Flash Cards

to accompany

A First Course in Linear Algebra

by Robert A. Beezer Department of Mathematics and Computer Science University of Puget Sound

Version 1.02

© 2004 Robert A. Beezer.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the GNU Free Documentation License can be found at http://www.gnu.org/copyleft/fdl.html and is incorporated here by this reference.

The most recent version of this work can always be found at http://linear.ups.edu.

Definition SLE System of Linear Equations

A system of linear equations is a collection of m equations in the variable quantities $x_1, x_2, x_3, \ldots, x_n$ of the form,

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$:

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

where the values of a_{ij} , b_i and x_j are from the set of complex numbers, \mathbb{C} .

©2005, 2006 Robert A. Beezer

1

 Definition ESYS
 Equivalent Systems
 2

 Two systems of linear equations are equivalent if their solution sets are equal.
 (2)

 (©2005, 2006
 Robert A. Beezer

Definition EO Equation Operations

Given a system of linear equations, the following three operations will transform the system into a different one, and each operation is known as an **equation operation**.

- 1. Swap the locations of two equations in the list of equations.
- 2. Multiply each term of an equation by a nonzero quantity.
- 3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

©2005, 2006 Robert A. Beezer

Theorem EOPSS Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of Definition EO to a system of linear equations (Definition SLE), then the original system and the transformed system are equivalent.

©2005, 2006 Robert A. Beezer

4

Definition M Matrix

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns. We will use upper-case Latin letters from the start of the alphabet (A, B, C, ...) to denote matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets — the distinction is not important. Rows of a matrix will be referenced starting at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the notation $[A]_{ij}$ will refer to the complex number in row i and column j of A.

©2005, 2006 Robert A. Beezer

Definition CV Column Vector

A column vector of size m is an ordered list of m numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a vector. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$. Some books like to write vectors with arrows, such as \vec{u} . Writing by hand, some like to put arrows on top of the symbol, or a tilde underneath the symbol, as in u. To refer to the entry or component that is number i in the list that is the vector \mathbf{v} we write $[\mathbf{v}]_i$.

©2005, 2006 Robert A. Beezer

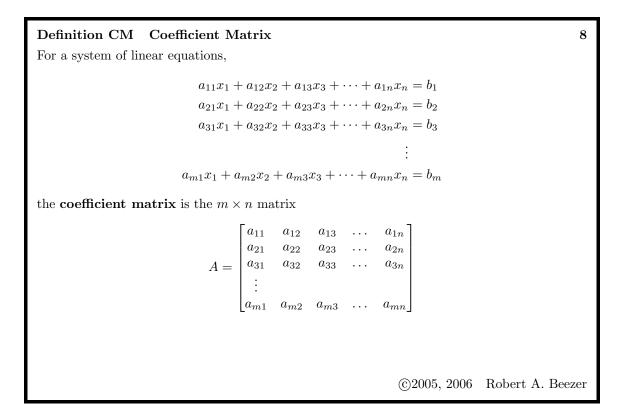
6

Definition ZCV Zero Column Vector

The **zero vector** of size m is the column vector of size m where each entry is the number zero,

$$\mathbf{0} = \begin{bmatrix} 0\\0\\0\\\vdots\\0 \end{bmatrix}$$

or more compactly, $\left[\mathbf{0}\right]_i=0$ for $1\leq i\leq m.$



Definition VOC Vector of Constants

For a system of linear equations,

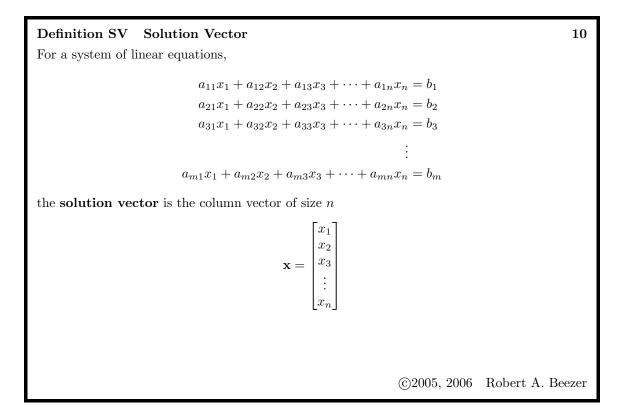
 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$:

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

the **vector of constants** is the column vector of size m

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$





9

Definition LSMR Matrix Representation of a Linear System

If A is the coefficient matrix of a system of linear equations and **b** is the vector of constants, then we will write $\mathcal{LS}(A, \mathbf{b})$ as a shorthand expression for the system of linear equations, which we will refer to as the **matrix representation** of the linear system.

©2005, 2006 Robert A. Beezer

Definition AM Augmented Matrix

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of constants **b**. Then the **augmented matrix** of the system of equations is the $m \times (n + 1)$ matrix whose first n columns are the columns of A and whose last column (number n + 1) is the column vector **b**. This matrix will be written as $[A \mid \mathbf{b}]$.

©2005, 2006 Robert A. Beezer

 $\mathbf{12}$

Definition RO Row Operations

The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a **row operation**.

- 1. Swap the locations of two rows.
- 2. Multiply each entry of a single row by a nonzero quantity.
- 3. Multiply each entry of one row by some quantity, and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

- 1. $R_i \leftrightarrow R_j$: Swap the location of rows *i* and *j*.
- 2. αR_i : Multiply row *i* by the nonzero scalar α .
- 3. $\alpha R_i + R_j$: Multiply row *i* by the scalar α and add to row *j*.

©2005, 2006 Robert A. Beezer

Definition REM Row-Equivalent Matrices

Two matrices, A and B, are **row-equivalent** if one can be obtained from the other by a sequence of row operations.

©2005, 2006 Robert A. Beezer

13

 $\mathbf{14}$

Theorem REMES Row-Equivalent Matrices represent Equivalent Systems 15 Suppose that *A* and *B* are row-equivalent augmented matrices. Then the systems of linear equations that they represent are equivalent systems.

©2005, 2006 Robert A. Beezer

16

Definition RREF Reduced Row-Echelon Form

A matrix is in **reduced row-echelon form** if it meets all of the following conditions:

- 1. A row where every entry is zero lies below any row that contains a nonzero entry.
- 2. The leftmost nonzero entry of a row is equal to 1.
- 3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
- 4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If s > i, then t > j.

A row of only zero entries will be called a **zero row** and the leftmost nonzero entry of a nonzero row will be called a **leading 1**. The number of nonzero rows will be denoted by r. A column containing a leading 1 will be called a **pivot column**. The set of column indices for all of the pivot columns will be denoted by $D = \{d_1, d_2, d_3, \ldots, d_r\}$ where $d_1 < d_2 < d_3 < \cdots < d_r$, while the columns that are not pivot colums will be denoted as $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ where $f_1 < f_2 < f_3 < \cdots < f_{n-r}$.

Theorem REMEF Row-Equivalent Matrix in Echelon Form Suppose A is a matrix. Then there is a matrix B so that 1. A and B are row-equivalent. 2. B is in reduced row-echelon form. ©2005, 2006 Robert A. Beezer

Definition RR Row-Reducing

To row-reduce the matrix A means to apply row operations to A and arrive at a row-equivalent matrix B in reduced row-echelon form.

©2005, 2006 Robert A. Beezer

 $\mathbf{18}$

17

Definition CS Consistent System

A system of linear equations is **consistent** if it has at least one solution. Otherwise, the system is called **inconsistent**.

©2005, 2006 Robert A. Beezer

Definition IDV Independent and Dependent Variables

Suppose A is the augmented matrix of a consistent system of linear equations and B is a rowequivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not the last column. Then the variable x_j is **dependent**. A variable that is not dependent is called **independent** or **free**.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{20}$

Theorem RCLS Recognizing Consistency of a Linear System

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column n + 1 of B.

©2005, 2006 Robert A. Beezer

 $\mathbf{21}$

 $\mathbf{22}$

Theorem ISRN Inconsistent Systems, r and n

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent.

Theorem CSRN Consistent Systems, r and n

Suppose A is the augmented matrix of a *consistent* system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If r = n, then the system has a unique solution, and if r < n, then the system has infinitely many solutions.

©2005, 2006 Robert A. Beezer

 $\mathbf{23}$

 $\mathbf{24}$

Theorem FVCS Free Variables for Consistent Systems

Suppose A is the augmented matrix of a *consistent* system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with n - r free variables.

Theorem PSSLS Possible Solution Sets for Linear Systems

A system of linear equations has no solutions, a unique solution or infinitely many solutions.

©2005, 2006 Robert A. Beezer

 $\mathbf{25}$

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions 26

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the system has infinitely many solutions.

Definition HS Homogeneous System

A system of linear equations, $\mathcal{LS}(A, \mathbf{b})$ is **homogeneous** if the vector of constants is the zero vector, in other words, $\mathbf{b} = \mathbf{0}$.

©2005, 2006 Robert A. Beezer

 $\mathbf{27}$

Theorem HSC	Homogeneous Systems are Consistent	28
Suppose that a sy	stem of linear equations is homogeneous. Then the system is consistent.	
	©2005, 2006 Robert A. Be	ezer

Definition TSHSE	Trivial Solution to Homogeneous Systems	of Equations 29
	bus system of linear equations has n variables. e. $\mathbf{x} = 0$) is called the trivial solution .	The solution $x_1 = 0$,
	$\odot 2005, 2$	2006 Robert A. Beezer

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions 30

Suppose that a homogeneous system of linear equations has m equations and n variables with n > m. Then the system has infinitely many solutions.

Definition NSM Null Space of a Matrix

The **null space** of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{LS}(A, \mathbf{0})$.

©2005, 2006 Robert A. Beezer

Definition	\mathbf{SQM}	Square	Matrix
------------	----------------	--------	--------

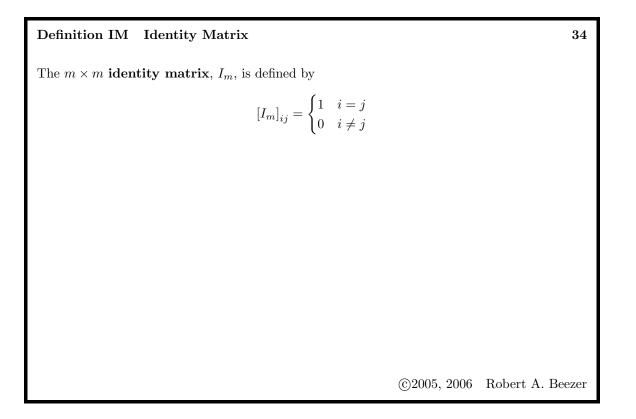
A matrix with m rows and n columns is **square** if m = n. In this case, we say the matrix has **size** n. To emphasize the situation when a matrix is not square, we will call it **rectangular**.

©2005, 2006 Robert A. Beezer

 $\mathbf{32}$

Definition NM Nonsingular Matrix

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{LS}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, i.e. the system has *only* the trivial solution. Then we say that A is a **nonsingular** matrix. Otherwise we say A is a **singular** matrix.



Theorem NMRRI Nonsingular Matrices Row Reduce to the Identity matrix 35

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

Theorem NMTNS	Nonsingular Matrices have Trivial Null Spaces 3	6
	quare matrix. Then A is nonsingular if and only if the null space of A he zero vector, i.e. $\mathcal{N}(A) = \{0\}.$	1,
	©2005, 2006 Robert A. Beeze	er

Theorem NMUS Nonsingular Matrices and Unique Solutions

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b} .

Theorem NME1	Nonsingular Matrix Equivalences, Round 1	38
Suppose that A is a	square matrix. The following are equivalent.	
1. A is nonsingul	ar.	
2. A row-reduces	to the identity matrix.	
3. The null space	of A contains only the zero vector, $\mathcal{N}(A) = \{0\}.$	
4. The linear sys	tem $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible cl	hoice of \mathbf{b} .
	$\odot 2005, 2006$	Robert A. Beezer

Definition VSCV	Vector Space of Column Vectors 39)
The vector space \mathbb{C}^m the set of complex n	is the set of all column vectors (Definition CV) of size m with entries from umbers, \mathbb{C} .	1
	©2005, 2006 Robert A. Beezen	

Definition CVE	Column Vector E	quality		40
The vectors ${\bf u}$ and	\mathbf{v} are equal , written	$\mathbf{u} = \mathbf{v}$ provided the	hat	
	$\left[\mathbf{u} ight]_{i}=\left[\mathbf{v} ight]_{i}$		$1 \leq i \leq m$	
			©2005, 2006	Robert A. Beezer

Definition CVA	Column Vector Addition		41	
Given the vectors ${\bf u}$ and ${\bf v}$ the ${\bf sum}$ of ${\bf u}$ and ${\bf v}$ is the vector ${\bf u}+{\bf v}$ defined by				
	$\left[\mathbf{u}+\mathbf{v}\right]_i=\left[\mathbf{u}\right]_i+\left[\mathbf{v}\right]_i$	$1 \leq i \leq m$		
		©2005, 2006 Rok	pert A. Beezer	

Definition CVSM	Column Vector Scalar Multip	olication	42
Given the vector ${\bf u}$ an	nd the scalar $\alpha \in \mathbb{C}$, the scalar m	ultiple of u by α , α	\mathbf{u} is defined by
	$\left[\alpha \mathbf{u}\right]_{i}=\alpha\left[\mathbf{u}\right]_{i}$	$1 \leq i \leq m$	
		Q2005 2006	
		©2005, 2006	Robert A. Beezer

Theorem VSPCVVector Space Properties of Column Vectors43Suppose that \mathbb{C}^m is the set of column vectors of size m (Definition VSCV) with addition and
scalar multiplication as defined in Definition CVA and Definition CVSM. Then43

- ACC Additive Closure, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} \in \mathbb{C}^m$.
- SCC Scalar Closure, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha \mathbf{u} \in \mathbb{C}^m$.
- CC Commutativity, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- AAC Additive Associativity, Column Vectors If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^m$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- ZC Zero Vector, Column Vectors There is a vector, 0, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^m$.
- AIC Additive Inverses, Column Vectors If $\mathbf{u} \in \mathbb{C}^m$, then there exists a vector $-\mathbf{u} \in \mathbb{C}^m$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- SMAC Scalar Multiplication Associativity, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- DVAC Distributivity across Vector Addition, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- DSAC Distributivity across Scalar Addition, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.
- OC One Column Vectors If $\mathbf{u} \in \mathbb{C}^m$ then $1\mathbf{u} = \mathbf{u}$

