be related and equivalent, so keep that in mind
as you connect the ideas of this course with ideas from other disciplines. For now, we’ll
stick with the idea that a vector is a just a list of numbers, in some particular order.
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Subsection VEASM
Vector equality, addition, scalar multiplication

We start our study of this set by first defining what it means for two vectors to be the
same.

Definition CVE
Column Vector Equality

The vectors u and v are equal, written u = v provided that

[u]i = [v]i 1 ≤ i ≤ m

(This definition contains Notation CVE.) 4
Now this may seem like a silly (or even stupid) thing to say so carefully. Of course

two vectors are equal if they are equal for each corresponding entry! Well, this is not
as silly as it appears. We will see a few occasions later where the obvious definition is
not the right one. And besides, in doing mathematics we need to be very careful about
making all the necessary definitions and making them unambiguous. And we’ve done
that here.

Notice now that the symbol ‘=’ is now doing triple-duty. We know from our earlier
education what it means for two numbers (real or complex) to be equal, and we take this
for granted. In Definition SE [678] we defined what it meant for two sets to be equal.
Now we have defined what it means for two vectors to be equal, and that definition
builds on our definition for when two numbers are equal when we use the condition
ui = vi for all 1 ≤ i ≤ m. So think carefully about your objects when you see an equal
sign and think about just which notion of equality you have encountered. This will be
especially important when you are asked to construct proofs whose conclusion states that
two objects are equal.

OK, let’s do an example of vector equality that begins to hint at the utility of this
definition.

Example VESE
Vector equality for a system of equations

Consider the system of linear equations in Archetype B [708],

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

Note the use of three equals signs — each indicates an equality of numbers (the lin-
ear expressions are numbers when we evaluate them with fixed values of the variable
quantities). Now write the vector equality,−7x1 − 6x2 − 12x3

5x1 + 5x2 + 7x3

x1 + 4x3

 =

−33
24
5

 .

By Definition CVE [92], this single equality (of two column vectors) translates into three
simultaneous equalities of numbers that form the system of equations. So with this new
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notion of vector equality we can become less reliant on referring to systems of simultaneous
equations. There’s more to vector equality than just this, but this is a good example for
starters and we will develop it further. �

We will now define two operations on the set Cm. By this we mean well-defined
procedures that somehow convert vectors into other vectors. Here are two of the most
basic definitions of the entire course.

Definition CVA
Column Vector Addition

Given the vectors u and v the sum of u and v is the vector u + v defined by

[u + v]i = [u]i + [v]i 1 ≤ i ≤ m

(This definition contains Notation CVA.) 4

So vector addition takes two vectors of the same size and combines them (in a natural
way!) to create a new vector of the same size. Notice that this definition is required,
even if we agree that this is the obvious, right, natural or correct way to do it. Notice
too that the symbol ‘+’ is being recycled. We all know how to add numbers, but now we
have the same symbol extended to double-duty and we use it to indicate how to add two
new objects, vectors. And this definition of our new meaning is built on our previous
meaning of addition via the expressions ui + vi. Think about your objects, especially
when doing proofs. Vector addition is easy, here’s an example from C4.

Example VA
Addition of two vectors in C4

If

u =


2
−3
4
2

 v =


−1
5
2
−7


then

u + v =


2
−3
4
2

+


−1
5
2
−7

 =


2 + (−1)
−3 + 5
4 + 2

2 + (−7)

 =


1
2
6
−5

 .

�

Our second operation takes two objects of different types, specifically a number and
a vector, and combines them to create another vector. In this context we call a number
a scalar in order to emphasize that it is not a vector.

Definition CVSM
Column Vector Scalar Multiplication
Given the vector u and the scalar α ∈ C, the scalar multiple of u by α, αu is defined

by

[αu]i = α [u]i 1 ≤ i ≤ m
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(This definition contains Notation CVSM.) 4

Notice that we are doing a kind of multiplication here, but we are defining a new
type, perhaps in what appears to be a natural way. We use juxtaposition (smashing
two symbols together side-by-side) to denote this operation rather than using a symbol
like we did with vector addition. So this can be another source of confusion. When
two symbols are next to each other, are we doing regular old multiplication, the kind
we’ve done for years, or are we doing scalar vector multiplication, the operation we just
defined? Think about your objects — if the first object is a scalar, and the second is
a vector, then it must be that we are doing our new operation, and the result of this
operation will be another vector.

Notice how consistency in notation can be an aid here. If we write scalars as lower
case Greek letters from the start of the alphabet (such as α, β, . . . ) and write vectors
in bold Latin letters from the end of the alphabet (u, v, . . . ), then we have some hints
about what type of objects we are working with. This can be a blessing and a curse, since
when we go read another book about linear algebra, or read an application in another
discipline (physics, economics, . . . ) the types of notation employed may be very different
and hence unfamiliar.

Again, computationally, vector scalar multiplication is very easy.

Example CVSM
Scalar multiplication in C5

If

u =


3
1
−2
4
−1


and α = 6, then

αu = 6


3
1
−2
4
−1

 =


6(3)
6(1)

6(−2)
6(4)
6(−1

 =


18
6
−12
24
−6

 .

�

It is usually straightforward to effect these computations with a calculator or pro-
gram.

Computation Note VLC.MMA
Vector Linear Combinations (Mathematica)

Contributed by Robert Beezer
Vectors in Mathematica are represented as lists, written and displayed horizontally. For
example, the vector

v =


1
2
3
4
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would be entered and named via the command

v = {1, 2, 3, 4}

Vector addition and scalar multiplication are then very natural. If u and v are two
lists of equal length, then

2u + (−3)v
will compute the correct vector and return it as a list. If u and v have different sizes,
then Mathematica will complain about “objects of unequal length.” ⊕

Computation Note VLC.TI86
Vector Linear Combinations (TI-86)

Contributed by Robert Beezer
Vector operations on the TI-86 can be accessed via the VECTR key, which is Yellow-8

. The EDIT tool appears when the F2 key is pressed. After providing a name and
giving a “dimension” (the size) then you can enter the individual entries, one at a time.
Vectors can also be entered on the home screen using brackets ( [ , ] ). To create the
vector

v =


1
2
3
4


use brackets and the store key ( STO ),

[1, 2, 3, 4]→ v

Vector addition and scalar multiplication are then very natural. If u and v are two
vectors of equal size, then

2 ∗ u + (−3) ∗ v
will compute the correct vector and display the result as a vector. ⊕

Computation Note VLC.TI83
Vector Linear Combinations (TI-83)

Contributed by Douglas Phelps
Entering a vector on the TI-83 is the same process as entering a matrix. You press 4

ENTER 3 ENTER for a 4× 3 matrix. Likewise, you press 4 ENTER 1 ENTER for a vector
of size 4. To multiply a vector by 8, press the number 8, then press the MATRX key, then
scroll down to the letter you named your vector (A, B, C, etc) and press ENTER .

To add vectors A and B for example, press the MATRX key, then ENTER . Then
press the + key. Then press the MATRX key, then the down arrow once, then ENTER .
[A] + [B] will appear on the screen. Press ENTER . ⊕

Subsection VSP
Vector Space Properties

With definitions of vector addition and scalar multiplication we can state, and prove,
several properties of each operation, and some properties that involve their interplay.
We now collect ten of them here for later reference.
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Theorem VSPCV
Vector Space Properties of Column Vectors
Suppose that Cm is the set of column vectors of size m (Definition VSCV [91]) with addi-

tion and scalar multiplication as defined in Definition CVA [93] and Definition CVSM [93].
Then

• ACC Additive Closure, Column Vectors
If u, v ∈ Cm, then u + v ∈ Cm.

• SCC Scalar Closure, Column Vectors
If α ∈ C and u ∈ Cm, then αu ∈ Cm.

• CC Commutativity, Column Vectors
If u, v ∈ Cm, then u + v = v + u.

• AAC Additive Associativity, Column Vectors
If u, v, w ∈ Cm, then u + (v + w) = (u + v) + w.

• ZC Zero Vector, Column Vectors
There is a vector, 0, called the zero vector, such that u + 0 = u for all u ∈ Cm.

• AIC Additive Inverses, Column Vectors
If u ∈ Cm, then there exists a vector −u ∈ Cm so that u + (−u) = 0.

• SMAC Scalar Multiplication Associativity, Column Vectors
If α, β ∈ C and u ∈ Cm, then α(βu) = (αβ)u.

• DVAC Distributivity across Vector Addition, Column Vectors
If α ∈ C and u, v ∈ Cm, then α(u + v) = αu + αv.

• DSAC Distributivity across Scalar Addition, Column Vectors
If α, β ∈ C and u ∈ Cm, then (α + β)u = αu + βu.

• OC One, Column Vectors
If u ∈ Cm, then 1u = u.

�

Proof While some of these properties seem very obvious, they all require proof. How-
ever, the proofs are not very interesting, and border on tedious. We’ll prove one version
of distributivity very carefully, and you can test your proof-building skills on some of the
others. We need to establish an equality, so we will do so by beginning with one side
of the equality, apply various definitions and theorems (listed to the right of each step)
to massage the expression from the left into the expression on the right. Now would
be a good time to read Technique PI [693], just below. Here we go with a proof of
Property DSAC [96]. For 1 ≤ i ≤ m,

[(α + β)u]i = (α + β) [u]i Definition CVSM [93]

= α [u]i + β [u]i Distributivity in C
= [αu]i + [βu]i Definition CVSM [93]

= [αu + βu]i Definition CVA [93]
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Since the individual components of the vectors (α + β)u and αu + βu are equal for all i,
1 ≤ i ≤ m, Definition CVE [92] tells us the vectors are equal. �

Many of the conclusions of our theorems can be characterized as “identities,” espe-
cially when we are establishing basic properties of operations such as those in this section.
Have a look at Technique PI [693] about proving identities. Be careful with the notion of
the vector −u. This is a vector that we add to u so that the result is the particular vector
0. This is basically a property of vector addition. It happens that we can compute −u
using the other operation, scalar multiplication. We can prove this directly by writing
that

[−u]i = − [u]i = (−1) [u]i = [(−1)u]i

We will see later how to derive this property as a consequence of several of the ten
properties listed in Theorem VSPCV [96].

Subsection READ
Reading Questions

1. Where have you seen vectors used before in other courses? How were they different?

2. In words, when are two vectors equal?

3. Perform the following computation with vector operations

2

1
5
0

+ (−3)

7
6
5
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Subsection EXC
Exercises

C10 Compute

4


2
−3
4
1
0

+ (−2)


1
2
−5
2
4

+


−1
3
0
1
2


Contributed by Robert Beezer Solution [101]

T13 Prove Property CC [96] of Theorem VSPCV [96]. Write your proof in the style
of the proof of Property DSAC [96] given in this section.
Contributed by Robert Beezer Solution [101]

T17 Prove Property SMAC [96] of Theorem VSPCV [96]. Write your proof in the
style of the proof of Property DSAC [96] given in this section.
Contributed by Robert Beezer

T18 Prove Property DVAC [96] of Theorem VSPCV [96]. Write your proof in the
style of the proof of Property DSAC [96] given in this section.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [99]
5
−13
26
1
−6


T13 Contributed by Robert Beezer Statement [99]
For all 1 ≤ i ≤ m,

[u + v]i = [u]i + [v]i Definition CVA [93]

= [v]i + [u]i Commutativity in C
= [v + u]i Definition CVA [93]

With equality of each component of the vectors u + v and v + u being equal Defini-
tion CVE [92] tells us the two vectors are equal.
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Section LC

Linear Combinations

Subsection LC
Linear Combinations

In Section VO [91] we defined vector addition and scalar multiplication. These two
operations combine nicely to give us a construction known as a linear combination, a
construct that we will work with throughout this course.

Definition LCCV
Linear Combination of Column Vectors

Given n vectors u1, u2, u3, . . . , un from Cm and n scalars α1, α2, α3, . . . , αn, their
linear combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.

4
So this definition takes an equal number of scalars and vectors, combines them using

our two new operations (scalar multiplication and vector addition) and creates a single
brand-new vector, of the same size as the original vectors. When a definition or theorem
employs a linear combination, think about the nature of the objects that go into its
creation (lists of scalars and vectors), and the type of object that results (a single vector).
Computationally, a linear combination is pretty easy.

Example TLC
Two linear combinations in C6

Suppose that

α1 = 1 α2 = −4 α3 = 2 α4 = −1

and

u1 =


2
4
−3
1
2
9

 u2 =


6
3
0
−2
1
4

 u3 =


−5
2
1
1
−3
0

 u4 =


3
2
−5
7
1
3


then their linear combination is

α1u1 + α2u2 + α3u3 + α4u4 = (1)


2
4
−3
1
2
9

+ (−4)


6
3
0
−2
1
4

+ (2)


−5
2
1
1
−3
0

+ (−1)


3
2
−5
7
1
3
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=


2
4
−3
1
2
9

+


−24
−12
0
8
−4
−16

+


−10
4
2
2
−6
0

+


−3
−2
5
−7
−1
−3

 =


−35
−6
4
4
−9
−10

 .

A different linear combination, of the same set of vectors, can be formed with different
scalars. Take

β1 = 3 β2 = 0 β3 = 5 β4 = −1

and form the linear combination

β1u1 + β2u2 + β3u3 + β4u4 = (3)


2
4
−3
1
2
9

+ (0)


6
3
0
−2
1
4

+ (5)


−5
2
1
1
−3
0

+ (−1)


3
2
−5
7
1
3



=


6
12
−9
3
6
27

+


0
0
0
0
0
0

+


−25
10
5
5
−15
0

+


−3
−2
5
−7
−1
−3

 =


−22
20
1
1
−10
24

 .

Notice how we could keep our set of vectors fixed, and use different sets of scalars to con-
struct different vectors. You might build a few new linear combinations of u1, u2, u3, u4

right now. We’ll be right here when you get back. What vectors were you able to create?
Do you think you could create the vector

w =


13
15
5
−17
2
25


with a “suitable” choice of four scalars? Do you think you could create any possible vector
from C6 by choosing the proper scalars? These last two questions are very fundamental,
and time spent considering them now will prove beneficial later. �

Our next two examples are key ones, so much so that the general discussion about
decompositions in Technique DC [694] would make for timely reading.

Example ABLC
Archetype B as a linear combination

In this example we will rewrite Archetype B [708] in the language of vectors, vector
equality and linear combinations. In Example VESE [92] we wrote the system of m = 3
equations as the vector equality−7x1 − 6x2 − 12x3

5x1 + 5x2 + 7x3

x1 + 4x3

 =

−33
24
5

 .
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Now we will bust up the linear expressions on the left, first using vector addition,−7x1

5x1

x1

+

−6x2

5x2

0x2

+

−12x3

7x3

4x3

 =

−33
24
5

 .

Now we can rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector,
where the scalar is one of the unknown variables, converting the left-hand side into a
linear combination

x1

−7
5
1

+ x2

−6
5
0

+ x3

−12
7
4

 =

−33
24
5

 .

We can now interpret the problem of solving the system of equations as determining
values for the scalar multiples that make the vector equation true. In the analysis of
Archetype B [708], we were able to determine that it had only one solution. A quick
way to see this is to row-reduce the coefficient matrix to the 3 × 3 identity matrix and
apply Theorem NSRRI [81] to determine that the coefficient matrix is nonsingular. Then
Theorem NSMUS [83] tells us that the system of equations has a unique solution. This
solution is

x1 = −3 x2 = 5 x3 = 2.

So, in the context of this example, we can express the fact that these values of the
variables are a solution by writing the linear combination,

(−3)

−7
5
1

+ (5)

−6
5
0

+ (2)

−12
7
4

 =

−33
24
5

 .

Furthermore, these are the only three scalars that will accomplish this equality, since
they come from a unique solution.

Notice how the three vectors in this example are the columns of the coefficient matrix
of the system of equations. This is our first hint of the important interplay between the
vectors that form the columns of a matrix, and the matrix itself. �

With any discussion of Archetype A [703] or Archetype B [708] we should be sure to
contrast with the other.

Example AALC
Archetype A as a linear combination

As a vector equality, Archetype A [703] can be written asx1 − x2 + 2x3

2x1 + x2 + x3

x1 + x2

 =

1
8
5

 .

Now bust up the linear expressions on the left, first using vector addition, x1

2x1

x1

+

−x2

x2

x2

+

2x3

x3

0x3

 =

1
8
5

 .
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Rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector, where the scalar
is one of the unknown variables, converting the left-hand side into a linear combination

x1

1
2
1

+ x2

−1
1
1

+ x3

2
1
0

 =

1
8
5

 .

Row-reducing the augmented matrix for Archetype A [703] leads to the conclusion that
the system is consistent and has free variables, hence infinitely many solutions. So for
example, the two solutions

x1 = 2 x2 = 3 x3 = 1

x1 = 3 x2 = 2 x3 = 0

can be used together to say that,

(2)

1
2
1

+ (3)

−1
1
1

+ (1)

2
1
0

 =

1
8
5

 = (3)

1
2
1

+ (2)

−1
1
1

+ (0)

2
1
0


Ignore the middle of this equation, and move all the terms to the left-hand side,

(2)

1
2
1

+ (3)

−1
1
1

+ (1)

2
1
0

+ (−3)

1
2
1

+ (−2)

−1
1
1

+ (−0)

2
1
0

 =

0
0
0

 .

Regrouping gives

(−1)

1
2
1

+ (1)

−1
1
1

+ (1)

2
1
0

 =

0
0
0

 .

Notice that these three vectors are the columns of the coefficient matrix for the system of
equations in Archetype A [703]. This equality says there is a linear combination of those
columns that equals the vector of all zeros. Give it some thought, but this says that

x1 = −1 x2 = 1 x3 = 1

is a nontrivial solution to the homogeneous system of equations with the coefficient matrix
for the original system in Archetype A [703]. In particular, this demonstrates that this
coefficient matrix is singular. �

There’s a lot going on in the last two examples. Come back to them in a while and
make some connections with the intervening material. For now, we will summarize and
explain some of this behavior with a theorem.

Theorem SLSLC
Solutions to Linear Systems are Linear Combinations

Denote the columns of the m× n matrix A as the vectors A1, A2, A3, . . . , An. Then
x is a solution to the linear system of equations LS(A, b) if and only if

[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An = b

�
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Proof The proof of this theorem is as much about a change in notation as it is about
making logical deductions. Write the system of equations LS(A, b) as

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm.

Notice then that the entry of the coefficient matrix A in row i and column j has two
names: aij as the coefficient of xj in equation i of the system and [Aj]i as the i-th entry
of the column vector in column j of the coefficient matrix A. Likewise, entry i of b has
two names: bi from the linear system and [b]i as an entry of a vector. Our theorem is an
equivalence (Technique E [686]) so we need to prove both “directions.”

(⇐) Suppose we have the vector equality between b and the linear combination of
the columns of A. Then for 1 ≤ i ≤ n,

bi = [b]i Notation

= [[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An]
i

Hypothesis

= [[x]1 A1]i + [[x]2 A2]i + [[x]3 A3]i + · · ·+ [[x]n An]
i

Definition CVA [93]

= [x]1 [A1]i + [x]2 [A2]i + [x]3 [A3]i + · · ·+ [x]n [An]i Definition CVSM [93]

= [x]1 ai1 + [x]2 ai2 + [x]3 ai3 + · · ·+ [x]n ain Notation

= ai1 [x]1 + ai2 [x]2 + ai3 [x]3 + · · ·+ ain [x]n Commutativity in C

This says that the entries of x form a solution to equation i of LS(A, b) for all 1 ≤ i ≤ n,
i.e. x is a solution to LS(A, b).

(⇒) Suppose now that x is a solution to the linear system LS(A, b). Then for all
1 ≤ i ≤ n,

[b]i = bi Notation

= ai1 [x]1 + ai2 [x]2 + ai3 [x]3 + · · ·+ ain [x]n Hypothesis

= [x]1 ai1 + [x]2 ai2 + [x]3 ai3 + · · ·+ [x]n ain Commutativity in C
= [x]1 [A1]i + [x]2 [A2]i + [x]3 [A3]i + · · ·+ [x]n [An]i Notation

= [[x]1 A1]i + [[x]2 A2]i + [[x]3 A3]i + · · ·+ [[x]n An]
i

Definition CVSM [93]

= [[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An]
i

Definition CVA [93]

Sinc the components of b and the linear combination of the columns of A agree for all
1 ≤ i ≤ n, Definition CVE [92] tells us that the vectors are equal. �

In other words, this theorem tells us that solutions to systems of equations are linear
combinations of the column vectors of the coefficient matrix (Ai) which yield the constant
vector b. Or said another way, a solution to a system of equations LS(A, b) is an answer
to the question “How can I form the vector b as a linear combination of the columns of
A?” Look through the archetypes that are systems of equations and examine a few of
the advertised solutions. In each case use the solution to form a linear combination of
the columns of the coefficient matrix and verify that the result equals the constant vector
(see Exercise LC.C21 [125]).
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Subsection VFSS
Vector Form of Solution Sets

We have written solutions to systems of equations as column vectors. For example
Archetype B [708] has the solution x1 = −3, x2 = 5, x3 = 2 which we now write as

x =

x1

x2

x3

 =

−3
5
2

 .

Now, we will use column vectors and linear combinations to express all of the solutions
to a linear system of equations in a compact and understandable way. First, here’s two
examples that will motivate our next theorem. This is a valuable technique, almost the
equal of row-reducing a matrix, so be sure you get comfortable with it over the course of
this section.

Example VFSAD
Vector form of solutions for Archetype D

Archetype D [717] is a linear system of 3 equations in 4 variables. Row-reducing the
augmented matrix yields  1 0 3 −2 4

0 1 1 −3 0
0 0 0 0 0


and we see r = 2 nonzero rows. Also, D = {1, 2} so the dependent variables are then x1

and x2. F = {3, 4, 5} so the two free variables are x3 and x4. We will express a generic
solution for the system by two slightly different methods, though both arrive at the same
conclusion.

First, we will decompose (Technique DC [694]) a solution vector. Rearranging each
equation represented in the row-reduced form of the augmented matrix by solving for the
dependent variable in each row yields the vector equality,

x1

x2

x3

x4

 =


4− 3x3 + 2x4

−x3 + 3x4

x3

x4


Now we will use the definitions of column vector addition and scalar multiplication to
express this vector as a linear combination,

=


4
0
0
0

+


−3x3

−x3

x3

0

+


2x4

3x4

0
x4

 Definition CVA [93]

=


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1

 Definition CVSM [93]
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We will develop the same linear combination a bit quicker, using three steps. While the
method above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of
n− r vectors, using the free variables as the scalars.

x =


x1

x2

x3

x4

 =


+ x3


+ x4




Step 2. Use 0’s and 1’s to ensure equality for the entries of the the vectors with indices
in F (corresponding to the free variables).

x =


x1

x2

x3

x4

 =

0
0

+ x3

1
0

+ x4

0
1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables.
Convert this equation into entries of the vectors that ensure equality for each dependent
variable, one at a time.

x1 = 4− 3x3 + 2x4 ⇒ x =


x1

x2

x3

x4

 =


4

0
0

+ x3


−3

1
0

+ x4


2

0
1



x2 = 0− 1x3 + 3x4 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1



This final form of a typical solution is especially pleasing and useful. For example, we
can build solutions quickly by choosing values for our free variables, and then compute
a linear combination. Such as

x3 = 2, x4 = −5 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ (2)


−3
−1
1
0

+ (−5)


2
3
0
1

 =


−12
−17
2
−5


or,

x3 = 1, x4 = 3 ⇒ x =


x1

x2

x3

x4

 =


4
0
0
0

+ (1)


−3
−1
1
0

+ (3)


2
3
0
1

 =


7
8
1
3

 .
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You’ll find the second solution listed in the write-up for Archetype D [717], and you
might check the first solution by substituting it back into the original equations.

While this form is useful for quickly creating solutions, its even better because it tells
us exactly what every solution looks like. We know the solution set is infinite, which is

pretty big, but now we can say that a solution is some multiple of


−3
−1
1
0

 plus a multiple

of


2
3
0
1

 plus the fixed vector


4
0
0
0

. Period. So it only takes us three vectors to describe the

entire infinite solution set, provided we also agree on how to combine the three vectors
into a linear combination. �

This is such an important and fundamental technique, we’ll do another example.

Example VFS
Vector form of solutions
Consider a linear system of m = 5 equations in n = 7 variables, having the augmented

matrix A.

A =


2 1 −1 −2 2 1 5 21
1 1 −3 1 1 1 2 −5
1 2 −8 5 1 1 −6 −15
3 3 −9 3 6 5 2 −24
−2 −1 1 2 1 1 −9 −30


Row-reducing we obtain the matrix

B =


1 0 2 −3 0 0 9 15

0 1 −5 4 0 0 −8 −10

0 0 0 0 1 0 −6 11

0 0 0 0 0 1 7 −21
0 0 0 0 0 0 0 0


and we see r = 4 nonzero rows. Also, D = {1, 2, 5, 6} so the dependent variables are
then x1, x2, x5, and x6. F = {3, 4, 7, 8} so the n − r = 3 free variables are x3, x4 and
x7. We will express a generic solution for the system by two different methods: both a
decomposition and a construction.

First, we will decompose (Technique DC [694]) a solution vector. Rearranging each
equation represented in the row-reduced form of the augmented matrix by solving for the
dependent variable in each row yields the vector equality,

x1

x2

x3

x4

x5

x6

x7


=



15− 2x3 + 3x4 − 9x7

−10 + 5x3 − 4x4 + 8x7

x3

x4

11 + 6x7

−21− 7x7

x7


Version 0.85



Subsection LC.VFSS Vector Form of Solution Sets 111

Now we will use the definitions of column vector addition and scalar multiplication to
decompose this generic solution vector as a linear combination,

=



15
−10
0
0
11
−21
0


+



−2x3

5x3

x3

0
0
0
0


+



3x4

−4x4

0
x4

0
0
0


+



−9x7

8x7

0
0

6x7

−7x7

x7


Definition CVA [93]

=



15
−10
0
0
11
−21
0


+ x3



−2
5
1
0
0
0
0


+ x4



3
−4
0
1
0
0
0


+ x7



−9
8
0
0
6
−7
1


Definition CVSM [93]

We will now develop the same linear combination a bit quicker, using three steps. While
the method above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of
n− r vectors, using the free variables as the scalars.

x =



x1

x2

x3

x4

x5

x6

x7


=




+ x3




+ x4




+ x7




Step 2. Use 0’s and 1’s to ensure equality for the entries of the the vectors with indices
in F (corresponding to the free variables).

x =



x1

x2

x3

x4

x5

x6

x7


=


0
0

0


+ x3


1
0

0


+ x4


0
1

0


+ x7


0
0

1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables.
Convert this equation into entries of the vectors that ensure equality for each dependent
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variable, one at a time.

x1 = 15− 2x3 + 3x4 − 9x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15

0
0

0


+ x3



−2

1
0

0


+ x4



3

0
1

0


+ x7



−9

0
0

1



x2 = −10 + 5x3 − 4x4 + 8x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10
0
0

0


+ x3



−2
5
1
0

0


+ x4



3
−4
0
1

0


+ x7



−9
8
0
0

1



x5 = 11 + 6x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10
0
0
11

0


+ x3



−2
5
1
0
0

0


+ x4



3
−4
0
1
0

0


+ x7



−9
8
0
0
6

1



x6 = −21− 7x7 ⇒ x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10
0
0
11
−21
0


+ x3



−2
5
1
0
0
0
0


+ x4



3
−4
0
1
0
0
0


+ x7



−9
8
0
0
6
−7
1



This final form of a typical solution is especially pleasing and useful. For example, we
can build solutions quickly by choosing values for our free variables, and then compute
a linear combination. For example

x3 = 2, x4 = −4, x7 = 3 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10
0
0
11
−21
0


+ (2)



−2
5
1
0
0
0
0


+ (−4)



3
−4
0
1
0
0
0


+ (3)



−9
8
0
0
6
−7
1


=



−28
40
2
−4
29
−42
3


or perhaps,

x3 = 5, x4 = 2, x7 = 1 ⇒
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x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10
0
0
11
−21
0


+ (5)



−2
5
1
0
0
0
0


+ (2)



3
−4
0
1
0
0
0


+ (1)



−9
8
0
0
6
−7
1


=



2
15
5
2
17
−28
1


or even,

x3 = 0, x4 = 0, x7 = 0 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



15
−10
0
0
11
−21
0


+ (0)



−2
5
1
0
0
0
0


+ (0)



3
−4
0
1
0
0
0


+ (0)



−9
8
0
0
6
−7
1


=



15
−10
0
0
11
−21
0


So we can compactly express all of the solutions to this linear system with just 4 fixed
vectors, provided we agree how to combine them in a linear combinations to create
solution vectors.

Suppose you were told that the vector w below was a solution to this system of
equations. Could you turn the problem around and write w as a linear combination of
the four vectors c, u1, u2, u3? (See Exercise LC.M11 [126].)

w =



100
−75
7
9
−37
35
−8


c =



15
−10
0
0
11
−21
0


u1 =



−2
5
1
0
0
0
0


u2 =



3
−4
0
1
0
0
0


u3 =



−9
8
0
0
6
−7
1


�

Did you think a few weeks ago that you could so quickly and easily list all the solutions
to a linear system of 5 equations in 7 variables?

We’ll now formalize the last two (important) examples as a theorem.

Theorem VFSLS
Vector Form of Solutions to Linear Systems

Suppose that [A | b] is the augmented matrix for a consistent linear system LS(A, b)
of m equations in n variables. Let B be a row-equivalent m× (n + 1) matrix in reduced
row-echelon form. Suppose that B has r nonzero rows, columns without leading 1’s with
indices F = {f1, f2, f3, . . . , fn−r, n + 1}, and columns with leading 1’s (pivot columns)
having indices D = {d1, d2, d3, . . . , dr}. Define vectors c, uj, 1 ≤ j ≤ n− r of size n by

[c]i =

{
0 if i ∈ F

[B]k,n+1 if i ∈ D, i = dk
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[uj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj
if i ∈ D, i = dk

.

Then the set of solutions to the system of equations LS(A, b) is

S =
{
c + xf1u1 + xf2u2 + xf3u3 + · · ·+ xfn−run−r

∣∣ xf1 , xf2 , xf3 , . . . , xfn−r ∈ C
}

�

Proof We are being asked to prove that the solution set has a particular form. First,
LS(A, b) is equivalent to the linear system of equations that has the matrix B as its
augmented matrix (Theorem REMES [32]), so we need only show that S is the solution
set for the system with B as its augmented matrix.

We begin by showing that every element of S is a solution to the system. Let
xf1 = α1, xf2 = α2, xf3 = α3, . . ., xfn−r = αn−r be one choice of the values of
xf1 , xf2 , xf3 , . . . , xfn−r . So a proposed solution is

x = c + αf1u1 + αf2u2 + αf3u3 + · · ·+ αfn−run−r

So we evaluate equation ` of the system represented by B with the solution vector x,

β = [B]`1 [x]1 + [B]`2 [x]2 + [B]`3 [x]3 + · · ·+ [B]`n [x]n

When r + 1 ≤ ` ≤ m, row ` of the matrix B is a zero row, so the equation represented
by that row is always true, no matter which solution vector we propose. So assume
1 ≤ ` ≤ r. Then [B]`di

= 0 for all 1 ≤ i ≤ r, except that [B]`d`
= 1, so β simplifies to

β = [x]d`
+ [B]`f1

[x]f1
+ [B]`f2

[x]f2
+ [B]`f3

[x]f3
+ · · ·+ [B]`fn−r

[x]fn−r

Notice that for 1 ≤ i ≤ n− r

[x]fi
= [c]fi

+ αf1 [u1]fi
+ αf2 [u2]fi

+ αf3 [u3]fi
+ · · ·+ αfi

[ui]fi
+ · · ·+ αfn−r [un−r]fi

= 0 + αf1(0) + αf2(0) + αf3(0) + · · ·+ αfi
(1) + · · ·+ αfn−r(0)

= αfi

So β simplifies further to

β = [x]d`
+ [B]`f1

αf1 + [B]`f2
αf2 + [B]`f3

αf3 + · · ·+ [B]`fn−r
αfn−r

Now examine the [x]d`
term of β,

[x]d`
= [c]d`

+ αf1 [u1]d`
+ αf2 [u2]d`

+ αf3 [u3]d`
+ · · ·+ αfn−r [un−r]d`

= [B]`,n+1 + αf1(− [B]`,f1
) + αf2(− [B]`,f2

) + αf3(− [B]`,f3
) + · · ·+ αfn−r(− [B]`,fn−r

)

Replacing this term into the expression for β, we obtain

β = [x]d`
+ [B]`f1

αf1 + [B]`f2
αf2 + [B]`f3

αf3 + · · ·+ [B]`fn−r
αfn−r

= [B]`,n+1 + αf1(− [B]`,f1
) + αf2(− [B]`,f2

) + αf3(− [B]`,f3
) + · · ·+ αfn−r(− [B]`,fn−r

)+

[B]`f1
αf1 + [B]`f2

αf2 + [B]`f3
αf3 + · · ·+ [B]`fn−r

αfn−r
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= [B]`,n+1

So β began as the left-hand side of equation ` from the system represented by B and we
now know it equals [B]`,n+1, the constant term for equation `. So this arbitrarily chosen
vector from S makes every equation true, and therefore is a solution to the system.

For the second half of the proof, assume that x1 = α1, x2 = α2, x3 = α3, . . . , xn = αn

are the components of a solution vector for the system having B as its augmented matrix,
and show that this solution vector is an element of the set S. Begin with the observation
that this solution makes equation ` of the system true for 1 ≤ ` ≤ m,

[B]`,1 α1 + [B]`,2 α2 + [B]`,3 α3 + · · ·+ [B]`,n αn = [B]`,n+1

Since B is in reduced row-echelon form, when ` > r we know that all the entries of B
in row ` are all zero and this equation is true. For ` ≤ r, we can further exploit the
knowledge of the structure of B, specifically recalling that B has no leading 1’s in the
final column since the system is consistent(Theorem RCLS [54]). Equation ` then reduces
to

(1)αd`
+ [B]`,f1

αf1 + [B]`,f2
αf2 + [B]`,f3

αf3 + · · ·+ [B]`,fn−r
αfn−r = [B]`,n+1

Rearranging, this becomes,

αd`
= [B]`,n+1 − [B]`,f1

αf1 − [B]`,f2
αf2 − [B]`,f3

αf3 − · · · − [B]`,fn−r
αfn−r

= [c]` + αf1 [u1]` + αf2 [u2]` + αf3 [u3]` + · · ·+ αfn−r [un−r]`

=
[
c + αf1u1 + αf2u2 + αf3u3 + · · ·+ αfn−run−r

]
`

This tells us that the components of the solution vector corresponding to dependent
variables (indices in D), are of the same form as stated for membership in the set S. We
still need to check the components that correspond to the free variables (indices in F ).
To this end, suppose i ∈ F and i = fj. Then

αi = 1αfj

= 0 + 0αf1 + 0αf2 + 0αf3 + · · ·+ 0αfj−1
+ 1αfj

+ 0αfj+1
+ · · ·+ 0αfn−r

= [c]i + αf1 [u1]i + αf2 [u2]i + αf2 [u3]i + · · ·+ αfn−r [un−r]i

=
[
c + αf1u1 + αf2u2 + · · ·+ αfn−run−r

]
i

So our solution vector is also of the right form in the remaining slots, and hence qualifies
for membership in the set S. �

Theorem VFSLS [113] formalizes what happened in the three steps of Example VF-
SAD [108]. The theorem will be useful in proving other theorems, and it it is useful since
it tells us an exact procedure for simply describing an infinite solution set. We could
program a computer to implement it, once we have the augmented matrix row-reduced
and have checked that the system is consistent. By Knuth’s definition, this completes
our conversion of linear equation solving from art into science. Notice that it even applies
(but is overkill) in the case of a unique solution. However, as a practical matter, I pre-
fer the three-step process of Example VFSAD [108] when I need to describe an infinite
solution set. So let’s practice some more, but with a bigger example.
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Example VFSAI
Vector form of solutions for Archetype I
Archetype I [739] is a linear system of m = 4 equations in n = 7 variables. Row-reducing

the augmented matrix yields
1 4 0 0 2 1 −3 4

0 0 1 0 1 −3 5 2

0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0


and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 3, 4} so
the r dependent variables are x1, x3, x4. The columns without leading 1’s are F =
{2, 5, 6, 7, 8}, so the n− r = 4 free variables are x2, x5, x6, x7.

Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear combination
of n− r = 4 vectors (u1, u2, u3, u4), using the free variables as the scalars.

x =



x1

x2

x3

x4

x5

x6

x7


=




+ x2




+ x5




+ x6




+ x7




Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corresponding
entry of the the vectors. Take note of the pattern of 0’s and 1’s at this stage, because this
is the best look you’ll have at it. We’ll state an important theorem in the next section
and the proof will essentially rely on this observation.

x =



x1

x2

x3

x4

x5

x6

x7


=


0

0
0
0


+ x2


1

0
0
0


+ x5


0

1
0
0


+ x6


0

0
1
0


+ x7


0

0
0
1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables.
Convert this equation into entries of the vectors that ensure equality for each dependent
variable, one at a time.

x1 = 4− 4x2 − 2x5 − 1x6 + 3x7 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



4
0

0
0
0


+ x2



−4
1

0
0
0


+ x5



−2
0

1
0
0


+ x6



−1
0

0
1
0


+ x7



3
0

0
0
1
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x3 = 2 + 0x2 − x5 + 3x6 − 5x7 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



4
0
2

0
0
0


+ x2



−4
1
0

0
0
0


+ x5



−2
0
−1

1
0
0


+ x6



−1
0
3

0
1
0


+ x7



3
0
−5

0
0
1


x4 = 1 + 0x2 − 2x5 + 6x6 − 6x7 ⇒

x =



x1

x2

x3

x4

x5

x6

x7


=



4
0
2
1
0
0
0


+ x2



−4
1
0
0
0
0
0


+ x5



−2
0
−1
−2
1
0
0


+ x6



−1
0
3
6
0
1
0


+ x7



3
0
−5
−6
0
0
1



We can now use this final expression to quickly build solutions to the system. You might
try to recreate each of the solutions listed in the write-up for Archetype I [739]. (Hint:
look at the values of the free variables in each solution, and notice that the vector c has
0’s in these locations.)

Even better, we have a description of the infinite solution set, based on just 5 vectors,
which we combine in linear combinations to produce solutions.

Whenever we discuss Archetype I [739] you know that’s your cue to go work through
Archetype J [744] by yourself. Remember to take note of the 0/1 pattern at the conclusion
of Step 2. Have fun — we won’t go anywhere while you’re away. �

This technique is so important, that we’ll do one more example. However, an impor-
tant distinction will be that this system is homogeneous.

Example VFSAL
Vector form of solutions for Archetype L

Archetype L [753] is presented simply as the 5× 5 matrix

L =


−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6


We’ll interpret it here as the coefficient matrix of a homogeneous system and reference
this matrix as L. So we are solving the homogeneous system LS(L, 0) having m = 5
equations in n = 5 variables. If we built the augmented matrix, we would add a sixth
column to L containing all zeros. As we did row operations, this sixth column would
remain all zeros. So instead we will row-reduce the coefficient matrix, and mentally
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remember the missing sixth column of zeros. This row-reduced matrix is
1 0 0 1 −2

0 1 0 −2 2

0 0 1 2 −1
0 0 0 0 0
0 0 0 0 0


and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 2, 3} so the r
dependent variables are x1, x2, x3. The columns without leading 1’s are F = {4, 5}, so
the n− r = 2 free variables are x4, x5. Notice that if we had included the all-zero vector
of constants to form the augmented matrix for the system, then the index 6 would have
appeared in the set F , and subsequently would have been ignored when listing the free
variables.

Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear combination
of n− r = 2 vectors (u1, u2), using the free variables as the scalars.

x =


x1

x2

x3

x4

x5

 =


+ x4


+ x5




Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corresponding
entry of the the vectors. Take note of the pattern of 0’s and 1’s at this stage, even if it
is not as illuminating as in other examples.

x =


x1

x2

x3

x4

x5

 =

0
0

+ x4

1
0

+ x5

0
1


Step 3. For each dependent variable, use the augmented matrix to formulate an equation
expressing the dependent variable as a constant plus multiples of the free variables. Don’t
forget about the “missing” sixth column being full of zeros. Convert this equation into
entries of the vectors that ensure equality for each dependent variable, one at a time.

x1 = 0− 1x4 + 2x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0

0
0

+ x4


−1

1
0

+ x5


2

0
1



x2 = 0 + 2x4 − 2x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0
0

0
0

+ x4


−1
2

1
0

+ x5


2
−2

0
1
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x3 = 0− 2x4 + 1x5 ⇒ x =


x1

x2

x3

x4

x5

 =


0
0
0
0
0

+ x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1


The vector c will always have 0’s in the entries corresponding to free variables. However,
since we are solving a homogeneous system, the row-reduced augmented matrix has zeros
in column n + 1 = 6, and hence all the entries of c are zero. So we can write

x =


x1

x2

x3

x4

x5

 = 0 + x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1

 = x4


−1
2
−2
1
0

+ x5


2
−2
1
0
1


It will always happen that the solutions to a homogeneous system has c = 0 (even in the
case of a unique solution?). So our expression for the solutions is a bit more pleasing.
In this example it says that the solutions are all possible linear combinations of the two

vectors u1 =


−1
2
−2
1
0

 and u2 =


2
−2
1
0
1

, with no mention of any fixed vector entering into

the linear combination.
This observation will motivate our next section and the main definition of that section,

and after that we will conclude the section by formalizing this situation. �

Subsection PSHS
Particular Solutions, Homogeneous Solutions

The next theorem tells us that in order to find all of the solutions to a linear system of
equations, it is sufficient to find just one solution, and then find all of the solutions to the
corresponding homogeneous system. This explains part of our interest in the null space,
the set of all solutions to a homogeneous system.

Theorem PSPHS
Particular Solution Plus Homogeneous Solutions

Suppose that w is one solution to the linear system of equations LS(A, b). Then y is
a solution to LS(A, b) if and only if y = w + z for some vector z ∈ N (A). �

Proof Let A1, A2, A3, . . . , An be the columns of the coefficient matrix A.
(⇐) Suppose y = w + z and z ∈ N (A). Then

b = [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An Theorem SLSLC [106]

= [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An + 0

= [w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An

+ [z]1 A1 + [z]2 A2 + [z]3 A3 + · · ·+ [z]n An Theorem SLSLC [106]
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= ([w]1 + [z]1)A1 + ([w]2 + [z]2)A2 + · · ·+ ([w]n + [z]n)An Theorem VSPCV [96]

= [w + z]1 A1 + [w + z]2 A2 + [w + z]3 A3 + · · ·+ [w + z]n An Definition CVA [93]

= [y]1 A1 + [y]2 A2 + [y]3 A3 + · · ·+ [y]n An Definition of y

Applying Theorem SLSLC [106] we see that y is a solution to LS(A, b).
(⇒) Suppose y is a solution to LS(A, b). Then

0 = b− b

= [y]1 A1 + [y]2 A2 + [y]3 A3 + · · ·+ [y]n An

− ([w]1 A1 + [w]2 A2 + [w]3 A3 + · · ·+ [w]n An) Theorem SLSLC [106]

= ([y]1 − [w]1)A1 + ([y]2 − [w]2)A2 + · · ·+ ([y]n − [w]n)An Theorem VSPCV [96]

= [y −w]1 A1 + [y −w]2 A2 + [y −w]3 A3 + · · ·+ [y −w]n An Definition CVA [93]

By Theorem SLSLC [106] we see that y − w is a solution to the homogeneous system
LS(A, 0) and by Definition NSM [71], y − w ∈ N (A). In other words, y − w = z for
some vector z ∈ N (A). Rewritten, this is y = w + z, as desired. �

After proving Theorem NSMUS [83] we commented (insufficiently) on the negation
of one half of the theorem. Nonsingular coefficient matrices lead to unique solutions for
every choice of the vector of constants. What does this say about singular matrices?
A singular matrix A has a nontrivial null space (Theorem NSTNS [82]). For a given
vector of constants, b, the system LS(A, b) could be inconsistent, meaning there are no
solutions. But if there is at least one solution (w), then Theorem PSPHS [119] tells us
there will be infinitely many solutions because of the role of the infinite null space for a
singular matrix. So a system of equations with a singular coefficient matrix never has a
unique solution. Either there are no solutions, or infinitely many solutions, depending
on the choice of the vector of constants (b).

Example PSNS
Particular solutions, homogeneous solutions, Archetype D
Archetype D [717] is a consistent system of equations with a nontrivial null space. Let

A denote the coefficient matrix of this system. The write-up for this system begins with
three solutions,

y1 =


0
1
2
1

 y2 =


4
0
0
0

 y3 =


7
8
1
3


We will choose to have y1 play the role of w in the statement of Theorem PSPHS [119],
any one of the three vectors listed here (or others) could have been chosen. To illustrate
the theorem, we should be able to write each of these three solutions as the vector w
plus a solution to the corresponding homogeneous system of equations. Since 0 is always
a solution to a homogeneous system we can easily write

y1 = w = w + 0.

The vectors y2 and y3 will require a bit more effort. Solutions to the homogeneous system
LS(A, 0) are exactly the elements of the null space of the coefficient matrix, which by
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an application of Theorem VFSLS [113] is

N (A) =

x3


−3
−1
1
0

+ x4


2
3
0
1


∣∣∣∣∣∣∣∣ x3, x4 ∈ C


Then

y2 =


4
0
0
0

 =


0
1
2
1

+


4
−1
−2
−1

 =


0
1
2
1

+

(−2)


−3
−1
1
0

+ (−1)


2
3
0
1


 = w + z2

where

z2 =


4
−1
−2
−1

 = (−2)


−3
−1
1
0

+ (−1)


2
3
0
1


is obviously a solution of the homogeneous system since it is written as a linear combi-
nation of the vectors describing the null space of the coefficient matrix (or as a check,
you could just evaluate the equations in the homogeneous system with z2).

Again

y3 =


7
8
1
3

 =


0
1
2
1

+


7
7
−1
2

 =


0
1
2
1

+

(−1)


−3
−1
1
0

+ 2


2
3
0
1


 = w + z3

where

z3 =


7
7
−1
2

 = (−1)


−3
−1
1
0

+ 2


2
3
0
1


is obviously a solution of the homogeneous system since it is written as a linear combi-
nation of the vectors describing the null space of the coefficient matrix (or as a check,
you could just evaluate the equations in the homogeneous system with z2).

Here’s another view of this theorem, in the context of this example. Grab two new
solutions of the original system of equations, say

y4 =


11
0
−3
−1

 y5 =


−4
2
4
2


and form their difference,

u =


11
0
−3
−1

−

−4
2
4
2

 =


15
−2
−7
−3

 .
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It is no accident that u is a solution to the homogeneous system (check this!). In other
words, the difference between any two solutions to a linear system of equations is an
element of the null space of the coefficient matrix. This is an equivalent way to state
Theorem PSPHS [119]. (See Exercise MM.T50 [235]). �

The ideas of this subsection will be appear again in Chapter LT [507] when we discuss
pre-images of linear transformations (Definition PI [519]).

Subsection URREF
Uniqueness of Reduced Row-Echelon Form

We are now in a position to establish that the reduced row-echelon form of a matrix is
unique. Going forward, we will emphasize the point-of-view that a matrix is a collection
of columns. But there are two occasions when we need to work carefully with the rows
of a matrix. This is the first such occasion. We could define something called a row
vector that would equal a given row of a matrix, and might be written as a horizontal
list. Then we could define vector equality, the basic operations of vector addition and
scalar multiplication, followed by a definition of a linear combination of row vectors. We
will not incur the overhead of stating all these definitions, but will instead convert the
rows of a matrix to column vectors and use our definitions that are already in place. This
was our reason for delaying this proof until now. Remind yourself as you work through
this proof that it only relies only on the definition of equivalent matrices, reduced row-
echelon form and linear combinations. So in particular, we are not guilty of circular
reasoning. Should we have defined vector operations and linear combinations just prior
to discussing reduced row-echelon form, then the following proof of uniqueness could have
been presented at that time. OK, here we go.

Theorem RREFU
Reduced Row-Echelon Form is Unique

Suppose that A is an m × n matrix and that B and C are m × n matrices that are
row-equivalent to A and in reduced row-echelon form. Then B = C. �

Proof Denote the pivot columns of B as D = {d1, d2, d3, . . . , dr} and the pivot columns
of C as D′ = {d′1, d′2, d′3, . . . , d′r′} (Notation RREFA [51]). We begin by showing that
D = D′.

For both B and C, we can take the elements of a row of the matrix and use them to
construct a column vector. We will denote these by bi and ci, respectively, 1 ≤ i ≤ m.
Since B and C are both row-equivalent to A, there is a sequence of row operations that
will convert B to C, and vice-versa, since row operations are reversible. If we can convert
B into C via a sequence of row operations, then any row of C expressed as a column
vector, say ck, is a linear combination of the column vectors derived from the rows of
B, {b1, b2, b3, . . . , bm}. Similarly, any row of B is a linear combination of the set of
rows of C. Our principal device in this proof is to carefully analyze individual entries of
vector equalities between a single row of either B or C and a linear combination of the
rows of the other matrix.

Let’s first show that d1 = d′1. Suppose that d1 < d′1. We can write the first row of
B as a linear combination of the rows of C, that is, there are scalars a1, a2, a3, . . . , am
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such that
b1 = a1c1 + a2c2 + a3c3 + · · ·+ amcm

Consider the entry in location d1 on both sides of this equality. Since B is in reduced
row-echelon form (Definition RREF [34]) we find a one in b1 on the left. Since d1 < d′1,
and C is in reduced row-echelon form (Definition RREF [34]) each vector ci has a zero in
location d1, and therefore the linear combination on the right also has a zero in location
d1. This is a contradiction, so we know that d1 ≥ d′1. By an entirely similar argument,
we could conclude that d1 ≤ d′1. This means that d1 = d′1.

Suppose that we have determined that d1 = d′1, d2 = d′2, d3 = d′3, . . . , dk = d′k. Let’s
now show that dk+1 = d′k+1. To achieve a contradiction, suppose that dk+1 < d′k+1. Row
k+1 of B is a linear combination of the rows of C, so there are scalars a1, a2, a3, . . . , am

such that
bk+1 = a1c1 + a2c2 + a3c3 + · · ·+ amcm

Since B is in reduced row-echelon form (Definition RREF [34]), the entries of bk+1 in
locations d1, d2, d3, . . . , dk are all zero. Since C is in reduced row-echelon form (Defini-
tion RREF [34]), location di of ci is one for each 1 ≤ i ≤ k. The equality of these vectors
in locations d1, d2, d3, . . . , dk then implies that a1 = 0, a2 = 0, a3 = 0, . . . , ak = 0.

Now consider location dk+1 in this vector equality. The vector bk+1 on the left is one
in this location since B is in reduced row-echelon form (Definition RREF [34]). Vectors
c1, c2, c3, . . . , ck, are multiplied by zero scalars in the linear combination on the right.
The remaining vectors, ck+1, ck+2, ck+3, . . . , cm each has a zero in location dk+1 since
dk+1 < d′k+1 and C is in reduced row-echelon form (Definition RREF [34]). So the
right hand side of the vector equality is zero in location dk+1, a contradiction. Thus
dk+1 ≥ d′k+1. By an entirely similar argument, we could conclude that dk+1 ≤ d′k+1, and
therefore dk+1 = d′k+1.

Now we establish that r = r′. Suppose that r < r′. By the arguments above we can
show that d1 = d′1, d2 = d′2, d3 = d′3, . . . , dr = d′r. Row r′ of C is a linear combination of
the r non-zero rows of B, so there are scalars a1, a2, a3, . . . , ar so that

cr′ = a1b1 + a2b2 + a3b3 + · · ·+ arbr

Locations d1, d2, d3, . . . , dr of cr′ are all zero since r < r′ and C is in reduced row-
echelon form (Definition RREF [34]). For a given index i, 1 ≤ i ≤ r, the vectors
b1, b2, b3, . . . , br have zeros in location di, except that the vector bi is one in location
di since B is in reduced row-echelon form (Definition RREF [34]). This consideration of
location di implies that ai = 0, 1 ≤ i ≤ r. With all the scalars in the linear combination
equal to zero, we conclude that cr′ = 0, contradicting the existence of a leading 1 in cr′ .
So r ≥ r′. By a similar argument, we conclude that r ≤ r′ and therefore r = r′. Thus
D = D′.

To finally show that B = C, we will show that the rows of the two matrices are equal.
Row k of C, ck, is a linear combination of the r non-zero rows of B, so there are scalars
a1, a2, a3, . . . , ar such that

ck = a1b1 + a2b2 + a3b3 + · · ·+ arbr

Because C is in reduced row-echelon form (Definition RREF [34]), location di of ck is
zero for 1 ≤ i ≤ r, except in location dk where the entry is one. In the linear combination
on the right of the vector equality, the vectors b1, b2, b3, . . . , br have zeros in location
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di, except that bk has a one in location di, since B is in reduced row-echelon form
(Definition RREF [34]). This implies that a1 = 0, a2 = 0, . . . , ak−1 = 0, ak+1 = 0,
ak+2 = 0, . . . , ar = 0 and ak = 1. Then the vector equality reduces to simply ck = bk.
Since k was arbitrary, B and C have equal rows and so are equal matrices. �

Subsection READ
Reading Questions

1. Earlier, a reading question asked you to solve the system of equations

2x1 + 3x2 − x3 = 0

x1 + 2x2 + x3 = 3

x1 + 3x2 + 3x3 = 7

Use a linear combination to rewrite this system of equations as a vector equality.

2. Find a linear combination of the vectors

S =


 1

3
−1

 ,

2
0
4

 ,

−1
3
−5


that equals the vector

 1
−9
11

.

3. The matrix below is the augmented matrix of a system of equations, row-reduced
to reduced row-echelon form. Write the vector form of the solutions to the system. 1 3 0 6 0 9

0 0 1 −2 0 −8

0 0 0 0 1 3
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Subsection EXC
Exercises

C21 Consider each archetype that is a system of equations. For individual solutions
listed (both for the original system and the corresponding homogeneous system) express
the vector of constants as a linear combination of the columns of the coefficient matrix,
as guaranteed by Theorem SLSLC [106]. Verify this equality by computing the linear
combination. For systems with no solutions, recognize that it is then impossible to write
the vector of constants as a linear combination of the columns of the coefficient matrix.
Note too, for homogeneous systems, that the solutions give rise to linear combinations
that equal the zero vector.
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]
Archetype E [721]
Archetype F [725]
Archetype G [730]
Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer Solution [127]

C22 Consider each archetype that is a system of equations. Write elements of the
solution set in vector form, as guaranteed by Theorem VFSLS [113].
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]
Archetype E [721]
Archetype F [725]
Archetype G [730]
Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer Solution [127]

C40 Find the vector form of the solutions to the system of equations below.

2x1 − 4x2 + 3x3 + x5 = 6

x1 − 2x2 − 2x3 + 14x4 − 4x5 = 15

x1 − 2x2 + x3 + 2x4 + x5 = −1

−2x1 + 4x2 − 12x4 + x5 = −7

Contributed by Robert Beezer Solution [127]
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C41 Find the vector form of the solutions to the system of equations below.

−2x1 − 1x2 − 8x3 + 8x4 + 4x5 − 9x6 − 1x7 − 1x8 − 18x9 = 3

3x1 − 2x2 + 5x3 + 2x4 − 2x5 − 5x6 + 1x7 + 2x8 + 15x9 = 10

4x1 − 2x2 + 8x3 + 2x5 − 14x6 − 2x8 + 2x9 = 36

−1x1 + 2x2 + 1x3 − 6x4 + 7x6 − 1x7 − 3x9 = −8

3x1 + 2x2 + 13x3 − 14x4 − 1x5 + 5x6 − 1x8 + 12x9 = 15

−2x1 + 2x2 − 2x3 − 4x4 + 1x5 + 6x6 − 2x7 − 2x8 − 15x9 = −7

Contributed by Robert Beezer Solution [127]

M10 Example TLC [103] asks if the vector

w =


13
15
5
−17
2
25


can be written as a linear combination of the four vectors

u1 =


2
4
−3
1
2
9

 u2 =


6
3
0
−2
1
4

 u3 =


−5
2
1
1
−3
0

 u4 =


3
2
−5
7
1
3


Can it? Can any vector in C6 be written as a linear combination of the four vectors
u1, u2, u3, u4?
Contributed by Robert Beezer Solution [128]

M11 At the end of Example VFS [110], the vector w is claimed to be a solution to
the linear system under discussion. Verify that w really is a solution. Then determine
the four scalars that express w as a linear combination of c, u1, u2, u3.
Contributed by Robert Beezer Solution [128]

T30 Suppose that x is a solution to LS(A, b) and that z is a solution to the homoge-
neous system LS(A, 0). Prove that x + z is a solution to LS(A, b).
Contributed by Robert Beezer Solution [128]
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer Statement [125]
Solutions for Archetype A [703] and Archetype B [708] are described carefully in Exam-
ple AALC [105] and Example ABLC [104].

C22 Contributed by Robert Beezer Statement [125]
Solutions for Archetype D [717] and Archetype I [739] are described carefully in Exam-
ple VFSAD [108] and Example VFSAI [116]. The technique described in these examples
is probably more useful than carefully deciphering the notation of Theorem VFSLS [113].
The solution for each archetype is contained in its description. So now you can check-off
the box for that item.

C40 Contributed by Robert Beezer Statement [125]
Row-reduce the augmented matrix representing this system, to find

1 −2 0 6 0 1

0 0 1 −4 0 3

0 0 0 0 1 −5
0 0 0 0 0 0


The system is consistent (no leading one in column 6, Theorem RCLS [54]). x2 and x4

are the free variables. Now apply Theorem VFSLS [113] directly, or follow the three-
step process of Example VFS [110], Example VFSAD [108], Example VFSAI [116], or
Example VFSAL [117] to obtain

x1

x2

x3

x4

x5

 =


1
0
3
0
−5

+ x2


2
1
0
0
0

+ x4


−6
0
4
1
0


C41 Contributed by Robert Beezer Statement [126]
Row-reduce the augmented matrix representing this system, to find

1 0 3 −2 0 −1 0 0 3 6

0 1 2 −4 0 3 0 0 2 −1

0 0 0 0 1 −2 0 0 −1 3

0 0 0 0 0 0 1 0 4 0

0 0 0 0 0 0 0 1 2 −2
0 0 0 0 0 0 0 0 0 0


The system is consistent (no leading one in column 10, Theorem RCLS [54]). F =
{3, 4, 6, 9, 10}, so the free variables are x3, x4, x6 and x9. Now apply Theorem VF-
SLS [113] directly, or follow the three-step process of Example VFS [110], Example VF-
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SAD [108], Example VFSAI [116], or Example VFSAL [117] to obtain the solution set

S =





6
−1
0
0
3
0
0
−2
0


+ x3



−3
−2
1
0
0
0
0
0
0


+ x4



2
4
0
1
0
0
0
0
0


+ x6



1
−3
0
0
2
1
0
0
0


+ x9



−3
−2
0
0
1
0
−4
−2
1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x3, x4, x6, x9 ∈ C


M10 Contributed by Robert Beezer Statement [126]
No, it is not possible to create w as a linear combination of the four vectors u1, u2, u3, u4.
By creating the desired linear combination with unknowns as scalars, Theorem SLSLC [106]
provides a system of equations that has no solution. This one computation is enough to
show us that it is not possible to create all the vectors of C6 through linear combinations
of the four vectors u1, u2, u3, u4.

M11 Contributed by Robert Beezer Statement [126]
The coefficient of c is 1. The coefficients of u1, u2, u3 lie in the third, fourth and seventh
entries of w. Can you see why? (Hint: F = {3, 4, 7, 8}, so the free variables are x3, x4

and x7.)

T30 Contributed by Robert Beezer Statement [126]
Write the columns of A as A1, A2, A3, . . . , An. Then

b = [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An Theorem SLSLC [106]

= [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An + 0 Property ZC [96]

= [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An+

[z]1 A1 + [z]2 A2 + [z]3 A3 + · · ·+ [z]n An Theorem SLSLC [106]

= ([x]1 + [z]1)A1 + ([x]2 + [z]2)A2 + · · ·+ ([x]n + [z]n)An Theorem VSPCV [96]

= [x + z]1 A1 + [x + z]2 A2 + · · ·+ [x + z]n An Definition CVA [93]

This equation then allows us to employ Theorem SLSLC [106] and conclude that x + z
is a solution to LS(A, b).
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Section SS

Spanning Sets

In this section we will describe a compact way to indicate the elements of an infinite
set of vectors, making use of linear combinations. This will give us a convenient way to
describe the elements of a set of solutions to a linear system, or the elements of the null
space of a matrix, or many other sets of vectors.

Subsection SSV
Span of a Set of Vectors

In Example VFSAL [117] we saw the solution set of a homogeneous system described as
all possible linear combinations of two particular vectors. This happens to be a useful
way to construct or describe infinite sets of vectors, so we encapsulate this idea in a
definition.

Definition SSCV
Span of a Set of Column Vectors
Given a set of vectors S = {u1, u2, u3, . . . , up}, their span, 〈S〉, is the set of all possible

linear combinations of u1, u2, u3, . . . , up. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αpup | αi ∈ C, 1 ≤ i ≤ p}

=

{
p∑

i=1

αiui

∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ p

}

(This definition contains Notation SSV.) 4
The span is just a set of vectors, though in all but one situation it is an infinite

set. (Just when is it not infinite?) So we start with a finite collection of vectors S (t
of them to be precise), and use this finite set to describe an infinite set of vectors, 〈S〉.
Confusing the finite set S with the infinite set 〈S〉 is one of the most pervasive problems
in understanding introductory linear algebra. We will see this construction repeatedly, so
let’s work through some examples to get comfortable with it. The most obvious question
about a set is if a particular item of the correct type is in the set, or not.

Example ABS
A basic span

Consider the set of 5 vectors, S, from C4

S =




1
1
3
1

 ,


2
1
2
−1

 ,


7
3
5
−5

 ,


1
1
−1
2

 ,


−1
0
9
0




and consider the infinite set of vectors 〈S〉 formed from all possible linear combinations
of the elements of S. Here are four vectors we definitely know are elements of 〈S〉, since
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we will construct them in accordance with Definition SSCV [129],

w = (2)


1
1
3
1

+ (1)


2
1
2
−1

+ (−1)


7
3
5
−5

+ (2)


1
1
−1
2

+ (3)


−1
0
9
0

 =


−4
2
28
10



x = (5)


1
1
3
1

+ (−6)


2
1
2
−1

+ (−3)


7
3
5
−5

+ (4)


1
1
−1
2

+ (2)


−1
0
9
0

 =


−26
−6
2
34



y = (1)


1
1
3
1

+ (0)


2
1
2
−1

+ (1)


7
3
5
−5

+ (0)


1
1
−1
2

+ (1)


−1
0
9
0

 =


7
4
17
−4



z = (0)


1
1
3
1

+ (0)


2
1
2
−1

+ (0)


7
3
5
−5

+ (0)


1
1
−1
2

+ (0)


−1
0
9
0

 =


0
0
0
0


The purpose of a set is to collect objects with some common property, and to exclude
objects without that property. So the most fundamental question about a set is if a given
object is an element of the set or not. Let’s learn more about 〈S〉 by investigating which
vectors are an element of the set, and which are not.

First, is u =


−15
−6
19
5

 an element of 〈S〉? We are asking if there are scalars α1, α2, α3, α4, α5

such that

α1


1
1
3
1

+ α2


2
1
2
−1

+ α3


7
3
5
−5

+ α4


1
1
−1
2

+ α5


−1
0
9
0

 = u =


−15
−6
19
5


Applying Theorem SLSLC [106] we recognize the search for these scalars as a solution
to a linear system of equations with augmented matrix

1 2 7 1 −1 −15
1 1 3 1 0 −6
3 2 5 −1 9 19
1 −1 −5 2 0 5


which row-reduces to 

1 0 −1 0 3 10
0 1 4 0 −1 −9
0 0 0 1 −2 −7
0 0 0 0 0 0


At this point, we see that the system is consistent (no a leading 1 in the last column,
Theorem RCLS [54]), so we know there is a solution for the five scalars α1, α2, α3, α4, α5.
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This is enough evidence for us to say that u ∈ 〈S〉. If we wished further evidence, we
could compute an actual solution, say

α1 = 2 α2 = 1 α3 = −2 α4 = −3 α5 = 2

This particular solution allows us to write

(2)


1
1
3
1

+ (1)


2
1
2
−1

+ (−2)


7
3
5
−5

+ (−3)


1
1
−1
2

+ (2)


−1
0
9
0

 = u =


−15
−6
19
5


making it even more obvious that u ∈ 〈S〉.

Lets do it again. Is v =


3
1
2
−1

 an element of 〈S〉? We are asking if there are scalars

α1, α2, α3, α4, α5 such that

α1


1
1
3
1

+ α2


2
1
2
−1

+ α3


7
3
5
−5

+ α4


1
1
−1
2

+ α5


−1
0
9
0

 = v =


3
1
2
−1


Applying Theorem SLSLC [106] we recognize the search for these scalars as a solution
to a linear system of equations with augmented matrix

1 2 7 1 −1 3
1 1 3 1 0 1
3 2 5 −1 9 2
1 −1 −5 2 0 −1


which row-reduces to 

1 0 −1 0 3 0

0 1 4 0 −1 0

0 0 0 1 −2 0

0 0 0 0 0 1


At this point, we see that the system is inconsistent (a leading 1 in the last column, Theo-
rem RCLS [54]), so we know there is not a solution for the five scalars α1, α2, α3, α4, α5.
This is enough evidence for us to say that v 6∈ 〈S〉. End of story. �

Example SCAA
Span of the columns of Archetype A

Begin with the finite set of three vectors of size 3

S = {u1, u2, u3} =


1

2
1

 ,

−1
1
1

 ,

2
1
0


and consider the infinite set 〈S〉. The vectors of S could have been chosen to be anything,
but for reasons that will become clear later, we have chosen the three columns of the
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coefficient matrix in Archetype A [703]. First, as an example, note that

v = (5)

1
2
1

+ (−3)

−1
1
1

+ (7)

2
1
0

 =

22
14
2


is in 〈S〉, since it is a linear combination of u1, u2, u3. We write this succinctly as
v ∈ 〈S〉. There is nothing magical about the scalars α1 = 5, α2 = −3, α3 = 7, they
could have been chosen to be anything. So repeat this part of the example yourself,
using different values of α1, α2, α3. What happens if you choose all three scalars to be
zero?

So we know how to quickly construct sample elements of the set 〈S〉. A slightly
different question arises when you are handed a vector of the correct size and asked if it

is an element of 〈S〉. For example, is w =

1
8
5

 in 〈S〉? More succinctly, w ∈ 〈S〉?

To answer this question, we will look for scalars α1, α2, α3 so that

α1u1 + α2u2 + α3u3 = w.

By Theorem SLSLC [106] solutions to this vector equality are solutions to the system of
equations

α1 − α2 + 2α3 = 1

2α1 + α2 + α3 = 8

α1 + α2 = 5.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 1 3

0 1 −1 2
0 0 0 0

 .

This system has infinitely many solutions (there’s a free variable in x3), but all we need
is one solution vector. The solution,

α1 = 2 α2 = 3 α3 = 1

tells us that
(2)u1 + (3)u2 + (1)u3 = w

so we are convinced that w really is in 〈S〉. Notice that there are an infinite number
of ways to answer this question affirmatively. We could choose a different solution, this
time choosing the free variable to be zero,

α1 = 3 α2 = 2 α3 = 0

shows us that
(3)u1 + (2)u2 + (0)u3 = w

Verifying the arithmetic in this second solution maybe makes it seem obvious that w is
in this span? And of course, we now realize that there are an infinite number of ways
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to realize w as element of 〈S〉. Let’s ask the same type of question again, but this time

with y =

2
4
3

, i.e. is y ∈ 〈S〉?

So we’ll look for scalars α1, α2, α3 so that

α1u1 + α2u2 + α3u3 = y.

By Theorem SLSLC [106] this linear combination becomes the system of equations

α1 − α2 + 2α3 = 2

2α1 + α2 + α3 = 4

α1 + α2 = 3.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 1 0

0 1 −1 0

0 0 0 1


This system is inconsistent (there’s a leading 1 in the last column, Theorem RCLS [54]),
so there are no scalars α1, α2, α3 that will create a linear combination of u1, u2, u3 that
equals y. More precisely, y 6∈ 〈S〉.

There are three things to observe in this example. (1) It is easy to construct vectors
in 〈S〉. (2) It is possible that some vectors are in 〈S〉 (e.g. w), while others are not (e.g.
y). (3) Deciding if a given vector is in 〈S〉 leads to solving a linear system of equations
and asking if the system is consistent.

With a computer program in hand to solve systems of linear equations, could you
create a program to decide if a vector was, or wasn’t, in the span of a given set of
vectors? Is this art or science?

This example was built on vectors from the columns of the coefficient matrix of
Archetype A [703]. Study the determination that v ∈ 〈S〉 and see if you can connect it
with some of the other properties of Archetype A [703]. �

Having analyzed Archetype A [703] in Example SCAA [131], we will of course subject
Archetype B [708] to a similar investigation.

Example SCAB
Span of the columns of Archetype B
Begin with the finite set of three vectors of size 3 that are the columns of the coefficient

matrix in Archetype B [708],

R = {v1, v2, v3} =


−7

5
1

 ,

−6
5
0

 ,

−12
7
4


and consider the infinite set V = 〈R〉. First, as an example, note that

x = (2)

−7
5
1

+ (4)

−6
5
0

+ (−3)

−12
7
4

 =

 −2
9
−10
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is in 〈R〉, since it is a linear combination of v1, v2, v3. In other words, x ∈ 〈R〉. Try some
different values of α1, α2, α3 yourself, and see what vectors you can create as elements
of 〈R〉.

Now ask if a given vector is an element of 〈R〉. For example, is z =

−33
24
5

 in 〈R〉?

Is z ∈ 〈R〉?
To answer this question, we will look for scalars α1, α2, α3 so that

α1v1 + α2v2 + α3v3 = z.

By Theorem SLSLC [106] this linear combination becomes the system of equations

−7α1 − 6α2 − 12α3 = −33

5α1 + 5α2 + 7α3 = 24

α1 + 4α3 = 5.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 0 −3

0 1 0 5

0 0 1 2

 .

This system has a unique solution,

α1 = −3 α2 = 5 α3 = 2

telling us that
(−3)v1 + (5)v2 + (2)v3 = z

so we are convinced that z really is in 〈R〉. Notice that in this case we have only one
way to answer the question affirmatively since the solution is unique.

Let’s ask about another vector, say is x =

−7
8
−3

 in 〈R〉? Is x ∈ 〈R〉?

We desire scalars α1, α2, α3 so that

α1v1 + α2v2 + α3v3 = x.

By Theorem SLSLC [106] this linear combination becomes the system of equations

−7α1 − 6α2 − 12α3 = −7

5α1 + 5α2 + 7α3 = 8

α1 + 4α3 = −3.

Building the augmented matrix for this linear system, and row-reducing, gives 1 0 0 1

0 1 0 2

0 0 1 −1
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This system has a unique solution,

α1 = 1 α2 = 2 α3 = −1

telling us that

(1)v1 + (2)v2 + (−1)v3 = x

so we are convinced that x really is in 〈R〉. Notice that in this case we again have only
one way to answer the question affirmatively since the solution is again unique.

We could continue to test other vectors for membership in 〈R〉, but there is no point.
A question about membership in 〈R〉 inevitably leads to a system of three equations
in the three variables α1, α2, α3 with a coefficient matrix whose columns are the vectors
v1, v2, v3. This particular coefficient matrix is nonsingular, so by Theorem NSMUS [83],
it is guaranteed to have a solution. (This solution is unique, but that’s not critical here.)
So no matter which vector we might have chosen for z, we would have been certain to
discover that it was an element of 〈R〉. Stated differently, every vector of size 3 is in 〈R〉,
or 〈R〉 = C3.

Compare this example with Example SCAA [131], and see if you can connect z with
some aspects of the write-up for Archetype B [708]. �

Subsection SSNS
Spanning Sets of Null Spaces

We saw in Example VFSAL [117] that when a system of equations is homogeneous the
solution set can be expressed in the form described by Theorem VFSLS [113] where the
vector c is the zero vector. We can essentially ignore this vector, so that the remainder
of the typical expression for a solution looks like an arbitrary linear combination, where
the scalars are the free variables and the vectors are u1, u2, u3, . . . , un−r. Which sounds
a lot like a span. This is the substance of the next theorem.

Theorem SSNS
Spanning Sets for Null Spaces

Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced
row-echelon form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the column
indices where B has leading 1’s (pivot columns) and F = {f1, f2, f3, . . . , fn−r} be the
set of column indices where B does not have leading 1’s. Construct the n− r vectors zj,
1 ≤ j ≤ n− r of size n as

[zj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj
if i ∈ D, i = dk

Then the null space of A is given by

N (A) = 〈{z1, z2, z3, . . . , zn−r}〉 .

�
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Proof Consider the homogeneous system with A as a coefficient matrix, LS(A, 0). Its
set of solutions, S, is by Definition NSM [71], the null space of A, N (A). Let B′ denote
the result of row-reducing the augmented matrix of this homogeneous system. Since the
system is homogeneous, the final column of the augmented matrix will be all zeros, and
after any number of row operations (Definition RO [31]), the column will still be all zeros.
So B′ has a final column that is totally zeros.

Now apply Theorem VFSLS [113] to B′, after noting that our homogeneous system
must be consistent (Theorem HSC [66]). The vector c has zeros for each entry that
corresponds to an index in F . For entries that correspond to an index in D, the value
is − [B′]k,n+1, but for B′ any entry in the final column (index n + 1) is zero. So c = 0.
The vectors zj, 1 ≤ j ≤ n − r are identical to the vectors uj, 1 ≤ j ≤ n − r described
in Theorem VFSLS [113]. Putting it all together and applying Definition SSCV [129] in
the final step,

N (A) = S

=
{
c + xf1u1 + xf2u2 + xf3u3 + · · ·+ xfn−run−r

∣∣ xf1 , xf2 , xf3 , . . . , xfn−r ∈ C
}

=
{

xf1z1 + xf2z2 + xf3z3 + · · ·+ xfn−rzn−r

∣∣ xf1 , xf2 , xf3 , . . . , xfn−r ∈ C
}

= 〈{z1, z2, z3, . . . , zn−r}〉

�

Example SSNS
Spanning set of a null space
Find a set of vectors, S, so that the null space of the matrix A below is the span of S,

that is, 〈S〉 = N (A).

A =


1 3 3 −1 −5
2 5 7 1 1
1 1 5 1 5
−1 −4 −2 0 4


The null space of A is the set of all solutions to the homogeneous system LS(A, 0). If we
find the vector form of the solutions to this homogenous system (Theorem VFSLS [113])
then the vectors uj, 1 ≤ j ≤ n− r in the linear combination are exactly the vectors zj,
1 ≤ j ≤ n−r described in Theorem SSNS [135]. So we can mimic Example VFSAL [117]
to arrive at these vectors (rather than being a slave to the formulas in the statement of
the theorem).

Begin by row-reducing A. The result is


1 0 6 0 4

0 1 −1 0 −2

0 0 0 1 3
0 0 0 0 0


With D = {1, 2, 4} and F = {3, 5} we recognize that x3 and x5 are free variables and
we can express each nonzero row as an expression for the dependent variables x1, x2, x4

(respectively) in the free variables x3 and x5. With this we can write the vector form of
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a solution vector as 
x1

x2

x3

x4

x5

 =


−6x3 − 4x5

x3 + 2x5

x3

−3x5

x5

 = x3


−6
1
1
0
0

+ x5


−4
2
0
−3
1


Then in the notation of Theorem SSNS [135],

z1 =


−6
1
1
0
0

 z2 =


−4
2
0
−3
1


and

N (A) = 〈{z1, z2}〉 =

〈


−6
1
1
0
0

 ,


−4
2
0
−3
1



〉

�

Example NSDS
Null space directly as a span

Let’s express the null space of A as the span of a set of vectors, applying Theo-
rem SSNS [135] as economically as possible, without reference to the underlying homo-
geneous system of equations (in contrast to Example SSNS [136]).

A =


2 1 5 1 5 1
1 1 3 1 6 −1
−1 1 −1 0 4 −3
−3 2 −4 −4 −7 0
3 −1 5 2 2 3


Theorem SSNS [135] creates vectors for the span by first row-reducing the matrix in
question. The row-reduced version of A is

B =


1 0 2 0 −1 2

0 1 1 0 3 −1

0 0 0 1 4 −2
0 0 0 0 0 0
0 0 0 0 0 0


I usually find it easier to envision the construction of the homogenous system of equa-
tions represented by this matrix, solve for the dependent variables and then unravel the
equations into a linear combination. But we can just as well mechanically follow the
prescription of Theorem SSNS [135]. Here we go, in two big steps.

First, the indices of the non-pivot columns have indices F = {3, 5, 6}, so we will
construct the n−r = 6−3 = 3 vectors with a pattern of zeros and ones corresponding to
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the indices in F . This is the realization of the first two lines of the three-case definition
of the vectors zj, 1 ≤ j ≤ n− r.

z1 =


1

0
0

 z2 =


0

1
0

 z3 =


0

0
1


Each of these vectors arises due to the presence of a column that is not a pivot column.
The remaining entries of each vector are the entries of the corresponding non-pivot col-
umn, negated, and distributed into the empty slots in order (these slots have indices in
the set D and correspond to pivot columns). This is the realization of the third line of
the three-case definition of the vectors zj, 1 ≤ j ≤ n− r.

z1 =


−2
1
1
2
0
0

 z2 =


1
−3
0
−4
1
0

 z3 =


−2
−1
0
0
0
1


So, by Theorem SSNS [135], we have

N (A) = 〈{z1, z2, z3}〉 =

〈



−2
1
1
2
0
0

 ,


1
−3
0
−4
1
0

 ,


−2
−1
0
0
0
1




〉

We know that the null space of A is the solution set of the homogeneous system LS(A, 0),
but nowhere in this application of Theorem SSNS [135] have we found occasion to refer-
ence the variables or equations of this system. �

Computation Note NS.MMA
Null Space (Mathematica)
Given a matrix A, Mathematica will compute a set of column vectors whose span is the

null space of the matrix with the NullSpace[ ] command. Perhaps not coincidentally,
this set is exactly {zj | 1 ≤ j ≤ n− r}. However, Mathematica prefers to output the
vectors in the opposite order than one we have chosen. Here’s a small example.

Begin with the 3× 4 matrix A, and its row-reduced version B,

A =

 1 2 −1 0
3 4 1 −2
−1 1 −5 3

 RREF−−−→ B =

 1 0 3 −2

0 1 −2 1
0 0 0 0


We could extract entries from B to build the vectors z1 and z2 according to Theo-
rem SSNS [135] and describe N (A) as a span of the set {z1, z2}. Instead, if a has been
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set to A, then executing the command NullSpace[a] yields the list of lists (column
vectors),

{{2,−1, 0, 1}, {−3, 2, 1, 0}}

Notice how our z1 is second in the list. To “correct” this we can use a list-processing
command from Mathematica, Reverse[ ] , as follows,

Reverse[NullSpace[a]]

and recieve the output in our preferred order. Give it a try yourself. ⊕

Here’s an example that will simultaneously exercise the span construction and The-
orem SSNS [135], while also pointing the way to the next section.

Example SCAD
Span of the columns of Archetype D

Begin with the set of four vectors of size 3

T = {w1, w2, w3, w4} =


 2
−3
1

 ,

1
4
1

 ,

 7
−5
4

 ,

−7
−6
−5


and consider the infinite set W = 〈T 〉. The vectors of T have been chosen as the four
columns of the coefficient matrix in Archetype D [717]. Check that the vector

z2 =


2
3
0
1


is a solution to the homogeneous system LS(D, 0) (it is the vector z2 provided by the
description of the null space of the coefficient matrix D from Theorem SSNS [135]).
Applying Theorem SLSLC [106], we can write the linear combination,

2w1 + 3w2 + 0w3 + 1w4 = 0

which we can solve for w4,

w4 = (−2)w1 + (−3)w2.

This equation says that whenever we encounter the vector w4, we can replace it with a
specific linear combination of the vectors w1 and w2. So using w4 in the set T , along
with w1 and w2, is excessive. An example of what we mean here can be illustrated by
the computation,

5w1 + (−4)w2 + 6w3 + (−3)w4 = 5w1 + (−4)w2 + 6w3 + (−3) ((−2)w1 + (−3)w2)

= 5w1 + (−4)w2 + 6w3 + (6w1 + 9w2)

= 11w1 + 5w2 + 6w3.

So what began as a linear combination of the vectors w1, w2, w3, w4 has been reduced
to a linear combination of the vectors w1, w2, w3. A careful proof using our definition
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of set equality (Definition SE [678]) would now allow us to conclude that this reduction
is possible for any vector in W , so

W = 〈{w1, w2, w3}〉 .

So the span of our set of vectors, W , has not changed, but we have described it by the
span of a set of three vectors, rather than four. Furthermore, we can achieve yet another,
similar, reduction.

Check that the vector

z1 =


−3
−1
1
0


is a solution to the homogeneous system LS(D, 0) (it is the vector z1 provided by the
description of the null space of the coefficient matrix D from Theorem SSNS [135]).
Applying Theorem SLSLC [106], we can write the linear combination,

(−3)w1 + (−1)w2 + 1w3 = 0

which we can solve for w3,
w3 = 3w1 + 1w2.

This equation says that whenever we encounter the vector w3, we can replace it with a
specific linear combination of the vectors w1 and w2. So, as before, the vector w3 is not
needed in the description of W , provided we have w1 and w2 available. In particular, a
careful proof would show that

W = 〈{w1, w2}〉 .

So W began life as the span of a set of four vectors, and we have now shown (utilizing
solutions to a homogeneous system) that W can also be described as the span of a set of
just two vectors. Convince yourself that we cannot go any further. In other words, it is
not possible to dismiss either w1 or w2 in a similar fashion and winnow the set down to
just one vector.

What was it about the original set of four vectors that allowed us to declare certain
vectors as surplus? And just which vectors were we able to dismiss? And why did we have
to stop once we had two vectors remaining? The answers to these questions motivate
“linear independence,” our next section and next definition, and so are worth considering
carefully now. �

Computation Note VFSS.MMA
Vector Form of Solution Set (Mathematica)
Suppose that A is an m×n matrix and b ∈ Cm is a column vector. We might wish to find

all of the solutions to the linear system LS(A, b). Mathematica’s LinearSolve[A, b]

will return at most one solution (Computation LS.MMA [58]). However, when the system
is consistent, then this one solution reported is exactly the vector c, described in the
statement of Theorem VFSLS [113].

The vectors uj, 1 ≤ j ≤ n − r of Theorem VFSLS [113] are exactly the output of
Mathematica’s NullSpace[ ] command, though Mathematica lists them in the opposite
order from the order we have chosen. These are the same vectors listed as zj, 1 ≤ j ≤ n−r
in Theorem SSNS [135]. With c produced from the LinearSolve[ ] command, and
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the uj coming from the NullSpace[ ] command we can use Mathematica’s symbolic
manipulation commands to create an expression that describes all of the solutions.

Begin with the system LS(A, b). Row-reduce A (Computation RR.MMA [41]) and
identify the free variables by determining the non-pivot columns. Suppose, for the sake
of argument, that we have the three free variables x3, x7 and x8. Then the following
command will build an expression for an arbitrary solution:

LinearSolve[A, b]+{x8, x7, x3}.NullSpace[A]

Be sure to include the “dot” right before the NullSpace[ ] command — it has the
effect of creating a linear combination of the vectors in the null space, using scalars that
are symbols reminiscent of the variables.

A concrete example should help here. Suppose we want a solution set for the linear
system with coefficient matrix A and vector of constants b,

A =

1 2 3 −5 1 −1 2
2 4 0 8 −4 1 −8
3 6 4 0 −2 5 7

 b =

 8
1
−5


If we were to apply Theorem VFSLS [113], we would extract the components of c and
uj from the row-reduced version of the augmented matrix of the system (obtained with
Mathematica, Computation RR.MMA [41]),

 1 2 0 4 −2 0 −5 2

0 0 1 −3 1 0 3 1

0 0 0 0 0 1 2 −3


Instead, we will use this augmented matrix in reduced row-echelon form only to identify
the free variables. In this example, we locate the non-pivot columns and see that x2,
x4, x5 and x7 are free. If we have set a to the coefficient matrix and b to the vector of
constants, then we execute the Mathematica command,

LinearSolve[a, b]+{x7, x5, x4, x2}.NullSpace[a]

As output we obtain the column vector (list),



2− 2 x2 − 4 x4 + 2 x5 + 5 x7

x2

1 + 3 x4 − x5 − 3 x7

x4

x5

−3− 2 x7

x7


⊕
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Subsection READ
Reading Questions

1. Let S be the set of three vectors below.

S =


 1

2
−1

 ,

 3
−4
2

 ,

 4
−2
1


Let W = 〈S〉 be the span of S. Is the vector

−1
8
−4

 in W? Give an explanation of

the reason for your answer.

2. Use S and W from the previous question. Is the vector

 6
5
−1

 in W? Give an

explanation of the reason for your answer.

3. For the matrix A below, find a set S so that 〈S〉 = N (A), where N (A) is the null
space of A. (See Theorem SSNS [135].)

A =

1 3 1 9
2 1 −3 8
1 1 −1 5
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Subsection EXC
Exercises

C22 For each archetype that is a system of equations, consider the corresponding ho-
mogeneous system of equations. Write elements of the solution set to these homogeneous
systems in vector form, as guaranteed by Theorem VFSLS [113]. Then write the null
space of the coefficient matrix of each system as the span of a set of vectors, as described
in Theorem SSNS [135].
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/ Archetype E [721]
Archetype F [725]
Archetype G [730]/ Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer Solution [147]

C23 Archetype K [749] and Archetype L [753] are defined as matrices. Use Theo-
rem SSNS [135] directly to find a set S so that 〈S〉 is the null space of the matrix. Do not
make any reference to the associated homogeneous system of equations in your solution.
Contributed by Robert Beezer Solution [147]

C40 Suppose that S =




2
−1
3
4

 ,


3
2
−2
1


. Let W = 〈S〉 and let x =


5
8
−12
−5

. Is

x ∈ W? If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [147]

C41 Suppose that S =




2
−1
3
4

 ,


3
2
−2
1


. Let W = 〈S〉 and let y =


5
1
3
5

. Is y ∈ W?

If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [147]

C42 Suppose R =




2
−1
3
4
0

 ,


1
1
2
2
−1

 ,


3
−1
0
3
−2


. Is y =


1
−1
−8
−4
−3

 in 〈R〉?

Contributed by Robert Beezer Solution [148]
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C43 Suppose R =




2
−1
3
4
0

 ,


1
1
2
2
−1

 ,


3
−1
0
3
−2


. Is z =


1
1
5
3
1

 in 〈R〉?

Contributed by Robert Beezer Solution [149]

C44 Suppose that S =


−1

2
1

 ,

3
1
2

 ,

1
5
4

 ,

−6
5
1

. Let W = 〈S〉 and let y =−5
3
0

. Is x ∈ W? If so, provide an explicit linear combination that demonstrates this.

Contributed by Robert Beezer Solution [149]

C45 Suppose that S =


−1

2
1

 ,

3
1
2

 ,

1
5
4

 ,

−6
5
1

. Let W = 〈S〉 and let w =

2
1
3

.

Is x ∈ W? If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution [150]

C50 Let A be the matrix below.
(a) Find a set S so that N (A) = 〈S〉.

(b) If z =


3
−5
1
2

, then show directly that z ∈ N (A).

(c) Write z as a linear combination of the vectors in S.

A =

 2 3 1 4
1 2 1 3
−1 0 1 1


Contributed by Robert Beezer Solution [150]

C60 For the matrix A below, find a set of vectors S so that the span of S equals the
null space of A, 〈S〉 = N (A).

A =

 1 1 6 −8
1 −2 0 1
−2 1 −6 7


Contributed by Robert Beezer Solution [151]

M20 In Example SCAD [139] we began with the four columns of the coefficient matrix
of Archetype D [717], and used these columns in a span construction. Then we method-
ically argued that we could remove the last column, then the third column, and create
the same set by just doing a span construction with the first two columns. We claimed
we could not go any further, and had removed as many vectors as possible. Provide a
convincing argument for why a third vector cannot be removed.
Contributed by Robert Beezer
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M21 In the spirit of Example SCAD [139], begin with the four columns of the coeffi-
cient matrix of Archetype C [713], and use these columns in a span construction to build
the set S. Argue that S can be expressed as the span of just three of the columns of the
coefficient matrix (saying exactly which three) and in the spirit of Exercise SS.M20 [144]
argue that no one of these three vectors can be removed and still have a span construction
create S.
Contributed by Robert Beezer Solution [152]

T10 Suppose that v1, v2 ∈ Cm. Prove that

〈{v1, v2}〉 = 〈{v1, v2, 5v1 + 3v2}〉

Contributed by Robert Beezer Solution [152]

T20 Suppose that S is a set of vectors from Cm. Prove that the zero vector, 0, is an
element of 〈S〉.
Contributed by Robert Beezer Solution [152]

T21 Suppose that S is a set of vectors from Cm and x, y ∈ 〈S〉. Prove that x + y ∈
〈S〉.
Contributed by Robert Beezer

T22 Suppose that S is a set of vectors from Cm, α ∈ C, and x ∈ 〈S〉. Prove that
αx ∈ 〈S〉.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C22 Contributed by Robert Beezer Statement [143]
The vector form of the solutions obtained in this manner will involve precisely the vectors
described in Theorem SSNS [135] as providing the null space of the coefficient matrix of
the system as a span. These vectors occur in each archetype in a description of the null
space. Studying Example VFSAL [117] may be of some help.

C23 Contributed by Robert Beezer Statement [143]
Study Example NSDS [137] to understand the correct approach to this question. The

solution for each is listed in the Archetypes (Appendix A [699]) themselves.

C40 Contributed by Robert Beezer Statement [143]
Rephrasing the question, we want to know if there are scalars α1 and α2 such that

α1


2
−1
3
4

+ α2


3
2
−2
1

 =


5
8
−12
−5


Theorem SLSLC [106] allows us to rephrase the question again as a quest for solutions
to the system of four equations in two unknowns with an augmented matrix given by

2 3 5
−1 2 8
3 −2 −12
4 1 −5


This matrix row-reduces to 

1 0 −2

0 1 3
0 0 0
0 0 0


From the form of this matrix, we can see that α1 = −2 and α2 = 3 is an affirmative
answer to our question. More convincingly,

(−2)


2
−1
3
4

+ (3)


3
2
−2
1

 =


5
8
−12
−5


C41 Contributed by Robert Beezer Statement [143]
Rephrasing the question, we want to know if there are scalars α1 and α2 such that

α1


2
−1
3
4

+ α2


3
2
−2
1

 =


5
1
3
5
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Theorem SLSLC [106] allows us to rephrase the question again as a quest for solutions
to the system of four equations in two unknowns with an augmented matrix given by

2 3 5
−1 2 1
3 −2 3
4 1 5


This matrix row-reduces to 

1 0 0

0 1 0

0 0 1
0 0 0


With a leading 1 in the last column of this matrix (Theorem RCLS [54]) we can see that
the system of equations has no solution, so there are no values for α1 and α2 that will
allow us to conclude that y is in W . So y 6∈ W .

C42 Contributed by Robert Beezer Statement [143]
Form a linear combination, with unknown scalars, of R that equals y,

a1


2
−1
3
4
0

+ a2


1
1
2
2
−1

+ a3


3
−1
0
3
−2

 =


1
−1
−8
−4
−3


We want to know if there are values for the scalars that make the vector equation true
since that is the definition of membership in 〈R〉. By Theorem SLSLC [106] any such
values will also be solutions to the linear system represented by the augmented matrix,

2 1 3 1
−1 1 −1 −1
3 2 0 −8
4 2 3 −4
0 −1 −2 −3


Row-reducing the matrix yields, 

1 0 0 −2

0 1 0 −1

0 0 1 2
0 0 0 0
0 0 0 0


From this we see that the system of equations is consistent (Theorem RCLS [54]), and
has a unique solution. This solution will provide a linear combination of the vectors in
R that equals y. So y ∈ R.

C43 Contributed by Robert Beezer Statement [144]

Version 0.85



Subsection SS.SOL Solutions 149

Form a linear combination, with unknown scalars, of R that equals z,

a1


2
−1
3
4
0

+ a2


1
1
2
2
−1

+ a3


3
−1
0
3
−2

 =


1
1
5
3
1


We want to know if there are values for the scalars that make the vector equation true
since that is the definition of membership in 〈R〉. By Theorem SLSLC [106] any such
values will also be solutions to the linear system represented by the augmented matrix,

2 1 3 1
−1 1 −1 1
3 2 0 5
4 2 3 3
0 −1 −2 1


Row-reducing the matrix yields, 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


With a leading 1 in the last column, the system is inconsistent (Theorem RCLS [54]), so
there are no scalars a1, a2, a3 that will create a linear combination of the vectors in R
that equal z. So z 6∈ R.

C44 Contributed by Robert Beezer Statement [144]
Form a linear combination, with unknown scalars, of S that equals y,

a1

−1
2
1

+ a2

3
1
2

+ a3

1
5
4

+ a4

−6
5
1

 =

−5
3
0


We want to know if there are values for the scalars that make the vector equation true
since that is the definition of membership in 〈S〉. By Theorem SLSLC [106] any such
values will also be solutions to the linear system represented by the augmented matrix,−1 3 1 −6 −5

2 1 5 5 3
1 2 4 1 0


Row-reducing the matrix yields, 1 0 2 3 2

0 1 1 −1 −1
0 0 0 0 0
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From this we see that the system of equations is consistent (Theorem RCLS [54]), and
has a infinitely many solutions. Any solution will provide a linear combination of the
vectors in R that equals y. So y ∈ S, for example,

(−10)

−1
2
1

+ (−2)

3
1
2

+ (3)

1
5
4

+ (2)

−6
5
1

 =

−5
3
0


C45 Contributed by Robert Beezer Statement [144]
Form a linear combination, with unknown scalars, of S that equals w,

a1

−1
2
1

+ a2

3
1
2

+ a3

1
5
4

+ a4

−6
5
1

 =

2
1
3


We want to know if there are values for the scalars that make the vector equation true
since that is the definition of membership in 〈S〉. By Theorem SLSLC [106] any such
values will also be solutions to the linear system represented by the augmented matrix,−1 3 1 −6 2

2 1 5 5 1
1 2 4 1 3


Row-reducing the matrix yields,  1 0 2 3 0

0 1 1 −1 0

0 0 0 0 1


With a leading 1 in the last column, the system is inconsistent (Theorem RCLS [54]), so
there are no scalars a1, a2, a3, a4 that will create a linear combination of the vectors in
S that equal w. So w 6∈ 〈S〉.

C50 Contributed by Robert Beezer Statement [144]
(a) Theorem SSNS [135] provides formulas for a set S with this property, but first we
must row-reduce A

A
RREF−−−→

 1 0 −1 −1

0 1 1 2
0 0 0 0


x3 and x4 would be the free variables in the homogeneous system LS(A, 0) and Theo-
rem SSNS [135] provides the set S = {z1, z2} where

z1 =


1
−1
1
0

 z2 =


1
−2
0
1


(b) Simply employ the components of the vector z as the variables in the homogeneous
system LS(A, 0). The three equations of this system evaluate as follows,

2(3) + 3(−5) + 1(1) + 4(2) = 0
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1(3) + 2(−5) + 1(1) + 3(2) = 0

−1(3) + 0(−5) + 1(1) + 1(2) = 0

Since each result is zero, z qualifies for membership in N (A).
(c) By Theorem SSNS [135] we know this must be possible (that is the moral of this

exercise). Find scalars α1 and α2 so that

α1z1 + α2z2 = α1


1
−1
1
0

+ α2


1
−2
0
1

 =


3
−5
1
2

 = z

Theorem SLSLC [106] allows us to convert this question into a question about a system
of four equations in two variables. The augmented matrix of this system row-reduces to

1 0 1

0 1 2
0 0 0
0 0 0


A solution is α1 = 1 and α2 = 2. (Notice too that this solution is unique!)

C60 Contributed by Robert Beezer Statement [144]
Theorem SSNS [135] says that if we find the vector form of the solutions to the ho-

mogeneous system LS(A, 0), then the fixed vectors (one per free variable) will have the
desired property. Row-reduce A, viewing it as the augmented matrix of a homogeneous
system with an invisible columns of zeros as the last column, 1 0 4 −5

0 1 2 −3
0 0 0 0


Moving to the vector form of the solutions (Theorem VFSLS [113]), with free variables
x3 and x4, solutions to the consistent system (it is homogeneous, Theorem HSC [66]) can
be expressed as 

x1

x2

x3

x4

 = x3


−4
−2
1
0

+ x4


5
3
0
1


Then with S given by

S =



−4
−2
1
0

 ,


5
3
0
1




Theorem SSNS [135] guarantees that

N (A) = 〈S〉 =

〈

−4
−2
1
0

 ,


5
3
0
1



〉
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M21 Contributed by Robert Beezer Statement [145]
If the columns of the coefficient matrix from Archetype C [713] are named u1, u2, u3, u4

then we can discover the equation

(−2)u1 + (−3)u2 + u3 + u4 = 0

by building a homogeneous system of equations and viewing a solution to the system as
scalars in a linear combination via Theorem SLSLC [106]. This particular vector equation
can be rearranged to read

u4 = (2)u1 + (3)u2 + (−1)u3

This can be interpreted to mean that u4 is unnecessary in 〈{u1, u2, u3, u4}〉, so that

〈{u1, u2, u3, u4}〉 = 〈{u1, u2, u3}〉

If we try to repeat this process and find a linear combination of u1, u2, u3 that equals
the zero vector, we will fail. The required homogeneous system of equations (via Theo-
rem SLSLC [106]) has only a trivial solution, which will not provide the kind of equation
we need to remove one of the three remaining vectors.

T10 Contributed by Robert Beezer Statement [145]
This is an equality of sets, so Definition SE [678] applies.

First show that X = 〈{v1, v2}〉 ⊆ 〈{v1, v2, 5v1 + 3v2}〉 = Y .
Choose x ∈ X. Then x = a1v1 + a2v2 for some scalars a1 and a2. Then,

x = a1v1 + a2v2 = a1v1 + a2v2 + 0(5v1 + 3v2)

which qualifies x for membership in Y , as it is a linear combination of v1, v2, 5v1 + 3v2.
Now show the opposite inclusion, Y = 〈{v1, v2, 5v1 + 3v2}〉 ⊆ 〈{v1, v2}〉 = X.

Choose y ∈ Y . Then there are scalars a1, a2, a3 such that

y = a1v1 + a2v2 + a3(5v1 + 3v2)

Rearranging, we obtain,

y = a1v1 + a2v2 + a3(5v1 + 3v2)

= a1v1 + a2v2 + 5a3v1 + 3a3v2 Property DVAC [96]

= a1v1 + 5a3v1 + a2v2 + 3a3v2 Property CC [96]

= (a1 + 5a3)v1 + (a2 + 3a3)v2 Property DSAC [96]

This is an expression for y as a linear combination of v1 and v2, earning y membership
in X. Since X is a subset of Y , and vice versa, we see that X = Y , as desired.

T20 Contributed by Robert Beezer Statement [145]
No matter what the elements of the set S are, we can choose the scalars in a linear

combination to all be zero. Suppose that S = {v1, v2, v3, . . . , vp}. Then compute

0v1 + 0v2 + 0v3 + · · ·+ 0vp = 0 + 0 + 0 + · · ·+ 0

= 0

But what if we choose S to be the empty set? The convention is that the empty sum in
Definition SSCV [129] evaluates to “zero,” in this case this is the zero vector.
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Section LI

Linear Independence

Subsection LISV
Linearly Independent Sets of Vectors

Theorem SLSLC [106] tells us that a solution to a homogeneous system of equations is a
linear combination of the columns of the coefficient matrix that equals the zero vector.
We used just this situation to our advantage (twice!) in Example SCAD [139] where
we reduced the set of vectors used in a span construction from four down to two, by
declaring certain vectors as surplus. The next two definitions will allow us to formalize
this situation.

Definition RLDCV
Relation of Linear Dependence for Column Vectors

Given a set of vectors S = {u1, u2, u3, . . . , un}, a true statement of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this statement is formed in a trivial fashion,
i.e. αi = 0, 1 ≤ i ≤ n, then we say it is the trivial relation of linear dependence on
S. 4

Definition LICV
Linear Independence of Column Vectors
The set of vectors S = {u1, u2, u3, . . . , un} is linearly dependent if there is a relation

of linear dependence on S that is not trivial. In the case where the only relation of linear
dependence on S is the trivial one, then S is a linearly independent set of vectors. 4

Notice that a relation of linear dependence is an equation. Though most of it is
a linear combination, it is not a linear combination (that would be a vector). Linear
independence is a property of a set of vectors. It is easy to take a set of vectors, and
an equal number of scalars, all zero, and form a linear combination that equals the zero
vector. When the easy way is the only way, then we say the set is linearly independent.
Here’s a couple of examples.

Example LDS
Linearly dependent set in C5

Consider the set of n = 4 vectors from C5,

S =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,


−6
7
−1
0
1


 .
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To determine linear independence we first form a relation of linear dependence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
0
1

 = 0.

We know that α1 = α2 = α3 = α4 = 0 is a solution to this equation, but that is of
no interest whatsoever. That is always the case, no matter what four vectors we might
have chosen. We are curious to know if there are other, nontrivial, solutions. Theo-
rem SLSLC [106] tells us that we can find such solutions as solutions to the homogeneous
system LS(A, 0) where the coefficient matrix has these four vectors as columns,

A =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 0
2 2 1 1

 .

Row-reducing this coefficient matrix yields,
1 0 0 −2

0 1 0 4

0 0 1 −3
0 0 0 0
0 0 0 0

 .

We could solve this homogeneous system completely, but for this example all we need
is one nontrivial solution. Setting the lone free variable to any nonzero value, such as
x4 = 1, yields the nontrivial solution

x =


2
−4
3
1

 .

completing our application of Theorem SLSLC [106], we have

2


2
−1
3
1
2

+ (−4)


1
2
−1
5
2

+ 3


2
1
−3
6
1

+ 1


−6
7
−1
0
1

 = 0.

This is a relation of linear dependence on S that is not trivial, so we conclude that S is
linearly dependent. �

Example LIS
Linearly independent set in C5
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Consider the set of n = 4 vectors from C5,

T =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,


−6
7
−1
1
1


 .

To determine linear independence we first form a relation of linear dependence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
1
1

 = 0.

We know that α1 = α2 = α3 = α4 = 0 is a solution to this equation, but that is of
no interest whatsoever. That is always the case, no matter what four vectors we might
have chosen. We are curious to know if there are other, nontrivial, solutions. Theo-
rem SLSLC [106] tells us that we can find such solutions as solution to the homogeneous
system LS(B, 0) where the coefficient matrix has these four vectors as columns,

B =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 1
2 2 1 1

 .

Row-reducing this coefficient matrix yields,
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0

 .

From the form of this matrix, we see that there are no free variables, so the solution
is unique, and because the system is homogeneous, this unique solution is the trivial
solution. So we now know that there is but one way to combine the four vectors of T
into a relation of linear dependence, and that one way is the easy and obvious way. In
this situation we say that the set, T , is linearly independent. �

Example LDS [153] and Example LIS [155] relied on solving a homogeneous system of
equations to determine linear independence. We can codify this process in a time-saving
theorem.

Theorem LIVHS
Linearly Independent Vectors and Homogeneous Systems
Suppose that A is an m×n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors

in Cm that are the columns of A. Then S is a linearly independent set if and only if the
homogeneous system LS(A, 0) has a unique solution. �
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Proof (⇐) Suppose that LS(A, 0) has a unique solution. Since it is a homogeneous
system, this solution must be the trivial solution x = 0. By Theorem SLSLC [106], this
means that the only relation of linear dependence on S is the trivial one. So S is linearly
independent.

(⇒) We will prove the contrapositive. Suppose that LS(A, 0) does not have a unique
solution. Since it is a homogeneous system, it is consistent (Theorem HSC [66]), and
so must have infinitely many solutions (Theorem PSSLS [57]). One of these infinitely
many solutions must be nontrivial (in fact, almost all of them are), so choose one. By
Theorem SLSLC [106] this nontrivial solution will give a nontrivial relation of linear
dependence on S, so we can conclude that S is a linearly dependent set. �

Since Theorem LIVHS [155] is an equivalence, we can use it to determine the linear
independence or dependence of any set of column vectors, just by creating a correspond-
ing matrix and analyzing the row-reduced form. Let’s illustrate this with two more
examples.

Example LIHS
Linearly independent, homogeneous system

Is the set of vectors

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
5
1




linearly independent or linearly dependent?

Theorem LIVHS [155] suggests we study the matrix whose columns are the vectors
in S,

A =


2 6 4
−1 2 3
3 −1 −4
4 3 5
2 4 1


Specifically, we are interested in the size of the solution set for the homogeneous system
LS(A, 0). Row-reducing A, we obtain

1 0 0

0 1 0

0 0 1
0 0 0
0 0 0


Now, r = 3, so there are n− r = 3− 3 = 0 free variables and we see that LS(A, 0) has
a unique solution (Theorem HSC [66], Theorem FVCS [56]). By Theorem LIVHS [155],
the set S is linearly independent. �

Example LDHS
Linearly dependent, homogeneous system
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Is the set of vectors

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
−1
2




linearly independent or linearly dependent?
Theorem LIVHS [155] suggests we study the matrix whose columns are the vectors

in S,

A =


2 6 4
−1 2 3
3 −1 −4
4 3 −1
2 4 2


Specifically, we are interested in the size of the solution set for the homogeneous system
LS(A, 0). Row-reducing A, we obtain

1 0 −1

0 1 1
0 0 0
0 0 0
0 0 0


Now, r = 2, so there are n − r = 3 − 2 = 1 free variables and we see that LS(A, 0)
has infinitely many solutions (Theorem HSC [66], Theorem FVCS [56]). By Theo-
rem LIVHS [155], the set S is linearly dependent. �

As an equivalence, Theorem LIVHS [155] gives us a straightforward way to determine
if a set of vectors is linearly independent or dependent.

Review Example LIHS [156] and Example LDHS [157]. They are very similar, differing
only in the last two slots of the third vector. This resulted in slightly different matrices
when row-reduced, and slightly different values of r, the number of nonzero rows. Notice,
too, that we are less interested in the actual solution set, and more interested in its form or
size. These observations allow us to make a slight improvement in Theorem LIVHS [155].

Theorem LIVRN
Linearly Independent Vectors, r and n
Suppose that A is an m×n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors

in Cm that are the columns of A. Let B be a matrix in reduced row-echelon form that
is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is
linearly independent if and only if n = r. �

Proof Theorem LIVHS [155] says the linear independence of S is equivalent to the
homogeneous linear system LS(A, 0) having a unique solution. Since LS(A, 0) is con-
sistent (Theorem HSC [66]) we can apply Theorem CSRN [56] to see that the solution is
unique exactly when n = r. �

So now here’s an example of the most straightfoward way to determine if a set of
column vectors in linearly independent or linearly dependent. While this method can be
quick and easy, don’t forget the logical progression from the definition of linear indepen-
dence through homogeneous system of equations which makes it possible.
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Example LDRN
Linearly dependent, r < n

Is the set of vectors

S =




2
−1
3
1
0
3

 ,


9
−6
−2
3
2
1

 ,


1
1
1
0
0
1

 ,


−3
1
4
2
1
2

 ,


6
−2
1
4
3
2




linearly independent or linearly dependent? Theorem LIVHS [155] suggests we place
these vectors into a matrix as columns and analyze the row-reduced version of the matrix,

2 9 1 −3 6
−1 −6 1 1 −2
3 −2 1 4 1
1 3 0 2 4
0 2 0 1 3
3 1 1 2 2


RREF−−−→



1 0 0 0 −1

0 1 0 0 1

0 0 1 0 2

0 0 0 1 1
0 0 0 0 0
0 0 0 0 0


Now we need only compute that r = 4 < 5 = n to recognize, via Theorem LIVHS [155]
that S is a linearly dependent set. Boom! �

Example LLDS
Large linearly dependent set in C4

Consider the set of n = 9 vectors from C4,

R =



−1
3
1
2

 ,


7
1
−3
6

 ,


1
2
−1
−2

 ,


0
4
2
9

 ,


5
−2
4
3

 ,


2
1
−6
4

 ,


3
0
−3
1

 ,


1
1
5
3

 ,


−6
−1
1
1


 .

To employ Theorem LIVHS [155], we form a 4× 9 coefficient matrix, C,

C =


−1 7 1 0 5 2 3 1 −6
3 1 2 4 −2 1 0 1 −1
1 −3 −1 2 4 −6 −3 5 1
2 6 −2 9 3 4 1 3 1

 .

To determine if the homogeneous system LS(C, 0) has a unique solution or not, we
would normally row-reduce this matrix. But in this particular example, we can do better.
Theorem HMVEI [67] tells us that since the system is homogeneous with n = 9 variables
in m = 4 equations, and n > m, there must be infinitely many solutions. Since there is
not a unique solution, Theorem LIVHS [155] says the set is linearly dependent. �

The situation in Example LLDS [158] is slick enough to warrant formulating as a
theorem.

Theorem MVSLD
More Vectors than Size implies Linear Dependence

Suppose that S = {u1, u2, u3, . . . , un} is the set of vectors in Cm, and that n > m.
Then S is a linearly dependent set. �
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Proof Form the m×n coefficient matrix A that has the column vectors ui, 1 ≤ i ≤ n as
its columns. Consider the homogeneous system LS(A, 0). By Theorem HMVEI [67] this
system has infinitely many solutions. Since the system does not have a unique solution,
Theorem LIVHS [155] says the columns of A form a linearly dependent set, which is the
desired conclusion. �

Subsection LINSM
Linear Independence and NonSingular Matrices

We will now specialize to sets of n vectors from Cn. This will put Theorem MVSLD [158]
off-limits, while Theorem LIVHS [155] will involve square matrices. Let’s begin by con-
trasting Archetype A [703] and Archetype B [708].

Example LDCAA
Linearly dependent columns in Archetype A

Archetype A [703] is a system of linear equations with coefficient matrix,

A =

1 −1 2
2 1 1
1 1 0

 .

Do the columns of this matrix form a linearly independent or dependent set? By Exam-
ple S [80] we know that A is singular. According to the definition of nonsingular matrices,
Definition NM [79], the homogeneous system LS(A, 0) has infinitely many solutions. So
by Theorem LIVHS [155], the columns of A form a linearly dependent set. �

Example LICAB
Linearly independent columns in Archetype B

Archetype B [708] is a system of linear equations with coefficient matrix,

B =

−7 −6 −12
5 5 7
1 0 4

 .

Do the columns of this matrix form a linearly independent or dependent set? By Exam-
ple NS [80] we know that B is nonsingular. According to the definition of nonsingular
matrices, Definition NM [79], the homogeneous system LS(A, 0) has a unique solution.
So by Theorem LIVHS [155], the columns of B form a linearly independent set. �

That Archetype A [703] and Archetype B [708] have opposite properties for the
columns of their coefficient matrices is no accident. Here’s the theorem, and then we
will update our equivalences for nonsingular matrices, Theorem NSME1 [85].

Theorem NSLIC
NonSingular matrices have Linearly Independent Columns
Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of

A form a linearly independent set. �

Proof This is a proof where we can chain together equivalences, rather than proving
the two halves separately.

A nonsingular ⇐⇒ LS(A, 0) has a unique solution Definition NM [79]
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⇐⇒ columns of A are linearly independent Theorem LIVHS [155]

�

Here’s an update to Theorem NSME1 [85].

Theorem NSME2
NonSingular Matrix Equivalences, Round 2

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A form a linearly independent set.

�

Proof Theorem NSLIC [159] is yet another equivalence for a nonsingular matrix, so we
can add it to the list in Theorem NSME1 [85]. �

Subsection NSSLI
Null Spaces, Spans, Linear Independence

In Subsection SS.SSNS [135] we proved Theorem SSNS [135] which provided n−r vectors
that could be used with the span construction to build the entire null space of a matrix.
As we have hinted in Example SCAD [139], and as we will see again going forward,
linearly dependent sets carry redundant vectors with them when used in building a set
as a span. Our aim now is to show that the vectors provided by Theorem SSNS [135]
form a linearly independent set, so in one sense they are as efficient as possible a way to
describe the null space. Notice that the vectors zj, 1 ≤ j ≤ n−r first appear in the vector
form of solutions to arbitrary linear systems (Theorem VFSLS [113]). The exact same
vectors appear again in the span construction in the conclusion of Theorem SSNS [135].
Since this second theorem specializes to homogeneous systems the only real difference
is that the vector c in Theorem VFSLS [113] is the zero vector for a homogeneous
system. Finally, Theorem BNS [162] will now show that these same vectors are a linearly
independent set. we’ll set the stage for the proof of this theorem with a moderately large
example. Study the example carefully, as it will make it easier to understand the proof.

Example LINSB
Linearly independence of null space basis

Suppose that we are interested in the null space of the a 3 × 7 matrix, A, which
row-reduces to

B =

 1 0 −2 4 0 3 9

0 1 5 6 0 7 1

0 0 0 0 1 8 −5
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The set F = {3, 4, 6, 7} is the set of indices for our four free variables that would be used
in a description of the solution set for the homogeneous system homosystemA. Applying
Theorem SSNS [135] we can begin to construct a set of four vectors whose span is the
null space of A, a set of vectors we will reference as T .

N (A) = 〈T 〉 = 〈{z1, z2, z3, z4}〉 =

〈



1
0

0
0


,


0
1

0
0


,


0
0

1
0


,


0
0

0
1





〉

So far, we have constructed as much of these individual vectors as we can, based just on
the knowledge of the contents of the set F . This has allowed us to determine the entries
in slots 3, 4, 6 and 7, while we have left slots 1, 2 and 5 blank. Without doing any more,
lets ask if T is linearly independent? Begin with a relation of linear dependence on T ,
and see what we can learn about the scalars,

0 = α1z1 + α2z2 + α3z3 + α4z4

0
0
0
0
0
0
0


= α1


1
0

0
0


+ α2


0
1

0
0


+ α3


0
0

1
0


+ α4


0
0

0
1



=


α1

0

0
0


+


0
α2

0
0


+


0
0

α3

0


+


0
0

0
α4


=


α1

α2

α3

α4


Applying Definition CVE [92] to the two ends of this chain of equalities, we see that
α1 = α2 = α3 = α4 = 0. So the only relation of linear dependence on the set T is a
trivial one. By Definition LICV [153] the set T is linearly independent. The important
feature of this example is how the “pattern of zeros and ones” in the four vectors led to
the conclusion of linear independence. �

The proof of Theorem BNS [162] is really quite straightforward, and relies on the
“pattern of zeros and ones” that arise in the vectors zi, 1 ≤ i ≤ n − r in the entries
that correspond to the free variables. Play along with Example LINSB [160] as you
study the proof. Also, take a look at Example VFSAD [108], Example VFSAI [116] and
Example VFSAL [117], especially at the conclusion of Step 2 (temporarily ignore the
construction of the constant vector, c). This proof is also a good first example of how to
prove a conclusion that states a set is linearly independent.

Theorem BNS
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Basis for Null Spaces
Suppose that A is an m× n matrix, and B is a row-equivalent matrix in reduced row-

echelon form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r}
be the sets of column indices where B does and does not (respectively) have leading 1’s.
Construct the n− r vectors zj, 1 ≤ j ≤ n− r of size n as

[zj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj
if i ∈ D, i = dk

Define the set S = {z1, z2, z3, . . . , zn−r}. Then

1. N (A) = 〈S〉.

2. S is a linearly independent set.

�

Proof Notice first that the vectors zj, 1 ≤ j ≤ n− r are exactly the same as the n− r
vectors defined in Theorem SSNS [135]. Also, the hypotheses of Theorem SSNS [135] are
the same as the hypotheses of the theorem we are currently proving. So it is then simply
the conclusion of Theorem SSNS [135] that tells us that N (A) = 〈S〉. That was the easy
half, but the second part is not much harder. What is new here is the claim that S is a
linearly independent set.

To prove the linear independence of a set, we need to start with a relation of linear
dependence and somehow conclude that the scalars involved must all be zero, i.e. that
the relation of linear dependence only happens in the trivial fashion. So to establish the
linear independence of S, we start with

α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r = 0.

For each j, 1 ≤ j ≤ n − r, consider the equality of the individual entries of the vectors
on both sides of this equality in position fj,

0 = [0]fj

= [α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r]fj
Definition CVE [92]

= [α1z1]fj
+ [α2z2]fj

+ [α3z3]fj
+ · · ·+ [αn−rzn−r]fj

Definition CVA [93]

= α1 [z1]fj
+ α2 [z2]fj

+ α3 [z3]fj
+ · · ·+

αj−1 [zj−1]fj
+ αj [zj]fj

+ αj+1 [zj+1]fj
+ · · ·+

αn−r [zn−r]fj
Definition CVSM [93]

= α1(0) + α2(0) + α3(0) + · · ·+
αj−1(0) + αj(1) + αj+1(0) + · · ·+ αn−r(0) Definition of zj

= αj

So for all j, 1 ≤ j ≤ n− r, we have αj = 0, which is the conclusion that tells us that the
only relation of linear dependence on S = {z1, z2, z3, . . . , zn−r} is the trivial one, hence
the set is linearly independent, as desired. �
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Example NSLIL
Null space spanned by linearly independent set, Archetype L

In Example VFSAL [117] we previewed Theorem SSNS [135] by finding a set of two
vectors such that their span was the null space for the matrix in Archetype L [753].
Writing the matrix as L, we have

N (L) =

〈


−1
2
−2
1
0

 ,


2
−2
1
0
1



〉

.

Solving the homogeneous system LS(L, 0) resulted in recognizing x4 and x5 as the free
variables. So look in entries 4 and 5 of the two vectors above and notice the pattern of
zeros and ones that provides the linear independence of the set. �

Subsection READ
Reading Questions

1. Let S be the set of three vectors below.

S =


 1

2
−1

 ,

 3
−4
2

 ,

 4
−2
1


Is S linearly independent or linearly dependent? Explain why.

2. Let S be the set of three vectors below.

S =


 1
−1
0

 ,

3
2
2

 ,

 4
3
−4


Is S linearly independent or linearly dependent? Explain why.

3. Based on your answer to the previous question, is the matrix below singular or
nonsingular? Explain.  1 3 4

−1 2 3
0 2 −4
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Subsection EXC
Exercises

Determine if the sets of vectors in Exercises C20–C25 are linearly independent or linearly
dependent.

C20


 1
−2
1

 ,

 2
−1
3

 ,

1
5
0


Contributed by Robert Beezer Solution [169]

C21



−1
2
4
2

 ,


3
3
−1
3

 ,


7
3
−6
4




Contributed by Robert Beezer Solution [169]

C22


1

5
1

 ,

 6
−1
2

 ,

 9
−3
8

 ,

 2
8
−1

 ,

 3
−2
0


Contributed by Robert Beezer Solution [169]

C23




1
−2
2
5
3

 ,


3
3
1
2
−4

 ,


2
1
2
−1
1

 ,


1
0
1
2
2




Contributed by Robert Beezer Solution [169]

C24




1
2
−1
0
1

 ,


3
2
−1
2
2

 ,


4
4
−2
2
3

 ,


−1
2
−1
−2
0




Contributed by Robert Beezer Solution [169]

C25




2
1
3
−1
2

 ,


4
−2
1
3
2

 ,


10
−7
0
10
4




Contributed by Robert Beezer Solution [170]

C30 For the matrix B below, find a set S that is linearly independent and spans the
null space of B, that is, N (B) = 〈S〉.

B =

−3 1 −2 7
−1 2 1 4
1 1 2 −1


Contributed by Robert Beezer Solution [170]
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C31 For the matrix A below, find a linearly independent set S so that the null space
of A is spanned by S, that is, N (A) = 〈S〉.

A =


−1 −2 2 1 5
1 2 1 1 5
3 6 1 2 7
2 4 0 1 2


Contributed by Robert Beezer Solution [171]

C50 Consider each archetype that is a system of equations and consider the solutions
listed for the homogeneous version of the archetype. (If only the trivial solution is listed,
then assume this is the only solution to the system.) From the solution set, determine if
the columns of the coefficient matrix form a linearly independent or linearly dependent
set. In the case of a linearly dependent set, use one of the sample solutions to provide
a nontrivial relation of linear dependence on the set of columns of the coefficient matrix
(Definition RLD [349]). Indicate when Theorem MVSLD [158] applies and connect this
with the number of variables and equations in the system of equations.
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer

C51 For each archetype that is a system of equations consider the homogeneous ver-
sion. Write elements of the solution set in vector form (Theorem VFSLS [113]) and from
this extract the vectors zj described in Theorem BNS [162]. These vectors are used in a
span construction to describe the null space of the coefficient matrix for each archetype.
What does it mean when we write a null space as 〈{ }〉?
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer

C52 For each archetype that is a system of equations consider the homogeneous ver-
sion. Sample solutions are given and a linearly independent spanning set is given for the
null space of the coefficient matrix. Write each of the sample solutions individually as a
linear combination of the vectors in the spanning set for the null space of the coefficient
matrix.
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Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer

C60 For the matrix A below, find a set of vectors S so that (1) S is linearly independent,
and (2) the span of S equals the null space of A, 〈S〉 = N (A). (See Exercise SS.C60 [144].)

A =

 1 1 6 −8
1 −2 0 1
−2 1 −6 7


Contributed by Robert Beezer Solution [171]

M50 Consider the set of vectors from C3, W , given below. Find a set T that contains
three vectors from W and such that W = 〈T 〉.

W = 〈{v1, v2, v3, v4, v5}〉 =

〈
2

1
1

 ,

−1
−1
1

 ,

1
2
3

 ,

3
1
3

 ,

 0
1
−3


〉

Contributed by Robert Beezer Solution [172]

T10 Prove that if a set of vectors contains the zero vector, then the set is linearly
dependent. (Ed. “The zero vector is death to linearly independent sets.”)
Contributed by Martin Jackson

T15 Suppose that {v1, v2, v3, . . . , vn} is a set of vectors. Prove that

{v1 − v2, v2 − v3, v3 − v4, . . . , vn − v1}

is a linearly dependent set.

Contributed by Robert Beezer Solution [172]

T20 Suppose that {v1, v2, v3, v4} is a linearly independent set in C35. Prove that

{v1, v1 + v2, v1 + v2 + v3, v1 + v2 + v3 + v4}

is a linearly independent set.
Contributed by Robert Beezer Solution [173]

T50 Suppose that A is matrix with linearly independent columns and the linear system
LS(A, b) is consistent. Show that this system has a unique solution. (Notice that we
are not requiring A to be square.)
Contributed by Robert Beezer Solution [173]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [165]
With three vectors from C3, we can form a square matrix by making these three vectors
the columns of a matrix. We do so, and row-reduce to obtain, 1 0 0

0 1 0

0 0 1


the 3×3 identity matrix. So by Theorem NSME2 [160] the original matrix is nonsingular
and its columns are therefore a linearly independent set.

C21 Contributed by Robert Beezer Statement [165]
Theorem LIVRN [157] says we can answer this question by putting theses vectors into

a matrix as columns and row-reducing. Doing this we obtain,
1 0 0

0 1 0

0 0 1
0 0 0


With n = 3 (3 vectors, 3 columns) and r = 3 (3 leading 1’s) we have n = r and the
theorem says the vectors are linearly independent.

C22 Contributed by Robert Beezer Statement [165]
Five vectors from C3. Theorem MVSLD [158] says the set is linearly dependent. Boom.

C23 Contributed by Robert Beezer Statement [165]
Theorem LIVRN [157] suggests we analyze a matrix whose columns are the vectors of

S,

A =


1 3 2 1
−2 3 1 0
2 1 2 1
5 2 −1 2
3 −4 1 2


Row-reducing the matrix A yields,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


We see that r = 4 = n, where r is the number of nonzero rows and n is the number of
columns. By Theorem LIVRN [157], the set S is linearly independent.

C24 Contributed by Robert Beezer Statement [165]
Theorem LIVRN [157] suggests we analyze a matrix whose columns are the vectors from
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the set,

A =


1 3 4 −1
2 2 4 2
−1 −1 −2 −1
0 2 2 −2
1 2 3 0


Row-reducing the matrix A yields,

1 0 1 2

0 1 1 −1
0 0 0 0
0 0 0 0
0 0 0 0


We see that r = 2 6= 4 = n, where r is the number of nonzero rows and n is the number
of columns. By Theorem LIVRN [157], the set S is linearly dependent.

C25 Contributed by Robert Beezer Statement [165]
Theorem LIVRN [157] suggests we analyze a matrix whose columns are the vectors from
the set,

A =


2 4 10
1 −2 −7
3 1 0
−1 3 10
2 2 4


Row-reducing the matrix A yields, 

1 0 −1

0 1 3
0 0 0
0 0 0
0 0 0


We see that r = 2 6= 3 = n, where r is the number of nonzero rows and n is the number
of columns. By Theorem LIVRN [157], the set S is linearly dependent.

C30 Contributed by Robert Beezer Statement [165]
The requested set is described by Theorem BNS [162]. It is easiest to find by using the
procedure of Example VFSAL [117]. Begin by row-reducing the matrix, viewing it as the
coefficient matrix of a homogeneous system of equations. We obtain, 1 0 1 −2

0 1 1 1
0 0 0 0


Now build the vector form of the solutions to this homogeneous system (Theorem VF-
SLS [113]). The free variables are x3 and x4, corresponding to the columns without
leading 1’s, 

x1

x2

x3

x4

 = x3


−1
−1
1
0

+ x4


2
−1
0
1
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The desired set S is simply the constant vectors in this expression, and these are the
vectors z1 and z2 described by Theorem BNS [162].

S =



−1
−1
1
0

 ,


2
−1
0
1




C31 Contributed by Robert Beezer Statement [166]
Theorem BNS [162] provides formulas for n − r vectors that will meet the require-

ments of this question. These vectors are the same ones listed in Theorem VFSLS [113]
when we solve the homogeneous system LS(A, 0), whose solution set is the null space
(Definition NSM [71]).

To apply Theorem BNS [162] or Theorem VFSLS [113] we first row-reduce the matrix,
resulting in

B =


1 2 0 0 3

0 0 1 0 6

0 0 0 1 −4
0 0 0 0 0


So we see that n− r = 5− 3 = 2 and F = {2, 5}, so the vector form of a generic solution
vector is 

x1

x2

x3

x4

x5

 = x2


−2
1
0
0
0

+ x5


−3
0
−6
4
1


So we have

N (A) =

〈


−2
1
0
0
0

 ,


−3
0
−6
4
1



〉

C60 Contributed by Robert Beezer Statement [167]
Theorem BNS [162] says that if we find the vector form of the solutions to the homo-

geneous system LS(A, 0), then the fixed vectors (one per free variable) will have the
desired properties. Row-reduce A, viewing it as the augmented matrix of a homogeneous
system with an invisible columns of zeros as the last column, 1 0 4 −5

0 1 2 −3
0 0 0 0


Moving to the vector form of the solutions (Theorem VFSLS [113]), with free variables
x3 and x4, solutions to the consistent system (it is homogeneous, Theorem HSC [66]) can
be expressed as 

x1

x2

x3

x4

 = x3


−4
−2
1
0

+ x4


5
3
0
1
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Then with S given by

S =



−4
−2
1
0

 ,


5
3
0
1




Theorem BNS [162] guarantees the set has the desired properties.

M50 Contributed by Robert Beezer Statement [167]
We want to first find some relations of linear dependence on {v1, v2, v3, v4, v5} that will
allow us to “kick out” some vectors, in the spirit of Example SCAD [139]. To find relations
of linear dependence, we formulate a matrix A whose columns are v1, v2, v3, v4, v5.
Then we consider the homogeneous sytem of equations LS(A, 0) by row-reducing its
coefficient matrix (remember that if we formulated the augmented matrix we would just
add a column of zeros). After row-reducing, we obtain 1 0 0 2 −1

0 1 0 1 −2

0 0 1 0 0


From this we that solutions can be obtained employing the free variables x4 and x5. With
appropriate choices we will be able to conclude that vectors v4 and v5 are unnecessary
for creating W via a span. By Theorem SLSLC [106] the choice of free variables below
lead to solutions and linear combinations, which are then rearranged.

x4 = 1, x5 = 0 ⇒ (−2)v1 + (−1)v2 + (0)v3 + (1)v4 + (0)v5 = 0 ⇒ v4 = 2v1 + v2

x4 = 0, x5 = 1 ⇒ (1)v1 + (2)v2 + (0)v3 + (0)v4 + (1)v5 = 0 ⇒ v5 = −v1 − 2v2

Since v4 and v5 can be expressed as linear combinations of v1 and v2 we can say that
v4 and v5 are not needed for the linear combinations used to build W (a claim that we
could establish carefully with a pair of set equality arguments). Thus

W = 〈{v1, v2, v3}〉 =

〈
2

1
1

 ,

−1
−1
1

 ,

1
2
3


〉

That the {v1, v2, v3} is linearly independent set can be established quickly with Theo-
rem LIVRN [157].

There are other answers to this question, but notice that any nontrivial linear com-
bination of v1, v2, v3, v4, v5 will have a zero coefficient on v3, so this vector can never
be eliminated from the set used to build the span.

T15 Contributed by Robert Beezer Statement [167]
Consider the following linear combination

1 (v1 − v2) +1 (v2 − v3) + 1 (v3 − v4) + · · ·+ 1 (vn − v1)

= v1 − v2 + v2 − v3 + v3 − v4 + · · ·+ vn − v1

= v1 + 0 + 0 + · · ·+ 0− v1

= 0
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This is a nontrivial relation of linear dependence (Definition RLDCV [153]), so by Defi-
nition LICV [153] the set is linearly dependent.

T20 Contributed by Robert Beezer Statement [167]
Our hypothesis and our conclusion use the term linear independence, so it will get

a workout. To establish linear independence, we begin with the definition (Defini-
tion LICV [153]) and write a relation of linear dependence (Definition RLDCV [153]),

α1 (v1) + α2 (v1 + v2) + α3 (v1 + v2 + v3) + α4 (v1 + v2 + v3 + v4) = 0

Using the distributive and commutative properties of vector addition and scalar multi-
plication (Theorem VSPCV [96]) this equation can be rearranged as

(α1 + α2 + α3 + α4)v1 + (α2 + α3 + α4)v2 + (α3 + α4)v3 + (α4)v4 = 0

However, this is a relation of linear dependence (Definition RLDCV [153]) on a linearly
independent set, {v1, v2, v3, v4} (this was our lone hypothesis). By the definition of
linear independence (Definition LICV [153]) the scalars must all be zero. This is the
homogeneous system of equations,

α1 + α2 + α3 + α4 = 0

α2 + α3 + α4 = 0

α3 + α4 = 0

α4 = 0

Row-reducing the coefficient matrix of this system (or backsolving) gives the conclusion

α1 = 0 α2 = 0 α3 = 0 α4 = 0

This means, by Definition LICV [153], that the original set

{v1, v1 + v2, v1 + v2 + v3, v1 + v2 + v3 + v4}
is linearly independent.

T50 Contributed by Robert Beezer Statement [167]
Let A = [A1|A2|A3| . . . |An]. LS(A, b) is consistent, so we know the system has at least
one solution (Definition CS [51]). We would like to show that there are no more than
one solution to the system. Employing Technique U [691], suppose that x and y are two
solution vectors for LS(A, b). By Theorem SLSLC [106] we know we can write,

b = [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An

b = [y]1 A1 + [y]2 A2 + [y]3 A3 + · · ·+ [y]n An

Then

0 = b− b

= ([x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An)−
([y]1 A1 + [y]2 A2 + [y]3 A3 + · · ·+ [y]n An)

= ([x]1 − [y]1) A1 + ([x]2 − [y]2) A2 + · · ·+ ([x]n − [y]n) An

This is a relation of linear dependence (Definition RLDCV [153]) on a linearly indepen-
dent set (the columns of A). So the scalars must all be zero,

[x]1 − [y]1 = 0 [x]2 − [y]2 = 0 . . . [x]n − [y]n = 0

Rearranging these equations yields the statement that [x]i = [y]i, for 1 ≤ i ≤ n. However,
this is exactly how we define vector equality (Definition CVE [92]), so x = y.
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Section LDS

Linear Dependence and Spans

In any linearly dependent set there is always one vector that can be written as a linear
combination of the others. This is the substance of the upcoming Theorem DLDS [175].
Perhaps this will explain the use of the word “dependent.” In a linearly dependent set,
at least one vector “depends” on the others (via a linear combination).

Indeed, because Theorem DLDS [175] is an equivalence (Technique E [686]) some
authors use this condition as a definition (Technique D [680]) of linear dependence.
Then linear independence is defined as the logical opposite of linear dependence. Of
course, we have chosen to take Definition LICV [153] as our definition, and then present
Theorem DLDS [175] as a theorem.

Subsection LDSS
Linearly Dependent Sets and Spans

If we use a linearly dependent set to construct a span, then we can always create the same
infinite set with a starting set that is one vector smaller in size. We will illustrate this
behavior in Example RSC5 [176]. However, this will not be possible if we build a span
from a linearly independent set. So in a certain sense, using a linearly independent set to
formulate a span is the best possible way to go about it — there aren’t any extra vectors
being used to build up all the necessary linear combinations. OK, here’s the theorem,
and then the example.

Theorem DLDS
Dependency in Linearly Dependent Sets

Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors. Then S is a linearly
dependent set if and only if there is an index t, 1 ≤ t ≤ n such that ut is a linear
combination of the vectors u1, u2, u3, . . . , ut−1, ut+1, . . . , un. �

Proof (⇒) Suppose that S is linearly dependent, so there is a nontrivial relation of
linear dependence,

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0.

Since the αi cannot all be zero, choose one, say αt, that is nonzero. Then,

−αtut =α1u1 + α2u2 + α3u3 + · · ·+ αt−1ut−1 + αt+1ut+1 + · · ·+ αnun

and we can multiply by −1
αt

since αt 6= 0,

ut =
−α1

αt

u1 +
−α2

αt

u2 +
−α3

αt

u3 + · · ·+ −αt−1

αt

ut−1 +
−αt+1

αt

ut+1 + · · ·+ −αn

αt

un.

Since the values of αi

αt
are again scalars, we have expressed ut as the desired linear

combination.
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(⇐) Suppose that the vector ut is a linear combination of the other vectors in S.
Write this linear combination as

β1u1 + β2u2 + β3u3 + · · ·+ βt−1ut−1 + βt+1ut+1 + · · ·+ βnun = ut

and move ut to the other side of the equality

β1u1 + β2u2 + β3u3 + · · ·+ βt−1ut−1 + (−1)ut + βt+1ut+1 + · · ·+ βnun = 0.

Then the scalars β1, β2, β3, . . . , βt−1, βt = −1, βt+1, . . . , βn provide a nontrivial linear
combination of the vectors in S, thus establishing that S is a linearly dependent set. �

This theorem can be used, sometimes repeatedly, to whittle down the size of a set
of vectors used in a span construction. We have seen some of this already in Exam-
ple SCAD [139], but in the next example we will detail some of the subtleties.

