Flash Cards

to accompany

A First Course in Linear Algebra

by Robert A. Beezer Department of Mathematics and Computer Science University of Puget Sound

> Version 0.93 November 22, 2006 © 2004, 2005, 2006

Copyright © 2004, 2005, 2006 Robert A. Beezer.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the GNU Free Documentation License can be found at http://www.gnu.org/copyleft/fdl.html and is incorporated here by this reference.
The most recent version of this work can always be found at http://linear.ups.edu/.

Definition SLE System of Linear Equations

1

A system of linear equations is a collection of m equations in the variable quantities $x_1, x_2, x_3, \ldots, x_n$ of the form,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

where the values of a_{ij} , b_i and x_j are from the set of complex numbers, \mathbb{C} .

©2005, 2006 Robert A. Beezer

Definition ESYS Equivalent Systems

 $\mathbf{2}$

Two systems of linear equations are $\mathbf{equivalent}$ if their solution sets are equal.

Definition EO Equation Operations

3

Given a system of linear equations, the following three operations will transform the system into a different one, and each is known as an **equation operation**.

- 1. Swap the locations of two equations in the list.
- 2. Multiply each term of an equation by a nonzero quantity.
- 3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

©2005, 2006 Robert A. Beezer

Theorem EOPSS Equation Operations Preserve Solution Sets

4

If we apply one of the three equation operations of Definition EO to a system of linear equations (Definition SLE), then the original system and the transformed system are equivalent.

Definition M Matrix 5

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns. We will use upper-case Latin letters from the start of the alphabet (A, B, C, ...) to denote matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets — the distinction is not important. Rows of a matrix will be referenced starting at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the notation A will refer to the complex number in row A and column A and column A and column A and column A the notation A and column A and column A and column A the notation A and column A are column A and column A are column A and column A and column A are column A and column A and column A are column A and column A and column A and column A are column A and column A and column A are column A and column A are column A and column A are column A and column A and column A are column A and A are column A are column A are column A and A are column A and A are column A are column A are column A and A are column A a

©2005, 2006 Robert A. Beezer

Definition CV Column Vector

6

A **column vector** of **size** m is an ordered list of m numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a **vector**. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as \mathbf{u} , \mathbf{v} , \mathbf{w} , \mathbf{x} , \mathbf{y} , \mathbf{z} . Some books like to write vectors with arrows, such as \vec{u} . Writing by hand, some like to put arrows on top of the symbol, or a tilde underneath the symbol, as in u. To refer to the **entry** or **component** that is number i in the list that is the vector \mathbf{v} we write $[\mathbf{v}]_i$.

Definition ZCV Zero Column Vector

7

The **zero vector** of size m is the column vector of size m where each entry is the number zero,

$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

or more compactly, $[\mathbf{0}]_i = 0$ for $1 \le i \le m$.

©2005, 2006 Robert A. Beezer

Definition CM Coefficient Matrix

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

the **coefficient matrix** is the $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

©2005, 2006 Robert A. Beezer

_

Definition VOC Vector of Constants

9

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

the **vector of constants** is the column vector of size m

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

©2005, 2006 Robert A. Beezer

Definition SV Solution Vector

10

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

the **solution vector** is the column vector of size n

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

Definition LSMR.	Matrix Representation	of a Linear System	

If A is the coefficient matrix of a system of linear equations and \mathbf{b} is the vector of constants, then we will write $\mathcal{LS}(A, \mathbf{b})$ as a shorthand expression for the system of linear equations, which we will refer to as the **matrix representation** of the linear system.

© 2005, 2006 Robert A. Beezer

Definition AM Augmented Matrix

12

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of constants \mathbf{b} . Then the **augmented matrix** of the system of equations is the $m \times (n+1)$ matrix whose first n columns are the columns of A and whose last column (number n+1) is the column vector \mathbf{b} . This matrix will be written as $[A \mid \mathbf{b}]$.

Definition RO Row Operations

13

The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a **row operation**.

- 1. Swap the locations of two rows.
- 2. Multiply each entry of a single row by a nonzero quantity.
- 3. Multiply each entry of one row by some quantity, and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

- 1. $R_i \leftrightarrow R_j$: Swap the location of rows i and j.
- 2. αR_i : Multiply row i by the nonzero scalar α .
- 3. $\alpha R_i + R_j$: Multiply row i by the scalar α and add to row j.

©2005, 2006 Robert A. Beezer

Definition REM Row-Equivalent Matrices

14

Two matrices, A and B, are **row-equivalent** if one can be obtained from the other by a sequence of row operations.

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations that they represent are equivalent systems.

©2005, 2006 Robert A. Beezer

Definition RREF Reduced Row-Echelon Form

16

A matrix is in **reduced row-echelon form** if it meets all of the following conditions:

- 1. A row where every entry is zero lies below any row that contains a nonzero entry.
- 2. The leftmost nonzero entry of a row is equal to 1.
- 3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
- 4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If s > i, then t > j.

A row of only zero entries will be called a **zero row** and the leftmost nonzero entry of a nonzero row will be called a **leading 1**. The number of nonzero rows will be denoted by r.

A column containing a leading 1 will be called a **pivot column**. The set of column indices for all of the pivot columns will be denoted by $D = \{d_1, d_2, d_3, \ldots, d_r\}$ where $d_1 < d_2 < d_3 < \cdots < d_r$, while the columns that are not pivot colums will be denoted as $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ where $f_1 < f_2 < f_3 < \cdots < f_{n-r}$.

Theorem REMEF Row-Equivalent Matrix in Echelon Form

17

Suppose A is a matrix. Then there is a matrix B so that

- 1. A and B are row-equivalent.
- 2. B is in reduced row-echelon form.

©2005, 2006 Robert A. Beezer

Definition RR Row-Reducing

18

To **row-reduce** the matrix A means to apply row operations to A and arrive at a row-equivalent matrix B in reduced row-echelon form.

Definition CS Consistent System	19
A system of linear equations is consistent if it has at least one solution. is called inconsistent .	Otherwise, the system

Definition IDV Independent and Dependent Variables

20

Suppose A is the augmented matrix of a consistent system of linear equations and B is a row-equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not the last column. Then the variable x_j is **dependent**. A variable that is not dependent is called **independent** or **free**.