©2005, 2006 Robert A. Beezer

44

Definition LCCV Linear Combination of Column Vectors

Given *n* vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ from \mathbb{C}^m and *n* scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$, their **linear** combination is the vector

 $\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3 + \dots + \alpha_n\mathbf{u}_n.$

Theorem SLSLC Solutions to Linear Systems are Linear Combinations

Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$. Then \mathbf{x} is a solution to the linear system of equations $\mathcal{LS}(A, \mathbf{b})$ if and only if

$$[\mathbf{x}]_1 \mathbf{A}_1 + [\mathbf{x}]_2 \mathbf{A}_2 + [\mathbf{x}]_3 \mathbf{A}_3 + \dots + [\mathbf{x}]_n \mathbf{A}_n = \mathbf{b}$$

©2005, 2006 Robert A. Beezer

 $\mathbf{45}$

46

Theorem VFSLS Vector Form of Solutions to Linear Systems

Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{LS}(A, \mathbf{b})$ of m equations in n variables. Let B be a row-equivalent $m \times (n + 1)$ matrix in reduced row-echelon form. Suppose that B has r nonzero rows, columns without leading 1's with indices $F = \{f_1, f_2, f_3, \ldots, f_{n-r}, n+1\}$, and columns with leading 1's (pivot columns) having indices $D = \{d_1, d_2, d_3, \ldots, d_r\}$. Define vectors $\mathbf{c}, \mathbf{u}_j, 1 \leq j \leq n-r$ of size n by

$$\begin{aligned} \left[\mathbf{c} \right]_{i} &= \begin{cases} 0 & \text{if } i \in F \\ [B]_{k,n+1} & \text{if } i \in D, \, i = d_{k} \end{cases} \\ \left[\mathbf{u}_{j} \right]_{i} &= \begin{cases} 1 & \text{if } i \in F, \, i = f_{j} \\ 0 & \text{if } i \in F, \, i \neq f_{j} \\ -[B]_{k,f_{j}} & \text{if } i \in D, \, i = d_{k} \end{cases} \end{aligned}$$

Then the set of solutions to the system of equations $\mathcal{LS}(A, \mathbf{b})$ is

$$S = \{ \mathbf{c} + x_{f_1} \mathbf{u}_1 + x_{f_2} \mathbf{u}_2 + x_{f_3} \mathbf{u}_3 + \dots + x_{f_{n-r}} \mathbf{u}_{n-r} \mid x_{f_1}, x_{f_2}, x_{f_3}, \dots, x_{f_{n-r}} \in \mathbb{C} \}$$

Theorem PSPHS Particular Solution Plus Homogeneous Solutions 47 Suppose that **w** is one solution to the linear system of equations $\mathcal{LS}(A, b)$. Then **y** is a solution to $\mathcal{LS}(A, b)$ if and only if $\mathbf{y} = \mathbf{w} + \mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$.

Theorem RREFU Reduced Row-Echelon Form is Unique	48
Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are not to A and in reduced row-echelon form. Then $B = C$.	row-equivalent
©2005, 2006 Rol	bert A. Beezer

Definition SSCV Span of a Set of Column Vectors

Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p}$, their **span**, $\langle S \rangle$, is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p$. Symbolically,

$$\langle S \rangle = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_p \mathbf{u}_p \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le p \right\}$$
$$= \left\{ \sum_{i=1}^p \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le p \right\}$$

©2005, 2006 Robert A. Beezer

Theorem SSNS Spanning Sets for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ be the column indices where B has leading 1's (pivot columns) and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the set of column indices where B does not have leading 1's. Construct the n - r vectors \mathbf{z}_j , $1 \le j \le n - r$ of size n as

$$\begin{bmatrix} \mathbf{z}_j \end{bmatrix}_i = \begin{cases} 1 & \text{if } i \in F, \ i = f_j \\ 0 & \text{if } i \in F, \ i \neq f_j \\ -\begin{bmatrix} B \end{bmatrix}_{k,f_i} & \text{if } i \in D, \ i = d_k \end{cases}$$

Then the null space of A is given by

$$\mathcal{N}(A) = \left\langle \{\mathbf{z}_1, \, \mathbf{z}_2, \, \mathbf{z}_3, \, \dots, \, \mathbf{z}_{n-r}\} \right\rangle.$$

©2005, 2006 Robert A. Beezer

 $\mathbf{50}$

Definition RLDCV Relation of Linear Dependence for Column Vectors

Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$, a true statement of the form

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n = \mathbf{0}$$

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e. $\alpha_i = 0, 1 \le i \le n$, then we say it is the trivial relation of linear dependence on S.

©2005, 2006 Robert A. Beezer

 $\mathbf{51}$

 $\mathbf{52}$

The set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is **linearly dependent** if there is a relation of linear dependence on S that is not trivial. In the case where the *only* relation of linear dependence on S is the trivial one, then S is a **linearly independent** set of vectors.

Theorem LIVHS Linearly Independent Vectors and Homogeneous Systems 53

Suppose that A is an $m \times n$ matrix and $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$ is the set of vectors in \mathbb{C}^m that are the columns of A. Then S is a linearly independent set if and only if the homogeneous system $\mathcal{LS}(A, \mathbf{0})$ has a unique solution.

©2005, 2006 Robert A. Beezer

 $\mathbf{54}$

Theorem LIVRN Linearly Independent Vectors, r and n

Suppose that A is an $m \times n$ matrix and $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$ is the set of vectors in \mathbb{C}^m that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if n = r.

Theorem MVSLD More Vectors than Size implies Linear Dependence 5	55
Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is the set of vectors in \mathbb{C}^m , and that $n > m$. Then S a linearly dependent set.	is

©2005, 2006 Robert A. Beezer

Theorem NMLIC Nonsingular Matrices have Linearly Independent Columns 56

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.

Theorem NME2 Nonsingular Matrix Equivalences, Round 2

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A form a linearly independent set.

©2005, 2006 Robert A. Beezer

Theorem BNS Basis for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the n - r vectors \mathbf{z}_j , $1 \le j \le n - r$ of size n as

$$\left[\mathbf{z}_j \right]_i = \begin{cases} 1 & \text{if } i \in F, \, i = f_j \\ 0 & \text{if } i \in F, \, i \neq f_j \\ -\left[B\right]_{k, f_j} & \text{if } i \in D, \, i = d_k \end{cases}$$

Define the set $S = \{ \mathbf{z}_1, \, \mathbf{z}_2, \, \mathbf{z}_3, \, \dots, \, \mathbf{z}_{n-r} \}$. Then

1. $\mathcal{N}(A) = \langle S \rangle$.

2. S is a linearly independent set.

©2005, 2006 Robert A. Beezer

 $\mathbf{58}$

 $\mathbf{57}$

Theorem DLDS Dependency in Linearly Dependent Sets

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \le t \le n$ such that \mathbf{u}_t is a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_n$.

©2005, 2006 Robert A. Beezer

Theorem BS Basis of a Span

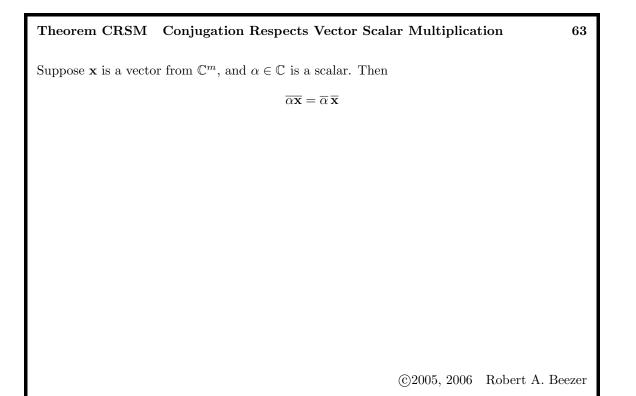
Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$ is a set of column vectors. Define $W = \langle S \rangle$ and let A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A, with $D = {d_1, d_2, d_3, \dots, d_r}$ the set of column indices corresponding to the pivot columns of B. Then

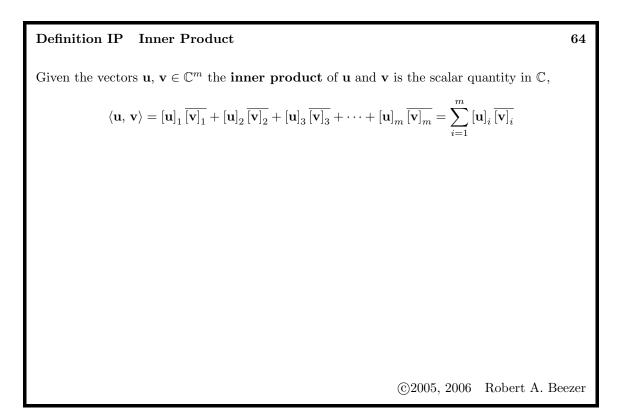
- 1. $T = {\mathbf{v}_{d_1}, \mathbf{v}_{d_2}, \mathbf{v}_{d_3}, \dots, \mathbf{v}_{d_r}}$ is a linearly independent set.
- 2. $W = \langle T \rangle$.

60

Definition CCCV Complex Conjugate of a Column Vector								
Suppose that u is a vector from \mathbb{C}^m . Then the conjugate of the vector, $\overline{\mathbf{u}}$, is defined by								
	$\left[\overline{\mathbf{u}}\right]_i = \overline{\left[\mathbf{u}\right]_i} \qquad \qquad 1 \le i \le m$							
	©2005, 2006 Robert A. Be	ezer						

Theorem CRVA	Conjugation Respects Vector Addition	62					
Suppose x and y are two vectors from \mathbb{C}^m . Then							
	$\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$						
	©2005, 2006 Robert A. Bee	ezer					





Theorem IPVA Inner Product and Vector Addition

Suppose $\mathbf{u}\mathbf{v}, \mathbf{w} \in \mathbb{C}^m$. Then

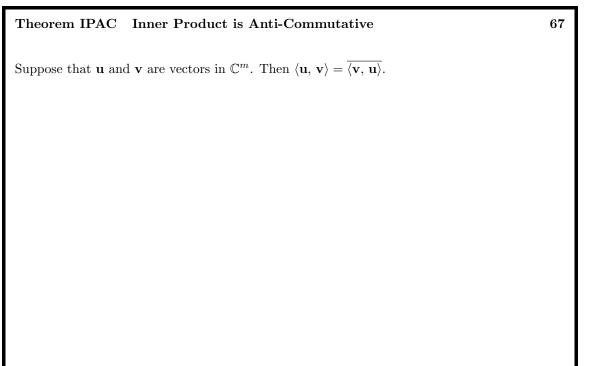
1.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

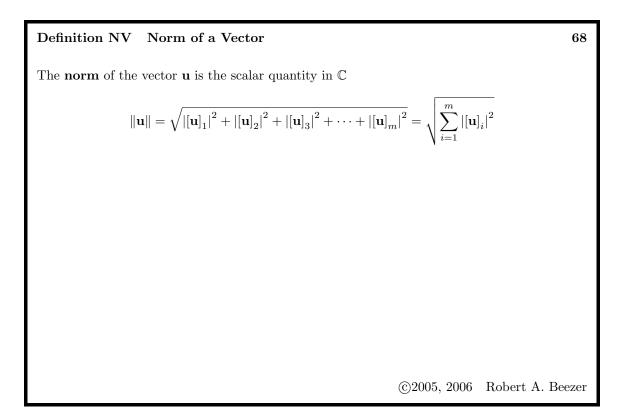
2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$

©2005, 2006 Robert A. Beezer

65

Theorem IPSM	rem IPSM Inner Product and Scalar Multiplication				
Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$	and $\alpha \in \mathbb{C}$. Then				
		$ \langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle \\ \langle \mathbf{u}, \alpha \mathbf{v} \rangle = \overline{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle $			
			©2005, 2006	Robert A. Beezer	





Theorem IPN Inner Products and Norms	69
Suppose that u is a vector in \mathbb{C}^m . Then $\ \mathbf{u}\ ^2 = \langle \mathbf{u}, \mathbf{u} \rangle$.	

Theorem PIP Positive Inner Products	70
Suppose that u is a vector in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ with equality if and only if $\mathbf{u} = 0$.	
©2005, 2006 Robert A. B	beezer

Definition OV Orthogonal Vectors

A pair of vectors, **u** and **v**, from \mathbb{C}^m are **orthogonal** if their inner product is zero, that is, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

©2005, 2006 Robert A. Beezer

Definition OSV Orthogonal Set of Vectors

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a set of vectors from \mathbb{C}^m . Then the set S is **orthogonal** if every pair of different vectors from S is orthogonal, that is $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ whenever $i \neq j$.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

 $\mathbf{72}$

Theorem OSLI Orthogonal Sets are Linearly Independent

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is an orthogonal set of nonzero vectors. Then S is linearly independent.

©2005, 2006 Robert A. Beezer

 $\mathbf{73}$

 $\mathbf{74}$

Suppose that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p\}$ is a linearly independent set of vectors in \mathbb{C}^m . Define the vectors $\mathbf{u}_i, 1 \leq i \leq p$ by $\mathbf{u}_i = \mathbf{v}_i - \frac{\langle \mathbf{v}_i, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \frac{\langle \mathbf{v}_i, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 - \frac{\langle \mathbf{v}_i, \mathbf{u}_3 \rangle}{\langle \mathbf{u}_3, \mathbf{u}_3 \rangle} \mathbf{u}_3 - \dots - \frac{\langle \mathbf{v}_i, \mathbf{u}_{i-1} \rangle}{\langle \mathbf{u}_{i-1}, \mathbf{u}_{i-1} \rangle} \mathbf{u}_{i-1}$ Then if $T = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p\}$, then T is an orthogonal set of non-zero vectors, and $\langle T \rangle = \langle S \rangle$. ©2005, 2006 Robert A. Beezer

Theorem GSPCV Gram-Schmidt Procedure, Column Vectors

Definition ONS OrthoNormal Set

Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is an orthogonal set of vectors such that $||\mathbf{u}_i|| = 1$ for all $1 \le i \le n$. Then S is an **orthonormal** set of vectors.

©2005, 2006 Robert A. Beezer

Definition VSM	Vector Space of $m \times n$ Matrices
----------------	---------------------------------------

The vector space M_{mn} is the set of all $m \times n$ matrices with entries from the set of complex numbers.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

 $\mathbf{76}$

Definition ME Matrix Equality

The $m \times n$ matrices A and B are equal, written A = B provided $[A]_{ij} = [B]_{ij}$ for all $1 \le i \le m$, $1 \le j \le n$.