Example RSC5
Reducing a span in C5

Consider the set of n = 4 vectors from C5,

R = {v1, v2, v3, v4} =




1
2
−1
3
2

 ,


2
1
3
1
2

 ,


0
−7
6
−11
−2

 ,


4
1
2
1
6




and define V = 〈R〉.
To employ Theorem LIVHS [155], we form a 5× 4 coefficient matrix, D,

D =


1 2 0 4
2 1 −7 1
−1 3 6 2
3 1 −11 1
2 2 −2 6


and row-reduce to understand solutions to the homogeneous system LS(D, 0),

1 0 0 4

0 1 0 0

0 0 1 1
0 0 0 0
0 0 0 0

 .

We can find infinitely many solutions to this system, most of them nontrivial, and we
choose any one we like to build a relation of linear dependence on R. Let’s begin with
x4 = 1, to find the solution 

−4
0
−1
1

 .

So we can write the relation of linear dependence,

(−4)v1 + 0v2 + (−1)v3 + 1v4 = 0.
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Theorem DLDS [175] guarantees that we can solve this relation of linear dependence for
some vector in R, but the choice of which one is up to us. Notice however that v2 has a
zero coefficient. In this case, we cannot choose to solve for v2. Maybe some other relation
of linear dependence would produce a nonzero coefficient for v2 if we just had to solve for
this vector. Unfortunately, this example has been engineered to always produce a zero
coefficient here, as you can see from solving the homogeneous system. Every solution has
x2 = 0!

OK, if we are convinced that we cannot solve for v2, let’s instead solve for v3,

v3 = (−4)v1 + 0v2 + 1v4 = (−4)v1 + 1v4.

We now claim that this particular equation will allow us to write

V = 〈R〉 = 〈{v1, v2, v3, v4}〉 = 〈{v1, v2, v4}〉

in essence declaring v3 as surplus for the task of building V as a span. This claim is
an equality of two sets, so we will use Definition SE [678] to establish it carefully. Let
R′ = {v1, v2, v4} and V ′ = 〈R′〉. We want to show that V = V ′.

First show that V ′ ⊆ V . Since every vector of R′ is in R, any vector we can construct
in V ′ as a linear combination of vectors from R′ can also be constructed as a vector in
V by the same linear combination of the same vectors in R. That was easy, now turn it
around.

Next show that V ⊆ V ′. Choose any v from V . Then there are scalars α1, α2, α3, α4

so that

v = α1v1 + α2v2 + α3v3 + α4v4

= α1v1 + α2v2 + α3 ((−4)v1 + 1v4) + α4v4

= α1v1 + α2v2 + ((−4α3)v1 + α3v4) + α4v4

= (α1 − 4α3)v1 + α2v2 + (α3 + α4)v4.

This equation says that v can then be written as a linear combination of the vectors in
R′ and hence qualifies for membership in V ′. So V ⊆ V ′ and we have established that
V = V ′.

If R′ was also linearly dependent (its not), we could reduce the set even further.
Notice that we could have chosen to eliminate any one of v1, v3 or v4, but somehow v2

is essential to the creation of V since it cannot be replaced by any linear combination of
v1, v3 or v4. �

Subsection COV
Casting Out Vectors

In Example RSC5 [176] we used four vectors to create a span. With a relation of linear
dependence in hand, we were able to “toss-out” one of these four vectors and create the
same span from a subset of just three vectors from the original set of four. We did have
to take some care as to just which vector we tossed-out. In the next example, we will be
more methodical about just how we choose to eliminate vectors from a linearly dependent
set while preserving a span.
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Example COV
Casting out vectors

We begin with a set S containing seven vectors from C4,

S =




1
2
0
−1

 ,


4
8
0
−4

 ,


0
−1
2
2

 ,


−1
3
−3
4

 ,


0
9
−4
8

 ,


7
−13
12
−31

 ,


−9
7
−8
37




and define W = 〈S〉. The set S is obviously linearly dependent by Theorem MVSLD [158],
since we have n = 7 vectors from C4. So we can slim down S some, and still create W
as the span of a smaller set of vectors. As a device for identifying relations of linear
dependence among the vectors of S, we place the seven column vectors of S into a
matrix as columns,

A = [A1|A2|A3| . . . |A7] =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37


By Theorem SLSLC [106] a nontrivial solution to LS(A, 0) will give us a nontrivial
relation of linear dependence (Definition RLDCV [153]) on the columns of A (which are
the elements of the set S). The row-reduced form for A is the matrix

B =


1 4 0 0 2 1 −3

0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0


so we can easily create solutions to the homogeneous system LS(A, 0) using the free
variables x2, x5, x6, x7. Any such solution will correspond to a relation of linear depen-
dence on the columns of I. These solutions will allow us to solve for one column vector
as a linear combination of some others, in the spirit of Theorem DLDS [175], and remove
that vector from the set. We’ll set about forming these linear combinations methodically.
Set the free variable x2 to one, and set the other free variables to zero. Then a solution
to LS(A, 0) is

x =



−4
1
0
0
0
0
0


which can be used to create the linear combination

(−4)A1 + 1A2 + 0A3 + 0A4 + 0A5 + 0A6 + 0A7 = 0

This can then be arranged and solved for A2, resulting in A2 expressed as a linear
combination of {A1, A3, A4},

A2 = 4A1 + 0A3 + 0A4
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This means that A2 is surplus, and we can create W just as well with a smaller set with
this vector removed,

W = 〈{A1, A3, A4, A5, A6, A7}〉

Technically, this set equality for W requires a proof, in the spirit of Example RSC5 [176],
but we will bypass this requirement here, and in the next few paragraphs.

Now, set the free variable x5 to one, and set the other free variables to zero. Then a
solution to LS(I, 0) is

x =



−2
0
−1
−2
1
0
0


which can be used to create the linear combination

(−2)A1 + 0A2 + (−1)A3 + (−2)A4 + 1A5 + 0A6 + 0A7 = 0

This can then be arranged and solved for A5, resulting in A5 expressed as a linear
combination of {A1, A3, A4},

A5 = 2A1 + 1A3 + 2A4

This means that A5 is surplus, and we can create W just as well with a smaller set with
this vector removed,

W = 〈{A1, A3, A4, A6, A7}〉

Do it again, set the free variable x6 to one, and set the other free variables to zero.
Then a solution to LS(I, 0) is

x =



−1
0
3
6
0
1
0


which can be used to create the linear combination

(−1)A1 + 0A2 + 3A3 + 6A4 + 0A5 + 1A6 + 0A7 = 0

This can then be arranged and solved for A6, resulting in A6 expressed as a linear
combination of {A1, A3, A4},

A6 = 1A1 + (−3)A3 + (−6)A4

This means that A6 is surplus, and we can create W just as well with a smaller set with
this vector removed,

W = 〈{A1, A3, A4, A7}〉
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Set the free variable x7 to one, and set the other free variables to zero. Then a solution
to LS(I, 0) is

x =



3
0
−5
−6
0
0
1


which can be used to create the linear combination

3A1 + 0A2 + (−5)A3 + (−6)A4 + 0A5 + 0A6 + 1A7 = 0

This can then be arranged and solved for A7, resulting in A7 expressed as a linear
combination of {A1, A3, A4},

A7 = (−3)A1 + 5A3 + 6A4

This means that A7 is surplus, and we can create W just as well with a smaller set with
this vector removed,

W = 〈{A1, A3, A4}〉
You might think we could keep this up, but we have run out of free variables. And

not coincidentally, the set {A1, A3, A4} is linearly independent (check this!). It should
be clear how each free variable was used to eliminate the corresponding column from the
set used to span the column space, as this will be the essence of the proof of the next
theorem. The column vectors in S were not chosen entirely at random, they are the
columns of Archetype I [739]. See if you can mimic this example using the columns of
Archetype J [744]. Go ahead, we’ll go grab a cup of coffee and be back before you finish
up.

For extra credit, notice that the vector

b =


3
9
1
4


is the vector of constants in the definition of Archetype I [739]. Since the system LS(I, b)
is consistent, we know by Theorem SLSLC [106] that b is a linear combination of the
columns of A, or stated equivalently, b ∈ W . This means that b must also be a linear
combination of just the three columns A1, A3, A4. Can you find such a linear combina-
tion? Did you notice that there is just a single (unique) answer? Hmmmm. �

Example COV [178] deserves your careful attention, since this important example
motivates the following very fundamental theorem.

Theorem BS
Basis of a Span
Suppose that S = {v1, v2, v3, . . . , vn} is a set of column vectors. Define W = 〈S〉 and

let A be the matrix whose columns are the vectors from S. Let B be the reduced row-
echelon form of A, with D = {d1, d2, d3, . . . , dr} the set of column indices corresponding
to the pivot columns of B. Then
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1. T = {vd1 , vd2 , vd3 , . . . vdr} is a linearly independent set.

2. W = 〈T 〉.

�

Proof To prove that T is linearly independent, begin with a relation of linear dependence
on T ,

0 = α1vd1 + α2vd2 + α3vd3 + . . . + αrvdr

and we will try to conclude that the only possibility for the scalars αi is that they are all
zero. Denote the non-pivot columns of B by F = {f1, f2, f3, . . . , fn−r}. Then we can
preserve the equality by adding a big fat zero to the linear combination,

0 = α1vd1 + α2vd2 + α3vd3 + . . . + αrvdr + 0vf1 + 0vf2 + 0vf3 + . . . + 0vfn−r

By Theorem SLSLC [106], the scalars in this linear combination (suitably reordered) are
a solution to the homogeneous system LS(A, 0). But notice that this is the solution
obtained by setting each free variable to zero. If we consider the description of a so-
lution vector in the conclusion of Theorem VFSLS [113], in the case of a homogeneous
system, then we see that if all the free variables are set to zero the resulting solution
vector is trivial (all zeros). So it must be that αi = 0, 1 ≤ i ≤ r. This implies by
Definition LICV [153] that T is a linearly independent set.

The second conclusion of this theorem is an equality of sets (Definition SE [678]).
Since T is a subset of S, any linear combination of elements of the set T can also be
viewed as a linear combination of elements of the set S. So 〈T 〉 ⊆ 〈S〉 = W . It remains
to prove that W = 〈S〉 ⊆ 〈T 〉.

For each k, 1 ≤ k ≤ n− r, form a solution x to LS(A, 0) by setting the free variables
as follows:

xf1 = 0 xf2 = 0 xf3 = 0 . . . xfk
= 1 . . . xfn−r = 0

By Theorem VFSLS [113], the remainder of this solution vector is given by,

xd1 = − [B]1,fk
xd2 = − [B]2,fk

xd3 = − [B]3,fk
. . . xdr = − [B]r,fk

From this solution, we obtain a relation of linear dependence on the columns of A,

− [B]1,fk
vd1 − [B]2,fk

vd2 − [B]3,fk
vd3 − . . .− [B]r,fk

vdr + 1vfk
= 0

which can be arranged as the equality

vfk
= [B]1,fk

vd1 + [B]2,fk
vd2 + [B]3,fk

vd3 + . . . + [B]r,fk
vdr

Now, suppose we take an arbitrary element, w, of W = 〈S〉 and write it as a linear
combination of the elements of S, but with the terms organized according to the indices
in D and F ,

w = α1vd1 + α2vd2 + α3vd3 + . . . + αrvdr + β1vf1 + β2vf2 + β3vf3 + . . . + βn−rvfn−r

From the above, we can replace each vfj
by a linear combination of the vdi

,

w = α1vd1 + α2vd2 + α3vd3 + . . . + αrvdr+
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β1

(
[B]1,f1

vd1 + [B]2,f1
vd2 + [B]3,f1

vd3 + . . . + [B]r,f1
vdr

)
+

β2

(
[B]1,f2

vd1 + [B]2,f2
vd2 + [B]3,f2

vd3 + . . . + [B]r,f2
vdr

)
+

β3

(
[B]1,f3

vd1 + [B]2,f3
vd2 + [B]3,f3

vd3 + . . . + [B]r,f3
vdr

)
+

...

βn−r

(
[B]1,fn−r

vd1 + [B]2,fn−r
vd2 + [B]3,fn−r

vd3 + . . . + [B]r,fn−r
vdr

)
With repeated applications of several of the properties of Theorem VSPCV [96] we can
rearrange this expression as,

=
(
α1 + β1 [B]1,f1

+ β2 [B]1,f2
+ β3 [B]1,f3

+ . . . + βn−r [B]1,fn−r

)
vd1+(

α2 + β1 [B]2,f1
+ β2 [B]2,f2

+ β3 [B]2,f3
+ . . . + βn−r [B]2,fn−r

)
vd2+(

α3 + β1 [B]3,f1
+ β2 [B]3,f2

+ β3 [B]3,f3
+ . . . + βn−r [B]3,fn−r

)
vd3+

...(
αr + β1 [B]r,f1

+ β2 [B]r,f2
+ β3 [B]r,f3

+ . . . + βn−r [B]r,fn−r

)
vdr

This mess expresses the vector w as a linear combination of the vectors in

T = {vd1 , vd2 , vd3 , . . . vdr}

thus saying that w ∈ 〈T 〉. Therefore, W = 〈S〉 ⊆ 〈T 〉. �

In Example COV [178], we tossed-out vectors one at a time. But in each instance, we
rewrote the offending vector as a linear combination of those vectors that corresponded to
the pivot columns of the reduced row-echelon form of the matrix of columns. In the proof
of Theorem BS [180], we accomplish this reduction in one big step. In Example COV [178]
we arrived at a linearly independent set at exactly the same moment that we ran out of
free variables to exploit. This was not a coincidence, it is the substance of our conclusion
of linear independence in Theorem BS [180].

Here’s a straightfoward application of Theorem BS [180].

Example RSSC4
Reducing a span in C4

Begin with a set of five vectors from C4,

S =




1
1
2
1

 ,


2
2
4
2

 ,


2
0
−1
1

 ,


7
1
−1
4

 ,


0
2
5
1




and let W = 〈S〉. To arrive at a (smaller) linearly independent set, follow the procedure
described in Theorem BS [180]. Place the vectors from S into a matrix as columns, and
row-reduce, 

1 2 2 7 0
1 2 0 1 2
2 4 −1 −1 5
1 2 1 4 1

 RREF−−−→


1 2 0 1 2

0 0 1 3 −1
0 0 0 0 0
0 0 0 0 0
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Columns 1 and 3 are the pivot columns (D = {1, 3}) so the set

T =




1
1
2
1

 ,


2
0
−1
1




is linearly independent and 〈T 〉 = 〈S〉 = W . Boom!
Since the reduced row-echelon form of a matrix is unique (Theorem RREFU [122]),

the procedure of Theorem BS [180] leads us to a unique set T . However, there is a wide
variety of possibilites for sets T that are linearly independent and which can be employed
in a span to create W . Without proof, we list two other possibilities:

T ′ =




2
2
4
2

 ,


2
0
−1
1




T ∗ =




3
1
1
2

 ,


−1
1
3
0




Can you prove that T ′ and T ∗ are linearly independent sets and W = 〈S〉 = 〈T ′〉 = 〈T ∗〉?
�

Example RES
Reworking elements of a span

Begin with a set of five vectors from C4,

R =




2
1
3
2

 ,


−1
1
0
1

 ,


−8
−1
−9
−4

 ,


3
1
−1
−2

 ,


−10
−1
−1
4




It is easy to create elements of X = 〈R〉 — we will create one at random,

y = 6


2
1
3
2

+ (−7)


−1
1
0
1

+ 1


−8
−1
−9
−4

+ 6


3
1
−1
−2

+ 2


−10
−1
−1
4

 =


9
2
1
−3


We know we can replace R by a smaller set (since it is obviously linearly dependent by
Theorem MVSLD [158]) that will create the same span. Here goes,

2 −1 −8 3 −10
1 1 −1 1 −1
3 0 −9 −1 −1
2 1 −4 −2 4

 RREF−−−→


1 0 −3 0 −1

0 1 2 0 2

0 0 0 1 −2
0 0 0 0 0


So, if we collect the first, second and fourth vectors from R,

P =




2
1
3
2

 ,


−1
1
0
1

 ,


3
1
−1
−2
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then P is linearly independent and 〈P 〉 = 〈R〉 = X by Theorem BS [180]. Since we
built y as an element of 〈R〉 it must also be an element of 〈P 〉. Can we write y as a
linear combination of just the three vectors in P? The answer is, of course, yes. But let’s
compute an explicit linear combination just for fun. By Theorem SLSLC [106] we can
get such a linear combination by solving a system of equations with the column vectors
of R as the columns of a coefficient matrix, and y as the vector of constants. Employing
an augmented matrix to solve this system,

2 −1 3 9
1 1 1 2
3 0 −1 1
2 1 −2 −3

 RREF−−−→


1 0 0 1

0 1 0 −1

0 0 1 2
0 0 0 0


So we see, as expected, that

1


2
1
3
2

+ (−1)


−1
1
0
1

+ 2


3
1
−1
−2

 =


9
2
1
−3

 = y

A key feature of this example is that the linear combination that expresses y as a linear
combination of the vectors in P is unique. This is a consequence of the linear indepen-
dence of P . The linearly independent set P is smaller than R, but still just (barely) big
enough to create elements of the set X = 〈R〉. There are many, many ways to write y
as a linear combination of the five vectors in R (the appropriate system of equations to
verify this claim has two free variables in the description of the solution set), yet there
is precisely one way to write y as a linear combination of the three vectors in P . �

Subsection READ
Reading Questions

1. Let S be the linearly dependent set of three vectors below.

S =




1
10
100
1000

 ,


1
1
1
1

 ,


5
23
203
2003




Write one vector from S as a linear combination of the other two (you should
be able to do this on sight, rather than doing some computations). Convert this
expression into a relation of linear dependence on S.

2. Explain why the word “dependent” is used in the definition of linear dependence.

3. Suppose that Y = 〈P 〉 = 〈Q〉, where P is a linearly dependent set and Q is linearly
independent. Would you rather use P or Q to describe Y ? Why?
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Subsection EXC
Exercises

C20 Let T be the set of columns of the matrix B below. Define W = 〈T 〉. Find a set
R so that (1) R has 3 vectors, (2) R is a subset of T , and (3) W = 〈R〉.

B =

−3 1 −2 7
−1 2 1 4
1 1 2 −1


Contributed by Robert Beezer Solution [187]

C40 Verify that the set R′ = {v1, v2, v4} at the end of Example RSC5 [176] is linearly
independent.
Contributed by Robert Beezer

C50 Consider the set of vectors from C3, W , given below. Find a linearly independent
set T that contains three vectors from W and such that 〈W 〉 = 〈T 〉.

W = {v1, v2, v3, v4, v5} =


2

1
1

 ,

−1
−1
1

 ,

1
2
3

 ,

3
1
3

 ,

 0
1
−3


Contributed by Robert Beezer Solution [187]

C51 Given the set S below, find a linearly independent set T so that 〈T 〉 = 〈S〉.

S =


 2
−1
2

 ,

3
0
1

 ,

 1
1
−1

 ,

 5
−1
3


Contributed by Robert Beezer Solution [188]

C55 Let T be the set of vectors T =


 1
−1
2

 ,

3
0
1

 ,

4
2
3

 ,

3
0
6

. Find two different

subsets of T , named R and S, so that R and S each contain three vectors, and so that
〈R〉 = 〈T 〉 and 〈S〉 = 〈T 〉. Prove that both R and S are linearly independent.
Contributed by Robert Beezer Solution [187]

C70 Reprise Example RES [183] by creating a new version of the vector y. In other
words, form a new, different linear combination of the vectors in R to create a new vector
y (but do not simplify the problem too much by choosing any of the five new scalars to
be zero). Then express this new y as a combination of the vectors in P .
Contributed by Robert Beezer

M10 At the conclusion of Example RSSC4 [182] two alternative solutions, sets T ′ and
T ∗, are proposed. Verify these claims by proving that 〈T 〉 = 〈T ′〉 and 〈T 〉 = 〈T ∗〉.
Contributed by Robert Beezer
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T40 Suppose that v1 and v2 are any two vectors from Cm. Prove the following set
equality.

〈{v1, v2}〉 = 〈{v1 + v2, v1 − v2}〉

Contributed by Robert Beezer Solution [188]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [185]

Let T = {w1, w2, w3, w4}. The vector


2
−1
0
1

 is a solution to the homogeneous system

with the matrix B as the coefficient matrix (check this!). By Theorem SLSLC [106] it
provides the scalars for a linear combination of the columns of B (the vectors in T ) that
equals the zero vector, a relation of linear dependence on T ,

2w1 + (−1)w2 + (1)w4 = 0

We can rearrange this equation by solving for w4,

w4 = (−2)w1 + w2

This equation tells us that the vector w4 is superfluous in the span construction that
creates W . So W = 〈{w1, w2, w3}〉. The requested set is R = {w1, w2, w3}.

C50 Contributed by Robert Beezer Statement [185]
To apply Theorem BS [180], we formulate a matrix A whose columns are v1, v2, v3, v4, v5.
Then we row-reduce A. After row-reducing, we obtain 1 0 0 2 −1

0 1 0 1 −2

0 0 1 0 0


From this we that the pivot columns are D = {1, 2, 3}. Thus

T = {v1, v2, v3} =


2

1
1

 ,

−1
−1
1

 ,

1
2
3


is a linearly independent set and 〈T 〉 = W . Compare this problem with Exercise LI.M50 [167].

C55 Contributed by Robert Beezer Statement [185]
Let A be the matrix whose columns are the vectors in T . Then row-reduce A,

A
RREF−−−→ B =

 1 0 0 2

0 1 0 −1

0 0 1 1


From Theorem BS [180] we can form R by choosing the columns of A that correspond
to the pivot columns of B. Theorem BS [180] also guarantees that R will be linearly
independent.

R =


 1
−1
2

 ,

3
0
1

 ,

4
2
3
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That was easy. To find S will require a bit more work. From B we can obtain a solution
to LS(A, 0), which by Theorem SLSLC [106] will provide a nontrivial relation of linear
dependence on the columns of A, which are the vectors in T . To wit, choose the free
variable x4 to be 1, then x1 = −2, x2 = 1, x3 = −1, and so

(−2)

 1
−1
2

+ (1)

3
0
1

+ (−1)

4
2
3

+ (1)

3
0
6

 =

0
0
0


this equation can be rewritten with the second vector staying put, and the other three
moving to the other side of the equality,3

0
1

 = (2)

 1
−1
2

+ (1)

4
2
3

+ (−1)

3
0
6


We could have chosen other vectors to stay put, but may have then needed to divide
by a nonzero scalar. This equation is enough to conclude that the second vector in T is
“surplus” and can be replaced (see the careful argument in Example RSC5 [176]). So set

S =


 1
−1
2

 ,

4
2
3

 ,

3
0
6


and then 〈S〉 = 〈T 〉. T is also a linearly independent set, which we can show directly.
Make a matrix C whose columns are the vectors in S. Row-reduce B and you will obtain
the identity matrix I3. By Theorem LIVRN [157], the set S is linearly independent.

C51 Contributed by Robert Beezer Statement [185]
Theorem BS [180] says we can make a matrix with these four vectors as columns, row-

reduce, and just keep the columns with indices in the set D. Here we go, forming the
relevant matrix and row-reducing, 2 3 1 5

−1 0 1 −1
2 1 −1 3

 RREF−−−→

 1 0 −1 1

0 1 1 1
0 0 0 0


Analyzing the row-reduced version of this matrix, we see that the firast two columns are
pivot columns, so D = {1, 2}. Theorem BS [180] says we need only “keep” the first two
columns to create a set with the requisite properties,

T =


 2
−1
2

 ,

3
0
1


T40 Contributed by Robert Beezer Statement [186]
This is an equality of sets, so Definition SE [678] applies.

The “easy” half first. Show that X = 〈{v1 + v2, v1 − v2}〉 ⊆ 〈{v1, v2}〉 = Y .
Choose x ∈ X. Then x = a1(v1 + v2) + a2(v1 − v2) for some scalars a1 and a2. Then,

x = a1(v1 + v2) + a2(v1 − v2)
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= a1v1 + a1v2 + a2v1 + (−a2)v2

= (a1 + a2)v1 + (a1 − a2)v2

which qualifies x for membership in Y , as it is a linear combination of v1, v2.
Now show the opposite inclusion, Y = 〈{v1, v2}〉 ⊆ 〈{v1 + v2, v1 − v2}〉 = X.

Choose y ∈ Y . Then there are scalars b1, b2 such that y = b1v1 + b2v2. Rearranging, we
obtain,

y = b1v1 + b2v2

=
b1

2
[(v1 + v2) + (v1 − v2)] +

b2

2
[(v1 + v2)− (v1 − v2)]

=
b1 + b2

2
(v1 + v2) +

b1 − b2

2
(v1 − v2)

This is an expression for y as a linear combination of v1 + v2 and v1 − v2, earning y
membership in X. Since X is a subset of Y , and vice versa, we see that X = Y , as
desired.
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Section O

Orthogonality

In this section we define a couple more operations with vectors, and prove a few theorems.
These definitions and results are not central to what follows, but we will make use of them
frequently throughout the remainder of the course on various occasions. Because we have
chosen to use C as our set of scalars, this subsection is a bit more, uh, . . . complex than
it would be for the real numbers. We’ll explain as we go along how things get easier for
the real numbers R. If you haven’t already, now would be a good time to review some of
the basic properties of arithmetic with complex numbers described in Section CNO [673].
With that done, we can extend the basics of complex number arithmetic to our study of
vectors in Cm.

Subsection CAV
Complex arithmetic and vectors

We know how the addition and multiplication of complex numbers is employed in defining
the operations for vectors in Cm (Definition CVA [93] and Definition CVSM [93]). We
can also extend the idea of the conjugate to vectors.

Definition CCCV
Complex Conjugate of a Column Vector
Suppose that u is a vector from Cm. Then the conjugate of the vector, u, is defined by

[u]i = [u]i 1 ≤ i ≤ m

(This definition contains Notation CCCV.) 4
With this definition we can show that the conjugate of a column vector behaves as

we would expect with regard to vector addition and scalar multiplication.

Theorem CRVA
Conjugation Respects Vector Addition

Suppose x and y are two vectors from Cm. Then

x + y = x + y

�

Proof Apply the definition of vector addition (Definition CVA [93]) and the definition
of the conjugate of a vector (Definition CCCV [191]), and in each component apply the
similar property for complex numbers (Theorem CCRA [674]). �

Theorem CRSM
Conjugation Respects Vector Scalar Multiplication

Suppose x is a vector from Cm, and α ∈ C is a scalar. Then

αx = αx
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�

Proof Apply the definition of scalar multiplication (Definition CVSM [93]) and the
definition of the conjugate of a vector (Definition CCCV [191]), and in each component
apply the similar property for complex numbers (Theorem CCRM [675]). �

These two theorems together tell us how we can “push” complex conjugation through
linear combinations.

Subsection IP
Inner products

Definition IP
Inner Product

Given the vectors u, v ∈ Cm the inner product of u and v is the scalar quantity in
C,

〈u, v〉 = [u]1 [v]1 + [u]2 [v]2 + [u]3 [v]3 + · · ·+ [u]m [v]m =
m∑

i=1

[u]i [v]i

(This definition contains Notation IP.) 4
This operation is a bit different in that we begin with two vectors but produce a

scalar. Computing one is straightforward.

Example CSIP
Computing some inner products

The scalar product of

u =

2 + 3i
5 + 2i
−3 + i

 and v =

 1 + 2i
−4 + 5i
0 + 5i


is

〈u, v〉 = (2 + 3i)(1 + 2i) + (5 + 2i)(−4 + 5i) + (3 + i)(0 + 5i)

= (2 + 3i)(1− 2i) + (5 + 2i)(−4− 5i) + (3 + i)(0− 5i)

= (8− i) + (−10− 33i) + (5 + 15i)

= 3− 19i

The scalar product of

w =


2
4
−3
2
8

 and x =


3
1
0
−1
−2


is

〈w, x〉 = 2(3)+4(1)+(−3)(0)+2(−1)+8(−2) = 2(3)+4(1)+(−3)0+2(−1)+8(−2) = −8.
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�

In the case where the entries of our vectors are all real numbers (as in the second part
of Example CSIP [192]), the computation of the inner product may look familiar and be
known to you as a dot product or scalar product. So you can view the inner product
as a generalization of the scalar product to vectors from Cm (rather than Rm).

There are several quick theorems we can now prove, and they will each be useful
later.

Theorem IPVA
Inner Product and Vector Addition

Suppose uv,w ∈ Cm. Then

1. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
2. 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉

�

Proof The proofs of the two parts are very similar, with the second one requiring just
a bit more effort due to the conjugation that occurs. We will prove part 2 and you can
prove part 1 (Exercise O.T10 [205]).

〈u, v + w〉 =
m∑

i=1

[u]i [v + w]i Definition IP [192]

=
m∑

i=1

[u]i ([v]i + [w]i) Definition CVA [93]

=
m∑

i=1

[u]i ([v]i + [w]i) Theorem CCRA [674]

=
m∑

i=1

[u]i [v]i + [u]i [w]i Distributivity in C

=
m∑

i=1

[u]i [v]i +
m∑

i=1

[u]i [w]i Commutativity in C

= 〈u, v〉+ 〈u, w〉 Definition IP [192]

�

Theorem IPSM
Inner Product and Scalar Multiplication

Suppose u, v ∈ Cm and α ∈ C. Then

1. 〈αu, v〉 = α 〈u, v〉
2. 〈u, αv〉 = α 〈u, v〉

�

Proof The proofs of the two parts are very similar, with the second one requiring just
a bit more effort due to the conjugation that occurs. We will prove part 2 and you can
prove part 1 (Exercise O.T11 [205]).

〈u, αv〉 =
m∑

i=1

[u]i [αv]i Definition IP [192]
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=
m∑

i=1

[u]i α [v]i Definition CVSM [93]

=
m∑

i=1

[u]i α [v]i Theorem CCRM [675]

= α

m∑
i=1

[u]i [v]i Distributivity, Commutativity in C

= α 〈u, v〉 Definition IP [192]

�

Theorem IPAC
Inner Product is Anti-Commutative

Suppose that u and v are vectors in Cm. Then 〈u, v〉 = 〈v, u〉. �

Proof

〈u, v〉 =
m∑

i=1

[u]i [v]i Definition IP [192]

=
m∑

i=1

[u]i [v]i Theorem CCT [675]

=
m∑

i=1

[u]i [v]i Theorem CCRM [675]

=

(
m∑

i=1

[u]i [v]i

)
Theorem CCRA [674]

=

(
m∑

i=1

[v]i [u]i

)
Commutativity in C

= 〈v, u〉 Definition IP [192]

�

Subsection N
Norm

If treating linear algebra in a more geometric fashion, the length of a vector occurs
naturally, and is what you would expect from its name. With complex numbers, we
will define a similar function. Recall that if c is a complex number, then |c| denotes its
modulus (Definition MCN [675]).

Definition NV
Norm of a Vector
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The norm of the vector u is the scalar quantity in C

‖u‖ =

√
|[u]1|

2 + |[u]2|
2 + |[u]3|

2 + · · ·+ |[u]m|
2 =

√√√√ m∑
i=1

|[u]i|
2

(This definition contains Notation NV.) 4
Computing a norm is also easy to do.

Example CNSV
Computing the norm of some vectors

The norm of

u =


3 + 2i
1− 6i
2 + 4i
2 + i


is

‖u‖ =

√
|3 + 2i|2 + |1− 6i|2 + |2 + 4i|2 + |2 + i|2 =

√
13 + 37 + 20 + 5 =

√
75 = 5

√
3.

The norm of

v =


3
−1
2
4
−3


is

‖v‖ =

√
|3|2 + |−1|2 + |2|2 + |4|2 + |−3|2 =

√
32 + 12 + 22 + 42 + 32 =

√
39.

�

Notice how the norm of a vector with real number entries is just the length of the
vector. Inner products and norms are related by the following theorem.

Theorem IPN
Inner Products and Norms

Suppose that u is a vector in Cm. Then ‖u‖2 = 〈u, u〉. �

Proof

‖u‖2 =

√√√√ m∑
i=1

|[u]i|
2

2

Definition NV [195]

=
m∑

i=1

|[u]i|
2

=
m∑

i=1

[u]i [u]i Definition MCN [675]

= 〈u, u〉 Definition IP [192]

�
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When our vectors have entries only from the real numbers Theorem IPN [195] says
that the dot product of a vector with itself is equal to the length of the vector squared.

Theorem PIP
Positive Inner Products

Suppose that u is a vector in Cm. Then 〈u, u〉 ≥ 0 with equality if and only if u = 0.
�

Proof From the proof of Theorem IPN [195] we see that

〈u, u〉 = |[u]1|
2 + |[u]2|

2 + |[u]3|
2 + · · ·+ |[u]m|

2

Since each modulus is squared, every term is positive, and the sum must also be positive.
(Notice that in general the inner product is a complex number and cannot be compared
with zero, but in the special case of 〈u, u〉 the result is a real number.) The phrase,
“with equality if and only if” means that we want to show that the statement 〈u, u〉 = 0
(i.e. with equality) is equivalent (“if and only if”) to the statement u = 0.

If u = 0, then it is a straightforward computation to see that 〈u, u〉 = 0. In the other
direction, assume that 〈u, u〉 = 0. As before, 〈u, u〉 is a sum of moduli. So we have

0 = 〈u, u〉 = |[u]1|
2 + |[u]2|

2 + |[u]3|
2 + · · ·+ |[u]m|

2

Now we have a sum of squares equaling zero, so each term must be zero. Then by similar
logic, |[u]i| = 0 will imply that [u]i = 0, since 0 + 0i is the only complex number with
zero modulus. Thus every entry of u is zero and so u = 0, as desired. �

Notice that Theorem PIP [196] contains three implications: u is any vector⇒ 〈u, u〉 ≥
0, u = 0 ⇒ 〈u, u〉 = 0, and 〈u, u〉 = 0 ⇒ u = 0. The results contained in Theo-
rem PIP [196] are summarized by saying “the inner product is positive definite.”

Subsection OV
Orthogonal Vectors

“Orthogonal” is a generalization of “perpendicular.” You may have used mutually per-
pendicular vectors in a physics class, or you may recall from a calculus class that perpen-
dicular vectors have a zero dot product. We will now extend these ideas into the realm
of higher dimensions and complex scalars.

Definition OV
Orthogonal Vectors
A pair of vectors, u and v, from Cm are orthogonal if their inner product is zero, that

is, 〈u, v〉 = 0. 4

Example TOV
Two orthogonal vectors

The vectors

u =


2 + 3i
4− 2i
1 + i
1 + i

 v =


1− i
2 + 3i
4− 6i

1
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are orthogonal since

〈u, v〉 = (2 + 3i)(1 + i) + (4− 2i)(2− 3i) + (1 + i)(4 + 6i) + (1 + i)(1)

= (−1 + 5i) + (2− 16i) + (−2 + 10i) + (1 + i)

= 0 + 0i.

�

We extend this definition to whole sets by requiring vectors to be pairwise orthogonal.
Despite using the same word, careful thought about what objects you are using will
eliminate any source of confusion.

Definition OSV
Orthogonal Set of Vectors

Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors from Cm. Then the set S is
orthogonal if every pair of different vectors from S is orthogonal, that is 〈ui, uj〉 = 0
whenever i 6= j. 4

The next example is trivial in some respects, but is still worthy of discussion since it
is the prototypical orthogonal set.

Example SUVOS
Standard Unit Vectors are an Orthogonal Set
The standard unit vectors are the columns of the identity matrix (Definition SUV [242]).

Computing the inner product of two distinct vectors, ei, ej, i 6= j, gives,

〈ei, ej〉 = 00 + 00 + · · ·+ 10 + · · ·+ 00 + · · ·+ 01 + · · ·+ 00 + 00

= 0(0) + 0(0) + · · ·+ 1(0) + · · ·+ 0(1) + · · ·+ 0(0) + 0(0)

= 0

�

Example AOS
An orthogonal set

The set

{x1, x2, x3, x4} =




1 + i
1

1− i
i

 ,


1 + 5i
6 + 5i
−7− i
1− 6i

 ,


−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 ,


−2− 4i
6 + i
4 + 3i
6− i




is an orthogonal set. Since the inner product is anti-commutative (Theorem IPAC [194])
we can test pairs of different vectors in any order. If the result is zero, then it will also
be zero if the inner product is computed in the opposite order. This means there are six
pairs of different vectors to use in an inner product computation. We’ll do two and you
can practice your inner products on the other four.

〈x1, x3〉 = (1 + i)(−7− 34i) + (1)(−8 + 23i) + (1− i)(−10− 22i) + (i)(30− 13i)

= (27− 41i) + (−8 + 23i) + (−32− 12i) + (13 + 30i)

= 0 + 0i
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and

〈x2, x4〉 = (1 + 5i)(−2 + 4i) + (6 + 5i)(6− i) + (−7− i)(4− 3i) + (1− 6i)(6 + i)

= (−22− 6i) + (41 + 24i) + (−31 + 17i) + (12− 35i)

= 0 + 0i

�

So far, this section has seen lots of definitions, and lots of theorems establishing un-
surprising consequences of those definitions. But here is our first theorem that suggests
that inner products and orthogonal vectors have some utility. It is also one of our first
illustrations of how to arrive at linear independence as the conclusion of a theorem.

Theorem OSLI
Orthogonal Sets are Linearly Independent

Suppose that S = {u1, u2, u3, . . . , un} is an orthogonal set of nonzero vectors. Then
S is linearly independent. �

Proof To prove linear independence of a set of vectors, we can appeal to the defi-
nition (Definition LICV [153]) and begin with a relation of linear dependence (Defini-
tion RLDCV [153]),

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0.

Then, for every 1 ≤ i ≤ n, we have

0 = 0 〈ui, ui〉
= 〈0ui, ui〉 Theorem IPSM [193]

= 〈0, ui〉 Theorem CVSM [324]

= 〈α1u1 + α2u2 + α3u3 + · · ·+ αnun, ui〉 Relation of linear dependence

= 〈α1u1, ui〉+ 〈α2u2, ui〉+ 〈α3u3, ui〉+ · · ·+ 〈αnun, ui〉 Theorem IPVA [193]

= α1 〈u1, ui〉+ α2 〈u2, ui〉+ α3 〈u3, ui〉
+ · · ·+ αi 〈ui, ui〉+ · · ·+ αn 〈un, ui〉 Theorem IPSM [193]

= α1(0) + α2(0) + α3(0) + · · ·+ αi 〈ui, ui〉+ · · ·+ αn(0) Orthogonal set

= αi 〈ui, ui〉

So we have 0 = αi 〈ui, ui〉. However, since ui 6= 0 (the hypothesis said our vectors were
nonzero), Theorem PIP [196] says that 〈ui, ui〉 > 0. So we must conclude that αi = 0
for all 1 ≤ i ≤ n. But this says that S is a linearly independent set since the only way to
form a relation of linear dependence is the trivial way, with all the scalars zero. Boom!
�

Subsection GSP
Gram-Schmidt Procedure

The Gram-Schmidt Procedure is really a theorem. It says that if we begin with a linearly
independent set of p vectors, S, then we can do a number of calculations with these vectors
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and produce an orthogonal set of p vectors, T , so that 〈S〉 = 〈T 〉. Given the large number
of computations involved, it is indeed a procedure to do all the necessary computations,
and it is best employed on a computer. However, it also has value in proofs where we
may on occasion wish to replace a linearly independent set by an orthogonal set.

Theorem GSPCV
Gram-Schmidt Procedure, Column Vectors

Suppose that S = {v1, v2, v3, . . . , vp} is a linearly independent set of vectors in Cm.
Define the vectors ui, 1 ≤ i ≤ p by

ui = vi −
〈vi, u1〉
〈u1, u1〉

u1 −
〈vi, u2〉
〈u2, u2〉

u2 −
〈vi, u3〉
〈u3, u3〉

u3 − · · · −
〈vi, ui−1〉
〈ui−1, ui−1〉

ui−1

Then if T = {u1, u2, u3, . . . , up}, then T is an orthogonal set of non-zero vectors, and
〈T 〉 = 〈S〉. �

Proof We will prove the result by using induction on p (Technique I [695]). To begin,
we prove that T has the desired properties when p = 1. In this case u1 = v1 and
T = {u1} = {v1} = S. Because S and T are equal, 〈S〉 = 〈T 〉. Equally trivial, T is an
orthogonal set. If u1 = 0, then S would be a linearly dependent set, a contradiction.

Now suppose that the theorem is true for any set of p − 1 linearly independent
vectors. Let S = {v1, v2, v3, . . . , vp} be a linearly independent set of p vectors. Then
S ′ = {v1, v2, v3, . . . , vp−1} is also linearly independent. So we can apply the theorem to
S ′ and construct the vectors T ′ = {u1, u2, u3, . . . , up−1}. T ′ is therefore an orthogonal
set of nonzero vectors and 〈S ′〉 = 〈T ′〉. Define

up = vp −
〈vp, u1〉
〈u1, u1〉

u1 −
〈vp, u2〉
〈u2, u2〉

u2 −
〈vp, u3〉
〈u3, u3〉

u3 − · · · −
〈vp, up−1〉
〈up−1, up−1〉

up−1

and let T = T ′ ∪ {up}. We need to now show that T has several properties by building
on what we know about T ′. But first notice that the above equation has no problems
with the denominators (〈ui, ui〉) being zero, since the ui are from T ′, which is composed
of nonzero vectors.

We show that 〈T 〉 = 〈S〉, by first establishing that 〈T 〉 ⊆ 〈S〉. Suppose x ∈ 〈T 〉, so

x = a1u1 + a2u2 + a3u3 + · · ·+ apup

The term apup is a linear combination of vectors from T ′ and the vector vp, while the
remaining terms are a linear combination of vectors from T ′. Since 〈T ′〉 = 〈S ′〉, any term
that is a multiple of a vector from T ′ can be rewritten as a linear combination of vectors
from S ′. The remaining term apvp is a multiple of a vector in S. So we see that x can
be rewritten as a linear combination of vectors from S, i.e. x ∈ 〈S〉.

To show that 〈S〉 ⊆ 〈T 〉, begin with y ∈ 〈S〉, so

y = a1v1 + a2v2 + a3v3 + · · ·+ apvp

Rearrange our defining equation for up by solving for vp. Then the term apvp is a multiple
of a linear combination of elements of T . The remaining terms are a linear combination
of v1, v2, v3, . . . , vp−1, hence an element of 〈S ′〉 = 〈T ′〉. Thus these remaining terms
can be written as a linear combination of the vectors in T ′. So y is a linear combination
of vectors from T , i.e. y ∈ 〈T 〉.
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The elements of T ′ are nonzero, but what about up? Suppose to the contrary that
up = 0,

0 = up = vp −
〈vp, u1〉
〈u1, u1〉

u1 −
〈vp, u2〉
〈u2, u2〉

u2 −
〈vp, u3〉
〈u3, u3〉

u3 − · · · −
〈vp, up−1〉
〈up−1, up−1〉

up−1

vp =
〈vp, u1〉
〈u1, u1〉

u1 +
〈vp, u2〉
〈u2, u2〉

u2 +
〈vp, u3〉
〈u3, u3〉

u3 + · · ·+ 〈vp, up−1〉
〈up−1, up−1〉

up−1

Since 〈S ′〉 = 〈T ′〉 we can write the vectors u1, u2, u3, . . . , up−1 on the right side of this
equation in terms of the vectors v1, v2, v3, . . . , vp−1 and we then have the vector vp

expressed as a linear combination of the other p − 1 vectors in S, implying that S is a
linearly dependent set (Theorem DLDS [175]), contrary to our lone hypothesis about S.

Finally, it is a simple matter to establish that T is an orthogonal set, though it will not
appear so simple looking. Think about your objects as you work through the following
— what is a vector and what is a scalar. Since T ′ is an orthogonal set by induction, most
pairs of elements in T are orthogonal. We just need to test inner products between up

and ui, for 1 ≤ i ≤ p− 1. Here we go, using summation notation,

〈up, ui〉 =

〈
vp −

p−1∑
k=1

〈vp, uk〉
〈uk, uk〉

uk, ui

〉

= 〈vp, ui〉 −

〈
p−1∑
k=1

〈vp, uk〉
〈uk, uk〉

uk, ui

〉
Theorem IPVA [193]

= 〈vp, ui〉 −
p−1∑
k=1

〈
〈vp, uk〉
〈uk, uk〉

uk, ui

〉
Theorem IPVA [193]

= 〈vp, ui〉 −
p−1∑
k=1

〈vp, uk〉
〈uk, uk〉

〈uk, ui〉 Theorem IPSM [193]

= 〈vp, ui〉 −
〈vp, ui〉
〈ui, ui〉

〈ui, ui〉 −
∑
k 6=i

〈vp, uk〉
〈uk, uk〉

(0) T ′ orthogonal

= 〈vp, ui〉 − 〈vp, ui〉 −
∑
k 6=i

0

= 0

�

Example GSTV
Gram-Schmidt of three vectors
We will illustrate the Gram-Schmidt process with three vectors. Begin with the linearly

independent (check this!) set

S = {v1, v2, v3} =


 1

1 + i
1

 ,

 −i
1

1 + i

 ,

0
i
i


Then

u1 = v1 =

 1
1 + i

1
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u2 = v2 −
〈v2, u1〉
〈u1, u1〉

u1 =
1

4

−2− 3i
1− i
2 + 5i


u3 = v3 −

〈v3, u1〉
〈u1, u1〉

u1 −
〈v3, u2〉
〈u2, u2〉

u2 =
1

11

−3− i
1 + 3i
−1− i


and

T = {u1, u2, u3} =


 1

1 + i
1

 ,
1

4

−2− 3i
1− i
2 + 5i

 ,
1

11

−3− i
1 + 3i
−1− i


is an orthogonal set (which you can check) of nonzero vectors and 〈T 〉 = 〈S〉 (all by
Theorem GSPCV [199]). Of course, as a by-product of orthogonality, the set T is also
linearly independent (Theorem OSLI [198]). �

One final definition related to orthogonal vectors.

Definition ONS
OrthoNormal Set

Suppose S = {u1, u2, u3, . . . , un} is an orthogonal set of vectors such that ‖ui‖ = 1
for all 1 ≤ i ≤ n. Then S is an orthonormal set of vectors. 4

Once you have an orthogonal set, it is easy to convert it to an orthonormal set —
multiply each vector by the reciprocal of its norm, and the resulting vector will have
norm 1. This scaling of each vector will not affect the orthogonality properties (apply
Theorem IPSM [193]).

Example ONTV
Orthonormal set, three vectors

The set

T = {u1, u2, u3} =


 1

1 + i
1

 ,
1

4

−2− 3i
1− i
2 + 5i

 ,
1

11

−3− i
1 + 3i
−1− i


from Example GSTV [200] is an orthogonal set. We compute the norm of each vector,

‖u1‖ = 2 ‖u2‖ =
1

2

√
11 ‖u3‖ =

√
2√
11

Converting each vector to a norm of 1, yields an orthonormal set,

w1 =
1

2

 1
1 + i

1


w2 =

1
1
2

√
11

1

4

−2− 3i
1− i
2 + 5i

 =
1

2
√

11

−2− 3i
1− i
2 + 5i


w3 =

1
√

2√
11

1

11

−3− i
1 + 3i
−1− i

 =
1√
22

−3− i
1 + 3i
−1− i
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�

Example ONFV
Orthonormal set, four vectors

As an exercise convert the linearly independent set

S =




1 + i
1

1− i
i

 ,


i

1 + i
−1
−i

 ,


i
−i
−1 + i

1

 ,


−1− i

i
1
−1




to an orthogonal set via the Gram-Schmidt Process (Theorem GSPCV [199]) and then
scale the vectors to norm 1 to create an orthonormal set. You should get the same set you
would if you scaled the orthogonal set of Example AOS [197] to become an orthonormal
set. �

Computation Note GSP.MMA
Gram-Schmidt Procedure (Mathematica)

Mathematica has a built-in routine that will do the Gram-Schmidt procedure (Theo-
rem GSPCV [199]). The input is a set of vectors, which must be linearly independent.
This is written as a list, containing lists that are the vectors. Let a be such a list of lists,
containing the vectors vi, 1 ≤ i ≤ p from the statement of the theorem. You will need to
first load the right Mathematica package — execute <<LinearAlgebra‘Orthogonalization‘

to make this happen. Then execute GramSchmidt[a] . The output will be another list
of lists containing the vectors ui, 1 ≤ i ≤ p from the statement of the theorem. Math-
ematica will complain if you do not provide a linearly independent set as input (try
it!).

An example. Suppose our linearly independent set (check this!) is

S =




−1
4
1
0
3

 ,


0
3
0
3
−3

 ,


−1
2
0
−1
−2

 ,


−1
−2
−3
1
4

 ,


1
6
−1
4
6




The output of the GramSchmidt[ ] command will be the set,

T =




− 1

3
√

3
4

3
√

3
1

3
√

3

0
1√
3

 ,



1
12
√

15
23

12
√

15

− 1
12
√

15
3
√

3
5

4

−
√

5
3

2

 ,


− 37

4
√

685
29

4
√

685

− 3
4
√

685

− 79
4
√

685

−5
√

5
137

2

 ,


− 337

2
√

120423

− 37
6
√

120423

− 1763
6
√

120423
337

6
√

120423
50√

120423

 ,


23√
879
26

3
√

879

− 44
3
√

879

− 23
3
√

879
1√
879




Ugly, but true. At this stage, you might just as well be encouraged to think of the Gram-
Schmidt procedure as a computational black box, linearly independent set in, orthogonal
span-preserving set out.

To check that the output set is orthogonal, we can easily check the orthogonal-
ity of individual pairs of vectors. Suppose the output was set equal to b (say via
b=GramSchmidt[a] ). We can extract the individual vectors of c as “parts” with syntax
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like c[[3]] , which would return the third vector in the set. When our vectors have only
real number entries, we can accomplish an innerproduct with a “dot.” So, for example,
you should discover that c[[3]].c[[5]] will return zero. Try it yourself with another
pair of vectors. ⊕

Over the course of the next couple of chapters we will discover that orthonormal sets
have some very nice properties (in addition to being linearly independent).

Subsection READ
Reading Questions

1. Is the set 
 1
−1
2

 ,

 5
3
−1

 ,

 8
4
−2


an orthogonal set? Why?

2. What is the distinction between an orthogonal set and an orthonormal set?

3. What is nice about the output of the Gram-Schmidt process?
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Subsection EXC
Exercises

C20 Complete Example AOS [197] by verifying that the four remaining inner products
are zero.

Contributed by Robert Beezer

C21 Verify that the set T created in Example GSTV [200] by the Gram-Schmidt
Procedure is an orthogonal set.
Contributed by Robert Beezer

T10 Prove part 1 of the conclusion of Theorem IPVA [193].
Contributed by Robert Beezer

T11 Prove part 1 of the conclusion of Theorem IPSM [193].
Contributed by Robert Beezer
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Chapter M: Matrices

We have made frequent use of matrices for solving systems of equations, and we have
begun to investigate a few of their properties, such as the null space and nonsingularity.
In this chapter, we will take a more systematic approach to the study of matrices.

Section MO

Matrix Operations

In this section we will back up and start simple. First a definition of a totally general
set of matrices.

Definition VSM
Vector Space of m× n Matrices

The vector space Mmn is the set of all m × n matrices with entries from the set of
complex numbers. 4

Subsection MEASM
Matrix equality, addition, scalar multiplication

Just as we made, and used, a careful definition of equality for column vectors, so too, we
have precise definitions for matrices.

Definition ME
Matrix Equality

The m × n matrices A and B are equal, written A = B provided [A]ij = [B]ij for all
1 ≤ i ≤ m, 1 ≤ j ≤ n.
(This definition contains Notation ME.) 4

So equality of matrices translates to the equality of complex numbers, on an entry-
by-entry basis. Notice that we now have our fourth definition that uses the symbol ‘=’
for shorthand. Whenever a theorem has a conclusion saying two matrices are equal
(think about your objects), we will consider appealing to this definition as a way of
formulating the top-level structure of the proof. We will now define two operations on
the set Mmn. Again, we will overload a symbol (‘+’) and a convention (juxtaposition for
scalar multiplication).

207
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Definition MA
Matrix Addition

Given the m × n matrices A and B, define the sum of A and B as an m × n matrix,
written A + B, according to

[A + B]ij = [A]ij + [B]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n

4
So matrix addition takes two matrices of the same size and combines them (in a

natural way!) to create a new matrix of the same size. Perhaps this is the “obvious”
thing to do, but it doesn’t relieve us from the obligation to state it carefully.

Example MA
Addition of two matrices in M23

If

A =

[
2 −3 4
1 0 −7

]
B =

[
6 2 −4
3 5 2

]
then

A + B =

[
2 −3 4
1 0 −7

]
+

[
6 2 −4
3 5 2

]
=

[
2 + 6 −3 + 2 4 + (−4)
1 + 3 0 + 5 −7 + 2

]
=

[
8 −1 0
4 5 −5

]
�

Our second operation takes two objects of different types, specifically a number and
a matrix, and combines them to create another matrix. As with vectors, in this context
we call a number a scalar in order to emphasize that it is not a matrix.

Definition MSM
Matrix Scalar Multiplication
Given the m×n matrix A and the scalar α ∈ C, the scalar multiple of A is an m×n

matrix, written αA and defined according to

[αA]ij = α [A]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n

4
Notice again that we have yet another kind of multiplication, and it is again written

putting two symbols side-by-side. Computationally, scalar matrix multiplication is very
easy.

Example MSM
Scalar multiplication in M32

If

A =

 2 8
−3 5
0 1


and α = 7, then

αA = 7

 2 8
−3 5
0 1

 =

 7(2) 7(8)
7(−3) 7(5)
7(0) 7(1)

 =

 14 56
−21 35
0 7


�

Its usually straightforward to have a calculator do these computations.
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Subsection VSP
Vector Space Properties

With definitions of matrix addition and scalar multiplication we can now state, and prove,
several properties of each operation, and some properties that involve their interplay. We
now collect ten of them here for later reference.

Theorem VSPM
Vector Space Properties of Matrices
Suppose that Mmn is the set of all m×n matrices (Definition VSM [207]) with addition

and scalar multiplication as defined in Definition MA [208] and Definition MSM [208].
Then

• ACM Additive Closure, Matrices
If A, B ∈Mmn, then A + B ∈Mmn.

• SCM Scalar Closure, Matrices
If α ∈ C and A ∈Mmn, then αA ∈Mmn.

• CM Commutativity, Matrices
If A, B ∈Mmn, then A + B = B + A.

• AAM Additive Associativity, Matrices
If A, B, C ∈Mmn, then A + (B + C) = (A + B) + C.

• ZM Zero Vector, Matrices
There is a matrix, O, called the zero matrix, such that A+O = A for all A ∈Mmn.

• AIM Additive Inverses, Matrices
If A ∈Mmn, then there exists a matrix −A ∈Mmn so that A + (−A) = O.

• SMAM Scalar Multiplication Associativity, Matrices
If α, β ∈ C and A ∈Mmn, then α(βA) = (αβ)A.

• DMAM Distributivity across Matrix Addition, Matrices
If α ∈ C and A, B ∈Mmn, then α(A + B) = αA + αB.

• DSAM Distributivity across Scalar Addition, Matrices
If α, β ∈ C and A ∈Mmn, then (α + β)A = αA + βA.

• OM One, Matrices
If A ∈Mmn, then 1A = A.

�

Proof While some of these properties seem very obvious, they all require proof. How-
ever, the proofs are not very interesting, and border on tedious. We’ll prove one version
of distributivity very carefully, and you can test your proof-building skills on some of
the others. We’ll give our new notation for matrix entries a workout here. Compare the
style of the proofs here with those given for vectors in Theorem VSPCV [96] — while
the objects here are more complicated, our notation makes the proofs cleaner.
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To prove Property DSAM [209], (α+β)A = αA+βA, we need to establish the equality
of two matrices (see Technique GS [684]). Definition ME [207] says we need to establish
the equality of their entries, one-by-one. How do we do this, when we do not even know
how many entries the two matrices might have? This is where Notation ME [207] comes
into play. Ready? Here we go.

For any i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[(α + β)A]ij = (α + β) [A]ij Definition MSM [208]

= α [A]ij + β [A]ij Distributivity in C
= [αA]ij + [βA]ij Definition MSM [208]

= [αA + βA]ij Definition MA [208]

There are several things to notice here. (1) Each equals sign is an equality of numbers.
(2) The two ends of the equation, being true for any i and j, allow us to conclude the
equality of the matrices by Definition ME [207]. (3) There are several plus signs, and
several instances of juxtaposition. Identify each one, and state exactly what operation is
being represented by each. �

For now, note the similarities between Theorem VSPM [209] about matrices and
Theorem VSPCV [96] about vectors.

The zero matrix described in this theorem, O, is what you would expect — a matrix
full of zeros.

Definition ZM
Zero Matrix

The m × n zero matrix is written as O = Om×n and defined by [O]ij = 0, for all
1 ≤ i ≤ m, 1 ≤ j ≤ n.
(This definition contains Notation ZM.) 4

Subsection TSM
Transposes and Symmetric Matrices

We describe one more common operation we can perform on matrices. Informally, to
transpose a matrix is to build a new matrix by swapping its rows and columns.

Definition TM
Transpose of a Matrix

Given an m× n matrix A, its transpose is the n×m matrix At given by[
At
]
ij

= [A]ji , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(This definition contains Notation TM.) 4

Example TM
Transpose of a 3× 4 matrix

Suppose

D =

 3 7 2 −3
−1 4 2 8
0 3 −2 5

 .
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We could formulate the transpose, entry-by-entry, using the definition. But it is easier
to just systematically rewrite rows as columns (or vice-versa). The form of the definition
given will be more useful in proofs. So we have

Dt =


3 −1 0
7 4 3
2 2 −2
−3 8 5


�

It will sometimes happen that a matrix is equal to its transpose. In this case, we
will call a matrix symmetric. These matrices occur naturally in certain situations, and
also have some nice properties, so it is worth stating the definition carefully. Informally
a matrix is symmetric if we can “flip” it about the main diagonal (upper-left corner,
running down to the lower-right corner) and have it look unchanged.

Definition SYM
Symmetric Matrix

The matrix A is symmetric if A = At. 4

Example SYM
A symmetric 5× 5 matrix

The matrix

E =


2 3 −9 5 7
3 1 6 −2 −3
−9 6 0 −1 9
5 −2 −1 4 −8
7 −3 9 −8 −3


is symmetric. �

You might have noticed that Definition SYM [211] did not specify the size of the
matrix A, as has been our custom. That’s because it wasn’t necessary. An alternative
would have been to state the definition just for square matrices, but this is the substance
of the next proof. Before reading the next proof, peek at Technique P [697] for some
more advice about becoming proficient at constructing proofs, and perhaps apply that
advice to the next theorem.

Theorem SMS
Symmetric Matrices are Square

Suppose that A is a symmetric matrix. Then A is square. �

Proof We start by specifying A’s size, without assuming it is square, since we are trying
to prove that, so we can’t also assume it. Suppose A is an m × n matrix. Because A
is symmetric, we know by Definition SM [418] that A = At. So, in particular, Defini-
tion ME [207] requires that A and At must have the same size. The size of At is n×m.
Because A has m rows and At has n rows, we conclude that m = n, and hence A must
be square. �

We finish this section with three easy theorems, but they illustrate the interplay of
our three new operations, our new notation, and the techniques used to prove matrix
equalities.
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Theorem TMA
Transpose and Matrix Addition

Suppose that A and B are m× n matrices. Then (A + B)t = At + Bt. �

Proof The statement to be proved is an equality of matrices, so we work entry-by-entry
and use Definition ME [207]. Think carefully about the objects involved here, and the
many uses of the plus sign.[

(A + B)t
]
ij

= [A + B]ji Definition TM [210]

= [A]ji + [B]ji Definition MA [208]

=
[
At
]
ij

+
[
Bt
]
ij

Definition TM [210]

=
[
At + Bt

]
ij

Definition MA [208]

Since the matrices (A + B)t and At + Bt agree at each entry, Definition ME [207] tells
us the two matrices are equal. �

Theorem TMSM
Transpose and Matrix Scalar Multiplication

Suppose that α ∈ C and A is an m× n matrix. Then (αA)t = αAt. �

Proof The statement to be proved is an equality of matrices, so we work entry-by-entry
and use Definition ME [207]. Think carefully about the objects involved here, the many
uses of juxtaposition.[

(αA)t
]
ij

= [αA]ji Definition TM [210]

= α [A]ji Definition MSM [208]

= α
[
At
]
ij

Definition TM [210]

=
[
αAt

]
ij

Definition MSM [208]

Since the matrices (αA)t and αAt agree at each entry, Definition ME [207] tells us the
two matrices are equal. �

Theorem TT
Transpose of a Transpose

Suppose that A is an m× n matrix. Then (At)
t
= A. �

Proof We again want to prove an equality of matrices, so we work entry-by-entry and
use Definition ME [207].[(

At
)t]

ij
=
[
At
]
ji

Definition TM [210]

= [A]ij Definition TM [210]

�

Its usually pretty straightforward to coax the transpose of a matrix out of a calcula-
tor.

Computation Note TM.MMA
Transpose of a Matrix (Mathematica)

Contributed by Robert Beezer
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Suppose a is the name of a matrix stored in Mathematica. Then Transpose[a] will
create the transpose of a . ⊕

Computation Note TM.TI86
Transpose of a Matrix (TI-86)

Contributed by Eric Fickenscher
Suppose A is the name of a matrix stored in the TI-86. Use the command AT to transpose
A . This command can be found by pressing the MATRX key, then F3 for MATH , then
F2 for T. ⊕

Subsection MCC
Matrices and Complex Conjugation

As we did with vectors (Definition CCCV [191]), we can define what it means to take
the conjugate of a matrix.

Definition CCM
Complex Conjugate of a Matrix
Suppose A is an m×n matrix. Then the conjugate of A, written A is an m×n matrix

defined by [
A
]
ij

= [A]ij

4

Example CCM
Complex conjugate of a matrix

If

A =

[
2− i 3 5 + 4i
−3 + 6i 2− 3i 0

]
then

A =

[
2 + i 3 5− 4i
−3− 6i 2 + 3i 0

]
�

The interplay between the conjugate of a matrix and the two operations on matrices
is what you might expect.

Theorem CRMA
Conjugation Respects Matrix Addition

Suppose that A and B are m× n matrices. Then A + B = A + B. �

Proof [
A + B

]
ij

= [A + B]ij Definition CCM [213]

= [A]ij + [B]ij Definition MA [208]

= [A]ij + [B]ij Theorem CCRA [674]

=
[
A
]
ij

+
[
B
]
ij

Definition CCM [213]
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=
[
A + B

]
ij

Definition MA [208]

Since the matrices A + B and A + B are equal in each entry, Definition ME [207] says
that A + B = A + B. �

Theorem CRMSM
Conjugation Respects Matrix Scalar Multiplication

Suppose that α ∈ C and A is an m× n matrix. Then αA = αA. �

Proof [
αA
]
ij

= [αA]ij Definition CCM [213]

= α [A]ij Definition MSM [208]

= α[A]ij Theorem CCRM [675]

= α
[
A
]
ij

Definition CCM [213]

=
[
αA
]
ij

Definition MSM [208]

Since the matrices αA and αA are equal in each entry, Definition ME [207] says that
αA = αA. �

Finally, we will need the following result about matrix conjugation and transposes
later.

Theorem MCT
Matrix Conjugation and Transposes

Suppose that A is an m× n matrix. Then (At) =
(
A
)t

. �

Proof [
(At)

]
ij

= [At]ij Definition CCM [213]

= [A]ji Definition TM [210]

=
[
A
]
ji

Definition CCM [213]

=
[(

A
)t]

ij
Definition TM [210]

Since the matrices (At) and
(
A
)t

are equal in each entry, Definition ME [207] says that

(At) =
(
A
)t

. �

Subsection READ
Reading Questions

1. Perform the following matrix computation.

(6)

2 −2 8 1
4 5 −1 3
7 −3 0 2

+ (−2)

2 7 1 2
3 −1 0 5
1 7 3 3
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2. Theorem VSPM [209] reminds you of what previous theorem? How strong is the
similarity?

3. Compute the transpose of the matrix below. 6 8 4
−2 1 0
9 −5 6
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Subsection EXC
Exercises

In Chapter V [91] we defined the operations of vector addition and vector scalar multipli-
cation in Definition CVA [93] and Definition CVSM [93]. These two operations formed
the underpinnings of the remainder of the chapter. We have now defined similar opera-
tions for matrices in Definition MA [208] and Definition MSM [208]. You will have noticed
the resulting similarities between Theorem VSPCV [96] and Theorem VSPM [209].

In Exercises M20–M25, you will be asked to extend these similarities to other funda-
mental definitions and concepts we first saw in Chapter V [91]. This sequence of problems
was suggested by Martin Jackson.

M20 Suppose S = {B1, B2, B3, . . . , Bp} is a set of matrices from Mmn. Formu-
late appropriate definitions for the following terms and give an example of the use of
each.

1. A linear combination of elements of S.

2. A relation of linear dependence on S, both trivial and non-trivial.

3. S is a linearly independent set.

4. 〈S〉.

Contributed by Robert Beezer

M21 Show that the set S is linearly independent in M2,2.

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Contributed by Robert Beezer

M22 Determine if the set

S =

{[
−2 3 4
−1 3 −2

]
,

[
4 −2 2
0 −1 1

]
,

[
−1 −2 −2
2 2 2

]
,

[
−1 1 0
−1 0 −2

]
,

[
−1 2 −2
0 −1 −2

]}
is linearly independent in M2,3.

Contributed by Robert Beezer

M23 Determine if the matrix A is in the span of S. In other words, is A ∈ 〈S〉? If so
write A as a linear combination of the elements of S.

A =

[
−13 24 2
−8 −2 −20

]
S =

{[
−2 3 4
−1 3 −2

]
,

[
4 −2 2
0 −1 1

]
,

[
−1 −2 −2
2 2 2

]
,

[
−1 1 0
−1 0 −2

]
,

[
−1 2 −2
0 −1 −2

]}
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Contributed by Robert Beezer

M24 Suppose Y is the set of all 3 × 3 symmetric matrices (Definition SYM [211]).
Find a set T so that T is linearly independent and 〈T 〉 = Y .
Contributed by Robert Beezer

M25 Define a subset of M3,3 by

U33 =
{

A ∈M3,3 | [A]ij = 0 whenever i > j
}

Find a set R so that R is linearly independent and 〈R〉 = U33.
Contributed by Robert Beezer

T13 Prove Property CM [209] of Theorem VSPM [209]. Write your proof in the style
of the proof of Property DSAM [209] given in this section.
Contributed by Robert Beezer Solution [219]

T17 Prove Property SMAM [209] of Theorem VSPM [209]. Write your proof in the
style of the proof of Property DSAM [209] given in this section.
Contributed by Robert Beezer

T18 Prove Property DMAM [209] of Theorem VSPM [209]. Write your proof in the
style of the proof of Property DSAM [209] given in this section.
Contributed by Robert Beezer

Version 0.85



Subsection MO.SOL Solutions 219

Subsection SOL
Solutions

T13 Contributed by Robert Beezer Statement [218]
For all A, B ∈Mmn and for all 1 ≤ i ≤ m, 1 ≤ i ≤ n,

[A + B]ij = [A]ij + [B]ij Definition MA [208]

= [B]ij + [A]ij Commutativity in C
= [B + A]ij Definition MA [208]

With equality of each entry of the matrices A + B and B + A being equal Defini-
tion ME [207] tells us the two matrices are equal.
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Section MM

Matrix Multiplication

We know how to add vectors and how to multiply them by scalars. Together, these
operations give us the possibility of making linear combinations. Similarly, we know how
to add matrices and how to multiply matrices by scalars. In this section we mix all these
ideas together and produce an operation known as matrix multiplication. This will lead
to some results that are both surprising and central. We begin with a definition of how
to multiply a vector by a matrix.

Subsection MVP
Matrix-Vector Product

We have repeatedly seen the importance of forming linear combinations of the columns
of a matrix. As one example of this, the oft-used Theorem SLSLC [106], said that every
solution to a system of linear equations gives rise to a linear combination of the column
vectors of the coefficient matrix that equals the vector of constants. This theorem, and
others, motivates the following central definition.

Definition MVP
Matrix-Vector Product

Suppose A is an m× n matrix with columns A1, A2, A3, . . . , An and u is a vector of
size n. Then the matrix-vector product of A with u is the linear combination

Au = [u]1 A1 + [u]2 A2 + [u]3 A3 + · · ·+ [u]n An

(This definition contains Notation MVP.) 4

So, the matrix-vector product is yet another version of “multiplication,” at least in
the sense that we have yet again overloaded juxtaposition of two symbols as our notation.
Remember your objects, an m × n matrix times a vector of size n will create a vector
of size m. So if A is rectangular, then the size of the vector changes. With all the
linear combinations we have performed so far, this computation should now seem second
nature.

Example MTV
A matrix times a vector

Consider

A =

 1 4 2 3 4
−3 2 0 1 −2
1 6 −3 −1 5

 u =


2
1
−2
3
−1
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Then

Au = 2

 1
−3
1

+ 1

4
2
6

+ (−2)

 2
0
−3

+ 3

 3
1
−1

+ (−1)

 4
−2
5

 =

7
1
6

 .

�

This definition now makes it possible to represent systems of linear equations com-
pactly in terms of an operation.

Theorem SLEMM
Systems of Linear Equations as Matrix Multiplication

Solutions to the linear system LS(A, b) are the solutions for x in the vector equation
Ax = b. �

Proof This theorem says that two sets (of solutions) are equal. So we need to show that
one set of solutions is a subset of the other, and vice versa (recall Definition SE [678]).
Let A1, A2, A3, . . . , An be the columns of A. Both of these set inclusions then follow
from the following chain of equivalences,

x is a solution to LS(A, b)

⇐⇒ [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An = b Theorem SLSLC [106]

⇐⇒ x is a solution to Ax = b Definition MVP [221]

�

Example MNSLE
Matrix notation for systems of linear equations

Consider the system of linear equations from Example NSLE [70].

2x1 + 4x2 − 3x3 + 5x4 + x5 = 9

3x1 + x2 + x4 − 3x5 = 0

−2x1 + 7x2 − 5x3 + 2x4 + 2x5 = −3

has coefficient matrix

A =

 2 4 −3 5 1
3 1 0 1 −3
−2 7 −5 2 2


and vector of constants

b =

 9
0
−3


and so will be described compactly by the vector equation Ax = b. �

The matrix-vector product is a very natural computation. We have motivated it by
its connections with systems of equations, but here is a another example.

Example MBC
Money’s best cities

Every year Money magazine selects several cities in the United States as the “best”
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cities to live in, based on a wide arrary of statistics about each city. This is an example of
how the editors of Money might arrive at a single number that consolidates the statistics
about a city. We will analyze Los Angeles, Chicago and New York City, based on four
criteria: average high temperature in July (Farenheit), number of colleges and universities
in a 30-mile radius, number of toxic waste sites in the Superfund clean-up program and a
personal crime index based on FBI statistics (average = 100, smaller is safer). It should
be apparent how to generalize the example to a greater number of cities and a greater
number of statistics.

We begin by building a table of statistics. The rows will be labeled with the cities,
and the columns with statistical categories. These values are from Money’s website in
early 2005.

City Temp Colleges Superfund Crime

Los Angeles 77 28 93 254
Chicago 84 38 85 363
New York 84 99 1 193

Conceivably these data might reside in a spreadsheet. Now we must combine the statistics
for each city. We could accomplish this by weighting each category, scaling the values
and summing them. The sizes of the weights would depend upon the numerical size of
each statistic generally, but more importantly, they would reflect the editors opinions or
beliefs about which statistics were most important to their readers. Is the crime index
more important than the number of colleges and universities? Of course, there is no right
answer to this question.

Suppose the editors finally decide on the following weights to employ: temperature,
0.23; colleges, 0.46; Superfund, −0.05; crime, −0.20. Notice how negative weights are
used for undesirable statistics. Then, for example, the editors would compute for Los
Angeles,

(0.23)(77) + (0.46)(28) + (−0.05)(93) + (−0.20)(254) = −24.86

This computation might remind you of an inner product, but we will produce the com-
putations for all of the cities as a matrix-vector product. Write the table of raw statistics
as a matrix

T =

77 28 93 254
84 38 85 363
84 99 1 193


and the weights as a vector

w =


0.23
0.46
−0.05
−0.20


then the matrix-vector product (Definition MVP [221]) yields

Tw = (0.23)

77
84
84

+ (0.46)

28
38
99

+ (−0.05)

93
85
1

+ (−0.20)

254
363
193

 =

−24.86
−40.05
26.21


This vector contains a single number for each of the cities being studied, so the editors
would rank New York best, Los Angeles next, and Chicago third. Of course, the mayor’s
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offices in Chicago and Los Angeles are free to counter with a different set of weights that
cause their city to be ranked best. These alternative weights would be chosen to play to
each cities’ strengths, and minimize their problem areas.

If a speadsheet were used to make these computations, a row of weights would be
entered somewhere near the table of data and the formulas in the spreadsheet would effect
a matrix-vector product. This example is meant to illustrate how “linear” computations
(addition, multiplication) can be organized as a matrix-vector product.

Another example would be the matrix of numerical scores on examinations and ex-
ercises for students in a class. The rows would correspond to students and the columns
to exams and assignments. The instructor could then assign weights to the different
exams and assignments, and via a matrix-vector product, compute a single score for each
student. �

Later (much later) we will need the following theorem. Since we are in a position to
prove it now, we will. But you can safely skip it now, if you promise to come back later
to study the proof when the theorem is employed.

Theorem EMMVP
Equal Matrices and Matrix-Vector Products
Suppose that A and B are m× n matrices such that Ax = Bx for every x ∈ Cn. Then

A = B. �

Proof Since Ax = Bx for all x ∈ Cn, choose x to be a vector of all zeros, with a lone
1 in the i-th slot. Then

Ax = [A1|A2|A3| . . . |An]



0
0
0
...
0
1
0
...
0


= 0A1 + 0A2 + 0A3 + · · ·+ 0Ai−1 + 1Ai + 0Ai+1 + · · ·+ 0An Definition MVP [221]

= Ai

Similarly, Bx = Bi, so Ai = Bi, 1 ≤ i ≤ n and so all the columns of A and B are equal.
Then our definition of column vector equality (Definition CVE [92]) establishes that the
individual entries of A and B in each column are equal. So by Definition ME [207] the
matrices A and B are equal. �

The hypotheses of this theorem could be weakened to suppose only the equality of
the matrix-vector products for just the standard unit vectors (Definition SUV [242]) or
any other basis (Definition B [367]) of Cn. However, when we apply this theorem we will
only need this weaker form.
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Subsection MM
Matrix Multiplication

We now define how to multiply two matrices together. Stop for a minute and think about
how you might define this new operation.

Many books would present this definition much earlier in the course. However, we have
taken great care to delay it as long as possible and to present as many ideas as practical
based mostly on the notion of linear combinations. Towards the conclusion of the course,
or when you perhaps take a second course in linear algebra, you may be in a position
to appreciate the reasons for this. For now, understand that matrix multiplication is a
central definition and perhaps you will appreciate its importance more by having saved
it for later.

Definition MM
Matrix Multiplication
Suppose A is an m×n matrix and B is an n×p matrix with columns B1, B2, B3, . . . , Bp.

Then the matrix product of A with B is the m×p matrix where column i is the matrix-
vector product ABi. Symbolically,

AB = A [B1|B2|B3| . . . |Bp] = [AB1|AB2|AB3| . . . |ABp] .

4

Example PTM
Product of two matrices

Set

A =

 1 2 −1 4 6
0 −4 1 2 3
−5 1 2 −3 4

 B =


1 6 2 1
−1 4 3 2
1 1 2 3
6 4 −1 2
1 −2 3 0


Then

AB =

A


1
−1
1
6
1


∣∣∣∣∣∣∣∣∣∣
A


6
4
1
4
−2


∣∣∣∣∣∣∣∣∣∣
A


2
3
2
−1
3


∣∣∣∣∣∣∣∣∣∣
A


1
2
3
2
0


 =

 28 17 20 10
20 −13 −3 −1
−18 −44 12 −3

 .

�

Is this the definition of matrix multiplication you expected? Perhaps our previous
operations for matrices caused you to think that we might multiply two matrices of the
same size, entry-by-entry? Notice that our current definition uses matrices of different
sizes (though the number of columns in the first must equal the number of rows in the
second), and the result is of a third size. Notice too in the previous example that we
cannot even consider the product BA, since the sizes of the two matrices in this order
aren’t right.
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But it gets weirder than that. Many of your old ideas about “multiplication” won’t
apply to matrix multiplication, but some still will. So make no assumptions, and don’t
do anything until you have a theorem that says you can. Even if the sizes are right,
matrix multiplication is not commutative — order matters.

Example MMNC
Matrix Multiplication is not commutative

Set

A =

[
1 3
−1 2

]
B =

[
4 0
5 1

]
.

Then we have two square, 2 × 2 matrices, so Definition MM [225] allows us to multiply
them in either order. We find

AB =

[
19 3
6 2

]
BA =

[
4 12
4 17

]
and AB 6= BA. Not even close. It should not be hard for you to construct other pairs
of matrices that do not commute (try a couple of 3 × 3’s). Can you find a pair of
non-identical matrices that do commute? �

Computation Note MM.MMA
Matrix Multiplication (Mathematica)

If A and B are matrices defined in Mathematica, then A.B will return the product
of the two matrices (notice the dot between the matrices). If A is a matrix and v is a
vector, then A.v will return the vector that is the matrix-vector product of A and v.
In every case the sizes of the matrices and vectors need to be correct.

Some examples:

{{1, 2}, {3, 4}}.{{5, 6, 7}, {8, 9, 10}} = {{21, 24, 27}, {47, 54, 61}}
{{1, 2}, {3, 4}}.{{5}, {6}} = {{17}, {39}}

{{1, 2}, {3, 4}}.{5, 6} = {17, 39}

Understanding the difference between the last two examples will go a long way to ex-
plaining how some Mathematica constructs work. ⊕

Subsection MMEE
Matrix Multiplication, Entry-by-Entry

While certain “natural” properties of multiplication don’t hold, many more do. In the
next subsection, we’ll state and prove the relevant theorems. But first, we need a theorem
that provides an alternate means of multiplying two matrices. In many texts, this would
be given as the definition of matrix multiplication. We prefer to turn it around and have
the following formula as a consequence of the definition. It will prove useful for proofs of
matrix equality, where we need to examine products of matrices, entry-by-entry.
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Theorem EMP
Entries of Matrix Products

Suppose A is an m × n matrix and B = is an n × p matrix. Then for 1 ≤ i ≤ m,
1 ≤ j ≤ p, the individual entries of AB are given by

[AB]ij = [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj =
n∑

k=1

[A]ik [B]kj

�

Proof Denote the columns of A as the vectors A1, A2, A3, . . . , An and the columns
of B as the vectors B1, B2, B3, . . . , Bp. Then for 1 ≤ i ≤ m, 1 ≤ j ≤ p,

[AB]ij = [ABj]i Definition MM [225]

=
[
[Bj]1 A1 + [Bj]2 A2 + [Bj]3 A3 + · · ·+ [Bj]n An

]
i

Definition MVP [221]

=
[
[Bj]1 A1

]
i
+
[
[Bj]2 A2

]
i
+
[
[Bj]3 A3

]
i
+ · · ·+

[
[Bj]n An

]
i

Definition CVA [93]

= [Bj]1 [A1]i + [Bj]2 [A2]i + [Bj]3 [A3]i + · · ·+ [Bj]n [An]i Definition CVSM [93]

= [B]1j [A]i1 + [B]2j [A]i2 + [B]3j [A]i3 + · · ·+ [B]nj [A]in Notation

= [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj Commutativity in C

=
n∑

k=1

[A]ik [B]kj

�

Example PTMEE
Product of two matrices, entry-by-entry

Consider again the two matrices from Example PTM [225]

A =

 1 2 −1 4 6
0 −4 1 2 3
−5 1 2 −3 4

 B =


1 6 2 1
−1 4 3 2
1 1 2 3
6 4 −1 2
1 −2 3 0


Then suppose we just wanted the entry of AB in the second row, third column:

[AB]23 = [A]21 [B]13 + [A]22 [B]23 + [A]23 [B]33 + [A]24 [B]43 + [A]25 [B]53
=(0)(2) + (−4)(3) + (1)(2) + (2)(−1) + (3)(3) = −3

Notice how there are 5 terms in the sum, since 5 is the common dimension of the two
matrices (column count for A, row count for B). In the conclusion of Theorem EMP [227],
it would be the index k that would run from 1 to 5 in this computation. Here’s a bit
more practice.

The entry of third row, first column:

[AB]31 = [A]31 [B]11 + [A]32 [B]21 + [A]33 [B]31 + [A]34 [B]41 + [A]35 [B]51
=(−5)(1) + (1)(−1) + (2)(1) + (−3)(6) + (4)(1) = −18
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To get some more practice on your own, complete the computation of the other 10 entries
of this product. Construct some other pairs of matrices (of compatible sizes) and compute
their product two ways. First use Definition MM [225]. Since linear combinations are
straightforward for you now, this should be easy to do and to do correctly. Then do it
again, using Theorem EMP [227]. Since this process may take some practice, use your
first computation to check your work. �

Theorem EMP [227] is the way most people compute matrix products by hand. It
will also be very useful for the theorems we are going to prove shortly. However, the
definition (Definition MM [225]) is frequently the most useful for its connections with
deeper ideas like the null space and the upcoming column space.

Subsection PMM
Properties of Matrix Multiplication

In this subsection, we collect properties of matrix multiplication and its interaction with
the zero matrix (Definition ZM [210]), the identity matrix (Definition IM [80]), matrix
addition (Definition MA [208]), scalar matrix multiplication (Definition MSM [208]),
the inner product (Definition IP [192]), conjugation (Theorem MMCC [231]), and the
transpose (Definition TM [210]). Whew! Here we go. These are great proofs to practice
with, so try to concoct the proofs before reading them, they’ll get progressively more
complicated as we go.

Theorem MMZM
Matrix Multiplication and the Zero Matrix

Suppose A is an m× n matrix. Then
1. AOn×p = Om×p

2. Op×mA = Op×n �

Proof We’ll prove (1) and leave (2) to you. Entry-by-entry,

[AOn×p]ij =
n∑

k=1

[A]ik [On×p]kj Theorem EMP [227]

=
n∑

k=1

[A]ik 0 Definition ZM [210]

=
n∑

k=1

0 = 0.

So every entry of the product is the scalar zero, i.e. the result is the zero matrix. �

Theorem MMIM
Matrix Multiplication and Identity Matrix

Suppose A is an m× n matrix. Then
1. AIn = A
2. ImA = A �
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Proof Again, we’ll prove (1) and leave (2) to you. Entry-by-entry,

[AIn]ij =
n∑

k=1

[A]ik [In]kj Theorem EMP [227]

= [A]ij [In]jj +
n∑

k=1,k 6=j

[A]ik [In]kj

= [A]ij (1) +
n∑

k=1,k 6=j

[A]ik (0) Definition IM [80]

= [A]ij +
n∑

k=1,k 6=j

0

= [A]ij

So the matrices A and AIn are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [207]) we can say they are equal matrices. �

It is this theorem that gives the identity matrix its name. It is a matrix that behaves
with matrix multiplication like the scalar 1 does with scalar multiplication. To multiply
by the identity matrix is to have no effect on the other matrix.

Theorem MMDAA
Matrix Multiplication Distributes Across Addition
Suppose A is an m×n matrix and B and C are n× p matrices and D is a p× s matrix.

Then
1. A(B + C) = AB + AC
2. (B + C)D = BD + CD �

Proof We’ll do (1), you do (2). Entry-by-entry,

[A(B + C)]ij =
n∑

k=1

[A]ik [B + C]kj Theorem EMP [227]

=
n∑

k=1

[A]ik ([B]kj + [C]kj) Definition MA [208]

=
n∑

k=1

[A]ik [B]kj + [A]ik [C]kj Distributivity in C

=
n∑

k=1

[A]ik [B]kj +
n∑

k=1

[A]ik [C]kj Commutativity in C

= [AB]ij + [AC]ij Theorem EMP [227]

= [AB + AC]ij Definition MA [208]

So the matrices A(B + C) and AB + AC are equal, entry-by-entry, and by the definition
of matrix equality (Definition ME [207]) we can say they are equal matrices. �

Theorem MMSMM
Matrix Multiplication and Scalar Matrix Multiplication

Suppose A is an m × n matrix and B is an n × p matrix. Let α be a scalar. Then
α(AB) = (αA)B = A(αB). �
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Proof These are equalities of matrices. We’ll do the first one, the second is similar and
will be good practice for you.

[α(AB)]ij =α [AB]ij Definition MSM [208]

=α
n∑

k=1

[A]ik [B]kj Theorem EMP [227]

=
n∑

k=1

α [A]ik [B]kj Distributivity in C

=
n∑

k=1

[αA]ik [B]kj Definition MSM [208]

= [(αA)B]ij Theorem EMP [227]

So the matrices α(AB) and (αA)B are equal, entry-by-entry, and by the definition of
matrix equality (Definition ME [207]) we can say they are equal matrices. �

Theorem MMA
Matrix Multiplication is Associative

Suppose A is an m × n matrix, B is an n × p matrix and D is a p × s matrix. Then
A(BD) = (AB)D. �

Proof A matrix equality, so we’ll go entry-by-entry, no surprise there.

[A(BD)]ij =
n∑

k=1

[A]ik [BD]kj Theorem EMP [227]

=
n∑

k=1

[A]ik

(
p∑

`=1

[B]k` [D]`j

)
Theorem EMP [227]

=
n∑

k=1

p∑
`=1

[A]ik [B]k` [D]`j Distributivity in C

We can switch the order of the summation since these are finite sums,

=

p∑
`=1

n∑
k=1

[A]ik [B]k` [D]`j Commutativity in C

As [D]`j does not depend on the index k, we can factor it out of the inner sum,

=

p∑
`=1

[D]`j

(
n∑

k=1

[A]ik [B]k`

)
Distributivity in C

=

p∑
`=1

[D]`j [AB]i` Theorem EMP [227]

=

p∑
`=1

[AB]i` [D]`j Commutativity in C

= [(AB)D]ij Theorem EMP [227]
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So the matrices (AB)D and A(BD) are equal, entry-by-entry, and by the definition of
matrix equality (Definition ME [207]) we can say they are equal matrices. �

Theorem MMIP
Matrix Multiplication and Inner Products

If we consider the vectors u, v ∈ Cm as m× 1 matrices then

〈u, v〉 = utv

�

Proof

〈u, v〉 =
m∑

k=1

[u]k [v]k Definition IP [192]

=
m∑

k=1

[u]k1 [v]k1 Column vectors as matrices

=
m∑

k=1

[
ut
]
1k

[v]k1 Definition TM [210]

=
m∑

k=1

[
ut
]
1k

[v]k1 Definition CCCV [191]

=
[
utv
]
11

Theorem EMP [227]

To finish we just blur the distinction between a 1× 1 matrix (utv) and its lone entry. �

Theorem MMCC
Matrix Multiplication and Complex Conjugation

Suppose A is an m× n matrix and B is an n× p matrix. Then AB = A B. �

Proof To obtain this matrix equality, we will work entry-by-entry,[
AB
]
ij

= [AB]ij Definition CM [68]

=
n∑

k=1

[A]ik [B]kj Theorem EMP [227]

=
n∑

k=1

[A]ik [B]kj Theorem CCRA [674]

=
n∑

k=1

[A]ik [B]kj Theorem CCRM [675]

=
n∑

k=1

[
A
]
ik

[
B
]
kj

Definition CCM [213]

=
[
A B

]
ij

Theorem EMP [227]

So the matrices AB and A B are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [207]) we can say they are equal matrices. �
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One more theorem in this style, and its a good one. If you’ve been practicing with
the previous proofs you should be able to do this one yourself.

Theorem MMT
Matrix Multiplication and Transposes

Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)t = BtAt. �

Proof This theorem may be surprising but if we check the sizes of the matrices involved,
then maybe it will not seem so far-fetched. First, AB has size m × p, so its transpose
has size p × m. The product of Bt with At is a p × n matrix times an n × m matrix,
also resulting in a p×m matrix. So at least our objects are compatible for equality (and
would not be, in general, if we didn’t reverse the order of the operation).

Here we go again, entry-by-entry,

[
(AB)t

]
ij

= [AB]ji Definition TM [210]

=
n∑

k=1

[A]jk [B]ki Theorem EMP [227]

=
n∑

k=1

[B]ki [A]jk Commutativity in C

=
n∑

k=1

[
Bt
]
ik

[
At
]
kj

Definition TM [210]

=
[
BtAt

]
ij

Theorem EMP [227]

So the matrices (AB)t and BtAt are equal, entry-by-entry, and by the definition of matrix
equality (Definition ME [207]) we can say they are equal matrices. �

This theorem seems odd at first glance, since we have to switch the order of A and B.
But if we simply consider the sizes of the matrices involved, we can see that the switch
is necessary for this reason alone. That the individual entries of the products then come
along to be equal is a bonus.

Notice how none of these proofs above relied on writing out huge general matrices
with lots of ellipses (“. . . ”) and trying to formulate the equalities a whole matrix at a
time. This messy business is a “proof technique” to be avoided at all costs.

These theorems, along with Theorem VSPM [209], give you the “rules” for how
matrices interact with the various operations we have defined. Use them and use them
often. But don’t try to do anything with a matrix that you don’t have a rule for.
Together, we would informally call all these operations, and the attendant theorems,
“the algebra of matrices.” Notice, too, that every column vector is just a n× 1 matrix,
so these theorems apply to column vectors also. Finally, these results may make us feel
that the definition of matrix multiplication is not so unnatural.
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Subsection READ
Reading Questions

1. Form the matrix vector product of

2 3 −1 0
1 −2 7 3
1 5 3 2

 with


2
−3
0
5


2. Multiply together the two matrices below (in the order given).

2 3 −1 0
1 −2 7 3
1 5 3 2




2 6
−3 −4
0 2
3 −1


3. Rewrite the system of linear equations below as a vector equality and using a

matrix-vector product. (This question does not ask for a solution to the system.
But it does ask you to express the system of equations in a new form using tools
from this section.)

2x1 + 3x2 − x3 = 0

x1 + 2x2 + x3 = 3

x1 + 3x2 + 3x3 = 7
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Subsection EXC
Exercises

C20 Compute the product of the two matrices below, AB. Do this using the defini-
tions of the matrix-vector product (Definition MVP [221]) and the definition of matrix
multiplication (Definition MM [225]).

A =

 2 5
−1 3
2 −2

 B =

[
1 5 −3 4
2 0 2 −3

]

Contributed by Robert Beezer Solution [237]

T10 Suppose that A is a square matrix and there is a vector, b, such that LS(A, b) has
a unique solution. Prove that A is nonsingular. Give a direct proof (perhaps appealing
to Theorem PSPHS [119]) rather than just negating a sentence from the text discussing
a similar situation.
Contributed by Robert Beezer Solution [237]

T20 Prove the second part of Theorem MMZM [228].
Contributed by Robert Beezer

T21 Prove the second part of Theorem MMIM [228].
Contributed by Robert Beezer

T22 Prove the second part of Theorem MMDAA [229].
Contributed by Robert Beezer

T23 Prove the second part of Theorem MMSMM [229].
Contributed by Robert Beezer

T31 Suppose that A is an m×n matrix and x, y ∈ N (A). Prove that x+y ∈ N (A).
Contributed by Robert Beezer

T32 Suppose that A is an m × n matrix, α ∈ C, and x ∈ N (A). Prove that αx ∈
N (A).
Contributed by Robert Beezer

T40 Suppose that A is an m × n matrix and B is an n × p matrix. Prove that the
null space of B is a subset of the null space of AB, that is N (B) ⊆ N (AB). Provide
an example where the opposite is false, in other words give an example where N (AB) 6⊆
N (B).
Contributed by Robert Beezer Solution [237]

T41 Suppose that A is an n× n nonsingular matrix and B is an n× p matrix. Prove
that the null space of B is equal to the null space of AB, that is N (B) = N (AB).
(Compare with Exercise MM.T40 [235].)
Contributed by Robert Beezer Solution [237]

T50 Suppose u and v are any two solutions of the linear system LS(A, b). Prove that
u− v is an element of the null space of A, that is, u− v ∈ N (A).
Contributed by Robert Beezer
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T51 Give a new proof of Theorem PSPHS [119] replacing applications of Theo-
rem SLSLC [106] with matrix-vector products (Theorem SLEMM [222]).
Contributed by Robert Beezer Solution [238]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [235]
By Definition MM [225],

AB =

 2 5
−1 3
2 −2

[1
2

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[5
0

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[−3
2

]∣∣∣∣∣∣
 2 5
−1 3
2 −2

[ 4
−2

]
Repeated applications of Definition MVP [221] give

=

1

 2
−1
2

+ 2

 5
3
−2

∣∣∣∣∣∣ 5

 2
−1
2

+ 0

 5
3
−2

∣∣∣∣∣∣ −3

 2
−1
2

+ 2

 5
3
−2

∣∣∣∣∣∣ 4

 2
−1
2

+ (−3)

 5
3
−2


=

12 10 4 −7
5 −5 9 −13
−2 10 −10 14


T10 Contributed by Robert Beezer Statement [235]
Since LS(A, b) has at least one solution, we can apply Theorem PSPHS [119]. Be-

cause the solution is assumed to be unique, the null space of A must be trivial. Then
Theorem NSTNS [82] implies that A is nonsingular.

The converse of this statement is a trivial application of Theorem NSMUS [83]. That
said, we could extend our NSMxx series of theorems with an added equivalence for
nonsingularity, “Given a single vector of constants, b, the system LS(A, b) has a unique
solution.”

T40 Contributed by Robert Beezer Statement [235]
To prove that one set is a subset of another, we start with an element of the smaller set
and see if we can determine that it is a member of the larger set (Definition SSET [677]).
Suppose x ∈ N (B). Then we know that Bx = 0 by Definition NSM [71]. Consider

(AB)x = A(Bx) Theorem MMA [230]

= A0 Hypothesis

= 0 Theorem MMZM [228]

This establishes that x ∈ N (AB), so N (B) ⊆ N (AB).
To show that the inclusion does not hold in the opposite direction, choose B to be any

nonsingular matrix of size n. Then N (B) = {0} by Theorem NSTNS [82]. Let A be the
square zero matrix, O, of the same size. Then AB = OB = O by Theorem MMZM [228]
and therefore N (AB) = Cn, and is not a subset of N (B) = {0}.

T41 Contributed by Robert Beezer Statement [235]
From the solution to Exercise MM.T40 [235] we know that N (B) ⊆ N (AB). So to

establish the set equality (Definition SE [678]) we need to show that N (AB) ⊆ N (B).
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Suppose x ∈ N (AB). Then we know that ABx = 0 by Definition NSM [71]. Consider

Bx = InBx Theorem MMIM [228]

=
(
A−1A

)
Bx Theorem NSI [257]

= A−1 (AB)x

= 0 Theorem MMZM [228]

This establishes that x ∈ N (B), so N (AB) ⊆ N (B) and combined with the solution to
Exercise MM.T40 [235] we have N (B) = N (AB) when A is nonsingular.

T51 Contributed by Robert Beezer Statement [236]
We will work with the vector equality representations of the relevant systems of equa-

tions, as described by Theorem SLEMM [222].
(⇐) Suppose y = w + z and z ∈ N (A). Then

Ay = A(w + z) Subsitution

= Aw + Az Theorem MMDAA [229]

= b + 0 z ∈ N (A)

= b Property ZC [96]

demonstrating that y is a solution.
(⇒) Suppose y is a solution to LS(A, b). Then

A(y −w) = Ay − Aw Theorem MMDAA [229]

= b− b y, w solutions to Ax = b

= 0 Property AIC [96]

which says that y −w ∈ N (A). In other words, y −w = z for some vector z ∈ N (A).
Rewritten, this is y = w + z, as desired.
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Section MISLE

Matrix Inverses and Systems of Linear Equations

We begin with a familiar example, performed in a novel way.

Example SABMI
Solutions to Archetype B with a matrix inverse

Archetype B [708] is the system of m = 3 linear equations in n = 3 variables,

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

By Theorem SLEMM [222] we can represent this system of equations as

Ax = b

where

A =

−7 −6 −12
5 5 7
1 0 4

 x =

x1

x2

x3

 b =

−33
24
5


We’ll pull a rabbit out of our hat and present the 3× 3 matrix B,

B =

−10 −12 −9
13
2

8 11
2

5
2

3 5
2


and note that

BA =

−10 −12 −9
13
2

8 11
2

5
2

3 5
2

−7 −6 −12
5 5 7
1 0 4

 =

1 0 0
0 1 0
0 0 1

 .

Now apply this computation to the problem of solving the system of equations,

x = I3x Theorem MMIM [228]

= (BA)x Substitution

= B(Ax) Theorem MMA [230]

= Bb Substitution

So we have

x = Bb =

−10 −12 −9
13
2

8 11
2

5
2

3 5
2

−33
24
5

 =

−3
5
2


So with the help and assistance of B we have been able to determine a solution to the
system represented by Ax = b through judicious use of matrix multiplication. We know
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by Theorem NSMUS [83] that since the coefficient matrix in this example is nonsingular,
there would be a unique solution, no matter what the choice of b. The derivation above
amplifies this result, since we were forced to conclude that x = Bb and the solution
couldn’t be anything else. You should notice that this argument would hold for any
particular value of b. �

The matrix B of the previous example is called the inverse of A. When A and B
are combined via matrix multiplication, the result is the identity matrix, which can be
inserted “in front” of x as the first step in finding the solution. This is entirely analogous
to how we might solve a single linear equation like 3x = 12.

x = 1x =

(
1

3
(3)

)
x =

1

3
(3x) =

1

3
(12) = 4

Here we have obtained a solution by employing the “multiplicative inverse” of 3, 3−1 = 1
3
.

This works fine for any scalar multiple of x, except for zero, since zero does not have a
multiplicative inverse. For matrices, it is more complicated. Some matrices have inverses,
some do not. And when a matrix does have an inverse, just how would we compute it?
In other words, just where did that matrix B in the last example come from? Are there
other matrices that might have worked just as well?

Subsection IM
Inverse of a Matrix

Definition MI
Matrix Inverse
Suppose A and B are square matrices of size n such that AB = In and BA = In. Then

A is invertible and B is the inverse of A. In this situation, we write B = A−1.
(This definition contains Notation MI.) 4

Notice that if B is the inverse of A, then we can just as easily say A is the inverse of
B, or A and B are inverses of each other.

Not every square matrix has an inverse. In Example SABMI [239] the matrix B is
the inverse the coefficient matrix of Archetype B [708]. To see this it only remains to
check that AB = I3. What about Archetype A [703]? It is an example of a square matrix
without an inverse.

Example MWIAA
A matrix without an inverse, Archetype A

Consider the coefficient matrix from Archetype A [703],

A =

1 −1 2
2 1 1
1 1 0


Suppose that A is invertible and does have an inverse, say B. Choose the vector of
constants

b =

1
3
2
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and consider the system of equations LS(A, b). Just as in Example SABMI [239], this
vector equation would have the unique solution x = Bb.

However, the system LS(A, b) is inconsistent. Form the augmented matrix [A | b]
and row-reduce to  1 0 1 0

0 1 −1 0

0 0 0 1


which allows to recognize the inconsistency by Theorem RCLS [54].

So the assumption of A’s inverse leads to a logical inconsistency (the system can’t be
both consistent and inconsistent), so our assumption is false. A is not invertible.

Its possible this example is less than satisfying. Just where did that particular choice
of the vector b come from anyway? Stay tuned for an application of the future Theo-
rem CSCS [268] in Example CSAA [272]. �

Let’s look at one more matrix inverse before we embark on a more systematic study.

Example MI
Matrix Inverse

Consider the matrix,

A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1


And the matrix

B =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1


Then

AB =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1



−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and

BA =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1




1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


so by Definition MI [240], we can say that A is invertible and write B = A−1. �

We will now concern ourselves less with whether or not an inverse of a matrix exists,
but instead with how you can find one when it does exist. In Section MINSM [255]
we will have some theorems that allow us to more quickly and easily determine when a
matrix is invertible.
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Subsection CIM
Computing the Inverse of a Matrix

We will have occasion in this subsection (and later) to reference the following frequently
used vectors, so we will make a useful definition now.

Definition SUV
Standard Unit Vectors

Let ej ∈ Cm denote the column vector that is column j of the m ×m identity matrix
Im. Then the set

{e1, e2, e3, . . . , em} = {ej | 1 ≤ j ≤ m}

is the set of standard unit vectors in Cm. 4
We will make reference to these vectors often. Notice that ej is a column vector full

of zeros, with a lone 1 in the j-th position, so an alternate definition is

[ej]i =

{
0 if i 6= j

1 if i = j

We’ve seen that the matrices from Archetype B [708] and Archetype K [749] both have
inverses, but these inverse matrices have just dropped from the sky. How would we
compute an inverse? And just when is a matrix invertible, and when is it not? Writing a
putative inverse with n2 unknowns and solving the resultant n2 equations is one approach.
Applying this approach to 2× 2 matrices can get us somewhere, so just for fun, let’s do
it.

Theorem TTMI
Two-by-Two Matrix Inverse

Suppose

A =

[
a b
c d

]
Then A is invertible if and only if ad− bc 6= 0. When A is invertible, we have

A−1 =
1

ad− bc

[
d −b
−c a

]
.

�

Proof (⇐) If ad− bc 6= 0 then the displayed formula is legitimate (we are not dividing
by zero), and it is a simple matter to actually check that A−1A = AA−1 = I2.

(⇒) Assume that A is invertible, and proceed with a proof by contradiction (Tech-
nique CD [690]), by assuming also that ad− bc = 0. This means that ad = bc. Let

B =

[
e f
g h

]
be a putative inverse of A. This means that

I2 = AB =

[
a b
c d

] [
e f
g h

]
=

[
ae + bg af + bh
ce + dg cf + dh

]
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Working on the matrices on both ends of this equation, we will multiply the top row by
c and the bottom row by a.[

c 0
0 a

]
=

[
ace + bcg acf + bch
ace + adg acf + adh

]
We are assuming that ad = bc, so we can replace two occurences of ad by bc in the bottom
row of the right matrix. [

c 0
0 a

]
=

[
ace + bcg acf + bch
ace + bcg acf + bch

]
The matrix on the right now has two rows that are identical, and therefore the same
must be true of the matrix on the left. Given the form of the matrix on the left, identical
rows implies that a = 0 and c = 0.

With this information, the product AB becomes[
1 0
0 1

]
= I2 = AB =

[
ae + bg af + bh
ce + dg cf + dh

]
=

[
bg bh
dg dh

]
So bg = dh = 1 and thus b, g, d, h are all nonzero. But then bh and dg (the “other
corners”) must also be nonzero, so this is (finally) a contradiction. So our assumption
was false and we see that ad− bc 6= 0 whenever A has an inverse. �

There are several ways one could try to prove this theorem, but there is a continual
temptation to divide by one of the eight entries involved (a through f), but we can never
be sure if these numbers are zero or not. This could lead to an analysis by cases, which is
messy, messy, messy. Note how the above proof never divides, but always multiplies, and
how zero/nonzero considerations are handled. Pay attention to the expression ad − bc,
we will see it again in a while.

This theorem is cute, and it is nice to have a formula for the inverse, and a condition
that tells us when we can use it. However, this approach becomes impractical for larger
matrices, even though it is possible to demonstrate that, in theory, there is a general
formula. (Think for a minute about extending this result to just 3 × 3 matrices. For
starters, we need 18 letters!) Instead, we will work column-by-column. Let’s first work an
example that will motivate the main theorem and remove some of the previous mystery.

Example CMI
Computing a Matrix Inverse

Consider the matrix defined in Example MI [241] as,

A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1


For its inverse, we desire a matrix B so that AB = I5. Emphasizing the structure of the
columns and employing the definition of matrix multiplication Definition MM [225],

AB = I5

A[B1|B2|B3|B4|B5] = [e1|e2|e3|e4|e5]
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[AB1|AB2|AB3|AB4|AB5] = [e1|e2|e3|e4|e5].

Equating the matrices column-by-column we have

AB1 = e1 AB2 = e2 AB3 = e3 AB4 = e4 AB5 = e5.

Since the matrix B is what we are trying to compute, we can view each column, Bi, as a
column vector of unknowns. Then we have five systems of equations to solve, each with
5 equations in 5 variables. Notice that all 5 of these systems have the same coefficient
matrix. We’ll now solve each system in turn,

Row-reduce the augmented matrix of the linear system LS(A, e1),
1 2 1 2 1 1
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−→


1 0 0 0 0 −3

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 1

0 0 0 0 1 1

 so B1 =


−3
0
1
1
1


Row-reduce the augmented matrix of the linear system LS(A, e2),

1 2 1 2 1 0
−2 −3 0 −5 −1 1
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−→


1 0 0 0 0 3

0 1 0 0 0 −2

0 0 1 0 0 2

0 0 0 1 0 0

0 0 0 0 1 −1

 so B2 =


3
−2
2
0
−1


Row-reduce the augmented matrix of the linear system LS(A, e3),

1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 1
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 0

 RREF−−−→


1 0 0 0 0 6

0 1 0 0 0 −5

0 0 1 0 0 4

0 0 0 1 0 1

0 0 0 0 1 −2

 so B3 =


6
−5
4
1
−2


Row-reduce the augmented matrix of the linear system LS(A, e4),

1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 1
−1 −3 −1 −3 1 0

 RREF−−−→


1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 1

0 0 0 1 0 1

0 0 0 0 1 0

 so B4 =


−1
−1
1
1
0


Row-reduce the augmented matrix of the linear system LS(A, e5),

1 2 1 2 1 0
−2 −3 0 −5 −1 0
1 1 0 2 1 0
−2 −3 −1 −3 −2 0
−1 −3 −1 −3 1 1

 RREF−−−→


1 0 0 0 0 −2

0 1 0 0 0 1

0 0 1 0 0 −1

0 0 0 1 0 0

0 0 0 0 1 1

 so B5 =


−2
1
−1
0
1
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We can now collect our 5 solution vectors into the matrix B,

B =[B1|B2|B3|B4|B5]

=



−3
0
1
1
1


∣∣∣∣∣∣∣∣∣∣


3
−2
2
0
−1


∣∣∣∣∣∣∣∣∣∣


6
−5
4
1
−2


∣∣∣∣∣∣∣∣∣∣


−1
−1
1
1
0


∣∣∣∣∣∣∣∣∣∣


−2
1
−1
0
1




=


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1


By this method, we know that AB = I5. Check that BA = I5, and then we will know
that we have the inverse of A. �

Notice how the five systems of equations in the preceding example were all solved by
exactly the same sequence of row operations. Wouldn’t it be nice to avoid this obvious
duplication of effort? Our main theorem for this section follows, and it mimics this
previous example, while also avoiding all the overhead.

Theorem CINSM
Computing the Inverse of a NonSingular Matrix

Suppose A is a nonsingular square matrix of size n. Create the n × 2n matrix M by
placing the n×n identity matrix In to the right of the matrix A. Let N be a matrix that
is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix
formed from the final n columns of N . Then AJ = In. �

Proof A is nonsingular, so by Theorem NSRRI [81] there is a sequence of row operations
that will convert A into In. It is this same sequence of row operations that will convert
M into N , since having the identity matrix in the first n columns of N is sufficient to
guarantee that N is in reduced row-echelon form.

If we consider the systems of linear equations, LS(A, ei), 1 ≤ i ≤ n, we see that the
aforementioned sequence of row operations will also bring the augmented matrix of each
of these systems into reduced row-echelon form. Furthermore, the unique solution to
LS(A, ei) appears in column n + 1 of the row-reduced augmented matrix of the system
and is identical to column n + i of N . Let N1, N2, N3, . . . , N2n denote the columns of
N . So we find,

AJ =A[Nn+1|Nn+2|Nn+3| . . . |Nn+n]

=[ANn+1|ANn+2|ANn+3| . . . |ANn+n] Definition MM [225]

=[e1|e2|e3| . . . |en]

=In Definition IM [80]

as desired. �

We have to be just a bit careful here about both what this theorem says and what it
doesn’t say. If A is a nonsingular matrix, then we are guaranteed a matrix B such that
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AB = In, and the proof gives us a process for constructing B. However, the definition
of the inverse of a matrix (Definition MI [240]) requires that BA = In also. So at
this juncture we must compute the matrix product in the “opposite” order before we
claim B as the inverse of A. However, we’ll soon see that this is always the case, in
Theorem OSIS [256], so the title of this theorem is not inaccurate.

What if A is singular? At this point we only know that Theorem CINSM [245]
cannot be applied. The question of A’s inverse is still open. (But see Theorem NSI [257]
in the next section.) We’ll finish by computing the inverse for the coefficient matrix of
Archetype B [708], the one we just pulled from a hat in Example SABMI [239]. There
are more examples in the Archetypes (Appendix A [699]) to practice with, though notice
that it is silly to ask for the inverse of a rectangular matrix (the sizes aren’t right) and
not every square matrix has an inverse (remember Example MWIAA [240]?).

Example CMIAB
Computing a Matrix Inverse, Archetype B

Archetype B [708] has a coefficient matrix given as

B =

−7 −6 −12
5 5 7
1 0 4


Exercising Theorem CINSM [245] we set

M =

−7 −6 −12 1 0 0
5 5 7 0 1 0
1 0 4 0 0 1

 .

which row reduces to

N =

1 0 0 −10 −12 −9
0 1 0 13

2
8 11

2

0 0 1 5
2

3 5
2

 .

So

B−1 =

−10 −12 −9
13
2

8 11
2

5
2

3 5
2


once we check that B−1B = I3 (the product in the opposite order is a consequence of the
theorem). �

While we can use a row-reducing procedure to compute an inverse, many computa-
tional devices have a built-in procedure.

Computation Note MI.MMA
Matrix Inverses (Mathematica)

If A is a matrix defined in Mathematica, then Inverse[A] will return the inverse of
A, should it exist. In the case where A does not have an inverse Mathematica will tell
you the matrix is singular (see Theorem NSI [257]). ⊕
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Subsection PMI
Properties of Matrix Inverses

The inverse of a matrix enjoys some nice properties. We collect a few here. First, a
matrix can have but one inverse.

Theorem MIU
Matrix Inverse is Unique

Suppose the square matrix A has an inverse. Then A−1 is unique. �

Proof As described in Technique U [691], we will assume that A has two inverses. The
hypothesis tells there is at least one. Suppose then that B and C are both inverses for A.
Then, repeated use of Definition MI [240] and Theorem MMIM [228] plus one application
of Theorem MMA [230] gives

B = BIn Theorem MMIM [228]

= B(AC) Definition MI [240]

= (BA)C Theorem MMA [230]

= InC Definition MI [240]

= C Theorem MMIM [228]

So we conclude that B and C are the same, and cannot be different. So any matrix that
acts like an inverse, must be the inverse. �

When most of us dress in the morning, we put on our socks first, followed by our
shoes. In the evening we must then first remove our shoes, followed by our socks. Try to
connect the conclusion of the following theorem with this everyday example.

Theorem SS
Socks and Shoes

Suppose A and B are invertible matrices of size n. Then (AB)−1 = B−1A−1 and AB
is an invertible matrix. �

Proof At the risk of carrying our everyday analogies too far, the proof of this theorem is
quite easy when we compare it to the workings of a dating service. We have a statement
about the inverse of the matrix AB, which for all we know right now might not even exist.
Suppose AB was to sign up for a dating service with two requirements for a compatible
date. Upon multiplication on the left, and on the right, the result should be the identity
matrix. In other words, AB’s ideal date would be its inverse.

Now along comes the matrix B−1A−1 (which we know exists because our hypothesis
says both A and B are invertible and we can form the product of these two matrices),
also looking for a date. Let’s see if B−1A−1 is a good match for AB. First they meet at
a non-committal neutral location, say a coffee shop, for quiet conversation:

(B−1A−1)(AB) = B−1(A−1A)B Theorem MMA [230]

= B−1InB Definition MI [240]

= B−1B Theorem MMIM [228]

= In Definition MI [240]
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The first date having gone smoothly, a second, more serious, date is arranged, say dinner
and a show:

(AB)(B−1A−1) = A(BB−1)A−1 Theorem MMA [230]

= AInA
−1 Definition MI [240]

= AA−1 Theorem MMIM [228]

= In Definition MI [240]

So the matrix B−1A−1 has met all of the requirements to be AB’s inverse (date) and
with the ensuing marriage proposal we can announce that (AB)−1 = B−1A−1. �

Theorem MIMI
Matrix Inverse of a Matrix Inverse

Suppose A is an invertible matrix. Then A−1 is invertible and (A−1)−1 = A. �

Proof As with the proof of Theorem SS [247], we examine if A is a suitable inverse for
A−1 (by definition, the opposite is true).

AA−1 = In Definition MI [240]

and

A−1A = In Definition MI [240]

The matrix A has met all the requirements to be the inverse of A−1, and so is invertible
and we can write A = (A−1)−1. �

Theorem MIT
Matrix Inverse of a Transpose

Suppose A is an invertible matrix. Then At is invertible and (At)−1 = (A−1)t. �

Proof As with the proof of Theorem SS [247], we see if (A−1)t is a suitable inverse for
At. Apply Theorem MMT [232] to see that

(A−1)tAt = (AA−1)t Theorem MMT [232]

= I t
n Definition MI [240]

= In In is symmetric

and

At(A−1)t = (A−1A)t Theorem MMT [232]

= I t
n Definition MI [240]

= In In is symmetric

The matrix (A−1)t has met all the requirements to be the inverse of At, and so is invertible
and we can write (At)−1 = (A−1)t. �

Theorem MISM
Matrix Inverse of a Scalar Multiple
Suppose A is an invertible matrix and α is a nonzero scalar. Then (αA)−1 = 1

α
A−1 and

αA is invertible. �

Version 0.85



Subsection MISLE.READ Reading Questions 249

Proof As with the proof of Theorem SS [247], we see if 1
α
A−1 is a suitable inverse for

αA. (
1

α
A−1

)
(αA) =

(
1

α
α

)(
AA−1

)
Theorem MMSMM [229]

= 1In Scalar multiplicative inverses

= In Property OM [209]

and

(αA)

(
1

α
A−1

)
=

(
α

1

α

)(
A−1A

)
Theorem MMSMM [229]

= 1In Scalar multiplicative inverses

= In Property OM [209]

The matrix 1
α
A−1 has met all the requirements to be the inverse of αA, so we can write

(αA)−1 = 1
α
A−1. �

Notice that there are some likely theorems that are missing here. For example, it
would be tempting to think that (A + B)−1 = A−1 + B−1, but this is false. Can you find
a counterexample (see Exercise MISLE.T10 [252])?

Subsection READ
Reading Questions

1. Compute the inverse of the matrix below.[
4 10
2 6

]
2. Compute the inverse of the matrix below. 2 3 1

1 −2 −3
−2 4 6


3. Explain why Theorem SS [247] has the title it does. (Do not just state the theorem,

explain the choice of the title making reference to the theorem itself.)
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Subsection EXC
Exercises

C21 Verify that B is the inverse of A.

A =


1 1 −1 2
−2 −1 2 −3
1 1 0 2
−1 2 0 2

 B =


4 2 0 −1
8 4 −1 −1
−1 0 1 0
−6 −3 1 1


Contributed by Robert Beezer Solution [253]

C22 Recycle the matrices A and B from Exercise MISLE.C21 [251] and set

c =


2
1
−3
2

 d =


1
1
1
1


Employ the matrix B to solve the two linear systems LS(A, c) and LS(A, d).
Contributed by Robert Beezer Solution [253]

C23 If it exists, find the inverse of the 2× 2 matrix

A =

[
7 3
5 2

]
and check your answer. (See Theorem TTMI [242].)
Contributed by Robert Beezer

C24 If it exists, find the inverse of the 2× 2 matrix

A =

[
6 3
4 2

]
and check your answer. (See Theorem TTMI [242].)
Contributed by Robert Beezer

C25 At the conclusion of Example CMI [243], verify that BA = I5 by computing the
matrix product.
Contributed by Robert Beezer

C26 Let

D =


1 −1 3 −2 1
−2 3 −5 3 0
1 −1 4 −2 2
−1 4 −1 0 4
1 0 5 −2 5


Compute the inverse of D, D−1, by forming the 5× 10 matrix [D | I5] and row-reducing
(Theorem CINSM [245]). Then use a calculator to compute D−1 directly.
Contributed by Robert Beezer Solution [253]
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C27 Let

E =


1 −1 3 −2 1
−2 3 −5 3 −1
1 −1 4 −2 2
−1 4 −1 0 2
1 0 5 −2 4


Compute the inverse of E, E−1, by forming the 5× 10 matrix [E | I5] and row-reducing
(Theorem CINSM [245]). Then use a calculator to compute E−1 directly.
Contributed by Robert Beezer Solution [253]

C28 Let

C =


1 1 3 1
−2 −1 −4 −1
1 4 10 2
−2 0 −4 5


Compute the inverse of C, C−1, by forming the 4 × 8 matrix [C | I4] and row-reducing
(Theorem CINSM [245]). Then use a calculator to compute C−1 directly.
Contributed by Robert Beezer Solution [253]

C40 Find all solutions to the system of equations below, making use of the matrix
inverse found in Exercise MISLE.C28 [252].

x1 + x2 + 3x3 + x4 = −4

−2x1 − x2 − 4x3 − x4 = 4

x1 + 4x2 + 10x3 + 2x4 = −20

−2x1 − 4x3 + 5x4 = 9

Contributed by Robert Beezer Solution [254]

C41 Use the inverse of a matrix to find all the solutions to the following system of
equations.

x1 + 2x2 − x3 = −3

2x1 + 5x2 − x3 = −4

−x1 − 4x2 = 2

Contributed by Robert Beezer Solution [254]

T10 Construct an example to demonstrate that (A + B)−1 = A−1 + B−1 is not true
for all square matrices A and B of the same size.
Contributed by Robert Beezer Solution [254]
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer Statement [251]
Check that both matrix products (Definition MM [225]) AB and BA equal the 4 × 4

identity matrix I4 (Definition IM [80]).

C22 Contributed by Robert Beezer Statement [251]
Represent each of the two systems by a vector equality, Ax = c and Ay = d. Then in

the spirit of Example SABMI [239], solutions are given by

x = Bc =


8
21
−5
−16

 y = Bd =


5
10
0
−7


Notice how we could solve many more systems having A as the coefficient matrix, and
how each such system has a unique solution. You might check your work by substituting
the solutions back into the systems of equations, or forming the linear combinations of
the columns of A suggested by Theorem SLSLC [106].

C26 Contributed by Robert Beezer Statement [251]
The inverse of D is

D−1 =


−7 −6 −3 2 1
−7 −4 2 2 −1
−5 −2 3 1 −1
−6 −3 1 1 0
4 2 −2 −1 1


C27 Contributed by Robert Beezer Statement [252]
The matrix E has no inverse, though we do not yet have a theorem that allows us

to reach this conclusion. However, when row-reducing the matrix [E | I5], the first 5
columns will not row-reduce to the 5 × 5 identity matrix, so we are a t a loss on how
we might compute the inverse. When requesting that your calculator compute E−1, it
should give some indication that E does not have an inverse.

C28 Contributed by Robert Beezer Statement [252]
Employ Theorem CINSM [245],

1 1 3 1 1 0 0 0
−2 −1 −4 −1 0 1 0 0
1 4 10 2 0 0 1 0
−2 0 −4 5 0 0 0 1

 RREF−−−→


1 0 0 0 38 18 −5 −2

0 1 0 0 96 47 −12 −5

0 0 1 0 −39 −19 5 2

0 0 0 1 −16 −8 2 1


And therefore we see that C is nonsingular (C row-reduces to the identity matrix, The-
orem NSRRI [81]) and by Theorem CINSM [245],

C−1 =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1
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C40 Contributed by Robert Beezer Statement [252]
View this system as LS(C, b), where C is the 4×4 matrix from Exercise MISLE.C28 [252]

and b =


−4
4
−20
9

. Since C was seen to be nonsingular in Exercise MISLE.C28 [252]

Theorem SNSCM [258] says the solution, which is unique by Theorem NSMUS [83], is
given by

C−1b =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1



−4
4
−20
9

 =


2
−1
−2
1


Notice that this solution can be easily checked in the original system of equations.

C41 Contributed by Robert Beezer Statement [252]
The coefficient matrix of this system of equations is

A =

 1 2 −1
2 5 −1
−1 −4 0



and the vector of constants is b =

−3
−4
2

. So by Theorem SLEMM [222] we can convert

the system to the form Ax = b. Row-reducing this matrix yields the identity matrix
so by Theorem NSRRI [81] we know A is nonsingular. This allows us to apply Theo-
rem SNSCM [258] to find the unique solution as

x = A−1b =

−4 4 3
1 −1 −1
−3 2 1

−3
−4
2

 =

 2
−1
3


Remember, you can check this solution easily by evaluating the matrix-vector product
Ax (Definition MVP [221]).

T10 Contributed by Robert Beezer Statement [252]
Let D be any 2 × 2 matrix that has an inverse (Theorem TTMI [242] can help you

construct such a matrix, I2 is a simple choice). Set A = D and B = (−1)D. While A−1

and B−1 both exist, what is (A + B)−1? Can the proposed statement be a theorem?
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Section MINSM

Matrix Inverses and NonSingular Matrices

We saw in Theorem CINSM [245] that if a square matrix A is nonsingular, then there
is a matrix B so that AB = In. In other words, B is halfway to being an inverse of A.
We will see in this section that B automatically fulfills the second condition (BA = In).
Example MWIAA [240] showed us that the coefficient matrix from Archetype A [703]
had no inverse. Not coincidentally, this coefficient matrix is singular. We’ll make all
these connections precise now. Not many examples or definitions in this section, just
theorems.

Subsection NSMI
NonSingular Matrices are Invertible

We need a couple of technical results for starters. Some books would call these minor,
but essential, results “lemmas.” We’ll just call ’em theorems. See Technique LC [698]
for more on the distinction.

Theorem NPNT
Nonsingular Product has Nonsingular Terms
Suppose that A and B are square matrices of size n and the product AB is nonsingular.

Then A and B are both nonsingular. �

Proof We’ll do the proof in two parts, each as a proof by contradiction (Tech-
nique CD [690]). Establishing that B is nonsingular is the easier part, so we will do
it first, but in reality, we will need to know that B is nonsingular when we establish that
A is nonsingular.

Case 1. Suppose B is singular. Then there is a nonzero vector z that is a solution to
LS(B, 0). So

(AB)z = A(Bz) Theorem MMA [230]

= A0 z solution to LS(B, 0), Theorem SLEMM [222]

= 0 Theorem MMZM [228]

Because z is a nonzero solution to LS(AB, 0), we conclude that AB is singular (Defini-
tion NM [79]). This is a contradiction, so B is nonsingular, as desired.

Case 2. Suppose A is singular. Then there is a nonzero vector y that is a solution
to LS(A, 0). Now use this vector y and consider the linear system LS(B, y). Since we
know B is nonsingular (from Case 1), the system has a unique solution, which we will
call w. We claim w is not the zero vector either. Assuming the opposite, suppose that
w = 0. Then

y = Bw w solution to LS(B, y), Theorem SLEMM [222]

= B0 Substitution, w = 0
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= 0 Theorem MMZM [228]

contrary to y being nonzero. So w 6= 0. The pieces are in place, so here we go,

(AB)w = A(Bw) Theorem MMA [230]

= Ay w solution to LS(B, y), Theorem SLEMM [222]

= 0 y solution to LS(A, 0), Theorem SLEMM [222]

So w is a nonzero solution to LS(AB, 0), and thus we can say that AB is singular
(Definition NM [79]). This is a contradiction, so A is nonsingular, as desired.

�

This is a powerful result, because it allows us to begin with a hypothesis that some-
thing complicated (the matrix product AB) has the property of being nonsingular, and
we can then conclude that the simpler constituents (A and B individually) then also have
the property of being nonsingular. If we had thought that the matrix product was an
artificial construction, results like this would make us begin to think twice.

The contrapositive of this result is equally interesting. It says that if either A or B
(or both) is a singular matrix, then the product AB is also singular. Notice how the
negation of the theorem’s conclusion (A and B both nonsingular) becomes the statement
“at least one of A and B is singular.” (See Technique CP [688].)

Theorem OSIS
One-Sided Inverse is Sufficient
Suppose A and B are square matrices of size n such that AB = In. Then BA = In. �

Proof The matrix In is nonsingular (since it row-reduces easily to In, Theorem NSRRI [81]).
So A and B are nonsingular by Theorem NPNT [255], so in particular B is nonsingular.
We can therefore apply Theorem CINSM [245] to assert the existence of a matrix C
so that BC = In. This application of Theorem CINSM [245] could be a bit confusing,
mostly because of the names of the matrices involved. B is nonsingular, so there must
be a “right-inverse” for B, and we’re calling it C.

Now

BA = (BA)In Theorem MMIM [228]

= (BA)(BC) Theorem CINSM [245], C “right-inverse” of B

= B(AB)C Theorem MMA [230]

= BInC Hypothesis

= BC Theorem MMIM [228]

= In Theorem CINSM [245], C “right-inverse” of B

which is the desired conclusion. �

So Theorem OSIS [256] tells us that if A is nonsingular, then the matrix B guaranteed
by Theorem CINSM [245] will be both a “right-inverse” and a “left-inverse” for A, so A
is invertible and A−1 = B.

So if you have a nonsingular matrix, A, you can use the procedure described in
Theorem CINSM [245] to find an inverse for A. If A is singular, then the procedure
in Theorem CINSM [245] will fail as the first n columns of M will not row-reduce to
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the identity matrix. However, we can say a bit more. When A is singular, then A
does not have an inverse (which is very different from saying that the procedure in
Theorem CINSM [245] fails to find an inverse). This may feel like we are splitting hairs,
but its important that we do not make unfounded assumptions. These observations
motivate the next theorem.

Theorem NSI
NonSingularity is Invertibility
Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.

�

Proof (⇐) Suppose A is invertible, and suppose that x is any solution to the homoge-
neous system LS(A, 0). Then

x = Inx Theorem MMIM [228]

=
(
A−1A

)
x Definition MI [240]

= A−1 (Ax) Theorem MMA [230]

= A−10 x solution to LS(A, 0), Theorem SLEMM [222]

= 0 Theorem MMZM [228]

So the only solution to LS(A, 0) is the zero vector, so by Definition NM [79], A is
nonsingular.

(⇒) Suppose now that A is nonsingular. By Theorem CINSM [245] we find B so that
AB = In. Then Theorem OSIS [256] tells us that BA = In. So B is A’s inverse, and by
construction, A is invertible. �

So for a square matrix, the properties of having an inverse and of having a trivial null
space are one and the same. Can’t have one without the other.

Theorem NSME3
NonSingular Matrix Equivalences, Round 3

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

�

Proof We can update our list of equivalences for nonsingular matrices (Theorem NSME2 [160])
with the equivalent condition from Theorem NSI [257]. �

In the case that A is a nonsingular coefficient matrix of a system of equations, the
inverse allows us to very quickly compute the unique solution, for any vector of constants.
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Theorem SNSCM
Solution with NonSingular Coefficient Matrix

Suppose that A is nonsingular. Then the unique solution to LS(A, b) is A−1b. �

Proof By Theorem NSMUS [83] we know already that LS(A, b) has a unique solution
for every choice of b. We need to show that the expression stated is indeed a solu-
tion (the solution). That’s easy, just “plug it in” to the corresponding vector equation
representation,

A
(
A−1b

)
=
(
AA−1

)
b Theorem MMA [230]

= Inb Definition MI [240]

= b Theorem MMIM [228]

Since Ax = b is true when we substitute A−1b for x, A−1b is a (the) solution to LS(A, b).
�

Subsection OM
Orthogonal Matrices

Definition OM
Orthogonal Matrices

Suppose that Q is a square matrix of size n such that
(
Q
)t

Q = In. Then we say Q is
orthogonal. 4

This condition may seem rather far-fetched at first glance. Would there be any matrix
that behaved this way? Well, yes, here’s one.

Example OM3
Orthogonal matrix of size 3

Q =


1+i√

5
3+2 i√

55
2+2i√

22
1−i√

5
2+2 i√

55
−3+i√

22
i√
5

3−5 i√
55
− 2√

22


The computations get a bit tiresome, but if you work your way through

(
Q
)t

Q, you will
arrive at the 3× 3 identity matrix I3. �

Orthogonal matrices do not have to look quite so gruesome. Here’s a larger one that
is a bit more pleasing.

Example OPM
Orthogonal permutation matrix

The matrix

P =


0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
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is orthogonal as can be easily checked. Notice that it is just a rearrangement of the
columns of the 5× 5 identity matrix, I5 (Definition IM [80]).

An interesting exercise is to build another 5×5 orthogonal matrix, R, using a different
rearrangement of the columns of I5. Then form the product PR. This will be another
orthogonal matrix (Exercise MINSM.T10 [263]). If you were to build all 5! = 5× 4× 3×
2× 1 = 120 matrices of this type you would have a set that remains closed under matrix
multiplication. It is an example of another algebraic structure known as a group since
together the set and the one operation (matrix multiplication here) is closed, associative,
has an identity (I5), and inverses (Theorem OMI [259]). Notice though that the operation
in this group is not commutative! �

Orthogonal matrices have easily computed inverses. They also have columns that
form orthonormal sets. Here are the theorems that show us that orthogonal matrices are
not as strange as they might initially appear.

Theorem OMI
Orthogonal Matrices are Invertible

Suppose that Q is an orthogonal matrix of size n. Then Q is nonsingular, and Q−1 =
(Q)t. �

Proof By Definition OM [258], we know that (Q)tQ = In. The matrix In is nonsingular
(since it row-reduces easily to In, Theorem NSRRI [81]). So by Theorem NPNT [255],
Q and (Q)t are both nonsingular.

The equation (Q)tQ = In gets us halfway to an inverse of Q, and Theorem OSIS [256]
tells us that Q(Q)t = In also. So Q and (Q)t are inverses of each other (Defini-
tion MI [240]). �

Theorem COMOS
Columns of Orthogonal Matrices are Orthonormal Sets
Suppose that A is a square matrix of size n with columns S = {A1, A2, A3, . . . , An}.

Then A is an orthogonal matrix if and only if S is an orthonormal set. �

Proof The proof revolves around recognizing that a typical entry of the product (A)tA
is an inner product of columns of A. Here are the details to support this claim.[(

A
)t

A
]

ij
=

n∑
k=1

[
(A)t

]
ik

[A]kj Theorem EMP [227]

=
n∑

k=1

[
A
]
ki

[A]kj Definition TM [210]

=
n∑

k=1

[A]ki [A]kj Definition CCM [213]

=
n∑

k=1

[A]kj [A]ki Commutativity in C

=
n∑

k=1

[Aj]k [Ai]k Notation

= 〈Aj, Ai〉 Definition IP [192]

We now employ this equality in a chain of equivalences,

S = {A1, A2, A3, . . . , An} is an orthonormal set
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⇐⇒ 〈Aj, Ai〉 =

{
0 if i 6= j

1 if i = j
Definition ONS [201]

⇐⇒
[(

A
)t

A
]

ij
=

{
0 if i 6= j

1 if i = j
Substitution

⇐⇒
[(

A
)t

A
]

ij
= [In]ij , 1 ≤ i ≤ n, 1 ≤ j ≤ n Definition IM [80]

⇐⇒
(
A
)t

A = In Definition ME [207]

⇐⇒ A is an orthogonal matrix Definition OM [258]

�

Example OSMC
Orthonormal Set from Matrix Columns

The matrix

Q =


1+i√

5
3+2 i√

55
2+2i√

22
1−i√

5
2+2 i√

55
−3+i√

22
i√
5

3−5 i√
55
− 2√

22


from Example OM3 [258] is an orthogonal matrix. By Theorem COMOS [259] its columns


1+i√

5
1−i√

5
i√
5

 ,


3+2 i√

55
2+2 i√

55
3−5 i√

55

 ,


2+2i√

22
−3+i√

22

− 2√
22




form an orthonormal set. You might find checking the six inner products of pairs of these

vectors easier than doing the matrix product
(
Q
)t

Q. Or, because the inner product is
anti-commutative (Theorem IPAC [194]) you only need check three inner products (see
Exercise MINSM.T12 [263]). �

When using vectors and matrices that only have real number entries, orthogonal
matrices are those matrices with inverses that equal their transpose. Similarly, the inner
product is the familiar dot product. Keep this special case in mind as you read the next
theorem.

Theorem OMPIP
Orthogonal Matrices Preserve Inner Products
Suppose that Q is an orthogonal matrix of size n and u and v are two vectors from Cn.

Then

〈Qu, Qv〉 = 〈u, v〉 and ‖Qv‖ = ‖v‖

�

Proof

〈Qu, Qv〉 = (Qu)tQv Theorem MMIP [231]

= utQtQv Theorem MMT [232]

= utQtQv Theorem MMCC [231]

= ut
(
Q
)t

Qv Definition CCM [213], Theorem CCT [675]
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= ut
(
Q
)t

Qv Theorem MCT [214]

= ut
(
Q
)t

Qv Theorem MMCC [231]

= utInv Definition OM [258]

= utInv In has real entries

= utv Theorem MMIM [228]

= 〈u, v〉 Theorem MMIP [231]

The second conclusion is just a specialization of the first conclusion.

‖Qv‖ =
√
‖Qv‖2

=
√
〈Qv, Qv〉 Theorem IPN [195]

=
√
〈v, v〉 Previous conclusion

=
√
‖v‖2 Theorem IPN [195]

= ‖v‖

�

Definition A
Adjoint

If A is a square matrix, then its adjoint is AH =
(
A
)t

. 4
Sometimes a matrix is equal to its adjoint. A simple example would be any symmetric

matrix with real entries.

Definition HM
Hermitian Matrix

The square matrix A is Hermitian (or self-adjoint) if A =
(
A
)t 4

Subsection READ
Reading Questions

1. Show how to use the inverse of a matrix to solve the system of equations below and
state the resulting solution.

4x1 + 10x2 = 12

2x1 + 6x2 = 4

2. In the reading questions for Section MISLE [239] you were asked to find the inverse
of the 3× 3 matrix below.  2 3 1

1 −2 −3
−2 4 6


Because the matrix was not nonsingular, you had no theorems at that point that
would allow you to compute the inverse. Explain why you now know that the
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inverse does not exist (which is different than not being able to compute it) by
quoting the relevant theorem’s acronym.

3. Is the matrix A orthogonal? Why?

A =

[
1√
22

(4 + 2i) 1√
374

(5 + 3i)
1√
22

(−1− i) 1√
374

(12 + 14i)

]
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Subsection EXC
Exercises

C40 Solve the system of equations below using the inverse of a matrix.

x1 + x2 + 3x3 + x4 = 5

−2x1 − x2 − 4x3 − x4 = −7

x1 + 4x2 + 10x3 + 2x4 = 9

−2x1 − 4x3 + 5x4 = 9

Contributed by Robert Beezer Solution [265]

M20 Construct an example of a 4× 4 orthogonal matrix.
Contributed by Robert Beezer Solution [265]

T10 Suppose that Q and P are orthogonal matrices of size n. Prove that QP is an
orthogonal matrix.
Contributed by Robert Beezer

T11 Prove that Hermitian matrices (Definition HM [261]) have real entries on the
diagonal. More precisely, suppose that A is a Hermitian matrix of size n. Then [A]ii ∈ R,
1 ≤ i ≤ n.
Contributed by Robert Beezer

T12 Suppose that A is a square matrix of size n that we are investigating for orthog-
onality. Show that a straightforward application of Theorem COMOS [259] requires the
computation of n2 inner products when the matrix is orthogonal, and fewer when the
matrix is not orthogonal. Then show that this maximum number of inner products can
be reduced to 1

2
n(n + 1) in light of Theorem IPAC [194].