©2005, 2006 Robert A. Beezer

© 2005, 2006 Robert A. Beezer

Theorem	RCLS	Recognizing	Consistency	of a	Linear	System
THEOLEIN	ICLIS	rtecogmizing	Consistency	or a	Linear	System

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column n+1 of B.

© 2005, 2006 Robert A. Beezer

Theorem ISRN Inconsistent Systems, r and n

22

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent.

Theorem	CSRN	Consistent	Systems	r	and	n
THEOLEIN	CSILIN	Consistent	Bystems,	7	anu	$T\iota$

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If r = n, then the system has a unique solution, and if r < n, then the system has infinitely many solutions.

© 2005, 2006 Robert A. Beezer

Theorem FVCS Free Variables for Consistent Systems

24

Suppose A is the augmented matrix of a *consistent* system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with n-r free variables.

Theorem PSSLS	Possible Solution Sets for Linear Systems 2	5
A system of linear e	quations has no solutions, a unique solution or infinitely many solutions.	
	©2005, 2006 Robert A. Beeze	er
Theorem CMVEI 26	Consistent, More Variables than Equations, Infinite solution	ıs
	system of linear equations has m equations in n variables. If $n > m$, the itely many solutions.	n
	©2005, 2006 Robert A. Beeze	er

Definition HS Homogeneous System	27
A system of linear equations, $\mathcal{LS}(A, \mathbf{b})$ is homogeneous if the vector of constants is t vector, in other words, $\mathbf{b} = 0$.	the zero
vector, in other words, $\mathbf{p} = 0$.	
©2005, 2006 Robert A.	. Beezer
Theorem HSC Homogeneous Systems are Consistent	28
Suppose that a system of linear equations is homogeneous. Then the system is consiste	ent.

Definition TSHSE	Trivial Solution to Homogeneous Systems of Equations

Suppose a homogeneous system of linear equations has n variables. The solution $x_1 = 0$, $x_2 = 0, \ldots, x_n = 0$ (i.e. $\mathbf{x} = \mathbf{0}$) is called the **trivial solution**.

©2005, 2006 Robert A. Beezer

29

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions 30

Suppose that a homogeneous system of linear equations has m equations and n variables with n > m. Then the system has infinitely many solutions.

Definition NSM Null Space of a Matrix	31
The null space of a matrix A , denoted $\mathcal{N}(A)$, is the set of all the vectors that are solution the homogeneous system $\mathcal{LS}(A, 0)$.	ns to

©2005, 2006 Robert A. Beezer

Definition SQM Square Matrix

32

A matrix with m rows and n columns is **square** if m = n. In this case, we say the matrix has **size** n. To emphasize the situation when a matrix is not square, we will call it **rectangular**.

Definition NM Nonsingular Matrix

33

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{LS}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, i.e. the system has *only* the trivial solution. Then we say that A is a **nonsingular** matrix. Otherwise we say A is a **singular** matrix.

©2005, 2006 Robert A. Beezer

Definition IM Identity Matrix

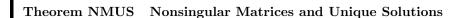
34

The $m \times m$ identity matrix, I_m , is defined by

$$[I_m]_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Theorem NMRRI Nonsingular Matrices Row Reduce to the Identity matrix 35
Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.
©2005, 2006 Robert A. Beezer
Theorem NMTNS Nonsingular Matrices have Trivial Null Spaces 36
Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A , $\mathcal{N}(A)$, contains only the zero vector, i.e. $\mathcal{N}(A) = \{0\}$.

©2005, 2006 Robert A. Beezer



Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b} .

©2005, 2006 Robert A. Beezer

Theorem NME1 Nonsingular Matrix Equivalences, Round 1

38

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .

Definition VSCV Vector Space of Column Vectors

39

The vector space \mathbb{C}^m is the set of all column vectors (Definition CV) of size m with entries from the set of complex numbers, \mathbb{C} .

©2005, 2006 Robert A. Beezer

Definition CVE Column Vector Equality

40

The vectors \mathbf{u} and \mathbf{v} are equal, written $\mathbf{u} = \mathbf{v}$ provided that

$$[\mathbf{u}]_i = [\mathbf{v}]_i$$

$$1 \le i \le m$$

Definition	CVA	Column	Vector	Addition

Given the vectors \mathbf{u} and \mathbf{v} the sum of \mathbf{u} and \mathbf{v} is the vector $\mathbf{u} + \mathbf{v}$ defined by

$$[\mathbf{u} + \mathbf{v}]_i = [\mathbf{u}]_i + [\mathbf{v}]_i$$

$$1 \leq i \leq m$$

©2005, 2006 Robert A. Beezer

Definition CVSM Column Vector Scalar Multiplication

42

Given the vector \mathbf{u} and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of \mathbf{u} by α , $\alpha \mathbf{u}$ is defined by

$$[\alpha \mathbf{u}]_i = \alpha [\mathbf{u}]_i$$

$$1 \leq i \leq m$$

Theorem VSPCV Vector Space Properties of Column Vectors

43

Suppose that \mathbb{C}^m is the set of column vectors of size m (Definition VSCV) with addition and scalar multiplication as defined in Definition CVA and Definition CVSM. Then

- ACC Additive Closure, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} \in \mathbb{C}^m$.
- SCC Scalar Closure, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha \mathbf{u} \in \mathbb{C}^m$.
- CC Commutativity, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- AAC Additive Associativity, Column Vectors If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^m$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- **ZC Zero Vector, Column Vectors** There is a vector, **0**, called the **zero vector**, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^m$.
- AIC Additive Inverses, Column Vectors If $\mathbf{u} \in \mathbb{C}^m$, then there exists a vector $-\mathbf{u} \in \mathbb{C}^m$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- SMAC Scalar Multiplication Associativity, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- DVAC Distributivity across Vector Addition, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- DSAC Distributivity across Scalar Addition, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$.
- OC One Column Vectors If $\mathbf{u} \in \mathbb{C}^m$ then $1\mathbf{u} \mathbf{u}$

© 2005, 2006 Robert A. Beezer

Definition LCCV Linear Combination of Column Vectors

44

Given n vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ from \mathbb{C}^m and n scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$, their **linear** combination is the vector

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \cdots + \alpha_n \mathbf{u}_n$$
.

Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$. Then \mathbf{x} is a solution to the linear system of equations $\mathcal{LS}(A, \mathbf{b})$ if and only if

$$[\mathbf{x}]_1 \mathbf{A}_1 + [\mathbf{x}]_2 \mathbf{A}_2 + [\mathbf{x}]_3 \mathbf{A}_3 + \dots + [\mathbf{x}]_n \mathbf{A}_n = \mathbf{b}$$

©2005, 2006 Robert A. Beezer

Theorem VFSLS Vector Form of Solutions to Linear Systems

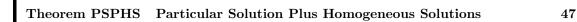
46

Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{LS}(A, \mathbf{b})$ of m equations in n variables. Let B be a row-equivalent $m \times (n+1)$ matrix in reduced row-echelon form. Suppose that B has r nonzero rows, columns without leading 1's with indices $F = \{f_1, f_2, f_3, \ldots, f_{n-r}, n+1\}$, and columns with leading 1's (pivot columns) having indices $D = \{d_1, d_2, d_3, \ldots, d_r\}$. Define vectors $\mathbf{c}, \mathbf{u}_j, 1 \le j \le n-r$ of size n by

$$\begin{split} \left[\mathbf{c}\right]_i &= \begin{cases} 0 & \text{if } i \in F \\ \left[B\right]_{k,n+1} & \text{if } i \in D, \, i = d_k \end{cases} \\ \left[\mathbf{u}_j\right]_i &= \begin{cases} 1 & \text{if } i \in F, \, i = f_j \\ 0 & \text{if } i \in F, \, i \neq f_j \\ -\left[B\right]_{k,f_j} & \text{if } i \in D, \, i = d_k \end{cases} \end{split}$$

Then the set of solutions to the system of equations $\mathcal{LS}(A, \mathbf{b})$ is

$$S = \left\{ \mathbf{c} + x_{f_1} \mathbf{u}_1 + x_{f_2} \mathbf{u}_2 + x_{f_3} \mathbf{u}_3 + \dots + x_{f_{n-r}} \mathbf{u}_{n-r} \mid x_{f_1}, x_{f_2}, x_{f_3}, \dots, x_{f_{n-r}} \in \mathbb{C} \right\}$$



Suppose that **w** is one solution to the linear system of equations $\mathcal{LS}(A, b)$. Then **y** is a solution to $\mathcal{LS}(A, b)$ if and only if $\mathbf{y} = \mathbf{w} + \mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$.

©2005, 2006 Robert A. Beezer

48

Theorem RREFU Reduced Row-Echelon Form is Unique

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then B = C.

©2005, 2006 Robert A. Beezer

Given a set of vectors $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p\}$, their **span**, $\langle S \rangle$, is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p$. Symbolically,

$$\langle S \rangle = \{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_p \mathbf{u}_p \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le p \}$$
$$= \left\{ \sum_{i=1}^p \alpha_i \mathbf{u}_i \middle| \alpha_i \in \mathbb{C}, \ 1 \le i \le p \right\}$$

©2005, 2006 Robert A. Beezer

Theorem SSNS Spanning Sets for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ be the column indices where B has leading 1's (pivot columns) and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the set of column indices where B does not have leading 1's. Construct the n-r vectors \mathbf{z}_j , $1 \le j \le n-r$ of size n as

$$[\mathbf{z}_j]_i = \begin{cases} 1 & \text{if } i \in F, \ i = f_j \\ 0 & \text{if } i \in F, \ i \neq f_j \\ -[B]_{k,f_i} & \text{if } i \in D, \ i = d_k \end{cases}$$

Then the null space of A is given by

$$\mathcal{N}(A) = \langle \{\mathbf{z}_1, \, \mathbf{z}_2, \, \mathbf{z}_3, \, \dots, \, \mathbf{z}_{n-r}\} \rangle.$$

Definition F	RLDCV	Relation	of Linear	Dependence	for	Column	Vectors
Deminion 1		iteration '	oi Lineai	Dependence	101	Column	V CC LOI S

Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n}$, a true statement of the form

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n = \mathbf{0}$$

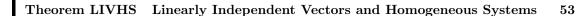
is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e. $\alpha_i = 0, 1 \le i \le n$, then we say it is the **trivial relation of linear dependence** on S.

©2005, 2006 Robert A. Beezer

Definition LICV Linear Independence of Column Vectors

 $\mathbf{52}$

The set of vectors $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ is **linearly dependent** if there is a relation of linear dependence on S that is not trivial. In the case where the *only* relation of linear dependence on S is the trivial one, then S is a **linearly independent** set of vectors.



Suppose that A is an $m \times n$ matrix and $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$ is the set of vectors in \mathbb{C}^m that are the columns of A. Then S is a linearly independent set if and only if the homogeneous system $\mathcal{LS}(A, \mathbf{0})$ has a unique solution.

©2005, 2006 Robert A. Beezer

54

Theorem LIVRN Linearly Independent Vectors, r and n

Suppose that A is an $m \times n$ matrix and $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$ is the set of vectors in \mathbb{C}^m that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if n = r.

©2005, 2006 Robert A. Beezer

Theorem MVSLD	More V	Vectors	than	\mathbf{Size}	implies	Linear	Dependence

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n}$ is the set of vectors in \mathbb{C}^m , and that n > m. Then S is a linearly dependent set.

©2005, 2006 Robert A. Beezer

Theorem NMLIC Nonsingular Matrices have Linearly Independent Columns 56

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{0\}$.
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A form a linearly independent set.

©2005, 2006 Robert A. Beezer

Theorem BNS Basis for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the n-r vectors \mathbf{z}_j , $1 \le j \le n-r$ of size n as

$$\left[\mathbf{z}_{j}\right]_{i} = \begin{cases} 1 & \text{if } i \in F, \ i = f_{j} \\ 0 & \text{if } i \in F, \ i \neq f_{j} \\ -\left[B\right]_{k,f_{j}} & \text{if } i \in D, \ i = d_{k} \end{cases}$$

Define the set $S = \{\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3, \dots, \mathbf{z}_{n-r}\}$. Then

- 1. $\mathcal{N}(A) = \langle S \rangle$.
- 2. S is a linearly independent set.

Theorem DLDS Dependency in Linearly Dependent Sets

59

Suppose that $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \le t \le n$ such that \mathbf{u}_t is a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_n$.