©2005, 2006 Robert A. Beezer

77

 $\mathbf{78}$

Definition MA Matrix Addition

Given the $m \times n$ matrices A and B, define the **sum** of A and B as an $m \times n$ matrix, written A + B, according to

$$[A+B]_{ii} = [A]_{ii} + [B]_{ii} \qquad 1 \le i \le m, \ 1 \le j \le n$$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Definition MSM Matrix Scalar Multiplication

Given the $m \times n$ matrix A and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of A is an $m \times n$ matrix, written αA and defined according to

$$[\alpha A]_{ij} = \alpha [A]_{ij} \qquad 1 \le i \le m, \ 1 \le j \le n$$

©2005, 2006 Robert A. Beezer

Theorem VSPM Vector Space Properties of Matrices

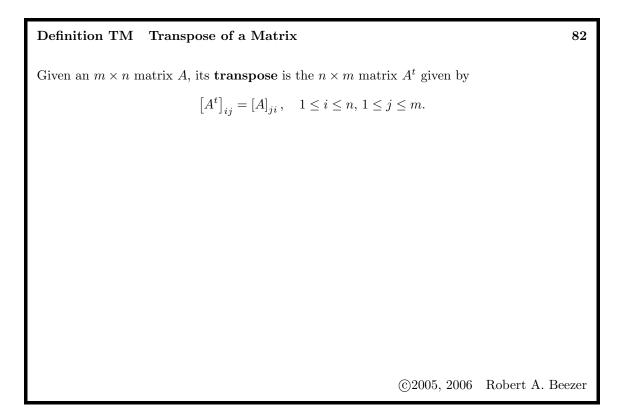
Suppose that M_{mn} is the set of all $m \times n$ matrices (Definition VSM) with addition and scalar multiplication as defined in Definition MA and Definition MSM. Then

- ACM Additive Closure, Matrices If $A, B \in M_{mn}$, then $A + B \in M_{mn}$.
- SCM Scalar Closure, Matrices If $\alpha \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha A \in M_{mn}$.
- CM Commutativity, Matrices If $A, B \in M_{mn}$, then A + B = B + A.
- AAM Additive Associativity, Matrices If $A, B, C \in M_{mn}$, then A + (B + C) = (A + B) + C.
- ZM Zero Vector, Matrices There is a matrix, \mathcal{O} , called the zero matrix, such that $A + \mathcal{O} = A$ for all $A \in M_{mn}$.
- AIM Additive Inverses, Matrices If $A \in M_{mn}$, then there exists a matrix $-A \in M_{mn}$ so that $A + (-A) = \mathcal{O}$.
- SMAM Scalar Multiplication Associativity, Matrices If α , $\beta \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha(\beta A) = (\alpha \beta)A$.
- DMAM Distributivity across Matrix Addition, Matrices If $\alpha \in \mathbb{C}$ and $A, B \in M_{mn}$, then $\alpha(A+B) = \alpha A + \alpha B$.
- DSAM Distributivity across Scalar Addition, Matrices If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{mn}$, then $(\alpha + \beta)A = \alpha A + \beta A$.
- OM One Matrices If $A \in M$ then 1A A

©2005, 2006 Robert A. Beezer

Definition ZM Zero Matrix

The $m \times n$ zero matrix is written as $\mathcal{O} = \mathcal{O}_{m \times n}$ and defined by $[\mathcal{O}]_{ij} = 0$, for all $1 \le i \le m$, $1 \le j \le n$.



Definition	\mathbf{SYM}	Symmetric	Matrix
------------	----------------	-----------	--------

The matrix A is symmetric if $A = A^t$.

©2005, 2006 Robert A. Beezer

83

 Theorem SMS
 Symmetric Matrices are Square
 84

 Suppose that A is a symmetric matrix. Then A is square.
 9

 Count of the second s

Theorem TMA Transpose and Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $(A + B)^t = A^t + B^t$.

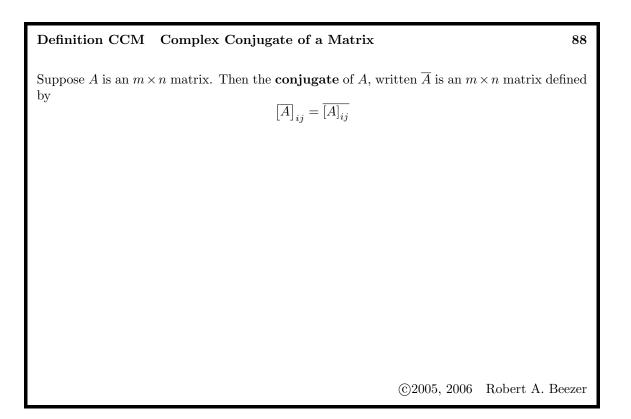
©2005, 2006 Robert A. Beezer

86
zer

Theorem TT Transpose of a Transpose

Suppose that A is an $m \times n$ matrix. Then $(A^t)^t = A$.

©2005, 2006 Robert A. Beezer



Theorem CRMA Conjugation Respects Matrix Addition	89
Suppose that A and B are $m \times n$ matrices. Then $\overline{A + B} = \overline{A} + \overline{B}$.	
@2005_2006	Robert A. Beezer

Theorem CRMSM	Conjugation Respects Matrix Scalar Multiplication	90
Suppose that $\alpha \in \mathbb{C}$ and	and A is an $m \times n$ matrix. Then $\overline{\alpha A} = \overline{\alpha} \overline{A}$.	
	©2005, 2006 Robert A. Bee	zer

Theorem MCT Matrix Conjugation and Transposes	91	
Suppose that A is an $m \times n$ matrix. Then $\overline{(A^t)} = (\overline{A})^t$.		

Definition MVP Matrix-Vector Product

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$ and \mathbf{u} is a vector of size n. Then the **matrix-vector product** of A with \mathbf{u} is the linear combination

 $A\mathbf{u} = [\mathbf{u}]_1 \mathbf{A}_1 + [\mathbf{u}]_2 \mathbf{A}_2 + [\mathbf{u}]_3 \mathbf{A}_3 + \dots + [\mathbf{u}]_n \mathbf{A}_n$

 $\textcircled{C}2005,\,2006$ $\$ Robert A. Beezer

©2005, 2006 Robert A. Beezer

 $\mathbf{92}$

Theorem SLEMM	Systems of Linear Equations as Matrix Multiplication	93
Solutions to the linear	system $\mathcal{LS}(A, \mathbf{b})$ are the solutions for \mathbf{x} in the vector equation $A\mathbf{x} =$	b.
	©2005, 2006 Robert A. Be	ezer

Theorem EMMVP	Equal Matrices and Matrix-Vector Products	94
Suppose that A and B	are $m \times n$ matrices such that $A\mathbf{x} = B\mathbf{x}$ for every $\mathbf{x} \in \mathbb{C}^n$. Then $A =$	В.
	©2005, 2006 Robert A. Be	ezer

Definition MM Matrix Multiplication

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \ldots, \mathbf{B}_p$. Then the **matrix product** of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A\mathbf{B}_i$. Symbolically,

 $AB = A \left[\mathbf{B}_1 | \mathbf{B}_2 | \mathbf{B}_3 | \dots | \mathbf{B}_p \right] = \left[A \mathbf{B}_1 | A \mathbf{B}_2 | A \mathbf{B}_3 | \dots | A \mathbf{B}_p \right].$

©2005, 2006 Robert A. Beezer

Theorem EMPEntries of Matrix Products96Suppose A is an $m \times n$ matrix and B = is an $n \times p$ matrix. Then for $1 \le i \le m, 1 \le j \le p$, the
individual entries of AB are given by $[AB]_{ij} = [A]_{i1} [B]_{1j} + [A]_{i2} [B]_{2j} + [A]_{i3} [B]_{3j} + \dots + [A]_{in} [B]_{nj}$
 $= \sum_{k=1}^{n} [A]_{ik} [B]_{kj}$ $= \sum_{k=1}^{n} [A]_{ik} [B]_{kj}$ ©2005, 2006Robert A. Beezer

Theorem MMZM Matrix Multiplication and the Zero Matrix

1. $A\mathcal{O}_{n \times p} = \mathcal{O}_{m \times p}$ 2. $\mathcal{O}_{p \times m} A = \mathcal{O}_{p \times n}$

Theorem MMIM	Matrix Multiplication and Identity Matrix	98
Suppose A is an $m \times 1$. $AI_n = A$ 2 . $I_m A = A$	n matrix. Then	
	©2005, 2006 Rob	ert A. Beezer

Theorem MMDAAMatrix Multiplication Distributes Across Addition99Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then1. A(B+C) = AB + AC2. (B+C)D = BD + CD

©2005, 2006 Robert A. Beezer

Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 100

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem MMA	Matrix Multiplication is Associative 10	01
Suppose A is an m (AB)D.	$\times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then $A(BD)$	=
	©2005 2006 Robert & Beez	or
	©2005, 2006 Robert A. Beez	er

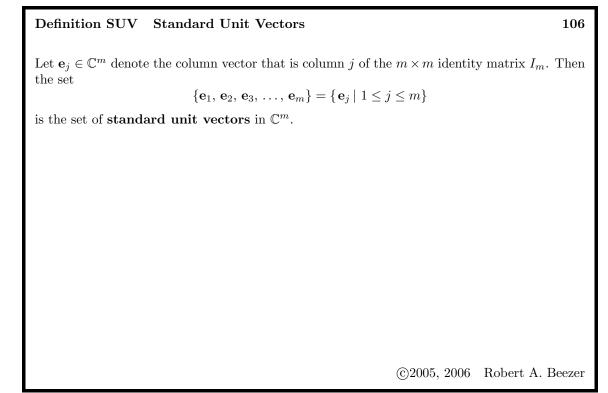
Theorem MMIP	Matrix Multiplication and Inner Products	102
If we consider the ve	ectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ as $m \times 1$ matrices then	
	$\langle {f u},{f v} angle = {f u}^t \overline{f v}$	
	©2005, 2006 Robert A. B	eezer

Theorem MMCC	Matrix Multiplication and Complex Conjugation 1	03
Suppose A is an $m \times$	<i>n</i> matrix and <i>B</i> is an $n \times p$ matrix. Then $\overline{AB} = \overline{A} \overline{B}$.	
	©2005, 2006 Robert A. Bee	zer

Theorem MMT	Matrix Multiplication and Transposes	104
Suppose A is an m	$\times n$ matrix and B is an $n \times p$ matrix. Then $(AB)^t = B^t A^t$.	
	©2005, 2006 Robert A. B	Seezer

Definition MI Matrix Inverse

Suppose A and B are square matrices of size n such that $AB = I_n$ and $BA = I_n$. Then A is **invertible** and B is the **inverse** of A. In this situation, we write $B = A^{-1}$.



Theorem TTMI Two-by-Two Matrix Inverse

Suppose

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then A is invertible if and only if $ad - bc \neq 0$. When A is invertible, we have

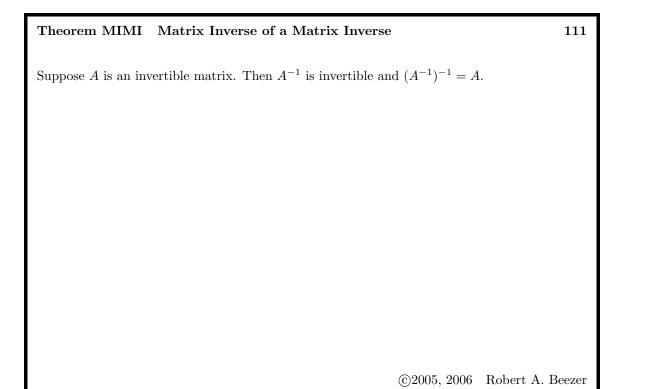
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

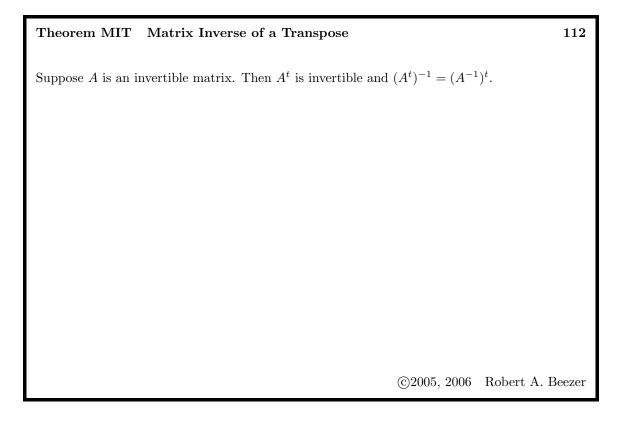
©2005, 2006 Robert A. Beezer

Theorem CINM Computing the Inverse of a Nonsingular Matrix 108
Suppose A is a nonsingular square matrix of size n. Create the $n \times 2n$ matrix M by placing the $n \times n$ identity matrix I_n to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns of N. Then $AJ = I_n$.
©2005, 2006 Robert A. Beezer

Theorem MIU Matrix Inverse is Unique	109
Suppose the square matrix A has an inverse. Then A^{-1} is unique.	
©2005, 2006 F	Robert A. Beezer

Theorem SS Socks and Shoes	110
Suppose A and B are invertible matrices of size n. Then $(AB)^{-1} = B^{-1}$, invertible matrix.	A^{-1} and AB is an
$\odot 2005, 2006$	Robert A. Beezer





Theorem MISM Matrix Inverse of a Scalar Multiple 113 Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1} = \frac{1}{\alpha}A^{-1}$ and αA is invertible.

Theorem NPNT	Nonsingular Product has Nonsingular Terms	114
Suppose that A and A and B are both not	B are square matrices of size n and the product AB is nonsingular. To onsingular.	Then
	©2005, 2006 Robert A. Be	eezer

Theorem OSIS	One-Sided Inverse is Sufficient 1	115
Suppose A and B	are square matrices of size n such that $AB = I_n$. Then $BA = I_n$.	
	©2005, 2006 Robert A. Bee	zer

 Theorem NI Nonsingularity is Invertibility
 116

 Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.
 Image: Comparison of the second secon

Theorem NME3 Nonsingular Matrix Equivalences, Round 3
117
Suppose that A is a square matrix of size n. The following are equivalent.
1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, N(A) = {0}.
4. The linear system *LS*(A, b) has a unique solution for every possible choice of b.
5. The columns of A are a linearly independent set.
6. A is invertible.