Contributed by Robert Beezer
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Subsection SOL
Solutions

C40 Contributed by Robert Beezer Statement [263]
The coefficient matrix and vector of constants for the system are

1 1 3 1
−2 −1 −4 −1
1 4 10 2
−2 0 −4 5

 b =


5
−7
9
9


A−1 can be computed by using a calculator, or by the method of Theorem CINSM [245].
Then Theorem SNSCM [258] says the unique solution is

A−1b =


38 18 −5 −2
96 47 −12 −5
−39 −19 5 2
−16 −8 2 1




5
−7
9
9

 =


1
−2
1
3


M20 Contributed by Robert Beezer Statement [263]
The 4× 4 identity matrix, I4, would be one example (Definition IM [80]). Any of the 23
other rearrangements of the columns of I4 would be a simple, but less trivial, example.
See Example OPM [258].
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Section CRS

Column and Row Spaces

Theorem SLSLC [106] showed us that there is a natural correspondence between solutions
to linear systems and linear combinations of the columns of the coefficient matrix. This
idea motivates the following important definition.

Definition CSM
Column Space of a Matrix

Suppose that A is an m × n matrix with columns {A1, A2, A3, . . . , An}. Then the
column space of A, written C(A), is the subset of Cm containing all linear combinations
of the columns of A,

C(A) = 〈{A1, A2, A3, . . . , An}〉

(This definition contains Notation CSM.) 4

Some authors refer to the column space of a matrix as the range, but we will reserve
this term for use with linear transformations (Definition RLT [555]).

Subsection CSSE
Column spaces and systems of equations

Upon encountering any new set, the first question we ask is what objects are in the set,
and which objects are not? Here’s an example of one way to answer this question, and
it will motivate a theorem that will then answer the question precisely.

Example CSMCS
Column space of a matrix and consistent systems

Archetype D [717] and Archetype E [721] are linear systems of equations, with an
identical 3 × 4 coefficient matrix, which we call A here. However, Archetype D [717] is
consistent, while Archetype E [721] is not. We can explain this difference by employing
the column space of the matrix A.

The column vector of constants, b, in Archetype D [717] is

b =

 8
−12
4

 .

One solution to LS(A, b), as listed, is

x =


7
8
1
3

 .
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By Theorem SLSLC [106], we can summarize this solution as a linear combination of the
columns of A that equals b,

7

 2
−3
1

+ 8

1
4
1

+ 1

 7
−5
4

+ 3

−7
−6
−5

 =

 8
−12
4

 = b.

This equation says that b is a linear combination of the columns of A, and then by
Definition CSM [267], we can say that b ∈ C(A).

On the other hand, Archetype E [721] is the linear system LS(A, c), where the vector
of constants is

c =

2
3
2


and this system of equations is inconsistent. This means c 6∈ C(A), for if it were, then it
would equal a linear combination of the columns of A and Theorem SLSLC [106] would
lead us to a solution of the system LS(A, c). �

So if we fix the coefficient matrix, and vary the vector of constants, we can sometimes
find consistent systems, and sometimes inconsistent systems. The vectors of constants
that lead to consistent systems are exactly the elements of the column space. This is the
content of the next theorem, and since it is an equivalence, it provides an alternate view
of the column space.

Theorem CSCS
Column Spaces and Consistent Systems

Suppose A is an m× n matrix and b is a vector of size m. Then b ∈ C(A) if and only
if LS(A, b) is consistent. �

Proof (⇒) Suppose b ∈ C(A). Then we can write b as some linear combination of
the columns of A. By Theorem SLSLC [106] we can use the scalars from this linear
combination to form a solution to LS(A, b), so this system is consistent.

(⇐) If LS(A, b) is consistent, there is a solution that may be used with Theo-
rem SLSLC [106] to write b as a linear combination of the columns of A. This qualifies
b for membership in C(A). �

This theorem tells us that asking if the system LS(A, b) is consistent is exactly the
same question as asking if b is in the column space of A. Or equivalently, it tells us that
the column space of the matrix A is precisely those vectors of constants, b, that can be
paired with A to create a system of linear equations LS(A, b) that is consistent.

An alternative (and popular) definition of the column space of an m × n matrix A
would then be

C(A) = {y ∈ Cm | y = Ax for some x ∈ Cn}

We recognize this as saying create all the matrix vector products possible with the matrix
A by letting x range over all of the possibilities. By Definition MVP [221] we see that
this means take all possible linear combinations of the columns of A — precisely the
definition of the column space (Definition CSM [267]) we have chosen.

Given a vector b and a matrix A it is now very mechanical to test if b ∈ C(A).
Form the linear system LS(A, b), row-reduce the augmented matrix, [A | b], and test
for consistency with Theorem RCLS [54]. Here’s an example of this procedure.
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Example MCSM
Membership in the column space of a matrix

Consider the column space of the 3× 4 matrix A,

A =

 3 2 1 −4
−1 1 −2 3
2 −4 6 −8



We first show that v =

18
−6
12

 is in the column space of A, v ∈ C(A). Theorem CSCS [268]

says we need only check the consistency of LS(A, v). Form the augmented matrix and
row-reduce,  3 2 1 −4 18

−1 1 −2 3 −6
2 −4 6 −8 12

 RREF−−−→

 1 0 1 −2 6

0 1 −1 1 0
0 0 0 0 0


Without a leading 1 in the final column, Theorem RCLS [54] tells us the system is
consistent and therefore by Theorem CSCS [268], v ∈ C(A).

If we wished to demonstrate explicitly that v is a linear combination of the columns
of A, we can find a solution (any solution) of LS(A, v) and use Theorem SLSLC [106] to
construct the desired linear combination. For example, set the free variables to x3 = 2
and x4 = 1. Then a solution has x2 = 1 and x1 = 6. Then by Theorem SLSLC [106],

v =

18
−6
12

 = 6

 3
−1
2

+ 1

 2
1
−4

+ 2

 1
−2
6

+ 1

−4
3
−8



Now we show that w =

 2
1
−3

 is not in the column space of A, w 6∈ C(A). Theo-

rem CSCS [268] says we need only check the consistency of LS(A, w). Form the aug-
mented matrix and row-reduce, 3 2 1 −4 2

−1 1 −2 3 1
2 −4 6 −8 −3

 RREF−−−→

 1 0 1 −2 0

0 1 −1 1 0

0 0 0 0 1


With a leading 1 in the final column, Theorem RCLS [54] tells us the system is inconsis-
tent and therefore by Theorem CSCS [268], w 6∈ C(A). �

Subsection CSSOC
Column space spanned by original columns

So we have a foolproof, automated procedure for determining membership in C(A). While
this works just fine a vector at a time, we would like to have a more useful description
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of the set C(A) as a whole. The next example will preview the first of two fundamental
results about the column space of a matrix.

Example CSTW
Column space, two ways

Consider the 5× 7 matrix A,
2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2


According to the definition (Definition CSM [267]), the column space of A is

C(A) =

〈


2
1
0
1
−2

 ,


4
2
0
2
−4

 ,


1
1
1
−1
1

 ,


−1
0
4
2
3

 ,


1
2
1
1
−1

 ,


4
4
8
9
−2

 ,


4
7
7
6
−2



〉

While this is a concise description of an infinite set, we might be able to describe the span
with fewer than seven vectors. This is the substance of Theorem BS [180]. So we take
these seven vectors and make them the columns of matrix, which is simply the original
matrix A again. Now we row-reduce,

2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2

 RREF−−−→


1 2 0 0 0 3 1

0 0 1 0 0 −1 0

0 0 0 1 0 2 1

0 0 0 0 1 1 3
0 0 0 0 0 0 0


The pivot columns are D = {1, 3, 4, 5}, so we can create the set

T =




2
1
0
1
−2

 ,


1
1
1
−1
1

 ,


−1
0
4
2
3

 ,


1
2
1
1
−1




and know that C(A) = 〈T 〉 and T is a linearly independent set of columns from the set
of columns of A. �

We will now formalize the previous example, which will make it trivial to determine
a linearly independent set of vectors that will span the column space of a matrix, and is
constituted of just columns of A.

Theorem BCS
Basis of the Column Space

Suppose that A is an m × n matrix with columns A1, A2, A3, . . . , An, and B is
a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let D =
{d1, d2, d3, . . . , dr} be the set of column indices where B has leading 1’s. Let T =
{Ad1 , Ad2 , Ad3 , . . . , Adr}. Then
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1. T is a linearly independent set.

2. C(A) = 〈T 〉.

�

Proof Definition CSM [267] describes the column space as the span of the set of
columns of A. Theorem BS [180] tells us that we can reduce the set of vectors used in a
span. If we apply Theorem BS [180] to C(A), we would collect the columns of A into a
matrix (which would just be A again) and bring the matrix to reduced row-echelon form,
which is the matrix B in the statement of the theorem. In this case, the conclusions of
Theorem BS [180] applied to A, B and C(A) are exactly the conclusions we desire. �

This is a nice result since it gives us a handful of vectors that describe the entire
column space (through the span), and we believe this set is as small as possible because
we cannot create any more relations of linear dependence to trim it down further. Fur-
thermore, we defined the column space (Definition CSM [267]) as all linear combinations
of the columns of the matrix, and the elements of the set S are still columns of the matrix
(we won’t be so lucky in the next two constructions of the column space).

Procedurally this theorem is extremely easy to apply. Row-reduce the original matrix,
identify r columns with leading 1’s in this reduced matrix, and grab the corresponding
columns of the original matrix. But it is still important to study the proof of Theo-
rem BS [180] and its motivation in Example COV [178] which lie at the root of this
theorem. We’ll trot through an example all the same.

Example CSOCD
Column space, original columns, Archetype D

Let’s determine a compact expression for the entire column space of the coefficient
matrix of the system of equations that is Archetype D [717]. Notice that in Exam-
ple CSMCS [267] we were only determining if individual vectors were in the column
space or not, now we are describing the entire column space.

To start with the application of Theorem BCS [270], call the coefficient matrix A

A =

 2 1 7 −7
−3 4 −5 −6
1 1 4 −5

 .

and row-reduce it to reduced row-echelon form,

B =

 1 0 3 −2

0 1 1 −3
0 0 0 0

 .

There are leading 1’s in columns 1 and 2, so D = {1, 2}. To construct a set that spans
C(A), just grab the columns of A indicated by the set D, so

C(A) =

〈
 2
−3
1

 ,

1
4
1


〉

.

That’s it.
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In Example CSMCS [267] we determined that the vector

c =

2
3
2


was not in the column space of A. Try to write c as a linear combination of the first two
columns of A. What happens?

Also in Example CSMCS [267] we determined that the vector

b =

 8
−12
4


was in the column space of A. Try to write b as a linear combination of the first two
columns of A. What happens? Did you find a unique solution to this question? Hmmmm.
�

Subsection CSNSM
Column Space of a Nonsingular Matrix

Let’s specialize to square matrices and contrast the column spaces of the coefficient
matrices in Archetype A [703] and Archetype B [708].

Example CSAA
Column space of Archetype A

The coefficient matrix in Archetype A [703] is

A =

1 −1 2
2 1 1
1 1 0


which row-reduces to  1 0 1

0 1 −1
0 0 0

 .

Columns 1 and 2 have leading 1’s, so by Theorem BCS [270] we can write

C(A) = 〈{A1, A2}〉 =

〈
1

2
1

 ,

−1
1
1


〉

.

We want to show in this example that C(A) 6= C3. So take, for example, the vector

b =

1
3
2

. Then there is no solution to the system LS(A, b), or equivalently, it is

not possible to write b as a linear combination of A1 and A2. Try one of these two
computations yourself. (Or try both!). Since b 6∈ C(A), the column space of A cannot
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be all of C3. So by varying the vector of constants, it is possible to create inconsistent
systems of equations with this coefficient matrix (the vector b being one such example).

In Example MWIAA [240] we wished to show that the coefficient matrix from Archetype A [703]
was not invertible as a first example of a matrix without an inverse. Our device there
was to find an inconsistent linear system with A as the coefficient matrix. The vector of
constants in that example was b, deliberatley chosen outside the column space of A. �

Example CSAB
Column space of Archetype B
The coefficient matrix in Archetype B [708], call it B here, is known to be nonsingular

(see Example NS [80]). By Theorem NSMUS [83], the linear system LS(B, b) has a
(unique) solution for every choice of b. Theorem CSCS [268] then says that b ∈ C(B)
for all b ∈ C3. Stated differently, there is no way to build an inconsistent system with
the coefficient matrix B, but then we knew that already from Theorem NSMUS [83]. �

Example CSAA [272] and Example CSAB [273] together motivate the following equiv-
alence, which says that nonsingular matrices have column spaces that are as big as pos-
sible.

Theorem CSNSM
Column Space of a NonSingular Matrix
Suppose A is a square matrix of size n. Then A is nonsingular if and only if C(A) = Cn.

�

Proof (⇒) Suppose A is nonsingular. We wish to establish the set equality C(A) = Cn.
By Definition CSM [267], C(A) ⊆ Cn.

To show that Cn ⊆ C(A) choose b ∈ Cn. By Theorem NSMUS [83], we know the linear
system LS(A, b) has a (unique) solution and therefore is consistent. Theorem CSCS [268]
then says that b ∈ C(A). So by Definition SE [678], C(A) = Cn.

(⇐) If ei is column i of the n × n identity matrix (Definition SUV [242]) and by
hypothesis C(A) = Cn, then ei ∈ C(A) for 1 ≤ i ≤ n. By Theorem CSCS [268],
the system LS(A, ei) is consistent for 1 ≤ i ≤ n. Let bi denote a single solution to
LS(A, ei), 1 ≤ i ≤ n.

Define the n× n matrix B = [b1|b2|b3| . . . |bn]. Then

AB = A [b1|b2|b3| . . . |bn]

= [Ab1|Ab2|Ab3| . . . |Abn] Definition MM [225]

= [e1|e2|e3| . . . |en]

= In Definition SUV [242]

So the matrix B is a “right-inverse” for A. By Theorem NSRRI [81], In is a nonsingular
matrix, so by Theorem NPNT [255] both A and B are nonsingular. Thus, in particular,
A is nonsingular. (Travis Osbornecontributed to this proof.) �

With this equivalence for nonsingular matrices we can update our list, Theorem NSME3 [257].

Theorem NSME4
NonSingular Matrix Equivalences, Round 4

Suppose that A is a square matrix of size n. The following are equivalent.
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1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

�

Proof Since Theorem CSNSM [273] is an equivalence, we can add it to the list in
Theorem NSME3 [257]. �

Subsection RSM
Row Space of a Matrix

The rows of a matrix can be viewed as vectors, since they are just lists of numbers,
arranged horizontally. So we will transpose a matrix, turning rows into columns, so we
can then manipulate rows as column vectors. As a result we will be able to make some
new connections between row operations and solutions to systems of equations. OK, here
is the second primary definition of this section.

Definition RSM
Row Space of a Matrix

Suppose A is an m× n matrix. Then the row space of A, R(A), is the column space
of At, i.e. R(A) = C(At).
(This definition contains Notation RSM.) 4

Informally, the row space is the set of all linear combinations of the rows of A. How-
ever, we write the rows as column vectors, thus the necessity of using the transpose to
make the rows into columns. Additionally, with the row space defined in terms of the
column space, all of the previous results of this section can be applied to row spaces.

Notice that if A is a rectangular m × n matrix, then C(A) ⊆ Cm, while R(A) ⊆ Cn

and the two sets are not comparable since they do not even hold objects of the same
type. However, when A is square of size n, both C(A) andR(A) are subsets of Cn, though
usually the sets will not be equal (but see Exercise CRS.M20 [283]).

Example RSAI
Row space of Archetype I

The coefficient matrix in Archetype I [739] is

I =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
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To build the row space, we transpose the matrix,

I t =



1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


Then the columns of this matrix are used in a span to build the row space,

R(I) = C
(
I t
)

=

〈




1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13
7


,



0
0
2
−3
−4
12
−8


,



−1
−4
2
4
8
−31
37





〉
.

However, we can use Theorem BCS [270] to get a slightly better description. First,
row-reduce I t, 

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Since there are leading 1’s in columns with indices D = {1, 2, 3}, the column space of I t

can be spanned by just the first three columns of I t,

R(I) = C
(
I t
)

=

〈




1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13
7


,



0
0
2
−3
−4
12
−8





〉
.

�

The row space would not be too interesting if it was simply the column space of the
transpose. However, when we do row operations on a matrix we have no effect on the
many linear combinations that can be formed with the rows of the matrix. This is stated
more carefully in the following theorem.

Theorem REMRS
Row-Equivalent Matrices have equal Row Spaces

Suppose A and B are row-equivalent matrices. Then R(A) = R(B). �
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Proof Two matrices are row-equivalent (Definition REM [32]) if one can be obtained
from another by a sequence of (possibly many) row operations. We will prove the theorem
for two matrices that differ by a single row operation, and then this result can be applied
repeatedly to get the full statement of the theorem. The row spaces of A and B are spans
of the columns of their transposes. For each row operation we perform on a matrix, we
can define an analogous operation on the columns. Perhaps we should call these column
operations. Instead, we will still call them row operations, but we will apply them to
the columns of the transposes.

Refer to the columns of At and Bt as Ai and Bi, 1 ≤ i ≤ m. The row operation
that switches rows will just switch columns of the transposed matrices. This will have
no effect on the possible linear combinations formed by the columns.

Suppose that Bt is formed from At by multiplying column At by α 6= 0. In other
words, Bt = αAt, and Bi = Ai for all i 6= t. We need to establish that two sets are equal,
C(At) = C(Bt). We will take a generic element of one and show that it is contained in
the other.

β1B1+β2B2 + β3B3 + · · ·+ βtBt + · · ·+ βmBm

= β1A1 + β2A2 + β3A3 + · · ·+ βt (αAt) + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ (αβt)At + · · ·+ βmAm

says that C(Bt) ⊆ C(At). Similarly,

γ1A1+γ2A2 + γ3A3 + · · ·+ γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+
(γt

α
α
)

At + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ γt

α
(αAt) + · · ·+ γmAm

= γ1B1 + γ2B2 + γ3B3 + · · ·+ γt

α
Bt + · · ·+ γmBm

says that C(At) ⊆ C(Bt). SoR(A) = C(At) = C(Bt) = R(B) when a single row operation
of the second type is performed.

Suppose now that Bt is formed from At by replacing At with αAs + At for some
α ∈ C and s 6= t. In other words, Bt = αAs + At, and Bi = Ai for i 6= t.

β1B1+β2B2 + β3B3 + · · ·+ βsBs + · · ·+ βtBt + · · ·+ βmBm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + · · ·+ βt (αAs + At) + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + · · ·+ (βtα)As + βtAt + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ βsAs + (βtα)As + · · ·+ βtAt + · · ·+ βmAm

= β1A1 + β2A2 + β3A3 + · · ·+ (βs + βtα)As + · · ·+ βtAt + · · ·+ βmAm

says that C(Bt) ⊆ C(At). Similarly,

γ1A1 + γ2A2 + γ3A3 + · · ·+ γsAs + · · ·+ γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ γsAs + · · ·+ (−αγtAs + αγtAs) + γtAt + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ (−αγtAs) + γsAs + · · ·+ (αγtAs + γtAt) + · · ·+ γmAm

= γ1A1 + γ2A2 + γ3A3 + · · ·+ (−αγt + γs)As + · · ·+ γt (αAs + At) + · · ·+ γmAm

= γ1B1 + γ2B2 + γ3B3 + · · ·+ (−αγt + γs)Bs + · · ·+ γtBt + · · ·+ γmBm
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says that C(At) ⊆ C(Bt). SoR(A) = C(At) = C(Bt) = R(B) when a single row operation
of the third type is performed.

So the row space of a matrix is preserved by each row operation, and hence row spaces
of row-equivalent matrices are equal sets. �

Example RSREM
Row spaces of two row-equivalent matrices

In Example TREM [32] we saw that the matrices

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent by demonstrating a sequence of two row operations that converted A
into B. Applying Theorem REMRS [275] we can say

R(A) =

〈


2
−1
3
4

 ,


5
2
−2
3

 ,


1
1
0
6



〉

=

〈


1
1
0
6

 ,


3
0
−2
−9

 ,


2
−1
3
4



〉

= R(B)

�

Theorem REMRS [275] is at its best when one of the row-equivalent matrices is in
reduced row-echelon form. The vectors that correspond to the zero rows can be ignored
(who needs the zero vector when building a span?, see Exercise LI.T10 [167]). The echelon
pattern insures that the nonzero rows yield vectors that are linearly independent. Here’s
the theorem.

Theorem BRS
Basis for the Row Space

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon
form. Let S be the set of nonzero columns of Bt. Then

1. R(A) = 〈S〉.

2. S is a linearly independent set.

�

Proof From Theorem REMRS [275] we know that R(A) = R(B). If B has any zero
rows, these correspond to columns of Bt that are the zero vector. We can safely toss
out the zero vector in the span construction, since it can be recreated from the nonzero
vectors by a linear combination where all the scalars are zero. So R(A) = 〈S〉.

Suppose B has r nonzero rows and let D = {d1, d2, d3, . . . , dr} denote the column
indices of B that have a leading one in them. Denote the r column vectors of Bt, the
vectors in S, as B1, B2, B3, . . . , Br. To show that S is linearly independent, start with
a relation of linear dependence

α1B1 + α2B2 + α3B3 + · · ·+ αrBr = 0

Now consider this equation across entries of the vectors in location di, 1 ≤ i ≤ r. Since B
is in reduced row-echelon form, the entries of column di are all zero, except for a (leading)
1 in row i. Considering the column vectors of Bt, the linear combination for entry di is

α1(0) + α2(0) + α3(0) + · · ·+ αi(1) + · · ·+ αr(0) = 0
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and from this we conclude that αi = 0 for all 1 ≤ i ≤ r, establishing the linear indepen-
dence of S. �

Example IAS
Improving a span

Suppose in the course of analyzing a matrix (its column space, its null space, its. . . )
we encounter the following set of vectors, described by a span

X =

〈


1
2
1
6
6

 ,


3
−1
2
−1
6

 ,


1
−1
0
−1
−2

 ,


−3
2
−3
6
−10



〉

Let A be the matrix whose rows are the vectors in X, so by design X = R(A),

A =


1 2 1 6 6
3 −1 2 −1 6
1 −1 0 −1 −2
−3 2 −3 6 −10


Row-reduce A to form a row-equivalent matrix in reduced row-echelon form,

B =


1 0 0 2 −1

0 1 0 3 1

0 0 1 −2 5
0 0 0 0 0


Then Theorem BRS [277] says we can grab the nonzero columns of Bt and write

X = R(A) = R(B) =

〈


1
0
0
2
−1

 ,


0
1
0
3
1

 ,


0
0
1
−2
5



〉

These three vectors provide a much-improved description of X. There are fewer vectors,
and the pattern of zeros and ones in the first three entries makes it easier to determine
membership in X. And all we had to do was row-reduce the right matrix and toss out a
zero row. Next to row operations themselves, this is probably the most powerful compu-
tational technique at your disposal as it quickly provides a much improved description of
a span, any span. �

Theorem BRS [277] and the techniques of Example IAS [278] will provide yet another
description of the column space of a matrix. First we state a triviality as a theorem, so
we can reference it later.

Theorem CSRST
Column Space, Row Space, Transpose

Suppose A is a matrix. Then C(A) = R(At). �

Proof

C(A) = C
((

At
)t)

Theorem TT [212]
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= R
(
At
)

Definition RSM [274]

�

So to find another expression for the column space of a matrix, build its transpose,
row-reduce it, toss out the zero rows, and convert the nonzero rows to column vectors to
yield an improved set for the span construction. We’ll do Archetype I [739], then you do
Archetype J [744].

Example CSROI
Column space from row operations, Archetype I

To find the column space of the coefficient matrix of Archetype I [739], we proceed as
follows. The matrix is

I =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .

The transpose is 

1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


.

Row-reduced this becomes, 

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Now, using Theorem CSRST [278] and Theorem BRS [277]

C(I) = R
(
I t
)

=

〈


1
0
0
−31

7

 ,


0
1
0
12
7

 ,


0
0
1
13
7



〉

.

This is a very nice description of the column space. Fewer vectors than the 7 involved
in the definition, and the pattern of the zeros and ones in the first 3 slots can be used
to advantage. For example, Archetype I [739] is presented as a consistent system of
equations with a vector of constants

b =


3
9
1
4

 .
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Since LS(I, b) is consistent, Theorem CSCS [268] tells us that b ∈ C(I). But we could
see this quickly with the following computation, which really only involves any work in
the 4th entry of the vectors as the scalars in the linear combination are dictated by the
first three entries of b.

b =


3
9
1
4

 = 3


1
0
0
−31

7

+ 9


0
1
0
12
7

+ 1


0
0
1
13
7


Can you now rapidly construct several vectors, b, so that LS(I, b) is consistent, and
several more so that the system is inconsistent? �

Subsection READ
Reading Questions

1. Write the column space of the matrix below as the span of a set of three vectors. 1 3 1 3
2 0 1 1
−1 2 1 0


2. Suppose that A is an n×n nonsingular matrix. What can you say about its column

space?

3. Is the vector


0
5
2
3

 in the row space of the following matrix? Why or why not?

 1 3 1 3
2 0 1 1
−1 2 1 0
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Subsection EXC
Exercises

C30 Example CSOCD [271] expresses the column space of the coefficient matrix from
Archetype D [717] (call the matrix A here) as the span of the first two columns of A. In
Example CSMCS [267] we determined that the vector

c =

2
3
2


was not in the column space of A and that the vector

b =

 8
−12
4


was in the range of A. Attempt to write c and b as linear combinations of the two vectors
in the span construction for the column space in Example CSOCD [271] and record your
observations.
Contributed by Robert Beezer Solution [285]

C31 For the matrix A below find a set of vectors T meeting the following requirements:
(1) the span of T is the column space of A, that is, 〈T 〉 = C(A), (2) T is linearly
independent, and (3) the elements of T are columns of A.

A =


2 1 4 −1 2
1 −1 5 1 1
−1 2 −7 0 1
2 −1 8 −1 2


Contributed by Robert Beezer Solution [285]

C32 In Example CSAA [272], verify that the vector b is not in the column space of
the coefficient matrix.
Contributed by Robert Beezer

C33 Find a linearly independent set S so that the span of S, 〈S〉, is row space of the
matrix B, and S is linearly independent.

B =

 2 3 1 1
1 1 0 1
−1 2 3 −4


Contributed by Robert Beezer Solution [285]

C40 The following archetypes are systems of equations. For each system, write the
vector of constants as a linear combination of the vectors in the span construction for
the column space provided by Theorem BCS [270] (these vectors are listed for each of
these archetypes).
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Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]
Archetype E [721]
Archetype F [725]
Archetype G [730]
Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer

C42 The following archetypes are either matrices or systems of equations with coef-
ficient matrices. For each matrix, compute a set of column vectors such that (1) the
vectors are columns of the matrix, (2) the set is linearly independent, and (3) the span
of the set is the column space of the matrix. See Theorem BCS [270].
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]
Archetype K [749]
Archetype L [753]

Contributed by Robert Beezer

C50 The following archetypes are either matrices or systems of equations with coeffi-
cient matrices. For each matrix, compute a set of column vectors such that (1) the set
is linearly independent, and (2) the span of the set is the row space of the matrix. See
Theorem BRS [277].
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]
Archetype K [749]
Archetype L [753]

Contributed by Robert Beezer
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C51 The following archetypes are either matrices or systems of equations with coef-
ficient matrices. For each matrix, compute the column space as the span of a linearly
independent set as follows: transpose the matrix, row-reduce, toss out zero rows, convert
rows into column vectors. See Example CSROI [279].
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]
Archetype K [749]
Archetype L [753]

Contributed by Robert Beezer

C52 The following archetypes are systems of equations. For each different coefficient
matrix build two new vectors of constants. The first should lead to a consistent system
and the second should lead to an inconsistent system. Descriptions of the column space
as spans of linearly independent sets of vectors with “nice patterns” of zeros and ones
might be most useful and instructive in connection with this exercise. (See the end of
Example CSROI [279].)
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer

M10 For the matrix E below, find vectors b and c so that the system LS(E, b) is
consistent and LS(E, c) is inconsistent.

E =

−2 1 1 0
3 −1 0 2
4 1 1 6


Contributed by Robert Beezer Solution [285]

M20 Usually the column space and null space of a matrix contain vectors of different
sizes. For a square matrix, though, the vectors in these two sets are the same size.
Usually the two sets will be different. Construct an example of a square matrix where
the column space and null space are equal.
Contributed by Robert Beezer Solution [286]
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M21 We have a variety of theorems about how to create column spaces and row spaces
and they frequently involve row-reducing a matrix. Here is a procedure that some try to
use to get a column space. Begin with an m × n matrix A and row-reduce to a matrix
B with columns B1, B2, B3, . . . , Bn. Then form the column space of A as

C(A) = 〈{B1, B2, B3, . . . , Bn}〉 = C(B)

This is not not a legitimate procedure, and therefore is not a theorem. Construct an
example to show that the procedure will not in general create the column space of A.
Contributed by Robert Beezer Solution [286]

T40 Suppose that A is an m × n matrix and B is an n × p matrix. Prove that
the column space of AB is a subset of the column space of A, that is C(AB) ⊆ C(A).
Provide an example where the opposite is false, in other words give an example where
C(A) 6⊆ C(AB). (Compare with Exercise MM.T40 [235].)
Contributed by Robert Beezer Solution [286]

T41 Suppose that A is an m× n matrix and B is an n× n nonsingular matrix. Prove
that the column space of A is equal to the column space of AB, that is C(A) = C(AB).
(Compare with Exercise MM.T41 [235] and Exercise CRS.T40 [284].)
Contributed by Robert Beezer Solution [286]

T45 Suppose that A is an m × n matrix and B is an n × m matrix where AB is a
nonsingular matrix. Prove that
(1) N (B) = {0}
(2) C(B) ∩N (A) = {0}
Discuss the case when m = n in connection with Theorem NPNT [255].
Contributed by Robert Beezer Solution [287]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [281]
In each case, begin with a vector equation where one side contains a linear combination
of the two vectors from the span construction that gives the column space of A with
unknowns for scalars, and then use Theorem SLSLC [106] to set up a system of equations.
For c, the corresponding system has no solution, as we would expect.

For b there is a solution, as we would expect. What is interesting is that the solution
is unique. This is a consequence of the linear independence of the set of two vectors in
the span construction. If we wrote b as a linear combination of all four columns of A,
then there would be infinitely many ways to do this.

C31 Contributed by Robert Beezer Statement [281]
Theorem BCS [270] is the right tool for this problem. Row-reduce this matrix, identify

the pivot columns and then grab the corresponding columns of A for the set T . The
matrix A row-reduces to 

1 0 3 0 0

0 1 −2 0 0

0 0 0 1 0

0 0 0 0 1


So D = {1, 2, 4, 5} and then

T = {A1, A2, A4, A5} =




2
1
−1
2

 ,


1
−1
2
−1

 ,


−1
1
0
−1

 ,


2
1
1
2




has the requested properties.

C33 Contributed by Robert Beezer Statement [281]
Theorem BRS [277] is the most direct route to a set with these properties. Row-reduce,
toss zero rows, keep the others. You could also transpose the matrix, then look for the
range by row-reducing the transpose and applying Theorem BCS [270]. We’ll do the
former,

B
RREF−−−→

 1 0 −1 2

0 1 1 −1
0 0 0 0


So the set S is

S =




1
0
−1
2

 ,


0
1
1
−1




M10 Contributed by Robert Beezer Statement [283]
Any vector from C3 will lead to a consistent system, and therefore there is no vector

that will lead to an inconsistent system.
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How do we convince ourselves of this? First, row-reduce E,

E
RREF−−−→

 1 0 0 1

0 1 0 1

0 0 1 1


If we augment E with any vector of constants, and row-reduce the augmented matrix,
we will never find a leading 1 in the final column, so by Theorem RCLS [54] the system
will always be consistent.

Said another way, the column space of E is all of C3, C(E) = C3. So by Theo-
rem CSCS [268] any vector of conststants will create a consistent system (and none will
create an inconsistent system).

M20 Contributed by Robert Beezer Statement [283]
The 2× 2 matrix [

1 1
−1 −1

]
has C(A) = N (A) =

〈{[
1
−1

]}〉
.

M21 Contributed by Robert Beezer Statement [284]
Begin with a matrix A (of any size) that does not have any zero rows, but which when

row-reduced to B yields at least one row of zeros. Such a matrix should be easy to
construct (or find, like say from Archetype A [703]).
C(A) will contain some vectors whose final slot (entry m) is non-zero, however, every

column vector from the matrix B will have a zero in slot m and so every vector in C(B)
will also contain a zero in the final slot. This means that C(A) 6= C(B), since we have
vectors in C(A) that cannot be elements of C(B).

T40 Contributed by Robert Beezer Statement [284]
Choose x ∈ C(AB). Then by Theorem CSCS [268] there is a vector w that is a solution
to LS(AB, x). Define the vector y by y = Bw. We’re set,

Ay = A (Bw) Definition of y

= (AB)w Theorem MMA [230]

= x w solution to LS(AB, x)

This says that LS(A, x) is a consistent system, and by Theorem CSCS [268], we see that
x ∈ C(A) and therefore C(AB) ⊆ C(A).

For an example where C(A) 6⊆ C(AB) choose A to be any nonzero matrix and choose
B to be a zero matrix. Then C(A) 6= {0} and C(AB) = C(O) = {0}.

T41 Contributed by Robert Beezer Statement [284]
From the solution to Exercise CRS.T40 [284] we know that C(AB) ⊆ C(A). So to

establish the set equality (Definition SE [678]) we need to show that C(A) ⊆ C(AB).
Choose x ∈ C(A). By Theorem CSCS [268] the linear system LS(A, x) is consistent,

so let y be one such solution. Because B is nonsingular, and linear system using B as
a coefficient matrix will have a solution (Theorem NSMUS [83]). Let w be the unique
solution to the linear system LS(B, y). All set, here we go,

(AB)w = A (Bw) Theorem MMA [230]
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= Ay w solution to LS(B, y)

= x y solution to LS(A, x)

This says that the linear system LS(AB, x) is consistent, so by Theorem CSCS [268],
x ∈ C(AB). So C(A) ⊆ C(AB).

T45 Contributed by Robert Beezer Statement [284]
First, 0 ∈ N (B) trivially. Now suppose that x ∈ N (B). Then

ABx = A(Bx) Theorem MMA [230]

= A0 x ∈ N (B)

= 0 Theorem MMZM [228]

Since we have assumed AB is nonsingular, Definition NM [79] implies that x = 0.
Second, 0 ∈ C(B) and 0 ∈ N (A) trivially, and so the zero vector is in the intersection

as well. Now suppose that y ∈ C(B) ∩ N (A). Because y ∈ C(B), Theorem CSCS [268]
says the system LS(B, y) is consistent. Let x ∈ Cn be one solution to this system. Then

ABx = A(Bx) Theorem MMA [230]

= Ay x solution to LS(B, y)

= 0 y ∈ N (A)

Since we have assumed AB is nonsingular, Definition NM [79] implies that x = 0. Then
y = Bx = B0 = 0.

When AB is nonsingular and m = n we know that the first condition, N (B) =
{0}, means that B is nonsingular (Theorem NSTNS [82]). Because B is nonsingular
Theorem CSNSM [273] implies that C(B) = Cm. In order to have the second condition
fulfilled, C(B) ∩ N (A) = {0}, we must realize that N (A) = {0}. However, a second
application of Theorem NSTNS [82] shows that A must be nonsingular. This reproduces
Theorem NPNT [255].
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Section FS

Four Subsets

There are four natural subsets associated with a matrix. We have met three already:
the null space, the column space and the row space. In this section we will introduce
a fourth, the left null space. The objective of this section is to describe one procedure
that will allow us to find linearly independent sets that span each of these four sets of
column vectors. Along the way, we will make a connection with the inverse of a matrix,
so Theorem FS [296] will tie together most all of this chapter (and the entire course so
far).

Subsection LNS
Left Null Space

Definition LNS
Left Null Space
Suppose A is an m×n matrix. Then the left null space is defined as L(A) = N (At) ⊆

Cm.
(This definition contains Notation LNS.) 4

The left null space will not feature prominently in the sequel, but we can explain its
name and connect it to row operations. Suppose y ∈ L(A). Then by Definition LNS [289],
Aty = 0. We can then write

0t =
(
Aty

)t
= yt

(
At
)t

Theorem MMT [232]

= ytA Theorem TT [212]

The product ytA can be viewed as the components of y acting as the scalars in a linear
combination of the rows of A. And the result is a “row vector”, 0t that is totally zeros.
When we apply a sequence of row operations to a matrix, each row of the resulting matrix
is some linear combination of the rows. These observations tell us that the vectors in the
left null space are scalars that record a sequence of row operations that result in a row
of zeros in the row-reduced version of the matrix. We will see this idea more explicitly
in the course of proving Theorem FS [296].

Example LNS
Left null space

We will find the left null space of

A =


1 −3 1
−2 1 1
1 5 1
9 −4 0


Version 0.85



290 Section FS Four Subsets

We transpose A and row-reduce,

At =

 1 −2 1 9
−3 1 5 −4
1 1 1 0

 RREF−−−→

 1 0 0 2

0 1 0 −3

0 0 1 1


Applying Definition LNS [289] and Theorem BNS [162] we have

L(A) = N
(
At
)

=

〈

−2
3
−1
1



〉

If you row-reduce A you will discover one zero row in the reduced row-echelon form. This
zero row is created by a sequence of row operations, which in total amounts to a linear
combination, with scalars a1 = −2, a2 = 3, a3 = −1 and a4 = 1, on the rows of A and
which results in the zero vector (check this!). So the components of the vector describing
the left null space of A provide a relation of linear dependence on the rows of A. �

Subsection CRS
Computing Column Spaces

We have three ways to build the column space of a matrix. First, we can use just the
definition, Definition CSM [267], and express the column space as a span of the columns
of the matrix. A second approach gives us the column space as the span of some of
the columns of the matrix, but this set is linearly independent (Theorem BCS [270]).
Finally, we can transpose the matrix, row-reduce the transpose, kick out zero rows, and
transpose the remaining rows back into column vectors. Theorem CSRST [278] and
Theorem BRS [277] tell us that the resulting vectors are linearly independent and their
span is the column space of the original matrix.

We will now demonstrate a fourth method by way of a rather complicated example.
Study this example carefully, but realize that its main purpose is to motivate a theorem
that simpifies much of the apparent complexity. So other than an instructive exercise or
two, the procedure we are about to describe will not be a usual approach to computing
a column space.

Example CSANS
Column space as null space

Lets find the column space of the matrix A below with a new approach.

A =


10 0 3 8 7
−16 −1 −4 −10 −13
−6 1 −3 −6 −6
0 2 −2 −3 −2
3 0 1 2 3
−1 −1 1 1 0


By Theorem CSCS [268] we know that the column vector b is in the column space of A
if and only if the linear system LS(A, b) is consistent. So let’s try to solve this system

Version 0.85



Subsection FS.CRS Computing Column Spaces 291

in full generality, using a vector of variables for the vector of constants. So we begin by
forming the augmented matrix [A | b]

[A | b] =


10 0 3 8 7 b1

−16 −1 −4 −10 −13 b2

−6 1 −3 −6 −6 b3

0 2 −2 −3 −2 b4

3 0 1 2 3 b5

−1 −1 1 1 0 b6


To identify solutions we will row-reduce this matrix and bring it to reduced row-echelon
form. Despite the presence of variables in the last column, there is nothing to stop us from
doing this. Except our numerical routines on calculators can’t be used, and even some
of the symbolic algebra routines do some unexpected maneuvers with this computation.
So do it by hand. Yes, it is a bit of work. But worth it. We’ll still be here when you get
back. Notice along the way that the row operations are exactly the same ones you would
do if you were just row-reducing the coefficient matrix alone, say in connection with a
homogeneous system of equations. The column with the bi acts as a sort of bookkeeping
device. There are many different possibilities for the result, depending on what order you
choose to perform the row operations, but shortly we’ll all be on the same page. Here’s
one possibility (you can find this same result by doing additional row operations with
the fifth and sixth rows to remove any occurences of b5 and b6 from the first four rows of
your result): 

1 0 0 0 2 b3 − b4 + 2b5 − b6

0 1 0 0 −3 −2b3 + 3b4 − 3b5 + 3b6

0 0 1 0 1 b3 + b4 + 3b5 + 3b6

0 0 0 1 −2 −2b3 + b4 − 4b5

0 0 0 0 0 b1 + 3b3 − b4 + 3b5 + b6

0 0 0 0 0 b2 − 2b3 + b4 + b5 − b6


Our goal is to identify those vectors b which make LS(A, b) consistent. By Theo-
rem RCLS [54] we know that the consistent systems are precisely those without a leading
1 in the last column. Are the expressions in the last column of rows 5 and 6 equal to
zero, or are they leading 1’s? The answer is: maybe. It depends on b. With a nonzero
value for either of these expressions, we would scale the row and produce a leading 1.
So we get a consistent system, and b is in the column space, if and only if these two
expressions are both simultaneously zero. In other words, members of the column space
of A are exactly those vectors b that satisfy

b1 + 3b3 − b4 + 3b5 + b6 = 0

b2 − 2b3 + b4 + b5 − b6 = 0

Hmmm. Looks suspiciously like a homogeneous system of two equations with six vari-
ables. If you’ve been playing along (and we hope you have) then you may have a slightly
different system, but you should have just two equations. Form the coefficient matrix
and row-reduce (notice that the system above has a coefficient matrix that is already in
reduced row-echelon form). We should all be together now with the same matrix,

L =

[
1 0 3 −1 3 1

0 1 −2 1 1 −1

]
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So, C(A) = N (L) and we can apply Theorem BNS [162] to obtain a linearly independent
set to use in a span construction,

C(A) = N (L) =

〈



−3
2
1
0
0
0

 ,


1
−1
0
1
0
0

 ,


−3
−1
0
0
1
0

 ,


−1
1
0
0
0
1




〉

Whew! As a postscript to this central example, you may wish to convince yourself
that the four vectors above really are elements of the column space? Do they create
consistent systems with A as coefficient matrix? Can you recognize the constant vector
in your description of these solution sets?

OK, that was so much fun, let’s do it again. But simpler this time. And we’ll all
get the same results all the way through. Doing row operations by hand with variables
can be a bit error prone, so let’s see if we can improve the process some. Rather than
row-reduce a column vector b full of variables, let’s write b = I6b and we will row-reduce
the matrix I6 and when we finish row-reducing, then we will compute the matrix-vector
product. You should first convince yourself that we can operate like this (see Exercise XX-
commutingops-todo [??] on commuting operations). Rather than augmenting A with b,
we will instead augment it with I6 (does this feel familiar?),

M =


10 0 3 8 7 1 0 0 0 0 0
−16 −1 −4 −10 −13 0 1 0 0 0 0
−6 1 −3 −6 −6 0 0 1 0 0 0
0 2 −2 −3 −2 0 0 0 1 0 0
3 0 1 2 3 0 0 0 0 1 0
−1 −1 1 1 0 0 0 0 0 0 1


We want to row-reduce the left-hand side of this matrix, but we will apply the same
row operations to the right-hand side as well. And once we get the left-hand side in
reduced row-echelon form, we will continue on to put leading 1’s in the final two rows, as
well as clearing out the columns containing those two additional leading 1’s. It is these
additional row operations that will ensure that we all get to the same place, since the
reduced row-echelon form is unique (Theorem RREFU [122]),

N =


1 0 0 0 2 0 0 1 −1 2 −1
0 1 0 0 −3 0 0 −2 3 −3 3
0 0 1 0 1 0 0 1 1 3 3
0 0 0 1 −2 0 0 −2 1 −4 0
0 0 0 0 0 1 0 3 −1 3 1
0 0 0 0 0 0 1 −2 1 1 −1


We are after the final six columns of this matrix, which we will multiply by b

J =


0 0 1 −1 2 −1
0 0 −2 3 −3 3
0 0 1 1 3 3
0 0 −2 1 −4 0
1 0 3 −1 3 1
0 1 −2 1 1 −1
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so

Jb =


0 0 1 −1 2 −1
0 0 −2 3 −3 3
0 0 1 1 3 3
0 0 −2 1 −4 0
1 0 3 −1 3 1
0 1 −2 1 1 −1




b1

b2

b3

b4

b5

b6

 =


b3 − b4 + 2b5 − b6

−2b3 + 3b4 − 3b5 + 3b6

b3 + b4 + 3b5 + 3b6

−2b3 + b4 − 4b5

b1 + 3b3 − b4 + 3b5 + b6

b2 − 2b3 + b4 + b5 − b6


So by applying to the identity matrix the same row operations that row-reduce A (which
we could do with a calculator once I6 is placed alongside of A), we can then arrive at the
result of row-reducing a column of symbols where the vector of constants usually resides.
Since the row-reduced version of A has two zero rows, for a consistent system we require
that

b1 + 3b3 − b4 + 3b5 + b6 = 0

b2 − 2b3 + b4 + b5 − b6 = 0

Now we are exactly back where we were on the first go-round. Notice that we obtain the
matrix L as simply the last two rows and last six columns of N . �

This example motivates the remainder of this section, so it is worth careful study. You
might attempt to mimic the second approach with the coefficient matrices of Archetype I [739]
and Archetype J [744]. We will see shortly that the matrix L contains more information
about A than just the column space.

Subsection EEF
Extended echelon form

The final matrix that we row-reduced in Example CSANS [290] should look familiar in
most respects to the procedure we used to compute the inverse of a nonsingular matrix,
Theorem CINSM [245]. We will now generalize that procedure to matrices that are not
necessarily nonsingular, or even square. First a definition.

Definition EEF
Extended Echelon Form

Suppose A is an m × n matrix. Add m new columns to A that together equal an
m×m identity matrix to form an m× (n + m) matrix M . Use row operations to bring
M to reduced row-echelon form and call the result N . N is the extended reduced
row-echelon form of A, and we will standardize on names for five submatrices (B, C,
J , K, L) of N .

Let B denote the m×n matrix formed from the first n columns of N and let J denote
the m×m matrix formed from the last m columns of N . Suppose that B has r nonzero
rows. Further partition N by letting C denote the r × n matrix formed from all of the
non-zero rows of B. Let K be the r×m matrix formed from the first r rows of J , while
L will be the (m− r)×m matrix formed from the bottom m− r rows of J . Pictorially,

M = [A|Im]
RREF−−−→ N = [B|J ] =

[
C K
0 L

]
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4

Example SEEF
Submatrices of extended echelon form

We illustrate Definition EEF [293] with the matrix A,

A =


1 −1 −2 7 1 6
−6 2 −4 −18 −3 −26
4 −1 4 10 2 17
3 −1 2 9 1 12


Augmenting with the 4× 4 identity matrix, M=

1 −1 −2 7 1 6 1 0 0 0
−6 2 −4 −18 −3 −26 0 1 0 0
4 −1 4 10 2 17 0 0 1 0
3 −1 2 9 1 12 0 0 0 1


and row-reducing, we obtain

N =


1 0 2 1 0 3 0 1 1 1

0 1 4 −6 0 −1 0 2 3 0

0 0 0 0 1 2 0 −1 0 −2

0 0 0 0 0 0 1 2 2 1


So we then obtain

B =


1 0 2 1 0 3

0 1 4 −6 0 −1

0 0 0 0 1 2
0 0 0 0 0 0


C =

 1 0 2 1 0 3

0 1 4 −6 0 −1

0 0 0 0 1 2



J =


0 1 1 1
0 2 3 0
0 −1 0 −2

1 2 2 1


K =

0 1 1 1
0 2 3 0
0 −1 0 −2


L =

[
1 2 2 1

]
You can observe (or verify) the properties of the following theorem with this example. �

Theorem PEEF
Properties of Extended Echelon Form

Suppose that A is an m× n matrix and that N is its extended echelon form. Then

1. J is nonsingular.
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2. B = JA.

3. If x ∈ Cn and y ∈ Cm, then Ax = y if and only if Bx = Jy.

4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.

5. L is in reduced row-echelon form, has no zero rows and has m− r pivot columns.

�

Proof J is the result of applying a sequence of row operations to Im, as such J and Im

are row-equivalent. LS(Im, 0) has only the zero solution, since Im is nonsingular (Theo-
rem NSRRI [81]). Thus, LS(J, 0) also has only the zero solution (Theorem REMES [32],
Definition ESYS [15]) and J is therefore nonsingular (Definition NSM [71]).

To prove the second part of this conclusion, first convince yourself that row operations
and the matrix-vector are commutative operations. By this we mean the following.
Suppose that F is an m × n matrix that is row-equivalent to the matrix G. Apply to
the column vector Fw the same sequence of row operations that converts F to G. Then
the result is Gw. So we can do row operations on the matrix, then do a matrix-vector
product, or do a matrix-vector product and then do row operations on a column vector,
and the result will be the same either way. Since matrix multiplication is defined by a
collection of matrix-vector products (), if we apply to the matrix product FH the same
sequence of row operations that converts F to G then the result will equal GH. Now
apply these observations to A.

Write AIn = ImA and apply the row operations that convert M to N . A is converted
to B, while Im is converted to J , so we have BIn = JA. Simplifying the left side gives
the desired conclusion.

For the third conclusion, we now establish the two equivalences

Ax = y ⇐⇒ JAx = Jy ⇐⇒ Bx = Jy

The forward direction of the first equivalence is accomplished by multiplying both sides
of the matrix equality by J , while the backward direction is accomplished by multiplying
by the inverse of J (which we know exists by Theorem NSI [257] since J is nonsingular).
The second equivalence is obtained simply by the substitutions given by JA = B.

The first r rows of N are in reduced row-echelon form, since any contiguous collection
of rows taken from a matrix in reduced row-echelon form will form a matrix that is
again in reduced row-echelon form. Since the matrix C is formed by removing the last
n entries of each these rows, the remainder is still in reduced row-echelon form. By its
construction, C has no zero rows. C has r rows and each contains a leading 1, so there
are r pivot columns in C.

The final m − r rows of N are in reduced row-echelon form, since any contiguous
collection of rows taken from a matrix in reduced row-echelon form will form a matrix
that is again in reduced row-echelon form. Since the matrix L is formed by removing
the first n entries of each these rows, and these entries are all zero (they form the zero
rows of B), the remainder is still in reduced row-echelon form. L is the final m− r rows
of the nonsingular matrix J , so none of these rows can be totally zero, or J would not
row-reduce to the identity matrix. L has m − r rows and each contains a leading 1, so
there are m− r pivot columns in L.

�
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Notice that in the case where A is a nonsingular matrix we know that the reduced
row-echelon form of A is the identity matrix (Theorem NSRRI [81]), so B = In. Then the
second conclusion above says JA = B = In, so J is the inverse of A. Thus this theorem
generalizes Theorem CINSM [245], though the result is a “left-inverse” of A rather than
a “right-inverse.”

The third conclusion of Theorem PEEF [294] is the most telling. It says that x is a
solution to the linear system LS(A, y) if and only if x is a solution to the linear system
LS(B, Jy). Or said differently, if we row-reduce the augmented matrix [A | x] we will
get the augmented matrix [B | Jy]. The matrix J tracks the cumulative effect of the
row operations that converts A to reduced row-echelon form, here effectively applying
them to the vector of constants in a system of equations having A as a coefficient matrix.
When A row-reduces to a matrix with zero rows, then Jy should also have zero entries
in the same rows if the system is to be consistent.

Subsection FS
Four Subsets

With all the preliminaries in place we can state our main result for this section. In
essence this result will allow us to say that we can find linearly independent sets to use
in span constructions for all four subsets (null space, column space, row space, left null
space) by analyzing only the extended echelon form of the matrix, and specifically, just
the two submatrices C and L, which will be ripe for analysis since they are already in
reduced row-echelon form (Theorem PEEF [294]).

Theorem FS
Four Subsets

Suppose A is an m × n matrix with extended echelon form N . Suppose the reduced
row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from
the first r rows and the first n columns and L is the submatrix of N formed from the
last m columns and the last m− r rows. Then

1. The null space of A is the null space of C, N (A) = N (C).

2. The row space of A is the row space of C, R(A) = R(C).

3. The column space of A is the null space of L, C(A) = N (L).

4. The left null space of A is the row space of L, L(A) = R(L).

�

Proof First, N (A) = N (B) since B is row-equivalent to A (Theorem REMES [32]).
The zero rows of B represent equations that are always true in the homogeneous system
LS(B, 0), so the removal of these equations will not change the solution set. Thus, in
turn, N (B) = N (C).

Second, R(A) = R(B) since B is row-equivalent to A (Theorem REMRS [275]). The
zero rows of B contribute nothing to the span that is the row space of B, so the removal
of these rows will not change the row space. Thus, in turn, R(B) = R(C).
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Third, we prove the set equality C(A) = N (L) with Definition SE [678]. Begin by
showing that C(A) ⊆ N (L). Choose y ∈ C(A) ⊆ Cm. Then there exists a vector x ∈ Cn

such that Ax = y (Theorem CSCS [268]). Then for 1 ≤ k ≤ m− r,

[Ly]k = [Jy]r+k L a submatrix of J

= [Bx]r+k Theorem PEEF [294]

= [Ox]k Zero matrix a submatrix of B

= [0]k Theorem MMZM [228]

So, for all 1 ≤ k ≤ m− r, [Ly]k = [0]k. So by Definition CVE [92] we have Ly = 0 and
thus y ∈ N (L).

Now, show that N (L) ⊆ C(A). Choose y ∈ N (L) ⊆ Cm. Form the vector Ky ∈ Cr.
The linear system LS(C, Ky) is consistent since C is in reduced row-echelon form and
has no zero rows (Theorem PEEF [294]). Let x ∈ Cn denote a solution to LS(C, Ky).

Then for 1 ≤ j ≤ r,

[Bx]j = [Cx]j C a submatrix of B

= [Ky]j x a solution to LS(C, Ky)

= [Jy]j K a submatrix of J

And for r + 1 ≤ k ≤ m,

[Bx]k = [Ox]k−r Zero matrix a submatrix of B

= [0]k−r Theorem MMZM [228]

= [Ly]k−r y in N (L)

= [Jy]k L a submatrix of J

So for all 1 ≤ i ≤ m, [Bx]i = [Jy]i and by Definition CVE [92] we have Bx = Jy.
From Theorem PEEF [294] we know then that Ax = y, and therefore y ∈ C(A) (Theo-
rem CSCS [268]). By Definition SE [678] we have C(A) = N (L).

Fourth, we prove the set equality L(A) = R(L) with Definition SE [678]. Begin
by showing that R(L) ⊆ L(A). Choose y ∈ R(L) ⊆ Cm. Then there exists a vector
w ∈ Cm−r such that y = Ltw (Definition RSM [274], Theorem CSCS [268]). Then for
1 ≤ i ≤ n,

[
Aty

]
i
=

m∑
k=1

[
At
]
ik

[y]k Theorem EMP [227]

=
m∑

k=1

[
At
]
ik

[
Ltw

]
k

Definition of w

=
m∑

k=1

[
At
]
ik

m−r∑
`=1

[
Lt
]
k`

[w]` Theorem EMP [227]

=
m−r∑
`=1

(
m∑

k=1

[
At
]
ik

[
Lt
]
k`

)
[w]` Commutativity, Distributivity in C
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=
m−r∑
`=1

(
m∑

k=1

[
At
]
ik

[
J t
]
k,r+`

)
[w]` L a submatrix of J

=
m−r∑
`=1

[
AtJ t

]
i,r+`

[w]` Theorem EMP [227]

=
m−r∑
`=1

[
(JA)t]

i,r+`
[w]` Theorem MMT [232]

=
m−r∑
`=1

[
Bt
]
i,r+`

[w]` Theorem PEEF [294]

=
m−r∑
`=1

0 [w]` Zero rows in B

= 0 Zero in C
= [0]i Definition ZV [68]

Since [Aty]i = [0]i for 1 ≤ i ≤ n, Definition CVE [92] implies that Aty = 0. This means
that y ∈ N (At).

Now, show that L(A) ⊆ R(L). Choose y ∈ L(A) ⊆ Cm. The matrix J is nonsingular
(Theorem PEEF [294]), so J t is also nonsingular (Theorem MIT [248]) and therefore the
linear system LS(J t, y) has a unique solution. Denote this solution as x ∈ Cm. We
will need to work with two “halves” of x, which we will denote as z and w with formal
definitions given by

[z]j = [x]i 1 ≤ j ≤ r, [w]k = [x]r+k 1 ≤ k ≤ m− r

Now, for 1 ≤ j ≤ r,[
Ctz
]
j
=

r∑
k=1

[
Ct
]
jk

[z]k Theorem EMP [227]

=
r∑

k=1

[
Ct
]
jk

[z]k +
m−r∑
`=1

[O]j` [w]` Definition ZM [210]

=
r∑

k=1

[
Bt
]
jk

[z]k +
m−r∑
`=1

[
Bt
]
j,r+`

[w]` C, O submatrices of B

=
r∑

k=1

[
Bt
]
jk

[x]k +
m−r∑
`=1

[
Bt
]
j,r+`

[x]r+` Definitions of z and w

=
r∑

k=1

[
Bt
]
jk

[x]k +
m∑

k=r+1

[
Bt
]
jk

[x]k Re-index second sum

=
m∑

k=1

[
Bt
]
jk

[x]k Combine sums

=
m∑

k=1

[
(JA)t]

jk
[x]k Theorem PEEF [294]

=
m∑

k=1

[
AtJ t

]
jk

[x]k Theorem MMT [232]
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=
m∑

k=1

m∑
`=1

[
At
]
j`

[
J t
]
`k

[x]k Theorem EMP [227]

=
m∑

`=1

[
At
]
j`

(
m∑

k=1

[
J t
]
`k

[x]k

)
Commutativity, Distributivity in C

=
m∑

`=1

[
At
]
j`

[
J tx
]
`

Theorem EMP [227]

=
m∑

`=1

[
At
]
j`

[y]` Definition of x

=
[
Aty

]
j

Theorem EMP [227]

= [0]j y ∈ L(A)

So, by Definition CVE [92], Ctz = 0 and the vector z gives us a linear combination of
the columns of Ct that equals the zero vector. In other words, z gives a relation of linear
dependence on the the rows of C. However, the rows of C are a linearly independent set
by Theorem BRS [277]. According to Definition LICV [153] we must conclude that the
entries of z are all zero, i.e. z = 0.

Now, for 1 ≤ i ≤ m, we have

[y]i =
[
J tx
]
i

Definition of x

=
m∑

k=1

[
J t
]
ik

[x]k Theorem EMP [227]

=
r∑

k=1

[
J t
]
ik

[x]k +
m∑

k=r+1

[
J t
]
ik

[x]k Break apart sum

=
r∑

k=1

[
J t
]
ik

[z]k +
m∑

k=r+1

[
J t
]
ik

[w]k−r Definition of z and w

=
r∑

k=1

[
J t
]
ik

0 +
m−r∑
`=1

[
J t
]
i,r+`

[w]` z = 0, re-index

= 0 +
m−r∑
`=1

[
Lt
]
i,`

[w]` L a submatrix of J

=
[
Ltw

]
i

Theorem EMP [227]

So by Definition CVE [92], y = Ltw. The existence of w implies that y ∈ R(L), and
therefore L(A) ⊆ R(L). So by Definition SE [678] we have L(A) = R(L). �

The first two conclusions of this theorem are nearly trivial. But they set up a pattern
of results for C that is reflected in the latter two conclusions about L. In total, they
tell us that we can compute all four subsets just by finding null spaces and row spaces.
This theorem does not tell us exactly how to compute these subsets, but instead simply
expresses them as null spaces and row spaces of matrices in reduced row-echelon form
without any zero rows (C and L). A linearly independent set that spans the null space
of a matrix in reduced row-echelon form can be found easily with Theorem BNS [162]. It
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is an even easier matter to find a linearly independent set that spans the row space of a
matrix in reduced row-echelon form with Theorem BRS [277], especially when there are
no zero rows present. So an application of Theorem FS [296] is typically followed by two
applications each of Theorem BNS [162] and Theorem BRS [277].

The situation when r = m deserves comment, since now the matrix L has no rows.
What is C(A) when we try to apply Theorem FS [296] and encounter N (L)? One
interpretation of this situation is that L is the coefficient matrix of a homogeneous system
that has no equations. How hard is it to find a solution vector to this system? Some
thought will convince you that any proposed vector will qualify as a solution, since it
makes all of the equations true. So every possible vector is in the null space of L and
therefore C(A) = N (L) = Cm. OK, perhaps this sounds like some twisted argument
from Alice in Wonderland. Let us try another argument that might solidly convince you
of this logic.

If r = m, when we row-reduce the augmented matrix of LS(A, b) the result will have
no zero rows, and all the leading 1’s will occur in first n columns, so by Theorem RCLS [54]
the system will be consistent. By Theorem CSCS [268], b ∈ C(A). Since b was arbitrary,
every possible vector is in the column space of A, so we again have C(A) = Cm. The
situation when a matrix has r = m is known by the term full rank, and in the case of
a square matrix coincides with nonsingularity (see Exercise FS.M50 [308]).

The properties of the matrix L described by this theorem can be explained informally
as follows. A column vector y ∈ Cm is in the column space of A if the linear system
LS(A, y) is consistent (Theorem CSCS [268]). By Theorem RCLS [54], the reduced row-
echelon form of the augmented matrix [A | y] of a consistent system will have zeros in
the bottom m−r locations of the last column. By Theorem PEEF [294] this final column
is the vector Jy and so should then have zeros in the final m− r locations. But since L
comprises the final m− r rows of J , this condition is expressed by saying y ∈ N (L).

Additionally, the rows of J are the scalars in linear combinations of the rows of A
that create the rows of B. That is, the rows of J record the net effect of the sequence of
row operations that takes A to its reduced row-echelon form, B. This can be seen in the
equation JA = B (Theorem PEEF [294]). As such, the rows of L are scalars for linear
combinations of the rows of A that yield zero rows. But such linear combinations are
precisely the elements of the left null space. So any element of the row space of L is also
an element of the left null space of A. We will now illustrate Theorem FS [296] with a
few examples.

Example FS1
Four subsets, #1

In Example SEEF [294] we found the five relevant submatrices of the matrix

A =


1 −1 −2 7 1 6
−6 2 −4 −18 −3 −26
4 −1 4 10 2 17
3 −1 2 9 1 12


To apply Theorem FS [296] we only need C and L,

C =

 1 0 2 1 0 3

0 1 4 −6 0 −1

0 0 0 0 1 2

 L =
[

1 2 2 1
]
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Then we use Theorem FS [296] to obtain

N (A) = N (C) =

〈



−3
1
0
0
−2
1

 ,


−1
6
0
1
0
0

 ,


−2
−4
1
0
0
0




〉

Theorem BNS [162]

R(A) = R(C) =

〈



1
0
2
1
0
3

 ,


0
1
4
−6
0
−1

 ,


0
0
0
0
1
2




〉

Theorem BRS [277]

C(A) = N (L) =

〈

−2
1
0
0

 ,


−2
0
1
0

 ,


−1
0
0
1



〉

Theorem BNS [162]

L(A) = R(L) =

〈


1
2
2
1



〉

Theorem BRS [277]

Boom! �

Example FS2
Four subsets, #2

Now lets return to the matrix A that we used to motivate this section in Exam-
ple CSANS [290],

A =


10 0 3 8 7
−16 −1 −4 −10 −13
−6 1 −3 −6 −6
0 2 −2 −3 −2
3 0 1 2 3
−1 −1 1 1 0


We form the matrix M by adjoining the 6× 6 identity matrix I6,

M =


10 0 3 8 7 1 0 0 0 0 0
−16 −1 −4 −10 −13 0 1 0 0 0 0
−6 1 −3 −6 −6 0 0 1 0 0 0
0 2 −2 −3 −2 0 0 0 1 0 0
3 0 1 2 3 0 0 0 0 1 0
−1 −1 1 1 0 0 0 0 0 0 1
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and row-reduce to obtain N

N =



1 0 0 0 2 0 0 1 −1 2 −1

0 1 0 0 −3 0 0 −2 3 −3 3

0 0 1 0 1 0 0 1 1 3 3

0 0 0 1 −2 0 0 −2 1 −4 0

0 0 0 0 0 1 0 3 −1 3 1

0 0 0 0 0 0 1 −2 1 1 −1


To find the four subsets for A, we only need identify the 4 × 5 matrix C and the 2 × 6
matrix L,

C =


1 0 0 0 2

0 1 0 0 −3

0 0 1 0 1

0 0 0 1 −2

 L =

[
1 0 3 −1 3 1

0 1 −2 1 1 −1

]

Then we apply Theorem FS [296],

N (A) = N (C) =

〈


−2
3
−1
2
1



〉

Theorem BNS [162]

R(A) = R(C) =

〈


1
0
0
0
2

 ,


0
1
0
0
−3

 ,


0
0
1
0
1

 ,


0
0
0
1
−2



〉

Theorem BRS [277]

C(A) = N (L) =

〈



−3
2
1
0
0
0

 ,


1
−1
0
1
0
0

 ,


−3
−1
0
0
1
0

 ,


−1
1
0
0
0
1




〉

Theorem BNS [162]

L(A) = R(L) =

〈



1
0
3
−1
3
1

 ,


0
1
−2
1
1
−1




〉

Theorem BRS [277]

�

The next example is just a bit different since the matrix has more rows than columns,
and a trivial null space.

Example FSAG
Four subsets, Archetype G

Archetype G [730] and Archetype H [734] are both systems of m = 5 equations in
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n = 2 variables. They have identical coefficient matrices, which we will denote here as
the matrix G,

G =


2 3
−1 4
3 10
3 −1
6 9

 .

Adjoin the 5× 5 identity matrix, I5, to form

M =


2 3 1 0 0 0 0
−1 4 0 1 0 0 0
3 10 0 0 1 0 0
3 −1 0 0 0 1 0
6 9 0 0 0 0 1


This row-reduces to

N =


1 0 0 0 0 3

11
1
33

0 1 0 0 0 − 2
11

1
11

0 0 1 0 0 0 −1
3

0 0 0 1 0 1 −1
3

0 0 0 0 1 1 −1


The first n = 2 columns contain r = 2 leading 1’s, so we obtain C as the 2 × 2 identity
matrix and extract L from the final m− r = 3 rows in the final m = 5 columns.

C =

[
1 0

0 1

]
L =

 1 0 0 0 −1
3

0 1 0 1 −1
3

0 0 1 1 −1


Then we apply Theorem FS [296],

N (G) = N (C) = 〈〉 = {0} Theorem BNS [162]

R(G) = R(C) =

〈{[
1
0

]
,

[
0
1

]}〉
= C2 Theorem BRS [277]

C(G) = N (L) =

〈


0
−1
−1
1
0

 ,


1
3
1
3

1
0
1



〉

Theorem BNS [162]

=

〈


0
−1
−1
1
0

 ,


1
1
3
0
3



〉

L(G) = R(L) =

〈


1
0
0
0
−1

3

 ,


0
1
0
1
−1

3

 ,


0
0
1
1
−1



〉

Theorem BRS [277]
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=

〈


3
0
0
0
−1

 ,


0
3
0
3
−1

 ,


0
0
1
1
−1



〉

As mentioned earlier, Archetype G [730] is consistent, while Archetype H [734] is inconsis-
tent. See if you can write the two different vectors of constants from these two archetypes
as linear combinations of the two vectors in C(G). How about the two columns of G, can
you write each individually as a linear combination of the two vectors in C(G)? They
must be in the column space of G also. Are your answers unique? Do you notice anything
about the scalars that appear in the linear combinations you are forming? �

Example COV [178] and Example CSROI [279] each describes the column space of
the coefficient matrix from Archetype I [739] as the span of a set of r = 3 linearly
independent vectors. It is no accident that these two different sets both have the same
size. If we (you?) were to calculate the column space of this matrix using the null space
of the matrix L from Theorem FS [296] then we would again find a set of 3 linearly
independent vectors that span the range. More on this later.

So we have three different methods to obtain a description of the column space of a
matrix as the span of a linearly independent set. Theorem BCS [270] is sometimes useful
since the vectors it specifies are equal to actual columns of the matrix. Theorem BRS [277]
and Theorem CSRST [278] combine to create vectors with lots of zeros, and strategically
placed 1’s near the top of the vector. Theorem FS [296] and the matrix L from the
extended echelon form gives us a third method, which tends to create vectors with lots of
zeros, and strategically placed 1’s near the bottom of the vector. If we don’t care about
linear independence we can also appeal to Definition CSM [267] and simply express the
column space as the span of all the columns of the matrix, giving us a fourth description.

Although we have many ways to describe a column space, notice that one tempting
strategy will usually fail. It is not possible to simply row-reduce a matrix directly and then
use the columns of the row-reduced matrix as a set whose span equals the column space.
In other words, row operations do not preserve column spaces (however row operations
do preserve row spaces, Theorem REMRS [275]). See Exercise CRS.M21 [284].

Subsection READ
Reading Questions

1. Find a nontrivial element of the left null space of A.

A =

 2 1 −3 4
−1 −1 2 −1
0 −1 1 2


2. Find the matrices C and L in the extended echelon form of A.

A =

−9 5 −3
2 −1 1
−5 3 −1
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3. Why is Theorem FS [296] a great way to conclude Chapter M [207]?

Version 0.85



306 Section FS Four Subsets

Version 0.85



Subsection FS.EXC Exercises 307

Subsection EXC
Exercises

C20 Example FSAG [302] concludes with several questions. Perform the analysis
suggested by these questions.
Contributed by Robert Beezer

C25 Given the matrix A below, use the extended echelon form of A to answer each
part of this problem. In each part, find a linearly independent set of vectors, S, so that
the span of S, 〈S〉, equals the specified set of vectors.

A =


−5 3 −1
−1 1 1
−8 5 −1
3 −2 0


(a) The row space of A, R(A).
(b) The column space of A, C(A).
(c) The null space of A, N (A).
(d) The left null space of A, L(A).

Contributed by Robert Beezer Solution [309]

C41 The following archetypes are systems of equations. For each system, write the
vector of constants as a linear combination of the vectors in the span construction for
the column space provided by Theorem FS [296] and Theorem BNS [162] (these vectors
are listed for each of these archetypes).
Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]
Archetype E [721]
Archetype F [725]
Archetype G [730]
Archetype H [734]
Archetype I [739]
Archetype J [744]

Contributed by Robert Beezer

C43 The following archetypes are either matrices or systems of equations with coeffi-
cient matrices. For each matrix, compute the extended echelon form N and identify the
matrices C and L. Using Theorem FS [296], Theorem BNS [162] and Theorem BRS [277]
express the null space, the row space, the column space and left null space of each coef-
ficient matrix as a span of a linearly independent set.
Archetype A [703]
Archetype B [708]
Archetype C [713]
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Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]
Archetype K [749]
Archetype L [753]

Contributed by Robert Beezer

C60 For the matrix B below, find sets of vectors whose span equals the column space
of B (C(B)) and which individually meet the following extra requirements.
(a) The set illustrates the definition of the column space.
(b) The set is linearly independent and the members of the set are columns of B.
(c) The set is linearly independent with a “nice pattern of zeros and ones” at the top
of each vector.
(d) The set is linearly independent with a “nice pattern of zeros and ones” at the bottom
of each vector.

B =

 2 3 1 1
1 1 0 1
−1 2 3 −4


Contributed by Robert Beezer Solution [310]

C61 Let A be the matrix below, and find the indicated sets with the requested prop-
erties.

A =

 2 −1 5 −3
−5 3 −12 7
1 1 4 −3


(a) A linearly independent set S so that C(A) = 〈S〉 and S is composed of columns of
A.
(b) A linearly independent set S so that C(A) = 〈S〉 and the vectors in S have a nice
pattern of zeros and ones at the top of the vectors.
(c) A linearly independent set S so that C(A) = 〈S〉 and the vectors in S have a nice
pattern of zeros and ones at the bottom of the vectors.
(d) A linearly independent set S so that R(A) = 〈S〉.
Contributed by Robert Beezer Solution [311]

M50 Suppose that A is a nonsingular matrix. Extend the four conclusions of Theo-
rem FS [296] in this special case and discuss connections with previous results (such as
Theorem NSME4 [273]).
Contributed by Robert Beezer

M51 Suppose that A is a singular matrix. Extend the four conclusions of Theo-
rem FS [296] in this special case and discuss connections with previous results (such as
Theorem NSME4 [273]).
Contributed by Robert Beezer
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Subsection SOL
Solutions

C25 Contributed by Robert Beezer Statement [307]
Add a 4×4 identity matrix to the right of A to form the matrix M and then row-reduce
to the matrix N ,

M =


−5 3 −1 1 0 0 0
−1 1 1 0 1 0 0
−8 5 −1 0 0 1 0
3 −2 0 0 0 0 1

 RREF−−−→


1 0 2 0 0 −2 −5

0 1 3 0 0 −3 −8

0 0 0 1 0 −1 −1

0 0 0 0 1 1 3

 = N

To apply Theorem FS [296] in each of these four parts, we need the two matrices,

C =

[
1 0 2

0 1 3

]
L =

[
1 0 −1 −1

0 1 1 3

]
(a)

R(A) = R(C) Theorem FS [296]

=

〈1
0
2

 ,

0
1
3

〉 Theorem BRS [277]

(b)

C(A) = N (L) Theorem FS [296]

=

〈
1
−1
1
0

 ,


1
−3
0
1


〉

Theorem BNS [162]

(c)

N (A) = N (C) Theorem FS [296]

=

〈−2
−3
1

〉 Theorem BNS [162]

(d)

L(A) = R(L) Theorem FS [296]

=

〈
1
0
−1
−1

 ,


0
1
1
3


〉

Theorem BRS [277]
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C60 Contributed by Robert Beezer Statement [308]
(a) The definition of the column space is the span of the set of columns (Defini-

tion CSM [267]). So the desired set is just the four columns of B,

S =


 2

1
−1

 ,

3
1
2

 ,

1
0
3

 ,

 1
1
−4


(b) Theorem BCS [270] suggests row-reducing the matrix and using the columns of B
that correspond to the pivot columns.

B
RREF−−−→

 1 0 −1 2

0 1 1 −1
0 0 0 0


So the pivot columns are numbered by elements of D = {1, 2}, so the requested set is

S =


 2

1
−1

 ,

3
1
2


(c) We can find this set by row-reducing the transpose of B, deleting the zero rows,
and using the nonzero rows as column vectors in the set. This is an application of
Theorem CSRST [278] followed by Theorem BRS [277].

Bt RREF−−−→


1 0 3

0 1 −7
0 0 0
0 0 0


So the requested set is

S =


1

0
3

 ,

 0
1
−7


(d) With the column space expressed as a null space, the vectors obtained via Theo-
rem BNS [162] will be of the desired shape. So we first proceed with Theorem FS [296]
and create the extended echelon form,

[B | I3] =

 2 3 1 1 1 0 0
1 1 0 1 0 1 0
−1 2 3 −4 0 0 1

 RREF−−−→

 1 0 −1 2 0 2
3

−1
3

0 1 1 −1 0 1
3

1
3

0 0 0 0 1 −7
3

−1
3


So, employing Theorem FS [296], we have C(B) = N (L), where

L =
[

1 −7
3

−1
3

]
We can find the desired set of vectors from Theorem BNS [162] as

S =


7

3

1
0

 ,

1
3

0
1
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C61 Contributed by Robert Beezer Statement [308]
(a) First find a matrix B that is row-equivalent to A and in reduced row-echelon form

B =

 1 0 3 −2

0 1 1 −1
0 0 0 0


By Theorem BCS [270] we can choose the columns of A that correspond to dependent
variables (D = {1, 2}) as the elements of S and obtain the desired properties. So

S =


 2
−5
1

 ,

−1
3
1


(b) We can write the column space of A as the row space of the transpose (Theo-
rem CSRST [278]). So we row-reduce the transpose of A to obtain the row-equivalent
matrix C in reduced row-echelon form

C =


1 0 8
0 1 3
0 0 0
0 0 0


The nonzero rows (written as columns) will be a linearly independent set that spans the
row space of At, by Theorem BRS [277], and the zeros and ones will be at the top of the
vectors,

S =


1

0
8

 ,

0
1
3


(c) In preparation for Theorem FS [296], augment A with the 3× 3 identity matrix I3

and row-reduce to obtain the extended echelon form,1 0 3 −2 0 −1
8

3
8

0 1 1 −1 0 1
8

5
8

0 0 0 0 1 3
8
−1

8


Then since the first four columns of row 3 are all zeros, we extract

L =
[

1 3
8
−1

8

]
Theorem FS [296] says that C(A) = N (L). We can then use Theorem BNS [162] to
construct the desired set S, based on the free variables with indices in F = {2, 3} for the
homogeneous system LS(L, 0), so

S =


−3

8

1
0

 ,

1
8

0
1


Notice that the zeros and ones are at the bottom of the vectors.
(d) This is a straightforward application of Theorem BRS [277]. Use the row-reduced
matrix B from part (a), grab the nonzero rows, and write them as column vectors,

S =




1
0
3
−2

 ,


0
1
1
−1
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Chapter VS: Vector Spaces

We now have a computational toolkit in place and so we can begin our study of linear
algebra in a more theoretical style.

Linear algebra is the study of two fundamental objects, vector spaces and linear
transformations (see Chapter LT [507]). This chapter will focus on the former. The
power of mathematics is often derived from generalizing many different situations into
one abstract formulation, and that is exactly what we will be doing throughout this
chapter.

Section VS

Vector Spaces

In this section we present a formal definition of a vector space, which will lead to an
extra increment of abstraction. Once defined, we study its most basic properties.

Subsection VS
Vector Spaces

Here is one of our two most important definitions in the entire course.

Definition VS
Vector Space

Suppose that V is a set upon which we have defined two operations: (1) vector
addition, which combines two elements of V and is denoted by “+”, and (2) scalar
multiplication, which combines a complex number with an element of V and is denoted
by juxtaposition. Then V , along with the two operations, is a vector space if the
following ten properties hold.

• AC Additive Closure
If u, v ∈ V , then u + v ∈ V .

• SC Scalar Closure
If α ∈ C and u ∈ V , then αu ∈ V .

• C Commutativity
If u, v ∈ V , then u + v = v + u.
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• AA Additive Associativity
If u, v, w ∈ V , then u + (v + w) = (u + v) + w.

• Z Zero Vector
There is a vector, 0, called the zero vector, such that u + 0 = u for all u ∈ V .

• AI Additive Inverses
If u ∈ V , then there exists a vector −u ∈ V so that u + (−u) = 0.

• SMA Scalar Multiplication Associativity
If α, β ∈ C and u ∈ V , then α(βu) = (αβ)u.

• DVA Distributivity across Vector Addition
If α ∈ C and u, v ∈ V , then α(u + v) = αu + αv.

• DSA Distributivity across Scalar Addition
If α, β ∈ C and u ∈ V , then (α + β)u = αu + βu.

• O One
If u ∈ V , then 1u = u.

The objects in V are called vectors, no matter what else they might really be, simply
by virtue of being elements of a vector space. 4

Now, there are several important observations to make. Many of these will be easier
to understand on a second or third reading, and especially after carefully studying the
examples in Subsection VS.EVS [315].

An axiom is often a “self-evident” truth. Something so fundamental that we all agree
it is true and accept it without proof. Typically, it would be the logical underpinning
that we would begin to build theorems upon. Some might refer to the ten properties
of Definition VS [313] as axioms, implying that a vector space is a very natural object
and the ten properties are the essence of a vector space. We will instead emphasize that
we will begin with a definition of a vector space. After studying the remainder of this
chapter, you might return here and remind yourself how all our forthcoming theorems
and definitions rest on this foundation.

As we will see shortly, the objects in V can be anything, even though we will call
them vectors. We have been working with vectors frequently, but we should stress here
that these have so far just been column vectors — scalars arranged in a columnar list of
fixed length. In a similar vein, you have used the symbol “+” for many years to represent
the addition of numbers (scalars). We have extended its use to the addition of column
vectors and to the addition of matrices, and now we are going to recycle it even further
and let it denote vector addition in any possible vector space. So when describing a new
vector space, we will have to define exactly what “+” is. Similar comments apply to
scalar multiplication. Conversely, we can define our operations any way we like, so long
as the ten properties are fulfilled (see Example CVS [318]).

A vector space is composed of three objects, a set and two operations. However, we
usually use the same symbol for both the set and the vector space itself. Do not let this
convenience fool you into thinking the operations are secondary!

This discussion has either convinced you that we are really embarking on a new level
of abstraction, or they have seemed cryptic, mysterious or nonsensical. You might want
to return to this section in a few days and give it another read then. In any case, let’s
look at some concrete examples now.
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Subsection EVS
Examples of Vector Spaces

Our aim in this subsection is to give you a storehouse of examples to work with, to become
comfortable with the ten vector space properties and to convince you that the multitude of
examples justifies (at least initially) making such a broad definition as Definition VS [313].
Some of our claims will be justified by reference to previous theorems, we will prove some
facts from scratch, and we will do one non-trivial example completely. In other places,
our usual thoroughness will be neglected, so grab paper and pencil and play along.

Example VSCV
The vector space Cm

Set: Cm, all column vectors of size m, Definition VSCV [91].
Equality: Entry-wise, Definition CVE [92].
Vector Addition: The “usual” addition, given in Definition CVA [93].
Scalar Multiplication: The “usual” scalar multiplication, given in Definition CVSM [93].

Does this set with these operations fulfill the ten properties? Yes. And by design all
we need to do is quote Theorem VSPCV [96]. That was easy. �

Example VSM
The vector space of matrices, Mmn

Set: Mmn, the set of all matrices of size m×n and entries from C, Example VSM [315].
Equality: Entry-wise, Definition ME [207].
Vector Addition: The “usual” addition, given in Definition MA [208].
Scalar Multiplication: The “usual” scalar multiplication, given in Definition MSM [208].

Does this set with these operations fulfill the ten properties? Yes. And all we need
to do is quote Theorem VSPM [209]. Another easy one (by design). �

So, the set of all matrices of a fixed size forms a vector space. That entitles us to
call a matrix a vector, since a matrix is an element of a vector space. For example, if
A, B ∈M3,4 then we call A and B “vectors,” and we even use our previous notation for
column vectors to refer to A and B. So we could legitimately write expressions like

u + v = A + B = B + A = v + u

This could lead to some confusion, but it is not too great a danger. But it is worth
comment.

The previous two examples may be less than satisfying. We made all the relevant
definitions long ago. And the required verifications were all handled by quoting old
theorems. However, it is important to consider these two examples first. We have been
studying vectors and matrices carefully (Chapter V [91], Chapter M [207]), and both
objects, along with their operations, have certain properties in common, as you may
have noticed in comparing Theorem VSPCV [96] with Theorem VSPM [209]. Indeed, it is
these two theorems that motivate us to formulate the abstract definition of a vector space,
Definition VS [313]. Now, should we prove some general theorems about vector spaces
(as we will shortly in Subsection VS.VSP [320]), we can instantly apply the conclusions
to both Cm and Mmn. Notice too how we have taken six definitions and two theorems
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and reduced them down to two examples . With greater generalization and abstraction
our old ideas get downgraded in stature.

Let us look at some more examples, now considering some new vector spaces.

Example VSP
The vector space of polynomials, Pn

Set: Pn, the set of all polynomials of degree n or less in the variable x with coefficients
from C.
Equality:

a0+a1x+a2x
2+· · ·+anx

n = b0+b1x+b2x
2+· · ·+bnx

n if and only if ai = bi for 0 ≤ i ≤ n

Vector Addition:

(a0 + a1x + a2x
2 + · · ·+ anx

n) + (b0 + b1x + b2x
2 + · · ·+ bnx

n) =

(a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · ·+ (an + bn)xn

Scalar Multiplication:

α(a0 + a1x + a2x
2 + · · ·+ anx

n) = (αa0) + (αa1)x + (αa2)x
2 + · · ·+ (αan)xn

This set, with these operations, will fulfill the ten properties, though we will not
work all the details here. However, we will make a few comments and prove one of the
properties. First, the zero vector (Property Z [314]) is what you might expect, and you
can check that it has the required property.

0 = 0 + 0x + 0x2 + · · ·+ 0xn

The additive inverse (Property AI [314]) is also no surprise, though consider how we have
chosen to write it.

−
(
a0 + a1x + a2x

2 + · · ·+ anx
n
)

= (−a0) + (−a1)x + (−a2)x
2 + · · ·+ (−an)xn

Now let’s prove the associativity of vector addition (Property AA [314]). This is a bit
tedious, though necessary. Throughout, the plus sign (“+”) does triple-duty. You might
ask yourself what each plus sign represents as you work through this proof.

u+(v + w)

= (a0 + a1x + · · ·+ anx
n) + ((b0 + b1x + · · ·+ bnx

n) + (c0 + c1x + · · ·+ cnx
n))

= (a0 + a1x + · · ·+ anx
n) + ((b0 + c0) + (b1 + c1)x + · · ·+ (bn + cn)xn)

= (a0 + (b0 + c0)) + (a1 + (b1 + c1))x + · · ·+ (an + (bn + cn))xn

= ((a0 + b0) + c0) + ((a1 + b1) + c1)x + · · ·+ ((an + bn) + cn)xn

= ((a0 + b0) + (a1 + b1)x + · · ·+ (an + bn)xn) + (c0 + c1x + · · ·+ cnx
n)

= ((a0 + b1x + · · ·+ anx
n) + (b0 + b1x + · · ·+ bnx

n)) + (c0 + c1x + · · ·+ cnx
n)

= (u + v) + w

Notice how it is the application of the associativity of the (old) addition of complex
numbers in the middle of this chain of equalities that makes the whole proof happen.
The remainder is successive applications of our (new) definition of vector (polynomial)
addition. Proving the remainder of the ten properties is similar in style and tedium. You
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might try proving the commutativity of vector addition (Property C [313]), or one of the
distributivity properties (Property DVA [314], Property DSA [314]). �

Example VSIS
The vector space of infinite sequences

Set: C∞ = {(c0, c1, c2, c3, . . .) | ci ∈ C, i ∈ N}.
Equality:

(c0, c1, c2, . . .) = (d0, d1, d2, . . .) if and only if ci = di for all i ≥ 0

Vector Addition:

(c0, c1, c2, . . .) + (d0, d1, d2, . . .) = (c0 + d0, c1 + d1, c2 + d2, . . .)

Scalar Multiplication:

α(c0, c1, c2, c3, . . .) = (αc0, αc1, αc2, αc3, . . .)

This should remind you of the vector space Cm, though now our lists of scalars are
written horizontally with commas as delimiters and they are allowed to be infinite in
length. What does the zero vector look like (Property Z [314])? Additive inverses (Prop-
erty AI [314])? Can you prove the associativity of vector addition (Property AA [314])?
�

Example VSF
The vector space of functions

Set: F = {f | f : C → C}.
Equality: f = g if and only if f(x) = g(x) for all x ∈ C.
Vector Addition: f +g is the function with outputs defined by (f +g)(x) = f(x)+g(x).
Scalar Multiplication: αf is the function with outputs defined by (αf)(x) = αf(x).

So this is the set of all functions of one variable that take a complex number to a
complex number. You might have studied functions of one variable that take a real
number to a real number, and that might be a more natural set to study. But since
we are allowing our scalars to be complex numbers, we need to expand the domain and
range of our functions also. Study carefully how the definitions of the operation are
made, and think about the different uses of “+” and juxtaposition. As an example of
what is required when verifying that this is a vector space, consider that the zero vector
(Property Z [314]) is the function z whose definition is z(x) = 0 for every input x.

While vector spaces of functions are very important in mathematics and physics, we
will not devote them much more attention.

�

Here’s a unique example.

Example VSS
The singleton vector space

Set: Z = {z}.
Equality: Huh?
Vector Addition: z + z = z.
Scalar Multiplication: αz = z.
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This should look pretty wild. First, just what is z? Column vector, matrix, polyno-
mial, sequence, function? Mineral, plant, or animal? We aren’t saying! z just is. And
we have definitions of vector addition and scalar multiplication that are sufficient for an
occurence of either that may come along.

Our only concern is if this set, along with the definitions of two operations, fulfills
the ten properties of Definition VS [313]. Let’s check associativity of vector addition
(Property AA [314]). For all u, v, w ∈ Z,

u + (v + w) = z + (z + z)

= z + z

= (z + z) + z

= (u + v) + w

What is the zero vector in this vector space (Property Z [314])? With only one element
in the set, we do not have much choice. Is z = 0? It appears that z behaves like the zero
vector should, so it gets the title. Maybe now the definition of this vector space does not
seem so bizarre. It is a set whose only element is the element that behaves like the zero
vector, so that lone element is the zero vector. �

Perhaps some of the above definitions and verifications seem obvious or like splitting
hairs, but the next example should convince you that they are necessary. We will study
this one carefully. Ready? Check your preconceptions at the door.

Example CVS
The crazy vector space

Set: C = {(x1, x2) | x1, x2 ∈ C}.
Vector Addition: (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1).
Scalar Multiplication: α(x1, x2) = (αx1 + α− 1, αx2 + α− 1).

Now, the first thing I hear you say is “You can’t do that!” And my response is, “Oh
yes, I can!” I am free to define my set and my operations any way I please. They may
not look natural, or even useful, but we will now verify that they provide us with another
example of a vector space. And that is enough. If you are adventurous, you might try
first checking some of the properties yourself. What is the zero vector? Additive inverses?
Can you prove associativity? Ready, here we go.

Property AC [313], Property SC [313]: The result of each operation is a pair of
complex numbers, so these two closure properties are fulfilled.

Property C [313]:

u + v = (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1)

= (y1 + x1 + 1, y2 + x2 + 1) = (y1, y2) + (x1, x2)

= v + u

Property AA [314]:

u + (v + w) = (x1, x2) + ((y1, y2) + (z1, z2))

= (x1, x2) + (y1 + z1 + 1, y2 + z2 + 1)

= (x1 + (y1 + z1 + 1) + 1, x2 + (y2 + z2 + 1) + 1)

= (x1 + y1 + z1 + 2, x2 + y2 + z2 + 2)
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= ((x1 + y1 + 1) + z1 + 1, (x2 + y2 + 1) + z2 + 1)

= (x1 + y1 + 1, x2 + y2 + 1) + (z1, z2)

= ((x1, x2) + (y1, y2)) + (z1, z2)

= (u + v) + w

Property Z [314]: The zero vector is . . .0 = (−1, −1). Now I hear you say, “No, no, that
can’t be, it must be (0, 0)!” Indulge me for a moment and let us check my proposal.

u + 0 = (x1, x2) + (−1, −1) = (x1 + (−1) + 1, x2 + (−1) + 1) = (x1, x2) = u

Feeling better? Or worse?
Property AI [314]: For each vector, u, we must locate an additive inverse, −u. Here

it is, −(x1, x2) = (−x1− 2, −x2− 2). As odd as it may look, I hope you are withholding
judgment. Check:

u+(−u) = (x1, x2)+(−x1−2, −x2−2) = (x1+(−x1−2)+1, −x2+(x2−2)+1) = (−1, −1) = 0

Property SMA [314]:

α(βu) = α(β(x1, x2))

= α(βx1 + β − 1, βx2 + β − 1))

= (α(βx1 + β − 1) + α− 1, α(βx2 + β − 1) + α− 1))

= ((αβx1 + αβ − α) + α− 1, (αβx2 + αβ − α) + α− 1))

= (αβx1 + αβ − 1, αβx2 + αβ − 1))

= (αβ)(x1, x2)

= (αβ)u

Property DVA [314]: If you have hung on so far, here’s where it gets even wilder. In the
next two properties we mix and mash the two operations.

α(u + v) = α ((x1, x2) + (y1, y2))

= α(x1 + y1 + 1, x2 + y2 + 1)

= (α(x1 + y1 + 1) + α− 1, α(x2 + y2 + 1) + α− 1)

= (αx1 + αy1 + α + α− 1, αx2 + αy2 + α + α− 1)

= (αx1 + α− 1 + αy1 + α− 1 + 1, αx2 + α− 1 + αy2 + α− 1 + 1)

= ((αx1 + α− 1) + (αy1 + α− 1) + 1, (αx2 + α− 1) + (αy2 + α− 1) + 1)

= (αx1 + α− 1, αx2 + α− 1) + (αy1 + α− 1, αy2 + α− 1)

= α(x1, x2) + α(y1, y2)

= αu + αv

Property DSA [314]:

(α + β)u = (α + β)(x1, x2)

= ((α + β)x1 + (α + β)− 1, (α + β)x2 + (α + β)− 1)

= (αx1 + βx1 + α + β − 1, αx2 + βx2 + α + β − 1)

= (αx1 + α− 1 + βx1 + β − 1 + 1, αx2 + α− 1 + βx2 + β − 1 + 1)
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= ((αx1 + α− 1) + (βx1 + β − 1) + 1, (αx2 + α− 1) + (βx2 + β − 1) + 1)

= (αx1 + α− 1, αx2 + α− 1) + (βx1 + β − 1, βx2 + β − 1)

= α(x1, x2) + β(x1, x2)

= αu + βu

Property O [314]: After all that, this one is easy, but no less pleasing.

1u = 1(x1, x2) = (x1 + 1− 1, x2 + 1− 1) = (x1, x2) = u

That’s it, C is a vector space, as crazy as that may seem.
Notice that in the case of the zero vector and additive inverses, we only had to propose

possibilities and then verify that they were the correct choices. You might try to discover
how you would arrive at these choices, though you should understand why the process
of discovering them is not a necessary component of the proof itself. �

Subsection VSP
Vector Space Properties

Subsection VS.EVS [315] has provided us with an abundance of examples of vector spaces,
most of them containing useful and interesting mathematical objects along with natural
operations. In this subsection we will prove some general properties of vector spaces.
Some of these results will again seem obvious, but it is important to understand why
it is necessary to state and prove them. A typical hypothesis will be “Let V be a
vector space.” From this we may assume the ten properties of Definition VS [313], and
nothing more. Its like starting over, as we learn about what can happen in this new
algebra we are learning. But the power of this careful approach is that we can apply
these theorems to any vector space we encounter — those in the previous examples, or
new ones we have not yet contemplated. Or perhaps new ones that nobody has ever
contemplated. We will illustrate some of these results with examples from the crazy
vector space (Example CVS [318]), but mostly we are stating theorems and doing proofs.
These proofs do not get too involved, but are not trivial either, so these are good theorems
to try proving yourself before you study the proof given here. (See Technique P [697].)

First we show that there is just one zero vector. Notice that the properties only
require there to be at least one, and say nothing about there possibly being more. That
is because we can use the ten properties of a vector space (Definition VS [313]) to learn
that there can never be more than one. To require that this extra condition be stated as
an eleventh property would make the definition of a vector space more complicated than
it needs to be.

Theorem ZVU
Zero Vector is Unique

Suppose that V is a vector space. The zero vector, 0, is unique. �

Proof To prove uniqueness, a standard technique is to suppose the existence of two
objects (Technique U [691]). So let 01 and 02 be two zero vectors in V . Then

01 = 01 + 02 Property Z [314] for 02
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= 02 + 01 Property C [313]

= 02 Property Z [314] for 01

This proves the uniqueness since the two zero vectors are really the same. �

Theorem AIU
Additive Inverses are Unique
Suppose that V is a vector space. For each u ∈ V , the additive inverse, −u, is unique.

�

Proof To prove uniqueness, a standard technique is to suppose the existence of two
objects (Technique U [691]). So let −u1 and −u2 be two additive inverses for u. Then

−u1 = −u1 + 0 Property Z [314]

= −u1 + (u +−u2) Property AI [314]

= (−u1 + u) +−u2 Property AA [314]

= 0 +−u2 Property AI [314]

= −u2 Property Z [314]

So the two additive inverses are really the same. �

As obvious as the next three theorems appear, nowhere have we guaranteed that the
zero scalar, scalar multiplication and the zero vector all interact this way. Until we have
proved it, anyway.

Theorem ZSSM
Zero Scalar in Scalar Multiplication

Suppose that V is a vector space and u ∈ V . Then 0u = 0. �

Proof Notice that 0 is a scalar, u is a vector, so Property SC [313] says 0u is again a
vector. As such, 0u has an additive inverse, −(0u) by Property AI [314].

0u = 0 + 0u Property Z [314]

= (−(0u) + 0u) + 0u Property AI [314]

= −(0u) + (0u + 0u) Property AA [314]

= −(0u) + (0 + 0)u Property DSA [314]

= −(0u) + 0u 0 in C
= 0 Property AI [314]

�

Here’s another theorem that looks like it should be obvious, but is still in need of a
proof.

Theorem ZVSM
Zero Vector in Scalar Multiplication

Suppose that V is a vector space and α ∈ C. Then α0 = 0. �

Proof Notice that α is a scalar, 0 is a vector, so Property SC [313] means α0 is again
a vector. As such, α0 has an additive inverse, −(α0) by Property AI [314].

α0 = 0 + α0 Property Z [314]
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= (−(α0) + α0) + α0 Property AI [314]

= −(α0) + (α0 + α0) Property AA [314]

= −(α0) + α (0 + 0) Property DVA [314]

= −(α0) + α0 Property Z [314]

= 0 Property AI [314]

�

Here’s another one that sure looks obvious. But understand that we have chosen to
use certain notation because it makes the theorem’s conclusion look so nice. The theorem
is not true because the notation looks so good, it still needs a proof. If we had really
wanted to make this point, we might have defined the additive inverse of u as u]. Then
we would have written the defining property, Property AI [314], as u + u] = 0. This
theorem would become u] = (−1)u. Not really quite as pretty, is it?

Theorem AISM
Additive Inverses from Scalar Multiplication

Suppose that V is a vector space and u ∈ V . Then −u = (−1)u. �

Proof

−u = −u + 0 Property Z [314]

= −u + 0u Theorem ZSSM [321]

= −u + (1 + (−1))u

= −u + (1u + (−1)u) Property DSA [314]

= −u + (u + (−1)u) Property O [314]

= (−u + u) + (−1)u Property AA [314]

= 0 + (−1)u Property AI [314]

= (−1)u Property Z [314]

�

Because of this theorem, we can now write linear combinations like 6u1 + (−4)u2

as 6u1 − 4u2, even though we have not formally defined an operation called vector
subtraction.

Example PCVS
Properties for the Crazy Vector Space

Several of the above theorems have interesting demonstrations when applied to the
crazy vector space, C (Example CVS [318]). We are not proving anything new here, or
learning anything we did not know already about C. It is just plain fun to see how these
general theorems apply in a specific instance. For most of our examples, the applications
are obvious or trivial, but not with C.

Suppose u ∈ C.
Then by Theorem ZSSM [321],

0u = 0(x1, x2) = (0x1 + 0− 1, 0x2 + 0− 1) = (−1,−1) = 0

By Theorem ZVSM [321],

α0 = α(−1, −1) = (α(−1) + α− 1, α(−1) + α− 1)
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= (−α + α− 1, −α + α− 1) = (−1, −1) = 0

By Theorem AISM [322],

(−1)u = (−1)(x1, x2) = ((−1)x1 + (−1)− 1, (−1)x2 + (−1)− 1)

= (−x1 − 2, −x2 − 2) = −u

�

Our next theorem is a bit different from several of the others in the list. Rather than
making a declaration (“the zero vector is unique”) it is an implication (“if. . . , then. . . ”)
and so can be used in proofs to move from one statement to another.

Theorem SMEZV
Scalar Multiplication Equals the Zero Vector
Suppose that V is a vector space and α ∈ C. If αu = 0, then either α = 0 or u = 0. �

Proof We prove this theorem by breaking up the analysis into two cases. The first
seems too trivial, and it is, but the logic of the argument is still legitimate.

Case 1. Suppose α = 0. In this case our conclusion is true (the first part of the
either/or is true) and we are done. That was easy.

Case 2. Suppose α 6= 0.

u = 1u Property O [314]

=

(
1

α
α

)
u α 6= 0

=
1

α
(αu) Property SMA [314]

=
1

α
(0) Hypothesis

= 0 Theorem ZVSM [321]

So in this case, the conclusion is true (the second part of the either/or is true) and we
are done since the conclusion was true in each of the two cases. �

The next three theorems give us cancellation properties. The two concerned with
scalar multiplication are intimately connected with Theorem SMEZV [323]. All three
are implications. So we will prove each once, here and now, and then we can apply them
at will in the future, saving several steps in a proof whenever we do.

Theorem VAC
Vector Addition Cancellation
Suppose that V is a vector space, and u, v, w ∈ V . If w + u = w + v, then u = v. �

Proof

u = 0 + u Property Z [314]

= (−w + w) + u Property AI [314]

= −w + (w + u) Property AA [314]

= −w + (w + v) Hypothesis

= (−w + w) + v Property AA [314]

= 0 + v Property AI [314]
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= v Property Z [314]

�

Theorem CSSM
Canceling Scalars in Scalar Multiplication

Suppose V is a vector space, u, v ∈ V and α is a nonzero scalar from C. If αu = αv,
then u = v. �

Proof

u = 1u Property O [314]

=

(
1

α
α

)
u α 6= 0

=
1

α
(αu) Property SMA [314]

=
1

α
(αv) Hypothesis

=

(
1

α
α

)
v Property SMA [314]

= 1v

= v Property O [314]

�

Theorem CVSM
Canceling Vectors in Scalar Multiplication

Suppose V is a vector space, u 6= 0 is a vector in V and α, β ∈ C. If αu = βu, then
α = β. �

Proof

0 = αu +− (αu) Property AI [314]

= βu +− (αu) Hypothesis

= βu + (−1) (αu) Theorem AISM [322]

= βu + ((−1)α)u Property SMA [314]

= βu + (−α)u

= (β − α)u Property DSA [314]

By hypothesis, u 6= 0, so Theorem SMEZV [323] implies

0 = β − α

α = β

�

So with these three theorems in hand, we can return to our practice of “slashing” out
parts of an equation, so long as we are careful about not canceling a scalar that might
possibly be zero, or canceling a vector in a scalar multiplication that might be the zero
vector.
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Subsection RD
Recycling Definitions

When we say that V is a vector space, we then know we have a set of objects (the “vec-
tors”), but we also know we have been provided with two operations (“vector addition”
and “scalar multiplication”) and these operations behave with these objects according
to the ten properties of Definition VS [313]. One combines two vectors and produces
a vector, the other takes a scalar and a vector, producing a vector as the result. So if
u1, u2, u3 ∈ V then an expression like

5u1 + 7u2 − 13u3

would be unambiguous in any of the vector spaces we have discussed in this section. And
the resulting object would be another vector in the vector space. If you were tempted to
call the above expression a linear combination, you would be right. Four of the definitions
that were central to our discussions in Chapter V [91] were stated in the context of vectors
being column vectors, but were purposely kept broad enough that they could be applied
in the context of any vector space. They only rely on the presence of scalars, vectors,
vector addition and scalar multiplication to make sense. We will restate them shortly,
unchanged, except that their titles and acronyms no longer refer to column vectors, and
the hypothesis of being in a vector space has been added. Take the time now to look
forward and review each one, and begin to form some connections to what we have
done earlier and what we will be doing in subsequent sections and chapters. Specifically,
compare the following pairs of definitions:

Definition LCCV [103] and Definition LC [335]
Definition SSCV [129] and Definition SS [336]
Definition RLDCV [153] and Definition RLD [349]
Definition LICV [153] and Definition LI [349]

Subsection READ
Reading Questions

1. Comment on how the vector space Cm went from a theorem (Theorem VSPCV [96])
to an example (Example VSCV [315]).

2. In the crazy vector space, C, (Example CVS [318]) compute the linear combination

2(3, 4) + (−6)(1, 2).

3. Suppose that α is a scalar and 0 is the zero vector. Why should we prove anything
as obvious as α0 = 0 such as we did in Theorem ZVSM [321]?
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Subsection EXC
Exercises

T10 Prove each of the ten properties of Definition VS [313] for each of the following
examples of a vector space:
Example VSP [316]
Example VSIS [317]
Example VSF [317]
Example VSS [317]
Contributed by Robert Beezer

M10 Define a possibly new vector space by beginning with the set and vector addition
from C2 (Example VSCV [315]) but change the definition of scalar multiplication to

αx = 0 =

[
0
0

]
α ∈ C, x ∈ C2

Prove that the first nine properties required for a vector space hold, but Property O [314]
does not hold.

This example shows us that we cannot expect to be able to derive Property O [314]
as a consequence of assuming the first nine properties. In other words, we cannot slim
down our list of properties by jettisoning the last one, and still have the same collection
of objects qualify as vector spaces.
Contributed by Robert Beezer
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Section S

Subspaces

A subspace is a vector space that is contained within another vector space. So every
subspace is a vector space in its own right, but it is also defined relative to some other
(larger) vector space. We will discover shortly that we are already familiar with a wide
variety of subspaces from previous sections. Here’s the definition.

Definition S
Subspace

Suppose that V and W are two vector spaces that have identical definitions of vector
addition and scalar multiplication, and that W is a subset of V , W ⊆ V . Then W is a
subspace of V . 4

Lets look at an example of a vector space inside another vector space.

Example SC3
A subspace of C3

We know that C3 is a vector space (Example VSCV [315]). Consider the subset,

W =


x1

x2

x3

 ∣∣∣∣∣∣ 2x1 − 5x2 + 7x3 = 0


It is clear that W ⊆ C3, since the objects in W are column vectors of size 3. But is W
a vector space? Does it satisfy the ten properties of Definition VS [313] when we use

the same operations? That is the main question. Suppose x =

x1

x2

x3

 and y =

y1

y2

y3

 are

vectors from W . Then we know that these vectors cannot be totally arbitrary, they must
have gained membership in W by virtue of meeting the membership test. For example,
we know that x must satisfy 2x1−5x2 +7x3 = 0 while y must satisfy 2y1−5y2 +7y3 = 0.
Our first property (Property AC [313]) asks the question, is x + y ∈ W? When our set
of vectors was C3, this was an easy question to answer. Now it is not so obvious. Notice
first that

x + y =

x1

x2

x3

+

y1

y2

y3

 =

x1 + y1

x2 + y2

x3 + y3


and we can test this vector for membership in W as follows,

2(x1 + y1)− 5(x2 + y2) + 7(x3 + y3) = 2x1 + 2y1 − 5x2 − 5y2 + 7x3 + 7y3

= (2x1 − 5x2 + 7x3) + (2y1 − 5y2 + 7y3)

= 0 + 0 x ∈ W, y ∈ W

= 0

and by this computation we see that x + y ∈ W . One property down, nine to go.
If α is a scalar and x ∈ W , is it always true that αx ∈ W? This is what we need to

establish Property SC [313]. Again, the answer is not as obvious as it was when our set
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of vectors was all of C3. Let’s see.

αx = α

x1

x2

x3

 =

αx1

αx2

αx3


and we can test this vector for membership in W with

2(αx1)− 5(αx2) + 7(αx3) = α(2x1 − 5x2 + 7x3)

= α0 x ∈ W

= 0

and we see that indeed αx ∈ W . Always.
If W has a zero vector, it will be unique (Theorem ZVU [320]). The zero vector for

C3 should also perform the required duties when added to elements of W . So the likely
candidate for a zero vector in W is the same zero vector that we know C3 has. You can

check that 0 =

0
0
0

 is a zero vector in W too (Property Z [314]).

With a zero vector, we can now ask about additive inverses (Property AI [314]). As
you might suspect, the natural candidate for an additive inverse in W is the same as the
additive inverse from C3. However, we must insure that these additive inverses actually
are elements of W . Given x ∈ W , is −x ∈ W?

−x =

−x1

−x2

−x3


and we can test this vector for membership in W with

2(−x1)− 5(−x2) + 7(−x3) = −(2x1 − 5x2 + 7x3)

= −0 x ∈ W

= 0

and we now believe that −x ∈ W .
Is the vector addition in W commutative (Property C [313])? Is x + y = y + x? Of

course! Nothing about restricting the scope of our set of vectors will prevent the operation
from still being commutative. Indeed, the remaining five properties are unaffected by
the transition to a smaller set of vectors, and so remain true. That was convenient.

So W satisfies all ten properties, is therefore a vector space, and thus earns the title
of being a subspace of C3. �

Subsection TS
Testing Subspaces

In Example SC3 [329] we proceeded through all ten of the vector space properties before
believing that a subset was a subspace. But six of the properties were easy to prove,
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and we can lean on some of the properties of the vector space (the superset) to make the
other four easier. Here is a theorem that will make it easier to test if a subset is a vector
space. A shortcut if there ever was one.

Theorem TSS
Testing Subsets for Subspaces
Suppose that V is a vector space and W is a subset of V , W ⊆ V . Endow W with the

same operations as V . Then W is a subspace if and only if three conditions are met

1. W is non-empty, W 6= ∅.

2. If x ∈ W and y ∈ W , then x + y ∈ W .

3. If α ∈ C and x ∈ W , then αx ∈ W .

�

Proof (⇒) We have the hypothesis that W is a subspace, so by Definition VS [313] we
know that W contains a zero vector. This is enough to show that W 6= ∅. Also, since
W is a vector space it satisfies the additive and scalar multiplication closure properties,
and so exactly meets the second and third conditions. If that was easy, the the other
direction might require a bit more work.

(⇐) We have three properties for our hypothesis, and from this we should conclude
that W has the ten defining properties of a vector space. The second and third con-
ditions of our hypothesis are exactly Property AC [313] and Property SC [313]. Our
hypothesis that V is a vector space implies that Property C [313], Property AA [314],
Property SMA [314], Property DVA [314], Property DSA [314] and Property O [314] all
hold. They continue to be true for vectors from W since passing to a subset, and keeping
the operation the same, leaves their statements unchanged. Eight down, two to go.

Suppose x ∈ W . Then by the third part of our hypothesis (scalar closure), we know
that (−1)x ∈ W . By Theorem AISM [322] (−1)x = −x, so together these statements
show us that −x ∈ W . −x is the additive inverse of x in V , but will continue in this role
when viewed as element of the subset W . So every element of W has an additive inverse
that is an element of W and Property AI [314] is completed. Just one property left.

While we have implicitly discussed the sero vector in the previous paragraph, we need
to be certain that the zero vector (of V ) really lives in W . Since W is non-empty, we can
choose some vector z ∈ W . Then by the argument in the previous paragraph, we know
−z ∈ W . Now by Property AI [314] for V and then by the second part of our hypothesis
(additive closure) we see that

0 = z + (−z) ∈ W

So W contain the zero vector from V . Since this vector performs the required duties
of a zero vector in V , it will continue in that role as an element of W . This gives us,
Property Z [314], the final property of the ten required. (Sarah Fellezcontibuted to this
proof.)

Three conditions, plus being a subset of a known vector space, gets us all ten prop-
erties. Fabulous! �

This theorem can be paraphrased by saying that a subspace is “a non-empty subset
(of a vector space) that is closed under vector addition and scalar multiplication.”

You might want to go back and rework Example SC3 [329] in light of this result,
perhaps seeing where we can now economize or where the work done in the example
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mirrored the proof and where it did not. We will press on and apply this theorem in a
slightly more abstract setting.

Example SP4
A subspace of P4

P4 is the vector space of polynomials with degree at most 4 (Example VSP [316]).
Define a subset W as

W = {p(x) | p ∈ P4, p(2) = 0}

so W is the collection of those polynomials (with degree 4 or less) whose graphs cross
the x-axis at x = 2. Whenever we encounter a new set it is a good idea to gain a better
understanding of the set by finding a few elements in the set, and a few outside it. For
example x2 − x− 2 ∈ W , while x4 + x3 − 7 6∈ W .

Is W nonempty? Yes, x− 2 ∈ W .
Additive closure? Suppose p ∈ W and q ∈ W . Is p + q ∈ W? p and q are not totally

arbitrary, we know that p(2) = 0 and q(2) = 0. Then we can check p + q for membership
in W ,

(p + q)(2) = p(2) + q(2) Addition in P4

= 0 + 0 p ∈ W, q ∈ W

= 0

so we see that p + q qualifies for membership in W .
Scalar multiplication closure? Suppose that α ∈ C and p ∈ W . Then we know that

p(2) = 0. Testing αp for membership,

(αp)(2) = αp(2) Scalar multiplication in P4

= α0 p ∈ W

= 0

so αp ∈ W .
We have shown that W meets the three conditions of Theorem TSS [331] and so

qualifies as a subspace of P4. Notice that by Definition S [329] we now know that W is
also a vector space. So all the properties of a vector space (Definition VS [313]) and the
theorems of Section VS [313] apply in full.

�

Much of the power of Theorem TSS [331] is that we can easily establish new vector
spaces if we can locate them as subsets of other vector spaces, such as the ones presented
in Subsection VS.EVS [315].

It can be as instructive to consider some subsets that are not subspaces. Since Theo-
rem TSS [331] is an equivalence (see Technique E [686]) we can be assured that a subset
is not a subspace if it violates one of the three conditions, and in any example of interest
this will not be the “non-empty” condition. However, since a subspace has to be a vector
space in its own right, we can also search for a violation of any one of the ten defining
properties in Definition VS [313] or any inherent property of a vector space, such as those
given by the basic theorems of Subsection VS.VSP [320]. Notice also that a violation
need only be for a specific vector or pair of vectors.

Example NSC2Z
A non-subspace in C2, zero vector
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Consider the subset W below as a candidate for being a subspace of C2

W =

{[
x1

x2

] ∣∣∣∣ 3x1 − 5x2 = 12

}

The zero vector of C2, 0 =

[
0
0

]
will need to be the zero vector in W also. However,

0 6∈ W since 3(0) − 5(0) = 0 6= 12. So W has no zero vector and fails Property Z [314]
of Definition VS [313]. This subspace also fails to be closed under addition and scalar
multiplication. Can you find examples of this? �

Example NSC2A
A non-subspace in C2, additive closure

Consider the subset X below as a candidate for being a subspace of C2

X =

{[
x1

x2

] ∣∣∣∣ x1x2 = 0

}
You can check that 0 ∈ X, so the approach of the last example will not get us anywhere.

However, notice that x =

[
1
0

]
∈ X and y =

[
0
1

]
∈ X. Yet

x + y =

[
1
0

]
+

[
0
1

]
=

[
1
1

]
6∈ X

So X fails the additive closure requirement of either Property AC [313] or Theorem TSS [331],
and is therefore not a subspace. �

Example NSC2S
A non-subspace in C2, scalar multiplication closure

Consider the subset Y below as a candidate for being a subspace of C2

Y =

{[
x1

x2

] ∣∣∣∣ x1 ∈ Z, x2 ∈ Z
}

Z is the set of integers, so we are only allowing “whole numbers” as the constituents of
our vectors. Now, 0 ∈ Y , and additive closure also holds (can you prove these claims?).

So we will have to try something different. Note that α = 1
2
∈ C and

[
2
3

]
∈ Y , but

αx =
1

2

[
2
3

]
=

[
1
3
2

]
6∈ Y

So Y fails the scalar multiplication closure requirement of either Property SC [313] or
Theorem TSS [331], and is therefore not a subspace. �

There are two examples of subspaces that are trivial. Suppose that V is any vector
space. Then V is a subset of itself and is a vector space. By Definition S [329], V
qualifies as a subspace of itself. The set containing just the zero vector Z = {0} is also
a subspace as can be seen by applying Theorem TSS [331] or by simple modifications
of the techniques hinted at in Example VSS [317]. Since these subspaces are so obvious
(and therefore not too interesting) we will refer to them as being trivial.
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Definition TS
Trivial Subspaces
Given the vector space V , the subspaces V and {0} are each called a trivial subspace.
4

We can also use Theorem TSS [331] to prove more general statements about subspaces,
as illustrated in the next theorem.

Theorem NSMS
Null Space of a Matrix is a Subspace

Suppose that A is an m× n matrix. Then the null space of A, N (A), is a subspace of
Cn. �

Proof We will examine the three requirements of Theorem TSS [331]. Recall that
N (A) = {x ∈ Cn | Ax = 0}.

First, 0 ∈ N (A), which can be inferred as a consequence of Theorem HSC [66]. So
N (A) 6= ∅.

Second, check additive closure by supposing that x ∈ N (A) and y ∈ N (A). So we
know a little something about x and y: Ax = 0 and Ay = 0, and that is all we know.
Question: Is x + y ∈ N (A)? Let’s check.

A(x + y) = Ax + Ay Theorem MMDAA [229]

= 0 + 0 x ∈ N (A) , y ∈ N (A)

= 0 Theorem VSPCV [96]

So, yes, x + y qualifies for membership in N (A).
Third, check scalar multiplication closure by supposing that α ∈ C and x ∈ N (A).

So we know a little something about x: Ax = 0, and that is all we know. Question: Is
αx ∈ N (A)? Let’s check.

A(αx) = α(Ax) Theorem MMSMM [229]

= α0 x ∈ N (A)

= 0 Theorem ZVSM [321]

So, yes, αx qualifies for membership in N (A).
Having met the three conditions in Theorem TSS [331] we can now say that the null

space of a matrix is a subspace (and hence a vector space in its own right!). �

Here is an example where we can exercise Theorem NSMS [334].

Example RSNS
Recasting a subspace as a null space

Consider the subset of C5 defined as

W =




x1

x2

x3

x4

x5


∣∣∣∣∣∣∣∣∣∣

3x1 + x2 − 5x3 + 7x4 + x5 = 0,
4x1 + 6x2 + 3x3 − 6x4 − 5x5 = 0,
−2x1 + 4x2 + 7x4 + x5 = 0


It is possible to show that W is a subspace of C5 by checking the three conditions of
Theorem TSS [331] directly, but it will get tedious rather quickly. Instead, give W a
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fresh look and notice that it is a set of solutions to a homogeneous system of equations.
Define the matrix

A =

 3 1 −5 7 1
4 6 3 −6 −5
−2 4 0 7 1


and then recognize that W = N (A). By Theorem NSMS [334] we can immediately see
that W is a subspace. Boom! �

Subsection TSS
The Span of a Set

The span of a set of column vectors got a heavy workout in Chapter V [91] and Chap-
ter M [207]. The definition of the span depended only on being able to formulate linear
combinations. In any of our more general vector spaces we always have a definition of
vector addition and of scalar multiplication. So we can build linear combinations and
manufacture spans. This subsection contains two definitions that are just mild variants
of definitions we have seen earlier for column vectors. If you haven’t already, compare
them with Definition LCCV [103] and Definition SSCV [129].

Definition LC
Linear Combination

Suppose that V is a vector space. Given n vectors u1, u2, u3, . . . , un and n scalars
α1, α2, α3, . . . , αn, their linear combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.

4

Example LCM
A linear combination of matrices

In the vector space M23 of 2× 3 matrices, we have the vectors

x =

[
1 3 −2
2 0 7

]
y =

[
3 −1 2
5 5 1

]
z =

[
4 2 −4
1 1 1

]
and we can form linear combinations such as

2x + 4y + (−1)z = 2

[
1 3 −2
2 0 7

]
+ 4

[
3 −1 2
5 5 1

]
+ (−1)

[
4 2 −4
1 1 1

]
=

[
2 6 −4
4 0 14

]
+

[
12 −4 8
20 20 4

]
+

[
−4 −2 4
−1 −1 −1

]
=

[
10 0 8
23 19 17

]
or,

4x− 2y + 3z = 4

[
1 3 −2
2 0 7

]
− 2

[
3 −1 2
5 5 1

]
+ 3

[
4 2 −4
1 1 1

]
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=

[
4 12 −8
8 0 28

]
+

[
−6 2 −4
−10 −10 −2

]
+

[
12 6 −12
3 3 3

]
=

[
10 20 −24
1 −7 29

]
�

When we realize that we can form linear combinations in any vector space, then it
is natural to revisit our definition of the span of a set, since it is the set of all possible
linear combinations of a set of vectors.

Definition SS
Span of a Set
Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut}, their

span, 〈S〉, is the set of all possible linear combinations of u1, u2, u3, . . . , ut. Symboli-
cally,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αtut | αi ∈ C, 1 ≤ i ≤ t}

=

{
t∑

i=1

αiui

∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ t

}
4

Theorem SSS
Span of a Set is a Subspace

Suppose V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut} ⊆ V ,
their span, 〈S〉, is a subspace. �

Proof We will verify the three conditions of Theorem TSS [331]. First,

0 = 0 + 0 + 0 + . . . + 0 Property Z [314] for V

= 0u1 + 0u2 + 0u3 + · · ·+ 0ut Theorem ZSSM [321]

So we have written 0 as a linear combination of the vectors in S and by Definition SS [336],0 ∈
〈S〉 and therefore S 6= ∅.

Second, suppose x ∈ 〈S〉 and y ∈ 〈S〉. Can we conclude that x + y ∈ 〈S〉? What do
we know about x and y by virtue of their membership in 〈S〉? There must be scalars
from C, α1, α2, α3, . . . , αt and β1, β2, β3, . . . , βt so that

x = α1u1 + α2u2 + α3u3 + · · ·+ αtut

y = β1u1 + β2u2 + β3u3 + · · ·+ βtut

Then

x + y = α1u1 + α2u2 + α3u3 + · · ·+ αtut

+ β1u1 + β2u2 + β3u3 + · · ·+ βtut

= α1u1 + β1u1 + α2u2 + β2u2

+ α3u3 + β3u3 + · · ·+ αtut + βtut Property AA [314], Property C [313]

= (α1 + β1)u1 + (α2 + β2)u2

+ (α3 + β3)u3 + · · ·+ (αt + βt)ut Property DSA [314]

Version 0.85



Subsection S.TSS The Span of a Set 337

Since each αi + βi is again a scalar from C we have expressed the vector sum x + y as
a linear combination of the vectors from S, and therefore by Definition SS [336] we can
say that x + y ∈ 〈S〉.

Third, suppose α ∈ C and x ∈ 〈S〉. Can we conclude that αx ∈ 〈S〉? What do
we know about x by virtue of its membership in 〈S〉? There must be scalars from C,
α1, α2, α3, . . . , αt so that

x = α1u1 + α2u2 + α3u3 + · · ·+ αtut

Then

αx = α (α1u1 + α2u2 + α3u3 + · · ·+ αtut)

= α(α1u1) + α(α2u2) + α(α3u3) + · · ·+ α(αtut) Property DVA [314]

= (αα1)u1 + (αα2)u2 + (αα3)u3 + · · ·+ (ααt)ut Property SMA [314]

Since each ααi is again a scalar from C we have expressed the scalar multiple αx as a
linear combination of the vectors from S, and therefore by Definition SS [336] we can say
that αx ∈ 〈S〉.

With the three conditions of Theorem TSS [331] met, we can say that 〈S〉 is a sub-
space (and so is also vector space, Definition VS [313]). (See Exercise SS.T20 [145],
Exercise SS.T21 [145], Exercise SS.T22 [145].) �

Example SSP
Span of a set of polynomials

In Example SP4 [332] we proved that

W = {p(x) | p ∈ P4, p(2) = 0}

is a subspace of P4, the vector space of polynomials of degree at most 4. Since W is a
vector space itself, let’s construct a span within W . First let

S =
{
x4 − 4x3 + 5x2 − x− 2, 2x4 − 3x3 − 6x2 + 6x + 4

}
and verify that S is a subset of W by checking that each of these two polynomials has
x = 2 as a root. Now, if we define U = 〈S〉, then Theorem SSS [336] tells us that U is a
subspace of W . So quite quickly we have built a chain of subspaces, U inside W , and W
inside P4.

Rather than dwell on how quickly we can build subspaces, let’s try to gain a better
understanding of just how the span construction creates subspaces, in the context of this
example. We can quickly build representative elements of U ,

3(x4− 4x3 + 5x2− x− 2) + 5(2x4− 3x3− 6x2 + 6x + 4) = 13x4− 27x3− 15x2 + 27x + 14

and

(−2)(x4−4x3 +5x2−x−2)+8(2x4−3x3−6x2 +6x+4) = 14x4−16x3−58x2 +50x+36

and each of these polynomials must be in W since it is closed under addition and scalar
multiplication. But you might check for yourself that both of these polynomials have
x = 2 as a root.
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I can tell you that y = 3x4 − 7x3 − x2 + 7x − 2 is not in U , but would you believe
me? A first check shows that y does have x = 2 as a root, but that only shows that
y ∈ W . What does y have to do to gain membership in U = 〈S〉? It must be a linear
combination of the vectors in S, x4− 4x3 + 5x2− x− 2 and 2x4− 3x3− 6x2 + 6x + 4. So
let’s suppose that y is such a linear combination,

y = 3x4 − 7x3 − x2 + 7x− 2

= α1(x
4 − 4x3 + 5x2 − x− 2) + α2(2x

4 − 3x3 − 6x2 + 6x + 4)

= (α1 + 2α2)x
4 + (−4α1 − 3α2)x

3 + (5α1 − 6α2)x
2 + (−α1 + 6α2)x− (−2α1 + 4α2)

Notice that operations above are done in accordance with the definition of the vector
space of polynomials (Example VSP [316]). Now, if we equate coefficients, which is the
definition of equality for polynomials, then we obtain the system of five linear equations
in two variables

α1 + 2α2 = 3

−4α1 − 3α2 = −7

5α1 − 6α2 = −1

−α1 + 6α2 = 7

−2α1 + 4α2 = −2

Build an augmented matrix from the system and row-reduce,
1 2 3
−4 −3 −7
5 −6 −1
−1 6 7
−2 4 −2

 RREF−−−→


1 0 0

0 1 0

0 0 1
0 0 0
0 0 0


With a leading 1 in the final column of the row-reduced augmented matrix, Theo-
rem RCLS [54] tells us the system of equations is inconsistent. Therefore, there are
no scalars, α1 and α2, to establish y as a linear combination of the elements in U . So
y 6∈ U . �

Let’s again examine membership in a span.

Example SM32
A subspace of M32

The set of all 3× 2 matrices forms a vector space when we use the operations of matrix
addition (Definition MA [208]) and scalar matrix multiplication (Definition MSM [208]),
as was show in Example VSM [315]. Consider the subset

S =


3 1

4 2
5 −5

 ,

 1 1
2 −1
14 −1

 ,

 3 −1
−1 2
−19 −11

 ,

 4 2
1 −2
14 −2

 ,

 3 1
−4 0
−17 7


and define a new subset of vectors W in M32 using the span (Definition SS [336]), W =
〈S〉. So by Theorem SSS [336] we know that W is a subspace of M32. While W is an
infinite set, and this is a precise description, it would still be worthwhile to investigate
whether or not W contains certain elements.
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First, is

y =

 9 3
7 3
10 −11


in W? To answer this, we want to determine if y can be written as a linear combination
of the five matrices in S. Can we find scalars, α1, α2, α3, α4, α5 so that 9 3

7 3
10 −11

 = α1

3 1
4 2
5 −5

+ α2

 1 1
2 −1
14 −1

+ α3

 3 −1
−1 2
−19 −11

+ α4

 4 2
1 −2
14 −2

+ α5

 3 1
−4 0
−17 7


=

 3α1 + α2 + 3α3 + 4α4 + 3α5 α1 + α2 − α3 + 2α4 + α5

4α1 + 2α2 − α3 + α4 − 4α5 2α1 − α2 + 2α3 − 2α4

5α1 + 14α2 − 19α3 + 14α4 − 17α5 −5α1 − α2 − 11α3 − 2α4 + 7α5


Using our definition of matrix equality (Definition ME [207]) we can translate this state-
ment into six equations in the five unknowns,

3α1 + α2 + 3α3 + 4α4 + 3α5 = 9

α1 + α2 − α3 + 2α4 + α5 = 3

4α1 + 2α2 − α3 + α4 − 4α5 = 7

2α1 − α2 + 2α3 − 2α4 = 3

5α1 + 14α2 − 19α3 + 14α4 − 17α5 = 10

−5α1 − α2 − 11α3 − 2α4 + 7α5 = −11

This is a linear system of equations, which we can represent with an augmented matrix
and row-reduce in search of solutions. The matrix that is row-equivalent to the augmented
matrix is 

1 0 0 0 5
8

2

0 1 0 0 −19
4
−1

0 0 1 0 −7
8

0

0 0 0 1 17
8

1
0 0 0 0 0 0
0 0 0 0 0 0


So we recognize that the system is consistent since there is no leading 1 in the final column
(Theorem RCLS [54]), and compute n−r = 5−4 = 1 free variables (Theorem FVCS [56]).
While there are infinitely many solutions, we are only in pursuit of a single solution, so
let’s choose the free variable α5 = 0 for simplicity’s sake. Then we easily see that α1 = 2,
α2 = −1, α3 = 0, α4 = 1. So the scalars α1 = 2, α2 = −1, α3 = 0, α4 = 1, α5 = 0
will provide a linear combination of the elements of S that equals y, as we can verify by
checking,  9 3

7 3
10 −11

 = 2

3 1
4 2
5 −5

+ (−1)

 1 1
2 −1
14 −1

+ (1)

 4 2
1 −2
14 −2


So with one particular linear combination in hand, we are convinced that y deserves to
be a member of W = 〈S〉. Second, is

x =

2 1
3 1
4 −2
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in W? To answer this, we want to determine if x can be written as a linear combination
of the five matrices in S. Can we find scalars, α1, α2, α3, α4, α5 so that2 1

3 1
4 −2

 = α1

3 1
4 2
5 −5

+ α2

 1 1
2 −1
14 −1

+ α3

 3 −1
−1 2
−19 −11

+ α4

 4 2
1 −2
14 −2

+ α5

 3 1
−4 0
−17 7


=

 3α1 + α2 + 3α3 + 4α4 + 3α5 α1 + α2 − α3 + 2α4 + α5

4α1 + 2α2 − α3 + α4 − 4α5 2α1 − α2 + 2α3 − 2α4

5α1 + 14α2 − 19α3 + 14α4 − 17α5 −5α1 − α2 − 11α3 − 2α4 + 7α5


Using our definition of matrix equality (Definition ME [207]) we can translate this state-
ment into six equations in the five unknowns,

3α1 + α2 + 3α3 + 4α4 + 3α5 = 2

α1 + α2 − α3 + 2α4 + α5 = 1

4α1 + 2α2 − α3 + α4 − 4α5 = 3

2α1 − α2 + 2α3 − 2α4 = 1

5α1 + 14α2 − 19α3 + 14α4 − 17α5 = 4

−5α1 − α2 − 11α3 − 2α4 + 7α5 = −2

This is a linear system of equations, which we can represent with an augmented matrix
and row-reduce in search of solutions. The matrix that is row-equivalent to the augmented
matrix is 

1 0 0 0 5
8

0

0 1 0 0 −38
8

0

0 0 1 0 −7
8

0

0 0 0 1 −17
8

0

0 0 0 0 0 1
0 0 0 0 0 0


With a leading 1 in the last column Theorem RCLS [54] tells us that the system is
inconsistent. Therefore, there are no values for the scalars that will place x in W , and
so we conclude that x 6∈ W . �

Notice how Example SSP [337] and Example SM32 [338] contained questions about
membership in a span, but these questions quickly became questions about solutions to
a system of linear equations. This will be a common theme going forward.

Subsection SC
Subspace Constructions

Several of the subsets of vectors spaces that we worked with in Chapter M [207] are also
subspaces — they are closed under vector addition and scalar multiplication in Cm.

Theorem CSMS
Column Space of a Matrix is a Subspace

Suppose that A is an m× n matrix. Then C(A) is a subspace of Cm. �
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Proof Definition CSM [267] shows us that C(A) is a subset of Cm, and that it is defined
as the span of a set of vectors from Cm (the columns of the matrix). Since C(A) is a
span, Theorem SSS [336] says it is a subspace. �

That was easy! Notice that we could have used this same approach to prove that the
null space is a subspace, since Theorem SSNS [135] provided a description of the null
space of a matrix as the span of a set of vectors. However, I much prefer the current
proof of Theorem NSMS [334]. Speaking of easy, here is a very easy theorem that exposes
another of our constructions as creating subspaces.

Theorem RSMS
Row Space of a Matrix is a Subspace

Suppose that A is an m× n matrix. Then R(A) is a subspace of Cn. �

Proof Definition RSM [274] says R(A) = C(At), so the row space of a matrix is a
column space, and every column space is a subspace by Theorem CSMS [340]. That’s
enough. �

One more.

Theorem LNSMS
Left Null Space of a Matrix is a Subspace

Suppose that A is an m× n matrix. Then L(A) is a subspace of Cm. �

Proof Definition LNS [289] says L(A) = N (At), so the left null space is a null space,
and every null space is a subspace by Theorem NSMS [334]. Done. �

So the span of a set of vectors, and the null space, column space, row space and left
null space of a matrix are all subspaces, and hence are all vector spaces, meaning they
have all the properties detailed in Definition VS [313] and in the basic theorems presented
in Section VS [313]. We have worked with these objects as just sets in Chapter V [91]
and Chapter M [207], but now we understand that they have much more structure. In
particular, being closed under vector addition and scalar multiplication means a subspace
is also closed under linear combinations.

Subsection READ
Reading Questions

1. Summarize the three conditions that allow us to quickly test if a set is a subspace.

2. Consider the set of vectors 
a

b
c

 ∣∣∣∣∣∣ 3a− 2b + c = 5


Is this set a subspace of C3? Explain your answer.

3. Name five general constructions of sets of column vectors (subsets of Cm) that we
now know as subspaces.
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Subsection EXC
Exercises

C20 Working within the vector space P3 of polynomials of degree 3 or less, determine
if p(x) = x3 + 6x + 4 is in the subspace W below.

W =
〈{

x3 + x2 + x, x3 + 2x− 6, x2 − 5
}〉

Contributed by Robert Beezer Solution [345]

C21 Consider the subspace

W =

〈{[
2 1
3 −1

]
,

[
4 0
2 3

]
,

[
−3 1
2 1

]}〉

of the vector space of 2× 2 matrices, M22. Is C =

[
−3 3
6 −4

]
an element of W?

Contributed by Robert Beezer Solution [345]

C25 Show that the set W =

{[
x1

x2

] ∣∣∣∣ 3x1 − 5x2 = 12

}
from Example NSC2Z [333]

fails Property AC [313] and Property SC [313].
Contributed by Robert Beezer

C26 Show that the set Y =

{[
x1

x2

] ∣∣∣∣ x1 ∈ Z, x2 ∈ Z
}

from Example NSC2S [333] has

Property AC [313].
Contributed by Robert Beezer

M20 In C3, the vector space of column vectors of size 3, prove that the set Z is a
subspace.

Z =


x1

x2

x3

 ∣∣∣∣∣∣ 4x1 − x2 + 5x3 = 0


Contributed by Robert Beezer Solution [346]

T20 A square matrix A of size n is upper-triangular if [A]ij = 0 whenever i > j. Let
UTn be the set of all upper-triangular matrices of size n. Prove that UTn is a subspace
of the vector space of all square matrices of size n, Mnn.
Contributed by Robert Beezer Solution [347]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [343]
The question is if p can be written as a linear combination of the vectors in W . To check
this, we set p equal to a linear combination and massage with the definitions of vector
addition and scalar multiplication that we get with P3 (Example VSP [316])

p(x) = a1(x
3 + x2 + x) + a2(x

3 + 2x− 6) + a3(x
2 − 5)

x3 + 6x + 4 = (a1 + a2)x
3 + (a1 + a3)x

2 + (a1 + 2a2)x + (−6a2 − 5a3)

Equating coefficients of equal powers of x, we get the system of equations,

a1 + a2 = 1

a1 + a3 = 0

a1 + 2a2 = 6

−6a2 − 5a3 = 4

The augmented matrix of this system of equations row-reduces to
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


There is a leading 1 in the last column, so Theorem RCLS [54] implies that the system
is inconsistent. So there is no way for p to gain membership in W , so p 6∈ W .