© 2005, 2006 Robert A. Beezer

Theorem BS Basis of a Span

60

Suppose that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$ is a set of column vectors. Define $W = \langle S \rangle$ and let A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A, with $D = \{d_1, d_2, d_3, \dots, d_r\}$ the set of column indices corresponding to the pivot columns of B. Then

- 1. $T = \{\mathbf{v}_{d_1}, \, \mathbf{v}_{d_2}, \, \mathbf{v}_{d_3}, \, \dots \, \mathbf{v}_{d_r}\}$ is a linearly independent set.
- 2. $W = \langle T \rangle$.

Definition CCCV Complex Conjugate of a Column Vector

61

Suppose that **u** is a vector from \mathbb{C}^m . Then the conjugate of the vector, $\overline{\mathbf{u}}$, is defined by

$$[\overline{\mathbf{u}}]_i = \overline{[\mathbf{u}]_i}$$

$$1 \leq i \leq m$$

©2005, 2006 Robert A. Beezer

Theorem CRVA Conjugation Respects Vector Addition

62

Suppose **x** and **y** are two vectors from \mathbb{C}^m . Then

$$\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$$

Theorem CRSM Conjugation Respects Vector Scalar Multiplication

63

Suppose **x** is a vector from \mathbb{C}^m , and $\alpha \in \mathbb{C}$ is a scalar. Then

$$\overline{\alpha}\overline{\mathbf{x}} = \overline{\alpha}\,\overline{\mathbf{x}}$$

©2005, 2006 Robert A. Beezer

Definition IP Inner Product

64

Given the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ the **inner product** of \mathbf{u} and \mathbf{v} is the scalar quantity in \mathbb{C} ,

$$\langle \mathbf{u}, \mathbf{v} \rangle = [\mathbf{u}]_1 \overline{[\mathbf{v}]_1} + [\mathbf{u}]_2 \overline{[\mathbf{v}]_2} + [\mathbf{u}]_3 \overline{[\mathbf{v}]_3} + \dots + [\mathbf{u}]_m \overline{[\mathbf{v}]_m} = \sum_{i=1}^m [\mathbf{u}]_i \overline{[\mathbf{v}]_i}$$

Theorem IPVA Inner Product and Vector Addition

65

Suppose $\mathbf{u}\mathbf{v}, \mathbf{w} \in \mathbb{C}^m$. Then

- 1. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- 2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$

©2005, 2006 Robert A. Beezer

66

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ and $\alpha \in \mathbb{C}$. Then

- 1. $\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$
- 2. $\langle \mathbf{u}, \, \alpha \mathbf{v} \rangle = \overline{\alpha} \, \langle \mathbf{u}, \, \mathbf{v} \rangle$

Theorem IPAC	Inner	Product is	. Δnti-	Commutative

Suppose that **u** and **v** are vectors in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.

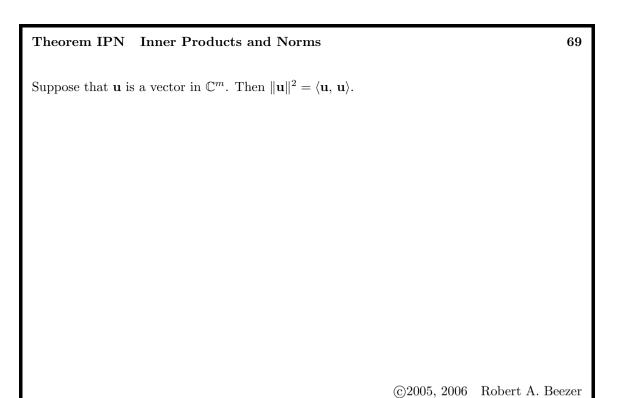
©2005, 2006 Robert A. Beezer

Definition NV Norm of a Vector

68

The ${\bf norm}$ of the vector ${\bf u}$ is the scalar quantity in ${\mathbb C}$

$$\|\mathbf{u}\| = \sqrt{\left|\left[\mathbf{u}\right]_{1}\right|^{2} + \left|\left[\mathbf{u}\right]_{2}\right|^{2} + \left|\left[\mathbf{u}\right]_{3}\right|^{2} + \dots + \left|\left[\mathbf{u}\right]_{m}\right|^{2}} = \sqrt{\sum_{i=1}^{m} \left|\left[\mathbf{u}\right]_{i}\right|^{2}}$$



Theorem PIP Positive Inner Products

70

Suppose that **u** is a vector in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ with equality if and only if $\mathbf{u} = \mathbf{0}$.

Definition OV Orthogonal Vectors

71

A pair of vectors, **u** and **v**, from \mathbb{C}^m are **orthogonal** if their inner product is zero, that is, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

©2005, 2006 Robert A. Beezer

Definition OSV Orthogonal Set of Vectors

72

Suppose that $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ is a set of vectors from \mathbb{C}^m . Then the set S is **orthogonal** if every pair of different vectors from S is orthogonal, that is $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ whenever $i \neq j$.

Theorem OSLI Orthogonal Sets are Linearly Independent

73

Suppose that $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ is an orthogonal set of nonzero vectors. Then S is linearly independent.

©2005, 2006 Robert A. Beezer

Theorem GSPCV Gram-Schmidt Procedure, Column Vectors

74

Suppose that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p\}$ is a linearly independent set of vectors in \mathbb{C}^m . Define the vectors \mathbf{u}_i , $1 \le i \le p$ by

$$\mathbf{u}_i = \mathbf{v}_i - \frac{\langle \mathbf{v}_i, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \frac{\langle \mathbf{v}_i, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 - \frac{\langle \mathbf{v}_i, \mathbf{u}_3 \rangle}{\langle \mathbf{u}_3, \mathbf{u}_3 \rangle} \mathbf{u}_3 - \dots - \frac{\langle \mathbf{v}_i, \mathbf{u}_{i-1} \rangle}{\langle \mathbf{u}_{i-1}, \mathbf{u}_{i-1} \rangle} \mathbf{u}_{i-1}$$

Then if $T = \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_p\}$, then T is an orthogonal set of non-zero vectors, and $\langle T \rangle = \langle S \rangle$.

Definition ONS OrthoNormal Set

75

Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ is an orthogonal set of vectors such that $\|\mathbf{u}_i\| = 1$ for all $1 \le i \le n$. Then S is an **orthonormal** set of vectors.