Solution with	Nonsingular Coefficient Matrix	118
nsingular. Then	the unique solution to $\mathcal{LS}(A, \mathbf{b})$ is A^-	$^{1}\mathbf{b}.$
	$\odot 2005, 2006$	Robert A. Beezer
		Solution with Nonsingular Coefficient Matrix nsingular. Then the unique solution to $\mathcal{LS}(A, \mathbf{b})$ is A^- \bigcirc 2005, 2006

Definition UM Unitary Matrices

Suppose that Q is a square matrix of size n such that $(\overline{Q})^t Q = I_n$. Then we say Q is **unitary**.

©2005, 2006 Robert A. Beezer

Theorem UMI Unitary Matrices are Invertible	120
Suppose that Q is a unitary matrix of size n. Then Q is nonsingular, and $Q^{-1} = (\overline{Q})^t$.	
©2005, 2006 Robert A. H	Beezer

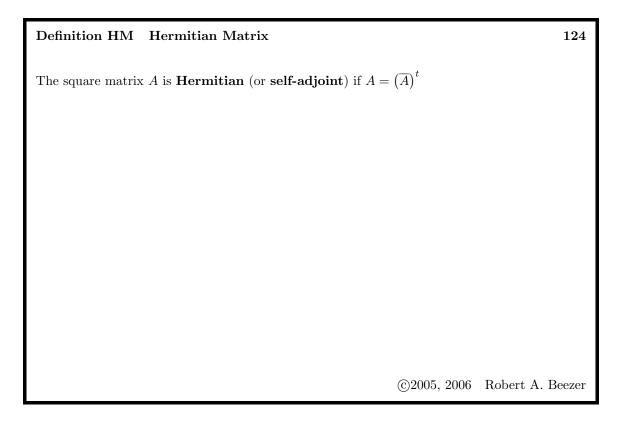
Theorem CUMOS Columns of Unitary Matrices are	e Orthonorm	al Sets 121
Suppose that A is a square matrix of size n with columns $S =$ is a unitary matrix if and only if S is an orthonormal set.	$= \{ \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, $	\ldots, \mathbf{A}_n }. Then A
	©2005, 2006	Robert A. Beezer

Theorem UMPIP Unitary Matrices Preserve Inner Products						122		
Suppose that (Q is a u	nitary mat	rix of size n	and \mathbf{u} and \mathbf{v}	v are two	vectors fr	com \mathbb{C}^n . Then	1
	$\langle Q \mathbf{u}, Q$	$ \mathbf{v} angle = \langle \mathbf{u}, \mathbf{v} angle$	·>	and		$\ Q\mathbf{v}\ =$	$\ \mathbf{v}\ $	
					©2	005, 2006	Robert A. I	Beezer

Definition A Adjoint

If A is a square matrix, then its **adjoint** is $A^{H} = (\overline{A})^{t}$.

©2005, 2006 Robert A. Beezer



Definition CSM Column Space of a Matrix

Suppose that A is an $m \times n$ matrix with columns $\{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n\}$. Then the **column space** of A, written $\mathcal{C}(A)$, is the subset of \mathbb{C}^m containing all linear combinations of the columns of A,

$$\mathcal{C}(A) = \langle \{\mathbf{A}_1, \, \mathbf{A}_2, \, \mathbf{A}_3, \, \dots, \, \mathbf{A}_n \} \rangle$$

©2005, 2006 Robert A. Beezer

Theorem CSCS	Column Spaces and Consistent Systems 126	i
Suppose A is an m $\mathcal{LS}(A, \mathbf{b})$ is consistent	$n \times n$ matrix and b is a vector of size m . Then $\mathbf{b} \in \mathcal{C}(A)$ if and only if ent.	a
	©2005, 2006 Robert A. Beezer	

Theorem BCS Basis of the Column Space

Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ be the set of column indices where B has leading 1's. Let $T = \{\mathbf{A}_{d_1}, \mathbf{A}_{d_2}, \mathbf{A}_{d_3}, \ldots, \mathbf{A}_{d_r}\}$. Then

- 1. T is a linearly independent set.
- 2. $\mathcal{C}(A) = \langle T \rangle$.

©2005, 2006 Robert A. Beezer

128
eezer

Theorem NME4 Nonsingular Matrix Equivalences, Round 4 129
Suppose that A is a square matrix of size n. The following are equivalent.
1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, N(A) = {0}.
4. The linear system LS(A, b) has a unique solution for every possible choice of b.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is Cⁿ, C(A) = Cⁿ.

Definition RSM Row Space of a Matrix

Suppose A is an $m \times n$ matrix. Then the **row space** of A, $\mathcal{R}(A)$, is the column space of A^t , i.e. $\mathcal{R}(A) = \mathcal{C}(A^t)$.

©2005, 2006 Robert A. Beezer

Theorem REMRS	Row-Equivalent Matrices have equal Row Sp	baces 131
Suppose A and B are	row-equivalent matrices. Then $\mathcal{R}(A) = \mathcal{R}(B)$.	
	C2005, 2006	Robert A. Beezer

Theorem BRS Basis for the Row Space	132		
Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of B^t . Then			
1. $\mathcal{R}(A) = \langle S \rangle.$			
2. S is a linearly independent set.			
©2005, 2006 Robert A. B	eezer		

Theorem CSRST	Column Space, Row Space, Transpose	133
Suppose A is a matrix	ix. Then $\mathcal{C}(A) = \mathcal{R}(A^t)$.	

Definition LNS Left Null Space 134 Suppose A is an $m \times n$ matrix. Then the left null space is defined as $\mathcal{L}(A) = \mathcal{N}(A^t) \subseteq \mathbb{C}^m$.

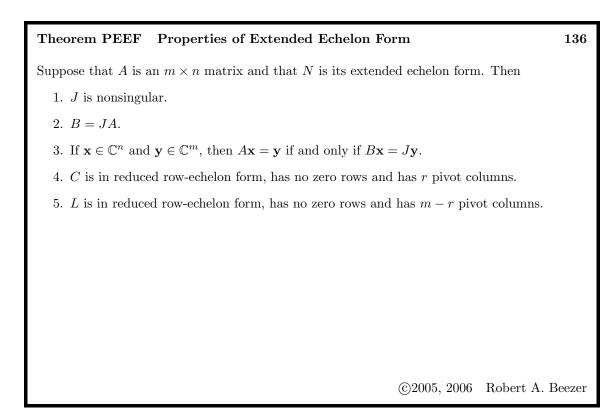
 $\textcircled{C}2005,\,2006$ Robert A. Beezer

Definition EEF Extended Echelon Form

Suppose A is an $m \times n$ matrix. Add m new columns to A that together equal an $m \times m$ identity matrix to form an $m \times (n+m)$ matrix M. Use row operations to bring M to reduced row-echelon form and call the result N. N is the **extended reduced row-echelon form** of A, and we will standardize on names for five submatrices (B, C, J, K, L) of N.

Let B denote the $m \times n$ matrix formed from the first n columns of N and let J denote the $m \times m$ matrix formed from the last m columns of N. Suppose that B has r nonzero rows. Further partition N by letting C denote the $r \times n$ matrix formed from all of the non-zero rows of B. Let K be the $r \times m$ matrix formed from the first r rows of J, while L will be the $(m - r) \times m$ matrix formed from the bottom m - r rows of J. Pictorially,

$$M = [A|I_m] \xrightarrow{\text{RREF}} N = [B|J] = \begin{bmatrix} C & K \\ 0 & L \end{bmatrix}$$



Theorem FS Four Subsets

Suppose A is an $m \times n$ matrix with extended echelon form N. Suppose the reduced row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the first n columns and L is the submatrix of N formed from the last m columns and the last m - r rows. Then

- 1. The null space of A is the null space of C, $\mathcal{N}(A) = \mathcal{N}(C)$.
- 2. The row space of A is the row space of C, $\mathcal{R}(A) = \mathcal{R}(C)$.
- 3. The column space of A is the null space of L, $C(A) = \mathcal{N}(L)$.
- 4. The left null space of A is the row space of L, $\mathcal{L}(A) = \mathcal{R}(L)$.

©2005, 2006 Robert A. Beezer

Definition VS Vector Space

Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by "+", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space if the following ten properties hold.

- AC Additive Closure If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} \in V$.
- SC Scalar Closure If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$.
- C Commutativity If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- AA Additive Associativity If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- Z Zero Vector There is a vector, 0, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- AI Additive Inverses If $\mathbf{u} \in V$, then there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- SMA Scalar Multiplication Associativity If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- DVA Distributivity across Vector Addition If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- DSA Distributivity across Scalar Addition If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.
- O One If $\mathbf{u} \in V$ then $1\mathbf{u} = \mathbf{u}$

The objects in V are called **vectors**, no matter what else they might really be, simply by virtue of being elements of a vector space.

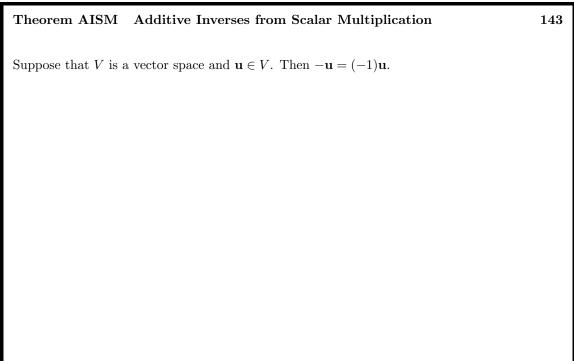
©2005, 2006 Robert A. Beezer

Theorem ZVU Zero Vector is Unique	139	
Suppose that V is a vector space. The zero vector, 0 , is unique.		
©2005, 2006 Robert A. E	eezer	

Theorem AIU Additive Inverses are Unique	140
Suppose that V is a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$, is unique.	
©2005, 2006 Robert A. I	Beezer

Theorem ZSSM	Zero Scalar in Scalar Multiplicatio	n	141
Suppose that V is a	vector space and $\mathbf{u} \in V$. Then $0\mathbf{u} = 0$.		
		$\odot 2005, 2006$	Robert A. Beezer

Theorem ZVSM	Zero Vector in Scalar Multiplication	142
Suppose that V is a	vector space and $\alpha \in \mathbb{C}$. Then $\alpha 0 = 0$.	
	©2005, 2006 Robert A. Be	ezer



Theorem SMEZV	Scalar Multiplication Equals the Zero Vector	144
Suppose that V is a v	vector space and $\alpha \in \mathbb{C}$. If $\alpha \mathbf{u} = 0$, then either $\alpha = 0$ or $\mathbf{u} = 0$.	
	©2005, 2006 Robert A. I	Beezer

Theorem VAC Vector Addition Cancellation	145
Suppose that V is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. If $\mathbf{w} + \mathbf{u} = \mathbf{w} + \mathbf{v}$, then $\mathbf{u} = \mathbf{v}$.	
Suppose that v is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{v}$. If $\mathbf{w} + \mathbf{u} = \mathbf{w} + \mathbf{v}$, then $\mathbf{u} = \mathbf{v}$.	
©2005, 2006 Robert A	Beezer

Theorem CSSM	Canceling Scalars in Scalar Multiplication	146
Suppose V is a vec $\mathbf{u} = \mathbf{v}$.	ctor space, $\mathbf{u}, \mathbf{v} \in V$ and α is a nonzero scalar from \mathbb{C} . If $\alpha \mathbf{u} = \alpha \mathbf{v}$,	then
	©2005, 2006 Robert A. Be	eezer

Theorem CVSM Ca	anceling Vectors in Scalar Mult	iplication	147
Suppose V is a vector space of V is a vector space.	pace, $\mathbf{u} \neq 0$ is a vector in V and α ,	$\beta \in \mathbb{C}$. If $\alpha \mathbf{u} = \beta$	$\beta \mathbf{u}$, then $\alpha = \beta$.
		©2005, 2006	Robert A. Beezer

Definition S	Subspace	148
	and W are two vector spaces that have identical definitions iplication, and that W is a subset of $V, W \subseteq V$. Then W is a	
	$\odot 2005, 2006$	Robert A. Beezer

Theorem TSS Testing Subsets for Subspaces

Suppose that V is a vector space and W is a subset of V, $W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

- 1. W is non-empty, $W \neq \emptyset$.
- 2. If $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x} + \mathbf{y} \in W$.
- 3. If $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

©2005, 2006 Robert A. Beezer

Definition TS	Trivial Subspaces	150
Given the vector	space V, the subspaces V and $\{0\}$ are each called a trivial subspace .	
	©2005, 2006 Robert A. E	Beezer

Theorem NSMS Null Space of a Matrix is a Subspace Suppose that A is an $m \times n$ matrix. Then the null space of A, $\mathcal{N}(A)$, is a subspace of \mathbb{C}^n . ©2005, 2006 Robert A. Beezer

Definition LC Linear Combination 152Suppose that V is a vector space. Given n vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ and n scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$, their **linear combination** is the vector $\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3 + \cdots + \alpha_n\mathbf{u}_n.$ ©2005, 2006 Robert A. Beezer

Definition SS Span of a Set

Suppose that V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t}$, their **span**, $\langle S \rangle$, is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t$. Symbolically,

$$\langle S \rangle = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_t \mathbf{u}_t \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$
$$= \left\{ \sum_{i=1}^t \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$

©2005, 2006 Robert A. Beezer

Theorem SSS Span of a Set is a Subspace	154
Suppose V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t} \subseteq V$, their $\langle S \rangle$, is a subspace.	span,
©2005, 2006 Robert A. I	Beezer

Theorem CSMS	Column Space of a Matrix is a Subspace	155
Suppose that A is a	on $m \times n$ matrix. Then $\mathcal{C}(A)$ is a subspace of \mathbb{C}^m .	
	©2005, 2006	Robert A. Beezer

Suppose that A is an $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^n .	Theorem RSMS	Row Space of	a Matrix is a	a Subspac	e		156
	Suppose that A is a	n $m \times n$ matrix.	Then $\mathcal{R}(A)$ is	a subspace	of \mathbb{C}^n .		
©2005, 2006 Robert A. Beezer				(©2005, 2006	Robert A. Be	eezer

Theorem LNSMS Left Null Space of a Matrix is a Subspace	157
Suppose that A is an $m \times n$ matrix. Then $\mathcal{L}(A)$ is a subspace of \mathbb{C}^m .	
@2005_2006	Robert A. Beezer

Definition RLD Relation of Linear Dependence 158 Suppose that V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, ..., \mathbf{u}_n}$, an equation of the form $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \cdots + \alpha_n \mathbf{u}_n = \mathbf{0}$ is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. $\alpha_i = 0, 1 \le i \le n$, then we say it is a trivial relation of linear dependence on S. If this equation of linear dependence on S. ©2005, 2006 Robert A. Beezer Column 1 Column 2

Definition LI Linear Independence

Suppose that V is a vector space. The set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ from V is **linearly dependent** if there is a relation of linear dependence on S that is not trivial. In the case where the *only* relation of linear dependence on S is the trivial one, then S is a **linearly independent** set of vectors.