C21 Contributed by Robert Beezer Statement [343]
In order to belong to W , we must be able to express C as a linear combination of the

elements in the spanning set of W . So we begin with such an expression, using the
unknowns a, b, c for the scalars in the linear combination.

C =

[
−3 3
6 −4

]
= a

[
2 1
3 −1

]
+ b

[
4 0
2 3

]
+ c

[
−3 1
2 1

]
Massaging the right-hand side, according to the definition of the vector space operations
in M22 (Example VSM [315]), we find the matrix equality,[

−3 3
6 −4

]
=

[
2a + 4b− 3c a + c
3a + 2b + 2c −a + 3b + c

]
Matrix equality allows us to form a system of four equations in three variables, whose
augmented matrix row-reduces as follows,

2 4 −3 −3
1 0 1 3
3 2 2 6
−1 3 1 −4

 RREF−−−→


1 0 0 2

0 1 0 −1

0 0 1 1
0 0 0 0
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Since this system of equations is consistent (Theorem RCLS [54]), a solution will provide
values for a, b and c that alllow us to recognize C as an element of W .

M20 Contributed by Robert Beezer Statement [343]
The membership criteria for Z is a single linear equation, which comprises a homogeneous
system of equations. As such, we can recognize Z as the solutions to this system, and
therefore Z is a null space. Specifically, Z = N

([
4 −1 5

])
. Every null space is a

subspace by Theorem NSMS [334].
A less direct solution appeals to Theorem TSS [331].

First, we want to be certain Z is non-empty. The zero vector of C3, 0 =

0
0
0

, is a

good candidate, since if it fails to be in Z, we will know that Z is not a vector space.
Check that

4(0)− (0) + 5(0) = 0

so that 0 ∈ Z.

Suppose x =

x1

x2

x3

 and y =

y1

y2

y3

 are vectors from Z. Then we know that these

vectors cannot be totally arbitrary, they must have gained membership in Z by virtue of
meeting the membership test. For example, we know that x must satisfy 4x1−x2+5x3 = 0
while y must satisfy 4y1−y2+5y3 = 0. Our second criteria asks the question, is x+y ∈ Z?
Notice first that

x + y =

x1

x2

x3

+

y1

y2

y3

 =

x1 + y1

x2 + y2

x3 + y3


and we can test this vector for membership in Z as follows,

4(x1 + y1)− 1(x2 + y2) + 5(x3 + y3)

= 4x1 + 4y1 − x2 − y2 + 5x3 + 5y3

= (4x1 − x2 + 5x3) + (4y1 − y2 + 5y3)

= 0 + 0 x ∈ Z, y ∈ Z

= 0

and by this computation we see that x + y ∈ Z.
If α is a scalar and x ∈ Z, is it always true that αx ∈ Z? To check our third criteria,

we examine

αx = α

x1

x2

x3

 =

αx1

αx2

αx3


and we can test this vector for membership in Z with

4(αx1)− (αx2) + 5(αx3)

= α(4x1 − x2 + 5x3)

= α0 x ∈ Z

= 0

and we see that indeed αx ∈ Z. With the three conditions of Theorem TSS [331] fulfilled,
we can conclude that Z is a subspace of C3.
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T20 Contributed by Robert Beezer Statement [343]
Apply Theorem TSS [331].

First, the zero vector of Mnn is the zero matrix, O, whose entries are all zero (Defi-
nition ZM [210]). This matrix then meets the condition that [O]ij = 0 for i > j and so
is an element of UTn.

Suppose A, B ∈ UTn. Is A + B ∈ UTn? We examine the entries of A + B “below”
the diagonal. That is, in the following, assume that i > j.

[A + B]ij = [A]ij + [B]ij Definition MA [208]

= 0 + 0 A, B ∈ UTn

= 0

which qualifies A + B for membership in UTn.
Suppose α ∈ C and A ∈ UTn. Is αA ∈ UTn? We examine the entries of αA “below”

the diagonal. That is, in the following, assume that i > j.

[αA]ij = α [A]ij Definition MSM [208]

= α0 A ∈ UTn

= 0

which qualifies αA for membership in UTn.
Having fulfilled the three conditions of Theorem TSS [331] we see that UTn is a

subspace of Mnn.
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Section LISS

Linear Independence and Spanning Sets

A vector space is defined as a set with two operations, meeting ten properties (Defini-
tion VS [313]). Just as the definition of span of a set of vectors only required knowing
how to add vectors and how to multiply vectors by scalars, so it is with linear indepen-
dence. A definition of a linear independent set of vectors in an arbitrary vector space
only requires knowing how to form linear combinations and equating these with the zero
vector. Since every vector space must have a zero vector (Property Z [314]), we always
have a zero vector at our disposal.

In this section we will also put a twist on the notion of the span of a set of vectors.
Rather than beginning with a set of vectors and creating a subspace that is the span, we
will instead begin with a subspace and look for a set of vectors whose span equals the
subspace.

The combination of linear independence and spanning will be very important going
forward.

Subsection LI
Linear independence

Our previous definition of linear independence (Definition LI [349]) employed a relation
of linear dependence that was a linear combination on one side of an equality and a zero
vector on the other side. As a linear combination in a vector space (Definition LC [335])
depends only on vector addition and scalar multiplication, and every vector space must
have a zero vector (Property Z [314]), we can extend our definition of linear indepen-
dence from the setting of Cm to the setting of a general vector space V with almost no
changes. Compare these next two definitions with Definition RLDCV [153] and Defini-
tion LICV [153].

Definition RLD
Relation of Linear Dependence

Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , un}, an
equation of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion,
i.e. αi = 0, 1 ≤ i ≤ n, then we say it is a trivial relation of linear dependence on S.
4

Definition LI
Linear Independence
Suppose that V is a vector space. The set of vectors S = {u1, u2, u3, . . . , un} from V

is linearly dependent if there is a relation of linear dependence on S that is not trivial.
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In the case where the only relation of linear dependence on S is the trivial one, then S
is a linearly independent set of vectors. 4

Notice the emphasis on the word “only.” This might remind you of the definition
of a nonsingular matrix, where if the matrix is employed as the coefficient matrix of a
homogeneous system then the only solution is the trivial one.

Example LIP4
Linear independence in P4

In the vector space of polynomials with degree 4 or less, P4 (Example VSP [316])
consider the set

S =
{
2x4 + 3x3 + 2x2 − x + 10, −x4 − 2x3 + x2 + 5x− 8, 2x4 + x3 + 10x2 + 17x− 2

}
.

Is this set of vectors linearly independent or dependent? Consider that

3
(
2x4 + 3x3 + 2x2 − x + 10

)
+ 4

(
−x4 − 2x3 + x2 + 5x− 8

)
+ (−1)

(
2x4 + x3 + 10x2 + 17x− 2

)
= 0x4 + 0x3 + 0x2 + 0x + 0 = 0

This is a nontrivial relation of linear dependence (Definition RLD [349]) on the set S and
so convinces us that S is linearly dependent (Definition LI [349]).

Now, I hear you say, “Where did those scalars come from?” Do not worry about that
right now, just be sure you understand why the above explanation is sufficient to prove
that S is linearly dependent. The remainder of the example will demonstrate how we
might find these scalars if they had not been provided so readily. Let’s look at another
set of vectors (polynomials) from P4. Let

T =
{
3x4 − 2x3 + 4x2 + 6x− 1, −3x4 + 1x3 + 0x2 + 4x + 2,

4x4 + 5x3 − 2x2 + 3x + 1, 2x4 − 7x3 + 4x2 + 2x + 1
}

Suppose we have a relation of linear dependence on this set,

0 = 0x4 + 0x3 + 0x2 + 0x + 0

= α1

(
3x4 − 2x3 + 4x2 + 6x− 1

)
+ α2

(
−3x4 + 1x3 + 0x2 + 4x + 2

)
+ α3

(
4x4 + 5x3 − 2x2 + 3x + 1

)
+ α4

(
2x4 − 7x3 + 4x2 + 2x + 1

)
Using our definitions of vector addition and scalar multiplication in P4 (Example VSP [316]),
we arrive at,

0x4 + 0x3 + 0x2 + 0x + 0 = (3α1 − 3α2 + 4α3 + 2α4) x4 + (−2α1 + α2 + 5α3 − 7α4) x3

+ (4α1 +−2α3 + 4α4) x2 + (6α1 + 4α2 + 3α3 + 2α4) x

+ (−α1 + 2α2 + α3 + α4) .

Equating coefficients, we arrive at the homogeneous system of equations,

3α1 − 3α2 + 4α3 + 2α4 = 0

−2α1 + α2 + 5α3 − 7α4 = 0

4α1 +−2α3 + 4α4 = 0

6α1 + 4α2 + 3α3 + 2α4 = 0

−α1 + 2α2 + α3 + α4 = 0
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We form the coefficient matrix of this homogeneous system of equations and row-reduce
to find 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


We expected the system to be consistent (Theorem HSC [66]) and so can compute n−r =
4 − 4 = 0 and Theorem CSRN [56] tells us that the solution is unique. Since this is a
homogeneous system, this unique solution is the trivial solution (Definition TSHSE [66]),
α1 = 0, α2 = 0, α3 = 0, α4 = 0. So by Definition LI [349] the set T is linearly
independent.

A few observations. If we had discovered infinitely many solutions, then we could
have used one of the non-trivial ones to provide a linear combination in the manner we
used to show that S was linearly dependent. It is important to realize that it is not
interesting that we can create a relation of linear dependence with zero scalars — we
can always do that — but that for T , this is the only way to create a relation of linear
dependence. It was no accident that we arrived at a homogeneous system of equations
in this example, it is related to our use of the zero vector in defining a relation of linear
dependence. It is easy to present a convincing statement that a set is linearly dependent
(just exhibit a nontrivial relation of linear dependence) but a convincing statement of
linear independence requires demonstrating that there is no relation of linear dependence
other than the trivial one. Notice how we relied on theorems from Chapter SLE [3] to
provide this demonstration. Whew! There’s a lot going on in this example. Spend some
time with it, we’ll be waiting patiently right here when you get back. �

Example LIM32
Linear Independence in M32

Consider the two sets of vectors R and S from the vector space of all 3 × 2 matrices,
M32 (Example VSM [315])

R =


3 −1

1 4
6 −6

 ,

−2 3
1 −3
−2 −6

 ,

 6 −6
−1 0
7 −9

 ,

 7 9
−4 −5
2 5


S =


2 0

1 −1
1 3

 ,

−4 0
−2 2
−2 −6

 ,

 1 1
−2 1
2 4

 ,

 −5 3
−10 7
2 0


One set is linearly independent, the other is not. Which is which? Let’s examine R first.
Build a generic relation of linear dependence (Definition RLD [349]),

α1

3 −1
1 4
6 −6

+ α2

−2 3
1 −3
−2 −6

+ α3

 6 −6
−1 0
7 −9

+ α4

 7 9
−4 −5
2 5

 = 0

Massaging the left-hand side with our definitions of vector addition and scalar multipli-
cation in M32 (Example VSM [315]) we obtain,3α1 − 2α2 + 6α3 + 7α4 −1α1 + 3α2 − 6α3 + 9α4

1α1 + 1α2 − α3 − 4α4 4α1 − 3α2 +−5α4

6α1 − 2α2 + 7α3 + 2α4 −6α1 − 6α2 − 9α3 + 5α4

 =

0 0
0 0
0 0
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Using our definition of matrix equality (Definition ME [207]) and equating corresponding
entries we get the homogeneous system of six equations in four variables,

3α1 − 2α2 + 6α3 + 7α4 = 0

−1α1 + 3α2 − 6α3 + 9α4 = 0

1α1 + 1α2 − α3 − 4α4 = 0

4α1 − 3α2 +−5α4 = 0

6α1 − 2α2 + 7α3 + 2α4 = 0

−6α1 − 6α2 − 9α3 + 5α4 = 0

Form the coefficient matrix of this homogeneous system and row-reduce to obtain

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0
0 0 0 0


Analyzing this matrix we are led to conclude that α1 = 0, α2 = 0, α3 = 0, α4 = 0. This
means there is only a trivial relation of linear dependence on the vectors of R and so we
call R a linearly independent set (Definition LI [349]).

So it must be that S is linearly dependent. Let’s see if we can find a non-trivial
relation of linear dependence on S. We will begin as with R, by constructing a relation
of linear dependence (Definition RLD [349]) with unknown scalars,

α1

2 0
1 −1
1 3

+ α2

−4 0
−2 2
−2 −6

+ α3

 1 1
−2 1
2 4

+ α4

 −5 3
−10 7
2 0

 = 0

Massaging the left-hand side with our definitions of vector addition and scalar multipli-
cation in M32 (Example VSM [315]) we obtain, 2α1 − 4α2 + α3 − 5α4 α3 + 3α4

α1 − 2α2 − 2α3 − 10α4 −α1 + 2α2 + α3 + 7α4

α1 − 2α2 + 2α3 + 2α4 3α1 − 6α2 + 4α3

 =

0 0
0 0
0 0


Using our definition of matrix equality (Definition ME [207]) and equating corresponding
entries we get the homogeneous system of six equations in four variables,

2α1 − 4α2 + α3 − 5α4 = 0

+α3 + 3α4 = 0

α1 − 2α2 − 2α3 − 10α4 = 0

−α1 + 2α2 + α3 + 7α4 = 0

α1 − 2α2 + 2α3 + 2α4 = 0

3α1 − 6α2 + 4α3 = 0
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Form the coefficient matrix of this homogeneous system and row-reduce to obtain
1 −2 0 −4

0 0 1 3
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Analyzing this we see that the system is consistent (we expected this since the system is
homogeneous, Theorem HSC [66]) and has n − r = 4 − 2 = 2 free variables, namely α2

and α4. This means there are infinitely many solutions, and in particular, we can find a
non-trivial solution, so long as we do not pick all of our free variables to be zero. The
mere presence of a nontrivial solution for these scalars is enough to conclude that S is a
linearly dependent set (Definition LI [349]). But let’s go ahead and explicitly construct
a non-trivial relation of linear dependence.

Choose α2 = 1 and α4 = −1. There is nothing special about this choice, there
are infinitely many possibilities, some “easier” than this one, just avoid picking both
variables to be zero. Then we find the corresponding dependent variables to be α1 = −2
and α3 = 3. So the relation of linear dependence,

(−2)

2 0
1 −1
1 3

+ (1)

−4 0
−2 2
−2 −6

+ (3)

 1 1
−2 1
2 4

+ (−1)

 −5 3
−10 7
2 0

 =

0 0
0 0
0 0


is an iron-clad demonstration that S is linearly dependent. Can you construct another
such demonstration? �

Example LIC
Linearly independent set in the crazy vector space

Is the set R = {(1, 0), (6, 3)} linearly independent in the crazy vector space C (Ex-
ample CVS [318])? We begin with a relation of linear independence and massage it to a
point where we can apply the definition of equality in C. Recall the definitions of vector
addition and scalar multiplication in C.

0 = a1(1, 0) + a2(6, 3) Definition RLD [349]

(−1, −1) = (1a1 + a1 − 1, 0a1 + a1 − 1) + (6a2 + a2 − 1, 3a2 + a2 − 1) Scalar mult in C

= (2a1 − 1, a1 − 1) + (7a2 − 1, 4a2 − 1)

= (2a1 − 1 + 7a2 − 1 + 1, a1 − 1 + 4a2 − 1 + 1) Addition in C

= (2a1 + 7a2 − 1, a1 + 4a2 − 1)

Equality in C then yields the two equations,

2a1 + 7a2 − 1 = −1

a1 + 4a2 − 1 = −1
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which becomes the homogeneous system

2a1 + 7a2 = 0

a1 + 4a2 = 0

Since the coefficient matrix of this system is nonsingular (check this!) the system has only
the trivial solution a1 = a2 = 0. By Definition LI [349] the set R is linearly independent.
Notice that even though the zero vector of C is not what we might first suspected, a
question about linear independence still concludes with a question about a homogeneous
system of equations. �

Subsection SS
Spanning Sets

In a vector space V , suppose we are given a set of vectors S ⊆ V . Then we can im-
mediately construct a subspace, 〈S〉, using Definition SS [336] and then be assured by
Theorem SSS [336] that the construction does provide a subspace. We now turn the
situation upside-down. Suppose we are first given a subspace W ⊆ V . Can we find a
set S so that 〈S〉 = W? Typically W is infinite and we are searching for a finite set of
vectors S that we can combine in linear combinations and “build” all of W .

I like to think of S as the raw materials that are sufficient for the construction of W .
If you have nails, lumber, wire, copper pipe, drywall, plywood, carpet, shingles, paint
(and a few other things), then you can combine them in many different ways to create a
house (or infinitely many different houses for that matter). A fast-food restaurant may
have beef, chicken, beans, cheese, tortillas, taco shells and hot sauce and from this small
list of ingredients build a wide variety of items for sale. Or maybe a better analogy comes
from Ben Cordes — the additive primary colors (red, green and blue) can be combined
to create many different colors by varying the intensity of each. The intensity is like a
scalar multiple, and the combination of the three intensities is like vector addition. The
three individual colors, red, yellow and blue, are the elements of the spanning set.

Because we will use terms like “spanned by” and “spanning set,” there is the potential
for confusion with “the span.” Come back and reread the first paragraph of this subsec-
tion whenever you are uncertain about the difference. Here’s the working definition.

Definition TSVS
To Span a Vector Space

Suppose V is a vector space. A subset S of V is a spanning set for V if 〈S〉 = V . In
this case, we also say S spans V . 4

The definition of a spanning set requires that two sets (subspaces actually) be equal.
If S is a subset of V , then 〈S〉 ⊆ V , always. Thus it is usually only necessary to prove
that V ⊆ 〈S〉. Now would be a good time to review Definition SE [678].

Example SSP4
Spanning set in P4

In Example SP4 [332] we showed that

W = {p(x) | p ∈ P4, p(2) = 0}
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is a subspace of P4, the vector space of polynomials with degree at most 4 (Exam-
ple VSP [316]). In this example, we will show that the set

S =
{
x− 2, x2 − 4x + 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x + 16

}
is a spanning set for W . To do this, we require that W = 〈S〉. This is an equality of
sets. We can check that every polynomial in S has x = 2 as a root and therefore S ⊆ W .
Since W is closed under addition and scalar multiplication, 〈S〉 ⊆ W also.

So it remains to show that W ⊆ 〈S〉 (Definition SE [678]). To do this, begin by
choosing an arbitrary polynomial in W , say r(x) = ax4 + bx3 + cx2 + dx + e ∈ W . This
polynomial is not as arbitrary as it would appear, since we also know it must have x = 2
as a root. This translates to

0 = a(2)4 + b(2)3 + c(2)2 + d(2) + e = 16a + 8b + 4c + 2d + e

as a condition on r.
We wish to show that r is a polynomial in 〈S〉, that is, we want to show that r can

be written as a linear combination of the vectors (polynomials) in S. So let’s try.

r(x) = ax4 + bx3 + cx2 + dx + e

= α1 (x− 2) + α2

(
x2 − 4x + 4

)
+ α3

(
x3 − 6x2 + 12x− 8

)
+ α4

(
x4 − 8x3 + 24x2 − 32x + 16

)
= α4x

4 + (α3 − 8α4) x3 + (α2 − 6α3 + 24α2) x2

+ (α1 − 4α2 + 12α3 − 32α4) x + (−2α1 + 4α2 − 8α3 + 16α4)

Equating coefficients (vector equality in P4) gives the system of five equations in four
variables,

α4 = a

α3 − 8α4 = b

α2 − 6α3 + 24α2 = c

α1 − 4α2 + 12α3 − 32α4 = d

−2α1 + 4α2 − 8α3 + 16α4 = e

Any solution to this system of equations will provide the linear combination we need
to determine if r ∈ 〈S〉, but we need to be convinced there is a solution for any values
of a, b, c, d, e that qualify r to be a member of W . So the question is: is this system
of equations consistent? We will form the augmented matrix, and row-reduce. (We
probably need to do this by hand, since the matrix is symbolic — reversing the order of
the first four rows is the best way to start). We obtain a matrix in reduced row-echelon
form

1 0 0 0 32a + 12b + 4c + d

0 1 0 0 24a + 6b + c

0 0 1 0 8a + b

0 0 0 1 a
0 0 0 0 16a + 8b + 4c + 2d + e

 =


1 0 0 0 32a + 12b + 4c + d

0 1 0 0 24a + 6b + c

0 0 1 0 8a + b

0 0 0 1 a
0 0 0 0 0


Version 0.85



356 Section LISS Linear Independence and Spanning Sets

For your results to match our first matrix, you may find it necessary to mutiply the final
row of your row-reduced matrix by the appropriate scalar, and/or add multiples of this
row to some of the other rows. To obtain the second version of the matrix, the last entry
of the last column has been simplified to zero according to the one condition we were
able to impose on an arbitrary polynomial from W . So with no leading 1’s in the last
column, Theorem RCLS [54] tells us this system is consistent. Therefore, any polynomial
from W can be written as a linear combination of the polynomials in S, so W ⊆ 〈S〉.
Therefore, W = 〈S〉 and S is a spanning set for W by Definition TSVS [354].

Notice that an alternative to row-reducing the augmented matrix by hand would be
to appeal to Theorem FS [296] by expressing the column space of the coefficient matrix
as a null space, and then verifying that the condition on r guarantees that r is in the
column space, thus implying that the system is always consistent. Give it a try, we’ll
wait. This has been a complicated example, but worth studying carefully. �

Given a subspace and a set of vectors, as in Example SSP4 [354] it can take some
work to determine that the set actually is a spanning set. An even harder problem is to
be confronted with a subspace and required to construct a spanning set with no guidance.
We will now work an example of this flavor, but some of the steps will be unmotivated.
Fortunately, we will have some better tools for this type of problem later on.

Example SSM22
Spanning set in M22

In the space of all 2× 2 matrices, M22 consider the subspace

Z =

{[
a b
c d

] ∣∣∣∣ a + 3b− c− 5d = 0, −2a− 6b + 3c + 14d = 0

}
and find a spanning set for Z.

We need to construct a limited number of matrices in Z so that every matrix in Z
can be expressed as a linear combination of this limited number of matrices. Suppose

that B =

[
a b
c d

]
is a matrix in Z. Then we can form a column vector with the entries

of B and write 
a
b
c
d

 ∈ N([ 1 3 −1 −5
−2 −6 3 14

])

Row-reducing this matrix and applying Theorem REMES [32] we obtain the equivalent
statement, 

a
b
c
d

 ∈ N([ 1 3 0 −1

0 0 1 4

])

We can then express the subspace Z in the following equal forms,

Z =

{[
a b
c d

] ∣∣∣∣ a + 3b− c− 5d = 0, −2a− 6b + 3c + 14d = 0

}
=

{[
a b
c d

] ∣∣∣∣ a + 3b− d = 0, c + 4d = 0

}
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=

{[
a b
c d

] ∣∣∣∣ a = −3b + d, c = −4d

}
=

{[
−3b + d b
−4d d

] ∣∣∣∣ b, d ∈ C
}

=

{[
−3b b
0 0

]
+

[
d 0
−4d d

] ∣∣∣∣ b, d ∈ C
}

=

{
b

[
−3 1
0 0

]
+ d

[
1 0
−4 1

] ∣∣∣∣ b, d ∈ C
}

=

〈{[
−3 1
0 0

]
,

[
1 0
−4 1

]}〉
So the set

Q =

{[
−3 1
0 0

]
,

[
1 0
−4 1

]}
spans Z by Definition TSVS [354]. �

Example SSC
Spanning set in the crazy vector space

In Example LIC [353] we determined that the set R = {(1, 0), (6, 3)} is linearly
independent in the crazy vector space C (Example CVS [318]). We now show that R is
a spanning set for C.

Given an arbitrary vector (x, y) ∈ C we desire to show that it can be written as a
linear combination of the elements of R. In other words, are there scalars a1 and a2 so
that

(x, y) = a1(1, 0) + a2(6, 3)

We will act as if this equation is true and try to determine just what a1 and a2 would be
(as functions of x and y).

(x, y) = a1(1, 0) + a2(6, 3)

= (1a1 + a1 − 1, 0a1 + a1 − 1) + (6a2 + a2 − 1, 3a2 + a2 − 1) Scalar mult in C

= (2a1 − 1, a1 − 1) + (7a2 − 1, 4a2 − 1)

= (2a1 − 1 + 7a2 − 1 + 1, a1 − 1 + 4a2 − 1 + 1) Addition in C

= (2a1 + 7a2 − 1, a1 + 4a2 − 1)

Equality in C then yields the two equations,

2a1 + 7a2 − 1 = x

a1 + 4a2 − 1 = y

which becomes the linear system with a matrix representation[
2 7
1 4

] [
a1

a2

]
=

[
x + 1
y + 1

]
The coefficient matrix of this system is nonsingular, hence invertible (Theorem NSI [257]),
and we can employ its inverse to find a solution (Theorem TTMI [242], Theorem SNSCM [258]),[

a1

a2

]
=

[
2 7
1 4

]−1 [
x + 1
y + 1

]
=

[
4 −7
−1 2

] [
x + 1
y + 1

]
=

[
4x− 7y − 3
−x + 2y + 1

]
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We could chase through the above implications backwards and take the existence of these
solutions as sufficient evidence for R being a spanning set for C. Instead, let us view the
above as simply scratchwork and now get serious with a simple direct proof that R is a
spanning set. Ready? Suppose (x, y) is any vector from C, then compute the following
linear combination using the definitions of the operations in C,

(4x− 7y − 3)(1, 0) + (−x + 2y + 1)(6, 3)

= (1(4x− 7y − 3) + (4x− 7y − 3)− 1, 0(4x− 7y − 3) + (4x− 7y − 3)− 1) +

(6(−x + 2y + 1) + (−x + 2y + 1)− 1, 3(−x + 2y + 1) + (−x + 2y + 1)− 1)

= (8x− 14y − 7, 4x− 7y − 4) + (−7x + 14y + 6, −4x + 8y + 3)

= ((8x− 14y − 7) + (−7x + 14y + 6) + 1, (4x− 7y − 4) + (−4x + 8y + 3) + 1)

= (x, y)

This final sequence of computations in C is sufficient to demonstrate that any element
of C can be written (or expressed) as a linear combination of the two vectors in R, so
C ⊆ 〈R〉. Since the reverse inclusion 〈R〉 ⊆ C is trivially true, C = 〈R〉 and we say
R spans C (Definition TSVS [354]). Notice that this demonstration is no more or less
valid if we hide from the reader our scratchwork that suggested a1 = 4x − 7y − 3 and
a2 = −x + 2y + 1. �

Subsection VR
Vector Representation

In Chapter R [591] we will take up the matter of representations fully, where Theo-
rem VRRB [359] will be critical for Definition VR [591]. We will now motivate and
prove a critical theorem that tells us how to “represent” a vector. This theorem could
wait, but working with it now will provide some extra insight into the nature of linearly
independent spanning sets. First an example, then the theorem.

Example AVR
A vector representation

Consider the set

S =


−7

5
1

 ,

−6
5
0

 ,

−12
7
4


from the vector space C3. Let A be the matrix whose columns are the set S, and ver-
ify that A is nonsingular. By Theorem NSLIC [159] the elements of S form a linearly
independent set. Suppose that b ∈ C3. Then LS(A, b) has a (unique) solution (Theo-
rem NSMUS [83]) and hence is consistent. By Theorem SLSLC [106], b ∈ 〈S〉. Since b
is arbitrary, this is enough to show that 〈S〉 = C3, and therefore S is a spanning set for
C3 (Definition TSVS [354]). (This set comes from the columns of the coefficient matrix
of Archetype B [708].)

Now examine the situation for a particular choice of b, say b =

−33
24
5

. Because S

is a spanning set for C3, we know we can write b as a linear combination of the vectors
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in S, −33
24
5

 = (−3)

−7
5
1

+ (5)

−6
5
0

+ (2)

−12
7
4

 .

The nonsingularity of the matrix A tells that the scalars in this linear combination are
unique. More precisely, it is the linear independence of S that provides the uniqueness.
We will refer to the scalars a1 = −3, a2 = 5, a3 = 2 as a “representation of b relative to
S.” This is all an illustration of the following important theorem, which we prove in the
setting of a general vector space. �

Theorem VRRB
Vector Representation Relative to a Basis

Suppose that V is a vector space and B = {v1, v2, v3, . . . , vm} is a linearly inde-
pendent set that spans V . Let w be any vector in V . Then there exist unique scalars
a1, a2, a3, . . . , am such that

w = a1v1 + a2v2 + a3v3 + · · ·+ amvm.

�

Proof That w can be written as a linear combination of the vectors in B follows from
the spanning property of the set (Definition TSVS [354]). This is good, but not the meat
of this theorem. We now know that for any choice of the vector w there exist some scalars
that will create w as a linear combination of the basis vectors. The real question is: Is
there more than one way to write w as a linear combination of {v1, v2, v3, . . . , vm}?
Are the scalars a1, a2, a3, . . . , am unique? (Technique U [691])

Assume there are two ways to express w as a linear combination of {v1, v2, v3, . . . , vm}.
In other words there exist scalars a1, a2, a3, . . . , am and b1, b2, b3, . . . , bm so that

w = a1v1 + a2v2 + a3v3 + · · ·+ amvm

w = b1v1 + b2v2 + b3v3 + · · ·+ bmvm.

Then notice that

0 = w + (−w) Property AI [314]

= w + (−1)w Theorem AISM [322]

= (a1v1 + a2v2 + a3v3 + · · ·+ amvm)+

(−1)(b1v1 + b2v2 + b3v3 + · · ·+ bmvm)

= (a1v1 + a2v2 + a3v3 + · · ·+ amvm)+

(−b1v1 − b2v2 − b3v3 − . . .− bmvm) Property DVA [314]

= (a1 − b1)v1 + (a2 − b2)v2 + (a3 − b3)v3+

· · ·+ (am − bm)vm Property C [313], Property DSA [314]

But this is a relation of linear dependence on a linearly independent set of vectors (Defini-
tion RLD [349])! Now we are using the other assumption about B, that {v1, v2, v3, . . . , vm}
is a linearly independent set. So by Definition LI [349] it must happen that the scalars
are all zero. That is,

(a1 − b1) = 0 (a2 − b2) = 0 (a3 − b3) = 0 . . . (am − bm) = 0
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a1 = b1 a2 = b2 a3 = b3 . . . am = bm.

And so we find that the scalars are unique. �

This is a very typical use of the hypothesis that a set is linear independent — obtain
a relation of linear dependence and then conclude that the scalars must all be zero.
The result of this theorem tells us that we can write any vector in a vector space as a
linear combination of the vectors in a linearly independent spanning set, but only just.
There is only enough raw material in the spanning set to write each vector one way as
a linear combination. So in this sense, we could call a linearly independent spanning set
a “minimal spanning set.” These sets are so important that we will give them a simpler
name (“basis”) and explore their properties further in the next section.

Subsection READ
Reading Questions

1. Is the set of matrices below linearly independent or linearly dependent in the vector
space M22? Why or why not?{[

1 3
−2 4

]
,

[
−2 3
3 −5

]
,

[
0 9
−1 3

]}
2. Explain the difference between the following two uses of the term “span”:

(a) S is a subset of the vector space V and the span of S is a subspace of V .
(b) W is subspace of the vector space Y and T spans W .

3. The set

S =


6

2
1

 ,

 4
−3
1

 ,

5
8
2


is linearly independent and spans C3. Write the vector x =

−6
2
2

 a linear combi-

nation of the elements of S. How many ways are there to answer this question?
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Subsection EXC
Exercises

C20 In the vector space of 2×2 matrices, M22, determine if the set S below is linearly
independent.

S =

{[
2 −1
1 3

]
,

[
0 4
−1 2

]
,

[
4 2
1 3

]}
Contributed by Robert Beezer Solution [363]

C21 In the crazy vector space C (Example CVS [318]), is the set S = {(0, 2), (2, 8)}
linearly independent?
Contributed by Robert Beezer Solution [363]

C22 In the vector space of polynomials P3, determine if the set S is linearly indepen-
dent or linearly dependent.

S =
{
2 + x− 3x2 − 8x3, 1 + x + x2 + 5x3, 3− 4x2 − 7x3

}
Contributed by Robert Beezer Solution [364]

C23 Determine if the set S = {(3, 1), (7, 3)} is linearly independent in the crazy
vector space C (Example CVS [318]).
Contributed by Robert Beezer Solution [364]

C30 In Example LIM32 [351], find another nontrivial relation of linear dependence on
the linearly dependent set of 3× 2 matrices, S.
Contributed by Robert Beezer

C40 Determine if the set T = {x2 − x + 5, 4x3 − x2 + 5x, 3x + 2} spans the vector
space of polynomials with degree 4 or less, P4.
Contributed by Robert Beezer Solution [364]

C41 The set W is a subspace of M22, the vector space of all 2 × 2 matrices. Prove
that S is a spanning set for W .

W =

{[
a b
c d

] ∣∣∣∣ 2a− 3b + 4c− d = 0

}
S =

{[
1 0
0 2

]
,

[
0 1
0 −3

]
,

[
0 0
1 4

]}
Contributed by Robert Beezer Solution [364]

C42 Determine if the set S = {(3, 1), (7, 3)} spans the crazy vector space C (Exam-
ple CVS [318]).
Contributed by Robert Beezer Solution [365]

M10 Halfway through Example SSP4 [354], we need to show that the system of equa-
tions

LS




0 0 0 1
0 0 1 −8
0 1 −6 24
1 −4 12 −32
−2 4 −8 16

 ,


a
b
c
d
e
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is consistent for every choice of the vector of constants for which 16a+8b+4c+2d+e = 0.
Express the column space of the coefficient matrix of this system as a null space,

using Theorem FS [296]. From this use Theorem CSCS [268] to establish that the system
is always consistent. Notice that this approach removes from Example SSP4 [354] the
need to row-reduce a symbolic matrix.
Contributed by Robert Beezer Solution [365]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [361]
Begin with a relation of linear dependence on the vectors in S and massage it according
to the definitions of vector addition and scalar multiplication in M22,

O = a1

[
2 −1
1 3

]
+ a2

[
0 4
−1 2

]
+ a3

[
4 2
1 3

]
[
0 0
0 0

]
=

[
2a1 + 4a3 −a1 + 4a2 + 2a3

a1 − a2 + a3 3a1 + 2a2 + 3a3

]
By our definition of matrix equality (Definition ME [207]) we arrive at a homogeneous
system of linear equations,

2a1 + 4a3 = 0

−a1 + 4a2 + 2a3 = 0

a1 − a2 + a3 = 0

3a1 + 2a2 + 3a3 = 0

The coefficient matrix of this system row-reduces to the matrix,
1 0 0

0 1 0

0 0 1
0 0 0


and from this we conclude that the only solution is a1 = a2 = a3 = 0. Since the relation
of linear dependence (Definition RLD [349]) is trivial, the set S is linearly independent
(Definition LI [349]).

C21 Contributed by Robert Beezer Statement [361]
We begin with a relation of linear dependence using unknown scalars a and b. We wish
to know if these scalars must both be zero. Recall that the zero vector in C is (−1, −1)
and that the definitions of vector addition and scalar multiplication are not what we
might expect.

0 = (−1, −1)

= a(0, 2) + b(2, 8) Definition RLD [349]

= (0a + a− 1, 2a + a− 1) + (2b + b− 1, 8b + b− 1) Scalar mult., Example CVS [318]

= (a− 1, 3a− 1) + (3b− 1, 9b− 1)

= (a− 1 + 3b− 1 + 1, 3a− 1 + 9b− 1 + 1) Vector addition, Example CVS [318]

= (a + 3b− 1, 3a + 9b− 1)

From this we obtain two equalities, which can be converted to a homogeneous system of
equations,

−1 = a + 3b− 1 a + 3b = 0
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−1 = 3a + 9b− 1 3a + 9b = 0

This homogeneous system has a singular coefficient matrix (Theorem SMZD [436]), and
so has more than just the trivial solution (Definition NM [79]). Any nontrivial solution
will give us a nontrivial relation of linear dependence on S. So S is linearly dependent
(Definition LI [349]).

C22 Contributed by Robert Beezer Statement [361]
Begin with a relation of linear dependence (Definition RLD [349]),

a1

(
2 + x− 3x2 − 8x3

)
+ a2

(
1 + x + x2 + 5x3

)
+ a3

(
3− 4x2 − 7x3

)
= 0

Massage according to the definitions of scalar multiplication and vector addition in the
definition of P3 (Example VSP [316]) and use the zero vector dro this vector space,

(2a1 + a2 + 3a3)+(a1 + a2) x+(−3a1 + a2 − 4a3) x2+(−8a1 + 5a2 − 7a3) x3 = 0+0x+0x2+0x3

The definition of the equality of polynomials allows us to deduce the following four
equations,

2a1 + a2 + 3a3 = 0

a1 + a2 = 0

−3a1 + a2 − 4a3 = 0

−8a1 + 5a2 − 7a3 = 0

Row-reducing the coefficient matrix of this homogeneous system leads to the unique
solution a1 = a2 = a3 = 0. So the only relation of linear dependence on S is the trivial
one, and this is linear independence for S (Definition LI [349]).

C23 Contributed by Robert Beezer Statement [361]
Notice, or discover, that the following gives a nontrivial relation of linear dependence on
S in C, so by Definition LI [349], the set S is linearly dependent.

2(3, 1) + (−1)(7, 3) = (7, 3) + (−9, −5) = (−1, −1) = 0

C40 Contributed by Robert Beezer Statement [361]
The vector space P4 has dimension 5 by Theorem DP [387]. Since T contains only 3

vectors, and 3 < 5, Theorem G [402] tells us that T does not span P5.

C41 Contributed by Robert Beezer Statement [361]
We want to show that W = 〈S〉 (Definition TSVS [354]), which is an equality of sets

(Definition SE [678]).
First, show that 〈S〉 ⊆ W . Begin by checking that each of the three matrices in S is

a member of the set W . Then, since W is a vector space, the closure properties (Prop-
erty AC [313], Property SC [313]) guarantee that every linear combination of elements
of S remains in W .

Second, show that W ⊆ 〈S〉. We want to convince ourselves that an arbitrary element
of W is a linear combination of elements of S. Choose

x =

[
a b
c d

]
∈ W
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The values of a, b, c, d are not totally arbitary, since membership in W requires that
2a− 3b + 4c− d = 0. Now, rewrite as follows,

x =

[
a b
c d

]
=

[
a b
c 2a− 3b + 4c

]
2a− 3b + 4c− d = 0

=

[
a 0
0 2a

]
+

[
0 b
0 −3b

]
+

[
0 0
c 4c

]
Definition MA [208]

= a

[
1 0
0 2

]
+ b

[
0 1
0 −3

]
+ c

[
0 0
1 4

]
Definition MSM [208]

∈ 〈S〉 Definition SS [336]

C42 Contributed by Robert Beezer Statement [361]
We will try to show that S spans C. Let (x, y) be an arbitrary element of C and search
for scalars a1 and a2 such that

(x, y) = a1(3, 1) + a2(7, 3)

= (4a1 − 1, 2a1 − 1) + (8a2 − 1, 4a2 − 1)

= (4a1 + 8a2 − 1, 2a1 + 4a2 − 1)

Equality in C leads to the system

4a1 + 8a2 = x + 1

2a1 + 4a2 = y + 1

This system has a singular coefficient matrix whose column space is simply

〈[
2
1

]〉
. So

any choice of x and y that causes the column vector

[
x + 1
y + 1

]
to lie outside the column

space will lead to an inconsistent system, and hence create an element (x, y) that is not
in the span of S. So S does not span C.

For example, choose x = 0 and y = 5, and then we can see that

[
1
6

]
6∈
〈[

2
1

]〉
and

we know that (0, 5) cannot be written as a linear combination of the vectors in S. A
shorter solution might begin by asserting that (0, 5) is not in 〈S〉 and then establishing
this claim alone.

M10 Contributed by Robert Beezer Statement [361]
Theorem FS [296] provides the matrix

L =
[

1 1
2

1
4

1
8

1
16

]
and so if A denotes the coefficient matrix of the system, then C(A) = N (L). The
single homogeneous equation in LS(L, 0) is equivalent to the condition on the vector of
constants (use a, b, c, d, e as variables and then multiply by 16).
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Section B

Bases

A basis of a vector space is one of the most useful concepts in linear algebra. It often
provides a finite description of an infinite vector space.

Subsection B
Bases

We now have all the tools in place to define a basis of a vector space.

Definition B
Basis

Suppose V is a vector space. Then a subset S ⊆ V is a basis of V if it is linearly
independent and spans V . 4

So, a basis is a linearly independent spanning set for a vector space. The requirement
that the set spans V insures that S has enough raw material to build V , while the linear
independence requirement insures that we do not have any more raw material than we
need. As we shall see soon in Section D [383], a basis is a minimal spanning set.

You may have noticed that we used the term basis for some of the titles of previous
theorems (e.g. Theorem BNS [162], Theorem BCS [270], Theorem BRS [277]) and if
you review each of these theorems you will see that their conclusions provide linearly
independent spanning sets for sets that we now recognize as subspaces of Cm. Examples
associated with these theorems include Example NSLIL [163], Example CSOCD [271]
and Example IAS [278]. As we will see, these three theorems will continue to be powerful
tools, even in the setting of more general vector spaces.

Furthermore, the archetypes contain an abundance of bases. For each coefficient
matrix of a system of equations, and for each archetype defined simply as a matrix, there
is a basis for the null space, three bases for the column space, and a basis for the row
space. For this reason, our subsequent examples will concentrate on bases for vector
spaces other than Cm. Notice that Definition B [367] does not preclude a vector space
from having many bases, and this is the case, as hinted above by the statement that
the archetypes contain three bases for the column space of a matrix. More generally, we
can grab any basis for a vector space, multiply any one basis vector by a non-zero scalar
and create a slightly different set that is still a basis. For “important” vector spaces,
it will be convenient to have a collection of “nice” bases. When a vector space has a
single particularly nice basis, it is sometimes called the standard basis though there is
nothing precise enough about this term to allow us to define it formally — it is a question
of style. Here are some nice bases for important vector spaces.

Theorem SUVB
Standard Unit Vectors are a Basis
The set of standard unit vectors for Cm (Definition SUV [242]), B = {e1, e2, e3, . . . , em} =
{ei | 1 ≤ i ≤ m} is a basis for the vector space Cm. �
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Proof We must show that the set B is both linearly independent and a spanning
set for Cm. First, the vectors in B are, by Definition SUV [242], the columns of the
identity matrix, which we know is nonsingular (since it row-reduces to the identity matrix,
Theorem NSRRI [81]). And the columns of a nonsingular matrix are linearly independent
by Theorem NSLIC [159].

Suppose we grab an arbitrary vector from Cm, say

v =


v1

v2

v3
...

vm

 .

Can we write v as a linear combination of the vectors in B? Yes, and quite simply.
v1

v2

v3
...

vm

 = v1


1
0
0
...
0

+ v2


0
1
0
...
0

+ v3


0
0
1
...
0

+ · · ·+ vm


0
0
0
...
1


v = v1e1 + v2e2 + v3e3 + · · ·+ vmem

this shows that Cm ⊆ 〈B〉, which is sufficient to show that B is a spanning set for Cm.
�

Example BP
Bases for Pn

The vector space of polynomials with degree at most n, Pn, has the basis

B =
{
1, x, x2, x3, . . . , xn

}
.

Another nice basis for Pn is

C =
{
1, 1 + x, 1 + x + x2, 1 + x + x2 + x3, . . . , 1 + x + x2 + x3 + · · ·+ xn

}
.

Checking that each of B and C is a linearly independent spanning set are good exercises.
�

Example BM
A basis for the vector space of matrices

In the vector space Mmn of matrices (Example VSM [315]) define the matrices Bk`,
1 ≤ k ≤ m, 1 ≤ ` ≤ n by

[Bk`]ij =

{
1 if k = i, ` = j

0 otherwise

So these matrices have entries that are all zeros, with the exception of a lone entry that
is one. The set of all mn of them,

B = {Bk` | 1 ≤ k ≤ m, 1 ≤ ` ≤ n}

forms a basis for Mmn. �
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The bases described above will often be convenient ones to work with. However a
basis doesn’t have to obviously look like a basis.

Example BSP4
A basis for a subspace of P4

In Example SSP4 [354] we showed that

S =
{
x− 2, x2 − 4x + 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x + 16

}
is a spanning set for W = {p(x) | p ∈ P4, p(2) = 0}. We will now show that S is also
linearly independent in W . Begin with a relation of linear dependence,

0 + 0x + 0x2 + 0x3 + 0x4 = α1 (x− 2) + α2

(
x2 − 4x + 4

)
+ α3

(
x3 − 6x2 + 12x− 8

)
+ α4

(
x4 − 8x3 + 24x2 − 32x + 16

)
= α4x

4 + (α3 − 8α4) x3 + (α2 − 6α3 + 24α4) x2

+ (α1 − 4α2 + 12α3 − 32α4) x + (−2α1 + 4α2 − 8α3 + 16α4)

Equating coefficients (vector equality in P4) gives the homogeneous system of five equa-
tions in four variables,

α4 = 0

α3 − 8α4 = 0

α2 − 6α3 + 24α4 = 0

α1 − 4α2 + 12α3 − 32α4 = 0

−2α1 + 4α2 − 8α3 + 16α4 = 0

We form the coefficient matrix, and row-reduce to obtain a matrix in reduced row-echelon
form 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


With only the trivial solution to this homogeneous system, we conclude that only scalars
that will form a relation of linear dependence are the trivial ones, and therefore the set S
is linearly independent (Definition LI [349]). Finally, S has earned the right to be called
a basis for W (Definition B [367]). �

Example BSM22
A basis for a subspace of M22

In Example SSM22 [356] we discovered that

Q =

{[
−3 1
0 0

]
,

[
1 0
−4 1

]}
is a spanning set for the subspace

Z =

{[
a b
c d

] ∣∣∣∣ a + 3b− c− 5d = 0, −2a− 6b + 3c + 14d = 0

}
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of the vector space of all 2× 2 matrices, M22. If we can also determine that Q is linearly
independent in Z (or in M22), then it will qualify as a basis for Z. Let’s begin with a
relation of linear dependence.[

0 0
0 0

]
= α1

[
−3 1
0 0

]
+ α2

[
1 0
−4 1

]
=

[
−3α1 + α2 α1

−4α2 α2

]

Using our definition of matrix equality (Definition ME [207]) we equate corresponding
entries and get a homogeneous system of four equations in two variables,

−3α1 + α2 = 0

α1 = 0

−4α2 = 0

α2 = 0

We could row-reduce the coefficient matrix of this homogeneous system, but it is not
necessary. The second and fourth equations tell us that α1 = 0, α2 = 0 is the only solution
to this homogeneous system. This qualifies the set Q as being linearly independent, since
the only relation of linear dependence is trivial (Definition LI [349]). Therefore Q is a
basis for Z (Definition B [367]). �

Example BC
Basis for the crazy vector space

In Example LIC [353] and Example SSC [357] we determined that the set R =
{(1, 0), (6, 3)} from the crazy vector space, C (Example CVS [318]), is linearly inde-
pendent and is a spanning set for C. By Definition B [367] we see that R is a basis for
C. �

We have seen that several of the sets associated with a matrix are subspaces of vector
spaces of column vectors. Specifically these are the null space (Theorem NSMS [334]),
column space (Theorem CSMS [340]), row space (Theorem RSMS [341]) and left null
space (Theorem LNSMS [341]). As subspaces they are vector spaces (Definition S [329])
and it is natural to ask about bases for these vector spaces. Theorem BNS [162], The-
orem BCS [270], Theorem BRS [277] each have conclusions that provide linearly inde-
pendent spanning sets for (respectively) the null space, column space, and row space.
Notice that each of these theorems contains the word “basis” in its title, even though we
did not know the precise meaning of the word at the time. To find a basis for a left null
space we can use the definition of this subspace as a null space (Definition LNS [289])
and apply Theorem BNS [162]. Or Theorem FS [296] tells us that the left null space can
be expressed as a row space and we can then use Theorem BRS [277].

Theorem BS [180] is another early result that provides a linearly independent spanning
set (i.e. a basis) as its conclusion. If a vector space of column vectors can be expressed
as a span of a set of column vectors, then Theorem BS [180] can be employed in a
straightforward manner to quickly yield a basis.
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Subsection BSCV
Bases for Spans of Column Vectors

We have seen several examples of bases in different vector spaces. In this subsection,
and the next (Subsection B.BNSM [373]), we will consider building bases for Cm and its
subspaces.

Suppose we have a subspace of Cm that is expressed as the span of a set of vectors,
S, and S is not necessarily linearly independent, or perhaps not very attractive. The-
orem REMRS [275] says that row-equivalent matrices have identical row spaces, while
Theorem BRS [277] says the nonzero rows of a matrix in reduced row-echelon form are a
basis for the row space. These theorems together give us a great computational tool for
quickly finding a basis for a subspace that is expressed originally as a span.

Example RSB
Row space basis

When we first defined the span of a set of column vectors, in Example SCAD [139] we
looked at the set

W =

〈
 2
−3
1

 ,

1
4
1

 ,

 7
−5
4

 ,

−7
−6
−5


〉

with an eye towards realizing W as the span of a smaller set. By building relations
of linear dependence (though we did not know them by that name then) we were able
to remove two vectors and write W as the span of the other two vectors. These two
remaining vectors formed a linearly independent set, even though we did not know that
at the time.

Now we know that W is a subspace and must have a basis. Consider the matrix, C,
whose rows are the vectors in the spanning set for W ,

C =


2 −3 1
1 4 1
7 −5 4
−7 −6 −5


Then, by Definition RSM [274], the row space of C will be W , R(C) = W . Theo-
rem BRS [277] tells us that if we row-reduce C, the nonzero rows of the row-equivalent
matrix in reduced row-echelon form will be a basis for R(C), and hence a basis for W .
Let’s do it — C row-reduces to 

1 0 7
11

0 1 1
11

0 0 0
0 0 0


If we convert the two nonzero rows to column vectors then we have a basis,

B =


 1

0
7
11

 ,

 0
1
1
11
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and

W =

〈
 1

0
7
11

 ,

 0
1
1
11


〉

For aesthetic reasons, we might wish to multiply each vector in B by 11, which will not
change the spanning or linear independence properties of B as a basis. Then we can also
write

W =

〈
11

0
7

 ,

 0
11
1


〉

�

Example IAS [278] provides another example of this flavor, though now we can notice
that X is a subspace, and that the resulting set of three vectors is a basis. This is such
a powerful technique that we should do one more example.

Example RS
Reducing a span

In Example RSC5 [176] we began with a set of n = 4 vectors from C5,

R = {v1, v2, v3, v4} =




1
2
−1
3
2

 ,


2
1
3
1
2

 ,


0
−7
6
−11
−2

 ,


4
1
2
1
6




and defined V = 〈R〉. Our goal in that problem was to find a relation of linear dependence
on the vectors in R, solve the resulting equation for one of the vectors, and re-express V
as the span of a set of three vectors.

Here is another way to accomplish something similar. The row space of the matrix

A =


1 2 −1 3 2
2 1 3 1 2
0 −7 6 −11 −2
4 1 2 1 6


is equal to 〈R〉. By Theorem BRS [277] we can row-reduce this matrix, ignore any zero
rows, and use the non-zero rows as column vectors that are a basis for the row space of
A. Row-reducing A creates the matrix

1 0 0 − 1
17

30
17

0 1 0 25
17

− 2
17

0 0 1 − 2
17
− 8

17

0 0 0 0 0


So 


1
0
0
− 1

17
30
17

 ,


0
1
0
25
17

− 2
17

 ,


0
0
1
− 2

17

− 8
17
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is a basis for V . Our theorem tells us this is a basis, there is no need to verify that the
subspace spanned by three vectors (rather than four) is the identical subspace, and there
is no need to verify that we have reached the limit in reducing the set, since the set of
three vectors is guaranteed to be linearly independent. �

Subsection BNSM
Bases and NonSingular Matrices

A quick source of diverse bases for Cm is the set of columns of a nonsingular matrix.

Theorem CNSMB
Columns of NonSingular Matrix are a Basis
Suppose that A is a square matrix of size m. Then the columns of A are a basis of Cm

if and only if A is nonsingular. �

Proof (⇒) Suppose that the columns of A are a basis for Cm. Then Definition B [367]
says the set of columns is linearly independent. Theorem NSLIC [159] then says that A
is nonsingular.

(⇐) Suppose that A is nonsingular. Then by Theorem NSLIC [159] this set of columns
is linearly independent. Theorem CSNSM [273] says that for a nonsingular matrix,
C(A) = Cm. This is equivalent to saying that the columns of A are a spanning set for
the vector space Cm. As a linearly independent spanning set, the columns of A qualify
as a basis for Cm (Definition B [367]). �

Example CABAK
Columns as Basis, Archetype K

Archetype K [749] is the 5× 5 matrix

K =


10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20


which is row-equivalent to the 5× 5 identity matrix I5. So by Theorem NSRRI [81], K
is nonsingular. Then Theorem CNSMB [373] says the set


10
12
−30
27
18

 ,


18
−2
−21
30
24

 ,


24
−6
−23
36
30

 ,


24
0
−30
37
30

 ,


−12
−18
39
−30
−20




is a (novel) basis of C5. �

Perhaps we should view the fact that the standard unit vectors are a basis (The-
orem SUVB [367]) as just a simple corollary of Theorem CNSMB [373]? (See Tech-
nique LC [698].)
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With a new equivalence for a nonsingular matrix, we can update our list of equiva-
lences.

Theorem NSME5
NonSingular Matrix Equivalences, Round 5

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

�

Proof With a new equivalence for a nonsingular matrix in Theorem CNSMB [373] we
can expand Theorem NSME4 [273]. �

Subsection OBC
Orthonormal Bases and Coordinates

We learned about orthogonal sets of vectors in Cm back in Section O [191], and we also
learned that orthogonal sets are automatically linearly independent (Theorem OSLI [198]).
When an orthogonal set also spans a subspace of Cm, then the set is a basis. And when
the set is orthonormal, then the set is an incredibly nice basis. We will back up this
claim with a theorem, but first consider how you might manufacture such a set.

Suppose that W is a subspace of Cm with basis B. Then B spans W and is a
linearly independent set of nonzero vectors. We can apply the Gram-Schmidt Procedure
(Theorem GSPCV [199]) and obtain a linearly independent set T such that 〈T 〉 = 〈B〉 =
W and T is orthogonal. In other words, T is a basis for W , and is an orthogonal set. By
scaling each vector of T to norm 1, we can convert T into an orthonormal set, without
destroying the properties that make it a basis of W . In short, we can convert any basis
into an orthonormal basis. Example GSTV [200], followed by Example ONTV [201],
illustrates this process.

Orthogonal matrices (Definition OM [258]) are another good source of orthonormal
bases (and vice versa). Suppose that Q is an orthogonal matrix of size n. Then the
n columns of Q form an orthonormal set (Theorem COMOS [259]) that is therefore
linearly independent (Theorem OSLI [198]). Since Q is invertible (Theorem OMI [259]),
we know Q is nonsingular (Theorem NSI [257]), and then the columns of Q span Cn
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(Theorem CSNSM [273]). So the columns of an orthogonal matrix of size n are an
orthonormal basis for Cn.

Why all the fuss about orthonormal bases? Theorem VRRB [359] told us that any
vector in a vector space could be written, uniquely, as a linear combination of basis
vectors. For an orthonormal basis, finding the scalars for this linear combination is
extremely easy, and this is the content of the next theorem. Furthermore, with vectors
written this way (as linear combinations of the elements of an orthonormal set) certain
computations and analysis become much easier. Here’s the promised theorem.

Theorem COB
Coordinates and Orthonormal Bases

Suppose that B = {v1, v2, v3, . . . , vp} is an orthonormal basis of the subspace W of
Cm. For any w ∈ W ,

w = 〈w, v1〉v1 + 〈w, v2〉v2 + 〈w, v3〉v3 + · · ·+ 〈w, vp〉vp

�

Proof Because B is a basis of W , Theorem VRRB [359] tells us that we can write
w uniquely as a linear combination of the vectors in B. So it is not this aspect of the
conclusion that makes this theorem interesting. What is interesting is that the particular
scalars are so easy to compute. No need to solve big systems of equations — just do an
inner product of w with vi to arrive at the coefficient of vi in the linear combination.

So begin the proof by writing w as a linear combination of the vectors in B, using
unknown scalars,

w = a1v1 + a2v2 + a3v3 + · · ·+ apvp

and compute,

〈w, vi〉 =

〈
p∑

k=1

akvk, vi

〉

=

p∑
k=1

〈akvk, vi〉 Theorem IPVA [193]

=

p∑
k=1

ak 〈vk, vi〉 Theorem IPSM [193]

= ai 〈vi, vi〉+
∑
k 6=i

ak 〈vk, vi〉 Isolate term with k = i

= ai(1) +
∑
k 6=i

ak(0) T orthonormal

= ai

So the (unique) scalars for the linear combination are indeed the inner products advertised
in the conclusion of the theorem’s statement. �

Example CROB4
Coordinatization relative to an orthonormal basis, C4
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The set

{x1, x2, x3, x4} =




1 + i
1

1− i
i

 ,


1 + 5i
6 + 5i
−7− i
1− 6i

 ,


−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 ,


−2− 4i
6 + i
4 + 3i
6− i




was proposed, and partially verified, as an orthogonal set in Example AOS [197]. Let’s
scale each vector to norm 1, so as to form an orthonormal basis of C4. (Notice that by
Theorem OSLI [198] the set is linearly independent. Since we know the dimension of C4

is 4, Theorem G [402] tells us the set is just the right size to be a basis of C4.) The norms
of these vectors are,

‖x1‖ =
√

6 ‖x2‖ =
√

174 ‖x3‖ =
√

3451 ‖x4‖ =
√

119

So an orthonormal basis is

B = {v1, v2, v3, v4}

=


1√
6


1 + i

1
1− i

i

 ,
1√
174


1 + 5i
6 + 5i
−7− i
1− 6i

 ,
1√
3451


−7 + 34i
−8− 23i
−10 + 22i
30 + 13i

 ,
1√
119


−2− 4i
6 + i
4 + 3i
6− i




Now, choose any vector from C4, say w =


2
−3
1
4

, and compute

〈w, v1〉 =
−5i√

6
, 〈w, v2〉 =

−19 + 30i√
174

, 〈w, v3〉 =
120− 211i√

3451
, 〈w, v4〉 =

6 + 12i√
119

then Theorem COB [375] guarantees that
2
−3
1
4

 =
−5i√

6

 1√
6


1 + i

1
1− i

i


+

−19 + 30i√
174

 1√
174


1 + 5i
6 + 5i
−7− i
1− 6i




+
120− 211i√

3451

 1√
3451


−7 + 34i
−8− 23i
−10 + 22i
30 + 13i


+

6 + 12i√
119

 1√
119


−2− 4i
6 + i
4 + 3i
6− i




as you might want to check (if you have unlimited patience). �

A slightly less intimidating example follows, in three dimensions and with just real
numbers.

Example CROB3
Coordinatization relative to an orthonormal basis, C3

The set

{x1, x2, x3} =


1

2
1

 ,

−1
0
1

 ,

2
1
1
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is a linearly independent set, which the Gram-Schmidt Process (Theorem GSPCV [199])
converts to an orthogonal set, and which can then be converted to the orthonormal set,

{v1, v2, v3} =

 1√
6

1
2
1

 ,
1√
2

−1
0
1

 ,
1√
3

 1
−1
1


which is therefore an orthonormal basis of C3. With three vectors in C3, all with real
number entries, the inner product (Definition IP [192]) reduces to the usual “dot product”
(or scalar product) and the orthogonal pairs of vectors can be interpreted as perpendicular
pairs of directions. So the vectors in B serve as replacements for our usual 3-D axes, or
the usual 3-D unit vectors ~i,~j and ~k. We would like to decompose arbitrary vectors into
“components” in the directions of each of these basis vectors. It is Theorem COB [375]
that tells us how to do this.

Suppose that we choose w =

 2
−1
5

. Compute

〈w, v1〉 =
5√
6

〈w, v2〉 =
3√
2

〈w, v3〉 =
8√
3

then Theorem COB [375] guarantees that 2
−1
5

 =
5√
6

 1√
6

1
2
1

+
3√
2

 1√
2

−1
0
1

+
8√
3

 1√
3

 1
−1
1


which you should be able to check easily, even if you do not have much patience. �

Subsection READ
Reading Questions

1. The matrix below is nonsingular. What can you now say about its columns?

A =

−3 0 1
1 2 1
5 1 6



2. Write the vector w =

 6
6
15

 as a linear combination of the columns of the matrix

A above. How many ways are there to answer this question?

3. Why is an orthonormal basis desirable?
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Subsection EXC
Exercises

C40 From Example RSB [371], form an arbitrary (and nontrivial) linear combination
of the four vectors in the original spanning set for W . So the result of this computation
is of course an element of W . As such, this vector should be a linear combination of
the basis vectors in B. Find the (unique) scalars that provide this linear combination.
Repeat with another linear combination of the original four vectors.
Contributed by Robert Beezer Solution [382]

C80 Prove that {(1, 2), (2, 3)} is a basis for the crazy vector space C (Example CVS [318]).

Contributed by Robert Beezer

M20 In Example BM [368] provide the verifications (linear independence and span-
ning) to show that B is a basis of Mmn.
Contributed by Robert Beezer Solution [381]
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Subsection SOL
Solutions

M20 Contributed by Robert Beezer Statement [379]
We need to establish the linear independence and spanning properties of the set

B = {Bk` | 1 ≤ k ≤ m, 1 ≤ ` ≤ n}

relative to the vector space Mmn.
This proof is more transparent if you write out individual matrices in the basis with

lots of zeros and dots and a lone one. But we don’t have room for that here, so we will
use summation notation. Think carefully about each step, especially when the double
summations seem to “disappear.” Begin with a relation of linear dependence, using
double subscripts on the scalars to align with the basis elements.

O =
m∑

k=1

n∑
`=1

αk`Bk`

Now consider the entry in row i and column j for these equal matrices,

0 = [O]ij Definition ZM [210]

=

[
m∑

k=1

n∑
`=1

αk`Bk`

]
ij

Definition ME [207]

=
m∑

k=1

n∑
`=1

[αk`Bk`]ij Definition MA [208]

=
m∑

k=1

n∑
`=1

αk` [Bk`]ij Definition MSM [208]

= αij [Bij]ij [Bk`]ij = 0 when (k, `) 6= (i, j)

= αij(1) [Bij]ij = 1

= αij

Since i and j were arbitrary, we find that each scalar is zero and so B is linearly inde-
pendent (Definition LI [349]).

To establish the spanning property of B we need only show that an arbitrary matrix
A can be written as a linear combination of the elements of B. So suppose that A is an
arbitrary m×n matrix and consider the matrix C defined as a linear combination of the
elements of B by

C =
m∑

k=1

n∑
`=1

[A]k` Bk`

Then,

[C]ij =

[
m∑

k=1

n∑
`=1

[A]k` Bk`

]
ij

Definition ME [207]
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=
m∑

k=1

n∑
`=1

[[A]k` Bk`]ij Definition MA [208]

=
m∑

k=1

n∑
`=1

[A]k` [Bk`]ij Definition MSM [208]

= [A]ij [Bij]ij [Bk`]ij = 0 when (k, `) 6= (i, j)

= [A]ij (1) [Bij]ij = 1

= [A]ij

So by Definition ME [207], A = C, and therefore A ∈ 〈B〉. By Definition B [367], the set
B is a basis of the vector space Mmn.

C40 Contributed by Robert Beezer Statement [379]
An arbitrary linear combination is

y = 3

 2
−3
1

+ (−2)

1
4
1

+ 1

 7
−5
4

+ (−2)

−7
−6
−5

 =

 25
−10
15


(You probably used a different collection of scalars.) We want to write y as a linear
combination of

B =


 1

0
7
11

 ,

 0
1
1
11


We could set this up as vector equation with variables as scalars in a linear combination
of the vectors in B, but since the first two slots of B have such a nice pattern of zeros and
ones, we can determine the necessary scalars easily and then double-check our answer
with a computation in the third slot,

25

 1
0
7
11

+ (−10)

 0
1
1
11

 =

 25
−10

(25) 7
11

+ (−10) 1
11

 =

 25
−10
15

 = y

Notice how the uniqueness of these scalars arises. They are forced to be 25 and −10.
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Section D

Dimension

Almost every vector space we have encountered has been infinite in size (an exception
is Example VSS [317]). But some are bigger and richer than others. Dimension, once
suitably defined, will be a measure of the size of a vector space, and a useful tool for
studying its properties. You probably already have a rough notion of what a mathemat-
ical definition of dimension might be — try to forget these imprecise ideas and go with
the new ones given here.

Subsection D
Dimension

Definition D
Dimension

Suppose that V is a vector space and {v1, v2, v3, . . . , vt} is a basis of V . Then the
dimension of V is defined by dim (V ) = t. If V has no finite bases, we say V has infinite
dimension.
(This definition contains Notation D.) 4

This is a very simple definition, which belies its power. Grab a basis, any basis,
and count up the number of vectors it contains. That’s the dimension. However, this
simplicity causes a problem. Given a vector space, you and I could each construct different
bases — remember that a vector space might have many bases. And what if your basis
and my basis had different sizes? Applying Definition D [383] we would arrive at different
numbers! With our current knowledge about vector spaces, we would have to say that
dimension is not “well-defined.” Fortunately, there is a theorem that will correct this
problem.

In a strictly logical progression, the next two theorems would precede the definition
of dimension. Many subsequent theorems will trace their lineage back to the following
fundamental result.

Theorem SSLD
Spanning Sets and Linear Dependence

Suppose that S = {v1, v2, v3, . . . , vt} is a finite set of vectors which spans the vector
space V . Then any set of t + 1 or more vectors from V is linearly dependent. �

Proof We want to prove that any set of t + 1 or more vectors from V is linearly
dependent. So we will begin with a totally arbitrary set of vectors from V , R =
{u1, u2, u3, . . . , um}, where m > t. We will now construct a nontrivial relation of
linear dependence on R.

Each vector u1, u2, u3, . . . , um can be written as a linear combination of v1, v2, v3, . . . , vt

since S is a spanning set of V . This means there exist scalars aij, 1 ≤ i ≤ t, 1 ≤ j ≤ m,
so that

u1 = a11v1 + a21v2 + a31v3 + · · ·+ at1vt
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u2 = a12v1 + a22v2 + a32v3 + · · ·+ at2vt

u3 = a13v1 + a23v2 + a33v3 + · · ·+ at3vt

...

um = a1mv1 + a2mv2 + a3mv3 + · · ·+ atmvt

Now we form, unmotivated, the homogeneous system of t equations in the m variables,
x1, x2, x3, . . . , xm, where the coefficients are the just-discovered scalars aij,

a11x1 + a12x2 + a13x3 + · · ·+ a1mxm = 0

a21x1 + a22x2 + a23x3 + · · ·+ a2mxm = 0

a31x1 + a32x2 + a33x3 + · · ·+ a3mxm = 0

...

at1x1 + at2x2 + at3x3 + · · ·+ atmxm = 0

This is a homogeneous system with more variables than equations (our hypothesis is
expressed as m > t), so by Theorem HMVEI [67] there are infinitely many solutions.
Choose a nontrivial solution and denote it by x1 = c1, x2 = c2, x3 = c3, . . . , xm = cm.
As a solution to the homogeneous system, we then have

a11c1 + a12c2 + a13c3 + · · ·+ a1mcm = 0

a21c1 + a22c2 + a23c3 + · · ·+ a2mcm = 0

a31c1 + a32c2 + a33c3 + · · ·+ a3mcm = 0

...

at1c1 + at2c2 + at3c3 + · · ·+ atmcm = 0

As a collection of nontrivial scalars, c1, c2, c3, . . . , cm will provide the nontrivial relation
of linear dependence we desire,

c1u1 + c2u2 + c3u3 + · · ·+ cmum

= c1 (a11v1 + a21v2 + a31v3 + · · ·+ at1vt) S spans V

+ c2 (a12v1 + a22v2 + a32v3 + · · ·+ at2vt)

+ c3 (a13v1 + a23v2 + a33v3 + · · ·+ at3vt)

...

+ cm (a1mv1 + a2mv2 + a3mv3 + · · ·+ atmvt)

= c1a11v1 + c1a21v2 + c1a31v3 + · · ·+ c1at1vt Property DVA [314]

+ c2a12v1 + c2a22v2 + c2a32v3 + · · ·+ c2at2vt

+ c3a13v1 + c3a23v2 + c3a33v3 + · · ·+ c3at3vt

...

+ cma1mv1 + cma2mv2 + cma3mv3 + · · ·+ cmatmvt

= (c1a11 + c2a12 + c3a13 + · · ·+ cma1m)v1 Property DSA [314]

+ (c1a21 + c2a22 + c3a23 + · · ·+ cma2m)v2
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+ (c1a31 + c2a32 + c3a33 + · · ·+ cma3m)v3

...

+ (c1at1 + c2at2 + c3at3 + · · ·+ cmatm)vt

= (a11c1 + a12c2 + a13c3 + · · ·+ a1mcm)v1 Commutativity in C
+ (a21c1 + a22c2 + a23c3 + · · ·+ a2mcm)v2

+ (a31c1 + a32c2 + a33c3 + · · ·+ a3mcm)v3

...

+ (at1c1 + at2c2 + at3c3 + · · ·+ atmcm)vt

= 0v1 + 0v2 + 0v3 + · · ·+ 0vt cj as solution

= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [321]

= 0 Property Z [314]

That does it. R has been undeniably shown to be a linearly dependent set. �

The proof just given has some rather monstrous expressions in it, mostly owing to
the double subscripts present. Now is a great opportunity to show the value of a more
compact notation. We will rewrite the key steps of the previous proof using summation
notation, resulting in a more economical presentation, and even greater insight into the
key aspects of the proof. So here is an alternate proof — study it carefully. Proof
(Alternate Proof of Theorem SSLD) We want to prove that any set of t+1 or more
vectors from V is linearly dependent. So we will begin with a totally arbitrary set of
vectors from V , R = {uj | 1 ≤ j ≤ m}, where m > t. We will now construct a nontrivial
relation of linear dependence on R.

Each vector uj, 1 ≤ j ≤ m can be written as a linear combination of vi, 1 ≤ i ≤ t
since S is a spanning set of V . This means there are scalars aij, 1 ≤ i ≤ t, 1 ≤ j ≤ m,
so that

uj =
t∑

i=1

aijvi 1 ≤ j ≤ m

Now we form, unmotivated, the homogeneous system of t equations in the m variables,
xj, 1 ≤ j ≤ m, where the coefficients are the just-discovered scalars aij,

m∑
j=1

aijxj = 0 1 ≤ i ≤ t

This is a homogeneous system with more variables than equations (our hypothesis is
expressed as m > t), so by Theorem HMVEI [67] there are infinitely many solutions.
Choose one of these solutions that is not trivial and denote it by xj = cj, 1 ≤ j ≤ m.
As a solution to the homogeneous system, we then have

∑m
j=1 aijcj = 0 for 1 ≤ i ≤ t.

As a collection of nontrivial scalars, cj, 1 ≤ j ≤ m, will provide the nontrivial relation of
linear dependence we desire,

m∑
j=1

cjuj =
m∑

j=1

cj

(
t∑

i=1

aijvi

)
S spans V

=
m∑

j=1

t∑
i=1

cjaijvi Property DVA [314]
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=
t∑

i=1

m∑
j=1

cjaijvi Commutativity in C

=
t∑

i=1

m∑
j=1

aijcjvi Commutativity in C

=
t∑

i=1

(
m∑

j=1

aijcj

)
vi Property DSA [314]

=
t∑

i=1

0vi cj as solution

=
t∑

i=1

0 Theorem ZSSM [321]

= 0 Property Z [314]

That does it. R has been undeniably shown to be a linearly dependent set. �

Notice how the swap of the two summations is so much easier in the third step above,
as opposed to all the rearranging and regrouping that takes place in the previous proof.
In about half the space. And there are no ellipses (. . .).

Theorem SSLD [383] can be viewed as a generalization of Theorem MVSLD [158].
We know that Cm has a basis with m vectors in it (Theorem SUVB [367]), so it is a
set of m vectors that spans Cm. By Theorem SSLD [383], any set of more than m
vectors from Cm will be linearly dependent. But this is exactly the conclusion we have in
Theorem MVSLD [158]. Maybe this is not a total shock, as the proofs of both theorems
rely heavily on Theorem HMVEI [67]. The beauty of Theorem SSLD [383] is that it
applies in any vector space. We illustrate the generality of this theorem, and hint at its
power, in the next example.

Example LDP4
Linearly dependent set in P4

In Example SSP4 [354] we showed that

S =
{
x− 2, x2 − 4x + 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x + 16

}
is a spanning set for W = {p(x) | p ∈ P4, p(2) = 0}. So we can apply Theorem SSLD [383]
to W with t = 4. Here is a set of five vectors from W , as you may check by verifying
that each is a polynomial of degree 4 or less and has x = 2 as a root,

T = {p1, p2, p3, p4, p5} ⊆ W

p1 = x4 − 2x3 + 2x2 − 8x + 8

p2 = −x3 + 6x2 − 5x− 6

p3 = 2x4 − 5x3 + 5x2 − 7x + 2

p4 = −x4 + 4x3 − 7x2 + 6x

p5 = 4x3 − 9x2 + 5x− 6

By Theorem SSLD [383] we conclude that T is linearly dependent, with no further com-
putations. �
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Theorem SSLD [383] is indeed powerful, but our main purpose in proving it right now
was to make sure that our definition of dimension (Definition D [383]) is well-defined.
Here’s the theorem.

Theorem BIS
Bases have Identical Sizes

Suppose that V is a vector space with a finite basis B and a second basis C. Then B
and C have the same size. �

Proof Suppose that C has more vectors than B. (Allowing for the possibility that C
is infinite, we can replace C by a subset that has more vectors than B.) As a basis, B is
a spanning set for V (Definition B [367]), so Theorem SSLD [383] says that C is linearly
dependent. However, this contradicts the fact that as a basis C is linearly independent
(Definition B [367]). So C must also be a finite set, with size less than, or equal to, that
of B.

Suppose that B has more vectors than C. As a basis, C is a spanning set for V
(Definition B [367]), so Theorem SSLD [383] says that B is linearly dependent. However,
this contradicts the fact that as a basis B is linearly independent (Definition B [367]).
So C cannot be strictly smaller than B.

The only possibility left for the sizes of B and C is for them to be equal. �

Theorem BIS [387] tells us that if we find one finite basis in a vector space, then they
all have the same size. This (finally) makes Definition D [383] unambiguous.

Subsection DVS
Dimension of Vector Spaces

We can now collect the dimension of some common, and not so common, vector spaces.

Theorem DCM
Dimension of Cm

The dimension of Cm (Example VSCV [315]) is m. �

Proof Theorem SUVB [367] provides a basis with m vectors. �

Theorem DP
Dimension of Pn

The dimension of Pn (Example VSP [316]) is n + 1. �

Proof Example BP [368] provides two bases with n + 1 vectors. Take your pick. �

Theorem DM
Dimension of Mmn

The dimension of Mmn (Example VSM [315]) is mn. �

Proof Example BM [368] provides a basis with mn vectors. �

Example DSM22
Dimension of a subspace of M22

It should now be plausible that

Z =

{[
a b
c d

] ∣∣∣∣ 2a + b + 3c + 4d = 0, −a + 3b− 5c− d = 0

}
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is a subspace of the vector space M22 (Example VSM [315]). (It is.) To find the dimension
of Z we must first find a basis, though any old basis will do.

First concentrate on the conditions relating a, b, c and d. They form a homogeneous
system of two equations in four variables with coefficient matrix[

2 1 3 4
−1 3 −5 −1

]
We can row-reduce this matrix to obtain[

1 0 2 2

0 1 −1 0

]
Rewrite the two equations represented by each row of this matrix, expressing the depen-
dent variables (a and b) in terms of the free variables (c and d), and we obtain,

a = −2c− 2d

b = c

We can now write a typical entry of Z strictly in terms of c and d, and we can decompose
the result,[

a b
c d

]
=

[
−2c− 2d c

c d

]
=

[
−2c c
c 0

]
+

[
−2d 0
0 d

]
= c

[
−2 1
1 0

]
+ d

[
−2 0
0 1

]
this equation says that an arbitrary matrix in Z can be written as a linear combination
of the two vectors in

S =

{[
−2 1
1 0

]
,

[
−2 0
0 1

]}
so we know that

Z = 〈S〉 =

〈{[
−2 1
1 0

]
,

[
−2 0
0 1

]}〉
Are these two matrices (vectors) also linearly independent? Begin with a relation of
linear dependence on S,

a1

[
−2 1
1 0

]
+ a2

[
−2 0
0 1

]
= O[

−2a1 − 2a2 a1

a1 a2

]
=

[
0 0
0 0

]
From the equality of the two entries in the last row, we conclude that a1 = 0, a2 = 0.
Thus the only possible relation of linear dependence is the trivial one, and therefore S
is linearly independent (Definition LI [349]). So S is a basis for V (Definition B [367]).
Finally, we can conclude that dim (Z) = 2 (Definition D [383]) since S has two elements.
�

Example DSP4
Dimension of a subspace of P4

In Example BSP4 [369] we showed that

S =
{
x− 2, x2 − 4x + 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x + 16

}
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is a basis for W = {p(x) | p ∈ P4, p(2) = 0}. Thus, the dimension of W is four, dim (W ) =
4. �

Example DC
Dimension of the crazy vector space

In Example BC [370] we determined that the set R = {(1, 0), (6, 3)} from the crazy
vector space, C (Example CVS [318]), is a basis for C. By Definition D [383] we see that
C has dimension 2, dim (C) = 2. �

It is possible for a vector space to have no finite bases, in which case we say it has
infinite dimension. Many of the best examples of this are vector spaces of functions, which
lead to constructions like Hilbert spaces. We will focus exclusively on finite-dimensional
vector spaces. OK, one infinite-dimensional example, and then we will focus exclusively
on finite-dimensional vector spaces.

Example VSPUD
Vector space of polynomials with unbounded degree

Define the set P by

P = {p | p(x) is a polynomial in x}

Our operations will be the same as those defined for Pn (Example VSP [316]).
With no restrictions on the possible degrees of our polynomials, any finite set that

is a candidate for spanning P will come up short. We will give a proof by contradic-
tion (Technique CD [690]). To this end, suppose that the dimension of P is finite, say
dim (P ) = n.

The set T = {1, x, x2, . . . , xn} is a linearly independent set (check this!) containing
n + 1 polynomials from P . However, a basis of P will be a spanning set of P containing
n vectors. This situation is a contradiction of Theorem SSLD [383], so our assumption
that P has finite dimension is false. Thus, we say dim (P ) =∞. �

Subsection RNM
Rank and Nullity of a Matrix

For any matrix, we have seen that we can associate several subspaces — the null space
(Theorem NSMS [334]), the column space (Theorem CSMS [340]), row space (Theo-
rem RSMS [341]) and the left null space (Theorem LNSMS [341]). As vector spaces,
each of these has a dimension, and for the null space and column space, they are impor-
tant enough to warrant names.

Definition NOM
Nullity Of a Matrix
Suppose that A is an m×n matrix. Then the nullity of A is the dimension of the null

space of A, n (A) = dim (N (A)).
(This definition contains Notation NOM.) 4

Definition ROM
Rank Of a Matrix
Suppose that A is an m×n matrix. Then the rank of A is the dimension of the column
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space of A, r (A) = dim (C(A)).
(This definition contains Notation ROM.) 4

Example RNM
Rank and nullity of a matrix

Let’s compute the rank and nullity of

A =


2 −4 −1 3 2 1 −4
1 −2 0 0 4 0 1
−2 4 1 0 −5 −4 −8
1 −2 1 1 6 1 −3
2 −4 −1 1 4 −2 −1
−1 2 3 −1 6 3 −1


To do this, we will first row-reduce the matrix since that will help us determine bases for
the null space and column space.

1 −2 0 0 4 0 1

0 0 1 0 3 0 −2

0 0 0 1 −1 0 −3

0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


From this row-equivalent matrix in reduced row-echelon form we record D = {1, 3, 4, 6}
and F = {2, 5, 7}.

For each index in D, Theorem BCS [270] creates a single basis vector. In total the
basis will have 4 vectors, so the column space of A will have dimension 4 and we write
r (A) = 4.

For each index in F , Theorem BNS [162] creates a single basis vector. In total the
basis will have 3 vectors, so the null space of A will have dimension 3 and we write
n (A) = 3. �

There were no accidents or coincidences in the previous example — with the row-
reduced version of a matrix in hand, the rank and nullity are easy to compute.

Theorem CRN
Computing Rank and Nullity

Suppose that A is an m × n matrix and B is a row-equivalent matrix in reduced
row-echelon form with r nonzero rows. Then r (A) = r and n (A) = n− r. �

Proof Theorem BCS [270] provides a basis for the column space by choosing columns
of A that correspond to the dependent variables in a description of the solutions to
LS(A, 0). In the analysis of B, there is one dependent variable for each leading 1, one
per nonzero row, or one per pivot column. So there are r column vectors in a basis for
C(A).

Theorem BNS [162] provide a basis for the null space by creating basis vectors of the
null space of A from entries of B, one for each independent variable, one per column with
out a leading 1. So there are n− r column vectors in a basis for n (A).

�

Every archetype (Appendix A [699]) that involves a matrix lists its rank and nullity.
You may have noticed as you studied the archetypes that the larger the column space
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is the smaller the null space is. A simple corollary states this trade-off succinctly. (See
Technique LC [698].)

Theorem RPNC
Rank Plus Nullity is Columns

Suppose that A is an m× n matrix. Then r (A) + n (A) = n. �

Proof Let r be the number of nonzero rows in a row-equivalent matrix in reduced
row-echelon form. By Theorem CRN [390],

r (A) + n (A) = r + (n− r) = n

�

When we first introduced r as our standard notation for the number of nonzero rows
in a matrix in reduced row-echelon form you might have thought r stood for “rows.” Not
really — it stands for “rank”!

Subsection RNNSM
Rank and Nullity of a NonSingular Matrix

Let’s take a look at the rank and nullity of a square matrix.

Example RNSM
Rank and nullity of a square matrix

The matrix

E =



0 4 −1 2 2 3 1
2 −2 1 −1 0 −4 −3
−2 −3 9 −3 9 −1 9
−3 −4 9 4 −1 6 −2
−3 −4 6 −2 5 9 −4
9 −3 8 −2 −4 2 4
8 2 2 9 3 0 9


is row-equivalent to the matrix in reduced row-echelon form,

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


With n = 7 columns and r = 7 nonzero rows Theorem CRN [390] tells us the rank is
r (E) = 7 and the nullity is n (E) = 7− 7 = 0. �

The value of either the nullity or the rank are enough to characterize a nonsingular
matrix.

Theorem RNNSM
Rank and Nullity of a NonSingular Matrix

Suppose that A is a square matrix of size n. The following are equivalent.
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1. A is nonsingular.

2. The rank of A is n, r (A) = n.

3. The nullity of A is zero, n (A) = 0.

�

Proof (1 ⇒ 2) Theorem CSNSM [273] says that if A is nonsingular then C(A) = Cn.
If C(A) = Cn, then the column space has dimension n by Theorem DCM [387], so the
rank of A is n.
(2 ⇒ 3) Suppose r (A) = n. Then Theorem RPNC [391] gives

n (A) = n− r (A) Theorem RPNC [391]

= n− n Hypothesis

= 0

(3 ⇒ 1) Suppose n (A) = 0, so a basis for the null space of A is the empty set. This
implies that N (A) = {0} and Theorem NSTNS [82] says A is nonsingular. �

With a new equivalence for a nonsingular matrix, we can update our list of equiva-
lences (Theorem NSME5 [374]) which now becomes a list requiring into double digits to
number.

Theorem NSME6
NonSingular Matrix Equivalences, Round 6

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

�

Proof Building on Theorem NSME5 [374] we can add two of the statements from
Theorem RNNSM [391]. �
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Subsection READ
Reading Questions

1. What is the dimension of the vector space P6, the set of all polynomials of degree
6 or less?

2. How are the rank and nullity of a matrix related?

3. Explain why we might say that a nonsingular matrix has “full rank.”
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Subsection EXC
Exercises

C20 The archetypes listed below are matrices, or systems of equations with coefficient
matrices. For each, compute the nullity and rank of the matrix. This information is listed
for each archetype (along with the number of columns in the matrix, so as to illustrate
Theorem RPNC [391]), and notice how it could have been computed immediately after
the determination of the sets D and F associated with the reduced row-echelon form of
the matrix.

Archetype A [703]
Archetype B [708]
Archetype C [713]
Archetype D [717]/Archetype E [721]
Archetype F [725]
Archetype G [730]/Archetype H [734]
Archetype I [739]
Archetype J [744]
Archetype K [749]
Archetype L [753]
Contributed by Robert Beezer

C30 For the matrix A below, compute the dimension of the null space of A, dim (N (A)).

A =


2 −1 −3 11 9
1 2 1 −7 −3
3 1 −3 6 8
2 1 2 −5 −3


Contributed by Robert Beezer Solution [397]

C31 The set W below is a subspace of C4. Find the dimension of W .

W =

〈


2
−3
4
1

 ,


3
0
1
−2

 ,


−4
−3
2
5



〉

Contributed by Robert Beezer Solution [397]

M20 M22 is the vector space of 2 × 2 matrices. Let S22 denote the set of all 2 × 2
symmetric matrices. That is

S22 =
{

A ∈M22 | At = A
}

(a) Show that S22 is a subspace of M22.
(b) Exhibit a basis for S22 and prove that it has the required properties.
(c) What is the dimension of S22?
Contributed by Robert Beezer Solution [397]
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M21 A 2 × 2 matrix B is upper-triangular if [B]21 = 0. Let UT2 be the set of all
2× 2 upper-triangular matrices. Then UT2 is a subspace of the vector space of all 2× 2
matrices, M22 (you may assume this). Determine the dimension of UT2 providing all of
the necessary justifications for your answer.
Contributed by Robert Beezer Solution [398]
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Subsection SOL
Solutions

C30 Contributed by Robert Beezer Statement [395]
Row reduce A,

A
RREF−−−→


1 0 0 1 1

0 1 0 −3 −1

0 0 1 −2 −2
0 0 0 0 0


So r = 3 for this matrix. Then

dim (N (A)) = n (A) Definition NOM [389]

= (n (A) + r (A))− r (A)

= 5− r (A) Theorem RPNC [391]

= 5− 3 Theorem CRN [390]

= 2

We could also use Theorem BNS [162] and create a basis for N (A) with n−r = 5−3 = 2
vectors (because the solutions are described with 2 free variables) and arrive at the
dimension as the size of this basis.

C31 Contributed by Robert Beezer Statement [395]
We will appeal to Theorem BS [180] (or you could consider this an appeal to Theo-

rem BCS [270]). Put the three columnn vectors of this spanning set into a matrix as
columns and row-reduce.

2 3 −4
−3 0 −3
4 1 2
1 −2 5

 RREF−−−→


1 0 1

0 1 −2
0 0 0
0 0 0


The pivot columns are D = {1, 2} so we can “keep” the vectors corresponding to the
pivot columns and set

T =




2
−3
4
1

 ,


3
0
1
−2




and conclude that W = 〈T 〉 and T is linearly independent. In other words, T is a basis
with two vectors, so W has dimension 2.

M20 Contributed by Robert Beezer Statement [395]
(a) We will use the three criteria of Theorem TSS [331]. The zero vector of M22 is the
zero matrix, O (Definition ZM [210]), which is a symmetric matrix. So S22 is not empty,
since O ∈ S22.

Suppose that A and B are two matrices in S22. Then we know that At = A and
Bt = B. We want to know if A + B ∈ S22, so test A + B for membership,

(A + B)t = At + Bt Theorem TMA [212]
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= A + B A, B ∈ S22

So A + B is symmetric and qualifies for membership in S22.
Suppose that A ∈ S22 and α ∈ C. Is αA ∈ S22? We know that At = A. Now check

that,

αAt = αAt Theorem TMSM [212]

= αA A ∈ S22

So αA is also symmetric and qualifies for membership in S22.
With the three criteria of Theorem TSS [331] fulfilled, we see that S22 is a subspace

of M22.

(b) An arbitrary matrix from S22 can be written as

[
a b
b d

]
. We can express this

matrix as [
a b
b d

]
=

[
a 0
0 0

]
+

[
0 b
b 0

]
+

[
0 0
0 d

]
= a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ d

[
0 0
0 1

]
this equation says that the set

T =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
spans S22. Is it also linearly independent?

Write a relation of linear dependence on S,

O = a1

[
1 0
0 0

]
+ a2

[
0 1
1 0

]
+ a3

[
0 0
0 1

]
[
0 0
0 0

]
=

[
a1 a2

a2 a3

]
The equality of these two matrices (Definition ME [207]) tells us that a1 = a2 = a3 = 0,
and the only relation of linear dependence on T is trivial. So T is linearly independent,
and hence is a basis of S22.

(c) The basis T found in part (b) has size 3. So by Definition D [383], dim (S22) = 3.

M21 Contributed by Robert Beezer Statement [396]
A typical matrix from UT2 looks like [

a b
0 c

]
where a, b, c ∈ C are arbitrary scalars. Observing this we can then write[

a b
0 c

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
0 1

]
which says that

R =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]}
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is a spanning set for UT2 (Definition TSVS [354]). Is R is linearly independent? If so, it
is a basis for UT2. So consider a relation of linear dependence on R,

α1

[
1 0
0 0

]
+ α2

[
0 1
0 0

]
+ α3

[
0 0
0 1

]
= O =

[
0 0
0 0

]
From this equation, one rapidly arrives at the conclusion that α1 = α2 = α3 = 0. So R is
a linearly independent set (Definition LI [349]), and hence is a basis (Definition B [367])
for UT2. Now, we simply count up the size of the set R to see that the dimension of UT2

is dim (UT2) = 3.

Version 0.85



400 Section D Dimension

Version 0.85



Section PD Properties of Dimension 401

Section PD

Properties of Dimension

Once the dimension of a vector space is known, then the determination of whether or
not a set of vectors is linearly independent, or if it spans the vector space, can often be
much easier. In this section we will state a workhorse theorem and then apply it to the
column space and row space of a matrix. It will also help us describe a super-basis for
Cm.

Subsection GT
Goldilocks’ Theorem

We begin with a useful theorem that we will need later, and in the proof of the main the-
orem in this subsection. This theorem says that we can extend linearly independent sets,
one vector at a time, by adding vectors from outside the span of the linearly independent
set, all the while preserving the linear independence of the set.

Theorem ELIS
Extending Linearly Independent Sets
Suppose V is vector space and S is a linearly independent set of vectors from V . Suppose

w is a vector such that w 6∈ 〈S〉. Then the set S ′ = S ∪ {w} is linearly independent. �

Proof Suppose S = {v1, v2, v3, . . . , vm} and begin with a relation of linear dependence
on S ′,

a1v1 + a2v2 + a3v3 + · · ·+ amvm + am+1w = 0.

There are two cases to consider. First suppose that am+1 = 0. Then the relation of linear
dependence on S ′ becomes

a1v1 + a2v2 + a3v3 + · · ·+ amvm = 0.

and by the linear independence of the set S, we conclude that a1 = a2 = a3 = · · · =
am = 0. So all of the scalars in the relation of linear dependence on S ′ are zero.

In the second case, suppose that am+1 6= 0. Then the relation of linear dependence
on S ′ becomes

am+1w = −a1v1 − a2v2 − a3v3 − · · · − amvm

w = − a1

am+1

v1 −
a2

am+1

v2 −
a3

am+1

v3 − · · · −
am

am+1

vm

This equation expresses w as a linear combination of the vectors in S, contrary to the
assumption that w 6∈ 〈S〉, so this case leads to a contradiction.

The first case yielded only a trivial relation of linear dependence on S ′ and the second
case led to a contradiction. So S ′ is a linearly independent set since any relation of linear
dependence is trivial. �

In the story Goldilocks and the Three Bears, the young girl Goldilocks visits the
empty house of the three bears while out walking in the woods. One bowl of porridge is
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too hot, the other too cold, the third is just right. One chair is too hard, one too soft, the
third is just right. So it is with sets of vectors — some are too big (linearly dependent),
some are too small (they don’t span), and some are just right (bases). Here’s Goldilocks’
Theorem.

Theorem G
Goldilocks

Suppose that V is a vector space of dimension t. Let S = {v1, v2, v3, . . . , vm} be a
set of vectors from V . Then

1. If m > t, then S is linearly dependent.

2. If m < t, then S does not span V .

3. If m = t and S is linearly independent, then S spans V .

4. If m = t and S spans V , then S is linearly independent.

�

Proof Let B be a basis of V . Since dim (V ) = t, Definition B [367] and Theo-
rem BIS [387] imply that B is a linearly independent set of t vectors that spans V .

1. Suppose to the contrary that S is linearly independent. Then B is a smaller set of
vectors that spans V . This contradicts Theorem SSLD [383].

2. Suppose to the contrary that S does span V . Then B is a larger set of vectors that
is linearly independent. This contradicts Theorem SSLD [383].

3. Suppose to the contrary that S does not span V . Then we can choose a vector w
such that w ∈ V and w 6∈ 〈S〉. By Theorem ELIS [401], the set S ′ = S ∪ {w}
is again linearly independent. Then S ′ is a set of m + 1 = t + 1 vectors that are
linearly independent, while B is a set of t vectors that span V . This contradicts
Theorem SSLD [383].

4. Suppose to the contrary that S is linearly dependent. Then by Theorem DLDS [175]
(which can be upgraded, with no changes in the proof, to the setting of a general
vector space), there is a vector in S, say vk that is equal to a linear combination
of the other vectors in S. Let S ′ = S \ {vk}, the set of “other” vectors in S. Then
it is easy to show that V = 〈S〉 = 〈S ′〉. So S ′ is a set of m− 1 = t− 1 vectors that
spans V , while B is a set of t linearly independent vectors in V . This contradicts
Theorem SSLD [383].

�

There is a tension in the construction of basis. Make a set too big and you will end
up with relations of linear dependence among the vectors. Make a set too small and you
will not have enough raw material to span the entire vector space. Make a set just the
right size (the dimension) and you only need to have linear independence or spanning,
and you get the other property for free. These roughly-stated ideas are made precise by
Theorem G [402].

The structure and proof of this theorem also deserve comment. The hypotheses seem
innocuous. We presume we know the dimension of the vector space in hand, then we
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mostly just look at the size of the set S. From this we get big conclusions about span-
ning and linear independence. Each of the four proofs relies on ultimately contradicting
Theorem SSLD [383], so in a way we could think of this entire theorem as a corollary
of Theorem SSLD [383]. (See Technique LC [698].) The proofs of the third and fourth
parts parallel each other in style (add w, toss vk) and then turn on Theorem ELIS [401]
before contradicting Theorem SSLD [383].

Theorem G [402] is useful in both concrete examples and as a tool in other proofs.
We will use it often to bypass verifying linear independence or spanning.

Example BPR
Bases for Pn, reprised

In Example BP [368] we claimed that

B =
{
1, x, x2, x3, . . . , xn

}
C =

{
1, 1 + x, 1 + x + x2, 1 + x + x2 + x3, . . . , 1 + x + x2 + x3 + · · ·+ xn

}
.

were both bases for Pn (Example VSP [316]). Suppose we had first verified that B was
a basis, so we would then know that dim (Pn) = n + 1. The size of C is n + 1, the right
size to be a basis. We could then verify that C is linearly independent. We would not
have to make any special efforts to prove that C spans Pn, since Theorem G [402] would
allow us to conclude this property of C directly. Then we would be able to say that C is
a basis of Pn also. �

Example BDM22
Basis by dimension in M22

In Example DSM22 [387] we showed that

B =

{[
−2 1
1 0

]
,

[
−2 0
0 1

]}
is a basis for the subspace Z of M22 (Example VSM [315]) given by

Z =

{[
a b
c d

] ∣∣∣∣ 2a + b + 3c + 4d = 0, −a + 3b− 5c− d = 0

}
This tells us that dim (Z) = 2. In this example we will find another basis. We can
construct two new matrices in Z by forming linear combinations of the matrices in B.

2

[
−2 1
1 0

]
+ (−3)

[
−2 0
0 1

]
=

[
2 2
2 −3

]
3

[
−2 1
1 0

]
+ 1

[
−2 0
0 1

]
=

[
−8 3
3 1

]
Then the set

C =

{[
2 2
2 −3

]
,

[
−8 3
3 1

]}
has the right size to be a basis of Z. Let’s see if it is a linearly independent set. The
relation of linear dependence

a1

[
2 2
2 −3

]
+ a2

[
−8 3
3 1

]
= O
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[
2a1 − 8a2 2a1 + 3a2

2a1 + 3a2 −3a1 + a2

]
=

[
0 0
0 0

]
leads to the homogeneous system of equations whose coefficient matrix

2 −8
2 3
2 3
−3 1


row-reduces to 

1 0

0 1
0 0
0 0


So with a1 = a2 = 0 as the only solution, the set is linearly independent. Now we can
apply Theorem G [402] to see that C also spans Z and therefore is a second basis for Z.
�

Example SVP4
Sets of vectors in P4

In Example BSP4 [369] we showed that

B =
{
x− 2, x2 − 4x + 4, x3 − 6x2 + 12x− 8, x4 − 8x3 + 24x2 − 32x + 16

}
is a basis for W = {p(x) | p ∈ P4, p(2) = 0}. So dim (W ) = 4.

The set {
3x2 − 5x− 2, 2x2 − 7x + 6, x3 − 2x2 + x− 2

}
is a subset of W (check this) and it happens to be linearly independent (check this, too).
However, by Theorem G [402] it cannot span W .

The set{
3x2 − 5x− 2, 2x2 − 7x + 6, x3 − 2x2 + x− 2, −x4 + 2x3 + 5x2 − 10x, x4 − 16

}
is another subset of W (check this) and Theorem G [402] tells us that it must be linearly
dependent.

The set {
x− 2, x2 − 2x, x3 − 2x2, x4 − 2x3

}
is a third subset of W (check this) and is linearly independent (check this). Since it has
the right size to be a basis, and is linearly independent, Theorem G [402] tells us that it
also spans W , and therefore is a basis of W .

�

The final theorem of this subsection is an extremely powerful tool for establishing the
equality of two sets that are subspaces. Notice that the hypotheses include the equality
of two integers (dimensions) while the conclusion is the equality of two sets (subspaces).
It is the extra “structure” of a vector space and its dimension that makes possible this
huge leap from an integer equality to a set equality.
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Theorem EDYES
Equal Dimensions Yields Equal Subspaces

Suppose that U and V are subspaces of the vector space W , such that U ⊆ V and
dim (U) = dim (V ). Then U = V . �

Proof We give a proof by contradiction (Technique CD [690]). Suppose to the contrary
that U 6= V . Since U ⊆ V , there must be a vector v such that v ∈ V and v 6∈ U .
Let B = {u1, u2, u3, . . . , ut} be a basis for U . Then, by Theorem ELIS [401], the set
C = B ∪ {v} = {u1, u2, u3, . . . , ut, v} is a linearly independent set of t + 1 vectors in
V . However, by hypothesis, V has the same dimension as U (namely t) and therefore
Theorem G [402] says that C is too big to be linearly independent. This contradiction
shows that U = V . �

Subsection RT
Ranks and Transposes

We now prove one of the most surprising theorems about matrices. Notice the paucity
of hypotheses compared to the precision of the conclusion.

Theorem RMRT
Rank of a Matrix is the Rank of the Transpose

Suppose A is an m× n matrix. Then r (A) = r (At). �

Proof Suppose we row-reduce A to the matrix B in reduced row-echelon form, and B
has r non-zero rows. The quantity r tells us three things about B: the number of leading
1’s, the number of non-zero rows and the number of pivot columns. For this proof we
will be interested in the latter two.

Theorem BRS [277] and Theorem BCS [270] each has a conclusion that provides a
basis, for the row space and the column space, respectively. In each case, these bases
contain r vectors. This observation makes the following go.

r (A) = dim (C(A)) Definition ROM [389]

= r Theorem BCS [270]

= dim (R(A)) Theorem BRS [277]

= dim
(
C
(
At
))

Theorem CSRST [278]

= r
(
At
)

Definition ROM [389]

Jacob Linenthal helped with this proof. �

This says that the row space and the column space of a matrix have the same dimen-
sion, which should be very surprising. It does not say that column space and the row
space are identical. Indeed, if the matrix is not square, then the sizes (number of slots)
of the vectors in each space are different, so the sets are not even comparable.

It is not hard to construct by yourself examples of matrices that illustrate Theo-
rem RMRT [405], since it applies equally well to any matrix. Grab a matrix, row-reduce
it, count the nonzero rows or the leading 1’s. That’s the rank. Transpose the matrix, row-
reduce that, count the nonzero rows or the leading 1’s. That’s the rank of the transpose.
The theorem says the two will be equal. Here’s an example anyway.
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Example RRTI
Rank, rank of transpose, Archetype I

Archetype I [739] has a 4× 7 coefficient matrix which row-reduces to
1 4 0 0 2 1 −3

0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0


so the rank is 3. Row-reducing the transpose yields

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

demonstrating that the rank of the transpose is also 3. �

Subsection DFS
Dimension of Four Subspaces

That the rank of a matrix equals the rank of its transpose is a fundamental and surprising
result. However, applying Theorem FS [296] we can easily determine the dimension of
all four fundamental subspaces associated with a matrix.

Theorem DFS
Dimensions of Four Subspaces

Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced
row-echelon form with r nonzero rows. Then

1. dim (N (A)) = n− r

2. dim (C(A)) = r

3. dim (R(A)) = r

4. dim (L(A)) = m− r

�

Proof If A row-reduces to a matrix in reduced row-echelon form with r nonzero rows,
then the matrix C of extended echelon form (Definition EEF [293]) will be an r × n
matrix in reduced row-echelon form with no zero rows and r pivot columns (Theo-
rem PEEF [294]). Similarly, the matrix L of extended echelon form (Definition EEF [293])
will be an m− r ×m matrix in reduced row-echelon form with no zero rows and m− r
pivot columns (Theorem PEEF [294]).

dim (N (A)) = dim (N (C)) Theorem FS [296]
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= n− r Theorem BNS [162]

dim (C(A)) = dim (N (L)) Theorem FS [296]

= m− (m− r) Theorem BNS [162]

= r

dim (R(A)) = dim (R(C)) Theorem FS [296]

= r Theorem BRS [277]

dim (L(A)) = dim (R(L)) Theorem FS [296]

= m− r Theorem BRS [277]

�

There are many different ways to state and prove this result, and indeed, the equal-
ity of the dimensions of the column space and row space is just a slight expansion of
Theorem RMRT [405]. However, we have restricted our techniques to applying Theo-
rem FS [296] and then determining dimensions with bases provided by Theorem BNS [162]
and Theorem BRS [277]. This provides an appealing symmetry to the results and the
proof.

Subsection READ
Reading Questions

1. Why does Theorem G [402] have the title it does?

2. What is so surprising about Theorem RMRT [405]?

3. Row-reduce the matrix A to reduced row-echelon form. Without any further com-
putations, compute the dimensions of the four subspaces, N (A), C(A), R(A) and
L(A).

A =


1 −1 2 8 5
1 1 1 4 −1
0 2 −3 −8 −6
2 0 1 8 4
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Subsection EXC
Exercises

C10 Example SVP4 [404] leaves several details for the reader to check. Verify these
five claims.
Contributed by Robert Beezer

T15 Suppose that A is an m× n matrix and let min(m, n) denote the minimum of m
and n. Prove that r (A) ≤ min(m, n).
Contributed by Robert Beezer

T20 Suppose that A is an m × n matrix and b ∈ Cm. Prove that the linear system
LS(A, b) is consistent if and only if r (A) = r ([A | b]).
Contributed by Robert Beezer Solution [411]

T25 Suppose that V is a vector space with finite dimension. Let W be any subspace
of V . Prove that W has finite dimension.
Contributed by Robert Beezer

T60 Suppose that W is a vector space with dimension 5, and U and V are subspaces
of W , each of dimension 3. Prove that U ∩ V contains a non-zero vector. State a more
general result.
Contributed by Joe Riegsecker Solution [411]
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Subsection SOL
Solutions

T20 Contributed by Robert Beezer Statement [409]
(⇒) Suppose first that LS(A, b) is consistent. Then by Theorem CSCS [268], b ∈ C(A).
This means that C(A) = C([A | b]) and so it follows that r (A) = r ([A | b]).

(⇐) Adding a column to a matrix will only increase the size of its column space, so
in all cases, C(A) ⊆ C([A | b]). However, if we assume that r (A) = r ([A | b]), then by
Theorem EDYES [405] we conclude that C(A) = C([A | b]). Then b ∈ C([A | b]) = C(A)
so by Theorem CSCS [268], LS(A, b) is consistent.

T60 Contributed by Robert Beezer Statement [409]
Let {u1, u2, u3} and {v1, v2, v3} be bases for U and V (respectively). Then, the set
{u1, u2, u3, v1, v2, v3} is linearly dependent, since Theorem G [402] says we cannot have
6 linearly independent vectors in a vector space of dimension 5. So we can assert that
there is a non-trivial relation of linear dependence,

a1u1 + a2u2 + a3u3 + b1v1 + b2v2 + b3v3 = 0

where a1, a2, a3 and b1, b2, b3 are not all zero.
We can rearrange this equation as

a1u1 + a2u2 + a3u3 = −b1v1 − b2v2 − b3v3

This is an equality of two vectors, so we can give this common vector a name, say w,

w = a1u1 + a2u2 + a3u3 = −b1v1 − b2v2 − b3v3

This is the desired non-zero vector, as we will now show.
First, since w = a1u1 + a2u2 + a3u3, we can see that w ∈ U . Similarly, w =

−b1v1 − b2v2 − b3v3, so w ∈ V . This establishes that w ∈ U ∩ V .
Is w 6= 0? Suppose not, in other words, suppose w = 0. Then

0 = w = a1u1 + a2u2 + a3u3

Because {u1, u2, u3} is a basis for U , it is a linearly independent set and the relation of
linear dependence above means we must conclude that a1 = a2 = a3 = 0. By a similar
process, we would conclude that b1 = b2 = b3 = 0. But this is a contradiction since
a1, a2, a3, b1, b2, b3 were chosen so that some were nonzero. So w 6= 0.

How does this generalize? All we really needed was the original relation of linear
dependence that resulted because we had “too many” vectors in W . A more general
statement would be: Suppose that W is a vector space with dimension n, U is a subspace
of dimension p and V is a subspace of dimension q. If p + q > n, then U ∩ V contains a
non-zero vector.
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Chapter D: Determinants

The determinant is a function that takes a square matrix as an input and produces a
scalar as an output. So unlike a vector space, it is not an algebraic structure. However,
it has many beneficial properties for studying vector spaces, matrices and systems of
equations, so it is hard to ignore (though some have tried). While the properties of a
determinant can be very useful, they are also complicated to prove.

Section DM

Determinants of Matrices

First, a slight detour, as we introduce elementary matrices, which will bring us back to
the beginning of the course and our old friend, row operations.

Subsection EM
Elementary Matrices

Elementary matrices are very simple, as you might have suspected from their name.
Their purpose is to effect row operations (Definition RO [31]) on a matrix through matrix
multiplication (Definition MM [225]). Their definitions look more complicated than they
really are, so be sure to read ahead after you read the definition for some explanations
and an example.

Definition ELEM
Elementary Matrices

1. Ei,j is the square matrix of size n with

[Ei,j]k` =



0 k 6= i, k 6= j, ` 6= k

1 k 6= i, k 6= j, ` = k

0 k = i, ` 6= j

1 k = i, ` = j

0 k = j, ` 6= i

1 k = j, ` = i

413
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2. Ei (α), for α 6= 0, is the square matrix of size n with

[Ei (α)]k` =


0 k 6= i, ` 6= k

1 k 6= i, ` = k

α k = i, ` = i

3. Ei,j (α) is the square matrix of size n with

[Ei,j (α)]k` =



0 k 6= j, ` 6= k

1 k 6= j, ` = k

0 k = j, ` 6= i, ` 6= j

1 k = j, ` = j

α k = j, ` = i

(This definition contains Notation ELEM.)

4
Again, these matrices are not as complicated as they appear, since they are mostly

pertubations of the n×n identity matrix (Definition IM [80]). Ei,j is the identity matrix
with rows (or columns) i and j trading places, Ei (α) is the identity matrix where the
diagonal entry in row i and column i has been replaced by α, and Ei,j (α) is the identity
matrix where the entry in row j and column i has been replaced by α. (Yes, those
subscripts look backwards in the description of Ei,j (α)). Notice that our notation makes
no reference to the size of the elementary matrix, since this will always be apparent from
the context, or unimportant.

The raison d’être for elementary matrices is to “do” row operations on matrices with
matrix multiplication. So here is an example where we will both see some elementary
matrices and see how they can accomplish row operations.

Example EMRO
Elementary matrices and row operations
We will perform a sequence of row operations (Definition RO [31]) on the 3× 4 matrix

A, while also multiplying the matrix on the left by the appropriate 3 × 3 elementary
matrix.

A =

2 1 3 1
1 3 2 4
5 0 3 1



R1 ↔ R3 :

5 0 3 1
1 3 2 4
2 1 3 1

 E1,3 :

0 0 1
0 1 0
1 0 0

2 1 3 1
1 3 2 4
5 0 3 1

 =

5 0 3 1
1 3 2 4
2 1 3 1


2R2 :

5 0 3 1
2 6 4 8
2 1 3 1

 E2 (2) :

1 0 0
0 2 0
0 0 1

5 0 3 1
1 3 2 4
2 1 3 1

 =

5 0 3 1
2 6 4 8
2 1 3 1


2R3 + R1 :

9 2 9 3
2 6 4 8
2 1 3 1

 E3,1 (2) :

1 0 2
0 1 0
0 0 1

5 0 3 1
2 6 4 8
2 1 3 1

 =

9 2 9 3
2 6 4 8
2 1 3 1
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�

The next three theorem establishes that each elementary matrix effects a row opera-
tion via matrix multiplication.

Theorem EMDRO
Elementary Matrices Do Row Operations

Suppose that A is a matrix, and B is a matrix of the same size that is obtained from
A by a single row operation (Definition RO [31]).

1. If the row operation swaps rows i and j, then B = Ei,jA.

2. If the row operation multiplies row i by α, then B = Ei (α) A.

3. If the row operation multiplies row i by α and adds the result to row j, then
B = Ei,j (α) A.

�

Proof In each of the three conclusions, performing the row operation on A will create
the matrix B where only one or two rows will have changed. So we will establish the
equality of the matrix entries row by row, first for the unchanged rows, then for the
changed rows, showing in each case that the result of the matrix product is the same as
the result of the row operation. Here we go.

Row k of the product Ei,jA, where k 6= i, k 6= j, is unchanged from A,

[Ei,jA]k` =
n∑

p=1

[Ei,j]kp [A]p` Theorem EMP [227]

= [Ei,j]kk [A]k` +
n∑

p=1, p6=k

[Ei,j]kp [A]p`

= 1 [A]k` +
n∑

p=1, p6=k

0 [A]p` Definition ELEM [413]

= [A]k`

Row i of the product Ei,jA is row j of A,

[Ei,jA]i` =
n∑

p=1

[Ei,j]ip [A]p` Theorem EMP [227]

= [Ei,j]ij [A]j` +
n∑

p=1, p6=j

[Ei,j]ip [A]p`

= 1 [A]j` +
n∑

p=1, p6=j

0 [A]p` Definition ELEM [413]

= [A]j`

Row j of the product Ei,jA is row i of A,

[Ei,jA]j` =
n∑

p=1

[Ei,j]jp [A]p` Theorem EMP [227]
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= [Ei,j]ji [A]i` +
n∑

p=1, p6=i

[Ei,j]jp [A]p`

= 1 [A]i` +
n∑

p=1, p6=i

0 [A]p` Definition ELEM [413]

= [A]i`

So the matrix product Ei,jA is the same as the row operation that swaps rows i and j.
Row k of the product Ei (α) A, where k 6= i, is unchanged from A,

[Ei (α) A]k` =
n∑

p=1

[Ei (α)]kp [A]p` Theorem EMP [227]

= [Ei (α)]kk [A]k` +
n∑

p=1, p6=k

[Ei (α)]kp [A]p`

= 1 [A]k` +
n∑

p=1, p6=k

0 [A]p` Definition ELEM [413]

= [A]k`

Row i of the product Ei (α) A is α times row i of A,

[Ei (α) A]i` =
n∑

p=1

[Ei (α)]ip [A]p` Theorem EMP [227]

= [Ei (α)]ii [A]i` +
n∑

p=1, p6=i

[Ei (α)]ip [A]p`

= α [A]i` +
n∑

p=1, p6=i

0 [A]p` Definition ELEM [413]

= α [A]i`

So the matrix product Ei (α) A is the same as the row operation that swaps multiplies
row i by α.

Row k of the product Ei,j (α) A, where k 6= j, is unchanged from A,

[Ei,j (α) A]k` =
n∑

p=1

[Ei,j (α)]kp [A]p` Theorem EMP [227]

= [Ei,j (α)]kk [A]k` +
n∑

p=1, p6=k

[Ei,j (α)]kp [A]p`

= 1 [A]k` +
n∑

p=1, p6=k

0 [A]p` Definition ELEM [413]

= [A]k`

Row j of the product Ei,j (α) A, is α times row i of A and then added to row j of A,

[Ei,j (α) A]j` =
n∑

p=1

[Ei,j (α)]jp [A]p` Theorem EMP [227]
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= [Ei,j (α)]jj [A]j` +

[Ei,j (α)]ji [A]i` +
n∑

p=1, p6=j,i

[Ei,j (α)]jp [A]p`

= 1 [A]j` + α [A]i` +
n∑

p=1, p6=j,i

0 [A]p` Definition ELEM [413]

= [A]j` + α [A]i`

So the matrix product Ei,j (α) A is the same as the row operation that multiplies row i
by α and adds the result to row j. �

Later in this section we will need two facts about elementary matrices.

Theorem EMN
Elementary Matrices are Nonsingular

If E is an elementary matrix, then E is nonsingular. �

Proof We can row-reduce each elementary matrix to the identity matrix. Given an
elementary matrix of the form Ei,j, perform the row operation that swaps row j with
row i. Given an elementary matrix of the form Ei (α), with α 6= 0, perform the row
operation that multiplies row i by 1/α. Given an elementary matrix of the form Ei,j (α),
with α 6= 0, perform the row operation that multiplies row i by −α and adds it to row
j. In each case, the result of the single row operation is the identity matrix. So each
elementary matrix is row-equivalent to the identity matrix, and by Theorem NSRRI [81]
is nonsingular.

�

Notice that we have now made use of the nonzero restriction on α in the definition of
Ei (α). One more key property of elementary matrices.

Theorem NMPEM
Nonsingular Matrices are Products of Elementary Matrices

Suppose that A is a nonsingular matrix. Then there exists elementary matrices
E1, E2, E3, . . . , Et so that A = E1E2E3 . . . Et. �

Proof Since A is nonsingular, it is row-equivalent to the identity matrix by Theo-
rem NSRRI [81], so there is a sequence of t row operations that converts I to A. For
each of these row operations, form the associated elementary matrix from Theorem EM-
DRO [415] and denote these matrices by E1, E2, E3, . . . , Et. Applying the first row
operation to I yields the matrix E1I. The second row operation yields E2(E1I), and the
third row operation creates E3E2E1I. The result of the full sequence of t row operations
will yield A, so

A = Et . . . E3E2E1I = Et . . . E3E2E1

Other than the cosmetic matter of re-indexing these elementary matrices in the opposite
order, this is the desired result. �
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Subsection DD
Definition of the Determinant

We’ll now turn to the definition of a determinant and do some sample computations.
The definition of the determinant function is recursive, that is, the determinant of a
large matrix is defined in terms of the determinant of smaller matrices. To this end, we
will make a few definitions.

Definition SM
SubMatrix
Suppose that A is an m×n matrix. Then the submatrix A (i|j) is the (m−1)×(n−1)

matrix obtained from A by removing row i and column j.
(This definition contains Notation SM.) 4

Example SS
Some submatrices

For the matrix

A =

1 −2 3 9
4 −2 0 1
3 5 2 1


we have the submatrices

A (2|3) =

[
1 −2 9
3 5 1

]
A (3|1) =

[
−2 3 9
−2 0 1

]
�

Definition DM
Determinant of a Matrix

Suppose A is a square matrix. Then its determinant, det (A) = |A|, is an element of
C defined recursively by:

If A is a 1× 1 matrix, then det (A) = [A]11.

If A is a matrix of size n with n ≥ 2, then

det (A) = [A]11 det (A (1|1))−[A]12 det (A (1|2))+[A]13 det (A (1|3))−· · ·+(−1)n+1 [A]1n det (A (1|n))

(This definition contains Notation DM.) 4

So to compute the determinant of a 5× 5 matrix we must build 5 submatrices, each
of size 4. To compute the determinants of each the 4 × 4 matrices we need to create 4
submatrices each, these now of size 3 and so on. To compute the determinant of a 10×10
matrix would require computing the determinant of 10! = 10×9×8×7×6×5×4×3×2 =
3, 628, 800 1× 1 matrices. Fortunately there are better ways. However this does suggest
an excellent computer programming exercise to write a recursive procedure to compute
a determinant.

Let’s compute the determinant of a reasonable sized matrix by hand.
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Example D33M
Determinant of a 3× 3 matrix

Suppose that we have the 3× 3 matrix

A =

 3 2 −1
4 1 6
−3 −1 2


Then

det (A) = |A| =

∣∣∣∣∣∣
3 2 −1
4 1 6
−3 −1 2

∣∣∣∣∣∣
= 3

∣∣∣∣ 1 6
−1 2

∣∣∣∣− 2

∣∣∣∣ 4 6
−3 2

∣∣∣∣+ (−1)

∣∣∣∣ 4 1
−3 −1

∣∣∣∣
= 3

(
1
∣∣2∣∣− 6

∣∣−1
∣∣)− 2

(
4
∣∣2∣∣− 6

∣∣−3
∣∣)− (4 ∣∣−1

∣∣− 1
∣∣−3

∣∣)
= 3 (1(2)− 6(−1))− 2 (4(2)− 6(−3))− (4(−1)− 1(−3))

= 24− 52 + 1

= −27

�

In practice it is a bit silly to decompose a 2 × 2 matrix down into a couple of 1 × 1
matrices and then compute the exceedingly easy determinant of these puny matrices. So
here is a simple theorem.

Theorem DMST
Determinant of Matrices of Size Two

Suppose that A =

[
a b
c d

]
. Then det (A) = ad− bc �

Proof Applying Definition DM [418],∣∣∣∣a b
c d

∣∣∣∣ = a
∣∣d∣∣− b

∣∣c∣∣ = ad− bc

�

Do you recall seeing the expression ad− bc before? (Hint: Theorem TTMI [242])

Subsection CD
Computing Determinants

There are a variety of ways to compute the determinant. We will establish first that we
can choose to mimic our definition of the determinant, but by using matrix entries and
submatrices based on a row other than the first one.

Theorem DER
Determinant Expansion about Rows

Suppose that A is a square matrix of size n. Then

det (A) = (−1)i+1 [A]i1 det (A (i|1)) + (−1)i+2 [A]i2 det (A (i|2))
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+ (−1)i+3 [A]i3 det (A (i|3)) + · · ·+ (−1)i+n [A]in det (A (i|n)) 1 ≤ i ≤ n

which is known as expansion about row i. �

Proof Given the recursive definition of the determinant, it should be no surprise that
we will use induction for this proof (Technique I [695]). When n = 1, there is nothing
to prove since there is but one row. When n = 2, we just examine expansion about the
second row,

(−1)2+1 [A]21 det (A (2|1)) + (−1)2+2 [A]22 det (A (2|2))

= − [A]21 [A]12 + [A]22 [A]11 Definition DM [418]

= [A]11 [A]22 − [A]12 [A]21
= det (A) Theorem DMST [419]

So the theorem is true for matrices of size n = 1 and n = 2. Now assume the result is
true for all matrices of size n−1 as we derive an expression for expansion about row i for
a matrix of size n. We will abuse our notation for a submatrix slightly, so A (i1, i2|j1, j2)
will denote the matrix formed by removing rows i1 and i2, along with removing columns
j1 and j2. Also, as we take a determinant of a submatrix, we will need to “jump up” the
index of summation partway through as we “skip over” a missing column. To do this
smoothly we will set

ε`j =

{
0 ` < j

1 ` > j

Now,

det (A) =
n∑

j=1

(−1)1+j [A]1j det (A (1|j)) Definition DM [418]

=
n∑

j=1

(−1)1+j [A]1j

∑
1≤`≤n
6̀=j

(−1)i−1+`−ε`j [A]i` det (A (1, i|j, `)) Induction, row i

=
∑

1≤j≤n
1≤`≤n

j 6=`

(−1)j+i+`−ε`j [A]1j [A]i` det (A (1, i|j, `))

=
n∑

`=1

(−1)i+` [A]i`
∑

1≤j≤n
j 6=`

(−1)j−ε`j [A]1j det (A (1, i|j, `))

=
n∑

`=1

(−1)i+` [A]i`
∑

1≤j≤n
j 6=`

(−1)ε`j+j [A]1j det (A (i, 1|`, j)) 2ε`j is even

=
n∑

`=1

(−1)i+` [A]i` det (A (i|`)) Definition DM [418]

�

We can also obtain a formula that computes a determinant by expansion about a col-
umn, but this will be simpler if we first prove a result about the interplay of determinants
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and transposes. Notice how the following proof makes use of the ability to compute a
determinant by expanding about any row.

Theorem DT
Determinant of the Transpose

Suppose that A is a square matrix. Then det (At) = det (A). �

Proof As before, with a recursive definition, a proof by induction will be natural
(Technique I [695]). For the base case, a square matrix of size 1 is symmetric, so A = At,
and the determinants will be equal. Now assume the theorem is true for all square
matrices of size n− 1 and consider the determinant of a matrix of size n.

det
(
At
)

=
1

n

n∑
i=1

det
(
At
)

=
1

n

n∑
i=1

n∑
j=1

(−1)i+j
[
At
]
ij

det
(
At (i|j)

)
Theorem DER [419]

=
1

n

n∑
i=1

n∑
j=1

(−1)i+j [A]ji det (A (j|i)) Definition TM [210]

=
1

n

n∑
j=1

n∑
i=1

(−1)j+i [A]ji det (A (j|i)) Switch order of summation

=
1

n

n∑
j=1

det (A) Theorem DER [419]

= det (A)

�

Now we can easily get the result that a determinant can be computed by expansion
about any column as well.

Theorem DEC
Determinant Expansion about Columns

Suppose that A is a square matrix of size n. Then

det (A) = (−1)1+j [A]1j det (A (1|j)) + (−1)2+j [A]2j det (A (2|j))
+ (−1)3+j [A]3j det (A (3|j)) + · · ·+ (−1)n+j [A]nj det (A (n|j)) 1 ≤ j ≤ n

which is known as expansion about column j. �

Proof

det (A) = det
(
At
)

Theorem DT [421]

=
n∑

j=1

[
At
]
ji

det
(
At (j|i)

)
Theorem DER [419]

=
n∑

j=1

[A]ij det (A (i|j)) Definition TM [210]
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�

That the determinant of an n × n matrix can be computed in 2n different (albeit
similar) ways is nothing short of remarkable. For the doubters among us, we will do an
example, computing a 4× 4 matrix in two different ways.

Example TCSD
Two computations, same determinant

Let

A =


−2 3 0 1
9 −2 0 1
1 3 −2 −1
4 1 2 6


Then expanding about the fourth row (Theorem DER [419] with i = 4) yields,

|A| = (4)(−1)4+1

∣∣∣∣∣∣
3 0 1
−2 0 1
3 −2 −1

∣∣∣∣∣∣+ (1)(−1)4+2

∣∣∣∣∣∣
−2 0 1
9 0 1
1 −2 −1

∣∣∣∣∣∣
+ (2)(−1)4+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
1 3 −1

∣∣∣∣∣∣+ (6)(−1)4+4

∣∣∣∣∣∣
−2 3 0
9 −2 0
1 3 −2

∣∣∣∣∣∣
= (−4)(10) + (1)(−22) + (−2)(61) + 6(46) = 92

while expanding about column 3 (Theorem DEC [421] with j = 3) gives

|A| = (0)(−1)1+3

∣∣∣∣∣∣
9 −2 1
1 3 −1
4 1 6

∣∣∣∣∣∣+ (0)(−1)2+3

∣∣∣∣∣∣
−2 3 1
1 3 −1
4 1 6

∣∣∣∣∣∣+
(−2)(−1)3+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
4 1 6

∣∣∣∣∣∣+ (2)(−1)4+3

∣∣∣∣∣∣
−2 3 1
9 −2 1
1 3 −1

∣∣∣∣∣∣
= 0 + 0 + (−2)(−107) + (−2)(61) = 92

Notice how much easier the second computation was. By choosing to expand about the
third column, we have two entries that are zero, so two 3× 3 determinants need not be
computed at all! �

When a matrix has all zeros above (or below) the diagonal, exploiting the zeros by
expanding about the proper row or column makes computing a determinant insanely
easy.

Example DUTM
Determinant of an upper-triangular matrix

Suppose that

T =


2 3 −1 3 3
0 −1 5 2 −1
0 0 3 9 2
0 0 0 −1 3
0 0 0 0 5
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We will compute the determinant of this 5 × 5 matrix by consistently expanding about
the first column for each submatrix that arises and does not have a zero entry multiplying
it.

det (T ) =

∣∣∣∣∣∣∣∣∣∣
2 3 −1 3 3
0 −1 5 2 −1
0 0 3 9 2
0 0 0 −1 3
0 0 0 0 5

∣∣∣∣∣∣∣∣∣∣
= 2(−1)1+1

∣∣∣∣∣∣∣∣
−1 5 2 −1
0 3 9 2
0 0 −1 3
0 0 0 5

∣∣∣∣∣∣∣∣
= 2(−1)(−1)1+1

∣∣∣∣∣∣
3 9 2
0 −1 3
0 0 5

∣∣∣∣∣∣
= 2(−1)(3)(−1)1+1

∣∣∣∣−1 3
0 5

∣∣∣∣
= 2(−1)(3)(−1)(−1)1+1

∣∣5∣∣
= 2(−1)(3)(−1)(5) = 30

�

If you consult other texts in your study of determinants, you may run into the terms
“minor” and “cofactor,” especially in a discussion centered on expansion about rows and
columns. We’ve chosen not to make these definitions formally since we’ve been able to
get along without them. However, informally, a minor is a determinant of a submatrix,
specifically det (A (i|j)) and is usually referenced as the minor of [A]ij. A cofactor is a

signed minor, specifically the cofactor of [A]ij is (−1)i+j det (A (i|j)).

Subsection READ
Reading Questions

1. Construct the elementary matrix that will effect the row operation −6R2 + R3 on
a 4× 7 matrix.

2. Compute the determinant of the matrix2 3 −1
3 8 2
4 −1 −3


3. Compute the determinant of the matrix

3 9 −2 4 2
0 1 4 −2 7
0 0 −2 5 2
0 0 0 −1 6
0 0 0 0 4


Version 0.85



424 Section DM Determinants of Matrices

Version 0.85



Subsection DM.EXC Exercises 425

Subsection EXC
Exercises

C24 Doing the computations by hand, find the determinant of the matrix below.−2 3 −2
−4 −2 1
2 4 2


Contributed by Robert Beezer Solution [427]

C25 Doing the computations by hand, find the determinant of the matrix below.3 −1 4
2 5 1
2 0 6


Contributed by Robert Beezer Solution [427]

C26 Doing the computations by hand, find the determinant of the matrix A.

A =


2 0 3 2
5 1 2 4
3 0 1 2
5 3 2 1


Contributed by Robert Beezer Solution [427]
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Subsection SOL
Solutions

C24 Contributed by Robert Beezer Statement [425]
We’ll expand about the first row since there are no zeros to exploit,∣∣∣∣∣∣
−2 3 −2
−4 −2 1
2 4 2

∣∣∣∣∣∣ = (−2)

∣∣∣∣−2 1
4 2

∣∣∣∣+ (−1)(3)

∣∣∣∣−4 1
2 2

∣∣∣∣+ (−2)

∣∣∣∣−4 −2
2 4

∣∣∣∣
= (−2)((−2)(2)− 1(4)) + (−3)((−4)(2)− 1(2)) + (−2)((−4)(4)− (−2)(2))

= (−2)(−8) + (−3)(−10) + (−2)(−12) = 70

C25 Contributed by Robert Beezer Statement [425]
We can expand about any row or column, so the zero entry in the middle of the last

row is attractive. Let’s expand about column 2. By Theorem DER [419] and The-
orem DEC [421] you will get the same result by expanding about a different row or
column. We will use Theorem DMST [419] twice.∣∣∣∣∣∣

3 −1 4
2 5 1
2 0 6

∣∣∣∣∣∣ = (−1)(−1)1+2

∣∣∣∣2 1
2 6

∣∣∣∣+ (5)(−1)2+2

∣∣∣∣3 4
2 6

∣∣∣∣+ (0)(−1)3+2

∣∣∣∣3 4
2 1

∣∣∣∣
= (1)(10) + (5)(10) + 0 = 60

C26 Contributed by Robert Beezer Statement [425]
With two zeros in column 2, we choose to expand about that column (Theorem DEC [421]),

det (A) =

∣∣∣∣∣∣∣∣
2 0 3 2
5 1 2 4
3 0 1 2
5 3 2 1

∣∣∣∣∣∣∣∣
= 0(−1)

∣∣∣∣∣∣
5 2 4
3 1 2
5 2 1

∣∣∣∣∣∣+ 1(1)

∣∣∣∣∣∣
2 3 2
3 1 2
5 2 1

∣∣∣∣∣∣+ 0(−1)

∣∣∣∣∣∣
2 3 2
5 2 4
5 2 1

∣∣∣∣∣∣+ 3(1)

∣∣∣∣∣∣
2 3 2
5 2 4
3 1 2

∣∣∣∣∣∣
= (1) (2(1(1)− 2(2))− 3(3(1)− 5(2)) + 2(3(2)− 5(1))) +

(3) (2(2(2)− 4(1))− 3(5(2)− 4(3)) + 2(5(1)− 3(2)))

= (−6 + 21 + 2) + (3)(0 + 6− 2) = 29

Version 0.85



428 Section DM Determinants of Matrices

Version 0.85



Section PDM Properties of Determinants of Matrices 429

Section PDM

Properties of Determinants of Matrices

We have seen how to compute the determinant of a matrix, and the incredible fact that
we can perform expansion about any row or column to make this computation. In this
largely theoretical section, we will state and prove several more intriguing properties
about determinants. Our main goal will be the two results in Theorem SMZD [436] and
Theorem DRMM [438], but more specifically, we will see how the value of a determinant
will allow us to gain insight into the various properties of a square matrix.

Subsection DRO
Determinants and Row Operations

We start easy with a straightforward theorem whose proof presages the style of subsequent
proofs in this subsection.

Theorem DZRC
Determinant with Zero Row or Column

Suppose that A is a square matrix with a row where every entry is zero, or a column
where every entry is zero. Then det (A) = 0. �

Proof Suppose that A is a square matrix of size n and row i has every entry equal to
zero. We compute det (A) via expansion about row i.

det (A) =
n∑

j=1

(−1)i+j [A]ij det (A (i|j)) Theorem DER [419]

=
n∑

j=1

(−1)i+j 0 det (A (i|j)) Row i is zeros

=
n∑

j=1

0 = 0

The proof for the case of a zero column is entirely similar, or could be derived from an
application of Theorem DT [421] employing the transpose of the matrix. �

Theorem DRCS
Determinant for Row or Column Swap

Suppose that A is a square matrix. Let B be the square matrix obtained from A by
interchanging the location of two rows, or interchanging the location of two columns.
Then det (B) = − det (A). �

Proof Begin with the special case where A is a square matrix of size n and we form B
by swapping adjacent rows i and i+1 for some 1 ≤ i ≤ n−1. Notice that the assumption
about swapping adjacent rows means that B (i + 1|j) = A (i|j) for all 1 ≤ j ≤ n, and

Version 0.85



430 Section PDM Properties of Determinants of Matrices

[B]i+1,j = [A]ij for all 1 ≤ j ≤ n. We compute det (B) via expansion about row i + 1.

det (B) =
n∑

j=1

(−1)(i+1)+j [B]i+1,j det (B (i + 1|j)) Theorem DER [419]

=
n∑

j=1

(−1)(i+1)+j [A]ij det (A (i|j)) Hypothesis

=
n∑

j=1

(−1)1(−1)i+j [A]ij det (A (i|j))

= (−1)
n∑

j=1

(−1)i+j [A]ij det (A (i|j))

= − det (A) Theorem DER [419]

So the result holds for the special case where we swap adjacent rows of the matrix. As
any computer scientist knows, we can accomplish any rearrangement of an ordered list
by swapping adjacent elements. This principle can be demonstrated by näıve sorting
algorithms such as “bubble sort.” In any event, we don’t need to discuss every possible
reordering, we just need to consider a swap of two rows, say rows s and t with 1 ≤ s <
t ≤ n.

Begin with row s, and repeatedly swap it with each row just below it, including row
t and stopping there. This will total t − s swaps. Now swap the former row t, which
currently lives in row t − 1, with each row above it, stopping when it becomes row s.
This will total another t − s − 1 swaps. In this way, we create B through a sequence
of 2(t− s)− 1 swaps of adjacent rows, each of which adjusts det (A) by a multiplicative
factor of −1. So

det (B) = (−1)2(t−s)−1 det (A) =
(
(−1)2

)t−s
(−1)−1 det (A) = − det (A)

as desired.
The proof for the case of swapping two columns is entirely similar, or could be derived

from an application of Theorem DT [421] employing the transpose of the matrix. �

So Theorem DRCS [429] tells us the effect of the first row operation (Definition RO [31])
on the determinant of a matrix. Here’s the effect of the second row operation.

Theorem DRCM
Determinant for Row or Column Multiples

Suppose that A is a square matrix. Let B be the square matrix obtained from A by
multiplying a single row by the scalar α, or by multiplying a single column by the scalar
α. Then det (B) = α det (A). �

Proof Suppose that A is a square matrix of size n and we form the square matrix B
by multiplying each entry of row i of A by α. Notice that the other rows of A and B are
equal, so A (i|j) = B (i|j), for all 1 ≤ j ≤ n. We compute det (B) via expansion about
row i.

det (B) =
n∑

j=1

(−1)i+j [B]ij det (B (i|j)) Theorem DER [419]
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=
n∑

j=1

(−1)i+j [B]ij det (A (i|j)) Hypothesis

=
n∑

j=1

(−1)i+jα [A]ij det (A (i|j)) Hypothesis

= α
n∑

j=1

(−1)i+j [A]ij det (A (i|j))

= α det (A) Theorem DER [419]

The proof for the case of a multiple of a column is entirely similar, or could be derived
from an application of Theorem DT [421] employing the transpose of the matrix. �

Let’s go for understanding the effect of all three row operations. But first we need an
intermediate result, but it is an easy one.