©2005, 2006 Robert A. Beezer

Definition VSM Vector Space of $m \times n$ Matrices

76

The vector space M_{mn} is the set of all $m \times n$ matrices with entries from the set of complex numbers.

Definition ME Matrix Equality

77

The $m \times n$ matrices A and B are **equal**, written A = B provided $[A]_{ij} = [B]_{ij}$ for all $1 \le i \le m$, $1 \le j \le n$.

©2005, 2006 Robert A. Beezer

Definition MA Matrix Addition

78

Given the $m \times n$ matrices A and B, define the **sum** of A and B as an $m \times n$ matrix, written A + B, according to

$$[A+B]_{ij} = [A]_{ij} + [B]_{ij}$$

$$1 \leq i \leq m, \ 1 \leq j \leq n$$

Definition	MSM	Matrix	Scalar	Multiplication	

Given the $m \times n$ matrix A and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of A is an $m \times n$ matrix, written αA and defined according to

$$[\alpha A]_{ij} = \alpha [A]_{ij} \qquad 1 \le i \le m, \ 1 \le j \le n$$

©2005, 2006 Robert A. Beezer

Theorem VSPM Vector Space Properties of Matrices

80

Suppose that M_{mn} is the set of all $m \times n$ matrices (Definition VSM) with addition and scalar multiplication as defined in Definition MA and Definition MSM. Then

- ACM Additive Closure, Matrices If $A, B \in M_{mn}$, then $A + B \in M_{mn}$.
- SCM Scalar Closure, Matrices If $\alpha \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha A \in M_{mn}$.
- CM Commutativity, Matrices If $A, B \in M_{mn}$, then A + B = B + A.
- AAM Additive Associativity, Matrices If $A, B, C \in M_{mn}$, then A + (B + C) = (A + B) + C.
- **ZM Zero Vector, Matrices** There is a matrix, \mathcal{O} , called the **zero matrix**, such that $A + \mathcal{O} = A$ for all $A \in M_{mn}$.
- AIM Additive Inverses, Matrices If $A \in M_{mn}$, then there exists a matrix $-A \in M_{mn}$ so that $A + (-A) = \mathcal{O}$.
- SMAM Scalar Multiplication Associativity, Matrices If α , $\beta \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha(\beta A) = (\alpha \beta)A$.
- DMAM Distributivity across Matrix Addition, Matrices If $\alpha \in \mathbb{C}$ and $A, B \in M_{mn}$, then $\alpha(A+B) = \alpha A + \alpha B$.
- DSAM Distributivity across Scalar Addition, Matrices If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{mn}$, then $(\alpha + \beta)A = \alpha A + \beta A$.
- OM One Matrices If $A \in M$ then 1A A

Definition ZM Zero Matrix

81

The $m \times n$ **zero matrix** is written as $\mathcal{O} = \mathcal{O}_{m \times n}$ and defined by $[\mathcal{O}]_{ij} = 0$, for all $1 \leq i \leq m$, $1 \leq j \leq n$.

©2005, 2006 Robert A. Beezer

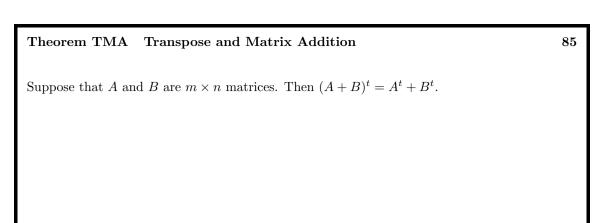
Definition TM Transpose of a Matrix

82

Given an $m \times n$ matrix A, its **transpose** is the $n \times m$ matrix A^t given by

$$\left[A^t\right]_{ij} = [A]_{ji}\,,\quad 1 \leq i \leq n,\, 1 \leq j \leq m.$$

Definition SYM Symmetric Matrix		83
The matrix A is symmetric if $A = A^t$.		
	@2005_2006	Robert A. Beezer
	©2009, 2000	Teober 11. Beezer
Theorem SMS Symmetric Matrices are Square		84
		84
Theorem SMS Symmetric Matrices are Square Suppose that A is a symmetric matrix. Then A is square.		84
		84
		84
		84
		84
		84
		84
		84

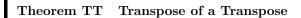


©2005, 2006 Robert A. Beezer

Theorem TMSM Transpose and Matrix Scalar Multiplication

86

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $(\alpha A)^t = \alpha A^t$.



Suppose that A is an $m \times n$ matrix. Then $(A^t)^t = A$.

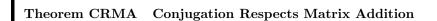
©2005, 2006 Robert A. Beezer

Definition CCM Complex Conjugate of a Matrix

88

Suppose A is an $m \times n$ matrix. Then the **conjugate** of A, written \overline{A} is an $m \times n$ matrix defined by

$$\left[\overline{A}\right]_{ij} = \overline{[A]_{ij}}$$



Suppose that A and B are $m \times n$ matrices. Then $\overline{A+B} = \overline{A} + \overline{B}$.

©2005, 2006 Robert A. Beezer

Theorem CRMSM Conjugation Respects Matrix Scalar Multiplication

90

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $\overline{\alpha A} = \overline{\alpha} \overline{A}$.

Theorem MCT Matrix Conjugation and Transposes

91

Suppose that A is an $m \times n$ matrix. Then $\overline{(A^t)} = (\overline{A})^t$.