©2005, 2006 Robert A. Beezer

Suppose V is a vector space. A subset S of V is a **spanning set** for V if $\langle S \rangle = V$. In this case, we also say S **spans** V.

©2005, 2006 Robert A. Beezer

Theorem VRRB Vector Representation Relative to a Basis

Suppose that V is a vector space and $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m}$ is a linearly independent set that spans V. Let **w** be any vector in V. Then there exist *unique* scalars $a_1, a_2, a_3, \dots, a_m$ such that

 $\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + \dots + a_m \mathbf{v}_m.$

©2005, 2006 Robert A. Beezer

Definition B	Basis					162
Suppose V is a and spans V .	vector space.	Then a subse	et $S \subseteq V$ is	a basis	of V if it is lin	nearly independent
					©2005, 2006	Robert A. Beezer

Theorem SUVB Standard Unit Vectors are a Basis	163
The set of standard unit vectors for \mathbb{C}^m (Definition SUV), $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_m \}$ $\{\mathbf{e}_i \mid 1 \leq i \leq m\}$ is a basis for the vector space \mathbb{C}^m .	,} =
©2005, 2006 Robert A. B	eezer

Theorem CNMB	Columns of Nonsing	ular Matrix a	re a Basis	164
Suppose that A is a solution only if A is nonsingular	quare matrix of size m . ar.	Then the colum	ans of A are a	basis of \mathbb{C}^m if and
			©2005, 2006	Robert A. Beezer

Theorem NME5 Nonsingular Matrix Equivalences, Round 5 165Suppose that A is a square matrix of size n. The following are equivalent. 1. A is nonsingular. 2. A row-reduces to the identity matrix. 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$ 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} . 5. The columns of A are a linearly independent set. 6. A is invertible. 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$. 8. The columns of A are a basis for \mathbb{C}^n . ©2005, 2006 Robert A. Beezer

Theorem COB Coordinates and Orthonormal Bases 166Suppose that $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p}$ is an orthonormal basis of the subspace W of \mathbb{C}^m . For any $\mathbf{w} \in W$, $\mathbf{w} = \langle \mathbf{w}, \, \mathbf{v}_1 \rangle \, \mathbf{v}_1 + \langle \mathbf{w}, \, \mathbf{v}_2 \rangle \, \mathbf{v}_2 + \langle \mathbf{w}, \, \mathbf{v}_3 \rangle \, \mathbf{v}_3 + \dots + \langle \mathbf{w}, \, \mathbf{v}_p \rangle \, \mathbf{v}_p$

Definition D Dimension

Suppose that V is a vector space and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t\}$ is a basis of V. Then the **dimension** of V is defined by dim (V) = t. If V has no finite bases, we say V has infinite dimension.

©2005, 2006 Robert A. Beezer

Theorem SSLD	Spanning Sets and Linear Dependence	168
	$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t\}$ is a finite set of vectors which spans t + 1 or more vectors from V is linearly dependent.	he vector space V .
	©2005, 2006	Robert A. Beezer

Theorem BIS Bases have Identical Sizes	169
Suppose that V is a vector space with a finite basis B and a second basis C have the same size.	. Then B and C
©2005, 2006	Robert A. Beezer

Theorem DCM Dimension of \mathbb{C}^m		170
The dimension of \mathbb{C}^m (Example VSCV) is m .		
	©2005, 2006	Robert A. Beezer

Theorem DP Dimension of P_n	171
The dimension of P_n (Example VSP) is $n + 1$.	
©2005, 2006 Robert A. I	Beezer

Definition NOM Nullity Of a Matrix

Suppose that A is an $m \times n$ matrix. Then the **nullity** of A is the dimension of the null space of A, $n(A) = \dim(\mathcal{N}(A))$.

©2005, 2006 Robert A. Beezer

173

174

Definition ROM Rank Of a Matrix

Suppose that A is an $m \times n$ matrix. Then the **rank** of A is the dimension of the column space of A, $r(A) = \dim (\mathcal{C}(A))$.

Theorem CRN Computing Rank and Nullity

Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then r(A) = r and n(A) = n - r.

Theorem RPNC	Rank Plus Nullity is Columns	176
Suppose that A is an	$m m \times n$ matrix. Then $r(A) + n(A) = n$.	
	©2005, 2006 Robert A. Be	ezer

Theorem RNNM Rank and Nullity of a Nonsingular Matrix

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. The rank of A is n, r(A) = n.
- 3. The nullity of A is zero, n(A) = 0.

©2005, 2006 Robert A. Beezer

Theorem NME6 Nonsingular Matrix Equivalences, Round 6 Suppose that A is a square matrix of size n . The following are equivalent.	178
1. A is nonsingular.	
2. A row-reduces to the identity matrix.	
3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{0\}.$	
4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .	
5. The columns of A are a linearly independent set.	
6. A is invertible.	
7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.	
8. The columns of A are a basis for \mathbb{C}^n .	
9. The rank of A is $n, r(A) = n$.	
10. The nullity of A is zero, $n(A) = 0$.	
©2005, 2006 Robert A. E	Beezer

Theorem ELIS Extending Linearly Independent Sets

179

Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose \mathbf{w} is a vector such that $\mathbf{w} \notin \langle S \rangle$. Then the set $S' = S \cup \{\mathbf{w}\}$ is linearly independent.

Theorem G Goldilocks 180
Suppose that V is a vector space of dimension t. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m}$ be a set of vectors from V. Then
1. If $m > t$, then S is linearly dependent.
2. If $m < t$, then S does not span V.
3. If $m = t$ and S is linearly independent, then S spans V.
4. If $m = t$ and S spans V, then S is linearly independent.
©2005, 2006 Robert A. Beezer

Theorem PSSD Proper Subspaces have Smaller Dimension 181 Suppose that U and V are subspaces of the vector space W, such that $U \subsetneq V$. Then $\dim(U) < \dim(V)$.

Theorem EDYES Equal Dimensions Yields Equal Subspaces	182
Suppose that U and V are subspaces of the vector space W, such that $U \subseteq V$ and dim $(U \dim (V))$. Then $U = V$.	U) =
©2005, 2006 Robert A. Be	eezer

Theorem RMRT Rank of a Matrix is the Rank of the Transpose

Suppose A is an $m \times n$ matrix. Then $r(A) = r(A^t)$.

©2005, 2006 Robert A. Beezer

Theorem DFS Dimensions of Four Subspaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then

- 1. dim $(\mathcal{N}(A)) = n r$
- 2. dim $(\mathcal{C}(A)) = r$
- 3. dim $(\mathcal{R}(A)) = r$
- 4. dim $(\mathcal{L}(A)) = m r$

184

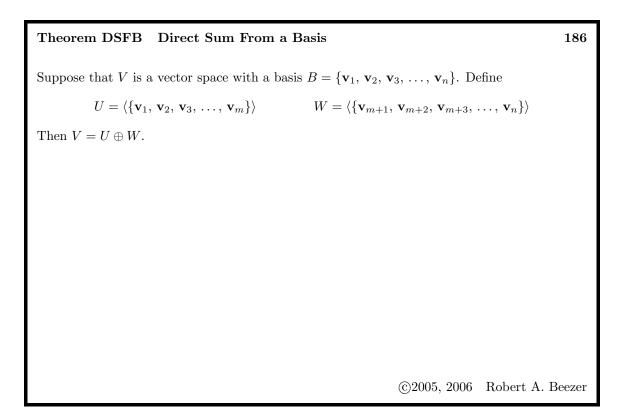
183

Definition DS Direct Sum

185

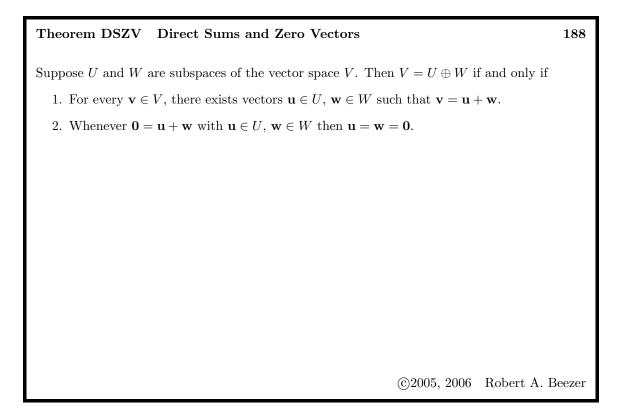
Suppose that V is a vector space with two subspaces U and W such that for every $\mathbf{v} \in V$,

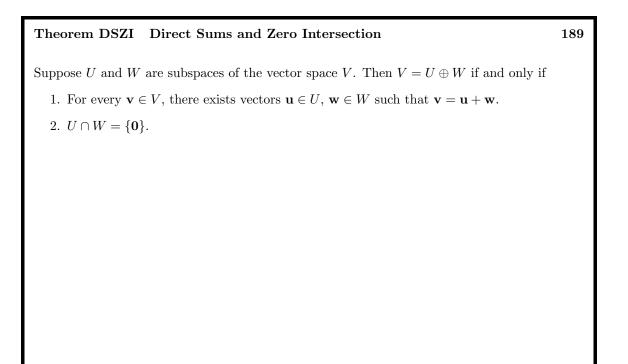
- 1. There exists vectors $\mathbf{u} \in U$, $\mathbf{w} \in W$ such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$
- 2. If $\mathbf{v} = \mathbf{u}_1 + \mathbf{w}_1$ and $\mathbf{v} = \mathbf{u}_2 + \mathbf{w}_2$ where $\mathbf{u}_1, \mathbf{u}_2 \in U, \mathbf{w}_1, \mathbf{w}_2 \in W$ then $\mathbf{u}_1 = \mathbf{u}_2$ and $\mathbf{w}_1 = \mathbf{w}_2$.
- Then V is the **direct sum** of U and W and we write $V = U \oplus W$.



Theorem DSFOS Direct Sum From One Subspace

Suppose that U is a subspace of the vector space V. Then there exists a subspace W of V such that $V = U \oplus W$.





Theorem DSLI Direct Sums and Linear Independence	190
Suppose U and W are subspaces of the vector space V with $V = U \oplus W$. Suppose that R linearly independent subset of U and S is a linearly independent subset of W. Then $R \cup S$ linearly independent subset of V.	
©2005, 2006 Robert A. Be	ezer

Theorem DSD Direct Sums and Dimension

Suppose U and W are subspaces of the vector space V with $V = U \oplus W$. Then dim (V) = $\dim\left(U\right) + \dim\left(W\right).$

©2005, 2006 Robert A. Beezer

Theorem RDS	Repeated Direct Sums 19	92
	ector space with subspaces U and W with $V = U \oplus W$. Suppose that X and f W with $W = X \oplus Y$. Then $V = U \oplus X \oplus Y$.	nd
	©2005, 2006 Robert A. Beez	zer

Definition ELEM Elementary Matrices

1. $E_{i,j}$ is the square matrix of size n with

$$[E_{i,j}]_{k\ell} = \begin{cases} 0 & k \neq i, k \neq j, \ell \neq \\ 1 & k \neq i, k \neq j, \ell = \\ 0 & k = i, \ell \neq j \\ 1 & k = i, \ell = j \\ 0 & k = j, \ell \neq i \\ 1 & k = j, \ell = i \end{cases}$$

 $k \\ k$

2. $E_i(\alpha)$, for $\alpha \neq 0$, is the square matrix of size n with

$$\left[E_{i}\left(\alpha\right)\right]_{k\ell} = \begin{cases} 0 & k \neq i, \ell \neq k \\ 1 & k \neq i, \ell = k \\ \alpha & k = i, \ell = i \end{cases}$$

3. $E_{i,j}(\alpha)$ is the square matrix of size n with

$$[E_{i,j}(\alpha)]_{k\ell} = \begin{cases} 0 & k \neq j, \ell \neq k \\ 1 & k \neq j, \ell = k \\ 0 & k = j, \ell \neq i, \ell \neq j \\ 1 & k = j, \ell = j \\ \alpha & k = j, \ell = i \end{cases}$$

©2005, 2006 Robert A. Beezer

Theorem EMDRO Elementary Matrices Do Row Operations

Suppose that A is a matrix, and B is a matrix of the same size that is obtained from A by a single row operation (Definition RO).

- 1. If the row operation swaps rows i and j, then $B = E_{i,j}A$.
- 2. If the row operation multiplies row *i* by α , then $B = E_i(\alpha) A$.
- 3. If the row operation multiplies row i by α and adds the result to row j, then $B = E_{i,j}(\alpha) A$.

©2005, 2006 Robert A. Beezer

193

Theorem EMN	Elementary Matrices are Nonsingular	195
If E is an elementa	ry matrix, then E is nonsingular.	

Theorem NMPEM Nonsingular Matrices are Products of Elementary Matrices

Suppose that A is a nonsingular matrix. Then there exists elementary matrices $E_1, E_2, E_3, \ldots, E_t$ so that $A = E_1 E_2 E_3 \ldots E_t$.

196

©2005, 2006 Robert A. Beezer

Definition SM SubMatrix

Suppose that A is an $m \times n$ matrix. Then the **submatrix** A(i|j) is the $(m-1) \times (n-1)$ matrix obtained from A by removing row i and column j.