Theorem DERC
Determinant with Equal Rows or Columns

Suppose that A is a square matrix with two equal rows, or two equal columns. Then
det (A) = 0. �

Proof Suppose that A is a square matrix of size n where the two rows s and t are
equal. Form the matrix B by swapping rows r and s. Notice that as a consequence of
our hypothesis, A = B. Then

det (A) =
1

2
(det (A) + det (A))

=
1

2
(det (A)− det (B)) Theorem DRCS [429]

=
1

2
(det (A)− det (A)) Hypothesis, A = B

=
1

2
(0) = 0

The proof for the case of two equal columns is entirely similar, or could be derived from
an application of Theorem DT [421] employing the transpose of the matrix. �

Now explain the third row operation. Here we go.

Theorem DRCMA
Determinant for Row or Column Multiples and Addition

Suppose that A is a square matrix. Let B be the square matrix obtained from A by
multiplying a row by the scalar α and then adding it to another row, or by multiplying a
column by the scalar α and then adding it to another column. Then det (B) = det (A).
�

Proof Suppose that A is a square matrix of size n. Form the matrix B by multiplying
row s by α and adding it to row t. Let C be the auxiliary matrix where replace row t of
A by row s of A. Notice that A (t|j) = B (t|j) = C (t|j) for all 1 ≤ j ≤ n. We compute
the determinant of B by expansion about row t.

det (B) =
n∑

j=1

(−1)t+j [B]tj det (B (t|j)) Theorem DER [419]
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=
n∑

j=1

(−1)t+j
(
α [A]sj + [A]tj

)
det (B (s|j)) Hypothesis

=
n∑

j=1

(−1)t+jα [A]sj det (B (t|j))

+
n∑

j=1

(−1)t+j [A]tj det (B (t|j))

= α
n∑

j=1

(−1)t+j [A]sj det (B (t|j))

+
n∑

j=1

(−1)t+j [A]tj det (B (t|j))

= α
n∑

j=1

(−1)t+j [C]tj det (C (t|j))

+
n∑

j=1

(−1)t+j [A]tj det (A (t|j))

= α det (C) + det (A) Theorem DER [419]

= α 0 + det (A) = det (A) Theorem DERC [431]

The proof for the case of adding a multiple of a column is entirely similar, or could be
derived from an application of Theorem DT [421] employing the transpose of the matrix.
�

Is this what you expected? We could argue that the third row operation is the most
popular, and yet it has no effect whatsoever on the determinant of a matrix! We can
exploit this, along with our understanding of the other two row operations, to provide
another approach to computing a determinant. We’ll explain this in the context of an
example.

Example DRO
Determinant by row operations

Suppose we desire the determinant of the 4× 4 matrix

A =


2 0 2 3
1 3 −1 1
−1 1 −1 2
3 5 4 0


We will perform a sequence of row operations on this matrix, shooting for an upper-
triangular matrix, whose determinant will be simply the product of its diagonal en-
tries. For each row operation, we will track the effect on the determinant via Theo-
rem DRCS [429], Theorem DRCM [430], Theorem DRCMA [431].

R1↔R2−−−−→ A1 =


1 3 −1 1
2 0 2 3
−1 1 −1 2
3 5 4 0

 det (A) = − det (A1) Theorem DRCS [429]
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−2R1+R2−−−−−→ A2 =


1 3 −1 1
0 −6 4 1
−1 1 −1 2
3 5 4 0

 = − det (A2) Theorem DRCMA [431]

1R1+R3−−−−→ A3 =


1 3 −1 1
0 −6 4 1
0 4 −2 3
3 5 4 0

 = − det (A3) Theorem DRCMA [431]

−3R1+R4−−−−−→ A4 =


1 3 −1 1
0 −6 4 1
0 4 −2 3
0 −4 7 −3

 = − det (A4) Theorem DRCMA [431]

1R3+R2−−−−→ A5 =


1 3 −1 1
0 −2 2 4
0 4 −2 3
0 −4 7 −3

 = − det (A5) Theorem DRCMA [431]

− 1
2
R2−−−→ A6 =


1 3 −1 1
0 1 −1 −2
0 4 −2 3
0 −4 7 −3

 = 2 det (A6) Theorem DRCM [430]

−4R2+R3−−−−−→ A7 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 −4 7 −3

 = 2 det (A7) Theorem DRCMA [431]

4R2+R4−−−−→ A8 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 0 3 −11

 = 2 det (A8) Theorem DRCMA [431]

−1R3+R4−−−−−→ A9 =


1 3 −1 1
0 1 −1 −2
0 0 2 11
0 0 1 −22

 = 2 det (A9) Theorem DRCMA [431]

−2R4+R3−−−−−→ A10 =


1 3 −1 1
0 1 −1 −2
0 0 0 55
0 0 1 −22

 = 2 det (A10) Theorem DRCMA [431]

R3↔R4−−−−→ A11 =


1 3 −1 1
0 1 −1 −2
0 0 1 −22
0 0 0 55

 = −2 det (A11) Theorem DRCS [429]

1
55

R4−−−→ A12 =


1 3 −1 1
0 1 −1 −2
0 0 1 −22
0 0 0 1

 = −110 det (A12) Theorem DRCM [430]
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The matrix A12 is upper-triangular, so expansion about the first column (repeatedly) will
result in det (A12) = (1)(1)(1)(1) = 1 (see Example DUTM [422]) and thus, det (A) =
−110(1) = −110.

Notice that our sequence of row operations was somewhat ad hoc, such as the trans-
formation to A5. We could have been even more methodical, and strictly followed the
process that converts a matrix to reduced row-echelon form (Theorem REMEF [35]),
eventually achieving the same numerical result with a final matrix that equaled the 4×4
identity matrix. Notice too that we could have stopped with A8, since at this point
we could compute det (A8) by two expansions about first columns, followed by a simple
determinant of a 2× 2 matrix (Theorem DMST [419]).

The beauty of this approach is that computationally we should already have written
a procedure to convert matrices to reduced-row echelon form, so all we need to do is
track the multiplicative changes to the determinant as the algorithm procedes. Further,
for a square matrix of size n this approach requires on the order of n3 multiplications,
while a recursive application of expansion about a row or column (Theorem DER [419],
Theorem DEC [421]) will require n! multiplications. So even for very small matrices, a
computational approach utilizing row operations will have superior run-time. Tracking,
and controlling, the effects of round-off errors is another story, best saved for a numerical
linear algebra course. �

Subsection DROEM
Determinants, Row Operations, Elementary Matrices

As a final preparation for our two most important theorems about determinants, we prove
a handful of facts about the interplay of row operations and matrix multiplication with
elementary matrices with regard to the determinant. But first, a simple, but crucial, fact
about the identity matrix.

Theorem DIM
Determinant of the Identity Matrix

For every n ≥ 1, det (In) = 1. �

Proof It may be overkill, but this is a good situation to run through a proof by induction
on n (Technique I [695]). Is the result true when n = 1? Yes,

det (I1) = [I1]11 Definition DM [418]

= 1 Definition IM [80]

Now assume the theorem is true for the identity matrix of size n− 1 and investigate the
determinant of the identity matrix of size n with expansion about row 1,

det (In) =
n∑

j=1

(−1)1+j [In]1j det (In (1|j)) Definition DM [418]

= (−1)1+1 [In]11 det (In (1|1))

+
n∑

j=2

(−1)1+j [In]1j det (In (1|j))
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= 1 det (In−1) +
n∑

j=2

(−1)1+j 0 det (In (1|j)) Definition IM [80]

= 1(1) +
n∑

j=2

0 = 1 Induction Hypothesis

�

Theorem DEM
Determinants of Elementary Matrices

For the three possible versions of an elementary matrix (Definition ELEM [413]) we
have the determinants,

1. det (Ei,j) = −1

2. det (Ei (α)) = α

3. det (Ei,j (α)) = 1

�

Proof Swapping rows i and j of the identity matrix will create Ei,j (Definition ELEM [413]),
so

det (Ei,j) = − det (In) Theorem DRCS [429]

= −1 Theorem DIM [434]

Multiplying row i of the identity matrix by α will create Ei (α) (Definition ELEM [413]),
so

det (Ei (α)) = α det (In) Theorem DRCM [430]

= α(1) = α Theorem DIM [434]

Multiplying row i of the identity matrix by α and adding to row j will create Ei (α) j
(Definition ELEM [413]), so

det (Ei (α) j) = det (In) Theorem DRCMA [431]

= 1 Theorem DIM [434]

�

Theorem DEMMM
Determinants, Elementary Matrices, Matrix Multiplication

Suppose that A is a square matrix of size n and E is any elementary matrix of size n.
Then

det (EA) = det (E) det (A)
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�

Proof The proof procedes in three parts, one for each type of elementary matrix, with
each part very similar to the other two. First, let B be the matrix obtained from A by
swapping rows i and j,

det (Ei,jA) = det (B) Theorem EMDRO [415]

= − det (A) Theorem DRCS [429]

= det (Ei,j) det (A) Theorem DEM [435]

Second, let B be the matrix obtained from A by multiplying row i by α,

det (Ei (α) A) = det (B) Theorem EMDRO [415]

= α det (A) Theorem DRCM [430]

= det (Ei (α)) det (A) Theorem DEM [435]

Third, let B be the matrix obtained from A by multiplying row i by α and adding to
row j,

det (Ei,j (α) A) = det (B) Theorem EMDRO [415]

= det (A) Theorem DRCMA [431]

= det (Ei,j (α)) det (A) Theorem DEM [435]

Since the desired result holds for each variety of elementary matrix individually, we are
done. �

Subsection DNMMM
Determinants, Nonsingular Matrices, Matrix Multiplication

If you asked someone with substantial experience working with matrices about the value
of the determinant, they’d be likely to quote the following theorem as the first thing to
come to mind.

Theorem SMZD
Singular Matrices have Zero Determinants

Let A be a square matrix. Then A is singular if and only if det (A) = 0. �

Proof (⇒) Suppose that A is a singular matrix of size n. Then A is row-equivalent
to a square matrix B in reduced row-echelon form (Theorem REMEF [35]). Since A is
singular, the matrix B is not the identity matrix (Theorem NSRRI [81]). Therefore, the
number of pivot columns is strictly less than n, i.e. r < n, and so B has at least one row
of all zeros.

There is a sequence of row operations R1, R2, R3, . . . , Rs that will convert B into A.
For each of these row operations, there is an elementary matrix Ei which effects the row
operation by matrix multiplication (Theorem EMDRO [415]). Repeated applications of
Theorem EMDRO [415] allow us to write

A = EsEs−1 . . . E2E1B
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Then

det (A) = det (EsEs−1 . . . E2E1B)

= det (Es) det (Es−1) . . . det (E2) det (E1) det (B) Theorem DEMMM [435]

= det (Es) det (Es−1) . . . det (E2) det (E1) 0 Theorem DZRC [429]

= 0

(⇐) We will establish the contrapositive of this implication. So begin by assum-
ing that A is nonsingular. Then A is row-equivalent to the identity matrix by Theo-
rem NSRRI [81]. As above, there is a sequence of row operations that will convert In

to A, which can be effected by matrix multiplication by elementary matrices and The-
orem DEMMM [435] allows us to “distribute” the determinant through this product.
Mimicking the first half of the proof, we would arrive at

det (A) = det (Es) det (Es−1) . . . det (E2) det (E1) det (In)

We know that det (In) = 1 6= 0. From Theorem DEM [435] we can infer that the
determinant of an elementary matrix is never zero (note the ban on α = 0 for Ei (α) in
Definition ELEM [413]). So the product on the right is composed of nonzero scalars, and
so is also nonzero. This is the result we needed. �

For the case of 2×2 matrices you might compare the application of Theorem SMZD [436]
with the combination of the results stated in Theorem DMST [419] and Theorem TTMI [242].

Example ZNDAB
Zero and nonzero determinant, Archetypes A and B
The coefficient matrix in Archetype A [703] has a zero determinant (check this!) while

the coefficient matrix Archetype B [708] has a nonzero determinant (check this, too).
These matrices are singular and nonsingular, respectively. This is exactly what Theo-
rem SMZD [436] says, and continues our list of contrasts between these two archetypes.
�

Since Theorem SMZD [436] is an equivalence (Technique E [686]) we can expand
on our growing list of equivalences about nonsingular matrices. The addition of the
condition det (A) 6= 0 is one of the best motivations for learning about determinants.

Theorem NSME7
NonSingular Matrix Equivalences, Round 7

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.
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7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

�

Proof Theorem SMZD [436] says A is singular if and only if det (A) = 0. If we negate
each of these statements, we arrive at two contrapositives that we can combine as the
equivalence, A is nonsingular if and only if det (A) 6= 0. This allows us to add a new
statement to the list found in Theorem NSME6 [392]. �

Computationally, row-reducing a matrix is the most efficient way to determine if a
matrix is nonsingular, though the effect of using division in a computer can lead to round-
off errors that confuse small quantities with critical zero quantities. Conceptually, the
determinant may seem the most efficient way to determine if a matrix is nonsingular. The
definition of a determinant uses just addition, subtraction and multiplication, so division
is never a problem. And the final test is easy: is the determinant zero or not? However,
the number of operations involved in computing a determinant by the definition very
quickly becomes so excessive as to be impractical.

Now for the coup de grâce. We will generalize Theorem DEMMM [435] to the case of
any two square matrices. You may recall thinking that matrix multiplication was defined
in a needlessly complicated manner. For sure, the definition of a determinant seems even
stranger. (Though Theorem SMZD [436] might be forcing you to reconsider.) Read the
statement of the next theorem and contemplate how nicely matrix multiplication and
determinants play with each other.

Theorem DRMM
Determinant Respects Matrix Multiplication

Suppose that A and B are square matrices of the same size. Then det (AB) =
det (A) det (B). �

Proof Suppose that A or B is singular. Then either det (A) = 0 or det (B) = 0 by
Theorem SMZD [436]. In either case, det (A) det (B) = 0. By the contrapositive of
Theorem NPNT [255], we know AB is singular as well. So by Theorem SMZD [436],
det (AB) = 0. So in this case, we have the desired equality.

Now assume that A and B are both nonsingular. By Theorem NMPEM [417] there
are elementary matrices E1, E2, E3 . . . , Es and Es+1, Es+2, Es+3 . . . , Es+t such that

A = E1E2E3 . . . Es B = Es+1Es+2Es+3 . . . Es+t

Then

det (AB) = det (E1E2 . . . EsEs+1Es+2 . . . Es+t)

= det (E1) det (E2) . . . det (Es) det (Es+1Es+2 . . . Es+t) Theorem DEMMM [435]

= det (E1E2 . . . Es) det (Es+1Es+2 . . . Es+t) Theorem DEMMM [435]

= det (A) det (B)
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�

It’s an amazing thing that matrix multiplication and the determinant interact this
way. Might it also be true that det (A + B) = det (A)+det (B)? (See Exercise PDM.M30 [441].)

Subsection READ
Reading Questions

1. Condiser the two matrices below, and suppose you already have computed det (A) =
−120. What is det (B)? Why?

A =


0 8 3 −4
−1 2 −2 5
−2 8 4 3
0 −4 2 −3

 B =


0 8 3 −4
0 −4 2 −3
−2 8 4 3
−1 2 −2 5


2. State the theorem that allows us to make yet another extension to our NSMEx

series of theorems.

3. What is amazing about the interaction between matrix multiplication and the de-
terminant?
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Subsection EXC
Exercises

C30 Each of the archetypes below is a system of equations with a square coefficient
matrix, or is a square matrix itself. Compute the determinant of each matrix, noting
how Theorem SMZD [436] indicates when the matrix is singular or nonsingular.
Archetype A [703]
Archetype B [708]
Archetype F [725]
Archetype K [749]
Archetype L [753]

Contributed by Robert Beezer

M20 Construct a 3× 3 nonsingular matrix and call it A. Then, for each entry of the
matrix, compute the corresponding cofactor, and create a new 3× 3 matrix full of these
cofactors by placing the cofactor of an entry in the same location as the entry it was
based on. Once complete, call this matrix C. Compute ACt. Any observations? Repeat
with a new matrix, or perhaps with a 4× 4 matrix.
Contributed by Robert Beezer Solution [443]

M30 Construct an example to show that the following statement is not true for all
square matrices A and B of the same size: det (A + B) = det (A) + det (B).
Contributed by Robert Beezer

T10 Theorem NPNT [255] says that if the product of square matrices AB is nonsin-
gular, then the individual matrices A and B are nonsingular also. Construct a new proof
of this result making use of theorems about determinants of matrices.
Contributed by Robert Beezer

T15 Use Theorem DRCM [430] to prove Theorem DZRC [429] as a corollary. (See
Technique LC [698].)
Contributed by Robert Beezer

T20 Suppose that A is a square matrix of size n and α ∈ C is a scalar. Prove that
det (αA) = αn det (A).
Contributed by Robert Beezer

T25 Employ Theorem DT [421] to construct the second half of the proof of Theo-
rem DRCM [430] (the portion about a multiple of a column).
Contributed by Robert Beezer
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Subsection SOL
Solutions

M20 Contributed by Robert Beezer Statement [441]
The result of these computations should be a matrix with the value of det (A) in the

diagonal entries and zeros elsewhere. The suggestion of using a nonsingular matrix was
partially so that it was obvious that the value of the determinant appears on the diagonal.

This result (which is true in general) provides a method for computing the inverse
of a nonsingular matrix. Since ACt = det (A) In, we can multiply by the reciprocal of
the determinant (which is nonzero!) and the inverse of A (it exists!) to arrive at an
expression for the matrix inverse:

A−1 =
1

det (A)
Ct
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Chapter E: Eigenvalues

When we have a square matrix of size n, A, and we multiply it by a vector x from Cn to
form the matrix-vector product (Definition MVP [221]), the result is another vector in
Cn. So we can adopt a functional view of this computation — the act of multiplying by
a square matrix is a function that converts one vector (x) into another one (Ax) of the
same size. For some vectors, this seemingly complicated computation is really no more
complicated than scalar multiplication. The vectors vary according to the choice of A, so
the question is to determine, for an individual choice of A, if there are any such vectors,
and if so, which ones. It happens in a variety of situations that these vectors (and the
scalars that go along with them) are of special interest.

We will be solving polynomial equations in this chapter, which raises the specter
of roots that are complex numbers. This distinct possibility is our main reason for
entertaining the complex numbers throughout the course. You might be moved to revisit
Section CNO [673] and Section O [191].

Section EE

Eigenvalues and Eigenvectors

We start with the principal definition for this chapter.

Subsection EEM
Eigenvalues and Eigenvectors of a Matrix

Definition EEM
Eigenvalues and Eigenvectors of a Matrix
Suppose that A is a square matrix of size n, x 6= 0 is a vector in Cn, and λ is a scalar

in C. Then we say x is an eigenvector of A with eigenvalue λ if

Ax = λx

4

Before going any further, perhaps we should convince you that such things ever hap-
pen at all. Understand the next example, but do not concern yourself with where the
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pieces come from. We will have methods soon enough to be able to discover these eigen-
vectors ourselves.

Example SEE
Some eigenvalues and eigenvectors
Consider the matrix

A =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28


and the vectors

x =


1
−1
2
5

 y =


−3
4
−10
4

 z =


−3
7
0
8

 w =


1
−1
4
0


Then

Ax =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28




1
−1
2
5

 =


4
−4
8
20

 = 4


1
−1
2
5

 = 4x

so x is an eigenvector of A with eigenvalue λ = 4. Also,

Ay =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28



−3
4
−10
4

 =


0
0
0
0

 = 0


−3
4
−10
4

 = 0y

so y is an eigenvector of A with eigenvalue λ = 0. Also,

Az =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28



−3
7
0
8

 =


−6
14
0
16

 = 2


−3
7
0
8

 = 2z

so z is an eigenvector of A with eigenvalue λ = 2. Also,

Aw =


204 98 −26 −10
−280 −134 36 14
716 348 −90 −36
−472 −232 60 28




1
−1
4
0

 =


2
−2
8
0

 = 2


1
−1
4
0

 = 2w

so w is an eigenvector of A with eigenvalue λ = 2.
So we have demonstrated four eigenvectors of A. Are there more? Yes, any nonzero

scalar multiple of an eigenvector is again an eigenvector. In this example, set u = 30x.
Then

Au = A(30x)

= 30Ax Theorem MMSMM [229]

= 30(4x) x an eigenvector of A
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= 4(30x) Property SMAM [209]

= 4u

so that u is also an eigenvector of A for the same eigenvalue, λ = 4.
The vectors z and w are both eigenvectors of A for the same eigenvalue λ = 2, yet this

is not as simple as the two vectors just being scalar multiples of each other (they aren’t).
Look what happens when we add them together, to form v = z + w, and multiply by A,

Av = A(z + w)

= Az + Aw Theorem MMDAA [229]

= 2z + 2w z, w eigenvectors of A

= 2(z + w) Property DVAC [96]

= 2v

so that v is also an eigenvector of A for the eigenvalue λ = 2. So it would appear that the
set of eigenvectors that are associated with a fixed eigenvalue is closed under the vector
space operations of Cn. Hmmm.

The vector y is an eigenvector of A for the eigenvalue λ = 0, so we can use Theo-
rem ZSSM [321] to write Ay = 0y = 0. But this also means that y ∈ N (A). There
would appear to be a connection here also. �

Example SEE [446] hints at a number of intriguing properties, and there are many
more. We will explore the general properties of eigenvalues and eigenvectors in Sec-
tion PEE [471], but in this section we will concern ourselves with the question of actually
computing eigenvalues and eigenvectors. First we need a bit of background material on
polynomials and matrices.

Subsection PM
Polynomials and Matrices

A polynomial is a combination of powers, multiplication by scalar coefficients, and ad-
dition (with subtraction just being the inverse of addition). We never have occasion to
divide when computing the value of a polynomial. So it is with matrices. We can add
and subtract matrices, we can multiply matrices by scalars, and we can form powers of
square matrices by repeated applications of matrix multiplication. We do not normally
divide matrices (though sometimes we can multiply by an inverse). If a matrix is square,
all the operations constituting a polynomial will preserve the size of the matrix. So it
is natural to consider evaluating a polynomial with a matrix, effectively replacing the
variable of the polynomial by a matrix. We’ll demonstrate with an example,

Example PM
Polynomial of a matrix

Let

p(x) = 14 + 19x− 3x2 − 7x3 + x4 D =

−1 3 2
1 0 −2
−3 1 1
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and we will compute p(D). First, the necessary powers of D. Notice that D0 is defined
to be the multiplicative identity, I3, as will be the case in general.

D0 = I3 =

1 0 0
0 1 0
0 0 1


D1 = D =

−1 3 2
1 0 −2
−3 1 1


D2 = DD1 =

−1 3 2
1 0 −2
−3 1 1

−1 3 2
1 0 −2
−3 1 1

 =

−2 −1 −6
5 1 0
1 −8 −7


D3 = DD2 =

−1 3 2
1 0 −2
−3 1 1

−2 −1 −6
5 1 0
1 −8 −7

 =

19 −12 −8
−4 15 8
12 −4 11


D4 = DD3 =

−1 3 2
1 0 −2
−3 1 1

19 −12 −8
−4 15 8
12 −4 11

 =

 −7 49 54
−5 −4 −30
−49 47 43



Then

p(D) = 14 + 19D − 3D2 − 7D3 + D4

= 14

1 0 0
0 1 0
0 0 1

+ 19

−1 3 2
1 0 −2
−3 1 1

− 3

−2 −1 −6
5 1 0
1 −8 −7


− 7

19 −12 −8
−4 15 8
12 −4 11

+

 −7 49 54
−5 −4 −30
−49 47 43


=

−139 193 166
27 −98 −124
−193 118 20


Notice that p(x) factors as

p(x) = 14 + 19x− 3x2 − 7x3 + x4 = (x− 2)(x− 7)(x + 1)2

Because D commutes with itself (DD = DD), we can use distributivity of matrix mul-
tiplication across matrix addition (Theorem MMDAA [229]) without being careful with
any of the matrix products, and just as easily evaluate p(D) using the factored form of
p(x),

p(D) = 14 + 19D − 3D2 − 7D3 + D4 = (D − 2I3)(D − 7I3)(D + I3)
2

=

−3 3 2
1 −2 −2
−3 1 −1

 −8 3 2
1 −7 −2
−3 1 −6

  0 3 2
1 1 −2
−3 1 2

2

=

−139 193 166
27 −98 −124
−193 118 20
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This example is not meant to be too profound. It is meant to show you that it is natural
to evaluate a polynomial with a matrix, and that the factored form of the polynomial is
as good as (or maybe better than) the expanded form. And do not forget that constant
terms in polynomials are really multiples of the identity matrix when we are evaluating
the polynomial with a matrix. �

Subsection EEE
Existence of Eigenvalues and Eigenvectors

Before we embark on computing eigenvalues and eigenvectors, we will prove that every
matrix has at least one eigenvalue (and an eigenvector to go with it). Later, in Theo-
rem MNEM [480], we will determine the maximum number of eigenvalues a matrix may
have.

The determinant (Definition D [383]) will be a powerful tool in Subsection EE.CEE [452]
when it comes time to compute eigenvalues. However, it is possible, with some more ad-
vanced machinery, to compute eigenvalues without ever making use of the determinant.
Sheldon Axler does just that in his book, Linear Algebra Done Right. Here and now, we
give Axler’s “determinant-free” proof that every matrix has an eigenvalue. The result is
not too startling, but the proof is most enjoyable.

Theorem EMHE
Every Matrix Has an Eigenvalue

Suppose A is a square matrix. Then A has at least one eigenvalue. �

Proof Suppose that A has size n, and choose x as any nonzero vector from Cn. (Notice
how much latitude we have in our choice of x. Only the zero vector is off-limits.) Consider
the set

S =
{
x, Ax, A2x, A3x, . . . , Anx

}
This is a set of n + 1 vectors from Cn, so by Theorem MVSLD [158], S is linearly
dependent. Let a0, a1, a2, . . . , an be a collection of n + 1 scalars from C, not all zero,
that provide a relation of linear dependence on S. In other words,

a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ anA
nx = 0

Some of the ai are nonzero. Suppose that just a0 6= 0, and a1 = a2 = a3 = · · · = an = 0.
Then a0x = 0 and by Theorem SMEZV [323], either a0 = 0 or x = 0, which are both
contradictions. So ai 6= 0 for some i ≥ 1. Let m be the largest integer such that am 6= 0.
From this discussion we know that m ≥ 1. We can also assume that am = 1, for if not,
replace each ai by ai/am to obtain scalars that serve equally well in providing a relation
of linear dependence on S.

Define the polynomial

p(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·+ amxm

Because we have consistently used C as our set of scalars (rather than R), we know that
we can factor p(x) into linear factors of the form (x − bi), where bi ∈ C. So there are
scalars, b1, b2, b3, . . . , bm, from C so that,

p(x) = (x− bm)(x− bm−1) · · · (x− b3)(x− b2)(x− b1)
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Put it all together and

0 = a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ anA
nx

= a0x + a1Ax + a2A
2x + a3A

3x + · · ·+ amAmx ai = 0 for i > m

=
(
a0In + a1A + a2A

2 + a3A
3 + · · ·+ amAm

)
x Theorem MMDAA [229]

= p(A)x Definition of p(x)

= (A− bmIn)(A− bm−1In) · · · (A− b3In)(A− b2In)(A− b1In)x

Let k be the smallest integer such that

(A− bkIn)(A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x = 0.

From the preceding equation, we know that k ≤ m. Define the vector z by

z = (A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x

Notice that by the definition of k, the vector z must be nonzero. In the case where k = 1,
we understand that z is defined by z = x, and z is still nonzero. Now

(A− bkIn)z = (A− bkIn)(A− bk−1In) · · · (A− b3In)(A− b2In)(A− b1In)x = 0

which allows us to write

Az = (A +O)z Property ZM [209]

= (A− bkIn + bkIn)z Property AIM [209]

= (A− bkIn)z + bkInz Theorem MMDAA [229]

= 0 + bkInz Defining property of z

= bkInz Property ZM [209]

= bkz Theorem MMIM [228]

Since z 6= 0, this equation says that z is an eigenvector of A for the eigenvalue λ = bk

(Definition EEM [445]), so we have shown that any square matrix A does have at least
one eigenvalue. �

The proof of Theorem EMHE [449] is constructive (it contains an unambiguous pro-
cedure that leads to an eigenvalue), but it is not meant to be practical. We will illustrate
the theorem with an example, the purpose being to provide a companion for studying
the proof and not to suggest this is the best procedure for computing an eigenvalue.

Example CAEHW
Computing an eigenvalue the hard way

This example illustrates the proof of Theorem EMHE [449], so will employ the same
notation as the proof — look there for full explanations. It is not meant to be an
example of a reasonable computational approach to finding eigenvalues and eigenvectors.
OK, warnings in place, here we go.

Let

A =


−7 −1 11 0 −4
4 1 0 2 0
−10 −1 14 0 −4
8 2 −15 −1 5
−10 −1 16 0 −6
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and choose

x =


3
0
3
−5
4


It is important to notice that the choice of x could be anything, so long as it is not the zero
vector. We have not chosen x totally at random, but so as to make our illustration of the
theorem as general as possible. You could replicate this example with your own choice and
the computations are guaranteed to be reasonable, provided you have a computational
tool that will factor a fifth degree polynomial for you.

The set

S =
{
x, Ax, A2x, A3x, A4x, A5x

}

=




3
0
3
−5
4

 ,


−4
2
−4
4
−6

 ,


6
−6
6
−2
10

 ,


−10
14
−10
−2
−18

 ,


18
−30
18
10
34

 ,


−34
62
−34
−26
−66




is guaranteed to be linearly dependent, as it has six vectors from C5 (Theorem MVSLD [158]).
We will search for a non-trivial relation of linear dependence by solving a homogeneous
system of equations whose coefficient matrix has the vectors of S as columns through
row operations,

3 −4 6 −10 18 −34
0 2 −6 14 −30 62
3 −4 6 −10 18 −34
−5 4 −2 −2 10 −26
4 −6 10 −18 34 −66

 RREF−−−→


1 0 −2 6 −14 30

0 1 −3 7 −15 31
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


There are four free variables for describing solutions to this homogeneous system, so
we have our pick of solutions. The most expedient choice would be to set x3 = 1 and
x4 = x5 = x6 = 0. However, we will again opt to maximize the generality of our
illustration of Theorem EMHE [449] and choose x3 = −8, x4 = −3, x5 = 1 and x6 = 0.
The leads to a solution with x1 = 16 and x2 = 12.

This relation of linear dependence then says that

0 = 16x + 12Ax− 8A2x− 3A3x + A4x + 0A5x

0 =
(
16 + 12A− 8A2 − 3A3 + A4

)
x

So we define p(x) = 16 + 12x − 8x2 − 3x3 + x4, and as advertised in the proof of
Theorem EMHE [449], we have a polynomial of degree m = 4 > 1 such that p(A)x = 0.
Now we need to factor p(x) over C. If you made your own choice of x at the start, this
is where you might have a fifth degree polynomial, and where you might need to use a
computational tool to find roots and factors. We have

p(x) = 16 + 12x− 8x2 − 3x3 + x4 = (x− 4)(x + 2)(x− 2)(x + 1)
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So we know that

0 = p(A)x = (A− 4I5)(A + 2I5)(A− 2I5)(A + 1I5)x

We apply one factor at a time, until we get the zero vector, so as to determine the value
of k described in the proof of Theorem EMHE [449],

(A + 1I5)x =


−6 −1 11 0 −4
4 2 0 2 0
−10 −1 15 0 −4
8 2 −15 0 5
−10 −1 16 0 −5




3
0
3
−5
4

 =


−1
2
−1
−1
−2



(A− 2I5)(A + 1I5)x =


−9 −1 11 0 −4
4 −1 0 2 0
−10 −1 12 0 −4
8 2 −15 −3 5
−10 −1 16 0 −8



−1
2
−1
−1
−2

 =


4
−8
4
4
8



(A + 2I5)(A− 2I5)(A + 1I5)x =


−5 −1 11 0 −4
4 3 0 2 0
−10 −1 16 0 −4
8 2 −15 1 5
−10 −1 16 0 −4




4
−8
4
4
8

 =


0
0
0
0
0



So k = 3 and

z = (A− 2I5)(A + 1I5)x =


4
−8
4
4
8


is an eigenvector of A for the eigenvalue λ = −2, as you can check by doing the com-
putation Az. If you work through this example with your own choice of the vector x
(strongly recommended) then the eigenvalue you will find may be different, but will be
in the set {3, 0, 1, −1, −2}. See Exercise EE.M60 [465] for a suggested starting vector.
�

Subsection CEE
Computing Eigenvalues and Eigenvectors

Fortunately, we need not rely on the procedure of Theorem EMHE [449] each time we need
an eigenvalue. It is the determinant, and specifically Theorem SMZD [436], that provides
the main tool for computing eigenvalues. Here is an informal sequence of equivalences
that is the key to determining the eigenvalues and eigenvectors of a matrix,

Ax = λx ⇐⇒ Ax− λInx = 0 ⇐⇒ (A− λIn)x = 0
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So, for an eigenvalue λ and associated eigenvector x 6= 0, the vector x will be a nonzero
element of the null space of A − λIn, while the matrix A − λIn will be singular and
therefore have zero determinant. These ideas are made precise in Theorem EMRCP [453]
and Theorem EMNS [455], but for now this brief discussion should suffice as motivation
for the following definition and example.

Definition CP
Characteristic Polynomial
Suppose that A is a square matrix of size n. Then the characteristic polynomial of

A is the polynomial pA (x) defined by

pA (x) = det (A− xIn)

4

Example CPMS3
Characteristic polynomial of a matrix, size 3

Consider

F =

−13 −8 −4
12 7 4
24 16 7


Then

pF (x) = det (F − xI3)

=

∣∣∣∣∣∣
−13− x −8 −4

12 7− x 4
24 16 7− x

∣∣∣∣∣∣ Definition CP [453]

= (−13− x)

∣∣∣∣7− x 4
16 7− x

∣∣∣∣+ (−8)(−1)

∣∣∣∣12 4
24 7− x

∣∣∣∣ Definition DM [418]

+ (−4)

∣∣∣∣12 7− x
24 16

∣∣∣∣
= (−13− x)((7− x)(7− x)− 4(16)) Theorem DMST [419]

+ (−8)(−1)(12(7− x)− 4(24))

+ (−4)(12(16)− (7− x)(24))

= 3 + 5x + x2 − x3

= −(x− 3)(x + 1)2

�

The characteristic polynomial is our main computational tool for finding eigenvalues,
and will sometimes be used to aid us in determining the properties of eigenvalues.

Theorem EMRCP
Eigenvalues of a Matrix are Roots of Characteristic Polynomials
Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if pA (λ) = 0. �

Proof Suppose A has size n.

λ is an eigenvalue of A

⇐⇒ there exists x 6= 0 so that Ax = λx Definition EEM [445]
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⇐⇒ there exists x 6= 0 so that Ax− λx = 0

⇐⇒ there exists x 6= 0 so that Ax− λInx = 0 Theorem MMIM [228]

⇐⇒ there exists x 6= 0 so that (A− λIn)x = 0 Theorem MMDAA [229]

⇐⇒ A− λIn is singular Definition NM [79]

⇐⇒ det (A− λIn) = 0 Theorem SMZD [436]

⇐⇒ pA (λ) = 0 Definition CP [453]

�

Example EMS3
Eigenvalues of a matrix, size 3

In Example CPMS3 [453] we found the characteristic polynomial of

F =

−13 −8 −4
12 7 4
24 16 7


to be pF (x) = −(x − 3)(x + 1)2. Factored, we can find all of its roots easily, they are
x = 3 and x = −1. By Theorem EMRCP [453], λ = 3 and λ = −1 are both eigenvalues
of F , and these are the only eigenvalues of F . We’ve found them all. �

Let us now turn our attention to the computation of eigenvectors.

Definition EM
Eigenspace of a Matrix

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace
of A for λ, EA (λ), is the set of all the eigenvectors of A for λ, together with the inclusion
of the zero vector. 4

Example SEE [446] hinted that the set of eigenvectors for a single eigenvalue might
have some closure properties, and with the addition of the non-eigenvector, 0, we indeed
get a whole subspace.

Theorem EMS
Eigenspace for a Matrix is a Subspace
Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace

EA (λ) is a subspace of the vector space Cn. �

Proof We will check the three conditions of Theorem TSS [331]. First, Defini-
tion EM [454] explicitly includes the zero vector in EA (λ), so the set is non-empty.

Suppose that x, y ∈ EA (λ), that is, x and y are two eigenvectors of A for λ. Then

A (x + y) = Ax + Ay Theorem MMDAA [229]

= λx + λy x, y eigenvectors of A

= λ (x + y) Property DVAC [96]

So either x + y = 0, or x + y is an eigenvector of A for λ (Definition EEM [445]). So, in
either event, x + y ∈ EA (λ), and we have additive closure.

Suppose that α ∈ C, and that x ∈ EA (λ), that is, x is an eigenvector of A for λ.
Then

A (αx) = α (Ax) Theorem MMSMM [229]
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= αλx x an eigenvector of A

= λ (αx) Property SMAC [96]

So either αx = 0, or αx is an eigenvector of A for λ (Definition EEM [445]). So, in either
event, αx ∈ EA (λ), and we have scalar closure.

With the three conditions of Theorem TSS [331] met, we know EA (λ) is a subspace.
�

Theorem EMS [454] tells us that an eigenspace is a subspace (and hence a vector space
in its own right). Our next theorem tells us how to quickly construct this subspace.

Theorem EMNS
Eigenspace of a Matrix is a Null Space

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

EA (λ) = N (A− λIn)

�

Proof The conclusion of this theorem is an equality of sets, so normally we would follow
the advice of Definition SE [678]. However, in this case we can construct a sequence of
equivalences which will together provide the two subset inclusions we need. First, notice
that 0 ∈ EA (λ) by Definition EM [454] and 0 ∈ N (A− λIn) by Theorem HSC [66]. Now
consider any nonzero vector x ∈ Cn,

x ∈ EA (λ) ⇐⇒ Ax = λx Definition EM [454]

⇐⇒ Ax− λx = 0

⇐⇒ Ax− λInx = 0 Theorem MMIM [228]

⇐⇒ (A− λIn)x = 0 Theorem MMDAA [229]

⇐⇒ x ∈ N (A− λIn) Definition NSM [71]

�

You might notice the close parallels (and differences) between the proofs of Theo-
rem EMRCP [453] and Theorem EMNS [455]. Since Theorem EMNS [455] describes
the set of all the eigenvectors of A as a null space we can use techniques such as Theo-
rem BNS [162] to provide concise descriptions of eigenspaces.

Example ESMS3
Eigenspaces of a matrix, size 3
Example CPMS3 [453] and Example EMS3 [454] describe the characteristic polynomial

and eigenvalues of the 3× 3 matrix

F =

−13 −8 −4
12 7 4
24 16 7


We will now take the each eigenvalue in turn and compute its eigenspace. To do this,
we row-reduce the matrix F − λI3 in order to determine solutions to the homogeneous
system LS(F − λI3, 0) and then express the eigenspace as the null space of F − λI3
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(Theorem EMNS [455]). Theorem BNS [162] then tells us how to write the null space as
the span of a basis.

λ = 3 F − 3I3 =

−16 −8 −4
12 4 4
24 16 4

 RREF−−−→

 1 0 1
2

0 1 −1
2

0 0 0


EF (3) = N (F − 3I3) =

〈
−1

2
1
2

1


〉

=

〈
−1

1
2


〉

λ = −1 F + 1I3 =

−12 −8 −4
12 8 4
24 16 8

 RREF−−−→

 1 2
3

1
3

0 0 0
0 0 0


EF (−1) = N (F + 1I3) =

〈
−2

3

1
0

 ,

−1
3

0
1


〉

=

〈
−2

3
0

 ,

−1
0
3


〉

Eigenspaces in hand, we can easily compute eigenvectors by forming nontrivial linear
combinations of the basis vectors describing each eigenspace. In particular, notice that
we can “pretty up” our basis vectors by using scalar multiples to clear out fractions. �

Subsection ECEE
Examples of Computing Eigenvalues and Eigenvectors

No theorems in this section, just a selection of examples meant to illustrate the range of
possibilities for the eigenvalues and eigenvectors of a matrix. These examples can all be
done by hand, though the computation of the characteristic polynomial would be very
time-consuming and error-prone. It can also be difficult to factor an arbitrary polynomial,
though if we were to suggest that most of our eigenvalues are going to be integers,
then it can be easier to hunt for roots. These examples are meant to look similar to a
concatenation of Example CPMS3 [453], Example EMS3 [454] and Example ESMS3 [455].
First, we will sneak in a pair of definitions so we can illustrate them throughout this
sequence of examples.

Definition AME
Algebraic Multiplicity of an Eigenvalue

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic
multiplicity of λ, αA (λ), is the highest power of (x− λ) that divides the characteristic
polynomial, pA (x). 4

Since an eigenvalue λ is a root of the characteristic polynomial, there is always a factor
of (x−λ), and the algebraic multiplicity is just the power of this factor in a factorization
of pA (x). So in particular, αA (λ) ≥ 1. Compare the definition of algebraic multiplicity
with the next definition.

Definition GME
Geometric Multiplicity of an Eigenvalue

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric
multiplicity of λ, γA (λ), is the dimension of the eigenspace EA (λ). 4
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Since every eigenvalue must have at least one eigenvector, the associated eigenspace
cannot be trivial, and so γA (λ) ≥ 1.

Example EMMS4
Eigenvalue multiplicities, matrix of size 4

Consider the matrix

B =


−2 1 −2 −4
12 1 4 9
6 5 −2 −4
3 −4 5 10


then

pB (x) = 8− 20x + 18x2 − 7x3 + x4 = (x− 1)(x− 2)3

So the eigenvalues are λ = 1, 2 with algebraic multiplicities αB (1) = 1 and αB (2) = 3.
Computing eigenvectors,

λ = 1 B − 1I4 =


−3 1 −2 −4
12 0 4 9
6 5 −3 −4
3 −4 5 9

 RREF−−−→


1 0 1

3
0

0 1 −1 0

0 0 0 1
0 0 0 0



EB (1) = N (B − 1I4) =

〈

−1

3

1
1
0



〉

=

〈

−1
3
3
0



〉

λ = 2 B − 2I4 =


−4 1 −2 −4
12 −1 4 9
6 5 −4 −4
3 −4 5 8

 RREF−−−→


1 0 0 1/2

0 1 0 −1

0 0 1 1/2
0 0 0 0



EB (2) = N (B − 2I4) =

〈

−1

2

1
−1

2

1



〉

=

〈

−1
2
−1
2



〉

So each eigenspace has dimension 1 and so γB (1) = 1 and γB (2) = 1. This example
is of interest because of the discrepancy between the two multiplicities for λ = 2. In
many of our examples the algebraic and geometric multiplicities will be equal for all of
the eigenvalues (as it was for λ = 1 in this example), so keep this example in mind. We
will have some explanations for this phenomenon later (see Example NDMS4 [495]). �

Example ESMS4
Eigenvalues, symmetric matrix of size 4

Consider the matrix

C =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


then

pC (x) = −3 + 4x + 2x2 − 4x3 + x4 = (x− 3)(x− 1)2(x + 1)
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So the eigenvalues are λ = 3, 1, −1 with algebraic multiplicities αC (3) = 1, αC (1) = 2
and αC (−1) = 1.

Computing eigenvectors,

λ = 3 C − 3I4 =


−2 0 1 1
0 −2 1 1
1 1 −2 0
1 1 0 −2

 RREF−−−→


1 0 0 −1

0 1 0 −1

0 0 1 −1
0 0 0 0



EC (3) = N (C − 3I4) =

〈


1
1
1
1



〉

λ = 1 C − 1I4 =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 RREF−−−→


1 1 0 0

0 0 1 1
0 0 0 0
0 0 0 0



EC (1) = N (C − 1I4) =

〈

−1
1
0
0

 ,


0
0
−1
1



〉

λ = −1 C + 1I4 =


2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2

 RREF−−−→


1 0 0 1

0 1 0 1

0 0 1 −1
0 0 0 0



EC (−1) = N (C + 1I4) =

〈

−1
−1
1
1



〉

So the eigenspace dimensions yield geometric multiplicities γC (3) = 1, γC (1) = 2 and
γC (−1) = 1, the same as for the algebraic multiplicities. This example is of interest
because A is a symmetric matrix, and will be the subject of Theorem HMRE [480]. �

Example HMEM5
High multiplicity eigenvalues, matrix of size 5

Consider the matrix

E =


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8
7 4 3 1 −3


then

pE (x) = −16 + 16x + 8x2 − 16x3 + 7x4 − x5 = −(x− 2)4(x + 1)

So the eigenvalues are λ = 2, −1 with algebraic multiplicities αE (2) = 4 and αE (−1) = 1.
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Computing eigenvectors,

λ = 2 E − 2I5 =


27 14 2 6 −9
−47 −24 −1 −11 13
19 10 3 4 −8
−19 −10 −3 −4 8
7 4 3 1 −5

 RREF−−−→


1 0 0 1 0

0 1 0 −3
2
−1

2

0 0 1 0 −1
0 0 0 0 0
0 0 0 0 0



EE (2) = N (E − 2I5) =

〈


−1
3
2

0
1
0

 ,


0
1
2

1
0
1



〉

=

〈


−2
3
0
2
0

 ,


0
1
2
0
2



〉

λ = −1 E + 1I5 =


30 14 2 6 −9
−47 −21 −1 −11 13
19 10 6 4 −8
−19 −10 −3 −1 8
7 4 3 1 −2

 RREF−−−→


1 0 0 2 0

0 1 0 −4 0

0 0 1 1 0

0 0 0 0 1
0 0 0 0 0



EE (−1) = N (E + 1I5) =

〈


−2
4
−1
1
0



〉

So the eigenspace dimensions yield geometric multiplicities γE (2) = 2 and γE (−1) = 1.
This example is of interest because λ = 2 has such a large algebraic multiplicity, which
is also not equal to its geometric multiplicity. �

Example CEMS6
Complex eigenvalues, matrix of size 6

Consider the matrix

F =


−59 −34 41 12 25 30
1 7 −46 −36 −11 −29
−233 −119 58 −35 75 54
157 81 −43 21 −51 −39
−91 −48 32 −5 32 26
209 107 −55 28 −69 −50


then

pF (x) = −50 + 55x + 13x2 − 50x3 + 32x4 − 9x5 + x6

= (x− 2)(x + 1)(x2 − 4x + 5)2

= (x− 2)(x + 1)((x− (2 + i))(x− (2− i)))2

= (x− 2)(x + 1)(x− (2 + i))2(x− (2− i))2

So the eigenvalues are λ = 2, −1, 2 + i, 2 − i with algebraic multiplicities αF (2) = 1,
αF (−1) = 1, αF (2 + i) = 2 and αF (2− i) = 2.
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Computing eigenvectors,

λ = 2

F − 2I6 =


−61 −34 41 12 25 30
1 5 −46 −36 −11 −29
−233 −119 56 −35 75 54
157 81 −43 19 −51 −39
−91 −48 32 −5 30 26
209 107 −55 28 −69 −52


RREF−−−→



1 0 0 0 0 1
5

0 1 0 0 0 0

0 0 1 0 0 3
5

0 0 0 1 0 −1
5

0 0 0 0 1 4
5

0 0 0 0 0 0



EF (2) = N (F − 2I6) =

〈



−1

5

0
−3

5
1
5

−4
5

1




〉

=

〈



−1
0
−3
1
−4
5




〉

λ = −1

F + 1I6 =


−58 −34 41 12 25 30
1 8 −46 −36 −11 −29
−233 −119 59 −35 75 54
157 81 −43 22 −51 −39
−91 −48 32 −5 33 26
209 107 −55 28 −69 −49


RREF−−−→



1 0 0 0 0 1
2

0 1 0 0 0 −3
2

0 0 1 0 0 1
2

0 0 0 1 0 0

0 0 0 0 1 −1
2

0 0 0 0 0 0



EF (−1) = N (F + I6) =

〈



−1

2
3
2

−1
2

0
1
2

1




〉

=

〈



−1
3
−1
0
1
2




〉

λ = 2 + i

F − (2 + i)I6 =


−61− i −34 41 12 25 30

1 5− i −46 −36 −11 −29
−233 −119 56− i −35 75 54
157 81 −43 19− i −51 −39
−91 −48 32 −5 30− i 26
209 107 −55 28 −69 −52− i



RREF−−−→



1 0 0 0 0 1
5
(7 + i)

0 1 0 0 0 1
5
(−9− 2i)

0 0 1 0 0 1

0 0 0 1 0 −1

0 0 0 0 1 1
0 0 0 0 0 0
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EF (2 + i) = N (F − (2 + i)I6) =

〈



−1

5
(7 + i)

1
5
(9 + 2i)
−1
1
−1
1




〉

=

〈



−7− i
9 + 2i
−5
5
−5
5




〉

λ = 2− i

F − (2− i)I6 =


−61 + i −34 41 12 25 30

1 5 + i −46 −36 −11 −29
−233 −119 56 + i −35 75 54
157 81 −43 19 + i −51 −39
−91 −48 32 −5 30 + i 26
209 107 −55 28 −69 −52 + i



RREF−−−→



1 0 0 0 0 1
5
(7− i)

0 1 0 0 0 1
5
(−9 + 2i)

0 0 1 0 0 1

0 0 0 1 0 −1

0 0 0 0 1 1
0 0 0 0 0 0



EF (2− i) = N (F − (2− i)I6) =

〈




1
5
(−7 + i)

1
5
(9− 2i)
−1
1
−1
1




〉

=

〈



−7 + i
9− 2i
−5
5
−5
5




〉

So the eigenspace dimensions yield geometric multiplicities γF (2) = 1, γF (−1) = 1,
γF (2 + i) = 1 and γF (2− i) = 1. This example demonstrates some of the possibilities
for the appearance of complex eigenvalues, even when all the entries of the matrix are
real. Notice how all the numbers in the analysis of λ = 2 − i are conjugates of the
corresponding number in the analysis of λ = 2 + i. This is the content of the upcoming
Theorem ERMCP [476]. �

Example DEMS5
Distinct eigenvalues, matrix of size 5

Consider the matrix

H =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10


then

pH (x) = −6x + x2 + 7x3 − x4 − x5 = x(x− 2)(x− 1)(x + 1)(x + 3)
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So the eigenvalues are λ = 2, 1, 0, −1, −3 with algebraic multiplicities αH (2) = 1,
αH (1) = 1, αH (0) = 1, αH (−1) = 1 and αH (−3) = 1.

Computing eigenvectors,

λ = 2 H − 2I5 =


13 18 −8 6 −5
5 1 1 −1 −3
0 −4 3 −4 −2
−43 −46 17 −16 15
26 30 −12 8 −12

 RREF−−−→


1 0 0 0 −1

0 1 0 0 1

0 0 1 0 2

0 0 0 1 1
0 0 0 0 0



EH (2) = N (H − 2I5) =

〈


1
−1
−2
−1
1



〉

λ = 1 H − 1I5 =


14 18 −8 6 −5
5 2 1 −1 −3
0 −4 4 −4 −2
−43 −46 17 −15 15
26 30 −12 8 −11

 RREF−−−→


1 0 0 0 −1

2

0 1 0 0 0

0 0 1 0 1
2

0 0 0 1 1
0 0 0 0 0



EH (1) = N (H − 1I5) =

〈


1
2

0
−1

2

−1
1



〉

=

〈


1
0
−1
−2
2



〉

λ = 0 H − 0I5 =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10

 RREF−−−→


1 0 0 0 1

0 1 0 0 −2

0 0 1 0 −2

0 0 0 1 0
0 0 0 0 0



EH (0) = N (H − 0I5) =

〈


−1
2
2
0
1



〉

λ = −1 H + 1I5 =


16 18 −8 6 −5
5 4 1 −1 −3
0 −4 6 −4 −2
−43 −46 17 −13 15
26 30 −12 8 −9

 RREF−−−→


1 0 0 0 −1/2

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1/2
0 0 0 0 0



EH (−1) = N (H + 1I5) =

〈


1
2

0
0
−1

2

1



〉

=

〈


1
0
0
−1
2



〉
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λ = −3 H + 3I5 =


18 18 −8 6 −5
5 6 1 −1 −3
0 −4 8 −4 −2
−43 −46 17 −11 15
26 30 −12 8 −7

 RREF−−−→


1 0 0 0 −1

0 1 0 0 1
2

0 0 1 0 1

0 0 0 1 2
0 0 0 0 0



EH (−3) = N (H + 3I5) =

〈


1
−1

2

−1
−2
1



〉

=

〈


−2
1
2
4
−2



〉

So the eigenspace dimensions yield geometric multiplicities γH (2) = 1, γH (1) = 1,
γH (0) = 1, γH (−1) = 1 and γH (−3) = 1, identical to the algebraic multiplicities. This
example is of interest for two reasons. First, λ = 0 is an eigenvalue, illustrating the up-
coming Theorem SMZE [472]. Second, all the eigenvalues are distinct, yielding algebraic
and geometric multiplicities of 1 for each eigenvalue, illustrating Theorem DED [496]. �

Subsection READ
Reading Questions

Suppose A is the 2× 2 matrix

A =

[
−5 8
−4 7

]
1. Find the eigenvalues of A.

2. Find the eigenspaces of A.

3. For the polynomial p(x) = 3x2 − x + 2, compute p(A).

Version 0.85



464 Section EE Eigenvalues and Eigenvectors

Version 0.85



Subsection EE.EXC Exercises 465

Subsection EXC
Exercises

C19 Find the eigenvalues, eigenspaces, algebraic multiplicities and geometric multi-
plicities for the matrix below. It is possible to do all these computations by hand, and it
would be instructive to do so.

C =

[
−1 2
−6 6

]
Contributed by Robert Beezer Solution [467]

C20 Find the eigenvalues, eigenspaces, algebraic multiplicities and geometric multi-
plicities for the matrix below. It is possible to do all these computations by hand, and it
would be instructive to do so.

B =

[
−12 30
−5 13

]
Contributed by Robert Beezer Solution [467]

C21 The matrix A below has λ = 2 as an eigenvalue. Find the geometric multiplicity
of λ = 2 using your calculator only for row-reducing matrices.

A =


18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4


Contributed by Robert Beezer Solution [468]

C22 Without using a calculator, find the eigenvalues of the matrix B.

B =

[
2 −1
1 1

]
Contributed by Robert Beezer Solution [468]

M60 Repeat Example CAEHW [450] by choosing x =


0
8
2
1
2

 and then arrive at an

eigenvalue and eigenvector of the matrix A. The hard way.
Contributed by Robert Beezer Solution [468]

T10 A matrix A is idempotent if A2 = A. Show that the only possible eigenvalues of
an idempotent matrix are λ = 0 and λ = 1. Then give an example of a matrix that is
idempotent and has both of these two values as eigenvalues.
Contributed by Robert Beezer Solution [469]

T20 Suppose that λ and ρ are two different eigenvalues of the square matrix A. Prove
that the intersection of the eigenspaces for these two eigenvalues is trivial. That is,
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EA (λ) ∩ EA (ρ) = {0}.
Contributed by Robert Beezer Solution [470]

Version 0.85



Subsection EE.SOL Solutions 467

Subsection SOL
Solutions

C19 Contributed by Robert Beezer Statement [465]
First compute the characteristic polynomial,

pC (x) = det (C − xI2) Definition CP [453]

=

∣∣∣∣−1− x 2
−6 6− x

∣∣∣∣
= (−1− x)(6− x)− (2)(−6)

= x2 − 5x− 6

= (x− 3)(x− 2)

So the eigenvalues of C are the solutions to pC (x) = 0, namely, λ = 2 and λ = 3.
To obtain the eigenspaces, construct the appropriate singular matrices and find ex-

pressions for the null spaces of these matrices.

λ = 2

C − (2)I2 =

[
−3 2
−6 4

]
RREF−−−→

[
1 −2

3

0 0

]
EC (2) = N (C − (2)I2) =

〈{[
2
3

1

]}〉
=

〈{[
2
3

]}〉

λ = 3

C − (3)I2 =

[
−4 2
−6 3

]
RREF−−−→

[
1 −1

2

0 0

]
EC (3) = N (C − (3)I2) =

〈{[
1
2

1

]}〉
=

〈{[
1
2

]}〉
C20 Contributed by Robert Beezer Statement [465]
The characteristic polynomial of B is

pB (x) = det (B − xI2) Definition CP [453]

=

∣∣∣∣−12− x 30
−5 13− x

∣∣∣∣
= (−12− x)(13− x)− (30)(−5) Theorem DMST [419]

= x2 − x− 6

= (x− 3)(x + 2)

From this we find eigenvalues λ = 3, −2 with algebraic multiplicities αB (3) = 1 and
αB (−2) = 1.

For eigenvectors and geometric multiplicities, we study the null spaces of B − λI2

(Theorem EMNS [455]).

λ = 3 B − 3I2 =

[
−15 30
−5 10

]
RREF−−−→

[
1 2
0 0

]
Version 0.85



468 Section EE Eigenvalues and Eigenvectors

EB (3) = N (B − 3I2) =

〈{[
2
1

]}〉

λ = −2 B + 2I2 =

[
−10 30
−5 15

]
RREF−−−→

[
1 −3
0 0

]
EB (−2) = N (B + 2I2) =

〈{[
3
1

]}〉
Each eigenspace has dimension one, so we have geometric multiplicities γB (3) = 1 and
γB (−2) = 1.

C21 Contributed by Robert Beezer Statement [465]
If λ = 2 is an eigenvalue of A, the matrix A − 2I4 will be singular, and its null space

will be the eigenspace of A. So we form this matrix and row-reduce,

A− 2I4 =


16 −15 33 −15
−4 6 −6 6
−9 9 −18 9
5 −6 9 −6

 RREF−−−→


1 0 3 0

0 1 1 1
0 0 0 0
0 0 0 0


With two free variables, we know a basis of the null space (Theorem BNS [162]) will
contain two vectors. Thus the null space of A − 2I4 has dimension two, and so the
eigenspace of λ = 2 has dimension two also (Theorem EMNS [455]), γA (2) = 2.

C22 Contributed by Robert Beezer Statement [465]
The characteristic polynomial (Definition CP [453]) is

pB (x) = det (B − xI2)

=

∣∣∣∣2− x −1
1 1− x

∣∣∣∣
= (2− x)(1− x)− (1)(−1) Theorem DMST [419]

= x2 − 3x + 3

=

(
x− 3 + 3i

2

)(
x− 3− 3i

2

)
where the factorization can be obtained by finding the roots of pB (x) = 0 with the
quadratic equation. By Theorem EMRCP [453] the eigenvalues of B are the complex
numbers λ1 = 3+3i

2
and λ2 = 3−3i

2
.

M60 Contributed by Robert Beezer Statement [465]
Form the matrix C whose columns are x, Ax, A2x, A3x, A4x, A5x and row-reduce the

matrix,
0 6 32 102 320 966
8 10 24 58 168 490
2 12 50 156 482 1452
1 −5 −47 −149 −479 −1445
2 12 50 156 482 1452

 RREF−−−→


1 0 0 −3 −9 −30

0 1 0 1 0 1

0 0 1 3 10 30
0 0 0 0 0 0
0 0 0 0 0 0


The simplest possible relation of linear dependence on the columns of C comes from using
scalars α4 = 1 and α5 = α6 = 0 for the free variables in a solution to LS(C, 0). The
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remainder of this solution is α1 = 3, α2 = −1, α3 = −3. This solution gives rise to the
polynomial

p(x) = 3− x− 3x2 + x3 = (x− 3)(x− 1)(x + 1)

which then has the property that p(A)x = 0.
No matter how you choose to order the factors of p(x), the value of k (in the language

of Theorem EMHE [449] and Example CAEHW [450]) is k = 2. For each of the three
possibilities, we list the resulting eigenvector and the associated eigenvalue:

(C − 3I5)(C − I5)z =


8
8
8
−24
8

 λ = −1

(C − 3I5)(C + I5)z =


20
−20
20
−40
20

 λ = 1

(C + I5)(C − I5)z =


32
16
48
−48
48

 λ = 3

Note that each of these eigenvectors can be simplified by an appropriate scalar multi-
ple, but we have shown here the actual vector obtained by the product specified in the
theorem.

T10 Contributed by Robert Beezer Statement [465]
Suppopse that λ is an eigenvalue of A. Then there is an eigenvector x, such that

Ax = λx. We have,

λx = Ax x eigenvector of A

= A2x A is idempotent

= A(Ax)

= A(λx) x eigenvector of A

= λ(Ax) Theorem MMSMM [229]

= λ(λx) x eigenvector of A

= λ2x

From this we get

0 = λ2x− λx

= (λ2 − λ)x Property DSAC [96]

Since x is an eigenvector, it is nonzero, and Theorem SMEZV [323] leaves us with the
conclusion that λ2− λ = 0, and the solutions to this quadratic polynomial equation in λ
are λ = 0 and λ = 1.
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The matrix [
1 0
0 0

]
is idempotent (check this!) and since it is a diagonal matrix, its eigenvalues are the
diagonal entries, λ = 0 and λ = 1, so each of these possible values for an eigenvalue of
an idempotent matrix actually occurs as an eigenvalue of some idempotent matrix.

T20 Contributed by Robert Beezer Statement [465]
This problem asks you to prove that two sets are equal, so use Definition SE [678].

First show that {0} ⊆ EA (λ) ∩ EA (ρ). Choose x ∈ {0}. Then x = 0. Eigenspaces
are subspaces (Theorem EMS [454]), so both EA (λ) and EA (ρ) contain the zero vector,
and therefore x ∈ EA (λ) ∩ EA (ρ).

To show that EA (λ)∩EA (ρ) ⊆ {0}, suppose that x ∈ EA (λ)∩EA (ρ). Then x is an
eigenvector of A for both λ and ρ and so

x = 1x Property O [314]

=
1

λ− ρ
(λ− ρ)x λ 6= ρ, λ− ρ 6= 0

=
1

λ− ρ
(λx− ρx) Property DSAC [96]

=
1

λ− ρ
(Ax− Ax) x eigenvector of A for λ, ρ

=
1

λ− ρ
(0)

= 0 Theorem ZVSM [321]

So x = 0, and trivially, x ∈ {0}.
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Section PEE

Properties of Eigenvalues and Eigenvectors

The previous section introduced eigenvalues and eigenvectors, and concentrated on their
existence and determination. This section will be more about theorems, and the various
properties eigenvalues and eigenvectors enjoy. Like a good 4 × 100 meter relay, we will
lead-off with one of our better theorems and save the very best for the anchor leg.

Theorem EDELI
Eigenvectors with Distinct Eigenvalues are Linearly Independent
Suppose that A is a square matrix and S = {x1, x2, x3, . . . , xp} is a set of eigenvectors

with eigenvalues λ1, λ2, λ3, . . . , λp such that λi 6= λj whenever i 6= j. Then S is a
linearly independent set. �

Proof If p = 1, then the set S = {x1} is linearly independent since eigenvectors are
nonzero (Definition EEM [445]), so assume for the remainder that p ≥ 2.

We will prove this result by contradiction (Technique CD [690]). Suppose to the con-
trary that S is a linearly dependent set. Define k to be an integer such that {x1, x2, x3, . . . , xk−1}
is linearly independent and {x1, x2, x3, . . . , xk} is linearly dependent. We have to ask
if there is even such an integer? Since eigenvectors are nonzero, the set {x1} is linearly
independent. Think of adding in vectors to this set, one at a time, x2, x3, x4,. . . Since
we are assuming that S is linearly dependent, eventually this set will convert from being
linearly independent to being linearly dependent. In other words, it is the addition of
the vector xk that converts the set from linear independence to linear dependence. So
there is such a k, and futhermore 2 ≤ k ≤ p.

Since {x1, x2, x3, . . . , xk} is linearly dependent there are scalars, a1, a2, a3, . . . , ak,
some non-zero, so that

0 = a1x1 + a2x2 + a3x3 + · · ·+ akxk (∗)

Now we manipulate (∗) by multiplying by A,

0 = A0 Theorem MMZM [228]

= A (a1x1 + a2x2 + a3x3 + · · ·+ akxk) Substitute (∗)
= A(a1x1) + A(a2x2) + A(a3x3) + · · ·+ A(akxk) Theorem MMDAA [229]

= a1Ax1 + a2Ax2 + a3Ax3 + · · ·+ akAxk Theorem MMSMM [229]

= a1λ1x1 + a2λ2x2 + a3λ3x3 + · · ·+ akλkxk xi eigenvector of A for λi (∗∗)

Also, manipulating (∗) by multiplying by λk,

0 = λk0 Theorem ZVSM [321]

= λk (a1x1 + a2x2 + a3x3 + · · ·+ akxk) Substitute (∗)
= λka1x1 + λka2x2 + λka3x3 + · · ·+ λkakxk Property DVAC [96] (∗ ∗ ∗)

Put it all together,

0 = 0− 0 Property ZC [96]
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= (a1λ1x1 + a2λ2x2 + a3λ3x3 + · · ·+ akλkxk) Substitute (∗∗), (∗ ∗ ∗)
− (λka1x1 + λka2x2 + λka3x3 + · · ·+ λkakxk)

= (a1λ1x1 − λka1x1) + (a2λ2x2 − λka2x2) + (a3λ3x3 − λka3x3) Property CC [96]

+ · · ·+ (ak−1λk−1xk−1 − λkak−1xk−1) + (akλkxk − λkakxk)

= a1 (λ1 − λk)x1 + a2 (λ2 − λk)x2 + a3 (λ3 − λk)x3 Property DSAC [96]

+ · · ·+ ak−1 (λk−1 − λk)xk−1

This is a relation of linear dependence on the linearly independent set {x1, x2, x3, . . . , xk−1},
so the scalars must all be zero. That is, ai (λi − λk) = 0 for 1 ≤ i ≤ k − 1. However, we
have the hypothesis that the eigenvalues are distinct, so λi 6= λk for 1 ≤ i ≤ k− 1. Thus
ai = 0 for 1 ≤ i ≤ k − 1.

This reduces (∗) to the simpler equation akxk = 0. By Theorem SMEZV [323]
we conclude that ak = 0 or xk = 0. Eigenvectors are never the zero vector (Defini-
tion EEM [445]), so ak = 0. So all of the scalars ai, 1 ≤ i ≤ k are zero, contradicting
their introduction as the scalars creating a nontrivial relation of linear dependence on
the set {x1, x2, x3, . . . , xk}. With a contradiction in hand, we conclude that S must be
linearly independent. �

There is a simple connection between the eigenvalues of a matrix and whether or not
the matrix is nonsingular.

Theorem SMZE
Singular Matrices have Zero Eigenvalues

Suppose A is a square matrix. Then A is singular if and only if λ = 0 is an eigenvalue
of A. �

Proof We have the following equivalences:

A is singular ⇐⇒ there exists x 6= 0, Ax = 0 Definition NSM [71]

⇐⇒ there exists x 6= 0, Ax = 0x Theorem ZSSM [321]

⇐⇒ λ = 0 is an eigenvalue of A Definition EEM [445]

�

With an equivalence about singular matrices we can update our list of equivalences
about nonsingular matrices.

Theorem NSME8
NonSingular Matrix Equivalences, Round 8

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.
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7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

�

Proof The equivalence of the first and last statements is the contrapositive of Theo-
rem SMZE [472], so we are able to improve on Theorem NSME7 [437]. �

Certain changes to a matrix change its eigenvalues in a predictable way.

Theorem ESMM
Eigenvalues of a Scalar Multiple of a Matrix
Suppose A is a square matrix and λ is an eigenvalue of A. Then αλ is an eigenvalue of

αA. �

Proof Let x 6= 0 be one eigenvector of A for λ. Then

(αA)x = α (Ax) Theorem MMSMM [229]

= α (λx) x eigenvector of A

= (αλ)x Property SMAC [96]

So x 6= 0 is an eigenvector of αA for the eigenvalue αλ. �

Unfortunately, there are not parallel theorems about the sum or product of arbitrary
matrices. But we can prove a similar result for powers of a matrix.

Theorem EOMP
Eigenvalues Of Matrix Powers

Suppose A is a square matrix, λ is an eigenvalue of A, and s ≥ 0 is an integer. Then
λs is an eigenvalue of As. �

Proof Let x 6= 0 be one eigenvector of A for λ. Suppose A has size n. Then we proceed
by induction on s (Technique I [695]). First, for s = 0,

Asx = A0x

= Inx

= x Theorem MMIM [228]

= 1x Property OC [96]

= λ0x

= λsx

so λs is an eigenvalue of As in this special case. If we assume the theorem is true for s,
then we find

As+1x = AsAx
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= As (λx) x eigenvector of A for λ

= λ (Asx) Theorem MMSMM [229]

= λ (λsx) Induction hypothesis

= (λλs)x Property SMAC [96]

= λs+1x

So x 6= 0 is an eigenvector of As+1 for λs+1, and induction tells us the theorem is true
for all s ≥ 0. �

While we cannot prove that the sum of two arbitrary matrices behaves in any rea-
sonable way with regard to eigenvalues, we can work with the sum of dissimilar powers
of the same matrix. We have already seen two connections between eigenvalues and
polynomials, in the proof of Theorem EMHE [449] and the characteristic polynomial
(Definition CP [453]). Our next theorem strengthens this connection.

Theorem EPM
Eigenvalues of the Polynomial of a Matrix
Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in

the variable x. Then q(λ) is an eigenvalue of the matrix q(A). �

Proof Let x 6= 0 be one eigenvector of A for λ, and write q(x) = a0 + a1x + a2x
2 +

· · ·+ amxm. Then

q(A)x =
(
a0A

0 + a1A
1 + a2A

2 + · · ·+ amAm
)
x

= (a0A
0)x + (a1A

1)x + (a2A
2)x + · · ·+ (amAm)x Theorem MMDAA [229]

= a0(A
0x) + a1(A

1x) + a2(A
2x) + · · ·+ am(Amx) Theorem MMSMM [229]

= a0(λ
0x) + a1(λ

1x) + a2(λ
2x) + · · ·+ am(λmx) Theorem EOMP [473]

= (a0λ
0)x + (a1λ

1)x + (a2λ
2)x + · · ·+ (amλm)x Property SMAC [96]

=
(
a0λ

0 + a1λ
1 + a2λ

2 + · · ·+ amλm
)
x Property DSAC [96]

= q(λ)x

So x 6= 0 is an eigenvector of q(A) for the eigenvalue q(λ). �

Example BDE
Building desired eigenvalues

In Example ESMS4 [457] the 4× 4 symmetric matrix

C =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


is shown to have the three eigenvalues λ = 3, 1, −1. Suppose we wanted a 4× 4 matrix
that has the three eigenvalues λ = 4, 0, −2. We can employ Theorem EPM [474] by
finding a polynomial that converts 3 to 4, 1 to 0, and −1 to −2. Such a polynomial is
called an interpolating polynomial, and in this example we can use

r(x) =
1

4
x2 + x− 5

4
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We will not discuss how to concoct this polynomial, but a text on numerical analysis
should provide the details. In our case, simply verify that r(3) = 4, r(1) = 0 and
r(−1) = −2.

Now compute

r(C) =
1

4
C2 + C − 5

4
I4

=
1

4


3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

+


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

− 5

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=
1

2


1 1 3 3
1 1 3 3
3 3 1 1
3 3 1 1


Theorem EPM [474] tells us that if r(x) transforms the eigenvalues in the desired man-
ner, then r(C) will have the desired eigenvalues. You can check this by computing the
eigenvalues of r(C) directly. Furthermore, notice that the multiplicities are the same,
and the eigenspaces of C and r(C) are identical. �

Inverses and transposes also behave predictably with regard to their eigenvalues.

Theorem EIM
Eigenvalues of the Inverse of a Matrix

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then 1
λ

is an
eigenvalue of the matrix A−1. �

Proof Notice that since A is assumed nonsingular, A−1 exists by Theorem NSI [257],
but more importantly, 1

λ
does not involve division by zero since Theorem SMZE [472]

prohibits this possibility.
Let x 6= 0 be one eigenvector of A for λ. Suppose A has size n. Then

A−1x = A−1(1x) Property OC [96]

= A−1(
1

λ
λx)

=
1

λ
A−1(λx) Theorem MMSMM [229]

=
1

λ
A−1(Ax) x eigenvector of A for λ

=
1

λ
(A−1A)x Theorem MMA [230]

=
1

λ
Inx Definition MI [240]

=
1

λ
x Theorem MMIM [228]

So x 6= 0 is an eigenvector of A−1 for the eigenvalue 1
λ
. �

The theorems above have a similar style to them, a style you should consider using
when confronted with a need to prove a theorem about eigenvalues and eigenvectors. So
far we have been able to reserve the characteristic polynomial for strictly computational
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purposes. However, the next theorem, whose statement resembles the preceding theo-
rems, has an easier proof if we employ the characteristic polynomial and results about
determinants.

Theorem ETM
Eigenvalues of the Transpose of a Matrix

Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of
the matrix At. �

Proof Let x 6= 0 be one eigenvector of A for λ. Suppose A has size n. Then

pA (x) = det (A− xIn) Definition CP [453]

= det
(
(A− xIn)t) Theorem DT [421]

= det
(
At − (xIn)t) Theorem TMA [212]

= det
(
At − xI t

n

)
Theorem TMSM [212]

= det
(
At − xIn

)
Definition IM [80]

= pAt (x) Definition CP [453]

So A and At have the same characteristic polynomial, and by Theorem EMRCP [453],
their eigenvalues are identical and have equal algebraic multiplicities. Notice that what
we have proved here is a bit stronger than the stated conclusion in the theorem. �

If a matrix has only real entries, then the computation of the characteristic polynomial
(Definition CP [453]) will result in a polynomial with coefficients that are real numbers.
Complex numbers could result as roots of this polynomial, but they are roots of quadratic
factors with real coefficients, and as such, come in conjugate pairs. The next theorem
proves this, and a bit more, without mentioning the characteristic polynomial.

Theorem ERMCP
Eigenvalues of Real Matrices come in Conjugate Pairs

Suppose A is a square matrix with real entries and x is an eigenvector of A for the
eigenvalue λ. Then x is an eigenvector of A for the eigenvalue λ. �

Proof

Ax = Ax A has real entries

= Ax Theorem MMCC [231]

= λx x eigenvector of A

= λx Theorem CRSM [191]

So x is an eigenvector of A for the eigenvalue λ. �

This phenomenon is amply illustrated in Example CEMS6 [459], where the four com-
plex eigenvalues come in two pairs, and the two basis vectors of the eigenspaces are
complex conjugates of each other. Theorem ERMCP [476] can be a time-saver for com-
puting eigenvalues and eigenvectors of real matrices with complex eigenvalues, since the
conjugate eigenvalue and eigenspace can be inferred from the theorem rather than com-
puted.
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Subsection ME
Multiplicities of Eigenvalues

A polynomial of degree n will have exactly n roots. From this fact about polynomial
equations we can say more about the algebraic multiplicities of eigenvalues.

Theorem DCP
Degree of the Characteristic Polynomial

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A,
pA (x), has degree n. �

Proof We will prove a more general result by induction (Technique I [695]). Then the
theorem will be true as a special case. We will carefully state this result as a proposition
indexed by m, m ≥ 1.

P (m): Suppose that A is an m × m matrix whose entries are complex numbers or
linear polynomials in the variable x of the form c − x, where c is a complex number.
Suppose further that there are exactly k entries that contain x and that no row or
column contains more than one such entry. Then, when k = m, det (A) is a polynomial
in x of degree m, with leading coefficient ±1, and when k < m, det (A) is a polynomial
in x of degree k or less.

Base Case: Suppose A is a 1 × 1 matrix. Then its determinant is equal to the lone
entry (Definition DM [418]). When k = m = 1, the entry is of the form c−x, a polynomial
in x of degree m = 1 with leading coefficient −1. When k < m, then k = 0 and the entry
is simply a complex number, a polynomial of degree 0 ≤ k. So P (1) is true.

Induction Step: Assume P (m) is true, and that A is an (m + 1) × (m + 1) matrix
with k entries of the form c− x. There are two cases to consider.

Suppose k = m + 1. Then every row and every column will contain an entry of the
form c − x. Suppose that for the first row, this entry is in column t. Compute the
determinant of A by an expansion about this first row (Definition DM [418]). The term
associated with entry t of this row will be of the form

(c− x)(−1)1+t det (A (1|t))

The submatrix A (1|t) is an m × m matrix with k = m terms of the form c − x, no
more than one per row or column. By the induction hypothesis, det (A (1|t)) will be a
polynomial in x of degree m with coefficient ±1. So this entire term is then a polynomial
of degree m + 1 with leading coefficient ±1.

The remaining terms (which constitute the sum that is the determinant of A) are
products of complex numbers from the first row with cofactors built from submatrices
that lack the first row of A and lack some column of A, other than column t. As such,
these submatrices are m ×m matrices with k = m − 1 < m entries of the form c − x,
no more than one per row or column. Applying the induction hypothesis, we see that
these terms are polynomials in x of degree m − 1 or less. Adding the single term from
the entry in column t with all these others, we see that det (A) is a polynomial in x of
degree m + 1 and leading coefficient ±1.

The second case occurs when k < m+1. Now there is a row of A that does not contain
an entry of the form c−x. We consider the determinant of A by expanding about this row
(Theorem DER [419]), whose entries are all complex numbers. The cofactors employed
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are built from submatrices that are m×m matrices with either k or k − 1 entries of the
form c − x, no more than one per row or column. In either case, k ≤ m, and we can
apply the induction hypothesis to see that the determinants computed for the cofactors
are all polynomials of degree k or less. Summing these contributions to the determinant
of A yields a polynomial in x of degree k or less, as desired.

Definition CP [453] tells us that the characteristic polynomial of an n × n matrix is
the determinant of a matrix having exactly n entries of the form c−x, no more than one
per row or column. As such we can apply P (n) to see that the characteristic polynomial
has degree n. �

Theorem NEM
Number of Eigenvalues of a Matrix
Suppose that A is a square matrix of size n with distinct eigenvalues λ1, λ2, λ3, . . . , λk.

Then
k∑

i=1

αA (λi) = n

�

Proof By the definition of the algebraic multiplicity (Definition AME [456]), we can
factor the characteristic polynomial as

pA (x) = c(x− λ1)
αA(λ1)(x− λ2)

αA(λ2)(x− λ3)
αA(λ3) · · · (x− λk)

αA(λk)

where c is a nonzero constant. (We could prove that c = (−1)n, but we do not need
that specificity right now. See Exercise PEE.T30 [483]) The left-hand side is a poly-
nomial of degree n by Theorem DCP [477] and the right-hand side is a polynomial
of degree

∑k
i=1 αA (λi). So the equality of the polynomials’ degrees gives the equality∑k

i=1 αA (λi) = n. �

Theorem ME
Multiplicities of an Eigenvalue

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

1 ≤ γA (λ) ≤ αA (λ) ≤ n

�

Proof Since λ is an eigenvalue of A, there is an eigenvector of A for λ, x. Then
x ∈ EA (λ), so γA (λ) ≥ 1, since we can extend {x} into a basis of EA (λ) (Theo-
rem ELIS [401]).

To show that γA (λ) ≤ αA (λ) is the most involved portion of this proof. To this
end, let g = γA (λ) and let x1, x2, x3, . . . , xg be a basis for the eigenspace of λ, EA (λ).
Construct another n− g vectors, y1, y2, y3, . . . , yn−g, so that

{x1, x2, x3, . . . , xg, y1, y2, y3, . . . , yn−g}

is a basis of Cn. This can be done by repeated applications of Theorem ELIS [401].
Finally, define a matrix S by

S = [x1|x2|x3| . . . |xg|y1|y2|y3| . . . |yn−g] = [x1|x2|x3| . . . |xg|R]
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where R is an n× (n− g) matrix whose columns are y1, y2, y3, . . . , yn−g. The columns
of S are linearly independent by design, so S is nonsingular (Theorem NSLIC [159]) and
therefore invertible (Theorem NSI [257]). Then,

[e1|e2|e3| . . . |en] = In

= S−1S

= S−1[x1|x2|x3| . . . |xg|R]

= [S−1x1|S−1x2|S−1x3| . . . |S−1xg|S−1R]

So
S−1xi = ei 1 ≤ i ≤ g (∗)

Preparations in place, we compute the characteristic polynomial of A,

pA (x) = det (A− xIn) Definition CP [453]

= 1 det (A− xIn)

= det (In) det (A− xIn) Definition DM [418]

= det
(
S−1S

)
det (A− xIn) Definition MI [240]

= det
(
S−1

)
det (S) det (A− xIn) Theorem DRMM [438]

= det
(
S−1

)
det (A− xIn) det (S) Commutativity in C

= det
(
S−1 (A− xIn) S

)
Theorem DRMM [438]

= det
(
S−1AS − S−1xInS

)
Theorem MMDAA [229]

= det
(
S−1AS − xS−1InS

)
Theorem MMSMM [229]

= det
(
S−1AS − xS−1S

)
Theorem MMIM [228]

= det
(
S−1AS − xIn

)
Definition MI [240]

= pS−1AS (x) Definition CP [453]

What can we learn then about the matrix S−1AS?

S−1AS = S−1A[x1|x2|x3| . . . |xg|R]

= S−1[Ax1|Ax2|Ax3| . . . |Axg|AR] Definition MM [225]

= S−1[λx1|λx2|λx3| . . . |λxg|AR] xi eigenvectors of A

= [S−1λx1|S−1λx2|S−1λx3| . . . |S−1λxg|S−1AR] Definition MM [225]

= [λS−1x1|λS−1x2|λS−1x3| . . . |λS−1xg|S−1AR] Theorem MMSMM [229]

= [λe1|λe2|λe3| . . . |λeg|S−1AR] S−1S = In, ((∗) above)

Now imagine computing the characteristic polynomial of A by computing the character-
istic polynomial of S−1AS using the form just obtained. The first g columns of S−1AS
are all zero, save for a λ on the diagonal. So if we compute the determinant by expand-
ing about the first column, successively, we will get successive factors of (λ − x). More
precisely, let T be the square matrix of size n− g that is formed from the last n− g rows
of S−1AR. Then

pA (x) = pS−1AS (x) = (λ− x)gpT (x) .

This says that (x− λ) is a factor of the characteristic polynomial at least g times, so the
algebraic multiplicity of λ as an eigenvalue of A is greater than or equal to g (Defini-
tion AME [456]). In other words,

γA (λ) = g ≤ αA (λ)
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as desired.
Theorem NEM [478] says that the sum of the algebraic multiplicities for all the

eigenvalues of A is equal to n. Since the algebraic multiplicity is a positive quantity,
no single algebraic multiplicity can exceed n without the sum of all of the algebraic
multiplicities doing the same. �

Theorem MNEM
Maximum Number of Eigenvalues of a Matrix
Suppose that A is a square matrix of size n. Then A cannot have more than n distinct

eigenvalues. �

Proof Suppose that A has k distinct eigenvalues, λ1, λ2, λ3, . . . , λk. Then

k =
k∑

i=1

1

≤
k∑

i=1

αA (λi) Theorem ME [478]

= n Theorem NEM [478]

�

Subsection EHM
Eigenvalues of Hermitian Matrices

Recall that a matrix is Hermitian (or self-adjoint) if A =
(
A
)t

(Definition HM [261]).
In the case where A is a matrix whose entries are all real numbers, being Hermitian is
identical to being symmetric (Definition SYM [211]). Keep this in mind as you read the
next two theorems. Their hypotheses could be changed to “suppose A is a real symmetric
matrix.”

Theorem HMRE
Hermitian Matrices have Real Eigenvalues

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then λ ∈ R. �

Proof Let x 6= 0 be one eigenvector of A for λ. Then

λ 〈x, x〉 = 〈λx, x〉 Theorem IPSM [193]

= 〈Ax, x〉 x eigenvector of A

= (Ax)t x Theorem MMIP [231]

= xtAtx Theorem MMT [232]

= xt
((

A
)t)t

x Definition HM [261]

= xtAx Theorem TT [212]

= xtAx Theorem MMCC [231]

= 〈x, Ax〉 Theorem MMIP [231]
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= 〈x, λx〉 x eigenvector of A

= λ 〈x, x〉 Theorem IPSM [193]

Since x 6= 0, Theorem PIP [196] says that 〈x, x〉 6= 0, so we can “cancel” 〈x, x〉 from
both sides of this equality. This leaves λ = λ, so λ has a complex part equal to zero, and
therefore is a real number. �

Look back and compare Example ESMS4 [457] and Example CEMS6 [459]. In Exam-
ple CEMS6 [459] the matrix has only real entries, yet the characteristic polynomial has
roots that are complex numbers, and so the matrix has complex eigenvalues. However,
in Example ESMS4 [457], the matrix has only real entries, but is also symmetric. So by
Theorem HMRE [480], we were guaranteed eigenvalues that are real numbers.

In many physical problems, a matrix of interest will be real and symmetric, or Her-
mitian. Then if the eigenvalues are to represent physical quantities of interest, Theo-
rem HMRE [480] guarantees that these values will not be complex numbers.

The eigenvectors of a Hermitian matrix also enjoy a pleasing property that we will
exploit later.

Theorem HMOE
Hermitian Matrices have Orthogonal Eigenvectors
Suppose that A is a Hermitian matrix and x and y are two eigenvectors of A for different

eigenvalues. Then x and y are orthogonal vectors. �

Proof Let x 6= 0 be an eigenvector of A for λ and let y 6= 0 be an eigenvector of A for
ρ. By Theorem HMRE [480], we know that ρ must be a real number. Then

λ 〈x, y〉 = 〈λx, y〉 Theorem IPSM [193]

= 〈Ax, y〉 x eigenvector of A

= (Ax)t y Theorem MMIP [231]

= xtAty Theorem MMT [232]

= xt
((

A
)t)t

y Definition HM [261]

= xtAy Theorem TT [212]

= xtAy Theorem MMCC [231]

= 〈x, Ay〉 Theorem MMIP [231]

= 〈x, ρy〉 y eigenvector of A

= ρ 〈x, y〉 Theorem IPSM [193]

= ρ 〈x, y〉 Theorem HMRE [480]

Since λ 6= ρ, we conclude that 〈x, y〉 = 0 and so x and y are orthogonal vectors (Defini-
tion OV [196]). �

Subsection READ
Reading Questions

1. How can you identify a nonsingular matrix just by looking at its eigenvalues?

Version 0.85



482 Section PEE Properties of Eigenvalues and Eigenvectors

2. How many different eigenvalues may a square matrix of size n have?

3. What is amazing about the eigenvalues of a Hermitian matrix and why is it amaz-
ing?
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Subsection EXC
Exercises

T10 Suppose that A is a square matrix. Prove that the constant term of the charac-
teristic polynomial of A is equal to the determinant of A.
Contributed by Robert Beezer Solution [485]

T20 Suppose that A is a square matrix. Prove that a single vector may not be an
eigenvector of A for two different eigenvalues.
Contributed by Robert Beezer Solution [485]

T30 Theorem DCP [477] tells us that the characteristic polynomial of a square matrix
of size n has degree n. By suitably augmenting the proof of Theorem DCP [477] prove
that the coefficient of xn in the characteristic polynomial is (−1)n.
Contributed by Robert Beezer
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Subsection SOL
Solutions

T10 Contributed by Robert Beezer Statement [483]
Suppose that the characteristic polynomial of A is

pA (x) = a0 + a1x + a2x
2 + · · ·+ anx

n

Then

a0 = a0 + a1(0) + a2(0)2 + · · ·+ an(0)n

= pA (0)

= det (A− 0In) Definition CP [453]

= det (A)

T20 Contributed by Robert Beezer Statement [483]
Suppose that the vector x 6= 0 is an eigenvector of A for the two eigenvalues λ and ρ,

where λ 6= ρ. Then λ− ρ 6= 0, so

0 6= (λ− ρ)x Theorem SMEZV [323]

= λx− ρx Property DSAC [96]

= Ax− Ax λ, ρ eigenvalues of A

= 0 Property AIC [96]

which is a contradiction.
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Section SD

Similarity and Diagonalization

This section’s topic will perhaps seem out of place at first, but we will make the connection
soon with eigenvalues and eigenvectors. This is also our first look at one of the central
ideas of Chapter R [591].

Subsection SM
Similar Matrices

The notion of matrices being “similar” is a lot like saying two matrices are row-equivalent.
Two similar matrices are not equal, but they share many important properties. This
section, and later sections in Chapter R [591] will be devoted in part to discovering just
what these common properties are.

First, the main definition for this section.

Definition SIM
Similar Matrices
Suppose A and B are two square matrices of size n. Then A and B are similar if there

exists a nonsingular matrix of size n, S, such that A = S−1BS. 4
We will say “A is similar to B via S” when we want to emphasize the role of S in

the relationship between A and B. Also, it doesn’t matter if we say A is similar to B, or
B is similar to A. If one statement is true then so is the other, as can be seen by using
S−1 in place of S (see Theorem SER [489] for the careful proof). Finally, we will refer to
S−1BS as a similarity transformation when we want to emphasize the way S changes
B. OK, enough about language, let’s build a few examples.

Example SMS5
Similar matrices of size 5

If you wondered if there are examples of similar matrices, then it won’t be hard to
convince you they exist. Define

B =


−4 1 −3 −2 2
1 2 −1 3 −2
−4 1 3 2 2
−3 4 −2 −1 −3
3 1 −1 1 −4

 S =


1 2 −1 1 1
0 1 −1 −2 −1
1 3 −1 1 1
−2 −3 3 1 −2
1 3 −1 2 1


Check that S is nonsingular and then compute

A = S−1BS

=


10 1 0 2 −5
−1 0 1 0 0
3 0 2 1 −3
0 0 −1 0 1
−4 −1 1 −1 1



−4 1 −3 −2 2
1 2 −1 3 −2
−4 1 3 2 2
−3 4 −2 −1 −3
3 1 −1 1 −4




1 2 −1 1 1
0 1 −1 −2 −1
1 3 −1 1 1
−2 −3 3 1 −2
1 3 −1 2 1
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=


−10 −27 −29 −80 −25
−2 6 6 10 −2
−3 11 −9 −14 −9
−1 −13 0 −10 −1
11 35 6 49 19


So by this construction, we know that A and B are similar. �

Let’s do that again.

Example SMS3
Similar matrices of size 3

Define

B =

−13 −8 −4
12 7 4
24 16 7

 S =

 1 1 2
−2 −1 −3
1 −2 0


Check that S is nonsingular and then compute

A = S−1BS

=

−6 −4 −1
−3 −2 −1
5 3 1

−13 −8 −4
12 7 4
24 16 7

 1 1 2
−2 −1 −3
1 −2 0


=

−1 0 0
0 3 0
0 0 −1


So by this construction, we know that A and B are similar. But before we move on, look at
how pleasing the form of A is. Not convinced? Then consider that several computations
related to A are especially easy. For example, in the spirit of Example DUTM [422],
det (A) = (−1)(3)(−1) = 3. Similarly, the characteristic polynomial is straightforward
to compute by hand, pA (x) = (−1 − x)(3 − x)(−1 − x) = −(x − 3)(x + 1)2 and since
the result is already factored, the eigenvalues are transparently λ = 3, −1. Finally, the
eigenvectors of A are just the standard unit vectors (Definition SUV [242]). �

Subsection PSM
Properties of Similar Matrices

Similar matrices share many properties and it is these theorems that justify the choice
of the word “similar.” First we will show that similarity is an equivalence relation.
Equivalence relations are important in the study of various algebras and can always be
regarded as a kind of weak version of equality. Sort of alike, but not quite equal. The
notion of two matrices being row-equivalent is an example of an equivalence relation we
have been working with since the beginning of the course (see Exercise RREF.T11 [45]).
Row-equivalent matrices are not equal, but they are a lot alike. For example, row-
equivalent matrices have the same rank. Formally, an equivalence relation requires three
conditions hold: reflexive, symmetric and transitive. We will illustrate these as we prove
that similarity is an equivalence relation.
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Theorem SER
Similarity is an Equivalence Relation

Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)

2. If A is similar to B, then B is similar to A. (Symmetric)

3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

�

Proof To see that A is similar to A, we need only demonstrate a nonsingular matrix
that effects a similarity transformation of A to A. In is nonsingular (since it row-reduces
to the identity matrix, Theorem NSRRI [81]), and

I−1
n AIn = InAIn = A

If we assume that A is similar to B, then we know there is a nonsingular matrix S so
that A = S−1BS by Definition SIM [487]. By Theorem MIMI [248], S−1 is invertible,
and by Theorem NSI [257] is therefore nonsingular. So

(S−1)−1A(S−1) = SAS−1 Theorem MIMI [248]

= SS−1BSS−1 Substitution for A

=
(
SS−1

)
B
(
SS−1

)
Theorem MMA [230]

= InBIn Definition MI [240]

= B Theorem MMIM [228]

and we see that B is similar to A.
Assume that A is similar to B, and B is similar to C. This gives us the existence

of two nonsingular matrices, S and R, such that A = S−1BS and B = R−1CR, by
Definition SIM [487]. (Notice how we have to assume S 6= R, as will usually be the
case.) Since S and R are invertible, so too RS is invertible by Theorem SS [247] and
then nonsingular by Theorem NSI [257]. Now

(RS)−1C(RS) = S−1R−1CRS Theorem SS [247]

= S−1
(
R−1CR

)
S Theorem MMA [230]

= S−1BS Substitution of B

= A

so A is similar to C via the nonsingular matrix RS. �

Here’s another theorem that tells us exactly what sorts of properties similar matrices
share.

Theorem SMEE
Similar Matrices have Equal Eigenvalues

Suppose A and B are similar matrices. Then the characteristic polynomials of A and
B are equal, that is pA (x) = pB (x). �

Proof Suppose A and B have size n and are similar via the nonsingular matrix S, so
A = S−1BS by Definition SIM [487].

pA (x) = det (A− xIn) Definition CP [453]
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= det
(
S−1BS − xIn

)
Substitution for A

= det
(
S−1BS − xS−1InS

)
Theorem MMIM [228]

= det
(
S−1BS − S−1xInS

)
Theorem MMSMM [229]

= det
(
S−1 (B − xIn) S

)
Theorem MMDAA [229]

= det
(
S−1

)
det (B − xIn) det (S) Theorem DRMM [438]

= det
(
S−1

)
det (S) det (B − xIn) Commutativity in C

= det
(
S−1S

)
det (B − xIn) Theorem DRMM [438]

= det (In) det (B − xIn) Definition MI [240]

= 1 det (B − xIn) Definition DM [418]

= pB (x) Definition CP [453]

�

So similar matrices not only have the same set of eigenvalues, the algebraic multiplic-
ities of these eigenvalues will also be the same. However, be careful with this theorem. It
is tempting to think the converse is true, and argue that if two matrices have the same
eigenvalues, then they are similar. Not so, as the following example illustrates.

Example EENS
Equal eigenvalues, not similar

Define

A =

[
1 1
0 1

]
B =

[
1 0
0 1

]
and check that

pA (x) = pB (x) = 1− 2x + x2 = (x− 1)2

and so A and B have equal characteristic polynomials. If the converse of Theorem SMEE [489]
were true, then A and B would be similar. Suppose this is the case. In other words,
there is a nonsingular matrix S so that A = S−1BS. Then

A = S−1BS = S−1I2S = S−1S = I2 6= A

and this contradiction tells us that the converse of Theorem SMEE [489] is false. �

Subsection D
Diagonalization

Good things happen when a matrix is similar to a diagonal matrix. For example, the
eigenvalues of the matrix are the entries on the diagonal of the diagonal matrix. And
it can be a much simpler matter to compute high powers of the matrix. Diagonalizable
matrices are also of interest in more abstract settings. Here are the relevant definitions,
then our main theorem for this section.

Definition DIM
Diagonal Matrix
Suppose that A is a square matrix. Then A is a diagonal matrix if [A]ij = 0 whenever

i 6= j. 4
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Definition DZM
Diagonalizable Matrix

Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal
matrix. 4

Example DAB
Diagonalization of Archetype B

Archetype B [708] has a 3× 3 coefficient matrix

B =

−7 −6 −12
5 5 7
1 0 4


and is similar to a diagonal matrix, as can be seen by the following computation with
the nonsingular matrix S,

S−1BS =

−5 −3 −2
3 2 1
1 1 1

−1 −7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1


=

−1 −1 −1
2 3 1
−1 −2 1

−7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1


=

−1 0 0
0 1 0
0 0 2


�

Example SMS3 [488] provides yet another example of a matrix that is subjected to
a similarity transformation and the result is a diagonal matrix. Alright, just how would
we find the magic matrix S that can be used in a similarity transformation to produce a
diagonal matrix? Before you read the statement of the next theorem, you might study
the eigenvalues and eigenvectors of Archetype B [708] and compute the eigenvalues and
eigenvectors of the matrix in Example SMS3 [488].

Theorem DC
Diagonalization Characterization

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there
exists a linearly independent set S that contains n eigenvectors of A. �

Proof (⇐) Let S = {x1, x2, x3, . . . , xn} be a linearly independent set of eigenvectors
of A for the eigenvalues λ1, λ2, λ3, . . . , λn. Recall Definition SUV [242] and define

R = [x1|x2|x3| . . . |xn]

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
0 0 0 · · · λn

 = [λ1e1|λ2e2|λ3e3| . . . |λnen]
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The columns of R are the vectors of the linearly independent set S and so by Theo-
rem NSLIC [159] the matrix R is nonsingular. By Theorem NSI [257] we know R−1

exists.

R−1AR = R−1A [x1|x2|x3| . . . |xn]

= R−1[Ax1|Ax2|Ax3| . . . |Axn] Definition MM [225]

= R−1[λ1x1|λ2x2|λ3x3| . . . |λnxn] xi eigenvector of A for λi

= R−1[λ1Re1|λ2Re2|λ3Re3| . . . |λnRen] Definition MVP [221]

= R−1[R(λ1e1)|R(λ2e2)|R(λ3e3)| . . . |R(λnen)] Theorem MMSMM [229]

= R−1R[λ1e1|λ2e2|λ3e3| . . . |λnen] Definition MM [225]

= InD Definition MI [240]

= D Theorem MMIM [228]

This says that A is similar to the diagonal matrix D via the nonsingular matrix R. Thus
A is diagonalizable (Definition DZM [491]).

(⇒) Suppose that A is diagonalizable, so there is a nonsingular matrix of size n

T = [y1|y2|y3| . . . |yn]

and a diagonal matrix (recall Definition SUV [242])

E =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

...
0 0 0 · · · dn

 = [d1e1|d2e2|d3e3| . . . |dnen]

such that T−1AT = E. Then consider,

[Ay1|Ay2|Ay3| . . . |Ayn] = A [y1|y2|y3| . . . |yn] Definition MM [225]

= AT

= InAT Theorem MMIM [228]

= TT−1AT Definition MI [240]

= TE Substitution

= T [d1e1|d2e2|d3e3| . . . |dnen]

= [T (d1e1)|T (d2e2)|T (d3e3)| . . . |T (dnen)] Definition MM [225]

= [d1Te1|d2Te2|d3Te3| . . . |dnTen] Definition MM [225]

= [d1y1|d2y2|d3y3| . . . |dnyn] Definition MVP [221]

This equality of matrices (Definition ME [207]) allows us to conclude that the individual
columns are equal vectors (Definition CVE [92]). That is, Ayi = diyi for 1 ≤ i ≤ n. In
other words, yi is an eigenvector of A for the eigenvalue di, 1 ≤ i ≤ n. (Why can’t yi =
0?). Because T is nonsingular, the set containing T ’s columns, S = {y1, y2, y3, . . . , yn},
is a linearly independent set (Theorem NSLIC [159]). So the set S has all the required
properties. �
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Notice that the proof of Theorem DC [491] is constructive. To diagonalize a ma-
trix, we need only locate n linearly independent eigenvectors. Then we can construct a
nonsingular matrix using the eigenvectors as columns (R) so that R−1AR is a diagonal
matrix (D). The entries on the diagonal of D will be the eigenvalues of the eigenvectors
used to create R, in the same order as the eigenvectors appear in R. We illustrate this
by diagonalizing some matrices.

Example DMS3
Diagonalizing a matrix of size 3

Consider the matrix

F =

−13 −8 −4
12 7 4
24 16 7


of Example CPMS3 [453], Example EMS3 [454] and Example ESMS3 [455]. F ’s eigen-
values and eigenspaces are

λ = 3 EF (3) =

〈
−1

2
1
2

1


〉

λ = −1 EF (−1) =

〈
−2

3

1
0

 ,

−1
3

0
1


〉

Define the matrix S to be the 3× 3 matrix whose columns are the three basis vectors in
the eigenspaces for F ,

S =

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


Check that S is nonsingular (row-reduces to the identity matrix, Theorem NSRRI [81]
or has a nonzero determinant, Theorem SMZD [436]). Then the three columns of S are
a linearly independent set (Theorem NSLIC [159]). By Theorem DC [491] we now know
that F is diagonalizable. Furthermore, the construction in the proof of Theorem DC [491]
tells us that if we apply the matrix S to F in a similarity transformation, the result will
be a diagonal matrix with the eigenvalues of F on the diagonal. The eigenvalues appear
on the diagonal of the matrix in the same order as the eigenvectors appear in S. So,

S−1FS =

−1
2
−2

3
−1

3
1
2

1 0
1 0 1

−1 −13 −8 −4
12 7 4
24 16 7

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


=

 6 4 2
−3 −1 −1
−6 −4 −1

−13 −8 −4
12 7 4
24 16 7

−1
2
−2

3
−1

3
1
2

1 0
1 0 1


=

3 0 0
0 −1 0
0 0 −1


Note that the above computations can be viewed two ways. The proof of Theorem DC [491]
tells us that the four matrices (F , S, F−1 and the diagonal matrix) will interact the way
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we have written the equation. Or as an example, we can actually perform the computa-
tions to verify what the theorem predicts. �

The dimension of an eigenspace can be no larger than the algebraic multiplicity of
the eigenvalue by Theorem ME [478]. When every eigenvalue’s eigenspace is this large,
then we can diagonalize the matrix, and only then. Three examples we have seen so
far in this section, Example SMS5 [487], Example DAB [491] and Example DMS3 [493],
illustrate the diagonalization of a matrix, with varying degrees of detail about just how
the diagonalization is achieved. However, in each case, you can verify that the geometric
and algebraic multiplicities are equal for every eigenvalue. This is the substance of the
next theorem.

Theorem DMLE
Diagonalizable Matrices have Large Eigenspaces

Suppose A is a square matrix. Then A is diagonalizable if and only if γA (λ) = αA (λ)
for every eigenvalue λ of A. �

Proof Suppose A has size n and k distinct eigenvalues, λ1, λ2, λ3, . . . , λk.
(⇐) Let Si =

{
xi1, xi2, xi3, . . . , xiγA(λi)

}
, be a basis for the eigenspace of λi, EA (λi),

1 ≤ i ≤ k. Then
S = S1 ∪ S2 ∪ S3 ∪ · · · ∪ Sk

is a set of eigenvectors for A. A vector cannot be an eigenvector for two different eigen-
values (why not?) so the sets Si have no vectors in common. Thus the size of S is

k∑
i=1

γA (λi) =
k∑

i=1

αA (λi) Hypothesis

= n Theorem NEM [478]

We now want to show that S is a linearly independent set. So we will begin with a
relation of linear dependence on S, using doubly-subscripted scalars and eigenvectors,

0 =
(
a11x11 + a12x12 + · · ·+ a1γA(λ1)x1γA(λ1)

)
+
(
a21x21 + a22x22 + · · ·+ a2γA(λ2)x2γA(λ2)

)
+ · · ·+

(
ak1xk1 + ak2xk2 + · · ·+ akγA(λk)xkγA(λk)

)
Define the vectors yi, 1 ≤ i ≤ k by

y1 =
(
a11x11 + a12x12 + a13x13 + · · ·+ aγA(1λ1)x1γA(λ1)

)
y2 =

(
a21x21 + a22x22 + a23x23 + · · ·+ aγA(2λ2)x2γA(λ2)

)
y3 =

(
a31x31 + a32x32 + a33x33 + · · ·+ aγA(3λ3)x3γA(λ3)

)
...

yk =
(
ak1xk1 + ak2xk2 + ak3xk3 + · · ·+ aγA(kλk)xkγA(λk)

)
Then the relation of linear dependence becomes

0 = y1 + y2 + y3 + · · ·+ yk

Since the eigenspace EA (λi) is closed under vector addition and scalar multiplication,
yi ∈ EA (λi), 1 ≤ i ≤ k. Thus, for each i, the vector yi is an eigenvector of A for
λi, or is the zero vector. Recall that sets of eigenvectors whose eigenvalues are distinct
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form a linearly independent set by Theorem EDELI [471]. Should any (or some) yi be
nonzero, the previous equation would provide a nontrivial relation of linear dependence
on a set of eigenvectors with distinct eigenvalues, contradicting Theorem EDELI [471].
Thus yi = 0, 1 ≤ i ≤ k.

Each of the k equations, yi = 0 is a relation of linear dependence on the correspond-
ing set Si, a set of basis vectors for the eigenspace EA (λi), which is therefore linearly
independent. From these relations of linear dependence on linearly independent sets
we conclude that the scalars are all zero, more precisely, aij = 0, 1 ≤ j ≤ γA (λi) for
1 ≤ i ≤ k. This establishes that our original relation of linear dependence on S has only
the trivial relation of linear dependence, and hence S is a linearly independent set.

We have determined that S is a set of n linearly independent eigenvectors for A, and
so by Theorem DC [491] is diagonalizable.

(⇒) Now we assume that A is diagonalizable. Aiming for a contradiction (Tech-
nique CD [690]), suppose that there is at least one eigenvalue, say λt, such that γA (λt) 6=
αA (λt). By Theorem ME [478] we must have γA (λt) < αA (λt), and γA (λi) ≤ αA (λi)
for 1 ≤ i ≤ k, i 6= t.

Since A is diagonalizable, Theorem DC [491] guarantees a set of n linearly independent
vectors, all of which are eigenvectors of A. Let ni denote the number of eigenvectors in
S that are eigenvectors for λi, and recall that a vector cannot be an eigenvector for two
different eigenvalues. S is a linearly independent set, so the the subset Si containing the
ni eigenvectors for λi must also be linearly independent. Because the eigenspace EA (λi)
has dimension γA (λi) and Si is a linearly independent subset in EA (λi), ni ≤ γA (λi),
1 ≤ i ≤ k. Now,

n = n1 + n2 + n3 + · · ·+ nt + · · ·+ nk Size of S

≤ γA (λ1) + γA (λ2) + γA (λ3) + · · ·+ γA (λt) + · · ·+ γA (λk) Si linearly independent

< αA (λ1) + αA (λ2) + αA (λ3) + · · ·+ αA (λt) + · · ·+ αA (λk) Assumption about λt

= n Theorem NEM [478]

This is a contradiction (we can’t have n < n!) and so our assumption that some
eigenspace had less than full dimension was false. �

Example SEE [446], Example CAEHW [450], Example ESMS3 [455], Example ESMS4 [457],
Example DEMS5 [461], Archetype B [708], Archetype F [725], Archetype K [749] and
Archetype L [753] are all examples of matrices that are diagonalizable and that illustrate
Theorem DMLE [494]. While we have provided many examples of matrices that are
diagonalizable, especially among the archetypes, there are many matrices that are not
diagonalizable. Here’s one now.

Example NDMS4
A non-diagonalizable matrix of size 4

In Example EMMS4 [457] the matrix

B =


−2 1 −2 −4
12 1 4 9
6 5 −2 −4
3 −4 5 10


was determined to have characteristic polynomial

pB (x) = (x− 1)(x− 2)3
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and an eigenspace for λ = 2 of

EB (2) =

〈

−1

2

1
−1

2

1



〉

So the geometric multiplicity of λ = 2 is γB (2) = 1, while the algebraic multiplicity is
αB (2) = 3. By Theorem DMLE [494], the matrix B is not diagonalizable. �

Archetype A [703] is the lone archetype with a square matrix that is not diago-
nalizable, as the algebraic and geometric multiplicities of the eigenvalue λ = 0 differ.
Example HMEM5 [458] is another example of a matrix that cannot be diagonalized due
to the difference between the geometric and algebraic multiplicities of λ = 2, as is Exam-
ple CEMS6 [459] which has two complex eigenvalues, each with differing multiplicities.
Likewise, Example EMMS4 [457] has an eigenvalue with different algebraic and geometric
multiplicities and so cannot be diagonalized.

Theorem DED
Distinct Eigenvalues implies Diagonalizable

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diago-
nalizable. �

Proof Let λ1, λ2, λ3, . . . , λn denote the n distinct eigenvalues of A. Then by Theo-
rem NEM [478] we have n =

∑n
i=1 αA (λi), which implies that αA (λi) = 1, 1 ≤ i ≤ n.

From Theorem ME [478] it follows that γA (λi) = 1, 1 ≤ i ≤ n. So γA (λi) = αA (λi),
1 ≤ i ≤ n and Theorem DMLE [494] says A is diagonalizable. �

Example DEHD
Distinct eigenvalues, hence diagonalizable

In Example DEMS5 [461] the matrix

H =


15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10


has characteristic polynomial

pH (x) = x(x− 2)(x− 1)(x + 1)(x + 3)

and so is a 5× 5 matrix with 5 distinct eigenvalues. By Theorem DED [496] we know H
must be diagonalizable. But just for practice, we exhibit the diagonalization itself. The
matrix S contains eigenvectors of H as columns, one from each eigenspace, guaranteeing
linear independent columns and thus the nonsingularity of S. The diagonal matrix
has the eigenvalues of H in the same order that their respective eigenvectors appear
as the columns of S. Notice that we are using the versions of the eigenvectors from
Example DEMS5 [461] that have integer entries.

S−1HS
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=


2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1


−1 

15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10




2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1



=


−3 −3 1 −1 1
−1 −2 1 0 1
−5 −4 1 −1 2
10 10 −3 2 −4
−7 −6 1 −1 3




15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10




2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1



=


−3 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2


�

Archetype B [708] is another example of a matrix that has as many distinct eigenvalues
as its size, and is hence diagonalizable by Theorem DED [496].

Powers of a diagonal matrix are easy to compute, and when a matrix is diagonalizable,
it is almost as easy. We could state a theorem here perhaps, but we will settle instead
for an example that makes the point just as well.

Example HPDM
High power of a diagonalizable matrix

Suppose that

A =


19 0 6 13
−33 −1 −9 −21
21 −4 12 21
−36 2 −14 −28


and we wish to compute A20. Normally this would require 19 matrix multiplications,
but since A is diagonalizable, we can simplify the computations substantially. First, we
diagonalize A. With

S =


1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0


we find

D = S−1AS =


−6 1 −3 −6
0 2 −2 −3
3 0 1 2
−1 −1 1 1




19 0 6 13
−33 −1 −9 −21
21 −4 12 21
−36 2 −14 −28




1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0



=


−1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1
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Now we find an alternate expression for A20,

A20 = AAA . . . A

= InAInAInAIn . . . InAIn

=
(
SS−1

)
A
(
SS−1

)
A
(
SS−1

)
A
(
SS−1

)
. . .
(
SS−1

)
A
(
SS−1

)
= S

(
S−1AS

) (
S−1AS

) (
S−1AS

)
. . .
(
S−1AS

)
S−1

= SDDD . . . DS−1

= SD20S−1

and since D is a diagonal matrix, powers are much easier to compute,

= S


−1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1


20

S−1

= S


(−1)20 0 0 0

0 (0)20 0 0
0 0 (2)20 0
0 0 0 (1)20

S−1

=


1 −1 2 −1
−2 3 −3 3
1 1 3 3
−2 1 −4 0




1 0 0 0
0 0 0 0
0 0 1048576 0
0 0 0 1



−6 1 −3 −6
0 2 −2 −3
3 0 1 2
−1 −1 1 1



=


6291451 2 2097148 4194297
−9437175 −5 −3145719 −6291441
9437175 −2 3145728 6291453
−12582900 −2 −4194298 −8388596


Notice how we effectively replaced the twentieth power of A by the twentieth power of
D, and how a high power of a diagonal matrix is just a collection of powers of scalars
on the diagonal. The price we pay for this simplification is the need to diagonalize the
matrix (by computing eigenvalues and eigenvectors) and finding the inverse of the matrix
of eigenvectors. And we still need to do two matrix products. But the higher the power,
the greater the savings. �

Subsection OD
Orthonormal Diagonalization

Every Hermitian matrix (Definition HM [261]) is diagonalizable (Definition DZM [491]),
and the similarity transformation that accomplishes the diagonalization is an orthogonal
matrix (Definition OM [258]). This means that for every Hermitian matrix of size n
there is a basis of Cn that is composed entirely of eigenvectors for the matrix and also
forms an orthonormal set (Definition ONS [201]). Notice that for matrices with only real
entries, we only need the hypothesis that the matrix is symmetric (Definition SYM [211])
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to reach this conclusion (Example ESMS4 [457]). Can you imagine a prettier basis for
use with a matrix? I can’t. Eventually we’ll include the precise statement of this result
with a proof.

Subsection READ
Reading Questions

1. What is an equivalence relation?

2. State a condition that is equivalent to a matrix being diagonalizable, but is not the
definition.

3. Find a diagonal matrix similar to

A =

[
−5 8
−4 7

]
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Subsection EXC
Exercises

C20 Consider the matrix A below. First, show that A is diagonalizable by computing
the geometric multiplicities of the eigenvalues and quoting the relevant theorem. Sec-
ond, find a diagonal matrix D and a nonsingular matrix S so that S−1AS = D. (See
Exercise EE.C20 [465] for some of the necessary computations.)

A =


18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4


Contributed by Robert Beezer Solution [503]

C21 Determine if the matrix A below is diagonalizable. If the matrix is diagonalizable,
then find a diagonal matrix D that is similar to A, and provide the invertible matrix S
that perfoms the similarity transformation. You should use your calculator to find the
eigenvalues of the matrix, but try only using the row-reducing function of your calculator
to assist with finding eigenvectors.

A =


1 9 9 24
−3 −27 −29 −68
1 11 13 26
1 7 7 18


Contributed by Robert Beezer Solution [503]

C22 Consider the matrix A below. Find the eigenvalues of A using a calculator and
use these to construct the characteristic polynomial of A, pA (x). State the algebraic
multiplicity of each eigenvalue. Find all of the eigenspaces for A by computing expressions
for null spaces, only using your calculator to row-reduce matrices. State the geometric
multiplicity of each eigenvalue. Is A diagonalizable? If not, explain why. If so, find a
diagonal matrix D that is similar to A.

A =


19 25 30 5
−23 −30 −35 −5
7 9 10 1
−3 −4 −5 −1


Contributed by Robert Beezer Solution [504]

T15 Suppose that A and B are similar matrices. Prove that A3 and B3 are similar
matrices. Generalize.
Contributed by Robert Beezer Solution [505]

T16 Suppose that A and B are similar matrices, with A nonsingular. Prove that B is
nonsingular, and that A−1 is similar to B−1.
Contributed by Robert Beezer

Version 0.85



502 Section SD Similarity and Diagonalization

T17 Suppose that B is a nonsingular matrix. Prove that AB is similar to BA.
Contributed by Robert Beezer Solution [506]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [501]
Using a calculator, we find that A has three distinct eigenvalues, λ = 3, 2, −1, with

λ = 2 having algebraic multiplicity two, αA (2) = 2. The eigenvalues λ = 3, −1 have
algebraic multiplicity one, and so by Theorem ME [478] we can conclude that their
geometric multiplicities are one as well. Together with the computation of the geometric
multiplicity of λ = 2 from Exercise EE.C20 [465], we know

γA (3) = αA (3) = 1 γA (2) = αA (2) = 2 γA (−1) = αA (−1) = 1

This satisfies the hypotheses of Theorem DMLE [494], and so we can conclude that A is
diagonalizable.

A calculator will give us four eigenvectors of A, the two for λ = 2 being linearly inde-
pendent presumably. Or, by hand, we could find basis vectors for the three eigenspaces.
For λ = 3, −1 the eigenspaces have dimension one, and so any eigenvector for these eigen-
values will be multiples of the ones we use below. For λ = 2 there are many different
bases for the eigenspace, so your answer could vary. Our eigenvectors are the basis vectors
we would have obtained if we had actually constructed a basis in Exercise EE.C20 [465]
rather than just computing the dimension.

By the construction in the proof of Theorem DC [491], the required matrix S has
columns that are four linearly independent eigenvectors of A and the diagonal matrix
has the eigenvalues on the diagonal (in the same order as the eigenvectors in S). Here
are the pieces, “doing” the diagonalization,
−1 0 −3 6
−2 −1 −1 0
0 0 1 −3
1 1 0 1


−1 

18 −15 33 −15
−4 8 −6 6
−9 9 −16 9
5 −6 9 −4



−1 0 −3 6
−2 −1 −1 0
0 0 1 −3
1 1 0 1

 =


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −1


C21 Contributed by Robert Beezer Statement [501]
A calculator will provide the eigenvalues λ = 2, 2, 1, 0, so we can reconstruct the

characteristic polynomial as

pA (x) = (x− 2)2(x− 1)x

so the algebraic multiplicities of the eigenvalues are

αA (2) = 2 αA (1) = 1 αA (0) = 1

Now compute eigenspaces by hand, obtaining null spaces for each of the three eigenvalues
by constructing the correct singular matrix (Theorem EMNS [455]),

A− 2I4 =


−1 9 9 24
−3 −29 −29 −68
1 11 11 26
1 7 7 16

 RREF−−−→


1 0 0 −3

2

0 1 1 5
2

0 0 0 0
0 0 0 0
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EA (2) = N (A− 2I4) =

〈


3
2

−5
2

0
1

 ,


0
−1
1
0



〉

=

〈


3
−5
0
2

 ,


0
−1
1
0



〉

A− 1I4 =


0 9 9 24
−3 −28 −29 −68
1 11 12 26
1 7 7 17

 RREF−−−→


1 0 0 −5

3

0 1 0 13
3

0 0 1 −5
3

0 0 0 0



EA (1) = N (A− I4) =

〈


5
3

−13
3

5
3

1



〉

=

〈


5
−13
5
3



〉

A− 0I4 =


1 9 9 24
−3 −27 −29 −68
1 11 13 26
1 7 7 18

 RREF−−−→


1 0 0 −3
0 1 0 5
0 0 1 −2
0 0 0 0



EA (0) = N (A− I4) =

〈


3
−5
2
1



〉

From this we can compute the dimensions of the eigenspaces to obtain the geometric
multiplicities,

γA (2) = 2 γA (1) = 1 γA (0) = 1

For each eigenvalue, the algebraic and geometric multiplicities are equal and so by The-
orem DMLE [494] we now know that A is diagonalizable. The construction in Theo-
rem DC [491] suggests we form a matrix whose columns are eigenvectors of A

S =


3 0 5 3
−5 −1 −13 −5
0 1 5 2
2 0 3 1


Since det (S) = −1 6= 0, we know that S is nonsingular (Theorem SMZD [436]), so the
columns of S are a set of 4 linearly independent eigenvectors of A. By the proof of
Theorem SMZD [436] we know

S−1AS =


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0


a diagonal matrix with the eigenvalues of A along the diagonal, in the same order as the
associated eigenvectors appear as columns of S.

C22 Contributed by Robert Beezer Statement [501]
A calculator will report λ = 0 as an eigenvalue of algebraic multiplicity of 2, and λ = −1
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as an eigenvalue of algebraic multiplicity 2 as well. Since eigenvalues are roots of the
characteristic polynomial (Theorem EMRCP [453]) we have the factored version

pA (x) = (x− 0)2(x− (−1))2 = x2(x2 + 2x + 1) = x4 + 2x3 + x2

The eigenspaces are then

λ = 0

A− (0)I4 =


19 25 30 5
−23 −30 −35 −5
7 9 10 1
−3 −4 −5 −1

 RREF−−−→


1 0 −5 −5

0 1 5 4
0 0 0 0
0 0 0 0



EA (0) = N (C − (0)I4) =

〈


5
−5
1
0

 ,


5
−4
0
1



〉

λ = −1

A− (−1)I4 =


20 25 30 5
−23 −29 −35 −5
7 9 11 1
−3 −4 −5 0

 RREF−−−→


1 0 −1 4

0 1 2 −3
0 0 0 0
0 0 0 0



EA (−1) = N (C − (−1)I4) =

〈


1
−2
1
0

 ,


−4
3
0
1



〉

Each eigenspace above is described by a spanning set obtained through an application
of Theorem BNS [162] and so is a basis for the eigenspace. In each case the dimension,
and therefore the geometric multiplicity, is 2.

For each of the two eigenvalues, the algebraic and geometric multiplicities are equal.
Theorem DMLE [494] says that in this situation the matrix is diagonalizable. We know
from Theorem DC [491] that when we diagonalize A the diagonal matrix will have the
eigenvalues of A on the diagonal (in some order). So we can claim that

D =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1


T15 Contributed by Robert Beezer Statement [501]
By Definition SIM [487] we know that there is a nonsingular matrix S so that A =

S−1BS. Then

A3 = (B−1SB)3

= (S−1BS)(S−1BS)(S−1BS)

= S−1B(SS−1)B(SS−1)BS Theorem MMA [230]
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= S−1B(I3)B(I3)BS Definition MI [240]

= S−1BBBS Theorem MMIM [228]

= S−1B3S

This equation says that A3 is similar to B3 (via the matrix S).
More generally, if A is similar to B, and m is a non-negative integer, then Am is

similar to Bm. This can be proved using induction (Technique I [695]).

T17 Contributed by Robert Beezer Statement [502]
The nonsingular (invertible) matrix B will provide the desired similarity transformation,

B−1 (BA) B =
(
B−1B

)
(AB) Theorem MMA [230]

= InAB Definition MI [240]

= AB Theorem MMIM [228]
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Chapter LT: Linear Transformations

In the next linear algebra course you take, the first lecture might be a reminder about
what a vector space is (Definition VS [313]), their ten properties, basic theorems and
then some examples. The second lecture would likely be all about linear transformations.
While it may seem we have waited a long time to present what must be a central topic,
in truth we have already been working with linear transformations for some time.

Functions are important objects in the study of calculus, but have been absent from
this course until now (well, not really, it just seems that way). In your study of more
advanced mathematics it is nearly impossible to escape the use of functions — they are
as fundamental as sets are.

Section LT

Linear Transformations

Here comes a key definition.

Subsection LT
Linear Transformations

Definition LT
Linear Transformation
A linear transformation, T : U 7→ V , is a function that carries elements of the vector

space U (called the domain) to the vector space V (called the codomain), and which
has two additional properties

1. T (u1 + u2) = T (u1) + T (u2) for all u1, u2 ∈ U

2. T (αu) = αT (u) for all u ∈ U and all α ∈ C

(This definition contains Notation LT.) 4
The two defining conditions in the definition of a linear transformation should “feel

linear,” whatever that means. Conversely, these two conditions could be taken as a exactly
what it means to be linear. As every vector space property derives from vector addition
and scalar multiplication, so too, every property of a linear transformation derives from
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508 Section LT Linear Transformations

these two defining properties. While these conditions may be reminiscent of how we test
subspaces, they really are quite different, so do not confuse the two.

Here are two diagrams that convey the essence of the two defining properties of a
linear transformation. In each case, begin in the upper left-hand corner, and follow the
arrows around the rectangle to the lower-right hand corner, taking two different routes
and doing the indicated operations labeled on the arrows. There are two results there.
For a linear transformation these two expressions are always equal.

u1, u2
T−−−→ T (u1) , T (u2)

+

y y+

u1 + u2
T−−−→ T (u1) + T (u2),

T (u1 + u2)

u
T−−−→ T (u)

α

y yα

αu
T−−−→ αT (u),

T (αu)

A couple of words about notation. T is the name of the linear transformation, and
should be used when we want to discuss the function as a whole. T (u) is how we talk
about the output of the function, it is a vector in the vector space V . When we write
T (x + y) = T (x) + T (y), the plus sign on the left is the operation of vector addition in
the vector space U , since x and y are elements of U . The plus sign on the right is the
operation of vector addition in the vector space V , since T (x) and T (y) are elements of
the vector space V . These two instances of vector addition might be wildly different.

Let’s examine several examples and begin to form a catalog of known linear transfor-
mations to work with.

Example ALT
A linear transformation

Define T : C3 7→ C2 by describing the output of the function for a generic input with
the formula

T

x1

x2

x3

 =

[
2x1 + x3

−4x2

]
and check the two defining properties.

T (x + y) = T

x1

x2

x3

+

y1

y2

y3


= T

x1 + y1

x2 + y2

x3 + y3


=

[
2(x1 + y1) + (x3 + y3)

−4(x2 + y2)

]
=

[
(2x1 + x3) + (2y1 + y3)
−4x2 + (−4)y2)

]
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Subsection LT.LT Linear Transformations 509

=

[
2x1 + x3

−4x2

]
+

[
2y1 + y3

−4y2

]

= T

x1

x2

x3

+ T

y1

y2

y3


= T (x) + T (y)

and

T (αx) = T

α

x1

x2

x3


= T

αx1

αx2

αx3


=

[
2(αx1) + (αx3)
−4(αx2)

]
=

[
α(2x1 + x3)

α(−4x2)

]
= α

[
2x1 + x3

−4x2

]

= αT

x1

x2

x3


= αT (x)

So by Definition LT [507], T is a linear transformation. �

It can be just as instructive to look at functions that are not linear transformations.
Since the defining conditions must be true for all vectors and scalars, it is enough to find
just one situation where the properties fail.

Example NLT
Not a linear transformation

Define S : C3 7→ C3 by

S

x1

x2

x3

 =

 4x1 + 2x2

0
x1 + 3x3 − 2


This function “looks” linear, but consider

3 S

1
2
3

 = 3

8
0
8

 =

24
0
24


while

S

3

1
2
3

 = S

3
6
9

 =

24
0
28
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So the second required property fails for the choice of α = 3 and x =

1
2
3

 and by

Definition LT [507], S is not a linear transformation. It is just about as easy to find an
example where the first defining property fails (try it!). Notice that it is the “-2” in the
third component of the definition of S that prevents the function from being a linear
transformation. �

Example LTPM
Linear transformation, polynomials to matrices

Define a linear transformation T : P3 7→M22 by

T
(
a + bx + cx2 + dx3

)
=

[
a + b a− 2c

d b− d

]
We verify the two defining conditions of a linear transformations.

T (x + y) = T
(
(a1 + b1x + c1x

2 + d1x
3) + (a2 + b2x + c2x

2 + d2x
3)
)

= T
(
(a1 + a2) + (b1 + b2)x + (c1 + c2)x

2 + (d1 + d2)x
3)
)

=

[
(a1 + a2) + (b1 + b2) (a1 + a2)− 2(c1 + c2)

d1 + d2 (b1 + b2)− (d1 + d2)

]
=

[
(a1 + b1) + (a2 + b2) (a1 − 2c1) + (a2 − 2c2)

d1 + d2 (b1 − d1) + (b2 − d2)

]
=

[
a1 + b1 a1 − 2c1

d1 b1 − d1

]
+

[
a2 + b2 a2 − 2c2

d2 b2 − d2

]
= T

(
a1 + b1x + c1x

2 + d1x
3
)

+ T
(
a2 + b2x + c2x

2 + d2x
3
)

= T (x) + T (y)

and

T (αx) = T
(
α(a + bx + cx2 + dx3)

)
= T

(
(αa) + (αb)x + (αc)x2 + (αd)x3

)
=

[
(αa) + (αb) (αa)− 2(αc)

αd (αb)− (αd)

]
=

[
α(a + b) α(a− 2c)

αd α(b− d)

]
= α

[
a + b a− 2c

d b− d

]
= αT

(
a + bx + cx2 + dx3

)
= αT (x)

So by Definition LT [507], T is a linear transformation. �

Example LTPP
Linear transformation, polynomials to polynomials

Define a function S : P4 7→ P5 by

S(p(x)) = (x− 2)p(x)

Version 0.85



Subsection LT.MLT Matrices and Linear Transformations 511

Then

S (p(x) + q(x)) = (x− 2)(p(x) + q(x)) = (x− 2)p(x) + (x− 2)q(x) = S (p(x)) + S (q(x))

S (αp(x)) = (x− 2)(αp(x)) = (x− 2)αp(x) = α(x− 2)p(x) = αS (p(x))

So by Definition LT [507], S is a linear transformation. �

Linear transformations have many amazing properties, which we will investigate
through the next few sections. However, as a taste of things to come, here is a the-
orem we can prove now and put to use immediately.

Theorem LTTZZ
Linear Transformations Take Zero to Zero

Suppose T : U 7→ V is a linear transformation. Then T (0) = 0. �

Proof The two zero vectors in the conclusion of the theorem are different. The first is
from U while the second is from V . We will subscript the zero vectors in this proof to
highlight the distinction. Think about your objects. (This proof is contributed by Mark
Shoemaker).

T (0U) = T (00U) Theorem ZSSM [321] in U

= 0T (0U) Definition LT [507]

= 0V Theorem ZSSM [321] in V

�

Return to Example NLT [509] and compute S

0
0
0

 =

 0
0
−2

 to quickly see again

that S is not a linear transformation, while in Example LTPM [510] and compute

S (0 + 0x + 0x2 + 0x3) =

[
0 0
0 0

]
as an example of Theorem LTTZZ [511] at work.

Subsection MLT
Matrices and Linear Transformations

If you give me a matrix, then I can quickly build you a linear transformation. Always.
First a motivating example and then the theorem.

Example LTM
Linear transformation from a matrix

Let

A =

3 −1 8 1
2 0 5 −2
1 1 3 −7


and define a function P : C4 7→ C3 by

P (x) = Ax
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So we are using an old friend, the matrix-vector product (Definition MVP [221]) as a
way to convert a vector with 4 components into a vector with 3 components. Applying
Definition MVP [221] allows us to write the defining formula for P in a slightly different
form,

P (x) = Ax =

3 −1 8 1
2 0 5 −2
1 1 3 −7




x1

x2

x3

x4

 = x1

3
2
1

+ x2

−1
0
1

+ x3

8
5
3

+ x4

 1
−2
−7


So we recognize the action of the function P as using the components of the vector
(x1, x2, x3, x4) as scalars to form the output of P as a linear combination of the four
columns of the matrix A, which are all members of C3, so the result is a vector in
C3. We can rearrange this expression further, using our definitions of operations in C3

(Section VO [91]).

P (x) = Ax Definition of P

= x1

3
2
1

+ x2

−1
0
1

+ x3

8
5
3

+ x4

 1
−2
−7

 Definition MVP [221]

=

3x1

2x1

x1

+

−x2

0
x2

+

8x3

5x3

3x3

+

 x4

−2x4

−7x4

 Definition CVSM [93]

=

3x1 − x2 + 8x3 + x4

2x1 + 5x3 − 2x4

x1 + x2 + 3x3 − 7x4

 Definition CVA [93]

You might recognize this final expression as being similar in style to some previous
examples (Example ALT [508]) and some linear transformations defined in the archetypes
(Archetype M [757] through Archetype R [771]). But the expression that says the output
of this linear transformation is a linear combination of the columns of A is probably the
most powerful way of thinking about examples of this type.

Almost forgot — we should verify that P is indeed a linear transformation. This is
easy with two matrix properties from Section MM [221].

P (x + y) = A (x + y) Definition of P

= Ax + Ay Theorem MMDAA [229]

= P (x) + P (y) Definition of P

and

P (αx) = A (αx) Definition of P

= α (Ax) Theorem MMSMM [229]

= αP (x) Definition of P

So by Definition LT [507], P is a linear transformation. �

So the multiplication of a vector by a matrix “transforms” the input vector into an
output vector, possibly of a different size, by performing a linear combination. And
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this transformation happens in a “linear” fashion. This “functional” view of the matrix-
vector product is the most important shift you can make right now in how you think
about linear algebra. Here’s the theorem, whose proof is very nearly an exact copy of
the verification in the last example.

Theorem MBLT
Matrices Build Linear Transformations

Suppose that A is an m × n matrix. Define a function T : Cn 7→ Cm by T (x) = Ax.
Then T is a linear transformation. �

Proof

T (x + y) = A (x + y) Definition of T

= Ax + Ay Theorem MMDAA [229]

= T (x) + T (y) Definition of T

and

T (αx) = A (αx) Definition of T

= α (Ax) Theorem MMSMM [229]

= αT (x) Definition of T

So by Definition LT [507], T is a linear transformation. �

So Theorem MBLT [513] gives us a rapid way to construct linear transformations.
Grab an m×n matrix A, define T (x) = Ax and Theorem MBLT [513] tells us that T is
a linear transformation from Cn to Cm, without any further checking.

We can turn Theorem MBLT [513] around. You give me a linear transformation and
I will give you a matrix.

Example MFLT
Matrix from a linear transformation

Define the function R : C3 7→ C4 by

R

x1

x2

x3

 =


2x1 − 3x2 + 4x3

x1 + x2 + x3

−x1 + 5x2 − 3x3

x2 − 4x3


You could verify that R is a linear transformation by applying the definition, but we will
instead massage the expression defining a typical output until we recognize the form of
a known class of linear transformations.

R

x1

x2

x3

 =


2x1 − 3x2 + 4x3

x1 + x2 + x3

−x1 + 5x2 − 3x3

x2 − 4x3



=


2x1

x1

−x1

0

+


−3x2

x2

5x2

x2

+


4x3

x3

−3x3

−4x3

 Definition CVA [93]
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= x1


2
1
−1
0

+ x2


−3
1
5
1

+ x3


4
1
−3
−4

 Definition CVSM [93]

=


2 −3 4
1 1 1
−1 5 −3
0 1 −4


x1

x2

x3

 Definition MVP [221]

So if we define the matrix

B =


2 −3 4
1 1 1
−1 5 −3
0 1 −4


then R (x) = Bx. By Theorem MBLT [513], we can easily recognize R as a linear
transformation since it has the form described in the hypothesis of the theorem. �

Example MFLT [513] was not accident. Consider any one of the archetypes where
both the domain and codomain are sets of column vectors (Archetype M [757] through
Archetype R [771]) and you should be able to mimic the previous example. Here’s
the theorem, which is notable since it is our first occasion to use the full power of
the defining properties of a linear transformation when our hypothesis includes a linear
transformation.

Theorem MLTCV
Matrix of a Linear Transformation, Column Vectors

Suppose that T : Cn 7→ Cm is a linear transformation. Then there is an m× n matrix
A such that T (x) = Ax. �

Proof The conclusion says a certain matrix exists. What better way to prove something
exists than to actually build it? So our proof will be constructive, and the procedure
that we will use abstractly in the proof can be used concretely in specific examples.

Let e1, e2, e3, . . . , en be the columns of the identity matrix of size n, In (Defini-
tion SUV [242]). Evaluate the linear transformation T with each of these standard unit
vectors as an input, and record the result. In other words, define n vectors in Cm, Ai,
1 ≤ i ≤ n by

Ai = T (ei)

Then package up these vectors as the columns of a matrix

A = [A1|A2|A3| . . . |An]

Does A have the desired properties? First, A is clearly an m× n matrix. Then

T (x) = T (Inx) Theorem MMIM [228]

= T ([e1|e2|e3| . . . |en]x) Definition SUV [242]

= T ([x]1 e1 + [x]2 e2 + [x]3 e3 + · · ·+ [x]n en) Definition MVP [221]

= T ([x]1 e1) + T ([x]2 e2) + T ([x]3 e3) + · · ·+ T ([x]n en) Definition LT [507]

= [x]1 T (e1) + [x]2 T (e2) + [x]3 T (e3) + · · ·+ [x]n T (en) Definition LT [507]

= [x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An Definition of Ai
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= Ax Definition MVP [221]

as desired. �

So if we were to restrict our study of linear transformations to those where the do-
main and codomain are both vector spaces of column vectors (Definition VSCV [91]),
every matrix leads to a linear transformation of this type (Theorem MBLT [513]), while
every such linear transformation leads to a matrix (Theorem MLTCV [514]). So ma-
trices and linear transformations are fundamentally the same. We call the matrix A of
Theorem MLTCV [514] the matrix representation of T .