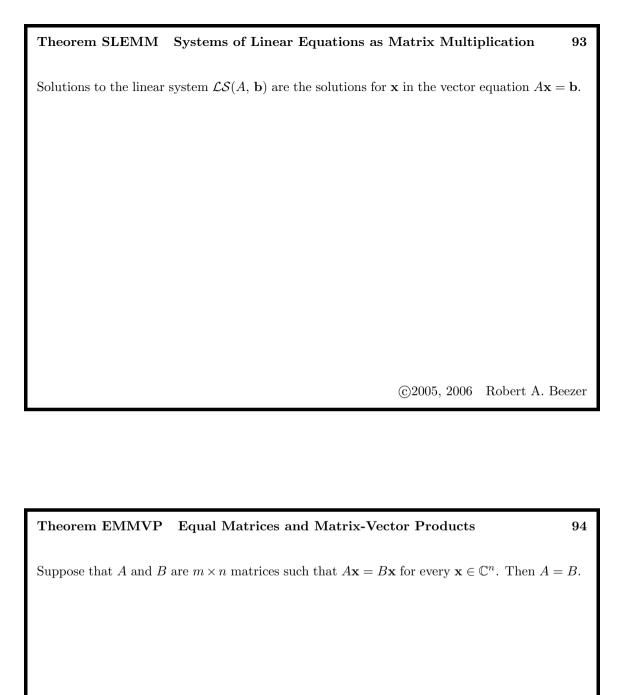
©2005, 2006 Robert A. Beezer

Definition MVP Matrix-Vector Product

92

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$ and \mathbf{u} is a vector of size n. Then the **matrix-vector product** of A with \mathbf{u} is the linear combination

$$A\mathbf{u} = [\mathbf{u}]_1 \mathbf{A}_1 + [\mathbf{u}]_2 \mathbf{A}_2 + [\mathbf{u}]_3 \mathbf{A}_3 + \dots + [\mathbf{u}]_n \mathbf{A}_n$$



Definition MM Matrix Multiplication

95

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \ldots, \mathbf{B}_p$. Then the **matrix product** of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A\mathbf{B}_i$. Symbolically,

$$AB = A \left[\mathbf{B}_1 | \mathbf{B}_2 | \mathbf{B}_3 | \dots | \mathbf{B}_p \right] = \left[A \mathbf{B}_1 | A \mathbf{B}_2 | A \mathbf{B}_3 | \dots | A \mathbf{B}_p \right].$$

©2005, 2006 Robert A. Beezer

Theorem EMP Entries of Matrix Products

96

Suppose A is an $m \times n$ matrix and B =is an $n \times p$ matrix. Then for $1 \le i \le m$, $1 \le j \le p$, the individual entries of AB are given by

$$[AB]_{ij} = [A]_{i1} [B]_{1j} + [A]_{i2} [B]_{2j} + [A]_{i3} [B]_{3j} + \dots + [A]_{in} [B]_{nj}$$
$$= \sum_{k=1}^{n} [A]_{ik} [B]_{kj}$$

Theorem MMZM	Matrix	Multiplication	and	the	Zero	Matrix

Suppose A is an $m \times n$ matrix. Then

- 1. $A\mathcal{O}_{n\times p} = \mathcal{O}_{m\times p}$
- $2. \quad \mathcal{O}_{p\times m}A = \mathcal{O}_{p\times n}$

©2005, 2006 Robert A. Beezer

Theorem MMIM Matrix Multiplication and Identity Matrix

98

Suppose A is an $m\times n$ matrix. Then

- 1. $AI_n = A$
- $2. \quad I_m A = A$

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then

- $1. \quad A(B+C) = AB + AC$
- $2. \quad (B+C)D = BD + CD$

©2005, 2006 Robert A. Beezer

Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 100

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

Theorem MMA Matrix Multiplication is Associative

101

Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then A(BD) = (AB)D.

©2005, 2006 Robert A. Beezer

Theorem MMIP Matrix Multiplication and Inner Products

102

If we consider the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ as $m \times 1$ matrices then

$$\langle \mathbf{u}, \, \mathbf{v} \rangle = \mathbf{u}^t \overline{\mathbf{v}}$$

Theorem MMCC Matrix Multiplication and Complex Conjugation	103
Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $\overline{AB} = \overline{A} \overline{B}$.	

Theorem MMT Matrix Multiplication and Transposes

104

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(AB)^t = B^t A^t$.

©2005, 2006 Robert A. Beezer

Definition MI Matrix Inverse

105

Suppose A and B are square matrices of size n such that $AB = I_n$ and $BA = I_n$. Then A is **invertible** and B is the **inverse** of A. In this situation, we write $B = A^{-1}$.

©2005, 2006 Robert A. Beezer

Definition SUV Standard Unit Vectors

106

Let $\mathbf{e}_j \in \mathbb{C}^m$ denote the column vector that is column j of the $m \times m$ identity matrix I_m . Then the set

$$\{\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3, \, \dots, \, \mathbf{e}_m\} = \{\, \mathbf{e}_j \, | \, 1 \le j \le m\}$$

is the set of standard unit vectors in \mathbb{C}^m .

Theorem TTMI Two-by-Two Matrix Inverse

107

Suppose

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then A is invertible if and only if $ad - bc \neq 0$. When A is invertible, we have

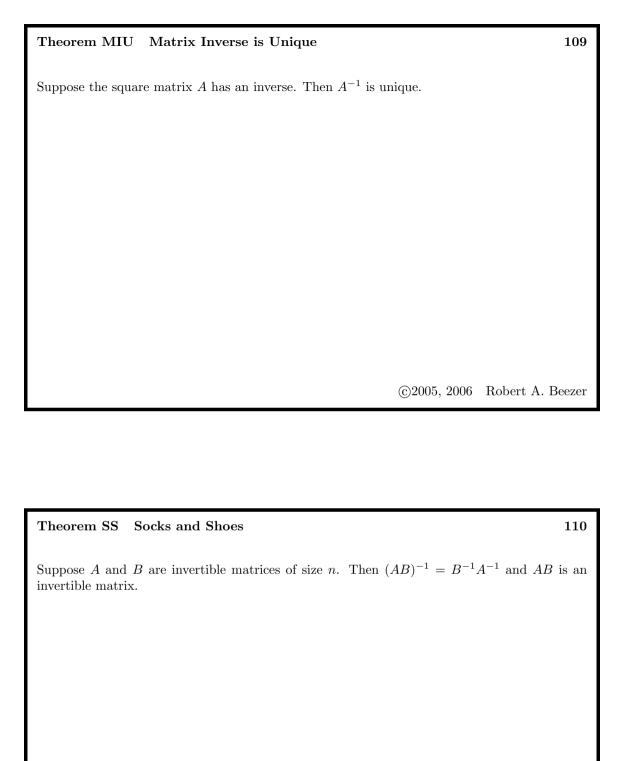
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

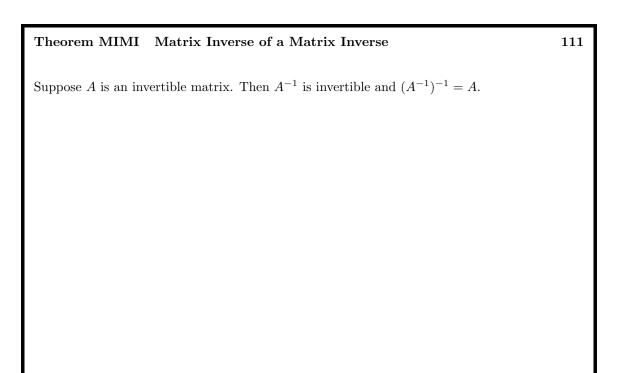
©2005, 2006 Robert A. Beezer

Theorem CINM Computing the Inverse of a Nonsingular Matrix

108

Suppose A is a nonsingular square matrix of size n. Create the $n \times 2n$ matrix M by placing the $n \times n$ identity matrix I_n to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns of N. Then $AJ = I_n$.