©2005, 2006 Robert A. Beezer

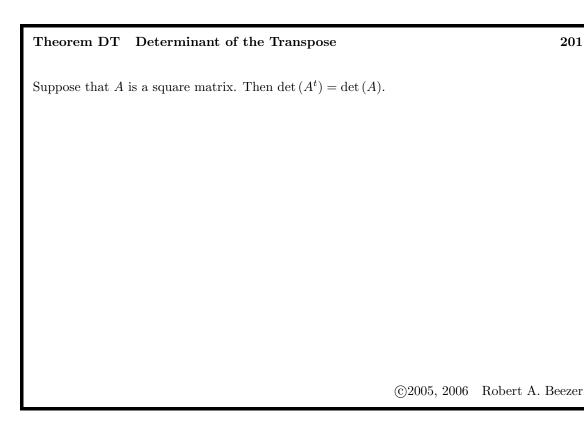
Definition DMDeterminant of a Matrix198Suppose A is a square matrix. Then its determinant, det (A) = |A|, is an element of C defined
recursively by:If A is a 1×1 matrix, then det $(A) = [A]_{11}$.If A is a matrix of size n with $n \ge 2$, thendet $(A) = [A]_{11} \det (A(1|1)) - [A]_{12} \det (A(1|2)) + [A]_{13} \det (A(1|3)) - [A]_{14} \det (A(1|4)) + \dots + (-1)^{n+1} [A]_{1n} \det (A(1|n))$ $[A]_{14} \det (A(1|4)) + \dots + (-1)^{n+1} [A]_{1n} \det (A(1|n))$ ©2005, 2006Robert A. Beezer

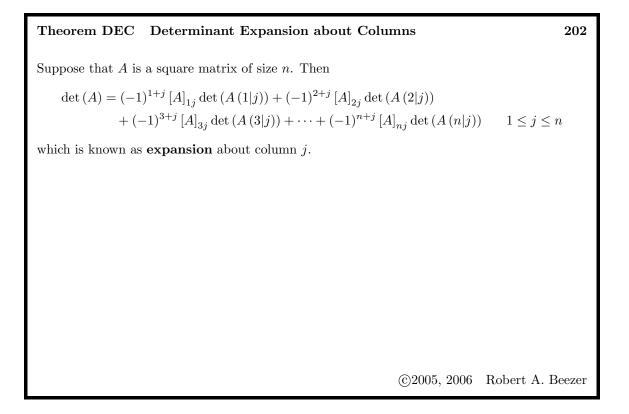
Theorem DMST Determinant of Matrices of Size Two

Suppose that
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then det $(A) = ad - bc$

C2005, 2006 Robert A. Beezer

Theorem DER Determinant Expansion about Rows	200
Suppose that A is a square matrix of size n . Then	
$\det (A) = (-1)^{i+1} [A]_{i1} \det (A(i 1)) + (-1)^{i+2} [A]_{i2} \det (A(i 2)) + (-1)^{i+3} [A]_{i3} \det (A(i 3)) + \dots + (-1)^{i+n} [A]_{in} \det (A(i n)) \qquad 1 \le i \le n$	n
which is known as expansion about row i .	
@2005_2006_Dabart A_I	Dooron
(c)2005, 2006 Robert A. H	beezer.





Theorem DZRC Determinant with Zero Row or Column	203
Suppose that A is a square matrix with a row where every entry is zero, or a column every entry is zero. Then $\det(A) = 0$.	where

Theorem DRCS Determinant for Row or Column Swap

Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging the location of two rows, or interchanging the location of two columns. Then $\det(B) = -\det(A)$.

©2005, 2006 Robert A. Beezer

©2005, 2006 Robert A. Beezer

 $\mathbf{204}$

Theorem DRCM Determinant for Row or Column Multiples

 $\mathbf{205}$

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a single row by the scalar α , or by multiplying a single column by the scalar α . Then det $(B) = \alpha \det(A)$.

Theorem DERC Determinant with Equal Rows or Columns	206
Suppose that A is a square matrix with two equal rows, or two equal columns.	Then $\det(A) = 0.$
$\odot 2005, 2006$	Robert A. Beezer

Theorem DRCMA Determinant for Row or Column Multiples and Addition 207

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a row by the scalar α and then adding it to another row, or by multiplying a column by the scalar α and then adding it to another column. Then det $(B) = \det(A)$.

Theorem DIM	Determinant of the Identity Matrix	208
For every $n \ge 1$, d	$\det\left(I_n\right) = 1.$	
	©2005, 2006 Robert A. Be	eezer

Theorem DEM Determinants of Elementary Matrices

For the three possible versions of an elementary matrix (Definition ELEM) we have the determinants,

- 1. det $(E_{i,j}) = -1$
- 2. det $(E_i(\alpha)) = \alpha$
- 3. det $(E_{i,j}(\alpha)) = 1$

©2005, 2006 Robert A. Beezer

209

Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication 210

Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

 $\det (EA) = \det (E) \det (A)$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem SMZD Singular Matrices have Zero Determinants

Let A be a square matrix. Then A is singular if and only if det(A) = 0.

©2005, 2006 Robert A. Beezer

 $\mathbf{211}$

Theorem NME7 Nonsingular Matrix Equivalences, Round 7 Suppose that A is a square matrix of size n . The following are equivalent.	212
1. A is nonsingular.	
2. A row-reduces to the identity matrix.	
3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{0\}.$	
4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .	
5. The columns of A are a linearly independent set.	
6. A is invertible.	
7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.	
8. The columns of A are a basis for \mathbb{C}^n .	
9. The rank of A is $n, r(A) = n$.	
10. The nullity of A is zero, $n(A) = 0$.	
11. The determinant of A is nonzero, $\det(A) \neq 0$.	
©2005, 2006 Robert A. E	Beezer

Theorem DRMM Determinant Respects Matrix Multiplication

Suppose that A and B are square matrices of the same size. Then $\det(AB) = \det(A) \det(B)$.

 $\odot 2005, 2006$ Robert A. Beezer

213

Definition EEM Eigenvalues and Eigenvectors of a Matrix	214
Suppose that A is a square matrix of size $n, \mathbf{x} \neq 0$ is a vector in \mathbb{C}^n , and λ is a scalar in Then we say \mathbf{x} is an eigenvector of A with eigenvalue λ if	n C.
$A\mathbf{x} = \lambda \mathbf{x}$	
©2005, 2006 Robert A. Be	eezer

Theorem EMHE Every Matrix Has an Eigenvalue	215
Suppose A is a square matrix. Then A has at least one eigenvalue.	
©2005, 2006 Robert A.	Beezer

Definition CPCharacteristic Polynomial216Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the
polynomial $p_A(x)$ defined by $p_A(x) = \det(A - xI_n)$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem EMRCP	Eigenvalues of a Matrix are Roots of Characteristic Polynomi-
als	217

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_A(\lambda) = 0$.

©2005, 2006 Robert A. Beezer

 $\mathbf{218}$

Definition EM Eigenspace of a Matrix

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **eigenspace** of A for λ , $\mathcal{E}_A(\lambda)$, is the set of all the eigenvectors of A for λ , together with the inclusion of the zero vector.

Theorem EMS	Eigenspace for a Matrix is a Subspace 21	19
	hare matrix of size n and λ is an eigenvalue of A . Then the eigenspace $\mathcal{E}_A(\lambda)$ we vector space \mathbb{C}^n .	$\lambda)$
	©2005, 2006 Robert A. Beez	er

Theorem EMNS	Eigenspace of a Matrix is a Null Space	220
Suppose A is a squa	re matrix of size n and λ is an eigenvalue of A . Then	
	$\mathcal{E}_{A}\left(\lambda\right) = \mathcal{N}(A - \lambda I_{n})$	
	$\odot 2005, 2006$	Robert A. Beezer

Definition AME Algebraic Multiplicity of an Eigenvalue

 $\mathbf{221}$

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **algebraic multiplicity** of λ , $\alpha_A(\lambda)$, is the highest power of $(x - \lambda)$ that divides the characteristic polynomial, $p_A(x)$.

Definition GME	Geometric Multiplicity of an Eigenvalue 22	22
	square matrix and λ is an eigenvalue of A . Then the geometric mult is the dimension of the eigenspace $\mathcal{E}_A(\lambda)$.	i-
	©2005, 2006 Robert A. Beeze	er

Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 223

Suppose that A is an $n \times n$ square matrix and $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p\}$ is a set of eigenvectors with eigenvalues $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_p$ such that $\lambda_i \neq \lambda_j$ whenever $i \neq j$. Then S is a linearly independent set.

Theorem SMZE	Singular Matrices have Zero Eigenvalues	224
Suppose A is a squa	are matrix. Then A is singular if and only if $\lambda = 0$ is an eigenvalue of	А.
	©2005, 2006 Robert A. B	Seezer

Theorem NME8Nonsingular Matrix Equivalences, Round 8Suppose that A is a square matrix of size n . The following are equivalent.	225
1. A is nonsingular.	
2. A row-reduces to the identity matrix.	
3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{0\}.$	
4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .	
5. The columns of A are a linearly independent set.	
6. A is invertible.	
7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.	
8. The columns of A are a basis for \mathbb{C}^n .	
9. The rank of A is $n, r(A) = n$.	
10. The nullity of A is zero, $n(A) = 0$.	
11. The determinant of A is nonzero, $\det(A) \neq 0$.	
12. $\lambda = 0$ is not an eigenvalue of A.	
©2005, 2006 Robert A. Be	ezer

Theorem ESMM	Eigenvalues of a Scalar Multiple of a Matrix 2	26
Suppose A is a square	re matrix and λ is an eigenvalue of A . Then $\alpha\lambda$ is an eigenvalue of αA .	
	©2005, 2006 Robert A. Beez	zer

Theorem EOMP	Eigenvalues Of Matrix Powers	227
Suppose A is a squa eigenvalue of A^s .	re matrix, λ is an eigenvalue of A , and $s \ge 0$ is an integr	er. Then λ^s is an
	©2005, 2006	Robert A. Beezer

Suppose A is a square matrix and λ is an eigenvalue of A. variable x. Then $q(\lambda)$ is an eigenvalue of the matrix $q(A)$.	Let $q(x)$ be a	polynomial in the
	©2005, 2006	Robert A. Beezer

 $\mathbf{228}$

Theorem EPM Eigenvalues of the Polynomial of a Matrix

Theorem EIM Eigenvalues of the Inverse of a Matrix 229 Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then $\frac{1}{\lambda}$ is an eigenvalue of the matrix A^{-1} . 1

Theorem ETM	Eigenvalues of the Transpose of a Matrix 230	0
Suppose A is a squ A^t .	are matrix and λ is an eigenvalue of A . Then λ is an eigenvalue of the matrix	x
	©2005, 2006 Robert A. Beeze	er

Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs 231 Suppose A is a square matrix with real entries and \mathbf{x} is an eigenvector of A for the eigenvalue λ . Then $\overline{\mathbf{x}}$ is an eigenvector of A for the eigenvalue $\overline{\lambda}$.

Theorem DCP	Degree of the Charac	teristic Polynomial		232
Suppose that A is has degree n .	a square matrix of size n	. Then the characteri	stic polyno	omial of A , $p_A(x)$,
		©20	005, 2006	Robert A. Beezer

Theorem NEM Number of Eigenvalues of a Matrix

233

Suppose that A is a square matrix of size n with distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_k$. Then

$$\sum_{i=1}^{k} \alpha_A \left(\lambda_i \right) =$$

n

Theorem ME Multiplicities of an Eigenvalue	234
Suppose that A is a square matrix of size n and λ is an eigenvalue. Then	
$1 \le \gamma_A\left(\lambda\right) \le \alpha_A\left(\lambda\right) \le n$	
©2005, 2006 R	obert A. Beezer

35
en-

236
Beezer

Theorem HMOE	Hermitian Matrices have Orthogonal Ei	genvect	tors	237
	a Hermitian matrix and \mathbf{x} and \mathbf{y} are two eigen and \mathbf{y} are orthogonal vectors.	nvectors	of A for	different
	©200.	5,2006	Robert A	A. Beezer

Definition SIM	Similar	Matrices
----------------	---------	----------

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix of size n, S, such that $A = S^{-1}BS$.

©2005, 2006 Robert A. Beezer

 $\mathbf{238}$

Theorem SER Similarity is an Equivalence Relation 239 Suppose A, B and C are square matrices of size n. Then 1. A is similar to A. (Reflexive) 2. If A is similar to B, then B is similar to A. (Symmetric) 3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

Theorem SMEE Similar Matrices	have	Equal Eigenvalues		240
Suppose A and B are similar matrices. equal, that is $p_A(x) = p_B(x)$.	Then	the characteristic po	lynomia	ls of A and B are
		©2005	5, 2006	Robert A. Beezer

Definition DIM	Diagonal Matrix	241
Suppose that A is a	a square matrix. Then A is a diagonal matrix if $[A]_{ij} = 0$ whenever i	$\neq j.$
	©2005, 2006 Robert A. I	Beezer

Definition DZM	Diagonalizable Matrix	242
Suppose A is a squa	are matrix. Then A is diagonalizable if A is similar to a diagonal matrix	rix.
	©2005, 2006 Robert A. Be	ezer

Diagonalization Characterization	243
have matrix of size n . Then A is diagonalizable if and only not set S that contains n eigenvectors of A .	y if there exists a
@2005_2006	Debert A. Deser
	hare matrix of size n . Then A is diagonalizable if and only

Theorem DMFE	Diagonalizable Mat	rices have Full Eigenspaces	244
Suppose A is a square eigenvalue λ of A .	e matrix. Then A is dia	gonalizable if and only if $\gamma_{A}(\lambda)$	$= \alpha_A(\lambda)$ for every
		©2005, 2006	Robert A. Beezer

Theorem DED Distinct Eigenvalues implies Diagonalizable

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.

	©2005, 2006	Robert A. Beezer

Definition LT Linear Transformation

A linear transformation, $T: U \mapsto V$, is a function that carries elements of the vector space U (called the **domain**) to the vector space V (called the **codomain**), and which has two additional properties

1. $T(\mathbf{u}_{1} + \mathbf{u}_{2}) = T(\mathbf{u}_{1}) + T(\mathbf{u}_{2})$ for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$

2. $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$

Theorem LTTZZ	Linear Transformations Take Zero to Zero	248
Suppose $T \colon U \mapsto V$	is a linear transformation. Then $T(0) = 0$.	
	©2005, 2006 Robert A. B	eezer

Theorem MBLT Matrices Build Linear Transformations 249 Suppose that *A* is an $m \times n$ matrix. Define a function $T: \mathbb{C}^n \mapsto \mathbb{C}^m$ by $T(\mathbf{x}) = A\mathbf{x}$. Then *T* is a linear transformation.