We have defined linear transformations for more general vector spaces than just Cm,
can we extend this correspondence between linear transformations and matrices to more
general linear transformations (more general domains and codomains)? Yes, and this
is the main theme of Chapter R [591]. Stay tuned. For now, let’s illustrate Theo-
rem MLTCV [514] with an example.

Example MOLT
Matrix of a linear transformation

Suppose S : C3 7→ C4 is defined by

S

x1

x2

x3

 =


3x1 − 2x2 + 5x3

x1 + x2 + x3

9x1 − 2x2 + 5x3

4x2


Then

C1 = S (e1) = S

1
0
0

 =


3
1
9
0



C2 = S (e2) = S

0
1
0

 =


−2
1
−2
4



C3 = S (e3) = S

0
0
1

 =


5
1
5
0


so define

C = [C1|C2|C3] =


3 −2 5
1 1 1
9 −2 5
0 4 0


and Theorem MLTCV [514] guarantees that S (x) = Cx.

As an illuminating exercise, let z =

 2
−3
3

 and compute S (z) two different ways.
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First, return to the definition of S and evaluate S (z) directly. Then do the matrix-

vector product Cz. In both cases you should obtain the vector S (z) =


27
2
39
−12

. �

Subsection LTLC
Linear Transformations and Linear Combinations

It is the interaction between linear transformations and linear combinations that lies at
the heart of many of the important theorems of linear algebra. The next theorem distills
the essence of this. The proof is not deep, the result is hardly startling, but it will be
referenced frequently. We have already passed by one occasion to employ it, in the proof
of Theorem MLTCV [514]. Paraphrasing, this theorem says that we can “push” linear
transformations “down into” linear combinations, or “pull” linear transformations “up
out” of linear combinations. We’ll have opportunities to both push and pull.

Theorem LTLC
Linear Transformations and Linear Combinations
Suppose that T : U 7→ V is a linear transformation, u1, u2, u3, . . . , ut are vectors from

U and a1, a2, a3, . . . , at are scalars from C. Then

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut)

�

Proof

T (a1u1 + a2u2 + a3u3 + · · ·+ atut)

= T (a1u1) + T (a2u2) + T (a3u3) + · · ·+ T (atut) Definition LT [507]

= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut) Definition LT [507]

�

Our next theorem says, informally, that it is enough to know how a linear transforma-
tion behaves for inputs from a basis of the domain, and all other outputs are described by
a linear combination of these values. Again, the theorem and its proof are not remarkable,
but the insight that goes along with it is fundamental.

Theorem LTDB
Linear Transformation Defined on a Basis
Suppose that T : U 7→ V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis

for U and w is a vector from U . Let a1, a2, a3, . . . , an be the scalars from C such that

w = a1u1 + a2u2 + a3u3 + · · ·+ anun

Then
T (w) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ anT (un)

�
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Proof For any w ∈ U , Theorem VRRB [359] says there are (unique) scalars such
that w is a linear combination of the basis vectors in B. The result then follows from a
straightforward application of Theorem LTLC [516] to the linear combination. �

Example LTDB1
Linear transformation defined on a basis

Suppose you are told that T : C3 7→ C2 is a linear transformation and given the three
values,

T

1
0
0

 =

[
2
1

]
T

0
1
0

 =

[
−1
4

]
T

0
0
1

 =

[
6
0

]

Because

B =


1

0
0

 ,

0
1
0

 ,

0
0
1


is a basis for C3 (Theorem SUVB [367]), Theorem LTDB [516] says we can compute any
output of T with just this information. For example, consider,

w =

 2
−3
1

 = (2)

1
0
0

+ (−3)

0
1
0

+ (1)

0
0
1


so

T (w) = (2)

[
2
1

]
+ (−3)

[
−1
4

]
+ (1)

[
6
0

]
=

[
13
−10

]
Doing it again,

w =

 5
2
−3

 = (5)

1
0
0

+ (2)

0
1
0

+ (−3)

0
0
1


so

T (w) = (5)

[
2
1

]
+ (2)

[
−1
4

]
+ (−3)

[
6
0

]
=

[
−10
13

]
Any other value of T could be computed in a similar manner. So rather than being given
a formula for the outputs of T , the requirement that T behave as a linear transformation,
along with its values on a handful of vectors (the basis), are just as sufficient as a formula
for computing any value of the function. You might notice some parallels between this
example and Example MOLT [515] or Theorem MLTCV [514]. �

Example LTDB2
Linear transformation defined on a basis

Suppose you are told that R : C3 7→ C2 is a linear transformation and given the three
values,

R

1
2
1

 =

[
5
−1

]
R

−1
5
1

 =

[
0
4

]
R

3
1
4

 =

[
2
3

]
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You can check that

D =


1

2
1

 ,

−1
5
1

 ,

3
1
4


is a basis for C3 (make the vectors the columns of a square matrix and check that the
matrix is nonsingular, Theorem CNSMB [373]). By Theorem LTDB [516] we can compute
any output of R with just this information. However, we have to work just a bit harder
to take an input vector and express it as a linear combination of the vectors in D. For
example, consider,

y =

 8
−3
5


Then we must first write y as a linear combination of the vectors in D and solve for the
unknown scalars, to arrive at

y =

 8
−3
5

 = (3)

1
2
1

+ (−2)

−1
5
1

+ (1)

3
1
4


Then Theorem LTDB [516] gives us

R (y) = (3)

[
5
−1

]
+ (−2)

[
0
4

]
+ (1)

[
2
3

]
=

[
17
−8

]
Any other value of R could be computed in a similar manner. �

Here is a third example of a linear transformation defined by its action on a basis,
only with more abstract vector spaces involved.

Example LTDB3
Linear transformation defined on a basis
The set W = {p(x) ∈ P3 | p(1) = 0, p(3) = 0} ⊆ P3 is a subspace of the vector space of

polynomials P3. This subspace has C = {3− 4x + x2, 12− 13x + x3} as a basis (check
this!). Suppose we define a linear transformation S : P3 7→M22 by the values

S
(
3− 4x + x2

)
=

[
1 −3
2 0

]
S
(
12− 13x + x3

)
=

[
0 1
1 0

]
To illustrate a sample computation of S, consider q(x) = 9− 6x− 5x2 + 2x3. Verify that
q(x) is an element of W (does it have roots at x = 1 and x = 3?), then find the scalars
needed to write it as a linear combination of the basis vectors in C. Because

q(x) = 9− 6x− 5x2 + 2x3 = (−5)(3− 4x + x2) + (2)(12− 13x + x3)

Theorem LTDB [516] gives us

S (q) = (−5)

[
1 −3
2 0

]
+ (2)

[
0 1
1 0

]
=

[
−5 17
−8 0

]
And all the other outputs of S could be computed in the same manner. Every output of
S will have a zero in the second row, second column. Can you see why this is so? �
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Subsection PI
Pre-Images

The definition of a function requires that for each input in the domain there is exactly
one output in the codomain. However, the correspondence does not have to behave the
other way around. A member of the codomain might have many inputs from the domain
that create it, or it may have none at all. To formalize our discussion of this aspect of
linear transformations, we define the pre-image.

Definition PI
Pre-Image

Suppose that T : U 7→ V is a linear transformation. For each v, define the pre-image
of v to be the subset of U given by

T−1 (v) = {u ∈ U | T (u) = v}

4
In other words, T−1 (v) is the set of all those vectors in the domain U that get “sent”

to the vector v.
TODO: All preimages form a partition of U , an equivalence relation is about. Maybe

to exercises.

Example SPIAS
Sample pre-images, Archetype S

Archetype S [774] is the linear transformation defined by

T : C3 7→M22, T

a
b
c

 =

[
a− b 2a + 2b + c

3a + b + c −2a− 6b− 2c

]
We could compute a pre-image for every element of the codomain M22. However, even
in a free textbook, we do not have the room to do that, so we will compute just two.

Choose

v =

[
2 1
3 2

]
∈M22

for no particular reason. What is T−1 (v)? Suppose u =

u1

u2

u3

 ∈ T−1 (v). That T (u) = v

becomes[
2 1
3 2

]
= v = T (u) = T

u1

u2

u3

 =

[
u1 − u2 2u1 + 2u2 + u3

3u1 + u2 + u3 −2u1 − 6u2 − 2u3

]
Using matrix equality (Definition ME [207]), we arrive at a system of four equations in
the three unknowns u1, u2, u3 with an augmented matrix that we can row-reduce in the
hunt for solutions, 

1 −1 0 2
2 2 1 1
3 1 1 3
−2 −6 −2 2

 RREF−−−→


1 0 1

4
5
4

0 1 1
4
−3

4

0 0 0 0
0 0 0 0
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We recognize this system as having infinitely many solutions described by the single
free variable u3. Eventually obtaining the vector form of the solutions (Theorem VF-
SLS [113]), we can describe the preimage precisely as,

T−1 (v) =
{
u ∈ C3

∣∣ T (u) = v
}

=


u1

u2

u3

 ∣∣∣∣∣∣ u1 =
5

4
− 1

4
u3, u2 = −3

4
− 1

4
u3


=


 5

4
− 1

4
u3

−3
4
− 1

4
u3

u3

 ∣∣∣∣∣∣ u3 ∈ C3


=


 5

4

−3
4

0

+ u3

−1
4

−1
4

1

 ∣∣∣∣∣∣ u3 ∈ C3


=

 5
4

−3
4

0

+

〈
−1

4

−1
4

1


〉

This last line is merely a suggestive way of describing the set on the previous line. You
might create three or four vectors in the preimage, and evaluate T with each. Was the
result what you expected? For a hint of things to come, you might try evaluating T with
just the lone vector in the spanning set above. What was the result? Now take a look
back at Theorem PSPHS [119]. Hmmmm.

OK, let’s compute another preimage, but with a different outcome this time. Choose

v =

[
1 1
2 4

]
∈M22

What is T−1 (v)? Suppose u =

u1

u2

u3

 ∈ T−1 (v). That T (u) = v becomes

[
1 1
2 4

]
= v = T (u) = T

u1

u2

u3

 =

[
u1 − u2 2u1 + 2u2 + u3

3u1 + u2 + u3 −2u1 − 6u2 − 2u3

]

Using matrix equality (Definition ME [207]), we arrive at a system of four equations in
the three unknowns u1, u2, u3 with an augmented matrix that we can row-reduce in the
hunt for solutions, 

1 −1 0 1
2 2 1 1
3 1 1 2
−2 −6 −2 4

 RREF−−−→


1 0 1

4
0

0 1 1
4

0

0 0 0 1
0 0 0 0


By Theorem RCLS [54] we recognize this system as inconsistent. So no vector u is a
member of T−1 (v) and so

T−1 (v) = ∅
�
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The preimage is just a set, it is almost never a subspace of U (you might think
about just when T−1 (v) is a subspace, see Exercise ILT.T10 [545]). We will describe its
properties going forward, and it will be central to the main ideas of this chapter.

Subsection NLTFO
New Linear Transformations From Old

We can combine linear transformations in natural ways to create new linear transforma-
tions. So we will define these combinations and then prove that the results really are still
linear transformations. First the sum of two linear transformations.

Definition LTA
Linear Transformation Addition

Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same
domain and codomain. Then their sum is the function T + S : U 7→ V whose outputs
are defined by

(T + S) (u) = T (u) + S (u)

4

Notice that the first plus sign in the definition is the operation being defined, while
the second one is the vector addition in V . (Vector addition in U will appear just now
in the proof that T + S is a linear transformation.) Definition LTA [521] only provides
a function. It would be nice to know that when the constituents (T , S) are linear
transformations, then so too is T + S.

Theorem SLTLT
Sum of Linear Transformations is a Linear Transformation

Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same
domain and codomain. Then T + S : U 7→ V is a linear transformation. �

Proof We simply check the defining properties of a linear transformation (Defini-
tion LT [507]). This is a good place to consistently ask yourself which objects are being
combined with which operations.

(T + S) (x + y) = T (x + y) + S (x + y) Definition LTA [521]

= T (x) + T (y) + S (x) + S (y) Definition LT [507]

= T (x) + S (x) + T (y) + S (y) Property C [313] in V

= (T + S) (x) + (T + S) (y) Definition LTA [521]

and

(T + S) (αx) = T (αx) + S (αx) Definition LTA [521]

= αT (x) + αS (x) Definition LT [507]

= α (T (x) + S (x)) Property DVA [314] in V

= α(T + S) (x) Definition LTA [521]
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�

Example STLT
Sum of two linear transformations

Suppose that T : C2 7→ C3 and S : C2 7→ C3 are defined by

T

([
x1

x2

])
=

 x1 + 2x2

3x1 − 4x2

5x1 + 2x2

 S

([
x1

x2

])
=

 4x1 − x2

x1 + 3x2

−7x1 + 5x2


Then by Definition LTA [521], we have

(T+S)

([
x1

x2

])
= T

([
x1

x2

])
+S

([
x1

x2

])
=

 x1 + 2x2

3x1 − 4x2

5x1 + 2x2

+

 4x1 − x2

x1 + 3x2

−7x1 + 5x2

 =

 5x1 + x2

4x1 − x2

−2x1 + 7x2


and by Theorem SLTLT [521] we know T + S is also a linear transformation from C2 to
C3. �

Definition LTSM
Linear Transformation Scalar Multiplication

Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then the scalar
multiple is the function αT : U 7→ V whose outputs are defined by

(αT ) (u) = αT (u)

4
Given that T is a linear transformation, it would be nice to know that αT is also a

linear transformation.

Theorem MLTLT
Multiple of a Linear Transformation is a Linear Transformation

Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then (αT ) : U 7→ V is
a linear transformation. �

Proof We simply check the defining properties of a linear transformation (Defini-
tion LT [507]). This is another good place to consistently ask yourself which objects are
being combined with which operations.

(αT ) (x + y) = α (T (x + y)) Definition LTSM [522]

= α (T (x) + T (y)) Definition LT [507]

= αT (x) + αT (y) Property DVA [314] in V

= (αT ) (x) + (αT ) (y) Definition LTSM [522]

and

(αT ) (βx) = αT (βx) Definition LTSM [522]

= α (βT (x)) Definition LT [507]

= (αβ) T (x) Property SMA [314] in V

= (βα) T (x) Commutativity in C
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= β (αT (x)) Property SMA [314] in V

= β ((αT ) (x)) Definition LTSM [522]

�

Example SMLT
Scalar multiple of a linear transformation

Suppose that T : C4 7→ C3 is defined by

T




x1

x2

x3

x4


 =

 x1 + 2x2 − x3 + 2x4

x1 + 5x2 − 3x3 + x4

−2x1 + 3x2 − 4x3 + 2x4


For the sake of an example, choose α = 2, so by Definition LTSM [522], we have

αT




x1

x2

x3

x4


 = 2T




x1

x2

x3

x4


 = 2

 x1 + 2x2 − x3 + 2x4

x1 + 5x2 − 3x3 + x4

−2x1 + 3x2 − 4x3 + 2x4

 =

 2x1 + 4x2 − 2x3 + 4x4

2x1 + 10x2 − 6x3 + 2x4

−4x1 + 6x2 − 8x3 + 4x4


and by Theorem MLTLT [522] we know 2T is also a linear transformation from C4 to
C3. �

Now, let’s imagine we have two vector spaces, U and V , and we collect every pos-
sible linear transformation from U to V into one big set, and call it LT (U, V ). Defini-
tion LTA [521] and Definition LTSM [522] tell us how we can “add” and “scalar multiply”
two elements of LT (U, V ). Theorem SLTLT [521] and Theorem MLTLT [522] tell us that
if we do these operations, then the resulting functions are linear transformations that are
also in LT (U, V ). Hmmmm, sounds like a vector space to me! A set of objects, an
addition and a scalar multiplication. Why not?

Theorem VSLT
Vector Space of Linear Transformations

Suppose that U and V are vector spaces. Then the set of all linear transformations
from U to V , LT (U, V ) is a vector space when the operations are those given in Defini-
tion LTA [521] and Definition LTSM [522]. �

Proof Theorem SLTLT [521] and Theorem MLTLT [522] provide two of the ten proper-
ties in Definition VS [313]. However, we still need to verify the remaining eight properties.
By and large, the proofs are straightforward and rely on concocting the obvious object,
or by reducing the question to the same vector space property in the vector space V .

The zero vector is of some interest, though. What linear transformation would we
add to any other linear transformation, so as to keep the second one unchanged? The
answer is Z : U 7→ V defined by Z (u) = 0V for every u ∈ U . Notice how we do not need
to know any specifics about U and V to make this definition. �

Definition LTC
Linear Transformation Composition

Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then the com-
position of S and T is the function (S ◦ T ) : U 7→ W whose outputs are defined by

(S ◦ T ) (u) = S (T (u))
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4
Given that T and S are linear transformations, it would be nice to know that S ◦ T

is also a linear transformation.

Theorem CLTLT
Composition of Linear Transformations is a Linear Transformation
Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then (S◦T ) : U 7→

W is a linear transformation. �

Proof We simply check the defining properties of a linear transformation (Defini-
tion LT [507]).

(S ◦ T ) (x + y) = S (T (x + y)) Definition LTC [523]

= S (T (x) + T (y)) Definition LT [507] for T

= S (T (x)) + S (T (y)) Definition LT [507] for S

= (S ◦ T ) (x) + (S ◦ T ) (y) Definition LTC [523]

and

(S ◦ T ) (αx) = S (T (αx)) Definition LTC [523]

= S (αT (x)) Definition LT [507] for T

= αS (T (x)) Definition LT [507] for S

= α(S ◦ T ) (x) Definition LTC [523]

�

Example CTLT
Composition of two linear transformations

Suppose that T : C2 7→ C4 and S : C4 7→ C3 are defined by

T

([
x1

x2

])
=


x1 + 2x2

3x1 − 4x2

5x1 + 2x2

6x1 − 3x2

 S




x1

x2

x3

x4


 =

 2x1 − x2 + x3 − x4

5x1 − 3x2 + 8x3 − 2x4

−4x1 + 3x2 − 4x3 + 5x4


Then by Definition LTC [523]

(S ◦ T )

([
x1

x2

])
= S

(
T

([
x1

x2

]))

= S




x1 + 2x2

3x1 − 4x2

5x1 + 2x2

6x1 − 3x2




=

 2(x1 + 2x2)− (3x1 − 4x2) + (5x1 + 2x2)− (6x1 − 3x2)
5(x1 + 2x2)− 3(3x1 − 4x2) + 8(5x1 + 2x2)− 2(6x1 − 3x2)
−4(x1 + 2x2) + 3(3x1 − 4x2)− 4(5x1 + 2x2) + 5(6x1 − 3x2)


=

−2x1 + 13x2

24x1 + 44x2

15x1 − 43x2
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and by Theorem CLTLT [524] S ◦ T is a linear transformation from C2 to C3. �

Here is an interesting exercise that will presage an important result later. In Exam-
ple STLT [522] compute (via Theorem MLTCV [514]) the matrix of T , S and T + S. Do
you see a relationship between these three matrices?

In Example SMLT [523] compute (via Theorem MLTCV [514]) the matrix of T and
2T . Do you see a relationship between these two matrices?

Here’s the tough one. In Example CTLT [524] compute (via Theorem MLTCV [514])
the matrix of T , S and S ◦ T . Do you see a relationship between these three matri-
ces???

Subsection READ
Reading Questions

1. Is the function below a linear transformation? Why or why not?

T : C3 7→ C2, T

x1

x2

x3

 =

[
3x1 − x2 + x3

8x2 − 6

]

2. Determine the matrix representation of the linear transformation S below.

S : C2 7→ C3, S

([
x1

x2

])
=

3x1 + 5x2

8x1 − 3x2

−4x1


3. Theorem LTLC [516] has a fairly simple proof. Yet the result itself is very powerful.

Comment on why we might say this.
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Subsection EXC
Exercises

C15 The archetypes below are all linear transformations whose domains and codomains
are vector spaces of column vectors (Definition VSCV [91]). For each one, compute the
matrix representation described in the proof of Theorem MLTCV [514].
Archetype M [757]
Archetype N [760]
Archetype O [762]
Archetype P [765]
Archetype Q [767]
Archetype R [771]
Contributed by Robert Beezer

C20 Let w =

−3
1
4

. Referring to Example MOLT [515], compute S (w) two different

ways. First use the definition of S, then compute the matrix-vector product Cw (Defi-
nition MVP [221]).
Contributed by Robert Beezer Solution [529]

C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Verify that T is a linear transformation.
Contributed by Robert Beezer Solution [529]

C26 Verify that the function below is a linear transformation.

T : P2 7→ C2, T
(
a + bx + cx2

)
=

[
2a− b
b + c

]

Contributed by Robert Beezer Solution [529]

C30 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Compute the preimages, T−1

([
2
3

])
and T−1

([
4
−8

])
.

Contributed by Robert Beezer Solution [530]

C31 Consider the linear transformation S, and compute the following pre-images,
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S−1

−2
5
3

 and S−1

−5
5
7

.

S : C3 7→ C3, S

a
b
c

 =

 a− 2b− c
3a− b + 2c
a + b + 2c


Contributed by Robert Beezer Solution [530]

M10 Define two linear transformations, T : C4 7→ C3 and S : C3 7→ C2 by

S

x1

x2

x3

 =

[
x1 − 2x2 + 3x3

5x1 + 4x2 + 2x3

]
T




x1

x2

x3

x4


 =

−x1 + 3x2 + x3 + 9x4

2x1 + x3 + 7x4

4x1 + 2x2 + x3 + 2x4


Using the proof of Theorem MLTCV [514] compute the matrix representations of the
three linear transformations T , S and S ◦ T . Discover and comment on the relationship
between these three matrices.
Contributed by Robert Beezer Solution [531]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [527]

In both cases the result will be S (w) =


9
2
−9
4

.

C25 Contributed by Robert Beezer Statement [527]
We can rewrite T as follows:

T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
= x1

[
2
−4

]
+x2

[
−1
2

]
+x3

[
5
−10

]
=

[
2 −1 5
−4 2 −10

]x1

x2

x3


and Theorem MBLT [513] tell us that any function of this form is a linear transformation.

C26 Contributed by Robert Beezer Statement [527]
Check the two conditions of Definition LT [507].

T (u + v) = T
((

a + bx + cx2
)

+
(
d + ex + fx2

))
= T

(
(a + d) + (b + e) x + (c + f) x2

)
=

[
2(a + d)− (b + e)
(b + e) + (c + f)

]
=

[
(2a− b) + (2d− e)
(b + c) + (e + f)

]
=

[
2a− b
b + c

]
+

[
2d− e
e + f

]
= T (u) + T (v)

and

T (αu) = T
(
α
(
a + bx + cx2

))
= T

(
(αa) + (αb) x + (αc) x2

)
=

[
2(αa)− (αb)
(αb) + (αc)

]
=

[
α(2a− b)
α(b + c)

]
= α

[
(2a− b)
(b + c))

]
= αT (u)

So T is indeed a linear transformation.

C30 Contributed by Robert Beezer Statement [527]
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For the first pre-image, we want x ∈ C3 such that T (x) =

[
2
3

]
. This becomes,[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
=

[
2
3

]
Vector equality gives a system of two linear equations in three variables, represented by
the augmented matrix[

2 −1 5 2
−4 2 −10 3

]
RREF−−−→

[
1 −1

2
5
2

0

0 0 0 1

]
so the system is inconsistent and the pre-image is the empty set. For the second pre-image
the same procedure leads to an augmented matrix with a different vector of constants[

2 −1 5 4
−4 2 −10 −8

]
RREF−−−→

[
1 −1

2
5
2

2
0 0 0 0

]
This system is consistent and has infinitely many solutions, as we can see from the pres-
ence of the two free variables (x2 and x3) both to zero. We apply Theorem VFSLS [113]
to obtain

T−1

([
4
−8

])
=


2

0
0

+ x2

−5
2

0
1

+ x3

1
2

1
0

 ∣∣∣∣∣∣ x2, x3 ∈ C


C31 Contributed by Robert Beezer Statement [527]
We work from the definition of the pre-image, Definition PI [519]. Setting

S

a
b
c

 =

−2
5
3


we arrive at a system of three equations in three variables, with an augmented matrix
that we row-reduce in a search for solutions,1 −2 −1 −2

3 −1 2 5
1 1 2 3

 RREF−−−→

 1 0 1 0

0 1 1 0

0 0 0 1


With a leading 1 in the last column, this system is inconsistent (Theorem RCLS [54]),
and there are no values of a, b and c that will create an element of the pre-image. So the
preimage is the empty set.

We work from the definition of the pre-image, Definition PI [519]. Setting

S

a
b
c

 =

−5
5
7


we arrive at a system of three equations in three variables, with an augmented matrix
that we row-reduce in a search for solutions,1 −2 −1 −5

3 −1 2 5
1 1 2 7

 RREF−−−→

 1 0 1 3

0 1 1 4
0 0 0 0
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The solution set to this system, which is also the desired pre-image, can be expressed
using the vector form of the solutions (Theorem VFSLS [113])

S−1

−5
5
7

 =


3

4
0

+ c

−1
−1
1

 ∣∣∣∣∣∣ c ∈ C

 =

3
4
0

+

〈
−1
−1
1


〉

Does the final expression for this set remind you of Theorem KPI [539]?

M10 Contributed by Robert Beezer Statement [528]

[
1 −2 3
5 4 2

]−1 3 1 9
2 0 1 7
4 2 1 2

 =

[
7 9 2 1
11 19 11 77

]
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Section ILT

Injective Linear Transformations

Some linear transformations possess one, or both, of two key properties, which go by
the names injective and surjective. We will see that they are closely related to ideas
like linear independence and spanning, and subspaces like the null space and the column
space. In this section we will define an injective linear transformation and analyze the
resulting consequences. The next section will do the same for the surjective property. In
the final section of this chapter we will see what happens when we have the two properties
simultaneously.

As usual, we lead with a definition.

Definition ILT
Injective Linear Transformation

Suppose T : U 7→ V is a linear transformation. Then T is injective if whenever
T (x) = T (y), then x = y. 4

Given an arbitrary function, it is possible for two different inputs to yield the same
output (think about the function f(x) = x2 and the inputs x = 3 and x = −3). For
an injective function, this never happens. If we have equal outputs (T (x) = T (y)) then
we must have achieved those equal outputs by employing equal inputs (x = y). Some
authors prefer the term one-to-one where we use injective, and we will sometimes refer
to an injective linear transformation as an injection.

Subsection EILT
Examples of Injective Linear Transformations

It is perhaps most instructive to examine a linear transformation that is not injective
first.

Example NIAQ
Not injective, Archetype Q

Archetype Q [767] is the linear transformation

T : C5 7→ C5, T




x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5


Notice that for

x =


1
3
−1
2
4

 y =


4
7
0
5
7
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we have

T




1
3
−1
2
4


 =


4
55
72
77
31

 T




4
7
0
5
7


 =


4
55
72
77
31


So we have two vectors from the domain, x 6= y, yet T (x) = T (y), in violation of
Definition ILT [533]. This is another example where you should not concern yourself with
how x and y were selected, as this will be explained shortly. However, do understand
why these two vectors provide enough evidence to conclude that T is not injective. �

To show that a linear transformation is not injective, it is enough to find a single pair
of inputs that get sent to the identical output, as in Example NIAQ [533]. However, to
show that a linear transformation is injective we must establish that this coincidence of
outputs never occurs. Here is an example that shows how to establish this.

Example IAR
Injective, Archetype R

Archetype R [771] is the linear transformation

T : C5 7→ C5, T




x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5


To establish that R is injective we must begin with the assumption that T (x) = T (y)
and somehow arrive from this at the conclusion that x = y. Here we go,

T (x) = T (y)

T




x1

x2

x3

x4

x5


 = T




y1

y2

y3

y4

y5





−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5

 =


−65y1 + 128y2 + 10y3 − 262y4 + 40y5

36y1 − 73y2 − y3 + 151y4 − 16y5

−44y1 + 88y2 + 5y3 − 180y4 + 24y5

34y1 − 68y2 − 3y3 + 140y4 − 18y5

12y1 − 24y2 − y3 + 49y4 − 5y5



−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5

−

−65y1 + 128y2 + 10y3 − 262y4 + 40y5

36y1 − 73y2 − y3 + 151y4 − 16y5

−44y1 + 88y2 + 5y3 − 180y4 + 24y5

34y1 − 68y2 − 3y3 + 140y4 − 18y5

12y1 − 24y2 − y3 + 49y4 − 5y5

 =


0
0
0
0
0



−65(x1 − y1) + 128(x2 − y2) + 10(x3 − y3)− 262(x4 − y4) + 40(x5 − y5)

36(x1 − y1)− 73(x2 − y2)− (x3 − y3) + 151(x4 − y4)− 16(x5 − y5)
−44(x1 − y1) + 88(x2 − y2) + 5(x3 − y3)− 180(x4 − y4) + 24(x5 − y5)
34(x1 − y1)− 68(x2 − y2)− 3(x3 − y3) + 140(x4 − y4)− 18(x5 − y5)

12(x1 − y1)− 24(x2 − y2)− (x3 − y3) + 49(x4 − y4)− 5(x5 − y5)

 =


0
0
0
0
0
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−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5




x1 − y1

x2 − y2

x3 − y3

x4 − y4

x5 − y5

 =


0
0
0
0
0


Now we recognize that we have a homogeneous system of 5 equations in 5 variables (the
terms xi − yi are the variables), so we row-reduce the coefficient matrix to

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


So the only solution is the trivial solution

x1 − y1 = 0 x2 − y2 = 0 x3 − y3 = 0 x4 − y4 = 0 x5 − y5 = 0

and we conclude that indeed x = y. By Definition ILT [533], T is injective. �

Let’s now examine an injective linear transformation between abstract vector spaces.

Example IAV
Injective, Archetype V

Archetype V [774] is defined by

T : P3 7→M22, T
(
a + bx + cx2 + dx3

)
=

[
a + b a− 2c

d b− d

]
To establish that the linear transformation is injective, begin by supposing that two
polynomial inputs yield the same output matrix,

T
(
a1 + b1x + c1x

2 + d1x
3
)

= T
(
a2 + b2x + c2x

2 + d2x
3
)

Then

O =

[
0 0
0 0

]
= T

(
a1 + b1x + c1x

2 + d1x
3
)
− T

(
a2 + b2x + c2x

2 + d2x
3
)

Hypothesis

= T
(
(a1 + b1x + c1x

2 + d1x
3)− (a2 + b2x + c2x

2 + d2x
3)
)

Definition LT [507]

= T
(
(a1 − a2) + (b1 − b2)x + (c1 − c2)x

2 + (d1 − d2)x
3
)

Operations in P3

=

[
(a1 − a2) + (b1 − b2) (a1 − a2)− 2(c1 − c2)

(d1 − d2) (b1 − b2)− (d1 − d2)

]
Definition of T

This single matrix equality translates to the homogeneous system of equations in the
variables ai − bi,

(a1 − a2) + (b1 − b2) = 0

(a1 − a2)− 2(c1 − c2) = 0

(d1 − d2) = 0
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(b1 − b2)− (d1 − d2) = 0

This system of equations can be rewritten as the matrix equation
1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0 −1




(a1 − a2)
(b1 − b2)
(c1 − c2)
(d1 − d2)

 =


0
0
0
0


Since the coefficient matrix is nonsingular (check this) the only solution is trivial, i.e.

a1 − a2 = 0 b1 − b2 = 0 c1 − c2 = 0 d1 − d2 = 0

so that

a1 = a2 b1 = b2 c1 = c2 d1 = d2

so the two inputs must be equal polynomials. By Definition ILT [533], T is injective. �

Subsection KLT
Kernel of a Linear Transformation

For a linear transformation T : U 7→ V , the kernel is a subset of the domain U . Informally,
it is the set of all inputs that the transformation sends to the zero vector of the codomain.
It will have some natural connections with the null space of a matrix, so we will keep the
same notation, and if you think about your objects, then there should be little confusion.
Here’s the careful definition.

Definition KLT
Kernel of a Linear Transformation

Suppose T : U 7→ V is a linear transformation. Then the kernel of T is the set

K(T ) = {u ∈ U | T (u) = 0}

(This definition contains Notation KLT.) 4

Notice that the kernel of T is just the preimage of 0, T−1 (0) (Definition PI [519]).
Here’s an example.

Example NKAO
Nontrivial kernel, Archetype O

Archetype O [762] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3
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To determine the elements of C3 in K(T ), find those vectors u such that T (u) = 0, that
is,

T (u) = 0
−u1 + u2 − 3u3

−u1 + 2u2 − 4u3

u1 + u2 + u3

2u1 + 3u2 + u3

u1 + 2u3

 =


0
0
0
0
0


Vector equality (Definition CVE [92]) leads us to a homogeneous system of 5 equations
in the variables ui,

−u1 + u2 − 3u3 = 0

−u1 + 2u2 − 4u3 = 0

u1 + u2 + u3 = 0

2u1 + 3u2 + u3 = 0

u1 + 2u3 = 0

Row-reducing the coefficient matrix gives
1 0 2

0 1 −1
0 0 0
0 0 0
0 0 0


The kernel of T is the set of solutions to this homogeneous system of equations, which
by Theorem BNS [162] can be expressed as

K(T ) =

〈
−2

1
1


〉

�

We know that the span of a set of vectors is always a subspace (Theorem SSS [336]),
so the kernel computed in Example NKAO [536] is also a subspace. This is no accident,
the kernel of a linear transformation is always a subspace.

Theorem KLTS
Kernel of a Linear Transformation is a Subspace

Suppose that T : U 7→ V is a linear transformation. Then the kernel of T , K(T ), is a
subspace of U . �

Proof We can apply the three-part test of Theorem TSS [331]. First T (0U) = 0V by
Theorem LTTZZ [511], so 0U ∈ K(T ) and we know that the kernel is non-empty.

Suppose we assume that x, y ∈ K(T ). Is x + y ∈ K(T )?

T (x + y) = T (x) + T (y) Definition LT [507]

= 0 + 0 x, y ∈ K(T )
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= 0 Property Z [314]

This qualifies x + y for membership in K(T ). So we have additive closure.
Suppose we assume that α ∈ C and x ∈ K(T ). Is αx ∈ K(T )?

T (αx) = αT (x) Definition LT [507]

= α0 x ∈ K(T )

= 0 Theorem ZVSM [321]

This qualifies αx for membership inK(T ). So we have scalar closure and Theorem TSS [331]
tells us that K(T ) is a subspace of U .

�

Let’s compute another kernel, now that we know in advance that it will be a subspace.

Example TKAP
Trivial kernel, Archetype P

Archetype P [765] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 + x3

−x1 + 2x2 + 2x3

x1 + x2 + 3x3

2x1 + 3x2 + x3

−2x1 + x2 + 3x3


To determine the elements of C3 in K(T ), find those vectors u such that T (u) = 0, that
is,

T (u) = 0
−u1 + u2 + u3

−u1 + 2u2 + 2u3

u1 + u2 + 3u3

2u1 + 3u2 + u3

−2u1 + u2 + 3u3

 =


0
0
0
0
0


Vector equality (Definition CVE [92]) leads us to a homogeneous system of 5 equations
in the variables ui,

−u1 + u2 + u3 = 0

−u1 + 2u2 + 2u3 = 0

u1 + u2 + 3u3 = 0

2u1 + 3u2 + u3 = 0

−2u1 + u2 + 3u3 = 0

Row-reducing the coefficient matrix gives
1 0 0

0 1 0

0 0 1
0 0 0
0 0 0
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The kernel of T is the set of solutions to this homogeneous system of equations, which is
simply the trivial solution u = 0, so

K(T ) = {0} = 〈{ }〉

�

Our next theorem says that if a preimage is a non-empty set then we can construct
it by picking any one element and adding on elements of the kernel.

Theorem KPI
Kernel and Pre-Image

Suppose T : U 7→ V is a linear transformation and v ∈ V . If the preimage T−1 (v) is
non-empty, and u ∈ T−1 (v) then

T−1 (v) = {u + z | z ∈ K(T )} = u +K(T )

�

Proof Let M = {u + z | z ∈ K(T )}. First, we show that M ⊆ T−1 (v). Suppose that
w ∈M , so w has the form w = u + z, where z ∈ K(T ). Then

T (w) = T (u + z)

= T (u) + T (z) Definition LT [507]

= v + 0 u ∈ T−1 (v) , z ∈ K(T )

= v Property Z [314]

which qualifies w for membership in the preimage of v, w ∈ T−1 (v).
For the opposite inclusion, suppose x ∈ T−1 (v). Then,

T (x− u) = T (x)− T (u) Definition LT [507]

= v − v x, u ∈ T−1 (v)

= 0

This qualifies x − u for membership in the kernel of T , K(T ). So there is a vector
z ∈ K(T ) such that x−u = z. Rearranging this equation gives x = u+ z and so x ∈M .
So T−1 (v) ⊆M and we see that M = T−1 (v), as desired. �

This theorem, and its proof, should remind you very much of Theorem PSPHS [119].
Additionally, you might go back and review Example SPIAS [519]. Can you tell now
which is the only preimage to be a subspace?

The next theorem is one we will cite frequently, as it characterizes injections by the
size of the kernel.

Theorem KILT
Kernel of an Injective Linear Transformation

Suppose that T : U 7→ V is a linear transformation. Then T is injective if and only if
the kernel of T is trivial, K(T ) = {0}. �

Proof (⇒) Suppose x ∈ K(T ). Then by Definition KLT [536], T (x) = 0. By Theo-
rem LTTZZ [511], T (0) = 0. Now, since T (x) = T (0), we can apply Definition ILT [533]
to conclude that x = 0. Therefore K(T ) = {0}.
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(⇐) To establish that T is injective, appeal to Definition ILT [533] and begin with
the assumption that T (x) = T (y). Then

0 = T (x)− T (y) Hypothesis

= T (x− y) Definition LT [507]

so by Definition KLT [536] and the hypothesis that the kernel is trivial,

x− y ∈ K(T ) = {0}

which means that

0 = x− y

x = y

thus establishing that T is injective. �

Example NIAQR
Not injective, Archetype Q, revisited
We are now in a position to revisit our first example in this section, Example NIAQ [533].

In that example, we showed that Archetype Q [767] is not injective by constructing two
vectors, which when used to evaluate the linear transformation provided the same output,
thus violating Definition ILT [533]. Just where did those two vectors come from?

The key is the vector

z =


3
4
1
3
3


which you can check is an element of K(T ) for Archetype Q [767]. Choose a vector
x at random, and then compute y = x + z (verify this computation back in Exam-
ple NIAQ [533]). Then

T (y) = T (x + z)

= T (x) + T (z) Definition LT [507]

= T (x) + 0 z ∈ K(T )

= T (x) Property Z [314]

Whenever the kernel of a linear transformation is non-trivial, we can employ this device
and conclude that the linear transformation is not injective. This is another way of
viewing Theorem KILT [539]. For an injective linear transformation, the kernel is trivial
and our only choice for z is the zero vector, which will not help us create two different
inputs for T that yield identical outputs. For every one of the archetypes that is not
injective, there is an example presented of exactly this form. �

Example NIAO
Not injective, Archetype O

In Example NKAO [536] the kernel of Archetype O [762] was determined to be〈
−2

1
1


〉
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a subspace of C3 with dimension 1. Since the kernel is not trivial, Theorem KILT [539]
tells us that T is not injective. �

Example IAP
Injective, Archetype P
In Example TKAP [538] it was shown that the linear transformation in Archetype P [765]

has a trivial kernel. So by Theorem KILT [539], T is injective. �

Subsection ILTLI
Injective Linear Transformations and Linear Independence

There is a connection between injective linear transformations and linear independent
sets that we will make precise in the next two theorems. However, more informally, we
can get a feel for this connection when we think about how each property is defined.
A set of vectors is linearly independent if the only relation of linear dependence is the
trivial one. A linear transformation is injective if the only way two input vectors can
produce the same output is if the trivial way, when both input vectors are equal.

Theorem ILTLI
Injective Linear Transformations and Linear Independence
Suppose that T : U 7→ V is an injective linear transformation and S = {u1, u2, u3, . . . , ut}

is a linearly independent subset of U . Then R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)} is
a linearly independent subset of V . �

Proof Begin with a relation of linear dependence on S (Definition RLD [349], Defini-
tion LI [349]),

a1T (u1) + a2T (u2) + a3T (u3) + . . . + atT (ut) = 0

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = 0 Theorem LTLC [516]

a1u1 + a2u2 + a3u3 + · · ·+ atut ∈ K(T ) Definition KLT [536]

a1u1 + a2u2 + a3u3 + · · ·+ atut ∈ {0} Theorem KILT [539]

a1u1 + a2u2 + a3u3 + · · ·+ atut = 0

Since this is a relation of linear dependence on the linearly independent set S, we can
conclude that

a1 = 0 a2 = 0 a3 = 0 . . . at = 0

and this establishes that R is a linearly independent set. �

Theorem ILTB
Injective Linear Transformations and Bases

Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a
basis of U . Then T is injective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)}
is a linearly independent subset of V . �

Proof (⇒) Assume T is injective. Since B is a basis, we know B is linearly independent
(Definition B [367]). Then Theorem ILTLI [541] says that C is a linearly independent
subset of V .
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(⇐) Assume that C is linearly independent. To establish that T is injective, we will
show that the kernel of T is trivial (Theorem KILT [539]). Suppose that u ∈ K(T ).
As an element of U , we can write u as a linear combination of the basis vectors in B
(uniquely). So there are are scalars, a1, a2, a3, . . . , am, such that

u = a1u1 + a2u2 + a3u3 + · · ·+ amum

Then,

0 = T (u) u ∈ K(T )

= T (a1u1 + a2u2 + a3u3 + · · ·+ amum) B spans U

= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ amT (um) Theorem LTLC [516]

This is a relation of linear dependence (Definition RLD [349]) on the linearly independent
set C, so the scalars are all zero: a1 = a2 = a3 = · · · = am = 0. Then

u = a1u1 + a2u2 + a3u3 + · · ·+ amum

= 0u1 + 0u2 + 0u3 + · · ·+ 0um Theorem ZSSM [321]

= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [321]

= 0 Property Z [314]

Since u was chosen as an arbitrary vector from K(T ), we have K(T ) = {0} and Theo-
rem KILT [539] tells us that T is injective. �

Subsection ILTD
Injective Linear Transformations and Dimension

Theorem ILTD
Injective Linear Transformations and Dimension
Suppose that T : U 7→ V is an injective linear transformation. Then dim (U) ≤ dim (V ).

�

Proof Suppose to the contrary that m = dim (U) > dim (V ) = t. Let B be a basis of
U , which will then contain m vectors. Apply T to each element of B to form a set C that
is a subset of V . By Theorem ILTB [541], C is linearly independent and therefore must
contain m distinct vectors. So we have found a set of m linearly independent vectors in
V , a vector space of dimension t, with m > t. However, this contradicts Theorem G [402],
so our assumption is false and dim (U) ≤ dim (V ). �

Example NIDAU
Not injective by dimension, Archetype U

The linear transformation in Archetype U [774] is

T : M23 7→ C4, T

([
a b c
d e f

])
=


a + 2b + 12c− 3d + e + 6f

2a− b− c + d− 11f
a + b + 7c + 2d + e− 3f
a + 2b + 12c + 5e− 5f
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Since dim (M23) = 6 > 4 = dim (C4), T cannot be injective for then T would violate
Theorem ILTD [542]. �

Notice that the previous example made no use of the actual formula defining the
function. Merely a comparison of the dimensions of the domain and codomain are
enough to conclude that the linear transformation is not injective. Archetype M [757]
and Archetype N [760] are two more examples of linear transformations that have “big”
domains and “small” codomains, resulting in “collisions” of outputs and thus are non-
injective linear transformations.

Subsection CILT
Composition of Injective Linear Transformations

In Subsection LT.NLTFO [521] we saw how to combine linear transformations to build
new linear transformations, specifically, how to build the composition of two linear trans-
formations (Definition LTC [523]). It will be useful later to know that the composition
of injective linear transformations is again injective, so we prove that here.

Theorem CILTI
Composition of Injective Linear Transformations is Injective

Suppose that T : U 7→ V and S : V 7→ W are injective linear transformations. Then
(S ◦ T ) : U 7→ W is an injective linear transformation. �

Proof That the composition is a linear transformation was established in Theo-
rem CLTLT [524], so we need only establish that the composition is injective. Applying
Definition ILT [533], choose x, y from U . Then

Assume (S ◦ T ) (x) = (S ◦ T ) (y)

S (T (x)) = S (T (y)) Definition LTC [523]

⇒ T (x) = T (y) Definition ILT [533] for S

⇒ x = y Definition ILT [533] for T

�

Subsection READ
Reading Questions

1. Suppose T : C8 7→ C5 is a linear transformation. Why can’t T be injective?

2. Describe the kernel of an injective linear transformation.

3. Theorem KPI [539] should remind you of Theorem PSPHS [119]. Why do we say
this?
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Subsection EXC
Exercises

C10 Each archetype below is a linear transformation. Compute the kernel for each.
Archetype M [757]
Archetype N [760]
Archetype O [762]
Archetype P [765]
Archetype Q [767]
Archetype R [771]
Archetype S [774]
Archetype T [774]
Archetype U [774]
Archetype V [774]
TODO: Check competeness of this list.
Contributed by Robert Beezer

C20 The linear transformation T : C4 7→ C3 is not injective. Find two inputs x, y ∈ C4

that yield the same output (that is T (x) = T (y).)

T




x1

x2

x3

x4


 =

 2x1 + x2 + x3

−x1 + 3x2 + x3 − x4

3x1 + x2 + 2x3 − 2x4



Contributed by Robert Beezer Solution [547]

C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Find a basis for the kernel of T , K(T ). Is T injective?
Contributed by Robert Beezer Solution [547]

C40 Show that the linear transformation R is not injective by finding two different
elements of the domain, x and y, such that R (x) = R (y). (S22 is the vector space of
symmetric 2× 2 matrices.)

R : S22 7→ P1 R

([
a b
b c

])
= (2a− b + c) + (a + b + 2c)x

Contributed by Robert Beezer Solution [548]

T10 Suppose T : U 7→ V is a linear transformation. For which vectors v ∈ V is T−1 (v)
a subspace of of U?
Contributed by Robert Beezer
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T15 Suppose that that T : U 7→ V and S : V 7→ W are linear transformations. Prove
the following relationship between null spaces.

K(T ) ⊆ K(S ◦ T )

Contributed by Robert Beezer Solution [548]

T20 Suppose that A is an m× n matrix. Define the linear transformation T by

T : Cn 7→ Cm, T (x) = Ax

Prove that the kernel of T equals the null space of A, N (A) = K(T ).
Contributed by Andy Zimmer Solution [549]
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [545]
A linear transformation that is not injective will have a non-trivial kernel (Theo-

rem KILT [539]), and this is the key to finding the desired inputs. We need one non-trivial
element of the kernel, so suppose that z ∈ C4 is an element of the kernel,0

0
0

 = 0 = T (z) =

 2z1 + z2 + z3

−z1 + 3z2 + z3 − z4

3z1 + z2 + 2z3 − 2z4


Vector equality Definition CVE [92] leads to the homogeneous system of three equations
in four variables,

2z1 + z2 + z3 = 0

−z1 + 3z2 + z3 − z4 = 0

3z1 + z2 + 2z3 − 2z4 = 0

The coefficient matrix of this system row-reduces as 2 1 1 0
−1 3 1 −1
3 1 2 −2

 RREF−−−→

 1 0 0 1

0 1 0 1

0 0 1 −3


From this we can find a solution (we only need one), that is an element of K(T ),

z =


−1
−1
3
1


Now, we choose a vector x at random and set y = x + z,

x =


2
3
4
−2

 y = x + z =


2
3
4
−2

+


−1
−1
3
1

 =


1
2
7
−1


and you can check that

T (x) =

11
13
21

 = T (y)

A quicker solution is to take two elements of the kernel (in this case, scalar multiples of
z) which both get sent to 0 by T . Quicker yet, take 0 and z as x and y, which also both
get sent to 0 by T .

C25 Contributed by Robert Beezer Statement [545]
To find the kernel, we require all x ∈ C3 such that T (x) = 0. This condition is[

2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]
=

[
0
0

]
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This leads to a homogeneous system of two linear equations in three variables, whose
coefficient matrix row-reduces to [

1 −1
2

5
2

0 0 0

]
With two free variables Theorem BNS [162] yields the basis for the null space

−5
2

0
1

 ,

1
2

1
0


With n (T ) 6= 0, K(T ) 6= {0}, so Theorem KILT [539] says T is not injective.

C40 Contributed by Robert Beezer Statement [545]
We choose x to be any vector we like. A particularly cocky choice would be to choose
x = 0, but we will instead choose

x =

[
2 −1
−1 4

]
Then R (x) = 9 + 9x. Now compute the kernel of R, which by Theorem KILT [539]

we expect to be nontrivial. Setting R

([
a b
b c

])
equal to the zero vector, 0 = 0 + 0x,

and equating coefficients leads to a homogenous system of equations. Row-reducing the
coefficient matrix of this system will allow us to determine the values of a, b and c that
create elements of the null space of R,[

2 −1 1
1 1 2

]
RREF−−−→

[
1 0 1

0 1 1

]
We only need a single element of the null space of this coefficient matrix, so we will not
compute a precise description of the whole null space. Instead, choose the free variable
c = 2. Then

z =

[
−2 −2
−2 2

]
is the corresponding element of the kernel. We compute the desired y as

y = x + z =

[
2 −1
−1 4

]
+

[
−2 −2
−2 2

]
=

[
0 −3
−3 6

]
Then check that R (y) = 9 + 9x.

T15 Contributed by Robert Beezer Statement [546]
We are asked to prove thatK(T ) is a subset ofK(S ◦ T ). Employing Definition SSET [677],
choose x ∈ K(T ). Then we know that T (x) = 0. So

(S ◦ T ) (x) = S (T (x)) Definition LTC [523]

= S (0) x ∈ K(T )

= 0 Theorem LTTZZ [511]

This qualifies x for membership in K(S ◦ T ).
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T20 Contributed by Andy Zimmer Statement [546]
This is an equality of sets, so we want to establish two subset conditions (Defini-

tion SE [678]).
First, show N (A) ⊆ K(T ). Choose x ∈ N (A). Check to see if x ∈ K(T ),

T (x) = Ax Definition of T

= 0 x ∈ N (A)

So by Definition KLT [536], x ∈ K(T ) and thus N (A) ⊆ N (T ).
Now, show K(T ) ⊆ N (A). Choose x ∈ K(T ). Check to see if x ∈ N (A),

Ax = T (x) Definition of T

= 0 x ∈ K(T )

So by Definition NSM [71], x ∈ N (A) and thus N (T ) ⊆ N (A).
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Section SLT

Surjective Linear Transformations

The companion to an injection is a surjection. Surjective linear transformations are
closely related to spanning sets and ranges. So as you read this section reflect back
on Section ILT [533] and note the parallels and the contrasts. In the next section,
Section IVLT [571], we will combine the two properties.

As usual, we lead with a definition.

Definition SLT
Surjective Linear Transformation
Suppose T : U 7→ V is a linear transformation. Then T is surjective if for every v ∈ V

there exists a u ∈ U so that T (u) = v. 4

Given an arbitrary function, it is possible for there to be an element of the codomain
that is not an output of the function (think about the function y = f(x) = x2 and the
codomain element y = −3). For a surjective function, this never happens. If we choose
any element of the codomain (v ∈ V ) then there must be an input from the domain
(u ∈ U) which will create the output when used to evaluate the linear transformation
(T (u) = v). Some authors prefer the term onto where we use surjective, and we will
sometimes refer to a surjective linear transformation as a surjection.

Subsection ESLT
Examples of Surjective Linear Transformations

It is perhaps most instructive to examine a linear transformation that is not surjective
first.

Example NSAQ
Not surjective, Archetype Q

Archetype Q [767] is the linear transformation

T : C5 7→ C5, T




x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5


We will demonstrate that

v =


−1
2
3
−1
4
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is an unobtainable element of the codomain. Suppose to the contrary that u is an element
of the domain such that T (u) = v. Then

−1
2
3
−1
4

 = v = T (u) = T




u1

u2

u3

u4

u5




=


−2u1 + 3u2 + 3u3 − 6u4 + 3u5

−16u1 + 9u2 + 12u3 − 28u4 + 28u5

−19u1 + 7u2 + 14u3 − 32u4 + 37u5

−21u1 + 9u2 + 15u3 − 35u4 + 39u5

−9u1 + 5u2 + 7u3 − 16u4 + 16u5



=


−2 3 3 −6 3
−16 9 12 −28 28
−19 7 14 −32 37
−21 9 15 −35 39
−9 5 7 −16 16




u1

u2

u3

u4

u5


Now we recognize the appropriate input vector u as a solution to a linear system of
equations. Form the augmented matrix of the system, and row-reduce to

1 0 0 0 −1 0

0 1 0 0 −4
3

0

0 0 1 0 −1
3

0

0 0 0 1 −1 0

0 0 0 0 0 1


With a leading 1 in the last column, Theorem RCLS [54] tells us the system is inconsistent.
From the absence of any solutions we conclude that no such vector u exists, and by
Definition SLT [551], T is not surjective.

Again, do not concern yourself with how v was selected, as this will be explained
shortly. However, do understand why this vector provides enough evidence to conclude
that T is not surjective. �

To show that a linear transformation is not surjective, it is enough to find a single
element of the codomain that is never created by any input, as in Example NSAQ [551].
However, to show that a linear transformation is surjective we must establish that ev-
ery element of the codomain occurs as an output of the linear transformation for some
appropriate input.

Example SAR
Surjective, Archetype R

Archetype R [771] is the linear transformation

T : C5 7→ C5, T




x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5
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To establish that R is surjective we must begin with a totally arbitrary element of the
codomain, v and somehow find an input vector u such that T (u) = v. We desire,

T (u) = v
−65u1 + 128u2 + 10u3 − 262u4 + 40u5

36u1 − 73u2 − u3 + 151u4 − 16u5

−44u1 + 88u2 + 5u3 − 180u4 + 24u5

34u1 − 68u2 − 3u3 + 140u4 − 18u5

12u1 − 24u2 − u3 + 49u4 − 5u5

 =


v1

v2

v3

v4

v5



−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5




u1

u2

u3

u4

u5

 =


v1

v2

v3

v4

v5


We recognize this equation as a system of equations in the variables ui, but our vector
of constants contains symbols. In general, we would have to row-reduce the augmented
matrix by hand, due to the symbolic final column. However, in this particular example,
the 5 × 5 coefficient matrix is nonsingular and so has an inverse (Theorem NSI [257],
Definition MI [240]).

−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5


−1

=


−47 92 1 −181 −14
27 −55 7

2
221
2

11
−32 64 −1 −126 −12
25 −50 3

2
199
2

9
9 −18 1

2
71
2

4


so we find that 

u1

u2

u3

u4

u5

 =


−47 92 1 −181 −14
27 −55 7

2
221
2

11
−32 64 −1 −126 −12
25 −50 3

2
199
2

9
9 −18 1

2
71
2

4




v1

v2

v3

v4

v5



=


−47v1 + 92v2 + v3 − 181v4 − 14v5

27v1 − 55v2 + 7
2
v3 + 221

2
v4 + 11v5

−32v1 + 64v2 − v3 − 126v4 − 12v5

25v1 − 50v2 + 3
2
v3 + 199

2
v4 + 9v5

9v1 − 18v2 + 1
2
v3 + 71

2
v4 + 4v5


This establishes that if we are given any output vector v, we can use its components in this
final expression to formulate a vector u such that T (u) = v. So by Definition SLT [551]
we now know that T is surjective. You might try to verify this condition in its full
generality (i.e. evaluate T with this final expression and see if you get v as the result),
or test it more specifically for some numerical vector v. �

Let’s now examine a surjective linear transformation between abstract vector spaces.

Example SAV
Surjective, Archetype V
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Archetype V [774] is defined by

T : P3 7→M22, T
(
a + bx + cx2 + dx3

)
=

[
a + b a− 2c

d b− d

]
To establish that the linear transformation is surjective, begin by choosing an arbitrary
output. In this example, we need to choose an arbitrary 2× 2 matrix, say

v =

[
x y
z w

]
and we would like to find an input polynomial

u = a + bx + cx2 + dx3

so that T (u) = v. So we have,[
x y
z w

]
= v

= T (u)

= T
(
a + bx + cx2 + dx3

)
=

[
a + b a− 2c

d b− d

]
Matrix equality leads us to the system of four equations in the four unknowns, x, y, z, w,

a + b = x

a− 2c = y

d = z

b− d = w

which can be rewritten as a matrix equation,
1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0 −1




a
b
c
d

 =


x
y
z
w


The coefficient matrix is nonsingular, hence it has an inverse,

1 1 0 0
1 0 −2 0
0 0 0 1
0 1 0− 1


−1

=


1 0 −1 −1
0 0 1 1
1
2
−1

2
−1

2
−1

2

0 0 1 0


so we have 

a
b
c
d

 =


1 0 −1 −1
0 0 1 1
1
2
−1

2
−1

2
−1

2

0 0 1 0




x
y
z
w
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=


x− z − w

z + w
1
2
(x− y − z − w)

z


So the input polynomial u = (x− z−w)+ (z +w)x+ 1

2
(x− y− z−w)x2 + zx3 will yield

the output matrix v, no matter what form v takes. This means by Definition SLT [551]
that T is surjective. All the same, let’s do a concrete demonstration and evaluate T with
u,

T (u) = T

(
(x− z − w) + (z + w)x +

1

2
(x− y − z − w)x2 + zx3

)
=

[
(x− z − w) + (z + w) (x− z − w)− 2(1

2
(x− y − z − w))

z (z + w)− z

]
=

[
x y
z w

]
= v

�

Subsection RLT
Range of a Linear Transformation

For a linear transformation T : U 7→ V , the range is a subset of the codomain V . Infor-
mally, it is the set of all outputs that the transformation creates when fed every possible
input from the domain. It will have some natural connections with the column space of
a matrix, so we will keep the same notation, and if you think about your objects, then
there should be little confusion. Here’s the careful definition.

Definition RLT
Range of a Linear Transformation

Suppose T : U 7→ V is a linear transformation. Then the range of T is the set

R(T ) = {T (u) | u ∈ U}

(This definition contains Notation RLT.) 4

Example RAO
Range, Archetype O

Archetype O [762] is the linear transformation

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3
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To determine the elements of C5 in R(T ), find those vectors v such that T (u) = v for
some u ∈ C3,

v = T (u)

=


−u1 + u2 − 3u3

−u1 + 2u2 − 4u3

u1 + u2 + u3

2u1 + 3u2 + u3

u1 + 2u3



=


−u1

−u1

u1

2u1

u1

+


u2

2u2

u2

3u2

0

+


−3u3

−4u3

u3

u3

2u3



= u1


−1
−1
1
2
1

+ u2


1
2
1
3
0

+ u3


−3
−4
1
1
2


This says that every output of T (v) can be written as a linear combination of the three
vectors 

−1
−1
1
2
1




1
2
1
3
0



−3
−4
1
1
2


using the scalars u1, u2, u3. Furthermore, since u can be any element of C3, every such
linear combination is an output. This means that

R(T ) =

〈


−1
−1
1
2
1

 ,


1
2
1
3
0

 ,


−3
−4
1
1
2



〉

The three vectors in this spanning set for R(T ) form a linearly dependent set (check
this!). So we can find a more economical presentation by any of the various methods
from Section CRS [267] and Section FS [289]. We will place the vectors into a matrix
as rows, row-reduce, toss out zero rows and appeal to Theorem BRS [277], so we can
describe the range of T with a basis,

R(T ) =

〈


1
0
−3
−7
−2

 ,


0
1
2
5
1



〉
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�

We know that the span of a set of vectors is always a subspace (Theorem SSS [336]),
so the range computed in Example RAO [555] is also a subspace. This is no accident,
the range of a linear transformation is always a subspace.

Theorem RLTS
Range of a Linear Transformation is a Subspace

Suppose that T : U 7→ V is a linear transformation. Then the range of T , R(T ), is a
subspace of V . �

Proof We can apply the three-part test of Theorem TSS [331]. First, 0U ∈ U and
T (0U) = 0V by Theorem LTTZZ [511], so 0V ∈ R(T ) and we know that the range is
non-empty.

Suppose we assume that x, y ∈ R(T ). Is x + y ∈ R(T )? If x, y ∈ R(T ) then we
know there are vectors w, z ∈ U such that T (w) = x and T (z) = y. Because U is a
vector space, additive closure (Property AC [313]) implies that w + z ∈ U . Then

T (w + z) = T (w) + T (z) Definition LT [507]

= x + y Definition of w and z

So we have found an input, w + z, which when fed into T creates x + y as an output.
This qualifies x + y for membership in R(T ). So we have additive closure.

Suppose we assume that α ∈ C and x ∈ R(T ). Is αx ∈ R(T )? If x ∈ R(T ), then
there is a vector w ∈ U such that T (w) = x. Because U is a vector space, scalar closure
implies that αw ∈ U . Then

T (αw) = αT (w) Definition LT [507]

= αx Definition of w

So we have found an input (αw) which when fed into T creates αx as an output. This
qualifies αx for membership in R(T ). So we have scalar closure and Theorem TSS [331]
tells us that R(T ) is a subspace of V .

�

Let’s compute another range, now that we know in advance that it will be a subspace.

Example FRAN
Full range, Archetype N

Archetype N [760] is the linear transformation

T : C5 7→ C3, T




x1

x2

x3

x4

x5


 =

2x1 + x2 + 3x3 − 4x4 + 5x5

x1 − 2x2 + 3x3 − 9x4 + 3x5

3x1 + 4x3 − 6x4 + 5x5



To determine the elements of C3 in R(T ), find those vectors v such that T (u) = v for
some u ∈ C5,

v = T (u)
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=

2u1 + u2 + 3u3 − 4u4 + 5u5

u1 − 2u2 + 3u3 − 9u4 + 3u5

3u1 + 4u3 − 6u4 + 5u5


=

2u1

u1

3u1

+

 u2

−2u2

0

+

3u3

3u3

4u3

+

−4u4

−9u4

−6u4

+

5u5

3u5

5u5


= u1

2
1
3

+ u2

 1
−2
0

+ u3

3
3
4

+ u4

−4
−9
−6

+ u5

5
3
5



This says that every output of T (v) can be written as a linear combination of the five
vectors 2

1
3

  1
−2
0

 3
3
4

 −4
−9
−6

 5
3
5


using the scalars u1, u2, u3, u4, u5. Furthermore, since u can be any element of C5, every
such linear combination is an output. This means that

R(T ) =

〈
2

1
3

 ,

 1
−2
0

 ,

3
3
4

 ,

−4
−9
−6

 ,

5
3
5


〉

The five vectors in this spanning set for R(T ) form a linearly dependent set (Theo-
rem MVSLD [158]). So we can find a more economical presentation by any of the various
methods from Section CRS [267] and Section FS [289]. We will place the vectors into a
matrix as rows, row-reduce, toss out zero rows and appeal to Theorem BRS [277], so we
can describe the range of T with a (nice) basis,

R(T ) =

〈
1

0
0

 ,

0
1
0

 ,

0
0
1


〉

= C3

�

In contrast to injective linear transformations having small (trivial) kernels (Theo-
rem KILT [539]), surjective linear transformations have large ranges, as indicated in the
next theorem.

Theorem RSLT
Range of a Surjective Linear Transformation

Suppose that T : U 7→ V is a linear transformation. Then T is surjective if and only if
the range of T equals the codomain, R(T ) = V . �

Proof (⇒) By Definition RLT [555], we know that R(T ) ⊆ V . To establish the reverse
inclusion, assume v ∈ V . Then since T is surjective (Definition SLT [551]), there exists
a vector u ∈ U so that T (u) = v. However, the existence of u gains v membership in
R(T ), so V ⊆ R(T ). Thus, R(T ) = V .

(⇐) To establish that T is surjective, choose v ∈ V . Since we are assuming that
R(T ) = V , v ∈ R(T ). This says there is a vector u ∈ U so that T (u) = v, i.e. T is
surjective. �
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Example NSAQR
Not surjective, Archetype Q, revisited
We are now in a position to revisit our first example in this section, Example NSAQ [551].

In that example, we showed that Archetype Q [767] is not surjective by constructing a
vector in the codomain where no element of the domain could be used to evaluate the
linear transformation to create the output, thus violating Definition SLT [551]. Just
where did this vector come from?

The short answer is that the vector

v =


−1
2
3
−1
4


was constructed to lie outside of the range of T . How was this accomplished? First, the
range of T is given by

R(T ) =

〈


1
0
0
0
1

 ,


0
1
0
0
−1

 ,


0
0
1
0
−1

 ,


0
0
0
1
2



〉

Suppose an element of the range v∗ has its first 4 components equal to −1, 2, 3,−1, in
that order. Then to be an element of R(T ), we would have

v∗ = (−1)


1
0
0
0
1

+ (2)


0
1
0
0
−1

+ (3)


0
0
1
0
−1

+ (−1)


0
0
0
1
2

 =


−1
2
3
−1
−8


So the only vector in the range with these first four components specified, must have −8
in the fifth component. To set the fifth component to any other value (say, 4) will result
in a vector (v in Example NSAQ [551]) outside of the range. Any attempt to find an
input for T that will produce v as an output will be doomed to failure.

Whenever the range of a linear transformation is not the whole codomain, we can
employ this device and conclude that the linear transformation is not surjective. This is
another way of viewing Theorem RSLT [558]. For a surjective linear transformation, the
range is all of the codomain and there is no choice for a vector v that lies in V , yet not
in the range. For every one of the archetypes that is not surjective, there is an example
presented of exactly this form. �

Example NSAO
Not surjective, Archetype O

In Example RAO [555] the range of Archetype O [762] was determined to be

R(T ) =

〈


1
0
−3
−7
−2

 ,


0
1
2
5
1



〉
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a subspace of dimension 2 in C5. Since R(T ) 6= C5, Theorem RSLT [558] says T is not
surjective. �

Example SAN
Surjective, Archetype N

The range of Archetype N [760] was computed in Example FRAN [557] to be

R(T ) =



1

0
0

 ,

0
1
0

 ,

0
0
1




Since the basis for this subspace is the set of standard unit vectors for C3 (Theo-
rem SUVB [367]), we have R(T ) = C3 and by Theorem RSLT [558], T is surjective.
�

Subsection SSSLT
Spanning Sets and Surjective Linear Transformations

Just as injective linear transformations are allied with linear independence (Theorem ILTLI [541],
Theorem ILTB [541]), surjective linear transformations are allied with spanning sets.

Theorem SSRLT
Spanning Set for Range of a Linear Transformation
Suppose that T : U 7→ V is a linear transformation and S = {u1, u2, u3, . . . , ut} spans

U . Then R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)} spans R(T ). �

Proof We need to establish that every element of R(T ) can be written as a linear
combination of the vectors in R. To this end, choose v ∈ R(T ). Then there exists a
vector u ∈ U , such that T (u) = v (Definition RLT [555]).

Because S spans U there are scalars, a1, a2, a3, . . . , at, such that

u = a1u1 + a2u2 + a3u3 + · · ·+ atut

Then

v = T (u) Definition RLT [555]

= T (a1u1 + a2u2 + a3u3 + · · ·+ atut) S spans U

= a1T (u1) + a2T (u2) + a3T (u3) + . . . + atT (ut) Theorem LTLC [516]

which establishes that R spans the range of T , R(T ). �

Theorem SSRLT [560] provides an easy way to begin the construction of a basis for the
range of a linear transformation, since the construction of a spanning set requires simply
evaluating the linear transformation on a spanning set of the domain. In practice the
best choice for a spanning set of the domain would be as small as possible, in other words,
a basis. The resulting spanning set for the codomain may not be linearly independent,
so to find a basis for the range might require tossing out redundant vectors from the
spanning set. Here’s an example.
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Example BRLT
A basis for the range of a linear transformation

Define the linear transformation T : M22 7→ P2 by

T

([
a b
c d

])
= (a + 2b + 8c + d) + (−3a + 2b + 5d) x + (a + b + 5c) x2

A convenient spanning set for M22 is the basis

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
So by Theorem SSRLT [560], a spanning set for R(T ) is

R =

{
T

([
1 0
0 0

])
, T

([
0 1
0 0

])
, T

([
0 0
1 0

])
, T

([
0 0
0 1

])}
=
{
1− 3x + x2, 2 + 2x + x2, 8 + 5x2, 1 + 5x

}
The set R is not linearly independent, so if we desire a basis for R(T ), we need to
eliminate some redundant vectors. Two particular relations of linear dependence on R
are

(−2)(1− 3x + x2) + (−3)(2 + 2x + x2) + (8 + 5x2) = 0 + 0x + 0x2 = 0

(1− 3x + x2) + (−1)(2 + 2x + x2) + (1 + 5x) = 0 + 0x + 0x2 = 0

These, individually, allow us to remove 8 + 5x2 and 1 + 5x from R with out destroying
the property that R spans R(T ). The two remaining vectors are linearly independent
(check this!), so we can write

R(T ) =
〈{

1− 3x + x2, 2 + 2x + x2
}〉

and see that dim (R(T )) = 2. �

Elements of the range are precisely those elements of the codomain with non-empty
preimages.

Theorem RPI
Range and Pre-Image

Suppose that T : U 7→ V is a linear transformation. Then

v ∈ R(T ) if and only if T−1 (v) 6= ∅

�

Proof (⇒) If v ∈ R(T ), then there is a vector u ∈ U such that T (u) = v. This
qualifies u for membership in T−1 (v), and thus the preimage of v is not empty.

(⇐) Suppose the preimage of v is not empty, so we can choose a vector u ∈ U such
that T (u) = v. Then v ∈ R(T ). �

Theorem SLTB
Surjective Linear Transformations and Bases

Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a
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basis of U . Then T is surjective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)}
is a spanning set for V . �

Proof (⇒) Assume T is surjective. Since B is a basis, we know B is a spanning set of
U (Definition B [367]). Then Theorem SSRLT [560] says that C spans R(T ). But the
hypothesis that T is surjective means V = R(T ) (Theorem RSLT [558]), so C spans V .

(⇐) Assume that C spans V . To establish that T is surjective, we will show that
every element of V is an output of T for some input (Definition SLT [551]). Suppose
that v ∈ V . As an element of V , we can write v as a linear combination of the spanning
set C. So there are are scalars, b1, b2, b3, . . . , bm, such that

v = b1T (u1) + b2T (u2) + b3T (u3) + · · ·+ bmT (um)

Now define the vector u ∈ U by

u = b1u1 + b2u2 + b3u3 + · · ·+ bmum

Then

T (u) = T (b1u1 + b2u2 + b3u3 + · · ·+ bmum)

= b1T (u1) + b2T (u2) + b3T (u3) + · · ·+ bmT (um) Theorem LTLC [516]

= v

So, given any choice of a vector v ∈ V , we can design an input u ∈ U to produce v as
an output of T . Thus, by Definition SLT [551], T is surjective. �

Subsection SLTD
Surjective Linear Transformations and Dimension

Theorem SLTD
Surjective Linear Transformations and Dimension
Suppose that T : U 7→ V is a surjective linear transformation. Then dim (U) ≥ dim (V ).

�

Proof Suppose to the contrary that m = dim (U) < dim (V ) = t. Let B be a basis of
U , which will then contain m vectors. Apply T to each element of B to form a set C
that is a subset of V . By Theorem SLTB [561], C is spanning set of V with m or fewer
vectors. So we have a set of m or fewer vectors that span V , a vector space of dimension
t, with m < t. However, this contradicts Theorem G [402], so our assumption is false
and dim (U) ≥ dim (V ). �

Example NSDAT
Not surjective by dimension, Archetype T

The linear transformation in Archetype T [774] is

T : P4 7→ P5, T (p(x)) = (x− 2)p(x)

Since dim (P4) = 5 < 6 = dim (P5), T cannot be surjective for then it would violate
Theorem SLTD [562]. �
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Notice that the previous example made no use of the actual formula defining the
function. Merely a comparison of the dimensions of the domain and codomain are enough
to conclude that the linear transformation is not surjective. Archetype O [762] and
Archetype P [765] are two more examples of linear transformations that have “small”
domains and “big” codomains, resulting in an inability to create all possible outputs and
thus they are non-surjective linear transformations.

Subsection CSLT
Composition of Surjective Linear Transformations

In Subsection LT.NLTFO [521] we saw how to combine linear transformations to build
new linear transformations, specifically, how to build the composition of two linear trans-
formations (Definition LTC [523]). It will be useful later to know that the composition
of surjective linear transformations is again surjective, so we prove that here.

Theorem CSLTS
Composition of Surjective Linear Transformations is Surjective

Suppose that T : U 7→ V and S : V 7→ W are surjective linear transformations. Then
(S ◦ T ) : U 7→ W is a surjective linear transformation. �

Proof That the composition is a linear transformation was established in Theo-
rem CLTLT [524], so we need only establish that the composition is surjective. Applying
Definition SLT [551], choose w ∈ W .

Because S is surjective, there must be a vector v ∈ V , such that S (v) = w. With
the existence of v established, that T is surjective guarantees a vector u ∈ U such that
T (u) = v. Now,

(S ◦ T ) (u) = S (T (u)) Definition LTC [523]

= S (v) Definition of u

= w Definition of v

This establishes that any element of the codomain (w) can be created by evaluating S ◦T
with the right input (u). Thus, by Definition SLT [551], S ◦ T is surjective. �

Subsection READ
Reading Questions

1. Suppose T : C5 7→ C8 is a linear transformation. Why can’t T be surjective?

2. What is the relationship between a surjective linear transformation and its range?

3. Compare and contrast injective and surjective linear transformations.
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Subsection EXC
Exercises

C10 Each archetype below is a linear transformation. Compute the range for each.
Archetype M [757]
Archetype N [760]
Archetype O [762]
Archetype P [765]
Archetype Q [767]
Archetype R [771]
Archetype S [774]
Archetype T [774]
Archetype U [774]
Archetype V [774]
TODO: Check competeness of this list.
Contributed by Robert Beezer

C20 Example SAR [552] concludes with an expression for a vector u ∈ C5 that we
believe will create the vector v ∈ C5 when used to evaluate T . That is, T (u) = v. Verify
this assertion by actually evaluating T with u. If you don’t have the patience to push
around all these symbols, try choosing a numerical instance of v, compute u, and then
compute T (u), which should result in v.
Contributed by Robert Beezer

C22 The linear transformation S : C4 7→ C3 is not surjective. Find an output w ∈ C3

that has an empty pre-image (that is S−1 (w) = ∅.)

S




x1

x2

x3

x4


 =

2x1 + x2 + 3x3 − 4x4

x1 + 3x2 + 4x3 + 3x4

−x1 + 2x2 + x3 + 7x4



Contributed by Robert Beezer Solution [567]

C25 Define the linear transformation

T : C3 7→ C2, T

x1

x2

x3

 =

[
2x1 − x2 + 5x3

−4x1 + 2x2 − 10x3

]

Find a basis for the range of T , R(T ). Is T surjective?
Contributed by Robert Beezer Solution [567]

C40 Show that the linear transformation T is not surjective by finding an element of
the codomain, v, such that there is no vector u with T (u) = v. (15 points)

T : C3 7→ C3, T

a
b
c

 =

2a + 3b− c
2b− 2c

a− b + 2c
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Contributed by Robert Beezer Solution [568]

T15 Suppose that that T : U 7→ V and S : V 7→ W are linear transformations. Prove
the following relationship between ranges. (15 points)

R(S ◦ T ) ⊆ R(S)

Contributed by Robert Beezer Solution [568]

T20 Suppose that A is an m× n matrix. Define the linear transformation T by

T : Cn 7→ Cm, T (x) = Ax

Prove that the range of T equals the column space of A, C(A) = R(T ).
Contributed by Andy Zimmer Solution [568]
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Subsection SOL
Solutions

C22 Contributed by Robert Beezer Statement [565]
To find an element of C3 with an empty pre-image, we will compute the range of the

linear transformation R(S) and then find an element outside of this set.
By Theorem SSRLT [560] we can evaluate S with the elements of a spanning set of

the domain and create a spanning set for the range.

S




1
0
0
0


 =

 2
1
−1

 S




0
1
0
0


 =

1
3
2

 S




0
0
1
0


 =

3
4
1

 S




0
0
0
1


 =

−4
3
7


So

R(S) =

〈
 2

1
−1

 ,

1
3
2

 ,

3
4
1

 ,

−4
3
7


〉

This spanning set is obviously linearly dependent, so we can reduce it to a basis for R(S)
using Theorem BRS [277], where the elements of the spanning set are placed as the rows
of a matrix. The result is that

R(S) =

〈
 1

0
−1

 ,

0
1
1


〉

Therefore, the unique vector in R(S) with a first slot equal to 6 and a second slot equal
to 15 will be the linear combination

6

 1
0
−1

+ 15

0
1
1

 =

 6
15
9


So, any vector with first two components equal to 6 and 15, but with a third component
different from 9, such as

w =

 6
15
−63


will not be an element of the range of S and will therefore have an empty pre-image.
Another strategy on this problem is to guess. Almost any vector will lie outside the
range of T , you have to be unlucky to randomly choose an element of the range. This is
because the codomain has dimension 3, while the range is “much smaller” at a dimension
of 2. You still need to check that your guess lies outside of the range, which generally
will involve solving a system of equations that turns out to be inconsistent.

C25 Contributed by Robert Beezer Statement [565]
To find the range of T , apply T to the elements of a spanning set for C3 as suggested in
Theorem SSRLT [560]. We will use the standard basis vectors (Theorem SUVB [367]).

R(T ) = 〈{T (e1) , T (e2) , T (e3)}〉 =

〈{[
2
−4

]
,

[
−1
2

]
,

[
5
−10

]}〉
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Each of these vectors is a scalar multiple of the others, so we can toss two of them in
reducing the spanning set to a linearly independent set (or be more careful and apply
Theorem BCS [270] on a matrix with these three vectors as columns). The result is the
basis of the range, {[

1
−2

]}
With r (T ) 6= 2, R(T ) 6= C2, so Theorem RSLT [558] says T is not surjective.

C40 Contributed by Robert Beezer Statement [565]
We wish to find an output vector v that has no associated input. This is the same as

requiring that there is no solution to the equality

v = T

a
b
c

 =

2a + 3b− c
2b− 2c

a− b + 2c

 = a

2
0
1

+ b

 3
2
−1

+ c

−1
−2
2


In other words, we would like to find an element of C3 not in the set

Y =

〈
2

0
1

 ,

 3
2
−1

 ,

−1
−2
2


〉

If we make these vectors the rows of a matrix, and row-reduce, Theorem BRS [277]
provides an alternate description of Y ,

Y =

〈
2

0
1

 ,

 0
4
−5


〉

If we add these vectors together, and then change the third component of the result, we

will create a vector that lies outside of Y , say v =

2
4
9

.

T15 Contributed by Robert Beezer Statement [566]
This question asks us to establish that one set (R(S ◦ T )) is a subset of another (R(S)).
Choose an element in the “smaller” set, say w ∈ R(S ◦ T ). Then we know that there is
a vector u ∈ U such that

w = (S ◦ T ) (u) = S (T (u))

Now define v = T (u), so that then

S (v) = S (T (u)) = w

This statement is sufficient to show that w ∈ R(S), so w is an element of the “larger”
set, and R(S ◦ T ) ⊆ R(S).

T20 Contributed by Andy Zimmer Statement [566]
This is an equality of sets, so we want to establish two subset conditions (Defini-

tion SE [678]).
First, show C(A) ⊆ R(T ). Choose y ∈ C(A). Then by Definition CSM [267] and

Definition MVP [221] there is a vector x ∈ Cn such that Ax = y. Then

T (x) = Ax Definition of T
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= y

This statement qualifies y as a member of R(T ) (Definition RLT [555]), so C(A) ⊆ R(T ).
Now, show R(T ) ⊆ C(A). Choose y ∈ R(T ). Then by Definition RLT [555], there is

a vector x in Cn such that T (x) = y. Then

Ax = T (x) Definition of T

= y

So by Definition CSM [267] and Definition MVP [221], y qualifies for membership in
C(A) and so R(T ) ⊆ C(A).
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Section IVLT

Invertible Linear Transformations

In this section we will conclude our introduction to linear transformations by bringing
together the twin properties of injectivity and surjectivity and consider linear transfor-
mations with both of these properties.

Subsection IVLT
Invertible Linear Transformations

One preliminary definition, and then we will have our main definition for this section.

Definition IDLT
Identity Linear Transformation

The identity linear transformation on the vector space W is defined as

IW : W 7→ W, IW (w) = w

4
Informally, IW is the “do-nothing” function. You should check that IW is really a

linear transformation, as claimed, and then compute its kernel and range to see that it is
both injective and surjective. All of these facts should be straightforward to verify. With
this in hand we can make our main definition.

Definition IVLT
Invertible Linear Transformations

Suppose that T : U 7→ V is a linear transformation. If there is a function S : V 7→ U
such that

S ◦ T = IU T ◦ S = IV

then T is invertible. In this case, we call S the inverse of T and write S = T−1. 4
Informally, a linear transformation T is invertible if there is a companion linear trans-

formation, S, which “undoes” the action of T . When the two linear transformations are
applied consecutively (composition), in either order, the result is to have no real effect. It
is entirely analogous to squaring a positive number and then taking its (positive) square
root.

Here is an example of a linear transformation that is invertible. As usual at the
beginning of a section, do not be concerned with where S came from, just understand
how it illustrates Definition IVLT [571].

Example AIVLT
An invertible linear transformation

Archetype V [774] is the linear transformation

T : P3 7→M22, T
(
a + bx + cx2 + dx3

)
=

[
a + b a− 2c

d b− d

]
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572 Section IVLT Invertible Linear Transformations

Define the function S : M22 7→ P3 defined by

S

([
a b
c d

])
= (a− c− d) + (c + d)x +

1

2
(a− b− c− d)x2 + cx3

Then

(T ◦ S)

([
a b
c d

])
= T

(
S

([
a b
c d

]))
= T

(
(a− c− d) + (c + d)x +

1

2
(a− b− c− d)x2 + cx3

)
=

[
(a− c− d) + (c + d) (a− c− d)− 2(1

2
(a− b− c− d))

c (c + d)− c

]
=

[
a b
c d

]
= IM22

([
a b
c d

])
And

(S ◦ T )
(
a + bx + cx2 + dx3

)
= S

(
T
(
a + bx + cx2 + dx3

))
= S

([
a + b a− 2c

d b− d

])
= ((a + b)− d− (b− d)) + (d + (b− d))x

+

(
1

2
((a + b)− (a− 2c)− d− (b− d))

)
x2 + (d)x3

= a + bx + cx2 + dx3

= IP3

(
a + bx + cx2 + dx3

)
For now, understand why these computations show that T is invertible, and that S = T−1.
Maybe even be amazed by how S works so perfectly in concert with T ! We will see later
just how to arrive at the correct form of S (when it is possible). �

It can be as instructive to study a linear transformation that is not invertible.

Example ANILT
A non-invertible linear transformation

Consider the linear transformation T : C3 7→M22 defined by

T

a
b
c

 =

[
a− b 2a + 2b + c

3a + b + c −2a− 6b− 2c

]
Suppose we were to search for an inverse function S : M22 7→ C3.

First verify that the 2 × 2 matrix A =

[
5 3
8 2

]
is not in the range of T . This will

amount to finding an input to T ,

a
b
c

, such that

a− b = 5
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2a + 2b + c = 3

3a + b + c = 8

−2a− 6b− 2c = 2

As this system of equations is inconsistent, there is no input column vector, and A 6∈
R(T ). How should we define S (A)? Note that

T (S (A)) = (T ◦ S) (A) = IM22 (A) = A

So any definition we would provide for S (A) must then be a column vector that T sends
to A and we would have A ∈ R(T ), contrary to the definition of T . This is enough to
see that there is no function S that will allow us to conclude that T is invertible, since
we cannot provide a consistent definition for S (A) if we assume T is invertible.

Even though we now know that T is not invertible, let’s not leave this example just
yet. Check that

T

 1
−2
4

 =

[
3 2
5 2

]
= B T

 0
−3
8

 =

[
3 2
5 2

]
= B

How would we define S (B)?

S (B) = S

T

 1
−2
4

 = (S ◦ T )

 1
−2
4

 = IC3

 1
−2
4

 =

 1
−2
4


or

S (B) = S

T

 0
−3
8

 = (S ◦ T )

 0
−3
8

 = IC3

 0
−3
8

 =

 0
−3
8


Which definition should we provide for S (B)? Both are necessary. But then S is not a
function. So we have a second reason to know that there is no function S that will allow
us to conclude that T is invertible. It happens that there are infinitely many column
vectors that S would have to take to B. Construct the kernel of T ,

K(T ) =

〈
−1
−1
4


〉

Now choose either of the two inputs used above for T and add to it a scalar multiple of
the basis vector for the kernel of T . For example,

x =

 1
−2
4

+ (−2)

−1
−1
4

 =

 3
0
−4


then verify that T (x) = B. Practice creating a few more inputs for T that would be
sent to B, and see why it is hopeless to think that we could ever provide a reasonable
definition for S (B)! There is a “whole subspace’s worth” of values that S (B) would
have to take on. �
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In Example ANILT [572] you may have noticed that T is not surjective, since the
matrix A was not in the range of T . And T is not injective since there are two different
input column vectors that T sends to the matrix B. Linear transformations T that are
not surjective lead to putative inverse functions S that are undefined on inputs outside of
the range of T . Linear transformations T that are not injective lead to putative inverse
functions S that are multiply-defined on each of their inputs. We will formalize these
ideas in Theorem ILTIS [575].

But first notice in Definition IVLT [571] that we only require the inverse (when it
exists) to be a function. When it does exist, it too is a linear transformation.

Theorem ILTLT
Inverse of a Linear Transformation is a Linear Transformation

Suppose that T : U 7→ V is an invertible linear transformation. Then the function
T−1 : V 7→ U is a linear transformation. �

Proof We work through verifying Definition LT [507] for T−1, employing as we go
properties of T given by Definition LT [507]. To this end, suppose x, y ∈ V and α ∈ C.

T−1 (x + y) = T−1
(
T
(
T−1 (x)

)
+ T

(
T−1 (y)

))
T , T−1 inverse functions

= T−1
(
T
(
T−1 (x) + T−1 (y)

))
T a linear transformation

= T−1 (x) + T−1 (y) T−1, T inverse functions

Now check the second defining property of a linear transformation for T−1,

T−1 (αx) = T−1
(
αT
(
T−1 (x)

))
T , T−1 inverse functions

= T−1
(
T
(
αT−1 (x)

))
T a linear transformation

= αT−1 (x) T−1, T inverse functions

�

So T−1 fulfills the requirements of Definition LT [507] and is therefore a linear trans-
formation. So when T has an inverse, T−1 is also a linear transformation. Additionally,
T−1 is invertible and its inverse is what you might expect.

Theorem IILT
Inverse of an Invertible Linear Transformation
Suppose that T : U 7→ V is an invertible linear transformation. Then T−1 is an invertible

linear transformation and (T−1)
−1

= T . �

Proof Because T is invertible, Definition IVLT [571] tells us there is a function
T−1 : V 7→ U such that

T−1 ◦ T = IU T ◦ T−1 = IV

Additionally, Theorem ILTLT [574] tells us that T−1 is more than just a function, it
is a linear transformation. Now view these two statements as properties of the linear
transformation T−1. In light of Definition IVLT [571], they together say that T−1 is
invertible (let T play the role of S in the statement of the definition). Furthermore, the
inverse of T−1 is then T , i.e. (T−1)

−1
= T . �
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Subsection IV
Invertibility

We now know what an inverse linear transformation is, but just which linear transfor-
mations have inverses? Here is a theorem we have been preparing for all chapter.

Theorem ILTIS
Invertible Linear Transformations are Injective and Surjective

Suppose T : U 7→ V is a linear transformation. Then T is invertible if and only if T is
injective and surjective. �

Proof (⇒) Since T is presumed invertible, we can employ its inverse, T−1 (Defi-
nition IVLT [571]). To see that T is injective, suppose x, y ∈ U and assume that
T (x) = T (y),

x = IU (x) Definition IDLT [571]

=
(
T−1 ◦ T

)
(x) Definition IVLT [571]

= T−1 (T (x)) Definition LTC [523]

= T−1 (T (y)) Definition ILT [533]

=
(
T−1 ◦ T

)
(y) Definition LTC [523]

= IU (y) Definition IVLT [571]

= y Definition IDLT [571]

So by Definition ILT [533] T is injective. To check that T is surjective, suppose v ∈ V .
Employ T−1 again by defining u = T−1 (v). Then

T (u) = T
(
T−1 (v)

)
Substitution for u

=
(
T ◦ T−1

)
(v) Definition LTC [523]

= IV (v) T , T−1 inverse functions

= v Definition IDLT [571]

So there is an input to T , u, that produces the chosen output, v, and hence T is surjective
by Definition SLT [551].

(⇐) Now assume that T is both injective and surjective. We will build a function
S : V 7→ U that will establish that T is invertible. To this end, choose any v ∈ V .
Since T is surjective, Theorem RSLT [558] says R(T ) = V , so we have v ∈ R(T ).
Theorem RPI [561] says that the pre-image of v, T−1 (v), is nonempty. So we can choose
a vector from the pre-image of v, say u. In other words, there exists u ∈ T−1 (v).

Since T−1 (v) is non-empty, Theorem KPI [539] then says that

T−1 (v) = {u + z | z ∈ K(T )}

However, because T is injective, by Theorem KILT [539] the kernel is trivial, K(T ) = {0}.
So the pre-image is a set with just one element, T−1 (v) = {u}. Now we can define S by
S (v) = u. This is the key to this half of this proof. Normally the preimage of a vector
from the codomain might be an empty set, or an infinite set. But surjectivity requires
that the preimage not be empty, and then injectivity limits the preimage to a singleton.
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Since our choice of v was arbitrary, we know that every pre-image for T is a set with
a single element. This allows us to construct S as a function. Now that it is defined,
verifying that it is the inverse of T will be easy. Here we go.

Choose u ∈ U . Define v = T (u). Then T−1 (v) = {u}, so that S (v) = u and,

(S ◦ T ) (u) = S (T (u)) = S (v) = u = IU (u)

and since our choice of u was arbitrary we have function equality, S ◦ T = IU .
Now choose v ∈ V . Define u to be the single vector in the set T−1 (v), in other words,

u = S (v). Then T (u) = v, so

(T ◦ S) (v) = T (S (v)) = T (u) = v = IV (v)

and since our choice of v was arbitary we have function equality, T ◦ S = IV .
�

We will make frequent use of this characterization of invertible linear transformations.
The next theorem is a good example of this, and we will use it often, too.

Theorem CIVLT
Composition of Invertible Linear Transformations

Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then
the composition, (S ◦ T ) : U 7→ W is an invertible linear transformation. �

Proof Since S and T are both linear transformations, S◦T is also a linear transformation
by Theorem CLTLT [524]. Since S and T are both invertible, Theorem ILTIS [575] says
that S and T are both injective and surjective. Then Theorem CILTI [543] says S ◦ T is
injective, and Theorem CSLTS [563] says S ◦T is surjective. Now apply the “other half”
of Theorem ILTIS [575] and conclude that S ◦ T is invertible. �

When a composition is invertible, the inverse is easy to construct.

Theorem ICLT
Inverse of a Composition of Linear Transformations

Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then
S ◦ T is invertible and (S ◦ T )−1 = T−1 ◦ S−1. �

Proof Compute, for all w ∈ W(
(S ◦ T ) ◦

(
T−1 ◦ S−1

))
(w) = S

(
T
(
T−1

(
S−1 (w)

)))
= S

(
IV

(
S−1 (w)

))
Definition IVLT [571]

= S
(
S−1 (w)

)
Definition IDLT [571]

= w Definition IVLT [571]

= IW (w) Definition IDLT [571]

so (S ◦ T ) ◦ (T−1 ◦ S−1) = IW and also((
T−1 ◦ S−1

)
◦ (S ◦ T )

)
(u) = T−1

(
S−1 (S (T (u)))

)
= T−1 (IV (T (u))) Definition IVLT [571]

= T−1 (T (u)) Definition IDLT [571]

= u Definition IVLT [571]
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= IU (u) Definition IDLT [571]

so (T−1 ◦ S−1)◦(S ◦ T ) = IU . By Definition IVLT [571], S◦T is invertible and (S ◦ T )−1 =
T−1 ◦ S−1. �

Notice that this theorem not only establishes what the inverse of S ◦ T is, it also
duplicates the conclusion of Theorem CIVLT [576] and also establishes the invertibility
of S ◦ T . But somehow, the proof of Theorem CIVLT [576] is nicer way to get this
property.

Does Theorem ICLT [576] remind you of the flavor of any theorem we have seen about
matrices? (Hint: Think about getting dressed.) Hmmmm.

Subsection SI
Structure and Isomorphism

A vector space is defined (Definition VS [313]) as a set of objects (“vectors”) endowed
with a definition of vector addition (+) and a definition of scalar multiplication (jux-
taposition). Many of our definitions about vector spaces involve linear combinations
(Definition LC [335]), such as the span of a set (Definition SS [336]) and linear inde-
pendence (Definition LI [349]). Other definitions are built up from these ideas, such as
bases (Definition B [367]) and dimension (Definition D [383]). The defining properties
of a linear transformation require that a function “respect” the operations of the two
vector spaces that are the domain and the codomain (Definition LT [507]). Finally, an
invertible linear transformation is one that can be “undone” — it has a companion that
reverses its effect. In this subsection we are going to begin to roll all these ideas into one.

A vector space has “structure” derived from definitions of the two operations and
the requirement that these operations interact in ways that satisfy the ten properties of
Definition VS [313]. When two different vector spaces have an invertible linear transfor-
mation defined between them, then we can translate questions about linear combinations
(spans, linear independence, bases, dimension) from the first vector space to the second.
The answers obtained in the second vector space can then be translated back, via the
inverse linear transformation, and interpreted in the setting of the first vector space. We
say that these invertible linear transformations “preserve structure.” And we say that the
two vector spaces are “structurally the same.” The precise term is “isomorphic,” from
Greek meaning “of the same form.” Let’s begin to try to understand this important
concept.

Definition IVS
Isomorphic Vector Spaces

Two vector spaces U and V are isomorphic if there exists an invertible linear trans-
formation T with domain U and codomain V , T : U 7→ V . In this case, we write U ∼= V ,
and the linear transformation T is known as an isomorphism between U and V . 4

A few comments on this definition. First, be careful with your language (Tech-
nique L [682]). Two vector spaces are isomorphic, or not. It is a yes/no situation and the
term only applies to a pair of vector spaces. Any invertible linear transformation can be
called an isomorphism, it is a term that applies to functions. Second, a given pair of vec-
tor spaces there might be several different isomorphisms between the two vector spaces.
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578 Section IVLT Invertible Linear Transformations

But it only takes the existence of one to call the pair isomorphic. Third, U isomorphic
to V , or V isomorphic to U? Doesn’t matter, since the inverse linear transformation
will provide the needed isomorphism in the “opposite” direction. Being “isomorphic to”
is an equivalence relation on the set of all vector spaces (see Theorem SER [489] for a
reminder about equivalence relations).

Example IVSAV
Isomorphic vector spaces, Archetype V

Archetype V [774] is a linear transformation from P3 to M22,

T : P3 7→M22, T
(
a + bx + cx2 + dx3

)
=

[
a + b a− 2c

d b− d

]
Since it is injective and surjective, Theorem ILTIS [575] tells us that it is an invertible
linear transformation. By Definition IVS [577] we say P3 and M22 are isomorphic.

At a basic level, the term “isomorphic” is nothing more than a codeword for the
presence of an invertible linear transformation. However, it is also a description of a
powerful idea, and this power only becomes apparent in the course of studying examples
and related theorems. In this example, we are led to believe that there is nothing “struc-
turally” different about P3 and M22. In a certain sense they are the same. Not equal,
but the same. One is as good as the other. One is just as interesting as the other.

Here is an extremely basic application of this idea. Suppose we want to compute the
following linear combination of polynomials in P3,

5(2 + 3x− 4x2 + 5x3) + (−3)(3− 5x + 3x2 + x3)

Rather than doing it straight-away (which is very easy), we will apply the transformation
T to convert into a linear combination of matrices, and then compute in M22 according
to the definitions of the vector space operations there (Example VSM [315]),

T
(
5(2 + 3x− 4x2 + 5x3) + (−3)(3− 5x + 3x2 + x3)

)
= 5T

(
2 + 3x− 4x2 + 5x3

)
+ (−3)T

(
3− 5x + 3x2 + x3

)
Theorem LTLC [516]

= 5

[
5 10
5 −2

]
+ (−3)

[
−2 −3
1 −6

]
Definition of T

=

[
31 59
22 8

]
Operations in M22

Now we will translate our answer back to P3 by applying T−1, which we found in Exam-
ple AIVLT [571],

T−1 : M22 7→ P3, T−1

([
a b
c d

])
= (a− c− d) + (c + d)x +

1

2
(a− b− c− d)x2 + cx3

We compute,

T−1

([
31 59
22 8

])
= 1 + 30x− 29x2 + 22x3

which is, as expected, exactly what we would have computed for the original linear
combination had we just used the definitions of the operations in P3 (Example VSP [316]).
�
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Checking the dimensions of two vector spaces can be a quick way to establish that
they are not isomorphic. Here’s the theorem.

Theorem IVSED
Isomorphic Vector Spaces have Equal Dimension

Suppose U and V are isomorphic vector spaces. Then dim (U) = dim (V ). �

Proof If U and V are isomorphic, there is an invertible linear transformation T : U 7→
V (Definition IVS [577]). T is injective by Theorem ILTIS [575] and so by Theo-
rem ILTD [542], dim (U) ≤ dim (V ). Similarly, T is surjective by Theorem ILTIS [575]
and so by Theorem SLTD [562], dim (U) ≥ dim (V ). The net effect of these two inequal-
ities is that dim (U) = dim (V ). �

The contrapositive of Theorem IVSED [579] says that if U and V have different
dimensions, then they are not isomorphic. Dimension is the simplest “structural” char-
acteristic that will allow you to distinguish non-isomorphic vector spaces. For example
P6 is not isomorphic to M34 since their dimensions (7 and 12, respectively) are not equal.
With tools developed in Section VR [591] we will be able to establish that the converse
of Theorem IVSED [579] is true. Think about that one for a moment.

Subsection RNLT
Rank and Nullity of a Linear Transformation

Just as a matrix has a rank and a nullity, so too do linear transformations. And just
like the rank and nullity of a matrix are related (they sum to the number of columns,
Theorem RPNC [391]) the rank and nullity of a linear transformation are related. Here
are the definitions and theorems, see the Archetypes (Appendix A [699]) for loads of
examples.

Definition ROLT
Rank Of a Linear Transformation

Suppose that T : U 7→ V is a linear transformation. Then the rank of T , r (T ), is the
dimension of the range of T ,

r (T ) = dim (R(T ))

(This definition contains Notation ROLT.) 4

Definition NOLT
Nullity Of a Linear Transformation

Suppose that T : U 7→ V is a linear transformation. Then the nullity of T , n (T ), is
the dimension of the kernel of T ,

n (T ) = dim (K(T ))

(This definition contains Notation NOLT.) 4

Here are two quick theorems.
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Theorem ROSLT
Rank Of a Surjective Linear Transformation
Suppose that T : U 7→ V is a linear transformation. Then the rank of T is the dimension

of V , r (T ) = dim (V ), if and only if T is surjective. �

Proof By Theorem RSLT [558], T is surjective if and only if R(T ) = V . Applying
Definition ROLT [579], R(T ) = V if and only if r (T ) = dim (R(T )) = dim (V ). �

Theorem NOILT
Nullity Of an Injective Linear Transformation

Suppose that T : U 7→ V is an injective linear transformation. Then the nullity of T is
zero, n (T ) = 0, if and only if T is injective. �

Proof By Theorem KILT [539], T is injective if and only if K(T ) = {0}. Applying
Definition NOLT [579], K(T ) = {0} if and only if n (T ) = 0. �

Just as injectivity and surjectivity come together in invertible linear transformations,
there is a clear relationship between rank and nullity of a linear transformation. If one
is big, the other is small.

Theorem RPNDD
Rank Plus Nullity is Domain Dimension

Suppose that T : U 7→ V is a linear transformation. Then

r (T ) + n (T ) = dim (U)

�

Proof Let r = r (T ) and s = n (T ). Suppose that R = {v1, v2, v3, . . . , vr} ⊆ V is a
basis of the range of T , R(T ), and S = {u1, u2, u3, . . . , us} ⊆ U is a basis of the kernel
of T , K(T ). Note that R and S are possibly empty, which means that some of the sums
in this proof are “empty” and are equal to the zero vector.

Because the elements of R are all in the range of T , each must have a non-empty pre-
image by Theorem RPI [561]. Choose vectors wi ∈ U , 1 ≤ i ≤ r such that wi ∈ T−1 (vi).
So T (wi) = vi, 1 ≤ i ≤ r. Consider the set

B = {u1, u2, u3, . . . , us, w1, w2, w3, . . . , wr}

We claim that B is a basis for U .
To establish linear independence for B, begin with a relation of linear dependence on

B. So suppose there are scalars a1, a2, a3, . . . , as and b1, b2, b3, . . . , br

0 = a1u1 + a2u2 + a3u3 + · · ·+ asus + b1w1 + b2w2 + b3w3 + · · ·+ brwr

Then

0 = T (0) Theorem LTTZZ [511]

= T (a1u1 + a2u2 + a3u3 + · · ·+ asus

+b1w1 + b2w2 + b3w3 + · · ·+ brwr) Substitution

= a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ asT (us)

+ b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Theorem LTLC [516]

= a10 + a20 + a30 + · · ·+ as0
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+ b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) ui ∈ K(T )

= 0 + 0 + 0 + · · ·+ 0

+ b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Theorem ZVSM [321]

= b1T (w1) + b2T (w2) + b3T (w3) + · · ·+ brT (wr) Property Z [314]

= b1v1 + b2v2 + b3v3 + · · ·+ brvr wi ∈ T−1 (vi)

This is a relation of linear dependence on R (Definition RLD [349]), and since R is a
linearly independent set (Definition LI [349]), we see that b1 = b2 = b3 = . . . = br = 0.
Then the original relation of linear dependence on B becomes

0 = a1u1 + a2u2 + a3u3 + · · ·+ asus + 0w1 + 0w2 + . . . + 0wr

= a1u1 + a2u2 + a3u3 + · · ·+ asus + 0 + 0 + . . . + 0 Theorem ZSSM [321]

= a1u1 + a2u2 + a3u3 + · · ·+ asus Property Z [314]

But this is again a relation of linear independence (Definition RLD [349]), now on the
set S. Since S is linearly independent (Definition LI [349]), we have a1 = a2 = a3 =
. . . = ar = 0. Since we now know that all the scalars in the relation of linear depen-
dence on B must be zero, we have established the linear independence of S through
Definition LI [349].

To now establish that B spans U , choose an arbitrary vector u ∈ U . Then T (u) ∈
R(T ), so there are scalars c1, c2, c3, . . . , cr such that

T (u) = c1v1 + c2v2 + c3v3 + · · ·+ crvr

Use the scalars c1, c2, c3, . . . , cr to define a vector y ∈ U ,

y = c1w1 + c2w2 + c3w3 + · · ·+ crwr

Then

T (u− y) = T (u)− T (y) Theorem LTLC [516]

= T (u)− T (c1w1 + c2w2 + c3w3 + · · ·+ crwr) Substitution

= T (u)− (c1T (w1) + c2T (w2) + · · ·+ crT (wr)) Theorem LTLC [516]

= T (u)− (c1v1 + c2v2 + c3v3 + · · ·+ crvr) wi ∈ T−1 (vi)

= T (u)− T (u) Substitution

= 0 Property AI [314]

So the vector u− y is sent to the zero vector by T and hence is an element of the kernel
of T . As such it can be written as a linear combination of the basis vectors for K(T ), the
elements of the set S. So there are scalars d1, d2, d3, . . . , ds such that

u− y = d1u1 + d2u2 + d3u3 + · · ·+ dsus

Then

u = (u− y) + y

= d1u1 + d2u2 + d3u3 + · · ·+ dsus + c1w1 + c2w2 + c3w3 + · · ·+ crwr
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This says that for any vector, u, from U , there exist scalars (d1, d2, d3, . . . , ds, c1, c2, c3, . . . , cr)
that form u as a linear combination of the vectors in the set B. In other words, B spans
U (Definition SS [336]).

So B is a basis (Definition B [367]) of U with s + r vectors, and thus

dim (U) = s + r = n (T ) + r (T )

as desired. �

Theorem RPNC [391] said that the rank and nullity of a matrix sum to the number of
columns of the matrix. This result is now an easy consequence of Theorem RPNDD [580]
when we consider the linear transformation T : Cn 7→ Cm defined with the m× n matrix
A by T (x) = Ax. The range and kernel of T are identical to the column space and null
space of the matrix A (can you prove this?), so the rank and nullity of the matrix A are
identical to the rank and nullity of the linear transformation T . The dimension of the
domain of T is the dimension of Cn, exactly the number of columns for the matrix A.

This theorem can be especially useful in determining basic properties of linear trans-
formations. For example, suppose that T : C6 7→ C6 is a linear transformation and you
are able to quickly establish that the kernel is trivial. Then n (T ) = 0. First this means
that T is injective by Theorem NOILT [580]. Also, Theorem RPNDD [580] becomes

6 = dim
(
C6
)

= r (T ) + n (T ) = r (T ) + 0 = r (T )

So the rank of T is equal to the rank of the codomain, and by Theorem ROSLT [579]
we know T is surjective. Finally, we know T is invertible by Theorem ILTIS [575]. So
from the determination that the kernel is trivial, and consideration of various dimen-
sions, the theorems of this section allow us to conclude the existence of an inverse linear
transformation for T .

Similarly, Theorem RPNDD [580] can be used to provide alternative proofs for The-
orem ILTD [542], Theorem SLTD [562] and Theorem IVSED [579]. It would be an
interesting exercise to construct these proofs.

It would be instructive to study the archetypes that are linear transformations and see
how many of their properties can be deduced just from considering the dimensions of the
domain and codomain, and possibly with just the nullity or rank. The table preceding
all of the archetypes could be a good place to start this analysis.

Subsection SLELT
Systems of Linear Equations and Linear Transformations

This subsection does not really belong in this section, or any other section, for that
matter. It is just the right time to have a discussion about the connections between
the central topic of linear algebra, linear transformations, and our motivating topic from
Chapter SLE [3], systems of linear equations. We will discuss several theorems we have
seen already, but we will also make some forward-looking statements that will be justified
in Chapter R [591].

Archetype D [717] and Archetype E [721] are ideal examples to illustrate connections
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with linear transformations. Both have the same coefficient matrix,

D =

 2 1 7 −7
−3 4 −5 −6
1 1 4 −5


To apply the theory of linear transformations to these two archetypes, employ matrix
multiplication (Definition MM [225]) and define the linear transformation,

T : C4 7→ C3, T (x) = Dx = x1

 2
−3
1

+ x2

1
4
1

+ x3

 7
−5
4

+ x4

−7
−6
−5


Theorem MBLT [513] tells us that T is indeed a linear transformation. Archetype D [717]

asks for solutions to LS(D, b), where b =

 8
−12
−4

. In the language of linear transfor-

mations this is equivalent to asking for T−1 (b). In the language of vectors and matrices
it asks for a linear combination of the four columns of D that will equal b. One solution

listed is w =


7
8
1
3

. With a non-empty preimage, Theorem KPI [539] tells us that the

complete solution set of the linear system is the preimage of b,

w +K(T ) = {w + z | z ∈ K(T )}

The kernel of the linear transformation T is exactly the null space of the matrix D (see
Exercise ILT.T20 [546]), so this approach to the solution set should be reminiscent of
Theorem PSPHS [119]. The kernel of the linear transformation is the preimage of the
zero vector, exactly equal to the solution set of the homogeneous system LS(D, 0). Since
D has a null space of dimension two, every preimage (and in particular the preimage of
b) is as “big” as a subspace of dimension two (but is not a subspace).

Archetype E [721] is identical to Archetype D [717] but with a different vector of

constants, d =

2
3
2

. We can use the same linear transformation T to discuss this system

of equations since the coefficient matrix is identical. Now the set of solutions to LS(D, d)
is the pre-image of d, T−1 (d). However, the vector d is not in the range of the linear
transformation (nor is it in the column space of the matrix, since these two sets are equal
by Exercise SLT.T20 [566]). So the empty pre-image is equivalent to the inconsistency
of the linear system.

These two archetypes each have three equations in four variables, so either the re-
sulting linear systems are inconsistent, or they are consistent and application of Theo-
rem CMVEI [57] tells us that the system has infinitely many solutions. Considering these
same parameters for the linear transformation, the dimension of the domain, C4, is four,
while the codomain, C3, has dimension three. Then

n (T ) = dim
(
C4
)
− r (T ) Theorem RPNDD [580]

= 4− dim (R(T )) Definition ROLT [579]
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584 Section IVLT Invertible Linear Transformations

≥ 4− 3 R(T ) subspace of C3

= 1

So the kernel of T is nontrivial simply by considering the dimensions of the domain (num-
ber of variables) and the codomain (number of equations). Pre-images of elements of the
codomain that are not in the range of T are empty (inconsistent systems). For elements
of the codomain that are in the range of T (consistent systems), Theorem KPI [539] tells
us that the pre-images are built from the kernel, and with a non-trivial kernel, these
pre-images are infinite (infinitely many solutions).

When do systems of equations have unique solutions? Consider the system of lin-
ear equations LS(C, f) and the linear transformation S (x) = Cx. If S has a trivial
kernel, then pre-images will either be empty or be finite sets with single elements. Cor-
respondingly, the coefficient matrix C will have a trivial null space and solution sets will
either be empty (inconsistent) or contain a single solution (unique solution). Should the
matrix be square and have a trivial null space then we recognize the matrix as being
nonsingular. A square matrix means that the corresponding linear transformation, T ,
has equal-sized domain and codomain. With a nullity of zero, T is injective, and also
Theorem RPNDD [580] tells us that rank of T is equal to the dimension of the domain,
which in turn is equal to the dimension of the codomain. In other words, T is surjective.
Injective and surjective, and Theorem ILTIS [575] tells us that T is invertible. Just as
we can use the inverse of the coefficient matrix to find the unique solution of any linear
system with a nonsingular coefficient matrix (Theorem SNSCM [258]), we can use the
inverse of the linear transformation to construct the unique element of any pre-image
(proof of Theorem ILTIS [575]).

The executive summary of this discussion is that to every coefficient matrix of a
system of linear equations we can associate a natural linear transformation. Solution
sets for systems with this coefficient matrix are preimages of elements of the codomain of
the linear transformation. For every theorem about systems of linear equations there is
an analogue about linear transformations. The theory of linear transformations provides
all the tools to recreate the theory of solutions to linear systems of equations.

We will continue this adventure in Chapter R [591].

Subsection READ
Reading Questions

1. What conditions allow us to easily determine if a linear tranformation is invertible?

2. What does it mean to say two vector spaces are isomorphic? Both technically, and
informally?

3. How do linear transformations relate to systems of linear equations?

Version 0.85



Subsection IVLT.EXC Exercises 585

Subsection EXC
Exercises

C20 Determine if the linear transformation T : P2 7→M22 is (a) injective, (b) surjective,
(c) invertible.

T
(
a + bx + cx2

)
=

[
a + 2b− 2c 2a + 2b
−a + b− 4c 3a + 2b + 2c

]
Contributed by Robert Beezer Solution [587]

C21 Determine if the linear transformation S : P3 7→M22 is (a) injective, (b) surjective,
(c) invertible.

S
(
a + bx + cx2 + dx3

)
=

[
−a + 4b + c + 2d 4a− b + 6c− d
a + 5b− 2c + 2d a + 2c + 5d

]
Contributed by Robert Beezer Solution [587]

C50 Consider the linear transformation S : M12 7→ P1 from the set of 1 × 2 matrices
to the set of polynomials of degree at most 1, defined by

S
([

a b
])

= (3a + b) + (5a + 2b)x

Prove that S is invertible. Then show that the linear transformation

R : P1 7→M12, R (r + sx) =
[
(2r − s) (−5r + 3s)

]
is the inverse of S, that is S−1 = R.
Contributed by Robert Beezer Solution [588]

M30 The linear transformation S below is invertible. Find a formula for the inverse
linear transformation, S−1.

S : P1 7→M1,2, S (a + bx) =
[
3a + b 2a + b

]
Contributed by Robert Beezer Solution [588]

M31 The linear transformation R : M12 7→M21 is invertible. Determine a formula for
the inverse linear transformation R−1 : M21 7→M12. (15 points)

R
([

a b
])

=

[
a + 3b

4a + 11b

]
Contributed by Robert Beezer Solution [589]

T15 Suppose that T : U 7→ V is a surjective linear transformation and dim (U) =
dim (V ). Prove that T is injective.
Contributed by Robert Beezer Solution [590]

T16 Suppose that T : U 7→ V is an injective linear transformation and dim (U) =
dim (V ). Prove that T is surjective.
Contributed by Robert Beezer
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [585]
(a) We will compute the kernel of T . Suppose that a + bx + cx2 ∈ K(T ). Then[

0 0
0 0

]
= T

(
a + bx + cx2

)
=

[
a + 2b− 2c 2a + 2b
−a + b− 4c 3a + 2b + 2c

]
and matrix equality (Theorem ME [478]) yields the homogeneous system of four equations
in three variables,

a + 2b− 2c = 0

2a + 2b = 0

−a + b− 4c = 0

3a + 2b + 2c = 0

The coefficient matrix of this system row-reduces as
1 2 −2
2 2 0
−1 1 −4
3 2 2

 RREF−−−→


1 0 2

0 1 −2
0 0 0
0 0 0


From the existence of non-trivial solutions to this system, we can infer non-zero polyno-
mials in K(T ). By Theorem KILT [539] we then know that T is not injective.

(b) Since 3 = dim (P2) < dim (M22) = 4, by Theorem SLTD [562] T is not surjective.
(c) Since T is not surjective, it is not invertible by Theorem ILTIS [575].

C21 Contributed by Robert Beezer Statement [585]
(a) To check injectivity, we compute the kernel of S. To this end, suppose that a + bx +
cx2 + dx3 ∈ K(S), so[

0 0
0 0

]
= S

(
a + bx + cx2 + dx3

)
=

[
−a + 4b + c + 2d 4a− b + 6c− d
a + 5b− 2c + 2d a + 2c + 5d

]
this creates the homogeneous system of four equations in four variables,

−a + 4b + c + 2d = 0

4a− b + 6c− d = 0

a + 5b− 2c + 2d = 0

a + 2c + 5d = 0

The coefficient matrix of this system row-reduces as,
−1 4 1 2
4 −1 6 −1
1 5 −2 2
1 0 2 5

 RREF−−−→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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We recognize the coefficient matrix as being nonsingular, so the only solution to the
system is a = b = c = d = 0, and the kernel of S is trivial, K(S) = {0 + 0x + 0x2 + 0x3}.
By Theorem KILT [539], we see that S is injective.

(b) We can establish that S is surjective by considering the rank and nullity of S.

r (S) = dim (P3)− n (S) Theorem RPNDD [580]

= 4− 0

= dim (M22)

So,R(S) is a subspace of M22 (Theorem RLTS [557]) whose dimension equals that of M22.
By Theorem EDYES [405], we gain the set equality R(S) = M22. Theorem RSLT [558]
then implies that S is surjective.

(c) Since S is both injective and surjective, Theorem ILTIS [575] says S is invertible.

C50 Contributed by Robert Beezer Statement [585]
Determine the kernel of S first. The condition that S

([
a b

])
= 0 becomes (3a + b) +

(5a + 2b)x = 0 + 0x. Equating coefficients of these polynomials yields the system

3a + b = 0

5a + 2b = 0

This homogeneous system has a nonsingular coefficient matrix, so the only solution is
a = 0, b = 0 and thus

K(S) =
{[

0 0
]}

By Theorem KILT [539], we know S is injective. With n (S) = 0 we employ Theorem RP-
NDD [580] to find

r (S) = r (S) + 0 = r (S) + n (S) = dim (M12) = 2 = dim (P1)

Since R(S) ⊆ P1 and dim (R(S)) = dim (P1), we can apply Theorem EDYES [405] to
obtain the set equality R(S) = P1 and therefore S is surjective.

One of the two defining conditions of an invertible linear transformation is (Defini-
tion IVLT [571])

(S ◦R) (a + bx) = S (R (a + bx))

= S
([

(2a− b) (−5a + 3b)
])

= (3(2a− b) + (−5a + 3b)) + (5(2a− b) + 2(−5a + 3b)) x

= ((6a− 3b) + (−5a + 3b)) + ((10a− 5b) + (−10a + 6b)) x

= a + bx

= IP1 (a + bx)

That (R ◦ S)
([

a b
])

= IM12

([
a b

])
is similar.

M30 Contributed by Robert Beezer Statement [585]
Suppose that S−1 : M1,2 7→ P1 has a form given by

S−1
(
z w

)
= (rz + sw) + (pz + qw) x

where r, s, p, q are unknown scalars. Then

a + bx = S−1 (S (a + bx))
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= S−1
([

3a + b 2a + b
])

= (r(3a + b) + s(2a + b)) + (p(3a + b) + q(2a + b)) x

= ((3r + 2s)a + (r + s)b) + ((3p + 2q)a + (p + q)b) x

Equating coefficients of these two polynomials, and then equating coefficients on a and
b, gives rise to 4 equations in 4 variables,

3r + 2s = 1

r + s = 0

3p + 2q = 0

p + q = 1

This system has a unique solution: r = 1, s = −1, p = −2, q = 3. So the desired inverse
linear transformation is

S−1
(
z w

)
= (z − w) + (−2z + 3w) x

Notice that the system of 4 equations in 4 variables could be split into two systems,
each with two equations in two variables (and identical coefficient matrices). After mak-
ing this split, the solution might feel like computing the inverse of a matrix (Theo-
rem CINSM [245]). Hmmmm.

M31 Contributed by Robert Beezer Statement [585]
We are given that R is invertible. The inverse linear transformation can be formulated

by considering the pre-image of a generic element of the codomain. With injectivity and
surjectivity, we know that the pre-image of any element will be a set of size one — it is
this lone element that will be the output of the inverse linear transformation.

Suppose that we set v =

[
x
y

]
as a generic element of the codomain, M21. Then if[

r s
]

= w ∈ R−1 (v), [
x
y

]
= v = R (w)

=

[
r + 3s

4r + 11s

]
So we obtain the system of two equations in the two variables r and s,

r + 3s = x

4r + 11s = y

With a nonsingular coefficient matrix, we can solve the system using the inverse of the
coefficient matrix,

r = −11x + 3y

s = 4x− y

So we define,

R−1 (v) = R−1

([
x
y

])
= w =

[
r s

]
=
[
−11x + 3y 4x− y

]
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T15 Contributed by Robert Beezer Statement [585]
If T is surjective, then Theorem RSLT [558] says R(T ) = V , so r (T ) = dim (V ). In

turn, the hypothesis gives r (T ) = dim (U). Then, using Theorem RPNDD [580],

n (T ) = (r (T ) + n (T ))− r (T ) = dim (U)− dim (U) = 0

With a null space of zero dimension, K(T ) = {0}, and by Theorem KILT [539] we see
that T is injective. T is both injective and surjective so by Theorem ILTIS [575], T is
invertible.
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Chapter R: Representations

Previous work with linear transformations may have convinced you that we can convert
most questions about linear transformations into questions about systems of equations
or properties of subspaces of Cm. In this section we begin to make these vague notions
precise. We have used the word “representation” prior, but it will get a heavy workout
in this chapter. In many ways, everything we have studied so far was in preparation for
this chapter.

Section VR

Vector Representations

We begin by establishing an invertible linear transformation between any vector space
V of dimension m and Cm. This will allow us to “go back and forth” between the two
vector spaces, no matter how abstract the definition of V might be.

Definition VR
Vector Representation

Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}. Define a
function ρB : V 7→ Cn as follows. For w ∈ V , find scalars a1, a2, a3, . . . , an so that

w = a1v1 + a2v2 + a3v3 + · · ·+ anvn

then

[ρB (w)]i = ai 1 ≤ i ≤ n

4
We need to show that ρB is really a function (since “find scalars” sounds like it could

be accomplished in many ways, or perhaps not at all) and right now we want to establish
that ρB is a linear transformation. We will wrap up both objectives in one theorem, even
though the first part is working backwards to make sure that ρB is well-defined.

Theorem VRLT
Vector Representation is a Linear Transformation

The function ρB (Definition VR [591]) is a linear transformation. �

Proof The definition of ρB (Definition VR [591]) appears to allow considerable latitude
in selecting the scalars a1, a2, a3, . . . , an. However, since B is a basis for V , Theo-
rem VRRB [359] says this can be done, and done uniquely. So despite appearances, ρB

is indeed a function.
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592 Section VR Vector Representations

Suppose that x and y are two vectors in V and α ∈ C. Then the vector space
properties (Definition VS [313]) assure us that the vectors x + y and αx are also vectors
in V . Theorem VRRB [359] then provides the following sets of scalars for the four vectors
x, y, x + y and αx, and tells us that each set of scalars is the only way to express the
given vector as a linear combination of the basis vectors in B.

x = a1v1 + a2v2 + a3v3 + · · ·+ anvn

y = b1v1 + b2v2 + b3v3 + · · ·+ bnvn

x + y = c1v1 + c2v2 + c3v3 + · · ·+ cnvn

αx = d1v1 + d2v2 + d3v3 + · · ·+ dnvn

Then these coefficients are related, as we now show.

x + y = (a1v1 + a2v2 + a3v3 + · · ·+ anvn)

+ (b1v1 + b2v2 + b3v3 + · · ·+ bnvn)

= a1v1 + b1v1 + a2v2 + b2v2 + · · ·+ anvn + bnvn Property AC [313]

= (a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (an + bn)vn Property DSA [314]

By the uniqueness of the expression of x + y as a linear combination of the vectors in B
(Theorem VRRB [359]), we conclude that ci = ai + bi, 1 ≤ i ≤ n.

Similarly,

αx = α (a1v1 + a2v2 + a3v3 + · · ·+ anvn)

= α(a1v1) + α(a2v2) + α(a3v3) + · · ·+ α(anvn) Property DVA [314]

= (αa1)v1 + (αa2)v2 + (αa3)v3 + · · ·+ (αan)vn Property SMA [314]

By the uniqueness of the expression of αx as a linear combination of the vectors in B
(Theorem VRRB [359]), we conclude that di = αai, 1 ≤ i ≤ n.

Now, for 1 ≤ i ≤ n, we have

[ρB (x + y)]i = ci Definition VR [591]

= ai + bi Theorem VRRB [359]

= [ρB (x)]i + [ρB (y)]i Definition VR [591]

= [ρB (x) + ρB (y)]i Definition CVA [93]

Thus the vectors ρB (x + y) and ρB (x) + ρB (y) are equal in each entry and Defini-
tion CVE [92] tells us that ρB (x + y) = ρB (x) + ρB (y). This is the first necessary
property for ρB to be a linear transformation (Definition LT [507]).

Similarly, for 1 ≤ i ≤ n, we have

[ρB (αx)]i = di Definition VR [591]

= αai Theorem VRRB [359]

= α [ρB (x)]i Definition VR [591]

= [αρB (x)]i Definition CVSM [93]
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and so, the vectors ρB (αx) and αρB (x) are equal in each entry and therefore by Def-
inition CVE [92] we have the vector equality ρB (αx) = αρB (x). This establishes the
second property of a linear transformation (Definition LT [507]) so we can conclude that
ρB is a linear transformation. �

Example VRC4
Vector representation in C4

Consider the vector y ∈ C4

y =


6
14
6
7


We will find several coordinate representations of y in this example. Notice that y never
changes, but the representations of y do change.

One basis for C4 is

B = {u1, u2, u3, u4} =



−2
1
2
−3

 ,


3
−6
2
−4

 ,


1
2
0
5

 ,


4
3
1
6




as can be seen by making these vectors the columns of a matrix, checking that the
matrix is nonsingular and applying Theorem CNSMB [373]. To find ρB (y), we need to
find scalars, a1, a2, a3, a4 such that

y = a1u1 + a2u2 + a3u3 + a4u4

By Theorem SLSLC [106] the desired scalars are a solution to the linear system of equa-
tions with a coefficient matrix whose columns are the vectors in B and with a vector of
constants y. With a nonsingular coefficient matrix, the solution is unique, but this is no
surprise as this is the content of Theorem VRRB [359]. This unique solution is

a1 = 2 a2 = −1 a3 = −3 a4 = 4

Then by Definition VR [591], we have

ρB (y) =


2
−1
−3
4


Suppose now that we construct a representation of y relative to another basis of C4,

C =



−15
9
−4
−2

 ,


16
−14
5
2

 ,


−26
14
−6
−3

 ,


14
−13
4
6




As with B, it is easy to check that C is a basis. Writing y as a linear combination of
the vectors in C leads to solving a system of four equations in the four unknown scalars
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with a nonsingular coefficient matrix. The unique solution can be expressed as

y =


6
14
6
7

 = (−28)


−15
9
−4
−2

+ (−8)


16
−14
5
2

+ 11


−26
14
−6
−3

+ 0


14
−13
4
6


so that Definition VR [591] gives

ρC (y) =


−28
−8
11
0


We often perform representations relative to standard bases, but for vectors in Cm its
a little silly. Let’s find the vector representation of y relative to the standard basis
(Theorem SUVB [367]),

D = {e1, e2, e3, e4}

Then, without any computation, we can check that

y =


6
14
6
7

 = 6e1 + 14e2 + 6e3 + 7e4

so by Definition VR [591],

ρD (y) =


6
14
6
7


which is not very exciting. Notice however that the order in which we place the vectors
in the basis is critical to the representation. Let’s keep the standard unit vectors as our
basis, but rearrange the order we place them in the basis. So a fourth basis is

E = {e3, e4, e2, e1}

Then,

y =


6
14
6
7

 = 6e3 + 7e4 + 14e2 + 6e1

so by Definition VR [591],

ρE (y) =


6
7
14
6


So for every possible basis of C4 we could construct a different representation of y. �

Vector representations are most interesting for vector spaces that are not Cm.
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Example VRP2
Vector representations in P2

Consider the vector u = 15+10x− 6x2 ∈ P2 from the vector space of polynomials with
degree at most 2 (Example VSP [316]). A nice basis for P2 is

B =
{
1, x, x2

}
so that

u = 15 + 10x− 6x2 = 15(1) + 10(x) + (−6)(x2)

so by Definition VR [591]

ρB (u) =

15
10
−6


Another nice basis for P2 is

B =
{
1, 1 + x, 1 + x + x2

}
so that now it takes a bit of computation to determine the scalars for the representation.
We want a1, a2, a3 so that

15 + 10x− 6x2 = a1(1) + a2(1 + x) + a3(1 + x + x2)

Performing the operations in P2 on the right-hand side, and equating coefficients, gives
the three equations in the three unknown scalars,

15 = a1 + a2 + a3

10 = a2 + a3

−6 = a3

The coefficient matrix of this sytem is nonsingular, leading to a unique solution (no
surprise there, see Theorem VRRB [359]),

a1 = 5 a2 = 16 a3 = −6

so by Definition VR [591]

ρC (u) =

 5
16
−6


While we often form vector representations relative to “nice” bases, nothing prevents us
from forming representations relative to “nasty” bases. For example, the set

D =
{
−2− x + 3x2, 1− 2x2, 5 + 4x + x2

}
can be verified as a basis of P2 by checking linear independence with Definition LI [349]
and then arguing that 3 vectors from P2, a vector space of dimension 3 (Theorem DP [387]),
must also be a spanning set (Theorem G [402]). Now we desire scalars a1, a2, a3 so that

15 + 10x− 6x2 = a1(−2− x + 3x2) + a2(1− 2x2) + a3(5 + 4x + x2)
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Performing the operations in P2 on the right-hand side, and equating coefficients, gives
the three equations in the three unknown scalars,

15 = −2a1 + a2 + 5a3

10 = −a1 + 4a3

−6 = 3a1 − 2a2 + a3

The coefficient matrix of this sytem is nonsingular, leading to a unique solution (no
surprise there, see Theorem VRRB [359]),

a1 = −2 a2 = 1 a3 = 2

so by Definition VR [591]

ρD (u) =

−2
1
2


�

Theorem VRI
Vector Representation is Injective

The function ρB (Definition VR [591]) is an injective linear transformation. �

Proof We will appeal to Theorem KILT [539]. Suppose U is a vector space of dimension
n, so vector representation is of the form ρB : U 7→ Cn. Let B = {u1, u2, u3, . . . , un}
be the basis of U used in the definition of ρB. Suppose u ∈ K(ρB). Finally, since B is a
basis for U , by Theorem VRRB [359] there are (unique) scalars, a1, a2, a3, . . . , an such
that

u = a1u1 + a2u2 + a3u3 + · · ·+ anun

Then for 1 ≤ i ≤ n

ai = [ρB (u)]i Definition VR [591]

= [0]i u ∈ K(ρB)

= 0

So

u = a1u1 + a2u2 + a3u3 + · · ·+ anun

= 0u1 + 0u2 + 0u3 + · · ·+ 0un

= 0 + 0 + 0 + · · ·+ 0 Theorem ZSSM [321]

= 0 Property Z [314]

Thus an arbitrary vector, u, from the kernel ,K(ρB), must equal the zero vector of U . So
K(ρB) = {0} and by Theorem KILT [539], ρB is injective. �

Theorem VRS
Vector Representation is Surjective

The function ρB (Definition VR [591]) is a surjective linear transformation. �
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Proof We will appeal to Theorem RSLT [558]. Suppose U is a vector space of dimension
n, so vector representation is of the form ρB : U 7→ Cn. Let B = {u1, u2, u3, . . . , un} be
the basis of U used in the definition of ρB. Suppose v ∈ Cn. Define the vector u by

u = [v]1 u1 + [v]2 u2 + [v]3 u3 + · · ·+ [v]n un

Then for 1 ≤ i ≤ n

[ρB (u)]i = [ρB ([v]1 u1 + [v]2 u2 + [v]3 u3 + · · ·+ [v]n un)]
i

= [v]i Definition VR [591]

so the entries of vectors ρB (u) and v are equal and Definition CVE [92] yields the
vector equality ρB (u) = v. This demonstrates that v ∈ R(ρB), so Cn ⊆ R(ρB). Since
R(ρB) ⊆ Cn by Definition RLT [555], we have R(ρB) = Cn and Theorem RSLT [558]
says ρB is surjective. �

We will have many occasions later to employ the inverse of vector representation, so
we will record the fact that vector representation is an invertible linear transformation.

Theorem VRILT
Vector Representation is an Invertible Linear Transformation

The function ρB (Definition VR [591]) is an invertible linear transformation. �

Proof The function ρB (Definition VR [591]) is a linear transformation (Theorem VRLT [591])
that is injective (Theorem VRI [596]) and surjective (Theorem VRS [596]) with domain
V and codomain Cn. By Theorem ILTIS [575] we then know that ρB is an invertible
linear transformation. �

Informally, we will refer to the application of ρB as coordinatizing a vector, while
the application of ρ−1

B will be referred to as un-coordinatizing a vector.

Subsection CVS
Characterization of Vector Spaces

Limiting our attention to vector spaces with finite dimension, we now describe every
possible vector space. All of them. Really.

Theorem CFDVS
Characterization of Finite Dimensional Vector Spaces

Suppose that V is a vector space with dimension n. Then V is isomorphic to Cn. �

Proof Since V has dimension n we can find a basis of V of size n (Definition D [383])
which we will call B. The linear transformation ρB is an invertible linear transformation
from V to Cn, so by Definition IVS [577], we have that V and Cn are isomorphic. �

Theorem CFDVS [597] is the first of several surprises in this chapter, though it might
be a bit demoralizing too. It says that there really are not all that many different (finite
dimensional) vector spaces, and none are really any more complicated than Cn. Hmmm.
The following examples should make this point.
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Example TIVS
Two isomorphic vector spaces

The vector space of polynomials with degree 8 or less, P8, has dimension 9 (Theo-
rem DP [387]). By Theorem CFDVS [597], P8 is isomorphic to C9. �

Example CVSR
Crazy vector space revealed
The crazy vector space, C of Example CVS [318], has dimension 2 by Example DC [389].

By Theorem CFDVS [597], C is isomorphic to C2. Hmmmm. Not really so crazy after
all? �

Example ASC
A subspace characterized
In Example DSP4 [388] we determined that a certain subspace W of P4 has dimension

4. By Theorem CFDVS [597], W is isomorphic to C4. �

Theorem IFDVS
Isomorphism of Finite Dimensional Vector Spaces
Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomor-

phic if and only if dim (U) = dim (V ). �

Proof (⇒) This is just the statement proved in Theorem IVSED [579].
(⇐) This is the advertised converse of Theorem IVSED [579]. We will assume U

and V have equal dimension and discover that they are isomorphic vector spaces. Let
n be the common dimension of U and V . Then by Theorem CFDVS [597] there are
isomorphisms T : U 7→ Cn and S : V 7→ Cn.

T is therefore an invertible linear transformation by Definition IVS [577]. Similarly,
S is an invertible linear transformation, and so S−1 is an invertible linear transfor-
mation (Theorem IILT [574]). The composition of invertible linear transformations is
again invertible (Theorem CIVLT [576]) so the composition of S−1 with T is invert-
ible. Then (S−1 ◦ T ) : U 7→ V is an invertible linear transformation from U to V and
Definition IVS [577] says U and V are isomorphic. �

Example MIVS
Multiple isomorphic vector spaces

C10, P9, M2,5 and M5,2 are all vector spaces and each has dimension 10. By Theo-
rem IFDVS [598] each is isomorphic to any other.

The subspace of M4,4 that contains all the symmetric matrices (Definition SYM [211])
has dimension 10, so this subspace is also isomorphic to each of the four vector spaces
above. �

Subsection CP
Coordinatization Principle

With ρB available as an invertible linear transformation, we can translate between vectors
in a vector space U of dimension m and Cm. Furthermore, as a linear transformation,
ρB respects the addition and scalar multiplication in U , while ρ−1

B respects the addition
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Subsection VR.CP Coordinatization Principle 599

and scalar multiplication in Cm. Since our definitions of linear independence, spans,
bases and dimension are all built up from linear combinations, we will finally be able to
translate fundamental properties between abstract vector spaces (U) and concrete vector
spaces (Cm).

Theorem CLI
Coordinatization and Linear Independence
Suppose that U is a vector space with a basis B of size n. Then S = {u1, u2, u3, . . . , uk}

is a linearly independent subset of U if and only if R = {ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}
is a linearly independent subset of Cn. �

Proof The linear transformation ρB is an isomorphism between U and Cn (Theo-
rem VRILT [597]). As an invertible linear transformation, ρB is an injective linear
transformation (Theorem ILTIS [575]), and ρ−1

B is also an injective linear transforma-
tion (Theorem IILT [574], Theorem ILTIS [575]).

(⇒) Since ρB is an injective linear transformation and S is linearly independent,
Theorem ILTLI [541] says that R is linearly independent.