Theorem MIT Matrix Inverse of a Transpose

112

Suppose A is an invertible matrix. Then A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.

©2005, 2006 Robert A. Beezer

Theorem MISM Matrix Inverse of a Scalar Multiple

113

Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1} = \frac{1}{\alpha}A^{-1}$ and αA is invertible.

©2005, 2006 Robert A. Beezer

Theorem NPNT Nonsingular Product has Nonsingular Terms

114

Suppose that A and B are square matrices of size n and the product AB is nonsingular. Then A and B are both nonsingular.

Theorem OSIS One-Sided Inverse is Sufficient	115
Suppose A and B are square matrices of size n such that $AB = I_n$. Then $BA = I_n$.	
©2005, 2006 Robert A.	Dangan
©2005, 2000 Robert A.	. Deezer
Theorem NI Nonsingularity is Invertibility	116
Theorem NI Nonsingularity is Invertibility Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible	

Theorem NME3 Nonsingular Matrix Equivalences, Round 3

117

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.

©2005, 2006 Robert A. Beezer

Theorem SNCM Solution with Nonsingular Coefficient Matrix

118

Suppose that A is nonsingular. Then the unique solution to $\mathcal{LS}(A, \mathbf{b})$ is $A^{-1}\mathbf{b}$.

Suppose that Q is a square matrix of size n such that $(\overline{Q})^t Q = I_n$. Then we say Q is **unitary**.

©2005, 2006 Robert A. Beezer

Theorem UMI Unitary Matrices are Invertible

120

Suppose that Q is a unitary matrix of size n. Then Q is nonsingular, and $Q^{-1} = (\overline{Q})^t$.

Theorem	CUMOS	Columns of	f Unitary	Matrices a	re Orthonormal Set	ts

Suppose that A is a square matrix of size n with columns $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$. Then A is a unitary matrix if and only if S is an orthonormal set.

©2005, 2006 Robert A. Beezer

Theorem UMPIP Unitary Matrices Preserve Inner Products

122

121

Suppose that Q is a unitary matrix of size n and **u** and **v** are two vectors from \mathbb{C}^n . Then

$$\langle Q\mathbf{u}, Q\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$$

$$\|Q\mathbf{v}\| = \|\mathbf{v}\|$$

If A is a square matrix, then its **adjoint** is $A^H = (\overline{A})^t$.

©2005, 2006 Robert A. Beezer

Definition HM Hermitian Matrix

124

The square matrix A is Hermitian (or self-adjoint) if $A=\left(\overline{A}\right)^t$

Definition CSM Column Space of a Matrix

125

Suppose that A is an $m \times n$ matrix with columns $\{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$. Then the **column space** of A, written $\mathcal{C}(A)$, is the subset of \mathbb{C}^m containing all linear combinations of the columns of A,

$$\mathcal{C}(A) = \langle \{\mathbf{A}_1, \, \mathbf{A}_2, \, \mathbf{A}_3, \, \dots, \, \mathbf{A}_n \} \rangle$$

©2005, 2006 Robert A. Beezer

Theorem CSCS Column Spaces and Consistent Systems

126

Suppose A is an $m \times n$ matrix and **b** is a vector of size m. Then $\mathbf{b} \in \mathcal{C}(A)$ if and only if $\mathcal{LS}(A, \mathbf{b})$ is consistent.

Theorem BCS Basis of the Column Space

127

Suppose that A is an $m \times n$ matrix with columns \mathbf{A}_1 , \mathbf{A}_2 , \mathbf{A}_3 , ..., \mathbf{A}_n , and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ be the set of column indices where B has leading 1's. Let $T = \{\mathbf{A}_{d_1}, \mathbf{A}_{d_2}, \mathbf{A}_{d_3}, \ldots, \mathbf{A}_{d_r}\}$. Then

- 1. T is a linearly independent set.
- 2. $C(A) = \langle T \rangle$.

© 2005, 2006 Robert A. Beezer

Theorem CSNM Column Space of a Nonsingular Matrix

128

Suppose A is a square matrix of size n. Then A is nonsingular if and only if $\mathcal{C}(A) = \mathbb{C}^n$.

Theorem NME4 Nonsingular Matrix Equivalences, Round 4

129

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.

©2005, 2006 Robert A. Beezer

Definition RSM Row Space of a Matrix

130

Suppose A is an $m \times n$ matrix. Then the **row space** of A, $\mathcal{R}(A)$, is the column space of A^t , i.e. $\mathcal{R}(A) = \mathcal{C}(A^t)$.

Theorem REMRS Row-Equivalent	Matrices have equal Row Space	26

Suppose A and B are row-equivalent matrices. Then $\mathcal{R}(A) = \mathcal{R}(B)$.

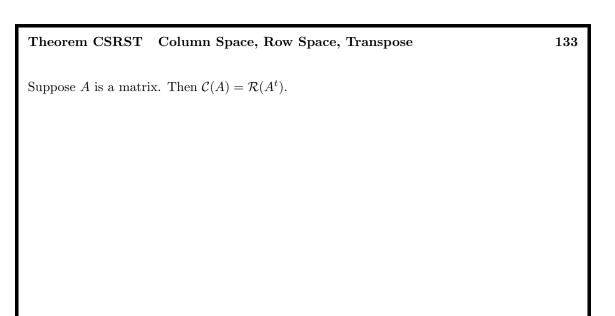
©2005, 2006 Robert A. Beezer

Theorem BRS Basis for the Row Space

132

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of B^t . Then

- 1. $\mathcal{R}(A) = \langle S \rangle$.
- 2. S is a linearly independent set.