©2005, 2006 Robert A. Beezer

Theorem MLTCV Matrix of a Linear Transformation, Column Vectors 250

Suppose that $T: \mathbb{C}^n \mapsto \mathbb{C}^m$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem LTLC Linear Transformations and Linear Combinations

 $\mathbf{251}$

Suppose that $T: U \mapsto V$ is a linear transformation, $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t$ are vectors from U and $a_1, a_2, a_3, \ldots, a_t$ are scalars from \mathbb{C} . Then

 $T(a_{1}\mathbf{u}_{1} + a_{2}\mathbf{u}_{2} + a_{3}\mathbf{u}_{3} + \dots + a_{t}\mathbf{u}_{t}) = a_{1}T(\mathbf{u}_{1}) + a_{2}T(\mathbf{u}_{2}) + a_{3}T(\mathbf{u}_{3}) + \dots + a_{t}T(\mathbf{u}_{t})$

Theorem LTDB Linear Transformation Defined on a Basis	252
Suppose that $T: U \mapsto V$ is a linear transformation, $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a basis for and w is a vector from U. Let $a_1, a_2, a_3, \dots, a_n$ be the scalars from \mathbb{C} such that	or U
$\mathbf{w} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3 + \dots + a_n\mathbf{u}_n$	
Then $T(\mathbf{w}) = a_1 T(\mathbf{u}_1) + a_2 T(\mathbf{u}_2) + a_3 T(\mathbf{u}_3) + \dots + a_n T(\mathbf{u}_n)$	
©2005, 2006 Robert A. Be	eezer

Definition PI Pre-Image

Suppose that $T: U \mapsto V$ is a linear transformation. For each **v**, define the **pre-image** of **v** to be the subset of U given by

$$T^{-1}(\mathbf{v}) = \{ \mathbf{u} \in U \mid T(\mathbf{u}) = \mathbf{v} \}$$

©2005, 2006 Robert A. Beezer

 $\mathbf{253}$

 $\mathbf{254}$

Definition LTA Linear Transformation Addition

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then their **sum** is the function $T + S: U \mapsto V$ whose outputs are defined by

$$(T+S)(\mathbf{u}) = T(\mathbf{u}) + S(\mathbf{u})$$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 255

Suppose that $T \colon U \mapsto V$ and $S \colon U \mapsto V$ are two linear transformations with the same domain and codomain. Then $T + S \colon U \mapsto V$ is a linear transformation.

©2005, 2006 Robert A. Beezer

Definition LTSM Linear Transformation Scalar Multiplication 256
Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the scalar multiple is the function $\alpha T: U \mapsto V$ whose outputs are defined by
$\left(\alpha T\right)\left(\mathbf{u}\right)=\alpha T\left(\mathbf{u}\right)$
©2005, 2006 Robert A. Beezer

Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 257

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then $(\alpha T): U \mapsto V$ is a linear transformation.

©2005, 2006 Robert A. Beezer

 $\mathbf{258}$

Theorem VSLT Vector Space of Linear Transformations

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V, LT(U, V) is a vector space when the operations are those given in Definition LTA and Definition LTSM.

C2005, 2006 Robert A. Beezer

Definition LTC Linear Transformation Composition

259

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then the **composition** of S and T is the function $(S \circ T): U \mapsto W$ whose outputs are defined by

$$\left(S\circ T\right)\left(\mathbf{u}\right)=S\left(T\left(\mathbf{u}\right)\right)$$

©2005, 2006 Robert A. Beezer

Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 260

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then $(S \circ T): U \mapsto W$ is a linear transformation.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

51
),
ər

Definition KLT	Kernel of a Linear Transformation	262
Suppose $T \colon U \mapsto V$	' is a linear transformation. Then the kernel of T is the set	
	$\mathcal{K}(T) = \{ \mathbf{u} \in U \mid T(\mathbf{u}) = 0 \}$	
	©2005, 2006 Robert A. B	Beezer

Theorem KLTS Kernel of a Linear Transformation is a Subspace

Suppose that $T: U \mapsto V$ is a linear transformation. Then the kernel of T, $\mathcal{K}(T)$, is a subspace of U.

©2005, 2006 Robert A. Beezer

263

 $\mathbf{264}$

Theorem KPI Kernel and Pre-Image

Suppose $T: U \mapsto V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is non-empty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

 $T^{-1}(\mathbf{v}) = \{\mathbf{u} + \mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T)\} = \mathbf{u} + \mathcal{K}(T)$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem KILT Kernel of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is injective if and only if the kernel of T is trivial, $\mathcal{K}(T) = \{\mathbf{0}\}.$

©2005, 2006 Robert A. Beezer

Theorem ILTLI Injective Linear Transformations and Linear Independence 266

Suppose that $T: U \mapsto V$ is an injective linear transformation and $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t\}$ is a linearly independent subset of U. Then $R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \ldots, T(\mathbf{u}_t)\}$ is a linearly independent subset of V.

C2005, 2006 Robert A. Beezer

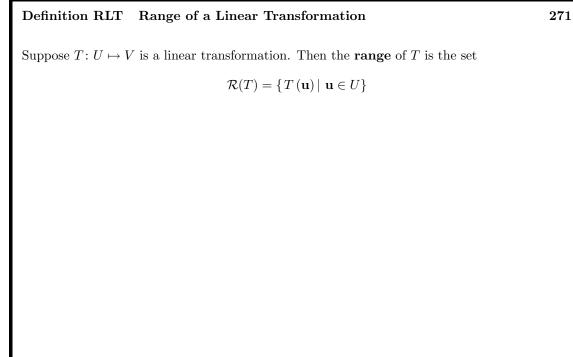
Theorem ILTB Injective Linear Transformations and Bases

Suppose that $T: U \mapsto V$ is a linear transformation and $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m\}$ is a basis of U. Then T is injective if and only if $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}$ is a linearly independent subset of V.

Theorem ILTD	Injective Linear Transformations and Dimension	268
Suppose that $T: U$	$U \mapsto V$ is an injective linear transformation. Then dim $(U) \leq \dim (V)$.	
	©2005, 2006 Robert A. Be	eezer

Theorem CILTI Composition of Injective Linear Transformations is Injective 269 Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are injective linear transformations. Then $(S \circ T): U \mapsto W$ is an injective linear transformation.

Definition SLT Surjective Linear Transformation	270
Suppose $T: U \mapsto V$ is a linear transformation. Then T is surjective if for every $\mathbf{v} \in V$ exists a $\mathbf{u} \in U$ so that $T(\mathbf{u}) = \mathbf{v}$.	there
©2005, 2006 Robert A. B	eezer



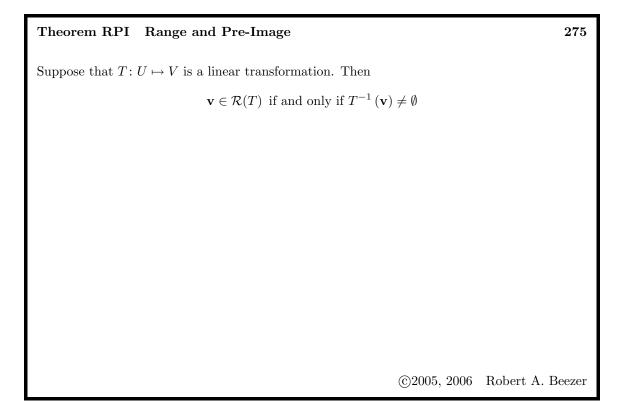
Theorem RLTSRange of a Linear Transformation is a Subspace272
Suppose that $T: U \mapsto V$ is a linear transformation. Then the range of T , $\mathcal{R}(T)$, is a subspace of V .
©2005, 2006 Robert A. Beezer

Theorem RSLT Range of a Surjective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T) = V$.

©2005, 2006 Robert A. Beezer

Theorem SSRLTSpanning Set for Range of a Linear Transformation274Suppose that $T: U \mapsto V$ is a linear transformation and $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, ..., \mathbf{u}_t\}$ spans U.
Then
 $R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), ..., T(\mathbf{u}_t)\}$
spans $\mathcal{R}(T)$.Spans $\mathcal{R}(T)$.



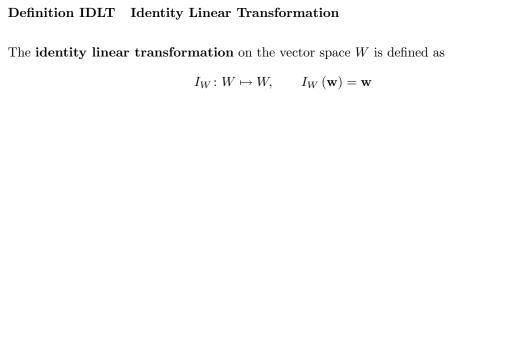
Theorem SLTB	Surjective Linear Transformations and Bases 27	76
	$V \mapsto V$ is a linear transformation and $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m\}$ is a basis exclive if and only if $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}$ is a spanning	
	©2005, 2006 Robert A. Beez	ær

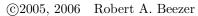
Theorem SLTD Surjective Linear Transformations and Dimension	277
Suppose that $T: U \mapsto V$ is a surjective linear transformation. Then dim $(U) \ge \dim (V)$.	

Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 278

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are surjective linear transformations. Then $(S \circ T): U \mapsto W$ is a surjective linear transformation.

©2005, 2006 Robert A. Beezer





 $\mathbf{279}$

Definition IVLT	Invertible Linear Transformation	ons	280
Suppose that $T: U$	$\mapsto V$ is a linear transformation. If the	ere is a function $S \colon V \mapsto U$ suc	h that
	$S \circ T = I_U$	$T \circ S = I_V$	
then T is invertible	e . In this case, we call S the inverse	of T and write $S = T^{-1}$.	
			5
		C2005, 2006 Robert A.	Beezer

Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation 281
Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then the function $T^{-1}: V \mapsto U$ is a linear transformation.

Theorem IILT	Inverse of an Invertible Linea	ar Transformation	282
Suppose that $T: U$ transformation and	$\mapsto V$ is an invertible linear transfer $(T^{-1})^{-1} = T.$	ormation. Then T^{-1}	is an invertible linear
		©2005, 200	6 Robert A. Beezer

Theorem ILTIS Invertible Linear Transformations are Injective and Surjective283

Suppose $T: U \mapsto V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.

Theorem CIVLT	Composition of Invertible Linear Transformations	284	
Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. composition, $(S \circ T): U \mapsto W$ is an invertible linear transformation.			
	C2005, 2006 Robert	A. Beezer	

Theorem ICLT Inverse of a Composition of Linear Transforma	ations 285
Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformation invertible and $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$.	ations. Then $S \circ T$ is

©2005, 2006 Robert A. Beezer

Definition IVS Isomorphic Vector Spaces

Two vector spaces U and V are **isomorphic** if there exists an invertible linear transformation T with domain U and codomain $V, T: U \mapsto V$. In this case, we write $U \cong V$, and the linear transformation T is known as an **isomorphism** between U and V.

©2005, 2006 Robert A. Beezer

Theorem IVSED	Isomorphic Vector Spaces have Equal Dimension 28	37
Suppose U and V are	re isomorphic vector spaces. Then $\dim(U) = \dim(V)$.	
	©2005, 2006 Robert A. Beeze	$\mathbf{e}\mathbf{r}$

Definition ROLT	Rank Of a Linear Transformation 2	288
Suppose that $T: U \vdash$ of the range of T ,	→ V is a linear transformation. Then the rank of T, $r(T)$, is the dimension $r(T) = \dim(\mathcal{R}(T))$	ion
	©2005, 2006 Robert A. Bee	ezer

Definition NOLT Nullity Of a	a Linear Transform	mation	289
Suppose that $T: U \mapsto V$ is a line dimension of the kernel of T ,	ear transformation. $n\left(T\right) = \dim\left(\mathcal{K}(T)\right)$		of T , $n(T)$, is the
		©2005, 2006	Robert A. Beezer

Theorem ROSLT Rank Of a Surjective Linear Transformation	290
Suppose that $T: U \mapsto V$ is a linear transformation. Then the rank of T is the $r(T) = \dim(V)$, if and only if T is surjective.	ne dimension of V ,
$\odot 2005, 2006$	Robert A. Beezer

Theorem NOILTNullity Of an Injective Linear Transformation291Suppose that $T: U \mapsto V$ is an injective linear transformation. Then the nullity of T is zero,
n(T) = 0, if and only if T is injective.

Theorem RPNDD Rank Plus Nullity is Domain Dimension	292
Suppose that $T: U \mapsto V$ is a linear transformation. Then	
$r(T) + n(T) = \dim(U)$	
$\odot 2005, 2006$	Robert A. Beezer

Definition VR Vector Representation

Suppose that V is a vector space with a basis $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$. Define a function $\rho_B \colon V \mapsto \mathbb{C}^n$ as follows. For $\mathbf{w} \in V$, find scalars $a_1, a_2, a_3, \dots, a_n$ so that

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + \dots + a_n \mathbf{v}_n$$

then

$$\left[\rho_B\left(\mathbf{w}\right)\right]_i = a_i \qquad \qquad 1 \le i \le n$$

©2005, 2006 Robert A. Beezer

Theorem VRLT	Vector Representation is a Linear Transformat	ion 294
The function ρ_B (D	Definition VR) is a linear transformation.	
	C2005, 2006	Robert A. Beezer

Theorem VRI Vector Representation is Injective	295
The function ρ_B (Definition VR) is an injective linear transformation.	
©2005, 2006 Robert A. E	Reezer
(J2005, 2000 Robert A. L	JEEZEI

Theorem VRS Vector Representation is Surjective	296
The function ρ_B (Definition VR) is a surjective linear transformation.	
©2005, 2006	Robert A. Beezer

Theorem VRILTVector Representation is an Invertible Linear Transformation297The function ρ_B (Definition VR) is an invertible linear transformation.

Theorem CFDVS	Characterization of Finite Dimensional Vector Spaces	298
Suppose that V is a x	vector space with dimension n . Then V is isomorphic to \mathbb{C}^n .	
Suppose that V is a v	vector space with dimension n . Then V is isomorphic to \mathbb{C} .	
	©2005, 2006 Robert A. Be	ezer

Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces

299

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and only if $\dim(U) = \dim(V)$.

©2005, 2006 Robert A. Beezer

Theorem CLI	Coordinatization and Linear Independence 3	800
linearly independ	is a vector space with a basis <i>B</i> of size <i>n</i> . Then $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_k\}$ is dent subset of <i>U</i> if and only if $R = \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \ldots, \rho_B(\mathbf{u}_k)\}$ spendent subset of \mathbb{C}^n .	s a k
	©2005, 2006 Robert A. Bee	zer

Theorem CSS Coordinatization and Spanning Sets

301

302

Suppose that U is a vector space with a basis B of size n. Then $\mathbf{u} \in \langle \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_k\} \rangle$ if and only if $\rho_B(\mathbf{u}) \in \langle \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \ldots, \rho_B(\mathbf{u}_k)\} \rangle$.