(⇐) If we apply ρ−1
B to each element of R, we will create the set S. Since we are

assuming R is linearly independent and ρ−1
B is injective, Theorem ILTLI [541] says that

S is linearly independent. �

Theorem CSS
Coordinatization and Spanning Sets
Suppose that U is a vector space with a basis B of size n. Then u ∈ 〈{u1, u2, u3, . . . , uk}〉

if and only if ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉. �

Proof (⇒) Suppose u ∈ 〈{u1, u2, u3, . . . , uk}〉. Then there are scalars, a1, a2, a3, . . . , ak,
such that

u = a1u1 + a2u2 + a3u3 + · · ·+ akuk

Then,

ρB (u) = ρB (a1u1 + a2u2 + a3u3 + · · ·+ akuk)

= a1ρB (u1) + a2ρB (u2) + a3ρB (u3) + · · ·+ akρB (uk) Theorem LTLC [516]

which says that ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉.
(⇐) Suppose that ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉. Then there

are scalars b1, b2, b3, . . . , bk such that

ρB (u) = b1ρB (u1) + b2ρB (u2) + b3ρB (u3) + · · ·+ bkρB (uk)

Recall that ρB is invertible (Theorem VRILT [597]), so

u = IU (u) Definition IDLT [571]

=
(
ρ−1

B ◦ ρB

)
(u) Definition IVLT [571]

= ρ−1
B (ρB (u)) Definition LTC [523]

= ρ−1
B (b1ρB (u1) + b2ρB (u2) + b3ρB (u3) + · · ·+ bkρB (uk))

= b1ρ
−1
B (ρB (u1)) + b2ρ

−1
B (ρB (u2)) + b3ρ

−1
B (ρB (u3))

+ · · ·+ bkρ
−1
B (ρB (uk)) Theorem LTLC [516]

= b1IU (u1) + b2IU (u2) + b3IU (u3) + · · ·+ bkIU (uk) Definition IVLT [571]
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= b1u1 + b2u2 + b3u3 + · · ·+ bkuk Definition IDLT [571]

which says that u ∈ 〈{u1, u2, u3, . . . , uk}〉. �

Here’s a fairly simple example that illustrates a very, very important idea.

Example CP2
Coordinatizing in P2

In Example VRP2 [595] we needed to know that

D =
{
−2− x + 3x2, 1− 2x2, 5 + 4x + x2

}
is a basis for P2. With Theorem CLI [599] and Theorem CSS [599] this task is much
easier. First, choose a known basis for P2, a basis that forms vector representations easily.
We will choose

B =
{
1, x, x2

}
Now, form the subset of C3 that is the result of applying ρB to each element of D,

F =
{
ρB

(
−2− x + 3x2

)
, ρB

(
1− 2x2

)
, ρB

(
5 + 4x + x2

)}
=


−2
−1
3

 ,

 1
0
−2

 ,

5
4
1


and ask if F is a linearly independent spanning set for C3. This is easily seen to be the
case by forming a matrix A whose columns are the vectors of F , row-reducing A to the
identity matrix I3, and then using the nonsingularity of A to assert that F is a basis for
C3 (Theorem CNSMB [373]). Now, since F is a basis for C3, Theorem CLI [599] and
Theorem CSS [599] tell us that D is also a basis for P2. �

Example CP2 [600] illustrates the broad notion that computations in abstract vector
spaces can be reduced to computations in Cm. You may have noticed this phenomenon
as you worked through examples in Chapter VS [313] or Chapter LT [507] employing
vector spaces of matrices or polynomials. These computations seemed to invariably
result in systems of equations or the like from Chapter SLE [3], Chapter V [91] and
Chapter M [207]. It is vector representation, ρB, that allows us to make this connection
formal and precise.

Knowing that vector representation allows us to translate questions about linear com-
binations, linear indepencence and spans from general vector spaces to Cm allows us to
prove a great many theorems about how to translate other properties. Rather than
prove these theorems, each of the same style as the other, we will offer some general
guidance about how to best employ Theorem VRLT [591], Theorem CLI [599] and Theo-
rem CSS [599]. This comes in the form of a “principle”: a basic truth, but most definitely
not a theorem (hence, no proof).

The Coordinatization Principle Suppose that U is a vector space with a basis B
of size n. Then any question about U , or its elements, which ultimately depends on
the vector addition or scalar multiplication in U , or depends on linear independence or
spanning, may be translated into the same question in Cn by application of the linear
transformation ρB to the relevant vectors. Once the question is answered in Cn, the
answer may be translated back to U (if necessary) through application of the inverse
linear transformation ρ−1

B .
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Example CM32
Coordinatization in M32

This is a simple example of the Coordinatization Principle [600], depending only on the
fact that coordinatizing is an invertible linear transformation (Theorem VRILT [597]).
Suppose we have a linear combination to perform in M32, the vector space of 3 × 2
matrices, but we are adverse to doing the operations of M32 (Definition MA [208], Defi-
nition MSM [208]). More specifically, suppose we are faced with the computation

6

 3 7
−2 4
0 −3

+ 2

−1 3
4 8
−2 5


We choose a nice basis for M32 (or a nasty basis if we are so inclined),

B =


1 0

0 0
0 0

 ,

0 0
1 0
0 0

 ,

0 0
0 0
1 0

 ,

0 1
0 0
0 0

 ,

0 0
0 1
0 0

 ,

0 0
0 0
0 1


and apply ρB to each vector in the linear combination. This gives us a new computation,
now in the vector space C6,

6


3
−2
0
7
4
−3

+ 2


−1
4
−2
3
8
5


which we can compute with the operations of C6 (Definition CVA [93], Definition CVSM [93]),
to arrive at 

16
−4
−4
48
40
−8


We are after the result of a computation in M32, so we now can apply ρ−1

B to obtain a
3× 2 matrix,

16

1 0
0 0
0 0

+(−4)

0 0
1 0
0 0

+(−4)

0 0
0 0
1 0

+48

0 1
0 0
0 0

+40

0 0
0 1
0 0

+(−8)

0 0
0 0
0 1

 =

16 48
−4 40
−4 −8


which is exactly the matrix we would have computed had we just performed the matrix
operations in the first place. �

Subsection READ
Reading Questions

1. The vector space of 3× 5 matrices, M3,5 is isomorphic to what fundamental vector
space?
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2. A basis for C3 is

B =


 1

2
−1

 ,

 3
−1
2

 ,

1
1
1


Compute ρB

 5
8
−1

.

3. What is the first “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C10 In the vector space C3, compute the vector representation ρB (v) for the basis B
and vector v below.

B =


 2
−2
2

 ,

1
3
1

 ,

3
5
2

 v =

11
5
8


Contributed by Robert Beezer Solution [605]

C20 Rework Example CM32 [601] replacing the basis B by the basis

C =


−14 −9

10 10
−6 −2

 ,

−7 −4
5 5
−3 −1

 ,

−3 −1
0 −2
1 1

 ,

−7 −4
3 2
−1 0

 ,

 4 2
−3 −3
2 1

 ,

 0 0
−1 −2
1 1


Contributed by Robert Beezer Solution [605]

M10 Prove that the set S below is a basis for the vector space of 2 × 2 matrices,
M22. Do this choosing a natural basis for M22 and coordinatizing the elements of S with
respect to this basis. Examine the resulting set of column vectors from C4 and apply the
Coordinatization Principle [600].

S =

{[
33 99
78 −9

]
,

[
−16 −47
−36 2

]
,

[
10 27
17 3

]
,

[
−2 −7
−6 4

]}

Contributed by Andy Zimmer
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Subsection SOL
Solutions

C10 Contributed by Robert Beezer Statement [603]
We need to express the vector v as a linear combination of the vectors in B. The-

orem VRRB [359] tells us we will be able to do this, and do it uniquely. The vector
equation

a1

 2
−2
2

+ a2

1
3
1

+ a3

3
5
2

 =

11
5
8


becomes (via Theorem SLSLC [106]) a system of linear equations with augmented matrix, 2 1 3 11

−2 3 5 5
2 1 2 8


This system has the unique solution a1 = 2, a2 = −2, a3 = 3. So by Definition VR [591],

ρB (v) = ρB

11
5
8

 = ρB

2

 2
−2
2

+ (−2)

1
3
1

+ 3

3
5
2

 =

 2
−2
3


C20 Contributed by Robert Beezer Statement [603]
The following computations replicate the computations given in Example CM32 [601],

only using the basis C.

ρC

 3 7
−2 4
0 −3

 =


−9
12
−6
7
−2
−1

 ρC

−1 3
4 8
−2 5

 =


−11
34
−4
−1
16
5



6


−9
12
−6
7
−2
−1

+ 2


−11
34
−4
−1
16
5

 =


−76
140
−44
40
20
4

 ρ−1
C




−76
140
−44
40
20
4



 =

16 48
−4 30
−4 −8
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Section MR

Matrix Representations

We have seen that linear transformations whose domain and codomain are vector spaces
of columns vectors have a close relationship with matrices (Theorem MBLT [513], Theo-
rem MLTCV [514]). In this section, we will extend the relationship between matrices and
linear transformations to the setting of linear transformations between abstract vector
spaces.

Definition MR
Matrix Representation
Suppose that T : U 7→ V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis

for U of size n, and C is a basis for V of size m. Then the matrix representation of
T relative to B and C is the m× n matrix,

MT
B,C = [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]

4

Example OLTTR
One linear transformation, three representations

Consider the linear transformation

S : P3 7→M22, S
(
a + bx + cx2 + dx3

)
=

[
3a + 7b− 2c− 5d 8a + 14b− 2c− 11d
−4a− 8b + 2c + 6d 12a + 22b− 4c− 17d

]
First, we build a representation relative to the bases,

B =
{
1 + 2x + x2 − x3, 1 + 3x + x2 + x3, −1− 2x + 2x3, 2 + 3x + 2x2 − 5x3

}
C =

{[
1 1
1 2

]
,

[
2 3
2 5

]
,

[
−1 −1
0 −2

]
,

[
−1 −4
−2 −4

]}
We evaluate S with each element of the basis for the domain, B, and coordinatize the
result relative to the vectors in the basis for the codomain, C.

ρC

(
S
(
1 + 2x + x2 − x3

))
= ρC

([
20 45
−24 69

])

= ρC

(
(−90)

[
1 1
1 2

]
+ 37

[
2 3
2 5

]
+ (−40)

[
−1 −1
0 −2

]
+ 4

[
−1 −4
−2 −4

])
=


−90
37
−40
4


ρC

(
S
(
1 + 3x + x2 + x3

))
= ρC

([
17 37
−20 57

])

= ρC

(
(−72)

[
1 1
1 2

]
+ 29

[
2 3
2 5

]
+ (−34)

[
−1 −1
0 −2

]
+ 3

[
−1 −4
−2 −4

])
=


−72
29
−34
3
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ρC

(
S
(
−1− 2x + 2x3

))
= ρC

([
−27 −58
32 −90

])

= ρC

(
114

[
1 1
1 2

]
+ (−46)

[
2 3
2 5

]
+ 54

[
−1 −1
0 −2

]
+ (−5)

[
−1 −4
−2 −4

])
=


114
−46
54
−5


ρC

(
S
(
2 + 3x + 2x2 − 5x3

))
= ρC

([
48 109
−58 167

])

= ρC

(
(−220)

[
1 1
1 2

]
+ 91

[
2 3
2 5

]
+−96

[
−1 −1
0 −2

]
+ 10

[
−1 −4
−2 −4

])
=


−220
91
−96
10



Thus, employing Definition MR [607]

MS
B,C =


−90 −72 114 −220
37 29 −46 91
−40 −34 54 −96
4 3 −5 10


Often we use “nice” bases to build matrix representations and the work involved is much
easier. Suppose we take bases

D =
{
1, x, x2, x3

}
E =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
The evaluation of S at the elements of D is easy and coordinatization relative to E can
be done on sight,

ρE (S (1)) = ρE

([
3 8
−4 12

])

= ρE

(
3

[
1 0
0 0

]
+ 8

[
0 1
0 0

]
+ (−4)

[
0 0
1 0

]
+ 12

[
0 0
0 1

])
=


3
8
−4
12


ρE (S (x)) = ρE

([
7 14
−8 22

])

= ρE

(
7

[
1 0
0 0

]
+ 14

[
0 1
0 0

]
+ (−8)

[
0 0
1 0

]
+ 22

[
0 0
0 1

])
=


7
14
−8
22


ρE

(
S
(
x2
))

= ρE

([
−2 −2
2 −4

])

= ρE

(
(−2)

[
1 0
0 0

]
+ (−2)

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ (−4)

[
0 0
0 1

])
=


−2
−2
2
−4
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ρE

(
S
(
x3
))

= ρE

([
−5 −11
6 −17

])

= ρE

(
(−5)

[
1 0
0 0

]
+ (−11)

[
0 1
0 0

]
+ 6

[
0 0
1 0

]
+ (−17)

[
0 0
0 1

])
=


−5
−11
6
−17



So the matrix representation of S relative to D and E is

MS
D,E =


3 7 −2 −5
8 14 −2 −11
−4 −8 2 6
12 22 −4 −17


One more time, but now let’s use bases

F =
{
1 + x− x2 + 2x3, −1 + 2x + 2x3, 2 + x− 2x2 + 3x3, 1 + x + 2x3

}
G =

{[
1 1
−1 2

]
,

[
−1 2
0 2

]
,

[
2 1
−2 3

]
,

[
1 1
0 2

]}
and evaluate S with the elements of F , then coordinatize the results relative to G,

ρG

(
S
(
1 + x− x2 + 2x3

))
= ρG

([
2 2
−2 4

])
= ρG

(
2

[
1 1
−1 2

])
=


2
0
0
0



ρG

(
S
(
−1 + 2x + 2x3

))
= ρG

([
1 −2
0 −2

])
= ρG

(
(−1)

[
−1 2
0 2

])
=


0
−1
0
0



ρG

(
S
(
2 + x− 2x2 + 3x3

))
= ρG

([
2 1
−2 3

])
= ρG

([
2 1
−2 3

])
=


0
0
1
0



ρG

(
S
(
1 + x + 2x3

))
= ρG

([
0 0
0 0

])
= ρG

(
0

[
1 1
0 2

])
=


0
0
0
0



So we arrive at an especially economical matrix representation,

MS
F,G =


2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0


�
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We may choose to use whatever terms we want when we make a definition. Some are
arbitrary, while others make sense, but only in light of subsequent theorems. Matrix rep-
resentation is in the latter category. We begin with a linear transformation and produce
a matrix. So what? Here’s the theorem that justifies the term “matrix representation.”

Theorem FTMR
Fundamental Theorem of Matrix Representation

Suppose that T : U 7→ V is a linear transformation, B is a basis for U , C is a basis for
V and MT

B,C is the matrix representation of T relative to B and C. Then, for any u ∈ U ,

ρC (T (u)) = MT
B,C (ρB (u))

or equivalently
T (u) = ρ−1

C

(
MT

B,C (ρB (u))
)

�

Proof Let B = {u1, u2, u3, . . . , un} be the basis of U . Since u ∈ U , there are scalars
a1, a2, a3, . . . , an such that

u = a1u1 + a2u2 + a3u3 + · · ·+ anun

Then,

MT
B,CρB (u)

= [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ] ρB (u) Definition MR [607]

= [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]


a1

a2

a3
...

an

 Definition VR [591]

= a1ρC (T (u1)) + a2ρC (T (u2)) + · · ·+ anρC (T (un)) Definition MVP [221]

= ρC (a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ anT (un)) Theorem LTLC [516]

= ρC (T (a1u1 + a2u2 + a3u3 + · · ·+ anun)) Theorem LTLC [516]

= ρC (T (u))

The alternative conclusion is obtained as

T (u) = IV (T (u)) Definition IDLT [571]

=
(
ρ−1

C ◦ ρC

)
(T (u)) Definition IVLT [571]

= ρ−1
C (ρC (T (u))) Definition LTC [523]

= ρ−1
C

(
MT

B,C (ρB (u))
)

�

This theorem says that we can apply T to u and coordinatize the result relative to
C in V , or we can first coordinatize u relative to B in U , then multiply by the matrix
representation. Either way, the result is the same. So the effect of a linear transformation
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can always be accomplished by a matrix-vector product (Definition MVP [221]). That’s
important enough to say again. The effect of a linear transformation is a matrix-vector
product.

u
T−−−→ T (u)

ρB

y yρC

ρB (u)
MT

B,C−−−→ ρC (T (u)),
MT

B,CρB (u)

The alternative conclusion of this result might be even more striking. It says that to
effect a linear transformation (T ) of a vector (u), coordinatize the input (with ρB), do a
matrix-vector product (with MT

B,C), and un-coordinatize the result (with ρ−1
C ). So, absent

some bookkeeping about vector representations, a linear transformation is a matrix.
Here’s an example to illustrate how the “action” of a linear transformation can be

effected by matrix multiplication.

Example ALTMM
A linear transformation as matrix multiplication

In Example OLTTR [607] we found three representations of the linear transformation
S. In this example, we will compute a single output of S in four different ways. First
“normally,” then three times over using Theorem FTMR [610].

Choose p(x) = 3− x + 2x2 − 5x3, for no particular reason. Then the straightforward
application of S to p(x) yields

S (p(x)) = S
(
3− x + 2x2 − 5x3

)
=

[
3(3) + 7(−1)− 2(2)− 5(−5) 8(3) + 14(−1)− 2(2)− 11(−5)
−4(3)− 8(−1) + 2(2) + 6(−5) 12(3) + 22(−1)− 4(2)− 17(−5)

]
=

[
23 61
−30 91

]
Now use the representation of S relative to the bases B and C and Theorem FTMR [610].
Note that we will employ the following linear combination in moving from the second
line to the third,

3−x+2x2−5x3 = 48(1+2x+x2−x3)−20(1+3x+x2+x3)−(−1−2x+2x3)−13(2+3x+2x2−5x3)

S (p(x)) = ρ−1
C

(
MS

B,CρB (p(x))
)

= ρ−1
C

(
MS

B,CρB

(
3− x + 2x2 − 5x3

))
= ρ−1

C

MS
B,C


48
−20
−1
−13




= ρ−1
C



−90 −72 114 −220
37 29 −46 91
−40 −34 54 −96
4 3 −5 10




48
−20
−1
−13




= ρ−1
C



−134
59
−46
7
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= (−134)

[
1 1
1 2

]
+ 59

[
2 3
2 5

]
+ (−46)

[
−1 −1
0 −2

]
+ 7

[
−1 −4
−2 −4

]
=

[
23 61
−30 91

]

Again, but now with “nice” bases like D and E, and the computations are more trans-
parent.

S (p(x)) = ρ−1
E

(
MS

D,EρD (p(x))
)

= ρ−1
E

(
MS

D,EρD

(
3− x + 2x2 − 5x3

))
= ρ−1

E

(
MS

D,EρD

(
3(1) + (−1)(x) + 2(x2) + (−5)(x3)

))
= ρ−1

E

MS
D,E


3
−1
2
−5




= ρ−1
E




3 7 −2 −5
8 14 −2 −11
−4 −8 2 6
12 22 −4 −17




3
−1
2
−5




= ρ−1
E




23
61
−30
91




= 23

[
1 0
0 0

]
+ 61

[
0 1
0 0

]
+ (−30)

[
0 0
1 0

]
+ 91

[
0 0
0 1

]
=

[
23 61
−30 91

]

OK, last time, now with the bases F and G. The coordinatizations will take some work
this time, but the matrix-vector product (Definition MVP [221]) (which is the actual
action of the linear transformation) will be especially easy, given the diagonal nature of
the matrix representation, MS

F,G. Here we go,

S (p(x)) = ρ−1
G

(
MS

F,GρF (p(x))
)

= ρ−1
G

(
MS

F,GρF

(
3− x + 2x2 − 5x3

))
= ρ−1

G

(
MS

F,GρF

(
32(1 + x− x2 + 2x3)− 7(−1 + 2x + 2x3)− 17(2 + x− 2x2 + 3x3)− 2(1 + x + 2x3)

))
= ρ−1

G

MS
F,G


32
−7
−17
−2




= ρ−1
G




2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0




32
−7
−17
−2
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= ρ−1
G




64
7
−17
0




= 64

[
1 1
−1 2

]
+ 7

[
−1 2
0 2

]
+ (−17)

[
2 1
−2 3

]
+ 0

[
1 1
0 2

]
=

[
23 61
−30 91

]
This example is not meant to necessarily illustrate that any one of these four computa-
tions is simpler than the others. Instead, it is meant to illustrate the many different ways
we can arrive at the same result, with the last three all employing a matrix representation
to effect the linear transformation. �

We will use Theorem FTMR [610] frequently in the next few sections. A typical
application will feel like the linear transformation T “commutes” with a vector repre-
sentation, ρC , and as it does the transformation morphs into a matrix, MT

B,C , while the
vector representation changes to a new basis, ρB. Or vice-versa.

Subsection NRFO
New Representations from Old

In Subsection LT.NLTFO [521] we built new linear transformations from other linear
transformations. Sums, scalar multiples and compositions. These new linear transfor-
mations will have matrix represntations as well. How do the new matrix representations
relate to the old matrix representations? Here are the three theorems.

Theorem MRSLT
Matrix Representation of a Sum of Linear Transformations

Suppose that T : U 7→ V and S : U 7→ V are linear transformations, B is a basis of U
and C is a basis of V . Then

MT+S
B,C = MT

B,C + MS
B,C

�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MT+S
B,C x = MT+S

B,C ρB (u) Substitution

= ρC ((T + S) (u)) Theorem FTMR [610]

= ρC (T (u) + S (u)) Definition LTA [521]

= ρC (T (u)) + ρC (S (u)) Definition LT [507]

= MT
B,C (ρB (u)) + MS

B,C (ρB (u)) Theorem FTMR [610]

=
(
MT

B,C + MS
B,C

)
ρB (u) Theorem MMDAA [229]

=
(
MT

B,C + MS
B,C

)
x Substitution

Since the matrices MT+S
B,C and MT

B,C + MS
B,C have equal matrix-vector products for every

vector in Cn, by Theorem EMMVP [224] they are equal matrices. (Now would be a good
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time to double-back and study the proof of Theorem EMMVP [224]. You did promise,
didn’t you?) �

Theorem MRMLT
Matrix Representation of a Multiple of a Linear Transformation

Suppose that T : U 7→ V is a linear transformation, α ∈ C, B is a basis of U and C is
a basis of V . Then

MαT
B,C = αMT

B,C

�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MαT
B,Cx = MαT

B,CρB (u) Substitution

= ρC ((αT ) (u)) Theorem FTMR [610]

= ρC (αT (u)) Definition LTSM [522]

= αρC (T (u)) Definition LT [507]

= α
(
MT

B,CρB (u)
)

Theorem FTMR [610]

=
(
αMT

B,C

)
ρB (u) Theorem MMSMM [229]

=
(
αMT

B,C

)
x Substitution

Since the matrices MαT
B,C and αMT

B,C have equal matrix-vector products for every vector
in Cn, by Theorem EMMVP [224] they are equal matrices. �

The vector space of all linear transformations from U to V is now isomorphic to the
vector space of all m× n matrices.

Theorem MRCLT
Matrix Representation of a Composition of Linear Transformations
Suppose that T : U 7→ V and S : V 7→ W are linear transformations, B is a basis of U ,

C is a basis of V , and D is a basis of W . Then

MS◦T
B,D = MS

C,DMT
B,C

�

Proof Let x be any vector in Cn. Define u ∈ U by u = ρ−1
B (x), so x = ρB (u). Then,

MS◦T
B,Dx = MS◦T

B,DρB (u) Substitution

= ρD ((S ◦ T ) (u)) Theorem FTMR [610]

= ρD (S (T (u))) Definition LTC [523]

= MS
C,DρC (T (u)) Theorem FTMR [610]

= MS
C,D

(
MT

B,CρB (u)
)

Theorem FTMR [610]

=
(
MS

C,DMT
B,C

)
ρB (u) Theorem MMA [230]

=
(
MS

C,DMT
B,C

)
x Substitution

Since the matrices MS◦T
B,D and MS

C,DMT
B,C have equal matrix-vector products for every

vector in Cn, by Theorem EMMVP [224] they are equal matrices. �
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This is the second great surprise of introductory linear algebra. Matrices are lin-
ear transformations (functions, really), and matrix multiplication is function composi-
tion! We can form the composition of two linear transformations, then form the matrix
representation of the result. Or we can form the matrix representation of each linear
transformation separately, then multiply the two representations together via Defini-
tion MM [225]. In either case, we arrive at the same result.

Example MPMR
Matrix product of matrix representations

Consider the two linear transformations,

T : C2 7→ P2 T

([
a
b

])
= (−a + 3b) + (2a + 4b)x + (a− 2b)x2

S : P2 7→M22 S
(
a + bx + cx2

)
=

[
2a + b + 2c a + 4b− c
−a + 3c 3a + b + 2c

]
and bases for C2, P2 and M22 (respectively),

B =

{[
3
1

]
,

[
2
1

]}
C =

{
1− 2x + x2, −1 + 3x, 2x + 3x2

}
D =

{[
1 −2
1 −1

]
,

[
1 −1
1 2

]
,

[
−1 2
0 0

]
,

[
2 −3
2 2

]}
Begin by computing the new linear transformation that is the composition of T and S
(Definition LTC [523], Theorem CLTLT [524]), (S ◦ T ) : C2 7→M22,

(S ◦ T )

([
a
b

])
= S

(
T

([
a
b

]))
= S

(
(−a + 3b) + (2a + 4b)x + (a− 2b)x2

)
=

[
2(−a + 3b) + (2a + 4b) + 2(a− 2b) (−a + 3b) + 4(2a + 4b)− (a− 2b)

−(−a + 3b) + 3(a− 2b) 3(−a + 3b) + (2a + 4b) + 2(a− 2b)

]
=

[
2a + 6b 6a + 21b
4a− 9b a + 9b

]
Now compute the matrix representations (Definition MR [607]) for each of these three
linear transformations (T , S, S ◦ T ), relative to the appropriate bases. First for T ,

ρC

(
T

([
3
1

]))
= ρC

(
10x + x2

)
= ρC

(
28(1− 2x + x2) + 28(−1 + 3x) + (−9)(2x + 3x2)

)
=

28
28
−9


ρC

(
T

([
2
1

]))
= ρC (1 + 8x)

= ρC

(
33(1− 2x + x2) + 32(−1 + 3x) + (−11)(2x + 3x2)

)
=

 33
32
−11
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So we have the matrix representation of T ,

MT
B,C =

28 33
28 32
−9 −11


Now, a representation of S,

ρD

(
S
(
1− 2x + x2

))
= ρD

([
2 −8
2 3

])
= ρD

(
(−11)

[
1 −2
1 −1

]
+ (−21)

[
1 −1
1 2

]
+ 0

[
−1 2
0 0

]
+ (17)

[
2 −3
2 2

])

=


−11
−21
0
17


ρD (S (−1 + 3x)) = ρD

([
1 11
1 0

])
= ρD

(
26

[
1 −2
1 −1

]
+ 51

[
1 −1
1 2

]
+ 0

[
−1 2
0 0

]
+ (−38)

[
2 −3
2 2

])

=


26
51
0
−38


ρD

(
S
(
2x + 3x2

))
= ρD

([
8 5
9 8

])
= ρD

(
34

[
1 −2
1 −1

]
+ 67

[
1 −1
1 2

]
+ 1

[
−1 2
0 0

]
+ (−46)

[
2 −3
2 2

])

=


34
67
1
−46



So we have the matrix representation of S,

MS
C,D =


−11 26 34
−21 51 67
0 0 1
17 −38 −46


Finally, a representation of S ◦ T ,

ρD

(
(S ◦ T )

([
3
1

]))
= ρD

([
12 39
3 12

])
= ρD

(
114

[
1 −2
1 −1

]
+ 237

[
1 −1
1 2

]
+ (−9)

[
−1 2
0 0

]
+ (−174)

[
2 −3
2 2

])
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=


114
237
−9
−174


ρD

(
(S ◦ T )

([
2
1

]))
= ρD

([
10 33
−1 11

])
= ρD

(
95

[
1 −2
1 −1

]
+ 202

[
1 −1
1 2

]
+ (−11)

[
−1 2
0 0

]
+ (−149)

[
2 −3
2 2

])

=


95
202
−11
−149



So we have the matrix representation of S ◦ T ,

MS◦T
B,D =


114 95
237 202
−9 −11
−174 −149


Now, we are all set to verify the conclusion of Theorem MRCLT [614],

MS
C,DMT

B,C =


−11 26 34
−21 51 67
0 0 1
17 −38 −46


28 33

28 32
−9 −11



=


114 95
237 202
−9 −11
−174 −149


= MS◦T

B,D

We have intentionally used non-standard bases. If you were to choose “nice” bases for
the three vector spaces, then the result of the theorem might be rather transparent. But
this would still be a worthwhile exercise — give it a go. �

A diagram, similar to ones we have seen earlier, might make the importance of this
theorem clearer,

S, T
Definition MR [607]−−−−−−−−−−−→ MS

C,D, MT
B,C

Definition LTC [523]

y yDefinition MM [225]

S ◦ T
Definition MR [607]−−−−−−−−−−−→ MS

C,DMT
B,C ,

MS◦T
B,C

One of our goals in the first part of this book is to make the definition of matrix mul-
tiplication (Definition MVP [221], Definition MM [225]) seem as natural as possible.
However, many are brought up with an entry-by-entry description of matrix multiplica-
tion (Theorem ME [478]) as the definition of matrix multiplication, and then theorems

Version 0.85



618 Section MR Matrix Representations

about columns of matrices and linear combinations follow from that definition. With this
unmotivated definition, the realization that matrix multiplication is function composition
is quite remarkable. It is an interesting exercise to begin with the question, “What is the
matrix representation of the composition of two linear transformations?” and then, with-
out using any theorems about matrix multiplication, finally arrive at the entry-by-entry
description of matrix multiplication. Try it yourself (Exercise MR.T80 [631]).

Subsection PMR
Properties of Matrix Representations

It will not be a surprise to discover that the kernel and range of a linear transformation
are closely related to the null space and column space of the transformation’s matrix
representation. Perhaps this idea has been bouncing around in your head already, even
before seeing the definition of a matrix representation. However, with a formal definition
of a matrix representation (Definition MR [607]), and a fundamental theorem to go with
it (Theorem FTMR [610]) we can be formal about the relationship, using the idea of
isomorphic vector spaces (Definition IVS [577]). Here are the twin theorems.

Theorem KNSI
Kernel and Null Space Isomorphism
Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C

is a basis for V . Then the kernel of T is isomorphic to the null space of MT
B,C ,

K(T ) ∼= N
(
MT

B,C

)
�

Proof To establish that two vector spaces are isomorphic, we must find an isomorphism
between them, an invertible linear transformation (Definition IVS [577]). The kernel of
the linear transformation T , K(T ), is a subspace of U , while the null space of the matrix
representation, N

(
MT

B,C

)
is a subspace of Cn. The function ρB is defined as a function

from U to Cn, but we can just as well employ the definition of ρB as a function from
K(T ) to N

(
MT

B,C

)
.

We must first insure that if we choose an input for ρB from K(T ) that then the output
will be an element of N

(
MT

B,C

)
. So suppose that u ∈ K(T ). Then

MT
B,CρB (u) = ρC (T (u)) Theorem FTMR [610]

= ρC (0) u ∈ K(T )

= 0 Theorem LTTZZ [511]

This says that ρB (u) ∈ N
(
MT

B,C

)
, as desired.

The restriction in the size of the domain and codomain ρB will not affect the fact
that ρB is a linear transformation (Theorem VRLT [591]), nor will it affect the fact that
ρB is injective (Theorem VRI [596]). Something must be done though to verify that ρB

is surjective. To this end, appeal to the definition of surjective (Definition SLT [551]),
and suppose that we have an element of the codomain, x ∈ N

(
MT

B,C

)
⊆ Cn and we wish
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to find an element of the domain with x as its image. We now show that the desired
element of the domain is u = ρ−1

B (x). First, verify that u ∈ K(T ),

T (u) = T
(
ρ−1

B (x)
)

= ρ−1
C

(
MT

B,C

(
ρB

(
ρ−1

B (x)
)))

Theorem FTMR [610]

= ρ−1
C

(
MT

B,C (ICn (x))
)

Definition IVLT [571]

= ρ−1
C

(
MT

B,Cx
)

Definition IDLT [571]

= ρ−1
C (0Cn) x ∈ N

(
MT

B,C

)
= 0V Theorem LTTZZ [511]

Second, verify that the proposed isomorphism, ρB, takes u to x,

ρB (u) = ρB

(
ρ−1

B (x)
)

Substitution

= ICn (x) Definition IVLT [571]

= x Definition IDLT [571]

With ρB demonstrated to be an injective and surjective linear transformation from K(T )
toN

(
MT

B,C

)
, Theorem ILTIS [575] tells us ρB is invertible, and so by Definition IVS [577],

we say K(T ) and N
(
MT

B,C

)
are isomorphic. �

Example KVMR
Kernel via matrix representation

Consider the kernel of the linear transformation

T : M22 7→ P2, T

([
a b
c d

])
= (2a−b+c−5d)+(a+4b+5b+2d)x+(3a−2b+c−8d)x2

We will begin with a matrix representation of T relative to the bases for M22 and P2

(respectively),

B =

{[
1 2
−1 −1

]
,

[
1 3
−1 −4

]
,

[
1 2
0 −2

]
,

[
2 5
−2 −4

]}
C =

{
1 + x + x2, 2 + 3x, −1− 2x2

}
Then,

ρC

(
T

([
1 2
−1 −1

]))
= ρC

(
4 + 2x + 6x2

)
= ρC

(
2(1 + x + x2) + 0(2 + 3x) + (−2)(−1− 2x2)

)
=

 2
0
−2


ρC

(
T

([
1 3
−1 −4

]))
= ρC

(
18 + 28x2

)
= ρC

(
(−24)(1 + x + x2) + 8(2 + 3x) + (−26)(−1− 2x2)

)
=

−24
8
−26


Version 0.85



620 Section MR Matrix Representations

ρC

(
T

([
1 2
0 −2

]))
= ρC

(
10 + 5x + 15x2

)
= ρC

(
5(1 + x + x2) + 0(2 + 3x) + (−5)(−1− 2x2)

)
=

 5
0
−5


ρC

(
T

([
2 5
−2 −4

]))
= ρC

(
17 + 4x + 26x2

)
= ρC

(
(−8)(1 + x + x2) + (4)(2 + 3x) + (−17)(−1− 2x2)

)
=

 −8
4
−17


So the matrix representation of T (relative to B and C) is

MT
B,C =

 2 −24 5 −8
0 8 0 4
−2 −26 −5 −17


We know from Theorem KNSI [618] that the kernel of the linear transformation T is
isomorphic to the null space of the matrix representation MT

B,C and by studying the
proof of Theorem KNSI [618] we learn that ρB is an isomorphism between these null
spaces. Rather than trying to compute the kernel of T using definitions and techniques
from Chapter LT [507] we will instead analyze the null space of MT

B,C using techniques
from way back in Chapter V [91]. First row-reduce MT

B,C , 2 −24 5 −8
0 8 0 4
−2 −26 −5 −17

 RREF−−−→

 1 0 5
2

2

0 1 0 1
2

0 0 0 0


So, by Theorem BNS [162], a basis for N

(
MT

B,C

)
is

〈

−5

2

0
1
0

 ,


−2
−1

2

0
1



〉

We can now convert this basis of N
(
MT

B,C

)
into a basis of K(T ) by applying ρ−1

B to each
element of the basis,

ρ−1
B



−5

2

0
1
0


 = (−5

2
)

[
1 2
−1 −1

]
+ 0

[
1 3
−1 −4

]
+ 1

[
1 2
0 −2

]
+ 0

[
2 5
−2 −4

]

=

[
−3

2
−3

5
2

1
2

]

ρ−1
B



−2
−1

2

0
1


 = (−2)

[
1 2
−1 −1

]
+ (−1

2
)

[
1 3
−1 −4

]
+ 0

[
1 2
0 −2

]
+ 1

[
2 5
−2 −4

]
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=

[
−1

2
−1

2
1
2

0

]
So the set {[

−3
2
−3

5
2

1
2

]
,

[
−1

2
−1

2
1
2

0

]}
is a basis for K(T ). �

An entirely similar result applies to the range of a linear transformation and the
column space of a matrix representation of the linear transformation.

Theorem RCSI
Range and Column Space Isomorphism

Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and
C is a basis for V of size m. Then the range of T is isomorphic to the column space of
MT

B,C ,

R(T ) ∼= C
(
MT

B,C

)
�

Proof To establish that two vector spaces are isomorphic, we must find an isomorphism
between them, an invertible linear transformation (Definition IVS [577]). The range of
the linear transformation T , R(T ), is a subspace of V , while the column space of the
matrix representation, C

(
MT

B,C

)
is a subspace of Cm. The function ρC is defined as a

function from V to Cm, but we can just as well employ the definition of ρC as a function
from R(T ) to C

(
MT

B,C

)
.

We must first insure that if we choose an input for ρC from R(T ) that then the output
will be an element of C

(
MT

B,C

)
. So suppose that v ∈ R(T ). Then there is a vector u ∈ U ,

such that T (u) = v. Consider

MT
B,CρB (u) = ρC (T (u)) Theorem FTMR [610]

= ρC (v) v ∈ R(T )

This says that ρC (v) ∈ C
(
MT

B,C

)
, as desired.

The restriction in the size of the domain and codomain will not affect the fact that
ρC is a linear transformation (Theorem VRLT [591]), nor will it affect the fact that
ρC is injective (Theorem VRI [596]). Something must be done though to verify that
ρC is surjective. This all gets a bit confusing, since the domain of our isomorphism
is the range of the linear transformation, so think about your objects as you go. To
establish that ρC is surjective, appeal to the definition of a surjective linear transformation
(Definition SLT [551]), and suppose that we have an element of the codomain, y ∈
C
(
MT

B,C

)
⊆ Cm and we wish to find an element of the domain with y as its image. Since

y ∈ C
(
MT

B,C

)
, there exists a vector, x ∈ Cn with MT

B,Cx = y. We now show that the

desired element of the domain is v = ρ−1
C (y). First, verify that v ∈ R(T ) by applying T

to u = ρ−1
B (x),

T (u) = T
(
ρ−1

B (x)
)

= ρ−1
C

(
MT

B,C

(
ρB

(
ρ−1

B (x)
)))

Theorem FTMR [610]

= ρ−1
C

(
MT

B,C (ICn (x))
)

Definition IVLT [571]

= ρ−1
C

(
MT

B,Cx
)

Definition IDLT [571]
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= ρ−1
C (y) y ∈ C

(
MT

B,C

)
= v Substitution

Second, verify that the proposed isomorphism, ρC , takes v to y,

ρC (v) = ρC

(
ρ−1

C (y)
)

Substitution

= ICm (y) Definition IVLT [571]

= y Definition IDLT [571]

With ρC demonstrated to be an injective and surjective linear transformation from R(T )
to C

(
MT

B,C

)
, Theorem ILTIS [575] tells us ρC is invertible, and so by Definition IVS [577],

we say R(T ) and C
(
MT

B,C

)
are isomorphic. �

Example RVMR
Range via matrix representation

In this example, we will recycle the linear transformation T and the bases B and C of
Example KVMR [619] but now we will compute the range of T ,

T : M22 7→ P2, T

([
a b
c d

])
= (2a−b+c−5d)+(a+4b+5b+2d)x+(3a−2b+c−8d)x2

With bases B and C,

B =

{[
1 2
−1 −1

]
,

[
1 3
−1 −4

]
,

[
1 2
0 −2

]
,

[
2 5
−2 −4

]}
C =

{
1 + x + x2, 2 + 3x, −1− 2x2

}
we obtain the matrix representation

MT
B,C =

 2 −24 5 −8
0 8 0 4
−2 −26 −5 −17


We know from Theorem RCSI [621] that the range of the linear transformation T is
isomorphic to the column space of the matrix representation MT

B,C and by studying
the proof of Theorem RCSI [621] we learn that ρC is an isomorphism between these
subspaces. Notice that since the range is a subspace of the codomain, we will employ
ρC as the isomorphism, rather than ρB, which was the correct choice for an isomophism
between the null spaces of Example KVMR [619].

Rather than trying to compute the range of T using definitions and techniques from
Chapter LT [507] we will instead analyze the column space of MT

B,C using techniques

from way back in Chapter M [207]. First row-reduce
(
MT

B,C

)t
,

2 0 −2
−24 8 −26
5 0 −5
−8 4 −17

 RREF−−−→


1 0 −1

0 1 −25
4

0 0 0
0 0 0
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Now employ Theorem CSRST [278] and Theorem BRS [277] (there are other methods we
could choose here to compute the column space, such as Theorem BCS [270]) to obtain
the basis for C

(
MT

B,C

)
, 

 1
0
−1

 ,

 0
1
−25

4


We can now convert this basis of C

(
MT

B,C

)
into a basis of R(T ) by applying ρ−1

C to each
element of the basis,

ρ−1
C

 1
0
−1

 = (1 + x + x2)− (−1− 2x2) = 2 + x + 3x2

ρ−1
C

 0
1
−25

4

 = (2 + 3x)− 25

4
(−1− 2x2) =

33

4
+ 3x +

31

2
x2

So the set {
2 + 3x + 3x2,

33

4
+ 3x +

31

2
x2

}
is a basis for R(T ). �

Theorem KNSI [618] and Theorem RCSI [621] can be viewed as further formal
evidence for the Coordinatization Principle [600], though they are not direct conse-
quences.

Subsection IVLT
Invertible Linear Transformations

We have seen, both in theorems and in examples, that questions about linear transfor-
mations are often equivalent to questions about matrices. It is the matrix representation
of a linear transformation that makes this idea precise. Here’s our final theorem that
solidifies this connection.

Theorem IMR
Invertible Matrix Representations

Suppose that T : U 7→ V is an invertible linear transformation, B is a basis for U and
C is a basis for V . Then the matrix representation of T relative to B and C, MT

B,C is an
invertible matrix, and

MT−1

C,B =
(
MT

B,C

)−1

�

Proof This theorem states that the matrix representation of T−1 can be found by finding
the matrix inverse of the matrix representation of T (with suitable bases in the right
places). It also says that the matrix representation of T is an invertible matrix. We can
establish the invertibility, and precisely what the inverse is, by appealing to the definition
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of a matrix inverse, Definition MI [240]. To this end, let B = {u1, u2, u3, . . . , un} and
C = {v1, v2, v3, . . . , vn}. Then

MT−1

C,B MT
B,C = MT−1◦T

B,B Theorem MRCLT [614]

= M IU
B,B Definition IVLT [571]

= [ρB (IU (u1))| ρB (IU (u2))| . . . |ρB (IU (un)) ] Definition MR [607]

= [ρB (u1)| ρB (u2)| ρB (u3)| . . . |ρB (un) ] Definition IDLT [571]

= [e1|e2|e3| . . . |en] Definition VR [591]

= In Definition IM [80]

and

MT
B,CMT−1

C,B = MT◦T−1

C,C Theorem MRCLT [614]

= M IV
C,C Definition IVLT [571]

= [ρC (IV (v1))| ρC (IV (v2))| . . . |ρC (IV (vn)) ] Definition MR [607]

= [ρC (v1)| ρC (v2)| ρC (v3)| . . . |ρC (vn) ] Definition IDLT [571]

= [e1|e2|e3| . . . |en] Definition VR [591]

= In Definition IM [80]

So by Definition MI [240], the matrix MT
B,C has an inverse, and that inverse is MT−1

C,B . �

Example ILTVR
Inverse of a linear transformation via a representation

Consider the linear transformation

R : P3 7→M22, R
(
a + bx + cx2 + x3

)
=

[
a + b− c + 2d 2a + 3b− 2c + 3d

a + b + 2d −a + b + 2c− 5d

]
If we wish to quickly find a formula for the inverse of R (presuming it exists), then
choosing “nice” bases will work best. So build a matrix representation of R relative to
the bases B and C,

B =
{
1, x, x2, x3

}
C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Then,

ρC (R (1)) = ρC

([
1 2
1 −1

])
=


1
2
1
−1



ρC (R (x)) = ρC

([
1 3
1 1

])
=


1
3
1
1
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ρC

(
R
(
x2
))

= ρC

([
−1 −2
0 2

])
=


−1
−2
0
2



ρC

(
R
(
x3
))

= ρC

([
2 3
2 −5

])
=


2
3
2
−5


So a representation of R is

MR
B,C =


1 1 −1 2
2 3 −2 3
1 1 0 2
−1 1 2 −5


The matrix MR

B,C is invertible (as you can check) so we know by Theorem IMR [623] that
R is invertible. Furthermore,

MR−1

C,B =
(
MR

B,C

)−1
=


1 1 −1 2
2 3 −2 3
1 1 0 2
−1 1 2 −5


−1

=


20 −7 −2 3
−8 3 1 −1
−1 0 1 0
−6 2 1 −1


We can use this representation of the inverse linear transformation, in concert with
Theorem FTMR [610], to determine an explicit formula for the inverse itself,

R−1

([
a b
c d

])
= ρ−1

B

(
MR−1

C,B ρC

([
a b
c d

]))
Theorem FTMR [610]

= ρ−1
B

((
MR

B,C

)−1
ρC

([
a b
c d

]))
Theorem IMR [623]

= ρ−1
B

(MR
B,C

)−1


a
b
c
d


 Definition VR [591]

= ρ−1
B




20 −7 −2 3
−8 3 1 −1
−1 0 1 0
−6 2 1 −1




a
b
c
d


 Definition MI [240]

= ρ−1
B




20a− 7b− 2c + 3d
−8a + 3b + c− d

−a + c
−6a + 2b + c− d


 Definition MVP [221]

= (20a− 7b− 2c + 3d) + (−8a + 3b + c− d)x

+ (−a + c)x2 + (−6a + 2b + c− d)x3 Definition VR [591]

You might look back at Example AIVLT [571], where we first witnessed the inverse of a
linear transformation and recognize that the inverse (S) was built from using the method
of this example on a matrix representation of T . �
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Theorem IMILT
Invertible Matrices, Invertible Linear Transformation
Suppose that A is a square matrix of size n and T : Cn 7→ Cn is the linear transformation

defined by T (x) = Ax. Then A is invertible matrix if and only if T is an invertible linear
transformation. �

Proof Choose bases B = C = {e1, e2, e3, . . . , en} consisting of the standard unit
vectors as a basis of Cn (Theorem SUVB [367]) and build a matrix representation of T
relative to B and C. Then

ρC (T (ei)) = ρC (Aei)

= ρC (Ai)

= Ai

So then the matrix representation of T , relative to B and C, is simply MT
B,C = A. This

is the basic observation that makes the rest of this proof go.
(⇐) Suppose T is invertible. Then T is injective by Theorem ILTIS [575] and

n (A) = dim (N (A)) Definition NOM [389]

= dim
(
N
(
MT

B,C

))
= dim (ker T ) Theorem KNSI [618]

= dim ({0}) Theorem KILT [539]

= 0

Then Theorem RNNSM [391] tells us that A is nonsingular, and therefore A is invertible
(Theorem NSI [257]).

(⇒) Suppose A is a nonsingular matrix, then A is invertible (Theorem NSI [257]) and
has zero nullity (Theorem RNNSM [391]). So

n (T ) = dim (K(T )) Definition NOLT [579]

= dim
(
N
(
MT

B,C

))
Theorem KNSI [618]

= dim (N (A))

= dim ({0}) Theorem NSTNS [82]

= 0

So T has zero nullity, and therefore has a trivial kernel and by Theorem KILT [539] T is
injective. Furthermore, by Theorem RPNDD [580],

r (T ) = dim (Cn)− n (T ) = n− 0 = n

So T has full rank and therefore the range of T is all of Cn and by Theorem RSLT [558] T
is surjective. Finally, with T known to be injective and surjective, Theorem ILTIS [575]
says T is invertible. �

This theorem looks like more work than you would imagine it to be. But by now, the
connections between matrices and linear transformations should be starting to become
more transparent, and you may have already recognized the invertiblity of a matrix
as being tantamount to the invertiblity of the associated matrix representation. See
Exercise MR.T60 [631] as well.
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We can update the NSME series of theorems, yet again.

Theorem NSME9
NonSingular Matrix Equivalences, Round 9

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

13. The linear transformation T : Cn 7→ Cn defined by T (x) = Ax is invertible.

�

Proof By Theorem IMILT [625] the new addition to this list is equivalent to the
statement that A is invertible so we can expand Theorem NSME8 [472]. �

Subsection READ
Reading Questions

1. Why does Theorem FTMR [610] deserve the moniker “fundamental”?

2. Find the matrix representation, MT
B,C of the linear transformation

T : C2 7→ C2, T

([
x1

x2

])
=

[
2x1 − x2

3x1 + 2x2

]
relative to the bases

B =

{[
2
3

]
,

[
−1
2

]}
C =

{[
1
0

]
,

[
1
1

]}
3. What is the second “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C20 Compute the matrix representation of T relative to the bases B and C.

T : P3 7→ C3, T
(
a + bx + cx2 + dx3

)
=

2a− 3b + 4c− 2d
a + b− c + d
3a + 2c− 3d


B =

{
1, x, x2, x3

}
C =


1

0
0

 ,

1
1
0

 ,

1
1
1


Contributed by Robert Beezer Solution [633]

C21 Find a matrix representation of the linear transformation T relative to the bases
B and C.

T : P2 7→ C2, T (p(x)) =

[
p(1)
p(3)

]
B =

{
2− 5x + x2, 1 + x− x2, x2

}
C =

{[
3
4

]
,

[
2
3

]}

Contributed by Robert Beezer Solution [633]

C22 Let S22 be the vector space of 2 × 2 symmetric matrices. Build the matrix
representation of the linear transformation T : P2 7→ S22 relative to the bases B and C
and then use this matrix representation to compute T (3 + 5x− 2x2).

B =
{
1, 1 + x, 1 + x + x2

}
C =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
T
(
a + bx + cx2

)
=

[
2a− b + c a + 3b− c
a + 3b− c a− c

]

Contributed by Robert Beezer Solution [633]

C25 Use a matrix representation to determine if the linear transformation T : P3 7→
M22 surjective.

T
(
a + bx + cx2 + dx3

)
=

[
−a + 4b + c + 2d 4a− b + 6c− d
a + 5b− 2c + 2d a + 2c + 5d

]

Contributed by Robert Beezer Solution [634]

C30 Find bases for the kernel and range of the linear transformation S below.

S : M22 7→ P2, S

([
a b
c d

])
= (a+2b+5c−4d)+(3a−b+8c+2d)x+(a+b+4c−2d)x2
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Contributed by Robert Beezer Solution [635]

C40 Let S22 be the set of 2 × 2 symmetric matrices. Verify that the linear transfor-
mation R is invertible and find R−1.

R : S22 7→ P2, R

([
a b
b c

])
= (a− b) + (2a− 3b− 2c)x + (a− b + c)x2

Contributed by Robert Beezer Solution [636]

C41 Prove that the linear transformation S is invertible. Then find a formula for the
inverse linear transformation, S−1, by employing a matrix inverse. (15 points)

S : P1 7→M1,2, S (a + bx) =
[
3a + b 2a + b

]
Contributed by Robert Beezer Solution [636]

C42 The linear transformation R : M12 7→M21 is invertible. Use a matrix representa-
tion to determine a formula for the inverse linear transformation R−1 : M21 7→M12.

R
([

a b
])

=

[
a + 3b

4a + 11b

]
Contributed by Robert Beezer Solution [637]

C50 Use a matrix representation to find a basis for the range of the linear transfor-
mation L. (15 points)

L : M22 7→ P2, T

([
a b
c d

])
= (a + 2b + 4c + d) + (3a + c− 2d)x + (−a + b + 3c + 3d)x2

Contributed by Robert Beezer Solution [637]

C51 Use a matrix representation to find a basis for the kernel of the linear transfor-
mation L. (15 points)

L : M22 7→ P2, T

([
a b
c d

])
= (a + 2b + 4c + d) + (3a + c− 2d)x + (−a + b + 3c + 3d)x2

Contributed by Robert Beezer

C52 Find a basis for the kernel of the linear transformation T : P2 7→M22.

T
(
a + bx + cx2

)
=

[
a + 2b− 2c 2a + 2b
−a + b− 4c 3a + 2b + 2c

]
Contributed by Robert Beezer Solution [638]

M20 The linear transformation D performs differentiation on polynomials. Use a
matrix representation of D to find the rank and nullity of D.

D : Pn 7→ Pn, D (p(x)) = p′(x)

Version 0.85



Subsection MR.EXC Exercises 631

Contributed by Robert Beezer Solution [639]

T60 Create an entirely different proof of Theorem IMILT [625] that relies on Defini-
tion IVLT [571] to establish the invertibility of T , and that relies on Definition MI [240]
to establish the invertibility of A.
Contributed by Robert Beezer

T80 Suppose that T : U 7→ V and S : V 7→ W are linear transformations, and that
B, C and D are bases for U , V , and W . Using only Definition MR [607] define matrix
representations for T and S. Using these two definitions, and Definition MR [607], derive
a matrix representation for the composition S ◦ T in terms of the entries of the matrices
MT

B,C and MS
C,D. Explain how you would use this result to motivate a definition for

matrix multiplication that is strikingly similar to Theorem ME [478].
Contributed by Robert Beezer
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Subsection SOL
Solutions

C20 Contributed by Robert Beezer Statement [629]
Apply Definition MR [607],

ρC (T (1)) = ρC

2
1
3

 = ρC

1

1
0
0

+ (−2)

1
1
0

+ 3

1
1
1

 =

 1
−2
3


ρC (T (x)) = ρC

−3
1
0

 = ρC

(−4)

1
0
0

+ 1

1
1
0

+ 0

1
1
1

 =

−4
1
0


ρC

(
T
(
x2
))

= ρC

 4
−1
2

 = ρC

5

1
0
0

+ (−3)

1
1
0

+ 2

1
1
1

 =

 5
−3
2


ρC

(
T
(
x3
))

= ρC

−2
1
−3

 = ρC

(−3)

1
0
0

+ 4

1
1
0

+ (−3)

1
1
1

 =

−3
4
−3


These four vectors are the columns of the matrix representation,

MT
B,C =

 1 −4 5 −3
−2 1 −3 4
3 0 2 −3


C21 Contributed by Robert Beezer Statement [629]
Applying Definition MR [607],

ρC

(
T
(
2− 5x + x2

))
= ρC

([
−2
−4

])
= ρC

(
2

[
3
4

]
+ (−4)

[
2
3

])
=

[
2
−4

]
ρC

(
T
(
1 + x− x2

))
= ρC

([
1
−5

])
= ρC

(
13

[
3
4

]
+ (−19)

[
2
3

])
=

[
13
−19

]
ρC

(
T
(
x2
))

= ρC

([
1
9

])
= ρC

(
(−15)

[
3
4

]
+ 23

[
2
3

])
=

[
−15
23

]

So the resulting matrix representation is

MT
B,C =

[
2 13 −15
−4 −19 23

]
C22 Contributed by Robert Beezer Statement [629]
Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([
2 1
1 1

])
= ρC

(
2

[
1 0
0 0

]
+ 1

[
0 1
1 0

]
+ 1

[
0 0
0 1

])
=

2
1
1
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ρC (T (1 + x)) = ρC

([
1 4
4 1

])
= ρC

(
1

[
1 0
0 0

]
+ 4

[
0 1
1 0

]
+ 1

[
0 0
0 1

])
=

1
4
1


ρC

(
T
(
1 + x + x2

))
= ρC

([
2 3
3 0

])
= ρC

(
2

[
1 0
0 0

]
+ 3

[
0 1
1 0

]
+ 0

[
0 0
0 1

])
=

2
3
0


Applying Definition MR [607] we have the matrix representation

MT
B,C =

2 1 2
1 4 3
1 1 0


To compute T (3 + 5x− 2x2) employ Theorem FTMR [610],

T
(
3 + 5x− 2x2

)
= ρ−1

C

(
MT

B,CρB

(
3 + 5x− 2x2

))
= ρ−1

C

(
MT

B,CρB

(
(−2)(1) + 7(1 + x) + (−2)(1 + x + x2)

))
= ρ−1

C

2 1 2
1 4 3
1 1 0

−2
7
−2


= ρ−1

C

−1
20
5


= (−1)

[
1 0
0 0

]
+ 20

[
0 1
1 0

]
+ 5

[
0 0
0 1

]
=

[
−1 20
20 5

]
You can, of course, check your answer by evaluating T (3 + 5x− 2x2) directly.

C25 Contributed by Robert Beezer Statement [629]
Choose bases B and C for the matrix representation,

B =
{
1, x, x2, x3

}
C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([
−1 4
1 1

])
= ρC

(
(−1)

[
1 0
0 0

]
+ 4

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 1

[
0 0
0 1

])
=


−1
4
1
1



ρC (T (x)) = ρC

([
4 −1
5 0

])
= ρC

(
4

[
1 0
0 0

]
+ (−1)

[
0 1
0 0

]
+ 5

[
0 0
1 0

]
+ 0

[
0 0
0 1

])
=


4
−1
5
0



ρC

(
T
(
x2
))

= ρC

([
1 6
−2 2

])
= ρC

(
1

[
1 0
0 0

]
+ 6

[
0 1
0 0

]
+ (−2)

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


1
6
−2
2


Version 0.85



Subsection MR.SOL Solutions 635

ρC

(
T
(
x3
))

= ρC

([
2 −1
2 5

])
= ρC

(
2

[
1 0
0 0

]
+ (−1)

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ 5

[
0 0
0 1

])
=


2
−1
2
5


Applying Definition MR [607] we have the matrix representation

MT
B,C =


−1 4 1 2
4 −1 6 −1
1 5 −2 2
1 0 2 5


Properties of this matrix representation will translate to properties of the linear trans-
formation The matrix representation is nonsingular since it row-reduces to the identity
matrix (Theorem NSRRI [81]) and therefore has a column space equal to C4 (Theo-
rem CNSMB [373]). The column space of the matrix representation is isomorphic to
the range of the linear transformation (Theorem RCSI [621]). So the range of T has
dimension 4, equal to the dimension of the codomain M22. By Theorem ROSLT [579], T
is surjective.

C30 Contributed by Robert Beezer Statement [629]
These subspaces will be easiest to construct by analyzing a matrix representation of

S. Since we can use any matrix representation, we might as well use natural bases that
allow us to construct the matrix representation quickly and easily,

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
then we can practically build the matrix representation on sight,

MS
B,C =

1 2 5 −4
3 −1 8 2
1 1 4 −2


The first step is to find bases for the null space and column space of the matrix repre-
sentation. Row-reducing the matrix representation we find, 1 0 3 0

0 1 1 −2
0 0 0 0


So by Theorem BNS [162] and Theorem BCS [270], we have

N
(
MS

B,C

)
=

〈

−3
−1
1
0

 ,


0
2
0
1



〉

C
(
MS

B,C

)
=

〈
1

3
1

 ,

 2
−1
1


〉

Now, the proofs of Theorem KNSI [618] and Theorem RCSI [621] tell us that we can
apply ρ−1

B and ρ−1
C (respectively) to “un-coordinatize” and get bases for the kernel and

range of the linear transformation S itself,

K(S) =

〈{[
−3 −1
1 0

]
,

[
0 2
0 1

]}〉
R(S) =

〈{
1 + 3x + x2, 2− x + x2

}〉
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C40 Contributed by Robert Beezer Statement [630]
The analysis of R will be easiest if we analyze a matrix representation of R. Since we

can use any matrix representation, we might as well use natural bases that allow us to
construct the matrix representation quickly and easily,

B =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
then we can practically build the matrix representation on sight,

MR
B,C =

1 −1 0
2 −3 −2
1 −1 1


This matrix representation is invertible (it has a nonzero determinant of −1, Theo-
rem SMZD [436], Theorem NSI [257]) so Theorem IMR [623] tells us that the linear
transformation S is also invertible. To find a formula for R−1 we compute,

R−1
(
a + bx + cx2

)
= ρ−1

B

(
MR−1

C,B ρC

(
a + bx + cx2

))
Theorem FTMR [610]

= ρ−1
B

((
MR

B,C

)−1
ρC

(
a + bx + cx2

))
Theorem IMR [623]

= ρ−1
B

(MR
B,C

)−1

a
b
c

 Definition VR [591]

= ρ−1
B

 5 −1 −2
4 −1 −2
−1 0 1

a
b
c

 Definition MI [240]

= ρ−1
B

5a− b− 2c
4a− b− 2c
−a + c

 Definition MVP [221]

=

[
5a− b− 2c 4a− b− 2c
4a− b− 2c −a + c

]
Definition VR [591]

C41 Contributed by Robert Beezer Statement [630]
First, build a matrix representation of S (Definition MR [607]). We are free to choose

whatever bases we wish, so we should choose ones that are easy to work with, such as

B = {1, x}
C =

{[
1 0

]
,
[
0 1

]}
The resulting matrix representation is then

MT
B,C =

[
3 1
2 1

]
this matrix is invertible, since it has a nonzero determinant, so by Theorem IMR [623]
the linear transformation S is invertible. We can use the matrix inverse and Theo-
rem IMR [623] to find a formula for the inverse linear transformation,

S−1
([

a b
])

= ρ−1
B

(
MS−1

C,B ρC

([
a b

]))
Theorem FTMR [610]
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= ρ−1
B

((
MS

B,C

)−1
ρC

([
a b

]))
Theorem IMR [623]

= ρ−1
B

((
MS

B,C

)−1
[
a
b

])
Definition VR [591]

= ρ−1
B

(([
3 1
2 1

])−1 [
a
b

])

= ρ−1
B

([
1 −1
−2 3

] [
a
b

])
Definition MI [240]

= ρ−1
B

([
a− b
−2a + 3b

])
Definition MVP [221]

= (a− b) + (−2a + 3b)x Definition VR [591]

C42 Contributed by Robert Beezer Statement [630]
Choose bases B and C for M12 and M21 (respectively),

B =
{[

1 0
]
,
[
0 1

]}
C =

{[
1
0

]
,

[
0
1

]}
The resulting matrix representation is

MR
B,C =

[
1 3
4 11

]
This matrix is invertible (its determinant is nonzero, Theorem SMZD [436]), so by The-
orem IMR [623], we can compute the matrix representation of R−1 with a matrix inverse
(Theorem TTMI [242]),

MR−1

C,B =

[
1 3
4 11

]−1

=

[
−11 3
4 −1

]
To obtain a general formula for R−1, use Theorem FTMR [610],

R−1

([
x
y

])
= ρB

(
MR−1

C,B ρC

([
x
y

]))
= ρB

([
−11 3
4 −1

] [
x
y

])
= ρB

([
−11x + 3y

4x− y

])
=

[
−11x + 3y

4x− y

]
C50 Contributed by Robert Beezer Statement [630]
As usual, build any matrix representation of L, most likely using a “nice” bases, such as

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
C =

{
1, x, x2

}
Then the matrix representation (Definition MR [607]) is,

ML
B,C =

 1 2 4 1
3 0 1 −2
−1 1 3 3


Theorem RCSI [621] tells us that we can compute the column space of the matrix rep-
resentation, then use the isomorphism ρ−1

C to convert the column space of the matrix
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representation into the range of the linear transformation. So we first analyze the matrix
representation,  1 2 4 1

3 0 1 −2
−1 1 3 3

 RREF−−−→

 1 0 0 −1

0 1 0 −1

0 0 1 1


With three nonzero rows in the reduced row-echelon form of the matrix, we know the
column space has dimension 3. Since P2 has dimension 3 (Theorem DP [387]), the range
must be all of P2. So any basis of P2 would suffice as a basis for the range. For instance,
C itself would be a correct answer.

A more laborious approach would be to use Theorem BCS [270] and choose the
first three columns of the matrix representation as a basis for the range of the matrix
representation. These could then be “un-coordinatized” with ρ−1

C to yield a (“not nice”)
basis for P2.

C52 Contributed by Robert Beezer Statement [630]
Choose bases B and C for the matrix representation,

B =
{
1, x, x2

}
C =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Input to T the vectors of the basis B and coordinatize the outputs relative to C,

ρC (T (1)) = ρC

([
1 2
−1 3

])
= ρC

(
1

[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ (−1)

[
0 0
1 0

]
+ 3

[
0 0
0 1

])
=


1
2
−1
3



ρC (T (x)) = ρC

([
2 2
1 2

])
= ρC

(
2

[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


2
2
1
2



ρC

(
T
(
x2
))

= ρC

([
−2 0
−4 2

])
= ρC

(
(−2)

[
1 0
0 0

]
+ 0

[
0 1
0 0

]
+ (−4)

[
0 0
1 0

]
+ 2

[
0 0
0 1

])
=


−2
0
−4
2


Applying Definition MR [607] we have the matrix representation

MT
B,C =


1 2 −2
2 2 0
−1 1 −4
3 2 2


The null space of the matrix representation is isomorphic (via ρB) to the kernel of the
linear transformation (Theorem KNSI [618]). So we compute the null space of the matrix
representation by first row-reducing the matrix to,

1 0 2

0 1 −2
0 0 0
0 0 0
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Employing Theorem BNS [162] we have

N
(
MT

B,C

)
=

〈
−2

2
1


〉

We only need to uncoordinatize this one basis vector to get a basis for K(T ),

K(T ) =

〈ρ−1
B

−2
2
1


〉

=
〈{
−2 + 2x + x2

}〉
M20 Contributed by Robert Beezer Statement [630]
Build a matrix representation (Definition MR [607]) with the set

B =
{
1, x, x2, . . . , xn

}
employed as a basis of both the domain and codomain. Then

ρB (D (1)) = ρB (0) =



0
0
0
...
0
0


ρB (D (x)) = ρB (1) =



1
0
0
...
0
0



ρB

(
D
(
x2
))

= ρB (2x) =



0
2
0
...
0
0


ρB

(
D
(
x3
))

= ρB

(
3x2
)

=



0
0
3
...
0
0


...

ρB (D (xn)) = ρB

(
nxn−1

)
=



0
0
0
...
n
0



and the resulting matrix representation is

MD
B,B =



0 1 0 0 . . . 0 0
0 0 2 0 . . . 0 0
0 0 0 3 . . . 0 0

...
. . .

...
0 0 0 0 . . . 0 n
0 0 0 0 . . . 0 0


Version 0.85



640 Section MR Matrix Representations

This (n+1)× (n+1) matrix is very close to being in reduced row-echelon form. Multiply
row i by 1

i
, for 1 ≤ i ≤ n, to convert it to reduced row-echelon form. From this we can see

that matrix representation MD
B,B has rank n and nullity 1. Applying Theorem RCSI [621]

and Theorem KNSI [618] tells us that the linear transformation D will have the same
values for the rank and nullity, as well.
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Section CB

Change of Basis

We have seen in Section MR [607] that a linear transformation can be represented by
a matrix, once we pick bases for the domain and codomain. How does the matrix rep-
resentation change if we choose different bases? Which bases lead to especially nice
representations? From the infinite possibilities, what is the best possible representation?
This section will begin to answer these questions. But first we need to define eigenvalues
for linear transformations and the change-of-basis matrix.

Subsection EELT
Eigenvalues and Eigenvectors of Linear Transformations

We now define the notion of an eigenvalue and eigenvector of a linear transformation. It
should not be too surprising, especially if you remind yourself of the close relationship
between matrices and linear transformations.

Definition EELT
Eigenvalue and Eigenvector of a Linear Transformation
Suppose that T : V 7→ V is a linear transformation. Then a nonzero vector v ∈ V is an

eigenvector of T for the eigenvalue λ if T (v) = λv. 4

We will see shortly the best method for computing the eigenvalues and eigenvectors
of a linear transformation, but for now, here are some examples to verify that such things
really do exist.

Example ELTBM
Eigenvectors of linear transformation between matrices

Consider the linear transformation T : M22 7→M22 defined by

T

([
a b
c d

])
=

[
−17a + 11b + 8c− 11d −57a + 35b + 24c− 33d
−14a + 10b + 6c− 10d −41a + 25b + 16c− 23d

]
and the vectors

x1 =

[
0 1
0 1

]
x2 =

[
1 1
1 0

]
x3 =

[
1 3
2 3

]
x4 =

[
2 6
1 4

]
Then compute

T (x1) = T

([
0 1
0 1

])
=

[
0 2
0 2

]
= 2x1

T (x2) = T

([
1 1
1 0

])
=

[
2 2
2 0

]
= 2x2

T (x3) = T

([
1 3
2 3

])
=

[
−1 −3
−2 −3

]
= (−1)x3
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T (x4) = T

([
2 6
1 4

])
=

[
−4 −12
−2 −8

]
= (−2)x4

So x1, x2, x3, x4 are eigenvectors of T with eigenvalues (respectively) λ1 = 2, λ2 = 2,
λ3 = −1, λ4 = −2. �

Here’s another.

Example ELTBP
Eigenvectors of linear transformation between polynomials

Consider the linear transformation R : P2 7→ P2 defined by

R
(
a + bx + cx2

)
= (15a + 8b− 4c) + (−12a− 6b + 3c)x + (24a + 14b− 7c)x2

and the vectors

w1 = 1− x + x2 w2 = x + 2x2 w3 = 1 + 4x2

Then compute

R (w1) = R
(
1− x + x2

)
= 3− 3x + 3x2 = 3w1

R (w2) = R
(
x + 2x2

)
= 0 + 0x + 0x2 = 0w2

R (w3) = R
(
1 + 4x2

)
= −1− 4x2 = (−1)w3

So w1, w2, w3 are eigenvectors of R with eigenvalues (respectively) λ1 = 3, λ2 = 0,
λ3 = −1. Notice how the eigenvalue λ2 = 0 indicates that the eigenvector w2 is a non-
trivial element of the kernel of R, and therefore R is not injective (Exercise CB.T15 [665]).
�

Of course, these examples are meant only to illustrate the definition of eigenvectors
and eigenvalues for linear transformations, and therefore beg the question, “How would
I find eigenvectors?” We’ll have an answer before we finish this section. We need one
more construction first.

Subsection CBM
Change-of-Basis Matrix

Given a vector space, we know we can usually find many different bases for the vector
space, some nice, some nasty. If we choose a single vector from this vector space, we can
build many different representations of the vector by constructing the representations
relative to different bases. How are these different representations related to each other?
A change-of-basis matrix answers this question.

Definition CBM
Change-of-Basis Matrix
Suppose that V is a vector space, and IV : V 7→ V is the identity linear transformation on
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V . Let B = {v1, v2, v3, . . . , vn} and C be two bases of V . Then the change-of-basis
matrix from B to C is the matrix representation of IV relative to B and C,

CB,C = M IV
B,C

= [ρC (IV (v1))| ρC (IV (v2))| ρC (IV (v3))| . . . |ρC (IV (vn)) ]

= [ρC (v1)| ρC (v2)| ρC (v3)| . . . |ρC (vn) ]

4

Notice that this definition is primarily about a single vector space (V ) and two bases
of V (B, C). The linear transformation (IV ) is necessary but not critical. As you might
expect, this matrix has something to do with changing bases. Here is the theorem that
gives the matrix its name (not the other way around).

Theorem CB
Change-of-Basis

Suppose that v is a vector in the vector space V and B and C are bases of V . Then

ρC (v) = CB,CρB (v)

�

Proof

ρC (v) = ρC (IV (v)) Definition IDLT [571]

= M IV
B,CρB (v) Theorem FTMR [610]

= CB,CρB (v) Definition CBM [642]

�

So the change-of-basis matrix can be used with matrix multiplication to convert a
vector representation of a vector (v) relative to one basis (ρB (v)) to a representation of
the same vector relative to a second basis (ρC (v)).

Theorem ICBM
Inverse of Change-of-Basis Matrix
Suppose that V is a vector space, and B and C are bases of V . Then the change-of-basis

matrix CB,C is nonsingular and
C−1

B,C = CC,B

�

Proof The linear transformation IV : V 7→ V is invertible, and its inverse is itself,
IV (check this!). So by Theorem IMR [623], the matrix M IV

B,C = CB,C is invertible.
Theorem NSI [257] says an invertible matrix is nonsingular.

Then

C−1
B,C =

(
M IV

B,C

)−1
Definition CBM [642]

= M
I−1
V

C,B Theorem IMR [623]

= M IV
C,B Definition IDLT [571]

= CC,B Definition CBM [642]
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�

Example CBP
Change of basis with polynomials

The vector space P4 (Example VSP [316]) has two nice bases (Example BP [368]),

B =
{
1, x, x2, x3, x4

}
C =

{
1, 1 + x, 1 + x + x2, 1 + x + x2 + x3, 1 + x + x2 + x3 + x4

}
To build the change-of-basis matrix between B and C, we must first build a vector
representation of each vector in B relative to C,

ρC (1) = ρC ((1) (1)) =


1
0
0
0
0



ρC (x) = ρC ((−1) (1) + (1) (1 + x)) =


−1
1
0
0
0



ρC

(
x2
)

= ρC

(
(−1) (1 + x) + (1)

(
1 + x + x2

))
=


0
−1
1
0
0



ρC

(
x3
)

= ρC

(
(−1)

(
1 + x + x2

)
+ (1)

(
1 + x + x2 + x3

))
=


0
0
−1
1
0



ρC

(
x4
)

= ρC

(
(−1)

(
1 + x + x2 + x3

)
+ (1)

(
1 + x + x2 + x3 + x4

))
=


0
0
0
−1
1


Then we package up these vectors as the columns of a matrix,

CB,C =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1


Now, to illustrate Theorem CB [643], consider the vector u = 5− 3x + 2x2 + 8x3 − 3x4.
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We can build the representation of u relative to B easily,

ρB (u) = ρB

(
5− 3x + 2x2 + 8x3 − 3x4

)
=


5
−3
2
8
−3


Applying Theorem CB [643], we obtain a second representation of u, but now relative to
C,

ρC (u) = CB,CρB (u) Theorem CB [643]

=


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1




5
−3
2
8
−3



=


8
−5
−6
11
−3

 Definition MVP [221]

We can check our work by unraveling this second representation,

u = ρ−1
C (ρC (u)) Definition IVLT [571]

= ρ−1
C




8
−5
−6
11
−3




= 8(1) + (−5)(1 + x) + (−6)(1 + x + x2)

+ (11)(1 + x + x2 + x3) + (−3)(1 + x + x2 + x3 + x4) Definition VR [591]

= 5− 3x + 2x2 + 8x3 − 3x4

The change-of-basis matrix from C to B is actually easier to build. Grab each vector in
the basis C and form its representation relative to B

ρB (1) = ρB ((1)1) =


1
0
0
0
0



ρB (1 + x) = ρB ((1)1 + (1)x) =


1
1
0
0
0
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ρB

(
1 + x + x2

)
= ρB

(
(1)1 + (1)x + (1)x2

)
=


1
1
1
0
0



ρB

(
1 + x + x2 + x3

)
= ρB

(
(1)1 + (1)x + (1)x2 + (1)x3

)
=


1
1
1
1
0



ρB

(
1 + x + x2 + x3 + x4

)
= ρB

(
(1)1 + (1)x + (1)x2 + (1)x3 + (1)x4

)
=


1
1
1
1
1


Then we package up these vectors as the columns of a matrix,

CC,B =


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1


We formed two representations of the vector u above, so we can again provide a check
on our computations by converting from the representation of u relative to C to the
representation of u relative to B,

ρB (u) = CC,BρC (u) Theorem CB [643]

=


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1




8
−5
−6
11
−3



=


5
−3
2
8
−3

 Definition MVP [221]

One more computation that is either a check on our work, or an illustration of a theorem.
The two change-of-basis matrices, CB,C and CC,B, should be inverses of each other,
according to Theorem ICBM [643]. Here we go,

CB,CCC,B =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1




1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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�

The computations of the previous example are not meant to present any labor-saving
devices, but instead are meant to illustrate the utility of the change-of-basis matrix.
However, you might have noticed that CC,B was easier to compute than CB,C . If you
needed CB,C , then you could first compute CC,B and then compute its inverse, which by
Theorem ICBM [643], would equal CB,C .

Here’s another illustrative example. We have been concentrating on working with
abstract vector spaces, but all of our theorems and techniques apply just as well to Cm,
the vector space of column vectors. We only need to use more complicated bases than
the standard unit vectors (Theorem SUVB [367]) to make things interesting.

Example CBCV
Change of basis with column vectors

For the vector space C4 we have the two bases,

B =




1
−2
1
−2

 ,


−1
3
1
1

 ,


2
−3
3
−4

 ,


−1
3
3
0


 C =




1
−6
−4
−1

 ,


−4
8
−5
8

 ,


−5
13
−2
9

 ,


3
−7
3
−6




The change-of-basis matrix from B to C requires writing each vector of B as a linear
combination the vectors in C,

ρC




1
−2
1
−2


 = ρC

(1)


1
−6
−4
−1

+ (−2)


−4
8
−5
8

+ (1)


−5
13
−2
9

+ (−1)


3
−7
3
−6


 =


1
−2
1
−1



ρC



−1
3
1
1


 = ρC

(2)


1
−6
−4
−1

+ (−3)


−4
8
−5
8

+ (3)


−5
13
−2
9

+ (0)


3
−7
3
−6


 =


2
−3
3
0



ρC




2
−3
3
−4


 = ρC

(1)


1
−6
−4
−1

+ (−3)


−4
8
−5
8

+ (1)


−5
13
−2
9

+ (−2)


3
−7
3
−6


 =


1
−3
1
−2



ρC



−1
3
3
0


 = ρC

(2)


1
−6
−4
−1

+ (−2)


−4
8
−5
8

+ (4)


−5
13
−2
9

+ (3)


3
−7
3
−6


 =


2
−2
4
3



Then we package these vectors up as the change-of-basis matrix,

CB,C =


1 2 1 2
−2 −3 −3 −2
1 3 1 4
−1 0 −2 3
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Now consider a single (arbitrary) vector y =


2
6
−3
4

. First, build the vector representation

of y relative to B. This will require writing y as a linear combination of the vectors in
B,

ρB (y) = ρB




2
6
−3
4




= ρB

(−21)


1
−2
1
−2

+ (6)


−1
3
1
1

+ (11)


2
−3
3
−4

+ (−7)


−1
3
3
0


 =


−21
6
11
−7


Now, applying Theorem CB [643] we can convert the representation of y relative to B
into a representation relative to C,

ρC (y) = CB,CρB (y) Theorem CB [643]

=


1 2 1 2
−2 −3 −3 −2
1 3 1 4
−1 0 −2 3



−21
6
11
−7



=


−12
5
−20
−22

 Definition MVP [221]

We could continue further with this example, perhaps by computing the representation
of y relative to the basis C directly as a check on our work (Exercise CB.C20 [665]).
Or we could choose another vector to play the role of y and compute two different
representations of this vector relative to the two bases B and C.

�

Subsection MRS
Matrix Representations and Similarity

Here is the main theorem of this section. It looks a bit involved at first glance, but the
proof should make you realize it is not all that complicated. In any event, we are more
interested in a special case.

Theorem MRCB
Matrix Representation and Change of Basis

Suppose that T : U 7→ V is a linear transformation, B and C are bases for U , and D
and E are bases for V . Then

MT
B,D = CE,DMT

C,ECB,C
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�

Proof

CE,DMT
C,ECB,C = M IV

E,DMT
C,EM IU

B,C Definition CBM [642]

= M IV
E,DMT◦IU

B,E Theorem MRCLT [614]

= M IV
E,DMT

B,E Definition IDLT [571]

= M IV ◦T
B,D Theorem MRCLT [614]

= MT
B,D Definition IDLT [571]

�

We will be most interested in a special case of this theorem (Theorem SCB [651]),
but here’s an example that illustrates the full generality of Theorem MRCB [648].

Example MRCM
Matrix representations and change-of-basis matrices

Begin with two vector spaces, S2, the subspace of M22 containing all 2 × 2 symmetric
matrices, and P3 (Example VSP [316]), the vector space of all polynomials of degree 3
or less. Then define the linear transformation Q : S2 7→ P3 by

Q

([
a b
b c

])
= (5a− 2b + 6c) + (3a− b + 2c)x + (a + 3b− c)x2 + (−4a + 2b + c)x3

Here are two bases for each vector space, one nice, one nasty. First for S2,

B =

{[
5 −3
−3 −2

]
,

[
2 −3
−3 0

]
,

[
1 2
2 4

]}
C =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
and then for P3,

D =
{
2 + x− 2x2 + 3x3, −1− 2x2 + 3x3, −3− x + x3, −x2 + x3

}
E =

{
1, x, x2, x3

}
We’ll begin with a matrix representation of Q relative to C and E. We first find vector
representations of the elements of C relative to E,

ρE

(
Q

([
1 0
0 0

]))
= ρE

(
5 + 3x + x2 − 4x3

)
=


5
3
1
−4



ρE

(
Q

([
0 1
1 0

]))
= ρE

(
−2− x + 3x2 + 2x3

)
=


−2
−1
3
2



ρE

(
Q

([
0 0
0 1

]))
= ρE

(
6 + 2x− x2 + x3

)
=


6
2
−1
1



Version 0.85



650 Section CB Change of Basis

So

MQ
C,E =


5 −2 6
3 −1 2
1 3 −1
−4 2 1


Now we construct two change-of-basis matrices. First, CB,C requires vector representa-
tions of the elements of B, relative to C. Since C is a nice basis, this is straightforward,

ρC

([
5 −3
−3 −2

])
= ρC

(
(5)

[
1 0
0 0

]
+ (−3)

[
0 1
1 0

]
+ (−2)

[
0 0
0 1

])
=

 5
−3
−2


ρC

([
2 −3
−3 0

])
= ρC

(
(2)

[
1 0
0 0

]
+ (−3)

[
0 1
1 0

]
+ (0)

[
0 0
0 1

])
=

 2
−3
0


ρC

([
1 2
2 4

])
= ρC

(
(1)

[
1 0
0 0

]
+ (2)

[
0 1
1 0

]
+ (4)

[
0 0
0 1

])
=

1
2
4


So

CB,C =

 5 2 1
−3 −3 2
−2 0 4


The other change-of-basis matrix we’ll compute is CE,D. However, since E is a nice
basis (and D is not) we’ll turn it around and instead compute CD,E and apply Theo-
rem ICBM [643] to use an inverse to compute CE,D.

ρE

(
2 + x− 2x2 + 3x3

)
= ρE

(
(2)1 + (1)x + (−2)x2 + (3)x3

)
=


2
1
−2
3



ρE

(
−1− 2x2 + 3x3

)
= ρE

(
(−1)1 + (0)x + (−2)x2 + (3)x3

)
=


−1
0
−2
3



ρE

(
−3− x + x3

)
= ρE

(
(−3)1 + (−1)x + (0)x2 + (1)x3

)
=


−3
−1
0
1



ρE

(
−x2 + x3

)
= ρE

(
(0)1 + (0)x + (−1)x2 + (1)x3

)
=


0
0
−1
1


So, we can package these column vectors up as a matrix to obtain CD,E and then,

CE,D = (CD,E)−1 Theorem ICBM [643]
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=


2 −1 −3 0
1 0 −1 0
−2 −2 0 −1
3 3 1 1


−1

=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0


We are now in a position to apply Theorem MRCB [648]. The matrix representation of
Q relative to B and D can be obtained as follows,

MQ
B,D = CE,DMQ

C,ECB,C Theorem MRCB [648]

=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0




5 −2 6
3 −1 2
1 3 −1
−4 2 1


 5 2 1
−3 −3 2
−2 0 4



=


1 −2 1 1
−2 5 −1 −1
1 −3 1 1
2 −6 −1 0




19 16 25
14 9 9
−2 −7 3
−28 −14 4



=


−39 −23 14
62 34 −12
−53 −32 5
−44 −15 −7


Now check our work by computing MQ

B,D directly (Exercise CB.C21 [665]). �

Here is a special case of the previous theorem, where we choose U and V to be the
same vector space, so the matrix representations and the change-of-basis matrices are all
square of the same size.

Theorem SCB
Similarity and Change of Basis
Suppose that T : V 7→ V is a linear transformation and B and C are bases of V . Then

MT
B,B = C−1

B,CMT
C,CCB,C

�

Proof In the conclusion of Theorem MRCB [648], replace D by B, and replace E by
C,

MT
B,B = CC,BMT

C,CCB,C Theorem MRCB [648]

= C−1
B,CMT

C,CCB,C Theorem ICBM [643]

�

This is the third surprise of this chapter. Theorem SCB [651] considers the special case
where a linear transformation has the same vector space for the domain and codomain
(V ). We build a matrix representation of T using the basis B simultaneously for both
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the domain and codomain (MT
B,B), and then we build a second matrix representation of

T , now using the basis C for both the domain and codomain (MT
C,C). Then these two

representations are related via a similarity transformation (Definition SIM [487]) using a
change-of-basis matrix (CB,C)!

Example MRBE
Matrix representation with basis with eigenvectors
We return to the linear transfomation T : M22 7→M22 of Example ELTBM [641] defined

by

T

([
a b
c d

])
=

[
−17a + 11b + 8c− 11d −57a + 35b + 24c− 33d
−14a + 10b + 6c− 10d −41a + 25b + 16c− 23d

]
In Example ELTBM [641] we showcased four eigenvectors of T . We will now put these
four vectors in a set,

B = {x1, x2, x3, x4} =

{[
0 1
0 1

]
,

[
1 1
1 0

]
,

[
1 3
2 3

]
,

[
2 6
1 4

]}
Check that B is a basis of M22 by first establishing the linear independence of B and
then employing Theorem G [402] to get the spanning property easily. Here is a second
set of 2× 2 matrices, which also forms a basis of M22 (Example BM [368]),

C = {y1, y2, y3, y4} =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
We can build two matrix representations of T , one relative to B and one relative to
C. Each is easy, but for wildly different reasons. In our computation of the matrix
representation relative to B we borrow some of our work in Example ELTBM [641].
Here are the representations, then the explanation.

ρB (T (x1)) = ρB (2x1) = ρB (2x1 + 0x2 + 0x3 + 0x4) =


2
0
0
0



ρB (T (x2)) = ρB (2x2) = ρB (0x1 + 2x2 + 0x3 + 0x4) =


0
2
0
0



ρB (T (x3)) = ρB ((−1)x3) = ρB (0x1 + 0x2 + (−1)x3 + 0x4) =


0
0
−1
0



ρB (T (x4)) = ρB ((−2)x4) = ρB (0x1 + 0x2 + 0x3 + (−2)x4) =


0
0
0
−2


So the resulting representation is

MT
B,B =


2 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −2
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Very pretty. Now for the matrix representation relative to C first compute,

ρC (T (y1)) = ρC

([
−17 −57
−14 −41

])

= ρC

(
(−17)

[
1 0
0 0

]
+ (−57)

[
0 1
0 0

]
+ (−14)

[
0 0
1 0

]
+ (−41)

[
0 0
0 1

])
=


−17
−57
−14
−41


ρC (T (y2)) = ρC

([
11 35
10 25

])

= ρC

(
11

[
1 0
0 0

]
+ 35

[
0 1
0 0

]
+ 10

[
0 0
1 0

]
+ 25

[
0 0
0 1

])
=


11
35
10
25


ρC (T (y3)) = ρC

([
8 24
6 16

])

= ρC

(
8

[
1 0
0 0

]
+ 24

[
0 1
0 0

]
+ 6

[
0 0
1 0

]
+ 16

[
0 0
0 1

])
=


8
24
6
16


ρC (T (y4)) = ρC

([
−11 −33
−10 −23

])

= ρC

(
(−11)

[
1 0
0 0

]
+ (−33)

[
0 1
0 0

]
+ (−10)

[
0 0
1 0

]
+ (−23)

[
0 0
0 1

])
=


−11
−33
−10
−23



So the resulting representation is

MT
C,C =


−17 11 8 −11
−57 35 24 −33
−14 10 6 −10
−41 25 16 −23


Not quite as pretty. The purpose of this example is to illustrate Theorem SCB [651].
This theorem says that the two matrix representations, MT

B,B and MT
C,C , of the one linear

transformation, T , are related by a similarity transformation using the change-of-basis
matrix CB,C . Lets compute this change-of-basis matrix. Notice that since C is such a
nice basis, this is fairly straightforward,

ρC (x1) = ρC

([
0 1
0 1

])
= ρC

(
0

[
1 0
0 0

]
+ 1

[
0 1
0 0

]
+ 0

[
0 0
1 0

]
+ 1

[
0 0
0 1

])
=


0
1
0
1



ρC (x2) = ρC

([
1 1
1 0

])
= ρC

(
1

[
1 0
0 0

]
+ 1

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 0

[
0 0
0 1

])
=


1
1
1
0
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ρC (x3) = ρC

([
1 3
2 3

])
= ρC

(
1

[
1 0
0 0

]
+ 3

[
0 1
0 0

]
+ 2

[
0 0
1 0

]
+ 3

[
0 0
0 1

])
=


1
3
2
3



ρC (x4) = ρC

([
2 6
1 4

])
= ρC

(
2

[
1 0
0 0

]
+ 6

[
0 1
0 0

]
+ 1

[
0 0
1 0

]
+ 4

[
0 0
0 1

])
=


2
6
1
4


So we have,

CB,C =


0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


Now, according to Theorem SCB [651] we can write,

MT
B,B = C−1

B,CMT
C,CCB,C

2 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −2

 =


0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


−1 
−17 11 8 −11
−57 35 24 −33
−14 10 6 −10
−41 25 16 −23




0 1 1 2
1 1 3 6
0 1 2 1
1 0 3 4


This should look and feel exactly like the process for diagonalizing a matrix that was
described in Section SD [487]. And it is. �

We can now return to the question of computing an eigenvalue or eigenvector of a
linear transformation. For a linear transformation of the form T : V 7→ V , we know that
representations relative to different bases are similar matrices. We also know that similar
matrices have equal characteristic polynomials by Theorem SMEE [489]. We will now
show that eigenvalues of a linear transformation T are precisely the eigenvalues of any
matrix representation of T . Since the choice of a different matrix representation leads
to a similar matrix, there will be no “new” eigenvalues obtained from this second rep-
resentation. Similarly, the change-of-basis matrix can be used to show that eigenvectors
obtained from one matrix representation will be precisely those obtained from any other
representation. So we can determine the eigenvalues and eigenvectors of a linear transfor-
mation by forming one matrix representation, using any basis we please, and analyzing
the matrix in the manner of Chapter E [445].

Theorem EER
Eigenvalues, Eigenvectors, Representations
Suppose that T : V 7→ V is a linear transformation and B is a basis of V . Then v ∈ V

is an eigenvector of T for the eigenvalue λ if and only if ρB (v) is an eigenvector of MT
B,B

for the eigenvalue λ. �

Proof (⇒) Assume that v ∈ V is an eigenvector of T for the eigenvalue λ. Then

MT
B,BρB (v) = ρB (T (v)) Theorem FTMR [610]

= ρB (λv) Hypothesis

= λρB (v) Theorem VRLT [591]
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which by Definition EEM [445] says that ρB (v) is an eigenvector of the matrix MT
B,B for

the eigenvalue λ.
(⇐) Assume that ρB (v) is an eigenvector of MT

B,B for the eigenvalue λ. Then

T (v) = ρ−1
B (ρB (T (v))) Definition IVLT [571]

= ρ−1
B

(
MT

B,BρB (v)
)

Theorem FTMR [610]

= ρ−1
B (λρB (v)) Hypothesis

= λρ−1
B (ρB (v)) Theorem ILTLT [574]

= λv Definition IVLT [571]

which by Definition EELT [641] says v is an eigenvector of T for the eigenvalue λ. �

Subsection CELT
Computing Eigenvectors of Linear Transformations

Knowing that the eigenvalues of a linear transformation are the eigenvalues of any repre-
sentation, no matter what the choice of the basis B might be, we could now unambigously
define items such as the characteristic polynomial of a linear transformation, rather than
a matrix. We’ll say that again — eigenvalues, eigenvectors, and characteristic polyno-
mials are intrinsic properties of a linear transformation, independent of the choice of a
basis used to construct a matrix representation.

As a practical matter, how does one compute the eigenvalues and eigenvectors of a
linear transformation of the form T : V 7→ V ? Choose a nice basis B for V , one where the
vector representations of the values of the linear transformations necessary for the matrix
representation are easy to compute. Construct the matrix representation relative to this
basis, and find the eigenvalues and eigenvectors of this matrix using the techniques of
Chapter E [445]. The resulting eigenvalues of the matrix are precisely the eigenvalues of
the linear transformation. The eigenvectors of the matrix are column vectors that need
to be converted to vectors in V through application of ρ−1

B .
Now consider the case where the matrix representation of a linear transformation is

diagonalizable. The n linearly independent eigenvectors that must exist for the matrix
(Theorem DC [491]) can be converted (via ρ−1

B ) into eigenvectors of the linear trans-
formation. A matrix representation of the linear transformation relative to a basis of
eigenvectors will be a diagonal matrix — an especially nice representation! Though we
did not know it at the time, the diagonalizations of Section SD [487] were really finding
especially pleasing matrix representations of linear transformations.

Here are some examples.

Example ELTT
Eigenvectors of a linear transformation, twice

Consider the linear transformation S : M22 7→M22 defined by

S

([
a b
c d

])
=

[
−b− c− 3d −14a− 15b− 13c + d

18a + 21b + 19c + 3d −6a− 7b− 7c− 3d

]
To find the eigenvalues and eigenvectors of S we will build a matrix representation and
analyze the matrix. Since Theorem EER [654] places no restriction on the choice of the
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basis B, we may as well use a basis that is easy to work with. So set

B = {x1, x2, x3, x4} =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Then to build the matrix representation of S relative to B compute,

ρB (S (x1)) = ρB

([
0 −14
18 −6

])
= ρB (0x1 + (−14)x2 + 18x3 + (−6)x4) =


0
−14
18
−6



ρB (S (x2)) = ρB

([
−1 −15
21 −7

])
= ρB ((−1)x1 + (−15)x2 + 21x3 + (−7)x4) =


−1
−15
21
−7



ρB (S (x3)) = ρB

([
−1 −13
19 −7

])
= ρB ((−1)x1 + (−13)x2 + 19x3 + (−7)x4) =


−1
−13
19
−7



ρB (S (x4)) = ρB

([
−3 1
3 −3

])
= ρB ((−3)x1 + 1x2 + 3x3 + (−3)x4) =


−3
1
3
−3


So by Definition MR [607] we have

M = MS
B,B =


0 −1 −1 −3
−14 −15 −13 1
18 21 19 3
−6 −7 −7 −3


Now compute eigenvalues and eigenvectors of the matrix representation of M with the
techniques of Section EE [445]. First the characteristic polynomial,

pM (x) = det (M − xI4) = x4 − x3 − 10x2 + 4x + 24 = (x− 3)(x− 2)(x + 2)2

We could now make statements about the eigenvalues of M , but in light of Theo-
rem EER [654] we can refer to the eigenvalues of S and mildly abuse (or extend) our
notation for multiplicities to write

αS (3) = 1 αS (2) = 1 αS (−2) = 2

Now compute the eigenvectors of M ,

λ = 3 M − 3I4 =


−3 −1 −1 −3
−14 −18 −13 1
18 21 16 3
−6 −7 −7 −6

 RREF−−−→


1 0 0 1

0 1 0 −3

0 0 1 3
0 0 0 0



EM (3) = N (M − 3I4) =

〈

−1
3
−3
1



〉
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λ = 2 M − 2I4 =


−2 −1 −1 −3
−14 −17 −13 1
18 21 17 3
−6 −7 −7 −5

 RREF−−−→


1 0 0 2

0 1 0 −4

0 0 1 3
0 0 0 0



EM (2) = N (M − 2I4) =

〈

−2
4
−3
1



〉

λ = −2 M − (−2)I4 =


2 −1 −1 −3
−14 −13 −13 1
18 21 21 3
−6 −7 −7 −1

 RREF−−−→


1 0 0 −1

0 1 1 1
0 0 0 0
0 0 0 0



EM (−2) = N (M − (−2)I4) =

〈


0
−1
1
0

 ,


1
−1
0
1



〉

According to Theorem EER [654] the eigenvectors just listed as basis vectors for the
eigenspaces of M are vector representations (relative to B) of eigenvectors for S. So the
application if the inverse function ρ−1

B will convert these column vectors into elements
of the vector space M22 (2 × 2 matrices) that are eigenvectors of S. Since ρB is an
isomorphism (Theorem VRILT [597]), so is ρ−1

B . Applying the inverse function will then
preserve linear independence and spanning properties, so with a sweeping application
of the Coordinatization Principle [600]and some extensions of our previous notation for
eigenspaces and geometric multiplicities, we can write,

ρ−1
B



−1
3
−3
1


 = (−1)x1 + 3x2 + (−3)x3 + 1x4 =

[
−1 3
−3 1

]

ρ−1
B



−2
4
−3
1


 = (−2)x1 + 4x2 + (−3)x3 + 1x4 =

[
−2 4
−3 1

]

ρ−1
B




0
−1
1
0


 = 0x1 + (−1)x2 + 1x3 + 0x4 =

[
0 −1
1 0

]

ρ−1
B




1
−1
0
1


 = 1x1 + (−1)x2 + 0x3 + 1x4 =

[
1 −1
0 1

]

So

ES (3) =

〈{[
−1 3
−3 1

]}〉
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ES (2) =

〈{[
−2 4
−3 1

]}〉
ES (−2) =

〈{[
0 −1
1 0

]
,

[
1 −1
0 1

]}〉
with geometric multiplicities given by

γS (3) = 1 γS (2) = 1 γS (−2) = 2

Suppose we now decided to build another matrix representation of S, only now relative
to a linearly independent set of eigenvectors of S, such as

C =

{[
−1 3
−3 1

]
,

[
−2 4
−3 1

]
,

[
0 −1
1 0

]
,

[
1 −1
0 1

]}
At this point you should have computed enough matrix representations to predict that
the result of representing S relative to C will be a diagonal matrix. Computing this
representation is an example of how Theorem SCB [651] generalizes the diagonalizations
from Section SD [487]. For the record, here is the diagonal representation,

MS
C,C =


3 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 −2


Our interest in this example is not necessarily building nice representations, but instead
we want to demonstrate how eigenvalues and eigenvectors are an intrinsic property of a
linear transformation, independent of any particular representation. To this end, we will
repeat the foregoing, but replace B by another basis. We will make this basis different,
but not extremely so,

D = {y1, y2, y3, y4} =

{[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]}
Then to build the matrix representation of S relative to D compute,

ρD (S (y1)) = ρD

([
0 −14
18 −6

])
= ρD (14y1 + (−32)y2 + 24y3 + (−6)y4) =


14
−32
24
−6



ρD (S (y2)) = ρD

([
−1 −29
39 −13

])
= ρD (28y1 + (−68)y2 + 52y3 + (−13)y4) =


28
−68
52
−13



ρD (S (y3)) = ρD

([
−2 −42
58 −20

])
= ρD (40y1 + (−100)y2 + 78y3 + (−20)y4) =


40
−100
78
−20



ρD (S (y4)) = ρD

([
−5 −41
61 −23

])
= ρD (36y1 + (−102)y2 + 84y3 + (−23)y4) =


36
−102
84
−23
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So by Definition MR [607] we have

N = MS
D,D =


14 28 40 36
−32 −68 −100 −102
24 52 78 84
−6 −13 −20 −23


Now compute eigenvalues and eigenvectors of the matrix representation of N with the
techniques of Section EE [445]. First the characteristic polynomial,

pN (x) = det (N − xI4) = x4 − x3 − 10x2 + 4x + 24 = (x− 3)(x− 2)(x + 2)2

Of course this is not news. We now know that M = MS
B,B and N = MS

D,D are similar
matrices (Theorem SCB [651]). But Theorem SMEE [489] told us long ago that similar
matrices have identical characteristic polynomials. Now compute eigenvectors for the
matrix representation, which will be different than what we found for M ,

λ = 3 N − 3I4 =


11 28 40 36
−32 −71 −100 −102
24 52 75 84
−6 −13 −20 −26

 RREF−−−→


1 0 0 4
0 1 0 −6
0 0 1 4
0 0 0 0



EN (3) = N (N − 3I4) =

〈

−4
6
−4
1



〉

λ = 2 N − 2I4 =


12 28 40 36
−32 −70 −100 −102
24 52 76 84
−6 −13 −20 −25

 RREF−−−→


1 0 0 6
0 1 0 −7
0 0 1 4
0 0 0 0



EN (2) = N (N − 2I4) =

〈

−6
7
−4
1



〉

λ = −2 N − (−2)I4 =


16 28 40 36
−32 −66 −100 −102
24 52 80 84
−6 −13 −20 −21

 RREF−−−→


1 0 −1 −3
0 1 2 3
0 0 0 0
0 0 0 0



EN (−2) = N (N − (−2)I4) =

〈


1
−2
1
0

 ,


3
−3
0
1



〉

Employing Theorem EER [654] we can apply ρ−1
D to each of the basis vectors of the

eigenspaces of N to obtain eigenvectors for S that also form bases for eigenspaces of S,

ρ−1
D



−4
6
−4
1


 = (−4)y1 + 6y2 + (−4)y3 + 1y4 =

[
−1 3
−3 1

]
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ρ−1
D



−6
7
−4
1


 = (−6)y1 + 7y2 + (−4)y3 + 1y4 =

[
−2 4
−3 1

]

ρ−1
D




1
−2
1
0


 = 1y1 + (−2)y2 + 1y3 + 0y4 =

[
0 −1
1 0

]

ρ−1
D




3
−3
0
1


 = 3y1 + (−3)y2 + 0y3 + 1y4 =

[
1 −2
1 1

]

The eigenspaces for the eigenvalues of algebraic multiplicity 1 are exactly as before,

ES (3) =

〈{[
−1 3
−3 1

]}〉
ES (2) =

〈{[
−2 4
−3 1

]}〉
However, the eigenspace for λ = −2 would at first glance appear to be different. Here
are the two eigenspaces for λ = −2, first the eigenspace obtained from M = MS

B,B, then
followed by the eigenspace obtained from M = MS

D,D.

ES (−2) =

〈{[
0 −1
1 0

]
,

[
1 −1
0 1

]}〉
ES (−2) =

〈{[
0 −1
1 0

]
,

[
1 −2
1 1

]}〉
Subspaces generally have many bases, and that is the situation here. With a careful
proof of set equality, you can show that these two eigenspaces are equal sets. The key
observation to make such a proof go is that[

1 −2
1 1

]
=

[
0 −1
1 0

]
+

[
1 −1
0 1

]
which will establish that the second set is a subset of the first. With equal dimensions,
Theorem EDYES [405] will finish the task. So the eigenvalues of a linear transformation
are independent of the matrix representation employed to compute them! �

Another example, this time a bit larger and with complex eigenvalues.

Example CELT
Complex eigenvectors of a linear transformation

Consider the linear transformation Q : P4 7→ P4 defined by

Q
(
a + bx + cx2 + dx3 + ex4

)
= (−46a− 22b + 13c + 5d + e) + (117a + 57b− 32c− 15d− 4e)x+

(−69a− 29b + 21c− 7e)x2 + (159a + 73b− 44c− 13d + 2e)x3+

(−195a− 87b + 55c + 10d− 13e)x4
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Choose a simple basis to compute with, say

B =
{
1, x, x2, x3, x4

}
Then it should be apparent that the matrix representation of Q relative to B is

M = MQ
B,B =


−46 −22 13 5 1
117 57 −32 −15 −4
−69 −29 21 0 −7
159 73 −44 −13 2
−195 −87 55 10 −13


Compute the characteristic polynomial, eigenvalues and eigenvectors according to the
techniques of Section EE [445],

pQ (x) = −x5 + 6x4 − x3 − 88x2 + 252x− 208

= −(x− 2)2(x + 4)
(
x2 − 6x + 13

)
= −(x− 2)2(x + 4) (x− (3 + 2i)) (x− (3− 2i))

αQ (2) = 2 αQ (−4) = 1 αQ (3 + 2i) = 1 αQ (3− 2i) = 1

λ = 2

M − (2)I5 =


−48 −22 13 5 1
117 55 −32 −15 −4
−69 −29 19 0 −7
159 73 −44 −15 2
−195 −87 55 10 −15

 RREF−−−→


1 0 0 1

2
−1

2

0 1 0 −5
2
−5

2

0 0 1 −2 −6
0 0 0 0 0
0 0 0 0 0



EM (2) = N (M − (2)I5) =

〈


−1

2
5
2

2
1
0

 ,


1
2
5
2

6
0
1



〉

=

〈


−1
5
4
2
0

 ,


1
5
12
0
2



〉

λ = −4

M − (−4)I5 =


−42 −22 13 5 1
117 61 −32 −15 −4
−69 −29 25 0 −7
159 73 −44 −9 2
−195 −87 55 10 −9

 RREF−−−→


1 0 0 0 1
0 1 0 0 −3
0 0 1 0 −1
0 0 0 1 −2
0 0 0 0 0



EM (−4) = N (M − (−4)I5) =

〈


−1
3
1
2
1



〉
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λ = 3 + 2i

M − (3 + 2i)I5 =


−49− 2i −22 13 5 1

117 54− 2i −32 −15 −4
−69 −29 18− 2i 0 −7
159 73 −44 −16− 2i 2
−195 −87 55 10 −16− 2i

 RREF−−−→


1 0 0 0 −3

4
+ i

4

0 1 0 0 7
4
− i

4

0 0 1 0 −1
2

+ i
2

0 0 0 1 7
4
− i

4

0 0 0 0 0



EM (3 + 2i) = N (M − (3 + 2i)I5) =

〈


3
4
− i

4

−7
4

+ i
4

1
2
− i

2

−7
4

+ i
4

1



〉

=

〈


3− i
−7 + i
2− 2i
−7 + i

4



〉

λ = 3− 2i

M − (3− 2i)I5 =


−49 + 2i −22 13 5 1

117 54 + 2i −32 −15 −4
−69 −29 18 + 2i 0 −7
159 73 −44 −16 + 2i 2
−195 −87 55 10 −16 + 2i

 RREF−−−→


1 0 0 0 −3

4
− i

4

0 1 0 0 7
4

+ i
4

0 0 1 0 −1
2
− i

2

0 0 0 1 7
4

+ i
4

0 0 0 0 0



EM (3− 2i) = N (M − (3− 2i)I5) =

〈


3
4

+ i
4

−7
4
− i

4
1
2

+ i
2

−7
4
− i

4

1



〉

=

〈


3 + i
−7− i
2 + 2i
−7− i

4



〉

It is straightforward to convert each of these basis vectors for eigenspaces of M back to
elements of P4 by applying the isomorphism ρ−1

B ,

ρ−1
B



−1
5
4
2
0


 = −1 + 5x + 4x2 + 2x3

ρ−1
B




1
5
12
0
2


 = 1 + 5x + 12x2 + 2x4

ρ−1
B



−1
3
1
2
1


 = −1 + 3x + x2 + 2x3 + x4

ρ−1
B




3− i
−7 + i
2− 2i
−7 + i

4


 = (3− i) + (−7 + i)x + (2− 2i)x2 + (−7 + i)x3 + 4x4
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ρ−1
B




3 + i
−7− i
2 + 2i
−7− i

4


 = (3 + i) + (−7− i)x + (2 + 2i)x2 + (−7− i)x3 + 4x4

So we apply Theorem EER [654] and the Coordinatization Principle [600]to get the
eigenspaces for Q,

EQ (2) =
〈{
−1 + 5x + 4x2 + 2x3, 1 + 5x + 12x2 + 2x4

}〉
EQ (−4) =

〈{
−1 + 3x + x2 + 2x3 + x4

}〉
EQ (3 + 2i) =

〈{
(3− i) + (−7 + i)x + (2− 2i)x2 + (−7 + i)x3 + 4x4

}〉
EQ (3− 2i) =

〈{
(3 + i) + (−7− i)x + (2 + 2i)x2 + (−7− i)x3 + 4x4

}〉
with geometric multiplicities

γQ (2) = 2 γQ (−4) = 1 γQ (3 + 2i) = 1 γQ (3− 2i) = 1

�

Subsection READ
Reading Questions

1. The change-of-basis matrix is a matrix representation of which linear transforma-
tion?

2. Find the change-of-basis matrix, CB,C , for the two bases of C2

B =

{[
2
3

]
,

[
−1
2

]}
C =

{[
1
0

]
,

[
1
1

]}
3. What is the third “surprise,” and why is it surprising?
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Subsection EXC
Exercises

C20 In Example CBCV [647] we computed the vector representation of y relative
to C, ρC (y), as an example of Theorem CB [643]. Compute this same representation
directly. In other words, apply Definition VR [591] rather than Theorem CB [643].
Contributed by Robert Beezer

C21 Perform a check on Example MRCM [649] by computing MQ
B,D directly. In other

words, apply Definition MR [607] rather than Theorem MRCB [648].
Contributed by Robert Beezer Solution [667]

C30 Find a basis for the vector space P3 composed of eigenvectors of the linear trans-
formation T . Then find a matrix representation of T relative to this basis.

T : P3 7→ P3, T
(
a + bx + cx2 + dx3

)
= (a+c+d)+(b+c+d)x+(a+b+c)x2+(a+b+d)x3

Contributed by Robert Beezer Solution [667]

C40 Let S22 be the vector space of 2× 2 symmetric matrices. Find a basis B for S22

that yields a diagonal matrix representation of the linear transformation R. (15 points)

R : S22 7→ S22, R

([
a b
b c

])
=

[
−5a + 2b− 3c −12a + 5b− 6c
−12a + 5b− 6c 6a− 2b + 4c

]

Contributed by Robert Beezer Solution [668]

C41 Let S22 be the vector space of 2 × 2 symmetric matrices. Find a basis for S22

composed of eigenvectors of the linear transformation Q : S22 7→ S22. (15 points)

Q

([
a b
b c

])
=

[
25a + 18b + 30c −16a− 11b− 20c
−16a− 11b− 20c −11a− 9b− 12c

]

Contributed by Robert Beezer Solution [669]

T10 Suppose that T : V 7→ V is an invertible linear transformation with a nonzero

eigenvalue λ. Prove that
1

λ
is an eigenvalue of T−1.

Contributed by Robert Beezer Solution [670]

T15 Suppose that V is a vector space and T : V 7→ V is a linear transformation. Prove
that T is injective if and only if λ = 0 is not an eigenvalue of T .
Contributed by Robert Beezer
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Subsection SOL
Solutions

C21 Contributed by Robert Beezer Statement [665]
Apply Definition MR [607],

ρD

(
Q

([
5 −3
−3 −2

]))
= ρD

(
19 + 14x− 2x2 − 28x3

)
= ρD

(
(−39)(2 + x− 2x2 + 3x3) + 62(−1− 2x2 + 3x3) + (−53)(−3− x + x3) + (−44)(−x2 + x3)

)
=


−39
62
−53
−44


ρD

(
Q

([
2 −3
−3 0

]))
= ρD

(
16 + 9x− 7x2 − 14x3

)
= ρD

(
(−23)(2 + x− 2x2 + 3x3) + (34)(−1− 2x2 + 3x3) + (−32)(−3− x + x3) + (−15)(−x2 + x3)

)
=


−23
34
−32
−15


ρD

(
Q

([
1 2
2 4

]))
= ρD

(
25 + 9x + 3x2 + 4x3

)
= ρD

(
(14)(2 + x− 2x2 + 3x3) + (−12)(−1− 2x2 + 3x3) + 5(−3− x + x3) + (−7)(−x2 + x3)

)
=


14
−12
5
−7



These three vectors are the columns of the matrix representation,

MQ
B,D =


−39 −23 14
62 34 −12
−53 −32 5
−44 −15 −7


which coincides with the result obtained in Example MRCM [649].

C30 Contributed by Robert Beezer Statement [665]
With the domain and codomain being identical, we will build a matrix representation

using the same basis for both the domain and codomain. The eigenvalues of the matrix
representation will be the eigenvalues of the linear transformation, and we can obtain
the eigenvectors of the linear transformation by un-coordinatizing (Theorem EER [654]).
Since the method does not depend on which basis we choose, we can choose a natural
basis for ease of computation, say,

B =
{
1, x, x2, x3

}
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The matrix representation is then,

MT
B,B =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


The eigenvalues and eigenvectors of this matrix were computed in Example ESMS4 [457].
A basis for C4, composed of eigenvectors of the matrix representation is,

C =




1
1
1
1

 ,


−1
1
0
0

 ,


0
0
−1
1

 ,


−1
−1
1
1




Applying ρ−1
B to each vector of this set, yields a basis of P3 composed of eigenvectors of

T ,
D =

{
1 + x + x2 + x3,−1 + x, −x2 + x3, −1− x + x2 + x3

}
The matrix representation of T relative to the basis D will be a diagonal matrix with
the corresponding eigenvalues along the diagonal, so in this case we get

MT
D,D =


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


C40 Contributed by Robert Beezer Statement [665]
Begin with a matrix representation of R, any matrix representation, but use the same

basis for both instances of S22. We’ll choose a basis that makes it easy to compute vector
representations in S22.

B =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
Then the resulting matrix representation of R (Definition MR [607]) is

MR
B,B =

 −5 2 −3
−12 5 −6
6 −2 4


Now, compute the eigenvalues and eigenvectors of this matrix, with the goal of diagonal-
izing the matrix (Theorem DC [491]),

λ = 2 EMR
B,B

(2) =

〈
−1
−2
1


〉

λ = 1 EMR
B,B

(1) =

〈
−1

0
2

 ,

1
3
0


〉
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The three vectors that occur as basis elements for these eigenspaces will together form
a linearly independent set (check this!). So these column vectors may be employed in
a matrix that will diagonalize the matrix representation. If we “un-coordinatize” these
three column vectors relative to the basis B, we will find three linearly independent
elements of S22 that are eigenvectors of the linear transformation R (Theorem EER [654]).
A matrix representation relative to this basis of eigenvectors will be diagonal, with the
eigenvalues (λ = 2, 1) as the diagonal elements. Here we go,

ρ−1
B

−1
−2
1

 = (−1)

[
1 0
0 0

]
+ (−2)

[
0 1
1 0

]
+ 1

[
0 0
0 1

]
=

[
−1 −2
−2 1

]

ρ−1
B

−1
0
2

 = (−1)

[
1 0
0 0

]
+ 0

[
0 1
1 0

]
+ 2

[
0 0
0 1

]
=

[
−1 0
0 2

]

ρ−1
B

1
3
0

 = 1

[
1 0
0 0

]
+ 3

[
0 1
1 0

]
+ 0

[
0 0
0 1

]
=

[
1 3
3 0

]

So the requested basis of S22, yielding a diagonal matrix representation of R, is{[
−1 −2
−2 1

] [
−1 0
0 2

]
,

[
1 3
3 0

]}
C41 Contributed by Robert Beezer Statement [665]
Use a single basis for both the domain and codomain, since they are equal.

B =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
The matrix representation of Q relative to B is

M = MQ
B,B =

 25 18 30
−16 −11 −20
−11 −9 −12


We can analyze this matrix with the techniques of Section EE [445] and then apply
Theorem EER [654]. The eigenvalues of this matrix are λ = −2, 1, 3 with eigenspaces

EM (−2) =

〈
−6

4
3


〉

EM (1) =

〈
−2

1
1


〉

EM (3) =

〈
−3

2
1


〉

Because the three eigenvalues are distinct, the three basis vectors from the three eigenspaces
for a linearly independent set (Theorem EDELI [471]). Theorem EER [654] says we can
uncoordinatize these eigenvectors to obtain eigenvectors of Q. By Theorem ILTLI [541]
the resulting set will remain linearly independent. Set

C =

ρ−1
B

−6
4
3

 , ρ−1
B

−2
1
1

 , ρ−1
B

−3
2
1

 =

{[
−6 4
4 3

]
,

[
−2 1
1 1

]
,

[
−3 2
2 1

]}
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Then C is a linearly independent set of size 3 in the vector space M22, which has dimension
3 as well. By Theorem G [402], C is a basis of M22.

T10 Contributed by Robert Beezer Statement [665]
Let v be an eigenvector of T for the eigenvalue λ. Then,

T−1 (v) =
1

λ
λT−1 (v) λ 6= 0

=
1

λ
T−1 (λv) Theorem ILTLT [574]

=
1

λ
T−1 (T (v)) v eigenvector of T

=
1

λ
IV (v) Definition IVLT [571]

=
1

λ
v Definition IDLT [571]

which says that
1

λ
is an eigenvalue of T−1 with eigenvector v. Note that it is possible

to prove that any eigenvalue of an invertible linear transformation is never zero. So the
hypothesis that λ be nonzero is just a convenience for this problem.
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(This appendix under construction, see notes embedded throughout text.)

Section MAA

Mathematica

Computation Note MAA.GSP
Gram-Schmidt Procedure

Mathematica has a built-in routine that will do the Gram-Schmidt procedure (Theo-
rem GSPCV [199]). The input is a set of vectors, which must be linearly independent.
This is written as a list, containing lists that are the vectors. Let a be such a list of lists,
containing the vectors vi, 1 ≤ i ≤ p from the statement of the theorem. You will need to
first load the right Mathematica package — execute <<LinearAlgebra‘Orthogonalization‘

to make this happen. Then execute GramSchmidt[a] . The output will be another list
of lists containing the vectors ui, 1 ≤ i ≤ p from the statement of the theorem. Math-
ematica will complain if you do not provide a linearly independent set as input (try
it!).

An example. Suppose our linearly independent set (check this!) is

S =




−1
4
1
0
3

 ,


0
3
0
3
−3

 ,


−1
2
0
−1
−2

 ,


−1
−2
−3
1
4

 ,


1
6
−1
4
6




The output of the GramSchmidt[ ] command will be the set,

T =




− 1

3
√

3
4

3
√

3
1

3
√

3

0
1√
3

 ,



1
12
√

15
23

12
√

15

− 1
12
√

15
3
√

3
5

4

−
√

5
3

2

 ,


− 37

4
√

685
29

4
√

685

− 3
4
√

685

− 79
4
√

685

−5
√

5
137

2

 ,


− 337

2
√

120423

− 37
6
√

120423

− 1763
6
√

120423
337

6
√

120423
50√

120423

 ,


23√
879
26

3
√

879

− 44
3
√

879

− 23
3
√

879
1√
879
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Ugly, but true. At this stage, you might just as well be encouraged to think of the Gram-
Schmidt procedure as a computational black box, linearly independent set in, orthogonal
span-preserving set out.

To check that the output set is orthogonal, we can easily check the orthogonal-
ity of individual pairs of vectors. Suppose the output was set equal to b (say via
b=GramSchmidt[a] ). We can extract the individual vectors of c as “parts” with syntax
like c[[3]] , which would return the third vector in the set. When our vectors have only
real number entries, we can accomplish an innerproduct with a “dot.” So, for example,
you should discover that c[[3]].c[[5]] will return zero. Try it yourself with another
pair of vectors.

Computation Note MAA.MM
Matrix Multiplication

If A and B are matrices defined in Mathematica, then A.B will return the product of the
two matrices (notice the dot between the matrices). If A is a matrix and v is a vector,
then A.v will return the vector that is the matrix-vector product of A and v. In every
case the sizes of the matrices and vectors need to be correct.

Some examples:

{{1, 2}, {3, 4}}.{{5, 6, 7}, {8, 9, 10}} = {{21, 24, 27}, {47, 54, 61}}
{{1, 2}, {3, 4}}.{{5}, {6}} = {{17}, {39}}

{{1, 2}, {3, 4}}.{5, 6} = {17, 39}

Understanding the difference between the last two examples will go a long way to ex-
plaining how some Mathematica constructs work.
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This appendix contains important ideas about complex numbers, sets, and the logic and
techniques of forming proofs. It is not meant to be read straight through, but you should
head here when you need to review these ideas.

We choose to expand the set of scalars from the real numbers, R, to the set of complex
numbers, C. So basic operations with complex numbers (like addition and division) will
be necessary. This can be safely postponed until your arrival in Section O [191], and a
refresher before Chapter E [445] would be a good idea as well.

Sets are extremely important in all of mathematics, but maybe you have not had
much exposure to the basic operations. Check out Section SET [677]. The text will send
you here frequently as well. Visit often.

This book is as much about doing mathematics as it is about linear algebra. The
“Proof Techniques” are vignettes about logic, types of theorems, structure of proofs, or
just plain old-fashioned advice about how to do advanced mathematics. The text will
frequently point to one of these techniques in advance of their first use, and for specific
instructions there will be additional references. If you find constructing proofs difficult
(we all did once), then head back here and browse through the advice for second or third
readings.

Section CNO

Complex Number Operations

In this section we review of the basics of working with complex numbers.

Subsection CNA
Arithmetic with complex numbers

A complex number is a linear combination of 1 and i =
√
−1, typically written in the

form a + bi. Complex numbers can be added, subtracted, multiplied and divided, just
like we are used to doing with real numbers, including the restriction on division by zero.
We will not define these operations carefully, but instead illustrate with examples.

Example ACN
Arithmetic of complex numbers
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(2 + 5i) + (6− 4i) = (2 + 6) + (5 + (−4))i = 8 + i

(2 + 5i)− (6− 4i) = (2− 6) + (5− (−4))i = −4 + 9i

(2 + 5i)(6− 4i) = (2)(6) + (5i)(6) + (2)(−4i) + (5i)(−4i) = 12 + 30i− 8i− 20i2

= 12 + 22i− 20(−1) = 32 + 22i

Division takes just a bit more care. We multiply the denominator by a complex number
chosen to produce a real number and then we can produce a complex number as a result.

2 + 5i

6− 4i
=

2 + 5i

6− 4i

6 + 4i

6 + 4i
=
−8 + 38i

52
= − 8

52
+

38

52
i = − 2

13
+

19

26
i

�

In this example, we used 6 + 4i to convert the denominator in the fraction to a real
number. This number is known as the conjugate, which we now define.

Subsection CCN
Conjugates of Complex Numbers

Definition CCN
Conjugate of a Complex Number
The conjugate of the complex number c = a+bi ∈ C is the complex number c = a−bi.

(This definition contains Notation CCN.) 4

Example CSCN
Conjugate of some complex numbers

2 + 3i = 2− 3i 5− 4i = 5 + 4i −3 + 0i = −3 + 0i 0 + 0i = 0 + 0i

�

Notice how the conjugate of a real number leaves the number unchanged. The conju-
gate enjoys some basic properties that are useful when we work with linear expressions
involving addition and multiplication.

Theorem CCRA
Complex Conjugation Respects Addition

Suppose that c and d are complex numbers. Then c + d = c + d. �

Proof Let c = a + bi and d = r + si. Then

c + d = (a + r) + (b + s)i = (a + r)− (b + s)i = (a− bi) + (r − si) = c + d

�
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Theorem CCRM
Complex Conjugation Respects Multiplication

Suppose that c and d are complex numbers. Then cd = cd. �

Proof Let c = a + bi and d = r + si. Then

cd = (ar − bs) + (as + br)i = (ar − bs)− (as + br)i

= (ar − (−b)(−s)) + (a(−s) + (−b)r)i = (a− bi)(r − si) = cd

�

Theorem CCT
Complex Conjugation Twice

Suppose that c is a complex number. Then c = c. �

Proof Let c = a + bi. Then

c = a− bi = a− (−bi) = a + bi = c

�

Subsection MCN
Modulus of a Complex Number

We define one more operation with complex numbers that may be new to you.

Definition MCN
Modulus of a Complex Number

The modulus of the complex number c = a + bi ∈ C, is the nonnegative real number

|c| =
√

cc =
√

a2 + b2.

4

Example MSCN
Modulus of some complex numbers

|2 + 3i| =
√

13 |5− 4i| =
√

41 |−3 + 0i| = 3 |0 + 0i| = 0

�

The modulus can be interpreted as a version of the absolute value for complex
numbers, as is suggested by the notation employed. You can see this in how |−3| =
|−3 + 0i| = 3. Notice too how the modulus of the complex zero, 0 + 0i, has value 0.

Version 0.85



676 Section CNO Complex Number Operations

Version 0.85



Section SET Sets 677

Section SET

Sets

Definition SET
Set

A set is an unordered collection of objects. If S is a set and x is an object that is in
the set S, we write x ∈ S. If x is not in S, then we write x 6∈ S. we refer to the objects
in a set as its elements.
(This definition contains Notation SETM.) 4

Hard to get much more basic than that. Notice that the objects in a set can be
anything, and there is no notion of order among the elements of the set. A set can be
finite as well as infinite. A set can contain other sets as its objects. At a primitive level,
a set is just a way to break up some class of objects into two groupings: those objects in
the set, and those objects not in the set.

Example SETM
Set membership

From the set of all possible symbols, construct the following set of three symbols,

S = {�, �, F}

Then the statement � ∈ S is true, while the statement N ∈ S is false. However, then
the statement N 6∈ S is true. �

A portion of a set is known as a subset. Notice how the following definition uses an
implication (if whenever. . . then. . . ). Note too how the definition of a subset relies on
the definition of a set through the ide of set membership.

Definition SSET
Subset
If S and T are two sets, then S is a subset of T , written S ⊆ T if whenever x ∈ S then

x ∈ T .
(This definition contains Notation SSET.) 4

If we want to disallow the possibility that S is the same as T , we use the notation
S ⊂ T and we say that S is a proper subset of T . We’ll do an example, but first we’ll
define a special set.

Definition ES
Empty Set

The empty set is the set with no elements. Its is denoted by ∅.
(This definition contains Notation ES.) 4

Example SSET
Subset

If S = {�, �, F}, T = {F, �}, R = {N, F}, then

T ⊆ S R 6⊆ T ∅ ⊆ S

T ⊂ S S ⊆ S S 6⊂ S
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�

What does it mean for two sets to be equal? They must be the same. Well, that
explanation is not really too helpful, is it? How about: If A ⊆ B and B ⊆ A, then A
equals B. This gives us something to work with, if A is a subset of B, and vice versa, then
they must really be the same set. We will now make the symbol “=” do double-duty and
extend its use to statements like A = B, where A and B are sets. Here’s the definition,
which we will reference often.

Definition SE
Set Equality

Two sets, S and T , are equal, if S ⊆ T and T ⊆ S. in this case, we write S = T .
(This definition contains Notation SE.) 4

Sets are typically written inside of braces, as { }, as we have seen above. However,
when sets have more than a few elements, a description will typically have two compo-
nents. The first is a description of the general type of objects contained in a set, while
the second is some sort of restriction on the properties the objects have. Every object in
the set must be of the type described in the first part and it must satisfy the restrictions
in the second part. Conversely, any object of the proper type for the first part, that also
meets the conditions of the second part, will be in the set. These two parts are set off
from each other somehow, often with a vertical bar (|) or a colon (:).

I like to think of sets as clubs. The first part is some description of the type of people
who might belong to the club, the basic objects. For example, a bicycle club would
describe its members as being people who like to ride bicycles. The second part is like a
membership committee, it restricts the people who are allowed in the club. Continuing
with our bicycle club, we might decide to limit ourselves to “serious” riders and only
have members who can document having ridden 100 kilometers or more in a single day
at least one time.

The restrictions on membership can migrate around some between the first and second
part, and there may be several ways to describe the same set of objects. Here’s a more
mathematical example, employing the set of all integers, Z, to describe the set of even
integers.

E = {x ∈ Z | x is an even number}
= {x ∈ Z | 2 divides x evenly}
= {2k | k ∈ Z}

Notice how this set tells us that its objects are integer numbers (not, say, matrices or
functions, for example) and just those that are even. So we can write that 10 ∈ E, while
17 6∈ E once we check the membership criteria. We also recognize the question[

1 −3 5
2 0 3

]
∈ E?

as being simply ridiculous.
(TODO: Needs a discussion of union, intersection, complement.)
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Section PT

Proof Techniques

In this section we collect many short essays designed to help you understand how to
read, understand and construct proofs. Some are very factual, while others consist of
advice. They appear in the order that they are first needed (or advisable) in the text,
and are meant to be self-contained. So you should not think of reading through this
section in one sitting as you begin this course. But be sure to head back here for a first
reading whenever the text suggests it. Also think about returning to browse at various
points during the course, and especially as you struggle with becoming an accomplished
mathematician who is comfortable with the difficult process of designing new proofs.
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Proof Technique D
Definitions

A definition is a made-up term, used as a kind of shortcut for some typically more
complicated idea. For example, we say a whole number is even as a shortcut for saying
that when we divide the number by two we get a remainder of zero. With a precise
definition, we can answer certain questions unambiguously. For example, did you ever
wonder if zero was an even number? Now the answer should be clear since we have a
precise definition of what we mean by the term even.

A single term might have several possible definitions. For example, we could say that
the whole number n is even if there is another whole number k such that n = 2k. We
say this is an equivalent definition since it categorizes even numbers the same way our
first definition does.

Definitions are like two-way streets — we can use a definition to replace something
rather complicated by its definition (if it fits) and we can replace a definition by its more
complicated description. A definition is usually written as some form of an implication,
such as “If something-nice-happens, then blatzo.” However, this also means that “If
blatzo, then something-nice-happens,” even though this may not be formally stated.
This is what we mean when we say a definition is a two-way street — it is really two
implications, going in opposite “directions.”

Anybody (including you) can make up a definition, so long as it is unambiguous, but
the real test of a definition’s utility is whether or not it is useful for describing interesting
or frequent situations.

We will talk about theorems later (and especially equivalences). For now, be sure not
to confuse the notion of a definition with that of a theorem.

In this book, we will display every new definition carefully set-off from the text, and
the term being defined will be written thus: definition. Additionally, there is a full
list of all the definitions, in order of their appearance located at the front of the book
(Definitions). Finally, the acronym for each definition can be found in the index (Index).
Definitions are critical to doing mathematics and proving theorems, so we’ve given you
lots of ways to locate a definition should you forget its. . . uh, well, . . . definition.

Can you formulate a precise definition for what it means for a number to be odd?
(Don’t just say it is the opposite of even. Act as if you don’t have a definition for even
yet.) Can you formulate your definition a second, equivalent, way? Can you employ your
definition to test an odd and an even number for “odd-ness”?
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Proof Technique T
Theorems

Higher mathematics is about understanding theorems. Reading them, understanding
them, applying them, proving them. We are ready to prove our first momentarily. Every
theorem is a shortcut — we prove something in general, and then whenever we find a
specific instance covered by the theorem we can immediately say that we know something
else about the situation by applying the theorem. In many cases, this new information
can be gained with much less effort than if we did not know the theorem.

The first step in understanding a theorem is to realize that the statement of ev-
ery theorem can be rewritten using statements of the form “If something-happens,
then something-else-happens.” The “something-happens” part is the hypothesis and
the “something-else-happens” is the conclusion. To understand a theorem, it helps
to rewrite its statement using this construction. To apply a theorem, we verify that
“something-happens” in a particular instance and immediately conclude that “something-
else-happens.” To prove a theorem, we must argue based on the assumption that the
hypothesis is true, and arrive through the process of logic that the conclusion must then
also be true.
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Proof Technique L
Language

Like any science, the language of math must be understood before further
study can continue.

Erin Wilson, Student
September, 2004

Mathematics is a language. It is a way to express complicated ideas clearly, precisely,
and unambiguously. Because of this, it can be difficult to read. Read slowly, and have
pencil and paper at hand. It will usually be necessary to read something several times.
While reading can be difficult, it is even harder to speak mathematics, and so that is the
topic of this technique.

“Natural” language, in the present case English, is fraught with ambiguity. Con-
sider the possible meanings of the sentence: The fish is ready to eat. One fish, or two
fish? Are the fish hungry, or will the fish be eaten? (See Exercise SSLE.M10 [23], Ex-
ercise SSLE.M11 [23], Exercise SSLE.M12 [24], Exercise SSLE.M13 [24].) In your daily
interactions with others, give some thought to how many mis-understandings arise from
the ambiguity of pronouns, modifiers and objects.

I am going to suggest a simple modification to the way you use language that will
make it much, much easier to become proficient at speaking mathematics and eventually
it will become second nature. Think of it as a training aid or practice drill you might
use when learning to become skilled at a sport.

First, eliminate pronouns from your vocabulary when discussing linear algebra, in
class or with your colleagues. Do not use: it, that, those, their or similar sources of
confusion. This is the single easiest step you can take to make your oral expression of
mathematics clearer to others, and in turn, it will greatly help your own understanding.

Now rid yourself of the word “thing” (or variants like “something”). When you are
tempted to use this word realize that there is some object you want to discuss, and
we likely have a definition for that object (see the discussion at Technique D [680]).
Always “think about your objects” and many aspects of the study of mathematics will
get easier. Ask yourself: “Am I working with a set, a number, a function, an operation, a
differential equation, or what?” Knowing what an object is will allow you to narrow down
the procedures you may apply to it. If you have studied an object-oriented computer
programming language, then perhaps this advice will be even clearer, since you know
that a compiler will often complain with an error message if you confuse your objects.

Third, eliminate the verb “works” (as in “the equation works”) from your vocabu-
lary. This term is used as a substitute when we are not sure just what we are trying
to accomplish. Usually we are trying to say that some object fulfills some condition.
The condition might even have a definition associated with it, making it even easier to
describe.

Last, speak slooooowly and thoughtfully as you try to get by without all these lazy
words. It is hard at first, but you will get better with practice. Especially in class, when
the pressure is on and all eyes are on you, don’t succumb to the temptation to use these
weak words. Slow down, we’d all rather wait for a slow, well-formed question or answer
than a fast, sloppy, incomprehensible one.
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You will find the improvement in your ability to speak clearly about complicated ideas
will greatly improve your ability to think clearly about complicated ideas. And I believe
that you cannot think clearly about complicated ideas if you cannot formulate questions
or answers clearly in the correct language. This is as applicable to the study of law,
economics or philosophy as it is to the study of science or mathematics.

So when you come to class, check your pronouns at the door, along with other weak
words. And when studying with friends, you might make a game of catching one another
using pronouns, “thing,” or “works.” I know I’ll be calling you on it!
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Proof Technique GS
Getting Started

“I don’t know how to get started!” is often the lament of the novice proof-builder. Here
are a few pieces of advice.

1. As mentioned in Technique T [681], rewrite the statement of the theorem in an
“if-then” form. This will simplify identifying the hypothesis and conclusion, which
are referenced in the next few items.

2. Ask yourself what kind of statement you are trying to prove. This is always part
of your conclusion. Are you being asked to conclude that two numbers are equal,
that a function is differentiable or a set is a subset of another? You cannot bring
other techniques to bear if you do not know what type of conclusion you have.

3. Write down reformulations of your hypotheses. Interpret and translate each defini-
tion properly.

4. Write your hypothesis at the top of a sheet of paper and your conclusion at the
bottom. See if you can formulate a statement that precedes the conclusion and also
implies it. Work down from your hypothesis, and up from your conclusion, and see
if you can meet in the middle. When you are finished, rewrite the proof nicely,
from hypothesis to conclusion, with verifiable implications giving each subsequent
statement.

5. As you work through your proof, think about what kinds of objects your symbols
represent. For example, suppose A is a set and f(x) is a real-valued function. Then
the expression A + f might make no sense if we have not defined what it means to
“add” a set to a function, so we can stop at that point and adjust accordingly. On
the other hand we might understand 2f to be the function whose rule is described
by (2f)(x) = 2f(x). “Think about your objects” means to always verify that your
objects and operations are compatible.
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Proof Technique C
Constructive Proofs

Conclusions of proofs come in a variety of types. Often a theorem will simply assert
that something exists. The best way, but not the only way, to show something exists
is to actually build it. Such a proof is called constructive. The thing to realize about
constructive proofs is that the proof itself will contain a procedure that might be used
computationally to construct the desired object. If the procedure is not too cumbersome,
then the proof itself is as useful as the statement of the theorem. Such is the case with
our next theorem.