©2005, 2006 Robert A. Beezer

Definition MR Matrix Representation

Suppose that $T: U \mapsto V$ is a linear transformation, $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a basis for U of size n, and C is a basis for V of size m. Then the **matrix representation** of T relative to B and C is the $m \times n$ matrix,

 $M_{B,C}^{T} = \left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right) \middle| \rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right) \middle| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right) \middle| \dots \left|\rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]$

Theorem FTMR Fundamental Theorem of Matrix Representation

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U, C is a basis for V and $M_{B,C}^T$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$\rho_C\left(T\left(\mathbf{u}\right)\right) = M_{B,C}^T\left(\rho_B\left(\mathbf{u}\right)\right)$$

or equivalently

 $T\left(\mathbf{u}\right) = \rho_{C}^{-1}\left(M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)\right)$

©2005, 2006 Robert A. Beezer

303

Theorem MRSLT Matrix Representation of a Sum of Linear Transformations304

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are linear transformations, B is a basis of U and C is a basis of V. Then

 $M_{B,C}^{T+S} = M_{B,C}^T + M_{B,C}^S$

C2005, 2006 Robert A. Beezer

Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation 305

Suppose that $T: U \mapsto V$ is a linear transformation, $\alpha \in \mathbb{C}$, B is a basis of U and C is a basis of V. Then

$$M_{B,C}^{\alpha T} = \alpha M_{B,C}^T$$

©2005, 2006 Robert A. Beezer

Theorem MRCLT Matrix Representation of a Composition of Linear Transformations 306

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

$$M_{B,D}^{S \circ T} = M_{C,D}^S M_{B,C}^T$$

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

Theorem KNSI Kernel and Null Space Isomorphism

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the kernel of T is isomorphic to the null space of $M_{B,C}^T$,

$$\mathcal{K}(T) \cong \mathcal{N}(M_{B,C}^T)$$

©2005, 2006 Robert A. Beezer

Theorem RCSI Range and Column Space Isomorphism	308
Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n , and C for V of size m . Then the range of T is isomorphic to the column space of $M_{B,C}^T$,	C is a basis
$\mathcal{R}(T) \cong \mathcal{C}\left(M_{B,C}^T\right)$	
©2005, 2006 Robert	t A. Beezer

Theorem IMR Invertible Matrix Representations

Suppose that $T: U \mapsto V$ is an invertible linear transformation, B is a basis for U and C is a basis for V. Then the matrix representation of T relative to B and C, $M_{B,C}^{T}$ is an invertible matrix, and

$$M_{C,B}^{T^{-1}} = \left(M_{B,C}^T\right)^-$$

©2005, 2006 Robert A. Beezer

309

Theorem IMILT Invertible Matrices, Invertible Linear Transformation	310
---	------------

Suppose that A is a square matrix of size n and $T: \mathbb{C}^n \mapsto \mathbb{C}^n$ is the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$. Then A is invertible matrix if and only if T is an invertible linear transformation.

C2005, 2006 Robert A. Beezer

Theorem NME9 Nonsingular Matrix Equivalences, Round 9 Suppose that A is a square matrix of size n . The following are equivalent.	311	
1. A is nonsingular.		
2. A row-reduces to the identity matrix.		
3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{0\}.$		
4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .		
5. The columns of A are a linearly independent set.		
6. A is invertible.		
7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.		
8. The columns of A are a basis for \mathbb{C}^n .		
9. The rank of A is $n, r(A) = n$.		
10. The nullity of A is zero, $n(A) = 0$.		
11. The determinant of A is nonzero, $\det(A) \neq 0$.		
12. $\lambda = 0$ is not an eigenvalue of A.		
13. The linear transformation $T: \mathbb{C}^n \mapsto \mathbb{C}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is invertible.		
©2005, 2006 Robert A. Be	eezer	

Definition EELT Eigenvalue and Eigenvector of a Linear Transformation 312

Suppose that $T: V \mapsto V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an **eigenvector** of T for the **eigenvalue** λ if $T(\mathbf{v}) = \lambda \mathbf{v}$.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Definition CBM Change-of-Basis Matrix

Suppose that V is a vector space, and $I_V: V \mapsto V$ is the identity linear transformation on V. Let $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$ and C be two bases of V. Then the **change-of-basis matrix** from B to C is the matrix representation of I_V relative to B and C,

$$C_{B,C} = M_{B,C}^{I_V}$$

= $[\rho_C (I_V (\mathbf{v}_1)) | \rho_C (I_V (\mathbf{v}_2)) | \rho_C (I_V (\mathbf{v}_3)) | \dots | \rho_C (I_V (\mathbf{v}_n))]$
= $[\rho_C (\mathbf{v}_1) | \rho_C (\mathbf{v}_2) | \rho_C (\mathbf{v}_3) | \dots | \rho_C (\mathbf{v}_n)]$

Theorem CB Change-of-Basis	314
Suppose that \mathbf{v} is a vector in the vector space V and B and C are bases of V. Then	
$\rho_{C}\left(\mathbf{v}\right) = C_{B,C}\rho_{B}\left(\mathbf{v}\right)$	
©2005, 2006 Robert A. I	Beezer

Theorem ICBM Inverse of Change-of-Basis Matrix	315
Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis m $C_{B,C}$ is nonsingular and $C_{B,C}^{-1} = C_{C,B}$	atrix
©2005, 2006 Robert A. B	eezer

Theorem MRCB	Matrix Representation and Change of Basis 316
	→ V is a linear transformation, B and C are bases for U, and D and E are $M_{B,D}^T = C_{E,D} M_{C,E}^T C_{B,C}$
	©2005, 2006 Robert A. Beezer

Theorem SCB Similarity and Change of Basis Suppose that $T: V \mapsto V$ is a linear transformation and B and C are bases of V. Then $M_{B,B}^{T} = C_{B,C}^{-1} M_{C,C}^{T} C_{B,C}$ ©2005, 2006 Robert A. Beezer

Theorem EER Eigenvalues, Eigenvectors, Representations

317

 $\mathbf{318}$

Suppose that $T: V \mapsto V$ is a linear transformation and B is a basis of V . Then $\mathbf{v} \in V$ i eigenvector of T for the eigenvalue λ if and only if $\rho_B(\mathbf{v})$ is an eigenvector of $M_{B,B}^T$ for eigenvalue λ .	
©2005, 2006 Robert A. Be	ezer

Definition NLT Nilpotent Linear Transformation

Suppose that $T: V \mapsto V$ is a linear transformation such that there is an integer p > 0 such that $T^p(\mathbf{v}) = \mathbf{0}$ for every $\mathbf{v} \in V$. The smallest p for which this condition is met is called the **index** of T.

©2005, 2006 Robert A. Beezer

 Definition JB Jordan Block
 320

 Given the scalar $\lambda \in \mathbb{C}$, the Jordan block $J_n(\lambda)$ is the $n \times n$ matrix defined by
 $[J_n(\lambda)]_{ij} = \begin{cases} \lambda & i = j \\ 1 & j = i + 1 \\ 0 & \text{otherwise} \end{cases}$

 (C)2005, 2006 Robert A. Beezer

Theorem NJB Nilpotent Jordan Blocks	321
The Jordan block $J_{n}(0)$ is nilpotent of index n .	

Theorem ENLT	Eigenvalues of Nilpotent Linear Transformations 322	2
Suppose that $T: V$	$\mapsto V$ is a linear transformation and λ is an eigenvalue of T . Then $\lambda = 0$.	
	@2005_2006_ Pohert A Bogge	r
	©2005, 2006 Robert A. Beezen	r

Theorem DNLT	Diagonalizable Nilpotent Linear Transformations	323
Suppose the linear tr T is the zero linear t	transformation $T: V \mapsto V$ is nilpotent. Then T is diagonalizable if and transformation.	only

©2005, 2006 Robert A. Beezer

Theorem KPLT Kernels of Powers of Linear Transformations 324 Suppose $T: V \mapsto V$ is a linear transformation, where dim (V) = n. Then there is an integer m, $0 \le m \le n$, such that $\{0\} = \mathcal{K}(T^0) \subsetneq \mathcal{K}(T^1) \subsetneq \mathcal{K}(T^2) \subsetneq \cdots \subsetneq \mathcal{K}(T^m) = \mathcal{K}(T^{m+1}) = \mathcal{K}(T^{m+2}) = \cdots$ $\{0\} = \mathcal{K}(T^0) \backsim \mathcal{K}(T^1) \backsim \mathcal{K}(T^2) \backsim \mathcal{K}(T^2) \lor \mathcal{K}(T^m) = \mathcal{K}(T^m$

Theorem KPNLT Kernels of Powers of Nilpotent Linear Transformations 325

Suppose $T: V \mapsto V$ is a nilpotent linear transformation with index p and dim (V) = n. Then $0 \le p \le n$ and

 $\{\mathbf{0}\} = \mathcal{K}(T^0) \subsetneq \mathcal{K}(T^1) \subsetneq \mathcal{K}(T^2) \subsetneq \cdots \subsetneq \mathcal{K}(T^p) = \mathcal{K}(T^{p+1}) = \cdots = V$

©2005, 2006 Robert A. Beezer

Theorem CFNLT Canonical Form for Nilpotent Linear Transformations 326

Suppose that $T: V \mapsto V$ is a nilpotent linear transformation of index p. Then there is a basis for V so that the matrix representation, $M_{B,B}^T$, is block diagonal with each block being a Jordan block, $J_n(0)$. The size of the largest block is the index p, and the total number of blocks is the nullity of T, n(T).

C2005, 2006 Robert A. Beezer

Definition CNE	Complex Number Equality	327
The complex numb	ers $\alpha = a + bi$ and $\beta = c + di$ are equal , denoted $\alpha = \beta$, if $a = c$ and $b = c$	d.
	©2005, 2006 Robert A. Be	ezer

Definition CNA	Complex Number Addition	328
The \mathbf{sum} of the com	applex numbers $\alpha = a + bi$ and $\beta = c + di$, denoted $\alpha + \beta$, is $(a + c) + (b + c)$	l)i.
	©2005, 2006 Robert A. B	eezer

Definition CNM Complex Number Multiplication

The **product** of the complex numbers $\alpha = a + bi$ and $\beta = c + di$, denoted $\alpha\beta$, is (ac - bd) + (ad + bc)i.

©2005, 2006 Robert A. Beezer

Theorem PCNAProperties of Complex Number Arithmetic330The operations of addition and multiplication of complex numbers have the following properties.

- ACCN Additive Commutativity, Complex Numbers For any $\alpha, \beta \in \mathbb{C}, \alpha + \beta = \beta + \alpha$.
- MCCN Multiplicative Commutativity, Complex Numbers For any $\alpha, \beta \in \mathbb{C}$, $\alpha\beta = \beta\alpha$.
- AACN Additive Associativity, Complex Numbers For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$.
- MACN Multiplicative Associativity, Complex Numbers For any $\alpha, \beta, \gamma \in \mathbb{C}$, $\alpha(\beta\gamma) = (\alpha\beta)\gamma$.
- DCN Distributivity, Complex Numbers For any α , β , $\gamma \in \mathbb{C}$, $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$.
- ZCN Zero, Complex Numbers There is a complex number 0 = 0 + 0i so that for any $\alpha \in \mathbb{C}, 0 + \alpha = \alpha$.
- OCN One, Complex Numbers There is a complex number 1 = 1 + 0i so that for any $\alpha \in \mathbb{C}$, $1\alpha = \alpha$.
- AICN Additive Inverse, Complex Numbers For every $\alpha \in \mathbb{C}$ there exists $-\alpha \in \mathbb{C}$ so that $\alpha + (-\alpha) = 0$.
- MICN Multiplicative Inverse, Complex Numbers For every $\alpha \in \mathbb{C}$, $\alpha \neq 0$ there exists $\frac{1}{\alpha} \in \mathbb{C}$ so that $\alpha(\frac{1}{\alpha}) = 1$.

Definition CCN	Conjugate of a Complex Number	331
The conjugate of t	the complex number $c = a + bi \in \mathbb{C}$ is the complex number $\overline{c} = a - bi$.	
	©2005, 2006 Robert A. B	eezer

Theorem CCRA	Complex Conjugation Respects Addition	332
Suppose that c and	d are complex numbers. Then $\overline{c+d} = \overline{c} + \overline{d}$.	
	©2005, 2006 Robert A. Be	eezer
	©2005, 2006 Robert A. Be	eezer

Theorem CCRM	Complex Conjugation Respects	Multiplication	333
Suppose that c and	d are complex numbers. Then $\overline{cd} = \overline{cd}$	Ī.	
		$\odot 2005, 2006$	Robert A. Beezer

Theorem CCT Complex Conjugation Twice	334
Suppose that c is a complex number. Then $\overline{\overline{c}} = c$.	
Suppose that c is a complex number. Then c – c.	
C2005, 2006	Robert A. Beezer

Definition MCN Modulus of a Complex Number The modulus of the complex number $c = a + bi \in \mathbb{C}$, is the nonnegative real number $|c| = \sqrt{c\overline{c}} = \sqrt{a^2 + b^2}$.

©2005, 2006 Robert A. Beezer

335

Definition SET	Set	336
	red collection of objects. If S is a set and x is an object t x is not in S, then we write $x \notin S$. We refer to the obj	
	©2005, 2006	Robert A. Beezer

Definition SSET	Subset		337
If S and T are two s	ets, then S is a subset of T, written $S \subseteq \mathcal{I}$	T if whenever $x \in$	S then $x \in T$.
		©2005, 2006 R	obert A. Beezer

Definition ES	Empty Set	338		
The empty set is	The empty set is the set with no elements. Its is denoted by \emptyset .			
	©2005, 2006 Robert A. Be	eezer		

Definition SESet Equality339Two sets, S and T, are equal, if $S \subseteq T$ and $T \subseteq S$. In this case, we write S = T. $(C_2005, 2006)$ Robert A. Beezer

Definition C	Cardinality	340
	finite set. Then the number of elements in S is called the cardinality or s	
	©2005, 2006 Robert A. Be	ezer

Definition SU Set Union

Suppose S and T are sets. Then the **union** of S and T, denoted $S \cup T$, is the set whose elements are those that are elements of S or of T, or both. More formally,

 $x \in S \cup T$ if and only if $x \in S$ or $x \in T$

©2005, 2006 Robert A. Beezer

Definition SI Set Intersection	342	
Suppose S and T are sets. Then the intersection of S and T, denoted $S \cap T$, is the set whose elements are only those that are elements of S and of T. More formally,		
$x \in S \cap T$ if and only if $x \in S$ and $x \in T$		
©2005, 2006 Rob	ert A. Beezer	

Definition SC Set Complement

Suppose S is a set that is a subset of a universal set U. Then the **complement** of S, denoted \overline{S} , is the set whose elements are those that are elements of U and not elements of S. More formally,

 $x \in \overline{S}$ if and only if $x \in U$ and $x \notin S$