Version 0.85



686 Section PT Proof Techniques

Proof Technique E
Equivalences

When a theorem uses the phrase “if and only if” (or the abbreviation “iff”) it is a
shorthand way of saying that two if-then statements are true. So if a theorem says “P if
and only if Q,” then it is true that “if P, then Q” while it is also true that “if Q, then P.”
For example, it may be a theorem that “I wear bright yellow knee-high plastic boots if
and only if it is raining.” This means that I never forget to wear my super-duper yellow
boots when it is raining and I wouldn’t be seen in such silly boots unless it was raining.
You never have one without the other. I’ve got my boots on and it is raining or I don’t
have my boots on and it is dry.

The upshot for proving such theorems is that it is like a 2-for-1 sale, we get to do two
proofs. Assume P and conclude Q, then start over and assume Q and conclude P . For
this reason, “if and only if” is sometimes abbreviated by ⇐⇒ , while proofs indicate
which of the two implications is being proved by prefacing each with⇒ or⇐. A carefully
written proof will remind the reader which statement is being used as the hypothesis, a
quicker version will let the reader deduce it from the direction of the arrow. Tradition
dictates we do the “easy” half first, but that’s hard for a student to know until you’ve
finished doing both halves! Oh well, if you rewrite your proofs (a good habit), you can
then choose to put the easy half first.

Theorems of this type are called equivalences or characterizations, and they are some
of the most pleasing results in mathematics. They say that two objects, or two situations,
are really the same. You don’t have one without the other, like rain and my yellow
boots. The more different P and Q seem to be, the more pleasing it is to discover they
are really equivalent. And if P describes a very mysterious solution or involves a tough
computation, while Q is transparent or involves easy computations, then we’ve found
a great shortcut for better understanding or faster computation. Remember that every
theorem really is a shortcut in some form. You will also discover that if proving P ⇒ Q
is very easy, then proving Q⇒ P is likely to be proportionately harder. Sometimes the
two halves are about equally hard. And in rare cases, you can string together a whole
sequence of other equivalences to form the one you’re after and you don’t even need to
do two halves. In this case, the argument of one half is just the argument of the other
half, but in reverse.

One last thing about equivalences. If you see a statement of a theorem that says two
things are “equivalent,” translate it first into an “if and only if” statement.
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Proof Technique N
Negation

When we construct the contrapositive of a theorem (Technique CP [688]), we need to
negate the two statements in the implication. And when we construct a proof by contra-
diction (Technique CD [690]), we need to negate the conclusion of the theorem. One way
to construct a converse (Technique CV [689]) is to simultaneously negate the hypothesis
and conclusion of an implication (but remember that this is not guaranteed to be a true
statement). So we often have the need to negate statements, and in some situations it
can be tricky.

If a statement says that a set is empty, then its negation is the statement that the set
is nonempty. That’s straightforward. Suppose a statement says “something-happens”
for all i, or every i, or any i. Then the negation is that “something-doesn’t-happen” for
at least one value of i. If a statement says that there exists at least one “thing,” then the
negation is the statement that there is no “thing.” If a statement says that a “thing” is
unique, then the negation is that there is zero, or more than one, of the “thing.”

We are not covering all of the possibilities, but we wish to make the point that logical
qualifiers like “there exists” or “for every” must be handled with care when negating state-
ments. Studying the proofs which employ contradiction (as listed in Technique CD [690])
is a good first step towards understanding the range of possibilities.
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Proof Technique CP
Contrapositives

The contrapositive of an implication P ⇒ Q is the implication not(Q) ⇒ not(P ),
where “not” means the logical negation, or opposite. An implication is true if and only if
its contrapositive is true. In symbols, (P ⇒ Q) ⇐⇒ (not(Q) ⇒ not(P )) is a theorem.
Such statements about logic, that are always true, are known as tautologies.

For example, it is a theorem that “if a vehicle is a fire truck, then it has big tires
and has a siren.” (Yes, I’m sure you can conjure up a counterexample, but play along
with me anyway.) The contrapositive is “if a vehicle does not have big tires or does not
have a siren, then it is not a fire truck.” Notice how the “and” became an “or” when we
negated the conclusion of the original theorem.

It will frequently happen that it is easier to construct a proof of the contrapositive
than of the original implication. If you are having difficulty formulating a proof of some
implication, see if the contrapositive is easier for you. The trick is to construct the
negation of complicated statements accurately. More on that later.
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Proof Technique CV
Converses

The converse of the implication P ⇒ Q is the implication Q⇒ P . There is no guarantee
that the truth of these two statements are related. In particular, if an implication has been
proven to be a theorem, then do not try to use its converse too, as if it were a theorem.
Sometimes the converse is true (and we have an equivalence, see Technique E [686]). But
more likely the converse is false, especially if it wasn’t included in the statement of the
original theorem.

For example, we have the theorem, “if a vehicle is a fire truck, then it is has big tires
and has a siren.” The converse is false. The statement that “if a vehicle has big tires
and a siren, then it is a fire truck” is false. A police vehicle for use on a sandy public
beach would have big tires and a siren, yet is not equipped to fight fires.

We bring this up now, because Theorem CSRN [56] has a tempting converse. Does
this theorem say that if r < n, then the system is consistent? Definitely not, as
Archetype E [721] has r = 3 < 4 = n, yet is inconsistent. This example is then said to
be a counterexample to the converse. Whenever you think a theorem that is an impli-
cation might actually be an equivalence, it is good to hunt around for a counterexample
that shows the converse to be false (the archetypes, Appendix A [699], can be a good
hunting ground).
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Proof Technique CD
Contradiction

Another proof technique is known as “proof by contradiction” and it can be a powerful
(and satisfying) approach. Simply put, suppose you wish to prove the implication, “If A,
then B.” As usual, we assume that A is true, but we also make the additional assumption
that B is false. If our original implication is true, then these twin assumptions should
lead us to a logical inconsistency. In practice we assume the negation of B to be true (see
Technique N [687]). So we argue from the assumptions A and not(B) looking for some
obviously false conclusion such as 1 = 6, or a set is simultaneously empty and nonempty,
or a matrix is both nonsingular and singular.

You should be careful about formulating proofs that look like proofs by contradiction,
but really aren’t. This happens when you assume A and not(B) and proceed to give a
“normal” and direct proof that B is true by only using the assumption that A is true.
Your last step is to then claim that B is true and you then appeal to the assumption that
not(B) is true, thus getting the desired contradiction. Instead, you could have avoided
the overhead of a proof by contradiction and just run with the direct proof. This stylistic
flaw is known, quite graphically, as “setting up the strawman to knock him down.”

Here is a simple example of a proof by contradiction. There are direct proofs that are
just about as easy, but this will demonstrate the point, while narrowly avoiding knocking
down the straw man.

Theorem: If a and b are odd integers, then their product, ab, is odd.

Proof: To begin a proof by contradiction, assume the hypothesis, that a and b are
odd. Also assume the negation of the conclusion, in this case, that ab is even. Then
there are integers, j, k, ` so that a = 2j + 1, b = 2k + 1, ab = 2`. Then

0 = ab− ab

= (2j + 1)(2k + 1)− (2`)

= 4jk + 2j + 2k − 2` + 1

= 2 (2jk + j + k − `) + 1

Notice how we used both our hypothesis and the negation of the conclusion in the second
line. Now divide the integer on each end of this string of equalities by 2. On the left
we get a remainder of 0, while on the right we see that the remainder will be 1. Both
remainders cannot be correct, so this is our desired contradiction. Thus, the conclusion
(that ab is odd) is true.

Again, we do not offer this example as the best proof of this fact about even and odd
numbers, but rather it is a simple illustration of a proof by contradiction. You can find
examples of proofs by contradiction in Theorem NSMUS [83], Theorem NPNT [255], The-
orem RREFU [122], Theorem TTMI [242], Theorem GSPCV [199], Theorem ELIS [401],
Theorem EDYES [405], Theorem EMHE [449], Theorem EDELI [471], and Theorem DMLE [494],
in addition to several examples and solutions to exercises.

Version 0.85



Proof Technique PT.U Uniqueness 691

Proof Technique U
Uniqueness

A theorem will sometimes claim that some object, having some desirable property, is
unique. In other words, there should be only one such object. To prove this, a standard
technique is to assume there are two such objects and proceed to analyze the conse-
quences. The end result may be a contradiction (Technique CD [690]), or the conclusion
that the two allegedly different objects really are equal.
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Proof Technique ME
Multiple Equivalences

A very specialized form of a theorem begins with the statement “The following are
equivalent. . . ,” which is then followed by a list of statements. Informally, this lead-in
sometimes gets abbreviated by “TFAE.” This formulation means that any two of the
statements on the list can be connected with an “if and only if” to form a theorem.
So if the list has n statements then, there are n(n−1)

2
possible equivalences that can be

constructed (and are claimed to be true).
Suppose a theorem of this form has statements denoted as A, B, C,. . .Z. To prove

the entire theorem, we can prove A ⇒ B, B ⇒ C, C ⇒ D,. . . , Y ⇒ Z and finally,
Z ⇒ A. This circular chain of n equivalences would allow us, logically, if not practically,
to form any one of the n(n−1)

2
possible equivalences by chasing the equivalences around

the circle as far as required.
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Proof Technique PI
Proving Identities

Many theorems have conclusions that say two objects are equal. Perhaps one object is
hard to compute or understand, while the other is easy to compute or understand. This
would make for a pleasing theorem. Whether the result is pleasing or not, we take the
same approach to formulate a proof. Sometimes we need to employ specialized notions
of equality, such as Definition SE [678] or Definition CVE [92], but in other cases we can
string together a list of equalities.

The wrong way to prove an identity is to begin by writing it down and then beating
on it until it reduces to an obvious identity. The first flaw is that you would be writing
down the statement you wish to prove, as if you already believed it to be true. But more
dangerous is the possibility that some of your maneuvers are not reversible. Here’s an
example. Let’s prove that 3 = −3.

3 = −3 (This is a bad start)

32 = (−3)2 Square both sides

9 = 9

0 = 0 Subtract 9 from both sides

So because 0 = 0 is a true statement, does it follow that 3 = −3 is a true statement?
Nope. Of course, we didn’t really expect a legitimate proof of 3 = −3, but this attempt
should illustrate the dangers of this (incorrect) approach.

What you have just seen in the proof of Theorem VSPCV [96], and what you will see
consistently throughout this text, is proofs of the following form. To prove that A = D
we write

A = B Theorem, Definition or Hypothesis justifying A = B

= C Theorem, Definition or Hypothesis justifying B = C

= D Theorem, Definition or Hypothesis justifying C = D

In your scratch work exploring possible approaches to proving a theorem you may massage
a variety of expressions, sometimes making connections to various bits and pieces, while
some parts get abandonded. Once you see a line of attack, rewrite your proof carefully
mimicking this style.
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Proof Technique DC
Decompositions

Much of your mathematical upbringing, especially once you began a study of algebra,
revolved around simplifying expressions — combining like terms, obtaining common de-
nominators so as to add fractions, factoring in order to solve polynomial equations.
However, as often as not, we will do the opposite. Many theorems and techniques will
revolve around taking some object and “decomposing” it into some combination of other
objects, ostensibly in a more complicated fashion. When we say something can “be
written as” something else, we mean that the one object can be decomposed into some
combination of other objects. This may seem unnatural at first, but results of this type
will give us insight into the structure of the original object by exposing its inner workings.
An appropriate analogy might be stripping the wallboards away from the interior of a
building to expose the structural members supporting the whole building.
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Proof Technique I
Induction

“Induction” or “mathematical induction” is a framework for proving statements that
are indexed by integers. In other words, suppose you have a statement to prove that is
really multiple statements, one for n = 1, another for n = 2, a third for n = 3, and so
on. If there is enough similarity between the statements, then you can use a script (the
framework) to prove them all at once.

For example, consider the theorem

Theorem 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
for n ≥ 1.

This is shorthand for the many statements 1 = 1(1+1)
2

, 1+2 = 2(2+1)
2

, 1+2+3 = 3(3+1)
2

,

1 + 2 + 3 + 4 = 4(4+1)
2

, and so on. Forever. You can do the calculations in each of these
statements and verify that all four are true. We might not be surprised to learn that the
fifth statement is true as well (go ahead and check). However, do we think the theorem
is true for n = 872? Or n = 1, 234, 529?

To see that these questions are not so ridiculous, consider the following example
from Rotman’s Journey into Mathematics. The statement “n2 − n + 41 is prime” is
true for integers 1 ≤ n ≤ 40 (check a few). However, when we check n = 41 we find
412 − 41 + 41 = 412, which is not prime.

So how do we prove infinitely many statements all at once? More formally, lets denote
our statements as P (n). Then, if we can prove the two assertions

1. P (1) is true.

2. If P (k) is true, then P (k + 1) is true.

then it follows that P (n) is true for all n ≥ 1. To understand this, I liken the process
to climbing an infinitely long ladder with equally spaced rungs. Confronted with such a
ladder, suppose I tell you that you are able to step up onto the first rung, and if you are
on any particular rung, then you are capable of stepping up to the next rung. It follows
that you can climb the ladder as far up as you wish. The first formal assertion above is
akin to stepping onto the first rung, and the second formal assertion is akin to assuming
that if you are on any one rung then you can always reach the next rung.

In practice, establishing that P (1) is true is called the “base case” and in most cases
is straightforward. Establishing that P (k) ⇒ P (k + 1) is referred to as the “induction
step,” or in this book (and elsewhere) we will typically refer to the assumption of P (k)
as the “induction hypothesis.” This is perhaps the most mysterious part of a proof
by induction, since it looks like you are assuming (P (k)) what you are trying to prove
(P (n)). Sometimes it is even worse, since as you get more comfortable with induction,
we often don’t bother to use a different letter (k) for the index (n) in the induction step.
Notice that the second formal assertion never says that P (k) is true, it simply says that
if P (k) were true, what might logically follow. We can establish statements like “If I
lived on the moon, then I could pole-vault over a bar 12 meters high.” This may be a
true statement, but it does not say we live on the moon, and indeed we may never live
there.

Version 0.85



696 Section PT Proof Techniques

Enough generalities. Lets work an example and prove the theorem above about sums

of integers. Formally, our statement is P (n) : 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

Proof: Base Case. P (1) is the statement 1 = 1(1+1)
2

, which we see simplifies to the
true statement 1 = 1.

Induction Step: We will assume P (k) is true, and will try to prove P (k + 1). Given
what we want to accomplish, it is natural to begin by examining the sum of the first
k + 1 integers.

1 + 2 + 3 + · · ·+ (k + 1)

= (1 + 2 + 3 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1) Induction Hypothesis

=
k2 + k

2
=

k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
=

(k + 1)((k + 1) + 1)

2

We then recognize the two ends of this chain of equalities as P (k+1). So, by mathematical
induction, the theorem is true for all n.

How do you recognize when to use induction? The first clue is a statement that is
really many statements, one for each integer. The second clue would be that you begin
a more standard proof and you find yourself using words like “and so on” (as above!) or
lots of ellipses (dots) to establish patterns that you are convinced continue on and on
forever. However, there are many minor instances where induction might be warranted
but we don’t bother.

Induction is important enough, and used often enough, that it appers in various vari-
ations. The base case sometimes begins with n = 0, or perhaps an integer greater than n.
Some formulate the induction step as P (k− 1)⇒ P (k). There is also a “strong form” of
induction where we assume all of P (1), P (2), P (3), . . .P (k) as a hypothesis for showing
the conclusion P (k + 1).
You can find examples of induction in the proofs of Theorem GSPCV [199], Theo-
rem DER [419], Theorem DT [421], Theorem DIM [434], Theorem EOMP [473], and
Theorem DCP [477].
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Proof Technique P
Practice

Here is a technique used by many practicing mathematicians when they are teaching
themselves new mathematics. As they read a textbook, monograph or research article,
they attempt to prove each new theorem themselves, before reading the proof. Often the
proofs can be very difficult, so it is wise not to spend too much time on each. Maybe
limit your losses and try each proof for 10 or 15 minutes. Even if the proof is not found,
it is time well-spent. You become more familiar with the definitions involved, and the
hypothesis and conclusion of the theorem. When you do work through the proof, it might
make more sense, and you will gain added insight about just how to construct a proof.
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Proof Technique LC
Lemmas and Corollaries

Theorems often go by different titles. Two of the most popular being “lemma” and
“corollary.” Before we describe the fine distinctions, be aware that lemmas, corollaries,
propositions, claims and facts are all just theorems. And every theorem can be rephrased
as an “if-then” statement, or perhaps a pair of “if-then” statements expressed as an
equivalence (Technique E [686]).

A lemma is a theorem that is not too interesting in its own right, but is important
for proving other theorems. It might be a generalization or abstraction of a key step
of several different proofs. For this reason you often hear the phrase “technical lemma”
though some might argue that the adjective “technical” is redundant.

A corollary is a theorem that follows very easily from another theorem. For this
reason, corollaries frequently do not have proofs. You are expected to easily and quickly
see how a previous theorem implies the corollary.

A proposition or fact is really just a codeword for a theorem. A claim might be
similar, but some authors like to use claims within a proof to organize key steps. In a
similar manner, some long proofs are organized as a series of lemmas.

In order to not confuse the novice, we have just called all our theorems theorems. It is
also an organizational convenience. With only theorems and definitions, the theoretical
backbone of the course is laid bare in the two lists of Definitions [vii] and Theorems [ix].
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The American Heritage Dictionary of the English Language (Third Edition) gives two
definitions of the word “archetype”: 1. An original model or type after which other similar
things are patterned; a prototype; and 2. An ideal example of a type; quintessence.

Either use might apply here. Our archetypes are typical examples of systems of
equations, matrices and linear transformations. They have been designed to demonstrate
the range of possibilities, allowing you to compare and contrast them. Several are of a
size and complexity that is usually not presented in a textbook, but should do a better
job of being “typical.”

We have made frequent reference to many of these throughout the text, such as the
frequent comparisons between Archetype A [703] and Archetype B [708]. Some we have
left for you to investigate, such as Archetype J [744], which parallels Archetype I [739].

How should you use the archetypes? First, consult the description of each one as it is
mentioned in the text. See how other facts about the example might illuminate whatever
property or construction is being described in the example. Second, each property has
a short description that usually includes references to the relevant theorems. Perform
the computations and understand the connections to the listed theorems. Third, each
property has a small checkbox in front of it. Use the archetypes like a workbook and
chart your progress by “checking-off” those properties that you understand.

The next page has a chart that summarizes some (but not all) of the properties
described for each archetype. Notice that while there are several types of objects, there
are fundamental connections between them. That some lines of the table do double-duty
is meant to convey some of these connections. Consult this table when you wish to
quickly find an example of a certain phenomenon.
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Archetype A

Summary Linear system of three equations, three unknowns. Singular coefficent ma-
trix with dimension 1 null space. Integer eigenvalues and a degenerate eigenspace for
coefficient matrix.

A system of linear equations (Definition SLE [13]):

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 2, x2 = 3, x3 = 1

x1 = 3, x2 = 2, x3 = 0

Augmented matrix of the linear system of equations (Definition AM [30]):1 −1 2 1
2 1 1 8
1 1 0 5



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 1 3

0 1 −1 2
0 0 0 0



Analysis of the augmented matrix (Notation RREFA [51]):

r = 2 D = {1, 2} F = {3, 4}

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
F for the larger examples.x1

x2

x3

 =

3
2
0

+ x3

−1
1
1



Given a system of equations we can always build a new, related, homogeneous system
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(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
various properties of the original system.

x1 − x2 + 2x3 = 0

2x1 + x2 + x3 = 0

x1 + x2 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0, x3 = 0

x1 = −1, x2 = 1, x3 = 1

x1 = −5, x2 = 5, x3 = 5

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros: 1 0 1 0

0 1 −1 0
0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 2 D = {1, 2} F = {3, 4}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations.1 −1 2

2 1 1
1 1 0



Matrix brought to reduced row-echelon form: 1 0 1

0 1 −1
0 0 0
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Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 2 D = {1, 2} F = {3}

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NSRRI [81]) at the
same time, examine the size of the set F above.Notice that this property does not apply
to matrices that are not square.

Singular.

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.〈

−1
1
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])〈

1
2
1

 ,

−1
1
1


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[
1 −2 3

]
〈

−3
0
1

 ,

2
1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
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reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.〈

 1
0
−1

3

 ,

0
1
2
3


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])〈

1
0
1

 ,

 0
1
−1


〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [240],
Theorem NSI [257])

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 3 Rank: 2 Nullity: 1

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [436]). (Product
of all eigenvalues?)

Determinant = 0

Eigenvalues, and bases for eigenspaces. (Definition EEM [445],Definition EM [454])

λ = 0 EA (0) =

〈
−1

1
1


〉

λ = 2 EA (2) =

〈
1

5
3


〉
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Geometric and algebraic multiplicities. (Definition GME [456]Definition AME [456])

γA (0) = 1 αA (0) = 2

γA (2) = 1 αA (2) = 1

Diagonalizable? (Definition DZM [491])

No, γA (0) 6= αB (0), Theorem DMLE [494].

Version 0.85



708 Appendix A Archetypes

Archetype B

Summary System with three equations, three unknowns. Nonsingular coefficent ma-
trix. Distinct integer eigenvalues for coefficient matrix.

A system of linear equations (Definition SLE [13]):

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −3, x2 = 5, x3 = 2

Augmented matrix of the linear system of equations (Definition AM [30]):−7 −6 −12 −33
5 5 7 24
1 0 4 5



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 0 −3

0 1 0 5

0 0 1 2



Analysis of the augmented matrix (Notation RREFA [51]):

r = 3 D = {1, 2, 3} F = {4}

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
F for the larger examples.x1

x2

x3

 =

−3
5
2



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
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various properties of the original system.

−11x1 + 2x2 − 14x3 = 0

23x1 − 6x2 + 33x3 = 0

14x1 − 2x2 + 17x3 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0, x3 = 0

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros: 1 0 0 0

0 1 0 0

0 0 1 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 3 D = {1, 2, 3} F = {4}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations.−7 −6 −12

5 5 7
1 0 4



Matrix brought to reduced row-echelon form: 1 0 0

0 1 0

0 0 1



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 3 D = {1, 2, 3} F = { }
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Matrix (coefficient matrix) is nonsingular or singular? (Theorem NSRRI [81]) at the
same time, examine the size of the set F above.Notice that this property does not apply
to matrices that are not square.

Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])〈

−7
5
1

 ,

−6
5
0

 ,

−12
7
4


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[]

〈
1

0
0

 ,

0
1
0

 ,

0
0
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.
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〈
1

0
0

 ,

0
1
0

 ,

0
0
1


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])〈

1
0
0

 ,

0
1
0

 ,

0
0
1


〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [240],
Theorem NSI [257])−10 −12 −9

13
2

8 11
2

5
2

3 5
2



Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 3 Rank: 3 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [436]). (Product
of all eigenvalues?)

Determinant = −2

Eigenvalues, and bases for eigenspaces. (Definition EEM [445],Definition EM [454])

λ = −1 EB (−1) =

〈
−5

3
1


〉

λ = 1 EB (1) =

〈
−3

2
1


〉

λ = 2 EB (2) =

〈
−2

1
1


〉
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Geometric and algebraic multiplicities. (Definition GME [456]Definition AME [456])

γB (−1) = 1 αB (−1) = 1

γB (1) = 1 αB (1) = 1

γB (2) = 1 αB (2) = 1

Diagonalizable? (Definition DZM [491])

Yes, distinct eigenvalues, Theorem DED [496].

The diagonalization. (Theorem DC [491])−1 −1 −1
2 3 1
−1 −2 1

−7 −6 −12
5 5 7
1 0 4

−5 −3 −2
3 2 1
1 1 1


=

−1 0 0
0 1 0
0 0 2
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Archetype C

Summary System with three equations, four variables. Consistent. Null space of
coefficient matrix has dimension 1.

A system of linear equations (Definition SLE [13]):

2x1 − 3x2 + x3 − 6x4 = −7

4x1 + x2 + 2x3 + 9x4 = −7

3x1 + x2 + x3 + 8x4 = −8

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −7, x2 = −2, x3 = 7, x4 = 1

x1 = −1, x2 = −7, x3 = 4, x4 = −2

Augmented matrix of the linear system of equations (Definition AM [30]):2 −3 1 −6 −7
4 1 2 9 −7
3 1 1 8 −8



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 0 2 −5

0 1 0 3 1

0 0 1 −1 6



Analysis of the augmented matrix (Notation RREFA [51]):

r = 3 D = {1, 2, 3} F = {4, 5}

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
F for the larger examples.

x1

x2

x3

x4

 =


−5
1
6
0

+ x4


−2
−3
1
1



Given a system of equations we can always build a new, related, homogeneous system
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(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
various properties of the original system.

2x1 − 3x2 + x3 − 6x4 = 0

4x1 + x2 + 2x3 + 9x4 = 0

3x1 + x2 + x3 + 8x4 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = −2, x2 = −3, x3 = 1, x4 = 1

x1 = −4, x2 = −6, x3 = 2, x4 = 2

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros: 1 0 0 2 0

0 1 0 3 0

0 0 1 −1 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 3 D = {1, 2, 3} F = {4, 5}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations.2 −3 1 −6

4 1 2 9
3 1 1 8



Matrix brought to reduced row-echelon form: 1 0 0 2

0 1 0 3

0 0 1 −1
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Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 3 D = {1, 2, 3} F = {4}

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈

−2
−3
1
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])〈

2
4
3

 ,

−3
1
1

 ,

1
2
1


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[ ]

〈
1

0
0

 ,

0
1
0

 ,

0
0
1


〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.
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〈
1

0
0

 ,

0
1
0

 ,

0
0
1


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])

〈


1
0
0
2

 ,


0
1
0
3

 ,


0
0
1
−1



〉

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 4 Rank: 3 Nullity: 1
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Archetype D

Summary System with three equations, four variables. Consistent. Null space of
coefficient matrix has dimension 2. Coefficient matrix identical to that of Archetype E,
vector of constants is different.

A system of linear equations (Definition SLE [13]):

2x1 + x2 + 7x3 − 7x4 = 8

−3x1 + 4x2 − 5x3 − 6x4 = −12

x1 + x2 + 4x3 − 5x4 = 4

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 0, x2 = 1, x3 = 2, x4 = 1

x1 = 4, x2 = 0, x3 = 0, x4 = 0

x1 = 7, x2 = 8, x3 = 1, x4 = 3

Augmented matrix of the linear system of equations (Definition AM [30]): 2 1 7 −7 8
−3 4 −5 −6 −12
1 1 4 −5 4



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 3 −2 4

0 1 1 −3 0
0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [51]):

r = 2 D = {1, 2} F = {3, 4, 5}

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
F for the larger examples.
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x1

x2

x3

x4

 =


4
0
0
0

+ x3


−3
−1
1
0

+ x4


2
3
0
1



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
various properties of the original system.

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = −3, x2 = −1, x3 = 1, x4 = 0

x1 = 2, x2 = 3, x3 = 0, x4 = 1

x1 = −1, x2 = 2, x3 = 1, x4 = 1

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros: 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 2 D = {1, 2} F = {3, 4, 5}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations. 2 1 7 −7
−3 4 −5 −6
1 1 4 −5
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Matrix brought to reduced row-echelon form: 1 0 3 −2

0 1 1 −3
0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 2 D = {1, 2} F = {3, 4}

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈

−3
−1
1
0

 ,


2
3
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])〈

 2
−3
1

 ,

1
4
1


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[
1 1

7
−11

7

]
〈

11
7

0
1

 ,

−1
7

1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
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reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.〈

 1
0
7
11

 ,

 0
1
1
11


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])

〈


1
0
3
−2

 ,


0
1
1
−3



〉

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 4 Rank: 2 Nullity: 2
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Archetype E

Summary System with three equations, four variables. Inconsistent. Null space of
coefficient matrix has dimension 2. Coefficient matrix identical to that of Archetype D,
constant vector is different.

A system of linear equations (Definition SLE [13]):

2x1 + x2 + 7x3 − 7x4 = 2

−3x1 + 4x2 − 5x3 − 6x4 = 3

x1 + x2 + 4x3 − 5x4 = 2

Some solutions to the system of linear equations (not necessarily exhaustive):

None. (Why?)

Augmented matrix of the linear system of equations (Definition AM [30]): 2 1 7 −7 2
−3 4 −5 −6 3
1 1 4 −5 2



Matrix in reduced row-echelon form, row-equivalent to augmented matrix: 1 0 3 −2 0

0 1 1 −3 0

0 0 0 0 1



Analysis of the augmented matrix (Notation RREFA [51]):

r = 3 D = {1, 2, 5} F = {3, 4}

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
F for the larger examples.

Inconsistent system, no solutions exist.

Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
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various properties of the original system.

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

x1 = 4, x2 = 13, x3 = 2, x4 = 5

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros: 1 0 3 −2 0

0 1 1 −3 0
0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 2 D = {1, 2} F = {3, 4, 5}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations. 2 1 7 −7
−3 4 −5 −6
1 1 4 −5



Matrix brought to reduced row-echelon form: 1 0 3 −2

0 1 1 −3
0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 2 D = {1, 2} F = {3, 4}
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This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈

−3
−1
1
0

 ,


2
3
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])〈

 2
−3
1

 ,

1
4
1


〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[
1 1

7
−11

7

]
〈

11
7

0
1

 ,

−1
7

1
0


〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.〈

 1
0
7
11

 ,

 0
1
1
11


〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
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obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])

〈


1
0
3
−2

 ,


0
1
1
−3



〉

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 4 Rank: 2 Nullity: 2
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Archetype F

Summary System with four equations, four variables. Nonsingular coefficient matrix.
Integer eigenvalues, one has “high” multiplicity.

A system of linear equations (Definition SLE [13]):

33x1 − 16x2 + 10x3 − 2x4 = −27

99x1 − 47x2 + 27x3 − 7x4 = −77

78x1 − 36x2 + 17x3 − 6x4 = −52

−9x1 + 2x2 + 3x3 + 4x4 = 5

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 1, x2 = 2, x3 = −2, x4 = 4

Augmented matrix of the linear system of equations (Definition AM [30]):
33 −16 10 −2 −27
99 −47 27 −7 −77
78 −36 17 −6 −52
−9 2 3 4 5



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 0 0 0 1

0 1 0 0 2

0 0 1 0 −2

0 0 0 1 4



Analysis of the augmented matrix (Notation RREFA [51]):

r = 4 D = {1, 2, 3, 4} F = {5}

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
F for the larger examples.
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x1

x2

x3

x4

 =


1
2
−2
4



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
various properties of the original system.

33x1 − 16x2 + 10x3 − 2x4 = 0

99x1 − 47x2 + 27x3 − 7x4 = 0

78x1 − 36x2 + 17x3 − 6x4 = 0

−9x1 + 2x2 + 3x3 + 4x4 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros:

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 4 D = {1, 2, 3, 4} F = {5}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations.

33 −16 10 −2
99 −47 27 −7
78 −36 17 −6
−9 2 3 4
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Matrix brought to reduced row-echelon form:
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 4 D = {1, 2, 3, 4} F = { }

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NSRRI [81]) at the
same time, examine the size of the set F above.Notice that this property does not apply
to matrices that are not square.

Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])

〈


33
99
78
−9

 ,


−16
−47
−36
2

 ,


10
27
17
3

 ,


−2
−7
−6
4



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[]
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〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.

〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])

〈


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [240],
Theorem NSI [257])
−
(

86
3

)
38
3
−
(

11
3

)
7
3

−
(

129
2

)
86
3
−
(

17
2

)
31
6

−13 6 −2 1
−
(

45
2

)
29
3
−
(

5
2

)
13
6



Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 4 Rank: 4 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [436]). (Product
of all eigenvalues?)
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Determinant = −18

Eigenvalues, and bases for eigenspaces. (Definition EEM [445],Definition EM [454])

λ = −1 EF (−1) =

〈


1
2
0
1



〉

λ = 2 EF (2) =

〈


2
5
2
1



〉

λ = 3 EF (3) =

〈


1
1
0
7

 ,


17
45
21
0



〉

Geometric and algebraic multiplicities. (Definition GME [456]Definition AME [456])

γF (−1) = 1 αF (−1) = 1

γF (2) = 1 αF (2) = 1

γF (3) = 2 αF (3) = 2

Diagonalizable? (Definition DZM [491])

Yes, large eigenspaces, Theorem DMLE [494].

The diagonalization. (Theorem DC [491])
12 −5 1 −1
−39 18 −7 3

27
7
−13

7
6
7
−1

7
26
7
−12

7
5
7
−2

7




33 −16 10 −2
99 −47 27 −7
78 −36 17 −6
−9 2 3 4




1 2 1 17
2 5 1 45
0 2 0 21
1 1 7 0



=


−1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3
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Archetype G

Summary System with five equations, two variables. Consistent. Null space of co-
efficient matrix has dimension 0. Coefficient matrix identical to that of Archetype H,
constant vector is different.

A system of linear equations (Definition SLE [13]):

2x1 + 3x2 = 6

−x1 + 4x2 = −14

3x1 + 10x2 = −2

3x1 − x2 = 20

6x1 + 9x2 = 18

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 6, x2 = −2

Augmented matrix of the linear system of equations (Definition AM [30]):
2 3 6
−1 4 −14
3 10 −2
3 −1 20
6 9 18



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 0 6

0 1 −2
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix (Notation RREFA [51]):

r = 2 D = {1, 2} F = {3}

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
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F for the larger examples.[
x1

x2

]
=

[
6
−2

]

Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
various properties of the original system.

2x1 + 3x2 = 0

−x1 + 4x2 = 0

3x1 + 10x2 = 0

3x1 − x2 = 0

6x1 + 9x2 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros:

1 0 0

0 1 0
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 2 D = {1, 2} F = {3}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations.

2 3
−1 4
3 10
3 −1
6 9
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Matrix brought to reduced row-echelon form:


1 0

0 1
0 0
0 0
0 0



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 2 D = {1, 2} F = { }

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])

〈


2
−1
3
3
6

 ,


3
4
10
−1
9



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =

1 0 0 0 −1
3

0 1 0 1− 1
3

0 0 1 1 −1
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〈


1
3
1
3

1
0
1

 ,


0
−1
−1
1
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.

〈


1
0
2
1
3

 ,


0
1
1
−1
0



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])〈{[

1
0

]
,

[
0
1

]}〉

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 2 Rank: 2 Nullity: 0
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Archetype H

Summary System with five equations, two variables. Inconsistent, overdetermined.
Null space of coefficient matrix has dimension 0. Coefficient matrix identical to that of
Archetype G, constant vector is different.

A system of linear equations (Definition SLE [13]):

2x1 + 3x2 = 5

−x1 + 4x2 = 6

3x1 + 10x2 = 2

3x1 − x2 = −1

6x1 + 9x2 = 3

Some solutions to the system of linear equations (not necessarily exhaustive):

None. (Why?)

Augmented matrix of the linear system of equations (Definition AM [30]):
2 3 5
−1 4 6
3 10 2
3 −1 −1
6 9 3



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 0 0

0 1 0

0 0 1
0 0 0
0 0 0



Analysis of the augmented matrix (Notation RREFA [51]):

r = 3 D = {1, 2, 3} F = { }

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
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F for the larger examples.

Inconsistent system, no solutions exist.

Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
various properties of the original system.

2x1 + 3x2 = 0

−x1 + 4x2 = 0

3x1 + 10x2 = 0

3x1 − x2 = 0

6x1 + 9x2 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros:

1 0 0

0 1 0
0 0 0
0 0 0
0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 2 D = {1, 2} F = {3}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations.

2 3
−1 4
3 10
3 −1
6 9
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Matrix brought to reduced row-echelon form:


1 0

0 1
0 0
0 0
0 0



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 2 D = {1, 2} F = { }

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])

〈


2
−1
3
3
6

 ,


3
4
10
−1
9



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[]
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〈


1
3
1
3

1
0
1

 ,


0
−1
−1
1
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.

〈


1
0
2
1
3

 ,


0
1
1
−1
0



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =

1 0 0 0 −1
3

0 1 0 1− 1
3

0 0 1 1 −1


〈


1
3
1
3

1
0
1

 ,


0
−1
−1
1
0



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])〈{[

1
0

]
,

[
0
1

]}〉

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 2 Rank: 2 Nullity: 0
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Archetype I

Summary System with four equations, seven variables. Consistent. Null space of
coefficient matrix has dimension 4.

A system of linear equations (Definition SLE [13]):

x1 + 4x2 − x4 + 7x6 − 9x7 = 3

2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 9

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 1

−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 4

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = −25, x2 = 4, x3 = 22, x4 = 29, x5 = 1, x6 = 2, x7 = −3

x1 = −7, x2 = 5, x3 = 7, x4 = 15, x5 = −4, x6 = 2, x7 = 1

x1 = 4, x2 = 0, x3 = 2, x4 = 1, x5 = 0, x6 = 0, x7 = 0

Augmented matrix of the linear system of equations (Definition AM [30]):
1 4 0 −1 0 7 −9 3
2 8 −1 3 9 −13 7 9
0 0 2 −3 −4 12 −8 1
−1 −4 2 4 8 −31 37 4



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
1 4 0 0 2 1 −3 4

0 0 1 0 1 −3 5 2

0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [51]):

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7, 8}

Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
F for the larger examples.
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x1

x2

x3

x4

x5

x6

x7


=



4
0
2
1
0
0
0


+ x2



−4
1
0
0
0
0
0


+ x5



−2
0
−1
−2
1
0
0


+ x6



−1
0
3
6
0
1
0


+ x7



3
0
−5
−6
0
0
1



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
various properties of the original system.

x1 + 4x2 − x4 + 7x6 − 9x7 = 0

2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 0

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 0

−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0

x1 = 3, x2 = 0, x3 = −5, x4 = −6, x5 = 0, x6 = 0, x7 = 1

x1 = −1, x2 = 0, x3 = 3, x4 = 6, x5 = 0, x6 = 1, x7 = 0

x1 = −2, x2 = 0, x3 = −1, x4 = −2, x5 = 1, x6 = 0, x7 = 0

x1 = −4, x2 = 1, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0

x1 = −4, x2 = 1, x3 = −3, x4 = −2, x5 = 1, x6 = 1, x7 = 1

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
zeros:

1 4 0 0 2 1 −3 0

0 0 1 0 1 −3 5 0

0 0 0 1 2 −6 6 0
0 0 0 0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7, 8}
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Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations.

1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37



Matrix brought to reduced row-echelon form:


1 4 0 0 2 1 −3

0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 3 D = {1, 3, 4} F = {2, 5, 6, 7}

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈




−4
1
0
0
0
0
0


,



−2
0
−1
−2
1
0
0


,



−1
0
3
6
0
1
0


,



3
0
−5
−6
0
0
1





〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])
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〈


1
2
0
−1

 ,


0
−1
2
2

 ,


−1
3
−3
4



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[
1 −12

31
−13

31
7
31

]
〈


− 7

31

0
0
1

 ,


13
31

0
1
0

 ,


12
31

1
0
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.

〈


1
0
0
−31

7

 ,


0
1
0
12
7

 ,


0
0
1
13
7



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])

〈




1
4
0
0
2
1
−3


,



0
0
1
0
1
−3
5


,



0
0
0
1
2
−6
6





〉

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 7 Rank: 3 Nullity: 4
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Archetype J

Summary System with six equations, nine variables. Consistent. Null space of coeffi-
cient matrix has dimension 5.

A system of linear equations (Definition SLE [13]):

x1 + 2x2 − 2x3 + 9x4 + 3x5 − 5x6 − 2x7 + x8 + 27x9 = −5

2x1 + 4x2 + 3x3 + 4x4 − x5 + 4x6 + 10x7 + 2x8 − 23x9 = 18

x1 + 2x2 + x3 + 3x4 + x5 + x6 + 5x7 + 2x8 − 7x9 = 6

2x1 + 4x2 + 3x3 + 4x4 − 7x5 + 2x6 + 4x7 − 11x9 = 20

x1 + 2x2 + 5x4 + 2x5 − 4x6 + 3x7 + 8x8 + 13x9 = −4

−3x1 − 6x2 − x3 − 13x4 + 2x5 − 5x6 − 4x7 + 13x8 + 10x9 = −29

Some solutions to the system of linear equations (not necessarily exhaustive):

x1 = 6, x2 = 0, x3 = −1, x4 = 0, x5 = −1, x6 = 2, x7 = 0, x8 = 0, x9 = 0

x1 = 4, x2 = 1, x3 = −1, x4 = 0, x5 = −1, x6 = 2, x7 = 0, x8 = 0, x9 = 0

x1 = −17, x2 = 7, x3 = 3, x4 = 2, x5 = −1, x6 = 14, x7 = −1, x8 = 3, x9 = 2

x1 = −11, x2 = −6, x3 = 1, x4 = 5, x5 = −4, x6 = 7, x7 = 3, x8 = 1, x9 = 1

Augmented matrix of the linear system of equations (Definition AM [30]):
1 2 −2 9 3 −5 −2 1 27 −5
2 4 3 4 −1 4 10 2 −23 18
1 2 1 3 1 1 5 2 −7 6
2 4 3 4 −7 2 4 0 −11 20
1 2 0 5 2 −4 3 8 13 −4
−3 −6 −1 −13 2 −5 −4 13 10 −29



Matrix in reduced row-echelon form, row-equivalent to augmented matrix:

1 2 0 5 0 0 1 −2 3 6

0 0 1 −2 0 0 3 5 −6 −1

0 0 0 0 1 0 1 1 −1 −1

0 0 0 0 0 1 0 −2 −3 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Analysis of the augmented matrix (Notation RREFA [51]):

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9, 10}
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Vector form of the solution set to the system of equations (Theorem VFSLS [113]).
Notice the relationship between the free variables and the set F above. Also, notice the
pattern of 0’s and 1’s in the entries of the vectors corresponding to elements of the set
F for the larger examples.

x1

x2

x3

x4

x5

x6

x7

x8

x9


=



6
0
−1
0
−1
2
0
0
0


+ x2



−2
1
0
0
0
0
0
0
0


+ x4



−5
0
2
1
0
0
0
0
0


+ x7



−1
0
−3
0
−1
0
1
0
0


+ x8



2
0
−5
0
−1
2
0
1
0


+ x9



−3
0
6
0
1
3
0
0
1



Given a system of equations we can always build a new, related, homogeneous system
(Definition HS [65]) by converting the constant terms to zeros and retaining the coeffi-
cients of the variables. Properties of this new system will have precise relationships with
various properties of the original system.

x1 + 2x2 − 2x3 + 9x4 + 3x5 − 5x6 − 2x7 + x8 + 27x9 = 0

2x1 + 4x2 + 3x3 + 4x4 − x5 + 4x6 + 10x7 + 2x8 − 23x9 = 0

x1 + 2x2 + x3 + 3x4 + x5 + x6 + 5x7 + 2x8 − 7x9 = 0

2x1 + 4x2 + 3x3 + 4x4 − 7x5 + 2x6 + 4x7 − 11x9 = 0

x1 + 2x2 + +5x4 + 2x5 − 4x6 + 3x7 + 8x8 + 13x9 = 0

−3x1 − 6x2 − x3 − 13x4 + 2x5 − 5x6 − 4x7 + 13x8 + 10x9 = 0

Some solutions to the associated homogenous system of linear equations (not neces-
sarily exhaustive):
x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0

x1 = −2, x2 = 1, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0

x1 = −23, x2 = 7, x3 = 4, x4 = 2, x5 = 0, x6 = 12, x7 = −1, x8 = 3, x9 = 2

x1 = −17, x2 = −6, x3 = 2, x4 = 5, x5 = −3, x6 = 5, x7 = 3, x8 = 1, x9 = 1

Form the augmented matrix of the homogenous linear system, and use row operations
to convert to reduced row-echelon form. Notice how the entries of the final column remain
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zeros:

1 2 0 5 0 0 1 −2 3 0

0 0 1 −2 0 0 3 5 −6 0

0 0 0 0 1 0 1 1 −1 0

0 0 0 0 0 1 0 −2 −3 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Analysis of the augmented matrix for the homogenous system (Notation RREFA [51]).
Notice the slight variation for the same analysis of the original system only when the orig-
inal system was consistent:

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9, 10}

Coefficient matrix of original system of equations, and of associated homogenous
system. This matrix will be the subject of further analysis, rather than the systems of
equations.

1 2 −2 9 3 −5 −2 1 27
2 4 3 4 −1 4 10 2 −23
1 2 1 3 1 1 5 2 −7
2 4 3 4 −7 2 4 0 −11
1 2 0 5 2 −4 3 8 13
−3 −6 −1 −13 2 −5 −4 13 10



Matrix brought to reduced row-echelon form:

1 2 0 5 0 0 1 −2 3

0 0 1 −2 0 0 3 5 −6

0 0 0 0 1 0 1 1 −1

0 0 0 0 0 1 0 −2 −3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 4 D = {1, 3, 5, 6} F = {2, 4, 7, 8, 9}

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
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(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈




−2
1
0
0
0
0
0
0
0


,



−5
0
2
1
0
0
0
0
0


,



−1
0
−3
0
−1
0
1
0
0


,



2
0
−5
0
−1
2
0
1
0


,



−3
0
6
0
1
3
0
0
1





〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])

〈



1
2
1
2
1
−3

 ,


−2
3
1
3
0
−1

 ,


3
−1
1
−7
2
2

 ,


−5
4
1
2
−4
−5




〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =

[
1 0 186

131
51
131

−188
131

77
131

0 1 −272
131
− 45

131
58
131

− 14
131

]

〈



− 77

131
14
131

0
0
0
1

 ,



188
131

− 58
131

0
0
1
0

 ,


− 51

131
45
131

0
1
0
0

 ,


−186

131
272
131

1
0
0
0




〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
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the column space.

〈



1
0
0
0
−1
−29

7

 ,


0
1
0
0
−11

2

−94
7

 ,


0
0
1
0
10
22

 ,


0
0
0
1
3
2

3




〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])

〈




1
2
0
5
0
0
1
−2
3


,



0
0
1
−2
0
0
3
5
−6


,



0
0
0
0
1
0
1
1
−1


,



0
0
0
0
0
1
0
−2
−3





〉

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 9 Rank: 4 Nullity: 5
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Archetype K

Summary Square matrix of size 5. Nonsingular. 3 distinct eigenvalues, 2 of multiplic-
ity 2.

A matrix:
10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20



Matrix brought to reduced row-echelon form:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 5 D = {1, 2, 3, 4, 5} F = { }

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NSRRI [81]) at the
same time, examine the size of the set F above.Notice that this property does not apply
to matrices that are not square.

Nonsingular.

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈{ }〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
set D above. (Theorem BCS [270])
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〈


10
12
−30
27
18

 ,


18
−2
−21
30
24

 ,


24
−6
−23
36
30

 ,


24
0
−30
37
30

 ,


−12
−18
39
−30
−20



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =
[]

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])

〈


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [240],
Theorem NSI [257])
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1 −

(
9
4

)
−
(

3
2

)
3 −6

21
2

43
4

21
2

9 −9
−15 −

(
21
2

)
−11 −15 39

2

9 15
4

9
2

10 −15
9
2

3
4

3
2

6 −
(

19
2

)



Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 5 Rank: 5 Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [436]). (Product
of all eigenvalues?)

Determinant = 16

Eigenvalues, and bases for eigenspaces. (Definition EEM [445],Definition EM [454])

λ = −2 EK (−2) =

〈


2
−2
1
0
1

 ,


−1
2
−2
1
0



〉

λ = 1 EK (1) =

〈


4
−10
7
0
2

 ,


−4
18
−17
5
0



〉

λ = 4 EK (4) =

〈


1
−1
0
1
1



〉

Geometric and algebraic multiplicities. (Definition GME [456]Definition AME [456])

γK (−2) = 2 αK (−2) = 2

γK (1) = 2 αK (1) = 2

γK (4) = 1 αK (4) = 1
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Diagonalizable? (Definition DZM [491])

Yes, large eigenspaces, Theorem DMLE [494].

The diagonalization. (Theorem DC [491])
−4 −3 −4 −6 7
−7 −5 −6 −8 10
1 −1 −1 1 −3
1 0 0 1 −2
2 5 6 4 0




10 18 24 24 −12
12 −2 −6 0 −18
−30 −21 −23 −30 39
27 30 36 37 −30
18 24 30 30 −20




2 −1 4 −4 1
−2 2 −10 18 −1
1 −2 7 −17 0
0 1 0 5 1
1 0 2 0 1



=


−2 0 0 0 0
0 −2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 4



Version 0.85



Archetype L 753

Archetype L

Summary Square matrix of size 5. Singular, nullity 2. 2 distinct eigenvalues, each of
“high” multiplicity.

A matrix:
−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6



Matrix brought to reduced row-echelon form:
1 0 0 1 −2

0 1 0 −2 2

0 0 1 2 −1
0 0 0 0 0
0 0 0 0 0



Analysis of the row-reduced matrix (Notation RREFA [51]):

r = 5 D = {1, 2, 3} F = {4, 5}

Matrix (coefficient matrix) is nonsingular or singular? (Theorem NSRRI [81]) at the
same time, examine the size of the set F above.Notice that this property does not apply
to matrices that are not square.

Singular.

This is the null space of the matrix. The set of vectors used in the span construction
is a linearly independent set of column vectors that spans the null space of the matrix
(Theorem SSNS [135], Theorem BNS [162]). Solve the homogenous system with this
matrix as the coefficient matrix and write the solutions in vector form (Theorem VF-
SLS [113]) to see these vectors arise.

〈


−1
2
−2
1
0

 ,


2
−2
1
0
1



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors that are also columns of the matrix. These columns have indices that form the
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set D above. (Theorem BCS [270])

〈


−2
−6
10
−7
−4

 ,


−1
−5
7
−5
−3

 ,


−2
−4
7
−6
−4



〉

The column space of the matrix, as it arises from the extended echelon form of the
matrix. The matrix L is computed as described in Definition EEF [293]. This is followed
by the column space described by a set of linearly independent vectors that span the null
space of L, computed as according to Theorem FS [296] and Theorem BNS [162]. When
r = m, the matrix L has no rows and the column space is all of Cm.

L =

[
1 0 −2 −6 5
0 1 4 10 −9

]

〈


−5
9
0
0
1

 ,


6
−10
0
1
0

 ,


2
−4
1
0
0



〉

Column space of the matrix, expressed as the span of a set of linearly independent
vectors. These vectors are computed by row-reducing the transpose of the matrix into
reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero
rows as column vectors. By Theorem CSRST [278] and Theorem BRS [277], and in the
style of Example CSROI [279], this yields a linearly independent set of vectors that span
the column space.

〈


1
0
0
9
4
5
2

 ,


0
1
0
5
4
3
2

 ,


0
0
1
1
2

1



〉

Row space of the matrix, expressed as a span of a set of linearly independent vectors,
obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form.
(Theorem BRS [277])
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〈


1
0
0
1
−2

 ,


0
1
0
−2
2

 ,


0
0
1
2
−1



〉

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square,
and if the matrix is square, then the matrix must be nonsingular. (Definition MI [240],
Theorem NSI [257])

Subspace dimensions associated with the matrix. (Definition NOM [389], Defini-
tion ROM [389]) Verify Theorem RPNC [391]

Matrix columns: 5 Rank: 3 Nullity: 2

Determinant of the matrix, which is only defined for square matrices. The matrix is
nonsingular if and only if the determinant is nonzero (Theorem SMZD [436]). (Product
of all eigenvalues?)

Determinant = 0

Eigenvalues, and bases for eigenspaces. (Definition EEM [445],Definition EM [454])

λ = −1 EL (−1) =

〈


−5
9
0
0
1

 ,


6
−10
0
1
0

 ,


2
−4
1
0
0



〉

λ = 0 EL (0) =

〈


2
−2
1
0
1

 ,


−1
2
−2
1
0



〉

Geometric and algebraic multiplicities. (Definition GME [456]Definition AME [456])

γL (−1) = 3 αL (−1) = 3

γL (0) = 2 αL (0) = 2
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Diagonalizable? (Definition DZM [491])

Yes, large eigenspaces, Theorem DMLE [494].

The diagonalization. (Theorem DC [491])
4 3 4 6 −6
7 5 6 9 −10
−10 −7 −7 −10 13
−4 −3 −4 −6 7
−7 −5 −6 −8 10



−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6



−5 6 2 2 −1
9 −10 −4 −2 2
0 0 1 1 −2
0 1 0 0 1
1 0 0 1 0



=


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0
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Archetype M

Summary Linear transformation with bigger domain than codomain, so it is guaran-
teed to not be injective. Happens to not be surjective.

A linear transformation: (Definition LT [507])

T : C5 7→ C3, T




x1

x2

x3

x4

x5


 =

x1 + 2x2 + 3x3 + 4x4 + 4x5

3x1 + x2 + 4x3 − 3x4 + 7x5

x1 − x2 − 5x4 + x5



A basis for the null space of the linear transformation: (Definition KLT [536])




−2
−1
0
0
1

 ,


2
−3
0
1
0

 ,


−1
−1
1
0
0




Injective: No. (Definition ILT [533])

Since the kernel is nontrivial Theorem KILT [539] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a
nullity of at least 2, just from checking dimensions of the domain and the codomain. In
particular, verify that

T




1
2
−1
4
5


 =

 38
24
−16

 T




0
−3
0
5
6


 =

 38
24
−16


This demonstration that T is not injective is constructed with the observation that

0
−3
0
5
6

 =


1
2
−1
4
5

+


−1
−5
1
1
1


and

z =


−1
−5
1
1
1

 ∈ K(T )
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so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [555])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [560]):


1

3
1

 ,

 2
1
−1

 ,

3
4
0

 ,

 4
−3
−5

 ,

4
7
1


If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [541]). This spanning set may be converted to a “nice”
basis, by making the column vectors the rows of a matrix, row-reducing, and retaining
the nonzero rows (Theorem BRS [277]). A basis for the range is:

 1
0
−4

5

 ,

0
1
3
5


Surjective: No. (Definition SLT [551])

Notice that the range is not all of C3 since its dimension 2, not 3. In particular, verify

that

3
4
5

 6∈ R(T ), by setting the output equal to this vector and seeing that the re-

sulting system of linear equations has no solution, i.e. is inconsistent. So the preimage,

T−1

3
4
5

, is nonempty. This alone is sufficient to see that the linear transformation

is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels
with earlier results for matrices. Verify Theorem RPNDD [580].

Domain dimension: 5 Rank: 2 Nullity: 3

Invertible: No.

Not injective or surjective.

Matrix representation (Theorem MLTCV [514]):

T : C5 7→ C3, T (x) = Ax, A =

1 2 3 4 4
3 1 4 −3 7
1 −1 0 −5 1


Version 0.85



Archetype M 759

Version 0.85



760 Appendix A Archetypes

Archetype N

Summary Linear transformation with domain larger than its codomain, so it is guar-
anteed to not be injective. Happens to be onto.

A linear transformation: (Definition LT [507])

T : C5 7→ C3, T




x1

x2

x3

x4

x5


 =

2x1 + x2 + 3x3 − 4x4 + 5x5

x1 − 2x2 + 3x3 − 9x4 + 3x5

3x1 + 4x3 − 6x4 + 5x5



A basis for the null space of the linear transformation: (Definition KLT [536])




1
−1
−2
0
1

 ,


−2
−1
3
1
0




Injective: No. (Definition ILT [533])

Since the kernel is nontrivial Theorem KILT [539] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a
nullity of at least 2, just from checking dimensions of the domain and the codomain. In
particular, verify that

T



−3
1
−2
−3
1


 =

 6
19
6

 T



−4
−4
−2
−1
4


 =

 6
19
6


This demonstration that T is not injective is constructed with the observation that

−4
−4
−2
−1
4

 =


−3
1
−2
−3
1

+


−1
−5
0
2
3


and

z =


−1
−5
0
2
3

 ∈ K(T )
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so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [555])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [560]):


2

1
3

 ,

 1
−2
0

 ,

3
3
4

 ,

−4
−9
−6

 ,

5
3
5


If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [541]). This spanning set may be converted to a “nice”
basis, by making the column vectors the rows of a matrix, row-reducing, and retaining
the nonzero rows (Theorem BRS [277]). A basis for the range is:

1
0
0

 ,

0
1
0

 ,

0
0
1



Surjective: Yes. (Definition SLT [551])

Notice that the basis for the range above is the standard basis for C3. So the range is all
of C3 and thus the linear transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels
with earlier results for matrices. Verify Theorem RPNDD [580].

Domain dimension: 5 Rank: 3 Nullity: 2

Invertible: No.

Not surjective, and the relative sizes of the domain and codomain mean the linear trans-
formation cannot be injective.

Matrix representation (Theorem MLTCV [514]):

T : C5 7→ C3, T (x) = Ax, A =

2 1 3 −4 5
1 −2 3 −9 3
3 0 4 −6 5
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Archetype O

Summary Linear transformation with a domain smaller than the codomain, so it is
guaranteed to not be onto. Happens to not be one-to-one.

A linear transformation: (Definition LT [507])

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 − 3x3

−x1 + 2x2 − 4x3

x1 + x2 + x3

2x1 + 3x2 + x3

x1 + 2x3



A basis for the null space of the linear transformation: (Definition KLT [536])


−2

1
1


Injective: No. (Definition ILT [533])

Since the kernel is nontrivial Theorem KILT [539] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a
nullity of at least 2, just from checking dimensions of the domain and the codomain. In
particular, verify that

T

 5
−1
3

 =


−15
−19
7
10
11

 T

1
1
5

 =


−15
−19
7
10
11


This demonstration that T is not injective is constructed with the observation that1

1
5

 =

 5
−1
3

+

−4
2
2


and

z =

−4
2
2

 ∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [555])
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Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [560]):




−1
−1
1
2
1

 ,


1
2
1
3
0

 ,


−3
−4
1
1
2




If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [541]). This spanning set may be converted to a “nice”
basis, by making the column vectors the rows of a matrix, row-reducing, and retaining
the nonzero rows (Theorem BRS [277]). A basis for the range is:


1
0
−3
−7
−2

 ,


0
1
2
5
1




Subspace dimensions associated with the linear transformation. Examine parallels
with earlier results for matrices. Verify Theorem RPNDD [580].

Domain dimension: 3 Rank: 2 Nullity: 1

Surjective: No. (Definition SLT [551])

The dimension of the range is 2, and the codomain (C5) has dimension 5. So the transfor-
mation is not onto. Notice too that since the domain C3 has dimension 3, it is impossible
for the range to have a dimension greater than 3, and no matter what the actual definition
of the function, it cannot possibly be onto.

To be more precise, verify that


2
3
1
1
1

 6∈ R(T ), by setting the output equal to this

vector and seeing that the resulting system of linear equations has no solution, i.e. is

inconsistent. So the preimage, T−1




2
3
1
1
1


, is nonempty.This alone is sufficient to see

that the linear transformation is not onto.

Invertible: No.
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Not injective, and the relative dimensions of the domain and codomain prohibit any
possibility of being surjective.

Matrix representation (Theorem MLTCV [514]):

T : C3 7→ C5, T (x) = Ax, A =


−1 1 −3
−1 2 −4
1 1 1
2 3 1
1 0 2
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Archetype P

Summary Linear transformation with a domain smaller that its codomain, so it is
guaranteed to not be surjective. Happens to be injective.

A linear transformation: (Definition LT [507])

T : C3 7→ C5, T

x1

x2

x3

 =


−x1 + x2 + x3

−x1 + 2x2 + 2x3

x1 + x2 + 3x3

2x1 + 3x2 + x3

−2x1 + x2 + 3x3



A basis for the null space of the linear transformation: (Definition KLT [536])

{ }

Injective: Yes. (Definition ILT [533])

Since K(T ) = {0}, Theorem KILT [539] tells us that T is injective.

A basis for the range of the linear transformation: (Definition RLT [555])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [560]):




−1
−1
1
2
−2

 ,


1
2
1
3
1

 ,


1
2
3
1
3




If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [541]). This spanning set may be converted to a “nice”
basis, by making the column vectors the rows of a matrix, row-reducing, and retaining
the nonzero rows (Theorem BRS [277]). A basis for the range is:


1
0
0
−10
6

 ,


0
1
0
7
−3

 ,


0
0
1
−1
1




Surjective: No. (Definition SLT [551])
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The dimension of the range is 3, and the codomain (C5) has dimension 5. So the trans-
formation is not surjective. Notice too that since the domain C3 has dimension 3, it is
impossible for the range to have a dimension greater than 3, and no matter what the
actual definition of the function, it cannot possibly be surjective in this situation.

To be more precise, verify that


2
1
−3
2
6

 6∈ R(() T ), by setting the output equal to this

vector and seeing that the resulting system of linear equations has no solution, i.e. is

inconsistent. So the preimage, T−1




2
1
−3
2
6


, is nonempty.This alone is sufficient to see

that the linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels
with earlier results for matrices. Verify Theorem RPNDD [580].

Domain dimension: 3 Rank: 3 Nullity: 0

Invertible: No.

Not surjective.

Matrix representation (Theorem MLTCV [514]):

T : C3 7→ C5, T (x) = Ax, A =


−1 1 1
−1 2 2
1 1 3
2 3 1
−2 1 3
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Archetype Q

Summary Linear transformation with equal-sized domain and codomain, so it has
the potential to be invertible, but in this case is not. Neither injective nor surjective.
Diagonalizable, though.

A linear transformation: (Definition LT [507])

T : C5 7→ C5, T




x1

x2

x3

x4

x5


 =


−2x1 + 3x2 + 3x3 − 6x4 + 3x5

−16x1 + 9x2 + 12x3 − 28x4 + 28x5

−19x1 + 7x2 + 14x3 − 32x4 + 37x5

−21x1 + 9x2 + 15x3 − 35x4 + 39x5

−9x1 + 5x2 + 7x3 − 16x4 + 16x5



A basis for the null space of the linear transformation: (Definition KLT [536])




3
4
1
3
3




Injective: No. (Definition ILT [533])

Since the kernel is nontrivial Theorem KILT [539] tells us that the linear transformation
is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a
nullity of at least 2, just from checking dimensions of the domain and the codomain. In
particular, verify that

T




1
3
−1
2
4


 =


4
55
72
77
31

 T




4
7
0
5
7


 =


4
55
72
77
31


This demonstration that T is not injective is constructed with the observation that

4
7
0
5
7

 =


1
3
−1
2
4

+


3
4
1
3
3
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and

z =


3
4
1
3
3

 ∈ K(T )

so the vector z effectively “does nothing” in the evaluation of T .

A basis for the range of the linear transformation: (Definition RLT [555])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [560]):




−2
−16
−19
−21
−9

 ,


3
9
7
9
5

 ,


3
12
14
15
7

 ,


−6
−28
−32
−35
−16

 ,


3
28
37
39
16




If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [541]). This spanning set may be converted to a “nice”
basis, by making the column vectors the rows of a matrix, row-reducing, and retaining
the nonzero rows (Theorem BRS [277]). A basis for the range is:


1
0
0
0
1

 ,


0
1
0
0
−1

 ,


0
0
1
0
−1

 ,


0
0
0
1
2




Surjective: No. (Definition SLT [551])

The dimension of the range is 4, and the codomain (C5) has dimension 5. So R(T ) 6= C5

and by Theorem RSLT [558] the transformation is not surjective.

To be more precise, verify that


−1
2
3
−1
4

 6∈ R(T ), by setting the output equal to this

vector and seeing that the resulting system of linear equations has no solution, i.e. is

inconsistent. So the preimage, T−1



−1
2
3
−1
4


, is nonempty.This alone is sufficient to see
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that the linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels
with earlier results for matrices. Verify Theorem RPNDD [580].

Domain dimension: 5 Rank: 4 Nullity: 1

Invertible: No.

Neither injective nor surjective. Notice that since the domain and codomain have the
same dimesion, either the transformation is both onto and one-to-one (making it invert-
ible) or else it is both not onto and not one-to-one (as in this case) by Theorem RP-
NDD [580].

Matrix representation (Theorem MLTCV [514]):

T : C5 7→ C5, T (x) = Ax, A =


−2 3 3 −6 3
−16 9 12 −28 28
−19 7 14 −32 37
−21 9 15 −35 39
−9 5 7 −16 16



Eigenvalues and eigenvectors (Definition EELT [641], Theorem EER [654]):

λ = −1 ET (−1) =

〈


0
2
3
3
1



〉

λ = 0 ET (0) =

〈


3
4
1
3
3



〉

λ = 1 ET (1) =

〈


5
3
0
0
2

 ,


−3
1
0
2
0

 ,


1
−1
2
0
0



〉

Evaluate the linear transformation with each of these eigenvectors.

A diagonal matrix representation relative to a basis of eigenvectors:
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Basis:

B =




0
2
3
3
1

 ,


3
4
1
3
3

 ,


5
3
0
0
2

 ,


−3
1
0
2
0

 ,


1
−1
2
0
0




Representation:
T : C5 → C5, T (x) = ρ−1

B (DρB (x))

D =


−1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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Archetype R

Summary Linear transformation with equal-sized domain and codomain. Injective,
surjective, invertible, diagonalizable, the works.

A linear transformation: (Definition LT [507])

T : C5 7→ C5, T




x1

x2

x3

x4

x5


 =


−65x1 + 128x2 + 10x3 − 262x4 + 40x5

36x1 − 73x2 − x3 + 151x4 − 16x5

−44x1 + 88x2 + 5x3 − 180x4 + 24x5

34x1 − 68x2 − 3x3 + 140x4 − 18x5

12x1 − 24x2 − x3 + 49x4 − 5x5



A basis for the null space of the linear transformation: (Definition KLT [536])

{ }

Injective: Yes. (Definition ILT [533])

Since the kernel is trivial Theorem KILT [539] tells us that the linear transformation is
injective.

A basis for the range of the linear transformation: (Definition RLT [555])

Evaluate the linear transformation on a standard basis to get a spanning set for the range
(Theorem SSRLT [560]):




−65
36
−44
34
12

 ,


128
−73
88
−68
−24

 ,


10
−1
5
−3
−1

 ,


−262
151
−180
140
49

 ,


40
−16
24
−18
−5




If the linear transformation is injective, then the set above is guaranteed to be linearly
independent (Theorem ILTLI [541]). This spanning set may be converted to a “nice”
basis, by making the column vectors the rows of a matrix, row-reducing, and retaining
the nonzero rows (Theorem BRS [277]). A basis for the range is:


1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1




Surjective: Yes/No. (Definition SLT [551])
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A basis for the range is the standard basis of C5, so R(T ) = C5 and Theorem RSLT [558]
tells us T is surjective. Or, the dimension of the range is 5, and the codomain (C5) has
dimension 5. So the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels
with earlier results for matrices. Verify Theorem RPNDD [580].

Domain dimension: 5 Rank: 5 Nullity: 0

Invertible: Yes.

Both injective and surjective. Notice that since the domain and codomain have the same
dimesion, either the transformation is both injective and surjective (making it invertible,
as in this case) or else it is both not injective and not surjective.

Matrix representation (Theorem MLTCV [514]):

T : C5 7→ C5, T (x) = Ax, A =


−65 128 10 −262 40
36 −73 −1 151 −16
−44 88 5 −180 24
34 −68 −3 140 −18
12 −24 −1 49 −5



The inverse linear transformation (Definition IVLT [571]):

T−1 : C5 → C5, T−1




x1

x2

x3

x4

x5


 =


−47x1 + 92x2 + x3 − 181x4 − 14x5

27x1 − 55x2 + 7
2
x3 + 221

4
x4 + 11x5

−32x1 + 64x2 − x3 − 126x4 − 12x5

25x1 − 50x2 + 3
2
x3 + 199

2
x4 + 9x5

9x1 − 18x2 + 1
2
x3 + 71

2
x4 + 4x5


Verify that T (T−1 (x)) = x and T (T−1 (x)) = x, and notice that the representations
of the transformation and its inverse are matrix inverses (Theorem IMR [623], Defini-
tion MI [240]).

Eigenvalues and eigenvectors (Definition EELT [641], Theorem EER [654]):

λ = −1 ET (−1) =

〈


−57
0
−18
14
5

 ,


2
1
0
0
0



〉
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λ = 1 ET (1) =

〈


−10
−5
−6
0
1

 ,


2
3
1
1
0



〉

λ = 2 ET (2) =

〈


−6
3
−4
3
1



〉

Evaluate the linear transformation with each of these eigenvectors.

A diagonal matrix representation relative to a basis of eigenvectors:
Basis:

B =




−57
0
−18
14
5

 ,


2
1
0
0
0

 ,


−10
−5
−6
0
1

 ,


2
3
1
1
0

 ,


−6
3
−4
3
1




Representation:
T : C5 → C5, T (x) = ρ−1

B (DρB (x))

D =


−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2
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Archetype S

Summary Domain is column vectors, codomain is matrices. Domain is dimension 3
and codomain is dimension 4. Not injective, not surjective.

A linear transformation: (Definition LT [507])

T : C3 7→M22, T

a
b
c

 =

[
a− b 2a + 2b + c

3a + b + c −2a− 6b− 2c

]

Archetype T

Summary Domain and codomain are polynomials. Domain has dimension 5, while
codomain has dimension 6. Is injective, can’t be surjective.

A linear transformation: (Definition LT [507])

T : P4 7→ P5, T (p(x)) = (x− 2)p(x)

Archetype U

Summary Domain is matrices, codomain is column vectors. Domain has dimension 6,
while codomain has dimension 4. Can’t be injective, is surjective.

A linear transformation: (Definition LT [507])

T : M23 7→ C4, T

([
a b c
d e f

])
=


a + 2b + 12c− 3d + e + 6f

2a− b− c + d− 11f
a + b + 7c + 2d + e− 3f
a + 2b + 12c + 5e− 5f



Archetype V

Summary Domain is polynomials, codomain is matrices. Domain and codomain both
have dimension 4. Injective, surjective, invertible, (eigenvalues, diagonalizable???).

A linear transformation: (Definition LT [507])

T : P3 7→M22, T
(
a + bx + cx2 + dx3

)
=

[
a + b a− 2c

d b− d

]
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When invertible, the inverse linear transformation. (Definition IVLT [571])

T−1 : M22 7→ P3, T−1

([
a b
c d

])
= (a− c− d) + (c + d)x +

1

2
(a− b− c− d)x2 + cx3

Archetype W

Summary Domain is polynomials, codomain is polynomials. Domain and codomain
both have dimension 3. Injective, surjective, invertible, (eigenvalues, diagonalizable???).
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AAM (Property), 209
ABLC (example), 104
ABS (example), 129
AC (Property), 313
ACC (Property), 96
ACM (Property), 209
ACN (example), 674
additive associativity

column vectors
Property AAC, 96

matrices
Property AAM, 209

vectors
Property AA, 314

additive inverse
from scalar multiplication

theorem AISM, 322
additive inverses

column vectors
Property AIC, 96

matrices
Property AIM, 209

unique
theorem AIU, 321

vectors
Property AI, 314

addtive closure
column vectors

Property ACC, 96
matrices

Property ACM, 209
vectors

Property AC, 313
adjoint

definition A, 261
AHSAC (example), 65
AI (Property), 314
AIC (Property), 96
AIM (Property), 209
AISM (theorem), 322
AIU (theorem), 321
AIVLT (example), 571
ALT (example), 508
ALTMM (example), 611
AM (definition), 30
AM (example), 29
AM (notation), 70
AMAA (example), 31
AME (definition), 456
ANILT (example), 572
AOS (example), 197
Archetype A

column space, 272
definition, 703
linearly dependent columns, 159
singular matrix, 80
solving homogeneous system, 66
system as linear combination, 105

archetype A
augmented matrix

example AMAA, 31
archetype A:solutions

example SAA, 38
Archetype B

column space, 273
definition, 708
inverse

example CMIAB, 246
linearly independent columns, 159
nonsingular matrix, 80
not invertible

example MWIAA, 240
solutions via inverse
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example SABMI, 239
solving homogeneous system, 66
system as linear combination, 104
vector equality, 92

archetype B
solutions

example SAB, 37
Archetype C

definition, 713
homogeneous system, 65

Archetype D
column space, original columns, 271
definition, 717
solving homogeneous system, 67
vector form of solutions, 108

Archetype E
definition, 721

archetype E:solutions
example SAE, 39

Archetype F
definition, 725

Archetype G
definition, 730

Archetype H
definition, 734

Archetype I
column space from row operations, 279
definition, 739
null space, 71
row space, 274
vector form of solutions, 116

Archetype I:casting out vectors, 178
Archetype J

definition, 744
Archetype K

definition, 749
Archetype L

definition, 753
null space span, linearly independent,

163
vector form of solutions, 117

Archetype M
definition, 757

Archetype N
definition, 760

Archetype O
definition, 762

Archetype P

definition, 765
Archetype Q

definition, 767
Archetype R

definition, 771
Archetype S

definition, 774
Archetype T

definition, 774
Archetype U

definition, 774
Archetype V

definition, 774
Archetype W

definition, 775
ASC (example), 598
augmented matrix

notation AM, 70
AVR (example), 358

B
(archetype), 708

B (definition), 367
B (section), 367
B (subsection, section B), 367
basis

columns nonsingular matrix
example CABAK, 373

common size
theorem BIS, 387

crazy vector apace
example BC, 370

definition B, 367
matrices

example BM, 368
example BSM22, 369

polynomials
example BP, 368
example BPR, 403
example BSP4, 369
example SVP4, 404

subspace of matrices
example BDM22, 403

BC (example), 370
BCS (theorem), 270
BDE (example), 474
BDM22 (example), 403
best cities
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money magazine
example MBC, 222

BIS (theorem), 387
BM (example), 368
BNS (theorem), 162
BNSM (subsection, section B), 373
BP (example), 368
BPR (example), 403
BRLT (example), 561
BRS (theorem), 277
BS (theorem), 180
BSCV (subsection, section B), 371
BSM22 (example), 369
BSP4 (example), 369

C
(archetype), 713

C (part), 3
C (Property), 313
C (technique, section PT), 685
CABAK (example), 373
CAEHW (example), 450
cancellation

vector addition
theorem VAC, 323

CAV (subsection, section O), 191
CB (section), 641
CB (theorem), 643
CBCV (example), 647
CBM (definition), 642
CBM (subsection, section CB), 642
CBP (example), 644
CC (Property), 96
CCCV (definition), 191
CCCV (notation), 191
CCM (definition), 213
CCM (example), 213
CCN (definition), 674
CCN (notation), 674
CCN (subsection, section CNO), 674
CCRA (theorem), 674
CCRM (theorem), 675
CCT (theorem), 675
CD (subsection, section DM), 419
CD (technique, section PT), 690
CEE (subsection, section EE), 452
CELT (example), 660
CELT (subsection, section CB), 655

CEMS6 (example), 459
CFDVS (theorem), 597
CFV (example), 56
change of basis

between polynomials
example CBP, 644

change-of-basis
between column vectors

example CBCV, 647
matrix representation

theorem MRCB, 648
similarity

theorem SCB, 651
theorem CB, 643

change-of-basis matrix
definition CBM, 642
inverse

theorem ICBM, 643
characteristic polynomial

definition CP, 453
degree

theorem DCP, 477
size 3 matrix

example CPMS3, 453
CILT (subsection, section ILT), 543
CILTI (theorem), 543
CIM (subsection, section MISLE), 242
CINSM (theorem), 245
CIVLT (theorem), 576
CLI (theorem), 599
CLTLT (theorem), 524
CM (definition), 68
CM (Property), 209
CM32 (example), 601
CMI (example), 243
CMIAB (example), 246
CMVEI (theorem), 57
CN (appendix), 671
CNA (subsection, section CNO), 673
CNO (section), 673
CNS1 (example), 71
CNS2 (example), 72
CNSMB (theorem), 373
CNSV (example), 195
COB (theorem), 375
coefficient matrix

definition CM, 68
nonsingular
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theorem SNSCM, 258
column space

as null space
theorem FS, 296

Archetype A
example CSAA, 272

Archetype B
example CSAB, 273

as null space
example CSANS, 290

as null space, Archetype G
example FSAG, 302

as row space
theorem CSRST, 278

basis
theorem BCS, 270

consistent system
theorem CSCS, 268

consistent systems
example CSMCS, 267

isomorphic to range, 621
matrix, 267
nonsingular matrix

theorem CSNSM, 273
notation, 267
original columns, Archetype D

example CSOCD, 271
row operations, Archetype I

example CSROI, 279
subspace

theorem CSMS, 340
testing membership

example MCSM, 269
two computations

example CSTW, 270
column vector addition

notation, 93
column vector scalar multiplication

notation, 94
commutativity

column vectors
Property CC, 96

matrices
Property CM, 209

vectors
Property C, 313

COMOS (theorem), 259
complex m-space

example VSCV, 315
complex arithmetic

example ACN, 674
complex number

conjugate
example CSCN, 674

modulus
example MSCN, 675

complex number
conjugate

definition CCN, 674
modulus

definition MCN, 675
complex vector space

dimension
theorem DCM, 387

composition
injective linear transformations

theorem CILTI, 543
surjective linear transformations

theorem CSLTS, 563
computation

GSP.MMA, 202
LS.MMA, 58
ME.MMA, 29
ME.TI83, 30
ME.TI86, 30
MI.MMA, 246
MM.MMA, 226
NS.MMA, 138
RR.MMA, 41
RR.TI83, 41
RR.TI86, 41
TM.MMA, 212
TM.TI86, 213
VFSS.MMA, 140
VLC.MMA, 94
VLC.TI83, 95
VLC.TI86, 95

conjugate
addition

theorem CCRA, 674
column vector

definition CCCV, 191
matrix

definition CCM, 213
multiplication

theorem CCRM, 675
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notation, 674
scalar multiplication

theorem CRSM, 191
twice

theorem CCT, 675
vector addition

theorem CRVA, 191
conjugate of a vector

notation, 191
conjugation

matrix addition
theorem CRMA, 213

matrix scalar multiplication
theorem CRMSM, 214

matrix transpose
theorem MCT, 214

consistent linear system, 54
consistent linear systems

theorem CSRN, 56
consistent system

definition CS, 51
coordinates

orthonormal basis
theorem COB, 375

coordinatization
linear combination of matrices

example CM32, 601
linear independence

theorem CLI, 599
orthonormal basis

example CROB3, 376
example CROB4, 375

spanning sets
theorem CSS, 599

coordinatization principle, 600
coordinatizing

polynomials
example CP2, 600

COV (example), 178
COV (subsection, section LDS), 177
CP (definition), 453
CP (subsection, section VR), 598
CP (technique, section PT), 688
CP2 (example), 600
CPMS3 (example), 453
crazy vector space

example CVSR, 598
properties

example PCVS, 322
CRMA (theorem), 213
CRMSM (theorem), 214
CRN (theorem), 390
CROB3 (example), 376
CROB4 (example), 375
CRS (section), 267
CRS (subsection, section FS), 290
CRSM (theorem), 191
CRVA (theorem), 191
CS (definition), 51
CSAA (example), 272
CSAB (example), 273
CSANS (example), 290
CSCN (example), 674
CSCS (theorem), 268
CSIP (example), 192
CSLT (subsection, section SLT), 563
CSLTS (theorem), 563
CSM (definition), 267
CSM (notation), 267
CSMCS (example), 267
CSMS (theorem), 340
CSNSM (subsection, section CRS), 272
CSNSM (theorem), 273
CSOCD (example), 271
CSRN (theorem), 56
CSROI (example), 279
CSRST (theorem), 278
CSS (theorem), 599
CSSE (subsection, section CRS), 267
CSSM (theorem), 324
CSSOC (subsection, section CRS), 269
CSTW (example), 270
CTLT (example), 524
CV (definition), 68
CV (technique, section PT), 689
CVA (definition), 93
CVA (notation), 93
CVE (definition), 92
CVE (notation), 92
CVS (example), 318
CVS (subsection, section VR), 597
CVSM (definition), 93
CVSM (example), 94
CVSM (notation), 94
CVSM (theorem), 324
CVSR (example), 598

Version 0.85



INDEX 787

D
(archetype), 717

D (chapter), 413
D (definition), 383
D (notation), 383
D (section), 383
D (subsection, section D), 383
D (subsection, section SD), 490
D (technique, section PT), 680
D33M (example), 419
DAB (example), 491
DC (example), 389
DC (technique, section PT), 694
DC (theorem), 491
DCM (theorem), 387
DCP (theorem), 477
DD (subsection, section DM), 418
DEC (theorem), 421
DED (theorem), 496
definition

A, 261
AM, 30
AME, 456
B, 367
CBM, 642
CCCV, 191
CCM, 213
CCN, 674
CM, 68
CP, 453
CS, 51
CSM, 267
CV, 68
CVA, 93
CVE, 92
CVSM, 93
D, 383
DIM, 490
DM, 418
DZM, 491
EEF, 293
EELT, 641
EEM, 445
ELEM, 413
EM, 454
EO, 16
ES, 677
ESYS, 15

GME, 456
HM, 261
HS, 65
IDLT, 571
IDV, 53
ILT, 533
IM, 80
IP, 192
IVLT, 571
IVS, 577
KLT, 536
LC, 335
LCCV, 103
LI, 349
LICV, 153
LNS, 289
LO, 34
LT, 507
LTA, 521
LTC, 523
LTSM, 522
M, 29
MA, 208
MCN, 675
ME, 207
MI, 240
MM, 225
MR, 607
MSM, 208
MVP, 221
NM, 79
NOLT, 579
NOM, 389
NSM, 71
NV, 195
OM, 258
ONS, 201
OSV, 197
OV, 196
PC, 34
PI, 519
REM, 32
RLD, 349
RLDCV, 153
RLT, 555
RO, 31
ROLT, 579
ROM, 389
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RR, 40
RREF, 34
RSM, 274
S, 329
SE, 678
SET, 677
SIM, 487
SLE, 13
SLT, 551
SM, 418
SQM, 79
SS, 336
SSCV, 129
SSET, 677
SUV, 242
SV, 69
SYM, 211
TM, 210
TS, 334
TSHSE, 66
TSVS, 354
VOC, 69
VR, 591
VS, 313
VSCV, 91
VSM, 207
ZM, 210
ZRM, 34
ZV, 68

DEHD (example), 496
DEM (theorem), 435
DEMMM (theorem), 435
DEMS5 (example), 461
DER (theorem), 419
DERC (theorem), 431
determinant

computed two ways
example TCSD, 422

definition DM, 418
equal rows or columns

theorem DERC, 431
expansion, columns

theorem DEC, 421
expansion, rows

theorem DER, 419
identity matrix

theorem DIM, 434
matrix multiplication

theorem DRMM, 438
nonsingular matrix, 436
notation, 418
row or column multiple

theorem DRCM, 430
row or column swap

theorem DRCS, 429
size 2 matrix

theorem DMST, 419
size 3 matrix

example D33M, 419
transpose

theorem DT, 421
via row operations

example DRO, 432
zero

theorem SMZD, 436
zero row or column

theorem DZRC, 429
zero versus nonzero

example ZNDAB, 437
determinant, upper triangular matrix

example DUTM, 422
determinants

elementary matrices
theorem DEMMM, 435

DFS (subsection, section PD), 406
DFS (theorem), 406
diagonal matrix

definition DIM, 490
diagonalizable

definition DZM, 491
distinct eigenvalues

example DEHD, 496
theorem DED, 496

large eigenspaces
theorem DMLE, 494

not
example NDMS4, 495

diagonalizable matrix
high power

example HPDM, 497
diagonalization

Archetype B
example DAB, 491

criteria
theorem DC, 491

example DMS3, 493
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DIM (definition), 490
DIM (theorem), 434
dimension

crazy vector space
example DC, 389

definition D, 383
notation, 383
polynomial subspace

example DSP4, 388
subspace

example DSM22, 387
distributivity, matrix addition

matrices
Property DMAM, 209

distributivity, scalar addition
column vectors

Property DSAC, 96
matrices

Property DSAM, 209
vectors

Property DSA, 314
distributivity, vector addition

column vectors
Property DVAC, 96

vectors
Property DVA, 314

DLDS (theorem), 175
DM (definition), 418
DM (notation), 418
DM (section), 413
DM (theorem), 387
DMAM (Property), 209
DMLE (theorem), 494
DMS3 (example), 493
DMST (theorem), 419
DNMMM (subsection, section PDM), 436
DP (theorem), 387
DRCM (theorem), 430
DRCMA (theorem), 431
DRCS (theorem), 429
DRMM (theorem), 438
DRO (example), 432
DRO (subsection, section PDM), 429
DROEM (subsection, section PDM), 434
DSA (Property), 314
DSAC (Property), 96
DSAM (Property), 209
DSM22 (example), 387

DSP4 (example), 388
DT (theorem), 421
DUTM (example), 422
DVA (Property), 314
DVAC (Property), 96
DVS (subsection, section D), 387
DZM (definition), 491
DZRC (theorem), 429

E
(archetype), 721

E (chapter), 445
E (technique, section PT), 686
ECEE (subsection, section EE), 456
EDELI (theorem), 471
EDYES (theorem), 405
EE (section), 445
EEE (subsection, section EE), 449
EEF (definition), 293
EEF (subsection, section FS), 293
EELT (definition), 641
EELT (subsection, section CB), 641
EEM (definition), 445
EEM (subsection, section EE), 445
EENS (example), 490
EER (theorem), 654
EHM (subsection, section PEE), 480
eigenspace

as null space
theorem EMNS, 455

definition EM, 454
subspace

theorem EMS, 454
eigenvalue

algebraic multiplicity
definition AME, 456

complex
example CEMS6, 459

definition EEM, 445
existence

example CAEHW, 450
theorem EMHE, 449

geometric multiplicity
definition GME, 456

linear transformation
definition EELT, 641

multiplicities
example EMMS4, 457
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power
theorem EOMP, 473

root of characteristic polynomial
theorem EMRCP, 453

scalar multiple
theorem ESMM, 473

symmetric matrix
example ESMS4, 457

zero
theorem SMZE, 472

eigenvalues
building desired

example BDE, 474
complex, of a linear transformation

example CELT, 660
conjugate pairs

theorem ERMCP, 476
distinct

example DEMS5, 461
example SEE, 446
Hermitian matrices

theorem HMRE, 480
inverse

theorem EIM, 475
maximum number

theorem MNEM, 480
multiplicities

example HMEM5, 458
theorem ME, 478

number
theorem NEM, 478

of a polynomial
theorem EPM, 474

size 3 matrix
example EMS3, 454
example ESMS3, 455

transpose
theorem ETM, 476

eigenvalues, eigenvectors
vector, matrix representations

theorem EER, 654
eigenvector, 445

linear transformation, 641
eigenvectors, 446

conjugate pairs, 476
Hermitian matrices

theorem HMOE, 481
linear transformation

example ELTBM, 641
example ELTBP, 642

linearly independent
theorem EDELI, 471

of a linear transformation
example ELTT, 655

EILT (subsection, section ILT), 533
EIM (theorem), 475
ELEM (definition), 413
ELEM (notation), 414
elementary matrices

definition ELEM, 413
determinants

theorem DEM, 435
nonsingular

theorem EMN, 417
notation, 414
row operations

example EMRO, 414
theorem EMDRO, 415

ELIS (theorem), 401
ELTBM (example), 641
ELTBP (example), 642
ELTT (example), 655
EM (definition), 454
EM (subsection, section DM), 413
EMDRO (theorem), 415
EMHE (theorem), 449
EMMS4 (example), 457
EMMVP (theorem), 224
EMN (theorem), 417
EMNS (theorem), 455
EMP (theorem), 227
empty set, 677

notation, 677
EMRCP (theorem), 453
EMRO (example), 414
EMS (theorem), 454
EMS3 (example), 454
EO (definition), 16
EOMP (theorem), 473
EOPSS (theorem), 16
EPM (theorem), 474
equal matrices

via equal matrix-vector products
theorem EMMVP, 224

equation operations
definition EO, 16
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theorem EOPSS, 16
equivalent systems

definition ESYS, 15
ERMCP (theorem), 476
ES (definition), 677
ES (notation), 677
ESEO (subsection, section SSLE), 15
ESLT (subsection, section SLT), 551
ESMM (theorem), 473
ESMS3 (example), 455
ESMS4 (example), 457
ESYS (definition), 15
ETM (theorem), 476
EVS (subsection, section VS), 315
example

AALC, 105
ABLC, 104
ABS, 129
ACN, 674
AHSAC, 65
AIVLT, 571
ALT, 508
ALTMM, 611
AM, 29
AMAA, 31
ANILT, 572
AOS, 197
ASC, 598
AVR, 358
BC, 370
BDE, 474
BDM22, 403
BM, 368
BP, 368
BPR, 403
BRLT, 561
BSM22, 369
BSP4, 369
CABAK, 373
CAEHW, 450
CBCV, 647
CBP, 644
CCM, 213
CELT, 660
CEMS6, 459
CFV, 56
CM32, 601
CMI, 243

CMIAB, 246
CNS1, 71
CNS2, 72
CNSV, 195
COV, 178
CP2, 600
CPMS3, 453
CROB3, 376
CROB4, 375
CSAA, 272
CSAB, 273
CSANS, 290
CSCN, 674
CSIP, 192
CSMCS, 267
CSOCD, 271
CSROI, 279
CSTW, 270
CTLT, 524
CVS, 318
CVSM, 94
CVSR, 598
D33M, 419
DAB, 491
DC, 389
DEHD, 496
DEMS5, 461
DMS3, 493
DRO, 432
DSM22, 387
DSP4, 388
DUTM, 422
EENS, 490
ELTBM, 641
ELTBP, 642
ELTT, 655
EMMS4, 457
EMRO, 414
EMS3, 454
ESMS3, 455
ESMS4, 457
FDV, 54
FRAN, 557
FS1, 300
FS2, 301
FSAG, 302
GSTV, 200
HISAA, 66
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HISAD, 67
HMEM5, 458
HPDM, 497
HUSAB, 66
IAP, 541
IAR, 534
IAS, 278
IAV, 535
ILTVR, 624
IM, 80
IS, 19
ISSI, 52
IVSAV, 578
KVMR, 619
LCM, 335
LDCAA, 159
LDHS, 157
LDP4, 386
LDRN, 158
LDS, 153
LIC, 353
LICAB, 159
LIHS, 156
LIM32, 351
LINSB, 160
LIP4, 350
LIS, 155
LLDS, 158
LNS, 289
LTDB1, 517
LTDB2, 517
LTDB3, 518
LTM, 511
LTPM, 510
LTPP, 510
MA, 208
MBC, 222
MCSM, 269
MFLT, 513
MI, 241
MIVS, 598
MMNC, 226
MNSLE, 222
MOLT, 515
MPMR, 615
MRBE, 652
MRCM, 649
MSCN, 675

MSM, 208
MTV, 221
MWIAA, 240
NDMS4, 495
NIAO, 540
NIAQ, 533
NIAQR, 540
NIDAU, 542
NKAO, 536
NLT, 509
NRREF, 35
NS, 80
NSAO, 559
NSAQ, 551
NSAQR, 559
NSC2A, 333
NSC2S, 333
NSC2Z, 333
NSDAT, 562
NSDS, 137
NSE, 14
NSEAI, 71
NSLE, 70
NSLIL, 163
NSNS, 82
NSRR, 81
NSS, 82
OLTTR, 607
OM3, 258
ONFV, 202
ONTV, 201
OPM, 258
OSGMD, 57
OSMC, 260
PCVS, 322
PM, 447
PSNS, 120
PTM, 225
PTMEE, 227
RAO, 555
RES, 183
RNM, 390
RNSM, 391
RREF, 34
RREFN, 52
RRTI, 406
RS, 372
RSAI, 274
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RSB, 371
RSC5, 176
RSNS, 334
RSREM, 277
RSSC4, 182
RVMR, 622
S, 80
SAA, 38
SAB, 37
SABMI, 239
SAE, 39
SAN, 560
SAR, 552
SAV, 554
SC3, 329
SCAA, 131
SCAB, 133
SCAD, 139
SEE, 446
SEEF, 294
SETM, 677
SM32, 338
SMLT, 523
SMS3, 488
SMS5, 487
SP4, 332
SPIAS, 519
SRR, 81
SS, 418
SSC, 357
SSET, 677
SSM22, 356
SSNS, 136
SSP, 337
SSP4, 354
STLT, 522
STNE, 13
SUVOS, 197
SVP4, 404
SYM, 211
TCSD, 422
TIVS, 598
TKAP, 538
TLC, 103
TM, 210
TMP, 4
TOV, 196
TREM, 32

TTS, 14
US, 18
USR, 33
VA, 93
VESE, 92
VFS, 110
VFSAD, 108
VFSAI, 116
VFSAL, 117
VRC4, 593
VRP2, 595
VSCV, 315
VSF, 317
VSIS, 317
VSM, 315
VSP, 316
VSPUD, 389
VSS, 317
ZNDAB, 437

EXC (subsection, section B), 379
EXC (subsection, section CB), 665
EXC (subsection, section CRS), 281
EXC (subsection, section D), 395
EXC (subsection, section DM), 425
EXC (subsection, section EE), 465
EXC (subsection, section FS), 307
EXC (subsection, section HSE), 75
EXC (subsection, section ILT), 545
EXC (subsection, section IVLT), 585
EXC (subsection, section LC), 125
EXC (subsection, section LDS), 185
EXC (subsection, section LI), 165
EXC (subsection, section LISS), 361
EXC (subsection, section LT), 527
EXC (subsection, section MINSM), 263
EXC (subsection, section MISLE), 251
EXC (subsection, section MM), 235
EXC (subsection, section MO), 217
EXC (subsection, section MR), 629
EXC (subsection, section NSM), 87
EXC (subsection, section O), 205
EXC (subsection, section PD), 409
EXC (subsection, section PDM), 441
EXC (subsection, section PEE), 483
EXC (subsection, section RREF), 43
EXC (subsection, section S), 343
EXC (subsection, section SD), 501
EXC (subsection, section SLT), 565
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EXC (subsection, section SS), 143
EXC (subsection, section SSLE), 23
EXC (subsection, section TSS), 61
EXC (subsection, section VO), 99
EXC (subsection, section VR), 603
EXC (subsection, section VS), 327
EXC (subsection, section WILA), 9
extended echelon form

submatrices
example SEEF, 294

extended reduced row-echelon form
properties

theorem PEEF, 294

F
(archetype), 725

FDV (example), 54
four subsets

example FS1, 300
example FS2, 301

four subspaces
dimension

theorem DFS, 406
FRAN (example), 557
free variables

example CFV, 56
free variables, number

theorem FVCS, 56
free, independent variables

example FDV, 54
FS (section), 289
FS (subsection, section FS), 296
FS (theorem), 296
FS1 (example), 300
FS2 (example), 301
FSAG (example), 302
FTMR (theorem), 610
FVCS (theorem), 56

G
(archetype), 730

G (theorem), 402
GME (definition), 456
goldilocks

theorem G, 402
Gram-Schmidt

column vectors
theorem GSPCV, 199

three vectors

example GSTV, 200
gram-schmidt

mathematica, 202
GS (technique, section PT), 684
GSP (subsection, section O), 198
GSP.MMA (computation), 202
GSPCV (theorem), 199
GSTV (example), 200
GT (subsection, section PD), 401

H
(archetype), 734

hermitian
definition HM, 261

HISAA (example), 66
HISAD (example), 67
HM (definition), 261
HMEM5 (example), 458
HMOE (theorem), 481
HMRE (theorem), 480
HMVEI (theorem), 67
homogeneous system

consistent
theorem HSC, 66

definition HS, 65
infinitely many solutions

theorem HMVEI, 67
homogeneous systems

linear independence, 155
homogenous system

Archetype C
example AHSAC, 65

HPDM (example), 497
HS (definition), 65
HSC (theorem), 66
HSE (section), 65
HUSAB (example), 66

I
(archetype), 739

I (technique, section PT), 695
IAP (example), 541
IAR (example), 534
IAS (example), 278
IAV (example), 535
ICBM (theorem), 643
ICLT (theorem), 576
identity matrix

determinant, 434
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example IM, 80
IDLT (definition), 571
IDV (definition), 53
IFDVS (theorem), 598
IILT (theorem), 574
ILT (definition), 533
ILT (section), 533
ILTB (theorem), 541
ILTD (subsection, section ILT), 542
ILTD (theorem), 542
ILTIS (theorem), 575
ILTLI (subsection, section ILT), 541
ILTLI (theorem), 541
ILTLT (theorem), 574
ILTVR (example), 624
IM (definition), 80
IM (example), 80
IM (subsection, section MISLE), 240
IMILT (theorem), 625
IMR (theorem), 623
inconsistent linear systems

theorem ISRN, 55
independent, dependent variables

definition IDV, 53
indesxstring

example SSET, 677
indexstring

theorem DRCMA, 431
infinite solution set

example ISSI, 52
infinite solutions, 3× 4

example IS, 19
injective

example IAP, 541
example IAR, 534
not

example NIAO, 540
example NIAQ, 533
example NIAQR, 540

not, by dimension
example NIDAU, 542

polynomials to matrices
example IAV, 535

injective linear transformation
bases

theorem ILTB, 541
injective linear transformations

dimension

theorem ILTD, 542
inner product

anti-commutative
theorem IPAC, 194

example CSIP, 192
norm

theorem IPN, 195
notation, 192
positive

theorem PIP, 196
scalar multiplication

theorem IPSM, 193
vector addition

theorem IPVA, 193
inverse

composition of linear transformations
theorem ICLT, 576

example CMI, 243
example MI, 241
notation, 240
of a matrix, 240

invertible linear transformation
defined by invertible matrix

theorem IMILT, 625
invertible linear transformations

composition
theorem CIVLT, 576

IP (definition), 192
IP (notation), 192
IP (subsection, section O), 192
IPAC (theorem), 194
IPN (theorem), 195
IPSM (theorem), 193
IPVA (theorem), 193
IS (example), 19
isomorphic

multiple vector spaces
example MIVS, 598

vector spaces
example IVSAV, 578

isomorphic vector spaces
dimension

theorem IVSED, 579
example TIVS, 598

ISRN (theorem), 55
ISSI (example), 52
IV (subsection, section IVLT), 575
IVLT (definition), 571
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IVLT (section), 571
IVLT (subsection, section IVLT), 571
IVLT (subsection, section MR), 623
IVS (definition), 577
IVSAV (example), 578
IVSED (theorem), 579

J
(archetype), 744

K
(archetype), 749

kernel
injective linear transformation

theorem KILT, 539
isomorphic to null space

theorem KNSI, 618
linear transformation

example NKAO, 536
notation, 536
of a linear transformation

definition KLT, 536
pre-image, 539
subspace

theorem KLTS, 537
trivial

example TKAP, 538
via matrix representation

example KVMR, 619
KILT (theorem), 539
KLT (definition), 536
KLT (notation), 536
KLT (subsection, section ILT), 536
KLTS (theorem), 537
KNSI (theorem), 618
KPI (theorem), 539
KVMR (example), 619

L
(archetype), 753

L (technique, section PT), 682
LA (subsection, section WILA), 3
LC (definition), 335
LC (section), 103
LC (subsection, section LC), 103
LC (technique, section PT), 698
LCCV (definition), 103
LCM (example), 335
LDCAA (example), 159

LDHS (example), 157
LDP4 (example), 386
LDRN (example), 158
LDS (example), 153
LDS (section), 175
LDSS (subsection, section LDS), 175
leading ones

definition LO, 34
left null space

as row space, 296
definition LNS, 289
example LNS, 289
notation, 289
subspace

theorem LNSMS, 341
LI (definition), 349
LI (section), 153
LI (subsection, section LISS), 349
LIC (example), 353
LICAB (example), 159
LICV (definition), 153
LIHS (example), 156
LIM32 (example), 351
linear combination

system of equations
example ABLC, 104

definition LC, 335
definition LCCV, 103
example TLC, 103
linear transformation, 516
matrices

example LCM, 335
system of equations

example AALC, 105
linear combinations

solutions to linear systems
theorem SLSLC, 106

linear dependence
more vectors than size

theorem MVSLD, 158
linear independence

definition LI, 349
definition LICV, 153
homogeneous systems

theorem LIVHS, 155
injective linear transformation

theorem ILTLI, 541
matrices
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example LIM32, 351
orthogonal, 198
r and n

theorem LIVRN, 157
linear solve

mathematica, 58
linear system

consistent
theorem RCLS, 54

notation LS, 70
linear systems

notation
example MNSLE, 222
example NSLE, 70

linear transformation
polynomials to polynomials

example LTPP, 510
addition

definition LTA, 521
theorem MLTLT, 522
theorem SLTLT, 521

as matrix multiplication
example ALTMM, 611

basis of range
example BRLT, 561

checking
example ALT, 508

composition
definition LTC, 523
theorem CLTLT, 524

defined by a matrix
example LTM, 511

defined on a basis
example LTDB1, 517
example LTDB2, 517
example LTDB3, 518
theorem LTDB, 516

definition LT, 507
identity

definition IDLT, 571
injection

definition ILT, 533
inverse

theorem ILTLT, 574
inverse of inverse

theorem IILT, 574
invertible

definition IVLT, 571

example AIVLT, 571
invertible, injective and surjective

theorem ILTIS, 575
linear combination

theorem LTLC, 516
matrix of, 514

example MFLT, 513
example MOLT, 515

not
example NLT, 509

not invertible
example ANILT, 572

notation, 507
polynomials to matrices

example LTPM, 510
rank plus nullity

theorem RPNDD, 580
scalar multiple

example SMLT, 523
scalar multiplication

definition LTSM, 522
spanning range

theorem SSRLT, 560
sum

example STLT, 522
surjection

definition SLT, 551
vector space of, 523
zero vector

theorem LTTZZ, 511
linear transformation inverse

via matrix representation
example ILTVR, 624

linear transformations
compositions

example CTLT, 524
from matrices

theorem MBLT, 513
linearly dependent

r < n
example LDRN, 158

via homogeneous system
example LDHS, 157

linearly dependent columns
Archetype A

example LDCAA, 159
linearly dependent set

example LDS, 153
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linear combinations within
theorem DLDS, 175

polynomials
example LDP4, 386

linearly independent
crazy vector space

example LIC, 353
extending sets

theorem ELIS, 401
polynomials

example LIP4, 350
via homogeneous system

example LIHS, 156
linearly independent columns

Archetype B
example LICAB, 159

linearly independent set
example LIS, 155
example LLDS, 158

LINSB (example), 160
LINSM (subsection, section LI), 159
LIP4 (example), 350
LIS (example), 155
LISS (section), 349
LISV (subsection, section LI), 153
LIVHS (theorem), 155
LIVRN (theorem), 157
LLDS (example), 158
LNS (definition), 289
LNS (example), 289
LNS (notation), 289
LNS (subsection, section FS), 289
LNSMS (theorem), 341
LO (definition), 34
LS (notation), 70
LS.MMA (computation), 58
LT (chapter), 507
LT (definition), 507
LT (notation), 507
LT (section), 507
LT (subsection, section LT), 507
LTA (definition), 521
LTC (definition), 523
LTDB (theorem), 516
LTDB1 (example), 517
LTDB2 (example), 517
LTDB3 (example), 518
LTLC (subsection, section LT), 516

LTLC (theorem), 516
LTM (example), 511
LTPM (example), 510
LTPP (example), 510
LTSM (definition), 522
LTTZZ (theorem), 511

M
(archetype), 757

M (chapter), 207
M (definition), 29
M (notation), 29
MA (definition), 208
MA (example), 208
MAA (section), 671
MAA.GSP (computation, section MAA), 671
MAA.MM (computation, section MAA), 672
mathematica

gram-schmidt
computation GSP.MMA, 202

linear solve
computation LS.MMA, 58

matrix entry
computation ME.MMA, 29

matrix inverses
computation MI.MMA, 246

matrix multiplication
computation MM.MMA, 226

null space
computation NS.MMA, 138

row reduce
computation RR.MMA, 41

transpose of a matrix
computation TM.MMA, 212

vector form of solutions
computation VFSS.MMA, 140

vector linear combinations
computation VLC.MMA, 94

matrix
addition

definition MA, 208
augmented

definition AM, 30
complex conjugate

example CCM, 213
definition M, 29
equality

definition ME, 207
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notation, 207
example AM, 29
identity

definition IM, 80
nonsingular

definition NM, 79
notation, 29
of a linear transformation

theorem MLTCV, 514
orthogonal

definition OM, 258
orthogonal is invertible

theorem OMI, 259
product

example PTM, 225
example PTMEE, 227

product with vector
definition MVP, 221

rectangular, 79
scalar multiplication

definition MSM, 208
singular, 79
square

definition SQM, 79
submatrices

example SS, 418
submatrix

definition SM, 418
symmetric

definition SYM, 211
transpose

definition TM, 210
zero

definition ZM, 210
zero row

definition ZRM, 34
matrix addition

example MA, 208
matrix entries

notation, 29
matrix entry

mathematica, 29
ti83, 30
ti86, 30

matrix inverse
Archetype B, 246
computation

theorem CINSM, 245

nonsingular matrix
theorem NSI, 257

of a matrix inverse
theorem MIMI, 248

one-sided
theorem OSIS, 256

product
theorem SS, 247

scalar multiple
theorem MISM, 248

size 2 matrices
theorem TTMI, 242

transpose
theorem MIT, 248

uniqueness
theorem MIU, 247

matrix inverses
mathematica, 246

matrix multiplication
associativity

theorem MMA, 230
complex conjugation

theorem MMCC, 231
distributivity

theorem MMDAA, 229
entry-by-entry

theorem EMP, 227
identity matrix

theorem MMIM, 228
inner product

theorem MMIP, 231
mathematica, 226
noncommutative

example MMNC, 226
scalar matrix multiplication

theorem MMSMM, 229
systems of linear equations

theorem SLEMM, 222
transposes

theorem MMT, 232
zero matrix

theorem MMZM, 228
matrix product

as composition of linear transformations
example MPMR, 615

matrix representation
basis of eigenvectors

example MRBE, 652
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composition of linear transformations
theorem MRCLT, 614

definition MR, 607
invertible

theorem IMR, 623
multiple of a linear transformation

theorem MRMLT, 614
sum of linear transformations

theorem MRSLT, 613
theorem FTMR, 610

matrix representations
converting with change-of-basis

example MRCM, 649
example OLTTR, 607

matrix scalar multiplication
example MSM, 208

matrix vector space
dimension

theorem DM, 387
matrix-vector product

example MTV, 221
notation, 221

matrix:column space
definition CSM, 267

matrix:inverse
definition MI, 240

matrix:multiplication
definition MM, 225

matrix:row space
definition RSM, 274

MBC (example), 222
MBLT (theorem), 513
MCC (subsection, section MO), 213
MCN (definition), 675
MCN (subsection, section CNO), 675
MCSM (example), 269
MCT (theorem), 214
ME (definition), 207
ME (notation), 29, 207
ME (subsection, section PEE), 477
ME (technique, section PT), 692
ME (theorem), 478
ME.MMA (computation), 29
ME.TI83 (computation), 30
ME.TI86 (computation), 30
MEASM (subsection, section MO), 207
MFLT (example), 513
MI (definition), 240

MI (example), 241
MI (notation), 240
MI.MMA (computation), 246
MIMI (theorem), 248
MINSM (section), 255
MISLE (section), 239
MISM (theorem), 248
MIT (theorem), 248
MIU (theorem), 247
MIVS (example), 598
MLT (subsection, section LT), 511
MLTCV (theorem), 514
MLTLT (theorem), 522
MM (definition), 225
MM (section), 221
MM (subsection, section MM), 225
MM.MMA (computation), 226
MMA (theorem), 230
MMCC (theorem), 231
MMDAA (theorem), 229
MMEE (subsection, section MM), 226
MMIM (theorem), 228
MMIP (theorem), 231
MMNC (example), 226
MMSMM (theorem), 229
MMT (theorem), 232
MMZM (theorem), 228
MNEM (theorem), 480
MNSLE (example), 222
MO (section), 207
MOLT (example), 515
more variables than equations

example OSGMD, 57
theorem CMVEI, 57

MPMR (example), 615
MR (definition), 607
MR (section), 607
MRBE (example), 652
MRCB (theorem), 648
MRCLT (theorem), 614
MRCM (example), 649
MRMLT (theorem), 614
MRS (subsection, section CB), 648
MRSLT (theorem), 613
MSCN (example), 675
MSM (definition), 208
MSM (example), 208
MTV (example), 221
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MVNSE (subsection, section HSE), 68
MVP (definition), 221
MVP (notation), 221
MVP (subsection, section MM), 221
MVSLD (theorem), 158
MWIAA (example), 240

N
(archetype), 760

N (subsection, section O), 194
N (technique, section PT), 687
NDMS4 (example), 495
NEM (theorem), 478
NIAO (example), 540
NIAQ (example), 533
NIAQR (example), 540
NIDAU (example), 542
NKAO (example), 536
NLT (example), 509
NLTFO (subsection, section LT), 521
NM (definition), 79
NMPEM (theorem), 417
NOILT (theorem), 580
NOLT (definition), 579
NOLT (notation), 579
NOM (definition), 389
NOM (notation), 389
nonsingular

columns as basis
theorem CNSMB, 373

nonsingular matrices
linearly independent columns

theorem NSLIC, 159
nonsingular matrix

Archetype B
example NS, 80

column space, 273
elemntary matrices

theorem NMPEM, 417
equivalences

theorem NSME1, 85
theorem NSME2, 160
theorem NSME3, 257
theorem NSME4, 273
theorem NSME5, 374
theorem NSME6, 392
theorem NSME7, 437
theorem NSME8, 472

theorem NSME9, 626
matrix inverse, 257
null space

example NSNS, 82
nullity, 391
product of nonsingular matrices

theorem NPNT, 255
rank

theorem RNNSM, 391
row-reduced

theorem NSRRI, 81
trivial null space

theorem NSTNS, 82
unique solutions

theorem NSMUS, 83
nonsingular matrix, row-reduced

example NSRR, 81
norm

example CNSV, 195
inner product, 195
notation, 195

notation
AM, 70
CCCV, 191
CCN, 674
CSM, 267
CVA, 93
CVE, 92
CVSM, 94
D, 383
DM, 418
ELEM, 414
ES, 677
IP, 192
KLT, 536
LNS, 289
LS, 70
LT, 507
M, 29
ME, 29, 207
MI, 240
MVP, 221
NOLT, 579
NOM, 389
NSM, 71
NV, 195
RLT, 555
RO, 32
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ROLT, 579
ROM, 390
RREFA, 51
RSM, 274
SE, 678
SETM, 677
SM, 418
SSET, 677
SSV, 129
TM, 210
V, 68
VE, 68
VSCV, 91
ZM, 210
ZV, 68

notation for a linear system
example NSE, 14

NPNT (theorem), 255
NRFO (subsection, section MR), 613
NRREF (example), 35
NS (example), 80
NS.MMA (computation), 138
NSAO (example), 559
NSAQ (example), 551
NSAQR (example), 559
NSC2A (example), 333
NSC2S (example), 333
NSC2Z (example), 333
NSDAT (example), 562
NSDS (example), 137
NSE (example), 14
NSEAI (example), 71
NSI (theorem), 257
NSLE (example), 70
NSLIC (theorem), 159
NSLIL (example), 163
NSM (definition), 71
NSM (notation), 71
NSM (section), 79
NSM (subsection, section HSE), 70
NSM (subsection, section NSM), 79
NSME1 (theorem), 85
NSME2 (theorem), 160
NSME3 (theorem), 257
NSME4 (theorem), 273
NSME5 (theorem), 374
NSME6 (theorem), 392
NSME7 (theorem), 437

NSME8 (theorem), 472
NSME9 (theorem), 626
NSMI (subsection, section MINSM), 255
NSMS (theorem), 334
NSMUS (theorem), 83
NSNS (example), 82
NSRR (example), 81
NSRRI (theorem), 81
NSS (example), 82
NSSLI (subsection, section LI), 160
NSTNS (theorem), 82
Null space

as a span
example NSDS, 137

null space
Archetype I

example NSEAI, 71
basis

theorem BNS, 162
computation

example CNS1, 71
example CNS2, 72

isomorphic to kernel, 618
linearly independent basis

example LINSB, 160
mathematica, 138
matrix

definition NSM, 71
nonsingular matrix, 82
notation

notation NSM, 71
singular matrix, 82
spanning set

example SSNS, 136
theorem SSNS, 135

subspace
theorem NSMS, 334

null space span, linearly independent
Archetype L

example NSLIL, 163
nullity

computing, 390
injective linear transformation

theorem NOILT, 580
linear transformation

definition NOLT, 579
matrix, 390

definition NOM, 389
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notation, 389, 579
square matrix, 391

NV (definition), 195
NV (notation), 195

O
(archetype), 762

O (Property), 314
O (section), 191
OBC (subsection, section B), 374
OC (Property), 96
OD (subsection, section SD), 498
OLTTR (example), 607
OM (definition), 258
OM (Property), 209
OM (subsection, section MINSM), 258
OM3 (example), 258
OMI (theorem), 259
OMPIP (theorem), 260
one

column vectors
Property OC, 96

matrices
Property OM, 209

vectors
Property O, 314

ONFV (example), 202
ONS (definition), 201
ONTV (example), 201
OPM (example), 258
orthogonal

linear independence
theorem OSLI, 198

permutation matrix
example OPM, 258

set
example AOS, 197

set of vectors
definition OSV, 197

size 3
example OM3, 258

vector pairs
definition OV, 196

orthogonal matrices
columns

theorem COMOS, 259
orthogonal matrix

inner product

theorem OMPIP, 260
orthogonal vectors

example TOV, 196
orthonormal

definition ONS, 201
matrix columns

example OSMC, 260
orthonormal set

four vectors
example ONFV, 202

three vectors
example ONTV, 201

OSGMD (example), 57
OSIS (theorem), 256
OSLI (theorem), 198
OSMC (example), 260
OSV (definition), 197
OV (definition), 196
OV (subsection, section O), 196

P
(archetype), 765

P (appendix), 673
P (technique, section PT), 697
particular solutions

example PSNS, 120
PC (definition), 34
PCVS (example), 322
PD (section), 401
PDM (section), 429
PEE (section), 471
PEEF (theorem), 294
PI (definition), 519
PI (subsection, section LT), 519
PI (technique, section PT), 693
PIP (theorem), 196
pivot column

definition PC, 34
PM (example), 447
PM (subsection, section EE), 447
PMI (subsection, section MISLE), 247
PMM (subsection, section MM), 228
PMR (subsection, section MR), 618
polynomial

of a matrix
example PM, 447

polynomial vector space
dimension
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theorem DP, 387
pre-image

definition PI, 519
kernel

theorem KPI, 539
pre-images

example SPIAS, 519
Property

AA, 314
AAC, 96
AAM, 209
AC, 313
ACC, 96
ACM, 209
AI, 314
AIC, 96
AIM, 209
C, 313
CC, 96
CM, 209
DMAM, 209
DSA, 314
DSAC, 96
DSAM, 209
DVA, 314
DVAC, 96
O, 314
OC, 96
OM, 209
SC, 313
SCC, 96
SCM, 209
SMA, 314
SMAC, 96
SMAM, 209
Z, 314
ZC, 96
ZM, 209

PSHS (subsection, section LC), 119
PSM (subsection, section SD), 488
PSNS (example), 120
PSPHS (theorem), 119
PSS (subsection, section SSLE), 14
PSSLS (theorem), 57
PT (section), 679
PTM (example), 225
PTMEE (example), 227

Q

(archetype), 767

R
(archetype), 771

R (chapter), 591
range

full
example FRAN, 557

isomorphic to column space
theorem RCSI, 621

linear transformation
example RAO, 555

notation, 555
of a linear transformation

definition RLT, 555
pre-image

theorem RPI, 561
subspace

theorem RLTS, 557
surjective linear transformation

theorem RSLT, 558
via matrix representation

example RVMR, 622
rank

computing
theorem CRN, 390

linear transformation
definition ROLT, 579

matrix
definition ROM, 389
example RNM, 390

notation, 390, 579
of transpose

example RRTI, 406
square matrix

example RNSM, 391
surjective linear transformation

theorem ROSLT, 579
transpose

theorem RMRT, 405
rank+nullity

theorem RPNC, 391
RAO (example), 555
RCLS (theorem), 54
RCSI (theorem), 621
RD (subsection, section VS), 325
READ (subsection, section B), 377
READ (subsection, section CB), 663
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READ (subsection, section CRS), 280
READ (subsection, section D), 393
READ (subsection, section DM), 423
READ (subsection, section EE), 463
READ (subsection, section FS), 304
READ (subsection, section HSE), 73
READ (subsection, section ILT), 543
READ (subsection, section IVLT), 584
READ (subsection, section LC), 124
READ (subsection, section LDS), 184
READ (subsection, section LI), 163
READ (subsection, section LISS), 360
READ (subsection, section LT), 525
READ (subsection, section MINSM), 261
READ (subsection, section MISLE), 249
READ (subsection, section MM), 233
READ (subsection, section MO), 214
READ (subsection, section MR), 627
READ (subsection, section NSM), 86
READ (subsection, section O), 203
READ (subsection, section PD), 407
READ (subsection, section PDM), 439
READ (subsection, section PEE), 481
READ (subsection, section RREF), 41
READ (subsection, section S), 341
READ (subsection, section SD), 499
READ (subsection, section SLT), 563
READ (subsection, section SS), 142
READ (subsection, section SSLE), 21
READ (subsection, section TSS), 59
READ (subsection, section VO), 97
READ (subsection, section VR), 601
READ (subsection, section VS), 325
READ (subsection, section WILA), 8
reduced row-echelon form

analysis notation
notation RREFA, 51

definition RREF, 34
example NRREF, 35
example RREF, 34
extended

definition EEF, 293
notation

example RREFN, 52
unique

theorem RREFU, 122
reducing a span

example RSC5, 176

relation of linear dependence
definition RLD, 349
definition RLDCV, 153

REM (definition), 32
REMEF (theorem), 35
REMES (theorem), 32
REMRS (theorem), 275
RES (example), 183
RLD (definition), 349
RLDCV (definition), 153
RLT (definition), 555
RLT (notation), 555
RLT (subsection, section SLT), 555
RLTS (theorem), 557
RMRT (theorem), 405
RNLT (subsection, section IVLT), 579
RNM (example), 390
RNM (subsection, section D), 389
RNNSM (subsection, section D), 391
RNNSM (theorem), 391
RNSM (example), 391
RO (definition), 31
RO (notation), 32
ROLT (definition), 579
ROLT (notation), 579
ROM (definition), 389
ROM (notation), 390
ROSLT (theorem), 579
row operations

definition RO, 31
elementary matrices, 414, 415
notation, 32

row reduce
mathematica, 41
ti83, 41
ti86, 41

row space
Archetype I

example RSAI, 274
as column space, 278
basis

example RSB, 371
theorem BRS, 277

matrix, 274
notation, 274
row-equivalent matrices

theorem REMRS, 275
subspace
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theorem RSMS, 341
row-equivalent matrices

definition REM, 32
example TREM, 32
row space, 275
row spaces

example RSREM, 277
theorem REMES, 32

row-reduce
the verb

definition RR, 40
row-reduced matrices

theorem REMEF, 35
RPI (theorem), 561
RPNC (theorem), 391
RPNDD (theorem), 580
RR (definition), 40
RR.MMA (computation), 41
RR.TI83 (computation), 41
RR.TI86 (computation), 41
RREF (definition), 34
RREF (example), 34
RREF (section), 29
RREFA (notation), 51
RREFN (example), 52
RREFU (theorem), 122
RRTI (example), 406
RS (example), 372
RSAI (example), 274
RSB (example), 371
RSC5 (example), 176
RSLT (theorem), 558
RSM (definition), 274
RSM (notation), 274
RSM (subsection, section CRS), 274
RSMS (theorem), 341
RSNS (example), 334
RSREM (example), 277
RSSC4 (example), 182
RT (subsection, section PD), 405
RVMR (example), 622

S
(archetype), 774

S (definition), 329
S (example), 80
S (section), 329
SAA (example), 38

SAB (example), 37
SABMI (example), 239
SAE (example), 39
SAN (example), 560
SAR (example), 552
SAV (example), 554
SC (Property), 313
SC (subsection, section S), 340
SC3 (example), 329
SCAA (example), 131
SCAB (example), 133
SCAD (example), 139
scalar closure

column vectors
Property SCC, 96

matrices
Property SCM, 209

vectors
Property SC, 313

scalar multiple
matrix inverse, 248

scalar multiplication
canceling scalars

theorem CSSM, 324
canceling vectors

theorem CVSM, 324
zero scalar

theorem ZSSM, 321
zero vector

theorem ZVSM, 321
zero vector result

theorem SMEZV, 323
scalar multiplication associativity

column vectors
Property SMAC, 96

matrices
Property SMAM, 209

vectors
Property SMA, 314

SCB (theorem), 651
SCC (Property), 96
SCM (Property), 209
SD (section), 487
SE (definition), 678
SE (notation), 678
SEE (example), 446
SEEF (example), 294
SER (theorem), 489
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set
definition SET, 677
empty

definition ES, 677
equality

definition SE, 678
notation, 678

membership
example SETM, 677
notation, 677

subset, 677
SET (definition), 677
SET (section), 677
SETM (example), 677
SETM (notation), 677
shoes, 247
SHS (subsection, section HSE), 65
SI (subsection, section IVLT), 577
SIM (definition), 487
similar matrices

equal eigenvalues
example EENS, 490

eual eigenvalues
theorem SMEE, 489

example SMS3, 488
example SMS5, 487

similarity
definition SIM, 487
equivalence relation

theorem SER, 489
singular matrix

Archetype A
example S, 80

null space
example NSS, 82

singular matrix, row-reduced
example SRR, 81

SLE (chapter), 3
SLE (definition), 13
SLELT (subsection, section IVLT), 582
SLEMM (theorem), 222
SLSLC (theorem), 106
SLT (definition), 551
SLT (section), 551
SLTB (theorem), 561
SLTD (subsection, section SLT), 562
SLTD (theorem), 562
SLTLT (theorem), 521

SM (definition), 418
SM (notation), 418
SM (subsection, section SD), 487
SM32 (example), 338
SMA (Property), 314
SMAC (Property), 96
SMAM (Property), 209
SMEE (theorem), 489
SMEZV (theorem), 323
SMLT (example), 523
SMS (theorem), 211
SMS3 (example), 488
SMS5 (example), 487
SMZD (theorem), 436
SMZE (theorem), 472
SNSCM (theorem), 258
socks, 247
SOL (subsection, section B), 381
SOL (subsection, section CB), 667
SOL (subsection, section CRS), 285
SOL (subsection, section D), 397
SOL (subsection, section DM), 427
SOL (subsection, section EE), 467
SOL (subsection, section FS), 309
SOL (subsection, section HSE), 77
SOL (subsection, section ILT), 547
SOL (subsection, section IVLT), 587
SOL (subsection, section LC), 127
SOL (subsection, section LDS), 187
SOL (subsection, section LI), 169
SOL (subsection, section LISS), 363
SOL (subsection, section LT), 529
SOL (subsection, section MINSM), 265
SOL (subsection, section MISLE), 253
SOL (subsection, section MM), 237
SOL (subsection, section MO), 219
SOL (subsection, section MR), 633
SOL (subsection, section NSM), 89
SOL (subsection, section PD), 411
SOL (subsection, section PDM), 443
SOL (subsection, section PEE), 485
SOL (subsection, section RREF), 47
SOL (subsection, section S), 345
SOL (subsection, section SD), 503
SOL (subsection, section SLT), 567
SOL (subsection, section SS), 147
SOL (subsection, section SSLE), 25
SOL (subsection, section TSS), 63
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SOL (subsection, section VO), 101
SOL (subsection, section VR), 605
SOL (subsection, section WILA), 11
solution set

theorem PSPHS, 119
solution sets

possibilities
theorem PSSLS, 57

solution vector
definition SV, 69

solving homogeneous system
Archetype A

example HISAA, 66
Archetype B

example HUSAB, 66
Archetype D

example HISAD, 67
solving nonlinear equations

example STNE, 13
SP4 (example), 332
span

basic
example ABS, 129

basis
theorem BS, 180

definition SS, 336
improved

example IAS, 278
notation, 129
reducing

example RSSC4, 182
reduction

example RS, 372
removing vectors

example COV, 178
reworking elements

example RES, 183
set of polynomials

example SSP, 337
subspace

theorem SSS, 336
span of columns

Archetype A
example SCAA, 131

Archetype B
example SCAB, 133

Archetype D
example SCAD, 139

span:definition
definition SSCV, 129

spanning set
crazy vector space

example SSC, 357
definition TSVS, 354
matrices

example SSM22, 356
more vectors

theorem SSLD, 383
polynomials

example SSP4, 354
SPIAS (example), 519
SQM (definition), 79
SRR (example), 81
SS (definition), 336
SS (example), 418
SS (section), 129
SS (subsection, section LISS), 354
SS (theorem), 247
SSC (example), 357
SSCV (definition), 129
SSET (definition), 677
SSET (example), 677
SSET (notation), 677
SSLD (theorem), 383
SSLE (section), 13
SSM22 (example), 356
SSNS (example), 136
SSNS (subsection, section SS), 135
SSNS (theorem), 135
SSP (example), 337
SSP4 (example), 354
SSRLT (theorem), 560
SSS (theorem), 336
SSSLT (subsection, section SLT), 560
SSV (notation), 129
SSV (subsection, section SS), 129
STLT (example), 522
STNE (example), 13
submatrix

notation, 418
subset

definition SSET, 677
notation, 677

subspace
as null space

example RSNS, 334
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characterized
example ASC, 598

definition S, 329
in P4

example SP4, 332
not, additive closure

example NSC2A, 333
not, scalar closure

example NSC2S, 333
not, zero vector

example NSC2Z, 333
testing

theorem TSS, 331
trivial

definition TS, 334
verification

example SC3, 329
example SM32, 338

subspaces
equal dimension

theorem EDYES, 405
surjective

Archetype N
example SAN, 560

example SAR, 552
not

example NSAQ, 551
example NSAQR, 559

not, Archetype O
example NSAO, 559

not, by dimension
example NSDAT, 562

polynomials to matrices
example SAV, 554

surjective linear transformation
bases

theorem SLTB, 561
surjective linear transformations

dimension
theorem SLTD, 562

SUV (definition), 242
SUVB (theorem), 367
SUVOS (example), 197
SV (definition), 69
SVP4 (example), 404
SYM (definition), 211
SYM (example), 211
symmetric matrices

theorem SMS, 211
symmetric matrix

example SYM, 211
system of equations

vector equality
example VESE, 92

system of linear equations
definition SLE, 13

T
(archetype), 774

T (part), 779
T (technique, section PT), 681
TCSD (example), 422
theorem

AISM, 322
AIU, 321
BCS, 270
BIS, 387
BNS, 162
BRS, 277
BS, 180
CB, 643
CCRA, 674
CCRM, 675
CCT, 675
CFDVS, 597
CILTI, 543
CINSM, 245
CIVLT, 576
CLI, 599
CLTLT, 524
CMVEI, 57
CNSMB, 373
COB, 375
COMOS, 259
CRMA, 213
CRMSM, 214
CRN, 390
CRSM, 191
CRVA, 191
CSCS, 268
CSLTS, 563
CSMS, 340
CSNSM, 273
CSRN, 56
CSRST, 278
CSS, 599
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CSSM, 324
CVSM, 324
DC, 491
DCM, 387
DCP, 477
DEC, 421
DED, 496
DEM, 435
DEMMM, 435
DER, 419
DERC, 431
DFS, 406
DIM, 434
DLDS, 175
DM, 387
DMLE, 494
DMST, 419
DP, 387
DRCM, 430
DRCMA, 431
DRCS, 429
DRMM, 438
DT, 421
DZRC, 429
EDELI, 471
EDYES, 405
EER, 654
EIM, 475
ELIS, 401
EMDRO, 415
EMHE, 449
EMMVP, 224
EMN, 417
EMNS, 455
EMP, 227
EMRCP, 453
EMS, 454
EOMP, 473
EOPSS, 16
EPM, 474
ERMCP, 476
ESMM, 473
ETM, 476
FS, 296
FTMR, 610
FVCS, 56
G, 402
GSPCV, 199

HMOE, 481
HMRE, 480
HMVEI, 67
HSC, 66
ICBM, 643
ICLT, 576
IFDVS, 598
IILT, 574
ILTB, 541
ILTD, 542
ILTIS, 575
ILTLI, 541
ILTLT, 574
IMILT, 625
IMR, 623
IPAC, 194
IPN, 195
IPSM, 193
IPVA, 193
ISRN, 55
IVSED, 579
KILT, 539
KLTS, 537
KNSI, 618
KPI, 539
LIVHS, 155
LIVRN, 157
LNSMS, 341
LTDB, 516
LTLC, 516
LTTZZ, 511
MBLT, 513
MCT, 214
ME, 478
MIMI, 248
MISM, 248
MIT, 248
MIU, 247
MLTCV, 514
MLTLT, 522
MMA, 230
MMCC, 231
MMDAA, 229
MMIM, 228
MMIP, 231
MMSMM, 229
MMT, 232
MMZM, 228
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MNEM, 480
MRCB, 648
MRCLT, 614
MRMLT, 614
MRSLT, 613
MVSLD, 158
NEM, 478
NMPEM, 417
NOILT, 580
NPNT, 255
NSI, 257
NSLIC, 159
NSME1, 85
NSME2, 160
NSME3, 257
NSME4, 273
NSME5, 374
NSME6, 392
NSME7, 437
NSME8, 472
NSME9, 626
NSMS, 334
NSMUS, 83
NSRRI, 81
NSTNS, 82
OMI, 259
OMPIP, 260
OSIS, 256
OSLI, 198
PEEF, 294
PIP, 196
PSPHS, 119
PSSLS, 57
RCLS, 54
RCSI, 621
REMEF, 35
REMES, 32
REMRS, 275
RLTS, 557
RMRT, 405
RNNSM, 391
ROSLT, 579
RPI, 561
RPNC, 391
RPNDD, 580
RREFU, 122
RSLT, 558
RSMS, 341

SCB, 651
SER, 489
SLEMM, 222
SLSLC, 106
SLTB, 561
SLTD, 562
SLTLT, 521
SMEE, 489
SMEZV, 323
SMS, 211
SMZD, 436
SMZE, 472
SNSCM, 258
SS, 247
SSLD, 383
SSNS, 135
SSRLT, 560
SSS, 336
SUVB, 367
TMA, 212
TMSM, 212
TSS, 331
TT, 212
TTMI, 242
VAC, 323
VFSLS, 113
VRI, 596
VRILT, 597
VRLT, 591
VRRB, 359
VRS, 596
VSLT, 523
VSPCV, 96
VSPM, 209
ZSSM, 321
ZVSM, 321
ZVU, 320

ti83
matrix entry

computation ME.TI83, 30
row reduce

computation RR.TI83, 41
vector linear combinations

computation VLC.TI83, 95
ti86

matrix entry
computation ME.TI86, 30

row reduce
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computation RR.TI86, 41
transpose of a matrix

computation TM.TI86, 213
vector linear combinations

computation VLC.TI86, 95
TIVS (example), 598
TKAP (example), 538
TLC (example), 103
TM (definition), 210
TM (example), 210
TM (notation), 210
TM.MMA (computation), 212
TM.TI86 (computation), 213
TMA (theorem), 212
TMP (example), 4
TMSM (theorem), 212
TOV (example), 196
trail mix

example TMP, 4
transpose

matrix scalar multiplication
theorem TMSM, 212

example TM, 210
matrix addition

theorem TMA, 212
matrix inverse, 248
notation, 210
scalar multiplication, 212

transpose of a matrix
mathematica, 212
ti86, 213

transpose of a transpose
theorem TT, 212

TREM (example), 32
trivial solution

system of equations
definition TSHSE, 66

TS (definition), 334
TS (subsection, section S), 330
TSHSE (definition), 66
TSM (subsection, section MO), 210
TSS (section), 51
TSS (subsection, section S), 335
TSS (theorem), 331
TSVS (definition), 354
TT (theorem), 212
TTMI (theorem), 242
TTS (example), 14

typical systems, 2× 2
example TTS, 14

U
(archetype), 774

U (technique, section PT), 691
unique solution, 3× 3

example US, 18
example USR, 33

unit vectors
basis

theorem SUVB, 367
definition SUV, 242
orthogonal

example SUVOS, 197
URREF (subsection, section LC), 122
US (example), 18
USR (example), 33

V
(archetype), 774

V (chapter), 91
V (notation), 68
VA (example), 93
VAC (theorem), 323
VE (notation), 68
VEASM (subsection, section VO), 92
vector

addition
definition CVA, 93

column
definition CV, 68

equality
definition CVE, 92
notation, 92

inner product
definition IP, 192

norm
definition NV, 195

notation, 68
of constants

definition VOC, 69
product with matrix, 221, 225
scalar multiplication

definition CVSM, 93
vector addition

example VA, 93
vector form of solutions

Archetype D
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example VFSAD, 108
Archetype I

example VFSAI, 116
Archetype L

example VFSAL, 117
example VFS, 110
mathematica, 140
theorem VFSLS, 113

vector linear combinations
mathematica, 94
ti83, 95
ti86, 95

vector representation
example AVR, 358
example VRC4, 593
injective

theorem VRI, 596
invertible

theorem VRILT, 597
linear transformation

definition VR, 591
theorem VRLT, 591

surjective
theorem VRS, 596

theorem VRRB, 359
vector representations

polynomials
example VRP2, 595

vector scalar multiplication
example CVSM, 94

vector space
characterization

theorem CFDVS, 597
definition VS, 313
infinite dimension

example VSPUD, 389
linear transformations

theorem VSLT, 523
vector space of column vectors

notation, 91
vector space of functions

example VSF, 317
vector space of infinite sequences

example VSIS, 317
vector space of matrices

example VSM, 315
vector space of matrices:definition

definition VSM, 207

vector space of polynomials
example VSP, 316

vector space properties
column vectors

theorem VSPCV, 96
matrices

theorem VSPM, 209
vector space, crazy

example CVS, 318
vector space, singleton

example VSS, 317
vector space:definition

definition VSCV, 91
vector spaces

isomorphic
definition IVS, 577
theorem IFDVS, 598

vectory entry
notation, 68

VESE (example), 92
VFS (example), 110
VFSAD (example), 108
VFSAI (example), 116
VFSAL (example), 117
VFSLS (theorem), 113
VFSS (subsection, section LC), 108
VFSS.MMA (computation), 140
VLC.MMA (computation), 94
VLC.TI83 (computation), 95
VLC.TI86 (computation), 95
VO (section), 91
VOC (definition), 69
VR (definition), 591
VR (section), 591
VR (subsection, section LISS), 358
VRC4 (example), 593
VRI (theorem), 596
VRILT (theorem), 597
VRLT (theorem), 591
VRP2 (example), 595
VRRB (theorem), 359
VRS (theorem), 596
VS (chapter), 313
VS (definition), 313
VS (section), 313
VS (subsection, section VS), 313
VSCV (definition), 91
VSCV (example), 315
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VSCV (notation), 91
VSF (example), 317
VSIS (example), 317
VSLT (theorem), 523
VSM (definition), 207
VSM (example), 315
VSP (example), 316
VSP (subsection, section MO), 209
VSP (subsection, section VO), 95
VSP (subsection, section VS), 320
VSPCV (theorem), 96
VSPM (theorem), 209
VSPUD (example), 389
VSS (example), 317

W
(archetype), 775

WILA (section), 3

Z (Property), 314
ZC (Property), 96
zero matrix

notation, 210
zero vector

column vectors
Property ZC, 96

definition ZV, 68
matrices

Property ZM, 209
notation, 68
unique

theorem ZVU, 320
vectors

Property Z, 314
ZM (definition), 210
ZM (notation), 210
ZM (Property), 209
ZNDAB (example), 437
ZRM (definition), 34
ZSSM (theorem), 321
ZV (definition), 68
ZV (notation), 68
ZVSM (theorem), 321
ZVU (theorem), 320
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