©2005, 2006 Robert A. Beezer

Definition LNS Left Null Space

134

Suppose A is an $m \times n$ matrix. Then the **left null space** is defined as $\mathcal{L}(A) = \mathcal{N}(A^t) \subseteq \mathbb{C}^m$.

Suppose A is an $m \times n$ matrix. Add m new columns to A that together equal an $m \times m$ identity matrix to form an $m \times (n+m)$ matrix M. Use row operations to bring M to reduced row-echelon form and call the result N. N is the **extended reduced row-echelon form** of A, and we will standardize on names for five submatrices (B, C, J, K, L) of N.

Let B denote the $m \times n$ matrix formed from the first n columns of N and let J denote the $m \times m$ matrix formed from the last m columns of N. Suppose that B has r nonzero rows. Further partition N by letting C denote the $r \times n$ matrix formed from all of the non-zero rows of B. Let K be the $r \times m$ matrix formed from the first r rows of J, while L will be the $(m-r) \times m$ matrix formed from the bottom m-r rows of J. Pictorially,

$$M = [A|I_m] \xrightarrow{\text{RREF}} N = [B|J] = \begin{bmatrix} C & K \\ \hline 0 & L \end{bmatrix}$$

©2005, 2006 Robert A. Beezer

Theorem PEEF Properties of Extended Echelon Form

136

Suppose that A is an $m \times n$ matrix and that N is its extended echelon form. Then

- 1. J is nonsingular.
- 2. B = JA.
- 3. If $\mathbf{x} \in \mathbb{C}^n$ and $\mathbf{y} \in \mathbb{C}^m$, then $A\mathbf{x} = \mathbf{y}$ if and only if $B\mathbf{x} = J\mathbf{y}$.
- 4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.
- 5. L is in reduced row-echelon form, has no zero rows and has m-r pivot columns.

Suppose A is an $m \times n$ matrix with extended echelon form N. Suppose the reduced row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the first n columns and L is the submatrix of N formed from the last m columns and the last m-r rows. Then

- 1. The null space of A is the null space of C, $\mathcal{N}(A) = \mathcal{N}(C)$.
- 2. The row space of A is the row space of C, $\mathcal{R}(A) = \mathcal{R}(C)$.
- 3. The column space of A is the null space of L, $C(A) = \mathcal{N}(L)$.
- 4. The left null space of A is the row space of L, $\mathcal{L}(A) = \mathcal{R}(L)$.

©2005, 2006 Robert A. Beezer

Definition VS Vector Space

138

Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by "+", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space if the following ten properties hold.

- AC Additive Closure If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} \in V$.
- Scalar Closure If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$. • SC
- Commutativity If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- Additive Associativity If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- Z **Zero Vector** There is a vector, **0**, called the **zero vector**, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- Additive Inverses If $\mathbf{u} \in V$, then there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
- Scalar Multiplication Associativity If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u}) =$ • SMA $(\alpha\beta)\mathbf{u}$.
- DVA Distributivity across Vector Addition If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u} +$
- Distributivity across Scalar Addition If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $(\alpha + \beta)\mathbf{u} =$ • DSA $\alpha \mathbf{u} + \beta \mathbf{u}$.

Theorem ZVU Zero Vector is Unique	139
Suppose that V is a vector space. The zero vector, 0 , is unique.	
©2005, 2006	Robert A. Beezer
Theorem AIU Additive Inverses are Unique	140
Theorem AIU Additive Inverses are Unique Suppose that V is a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$	

Theorem ZSSM Zero Scalar in Scalar Multiplication	n	141
Suppose that V is a vector space and $\mathbf{u} \in V$. Then $0\mathbf{u} = 0$.		
	©2005, 2006	Robert A. Beezer
Theorem ZVSM Zero Vector in Scalar Multiplication	on	142
Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then $\alpha 0 = 0$.		
<i>1</i>		

Theorem AISM Additive Inverses from Scalar Multiplication	143
Suppose that V is a vector space and $\mathbf{u} \in V$. Then $-\mathbf{u} = (-1)\mathbf{u}$.	
©2005, 2006	Robert A. Beezer
Theorem SMEZV Scalar Multiplication Equals the Zero Vector	144

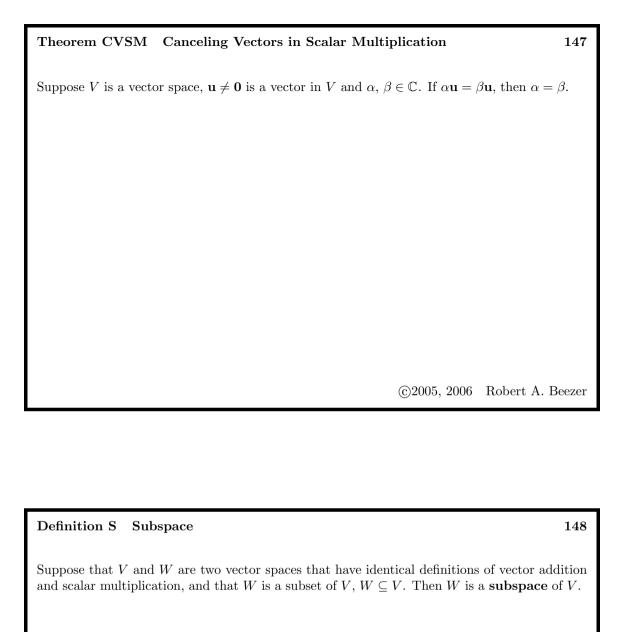
Suppose that V is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. If $\mathbf{w} + \mathbf{u} = \mathbf{w} + \mathbf{v}$, then $\mathbf{u} = \mathbf{v}$.

©2005, 2006 Robert A. Beezer

Theorem CSSM Canceling Scalars in Scalar Multiplication

146

Suppose V is a vector space, $\mathbf{u}, \mathbf{v} \in V$ and α is a nonzero scalar from \mathbb{C} . If $\alpha \mathbf{u} = \alpha \mathbf{v}$, then $\mathbf{u} = \mathbf{v}$.



Theorem TSS Testing Subsets for Subspaces

149

Suppose that V is a vector space and W is a subset of V, $W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

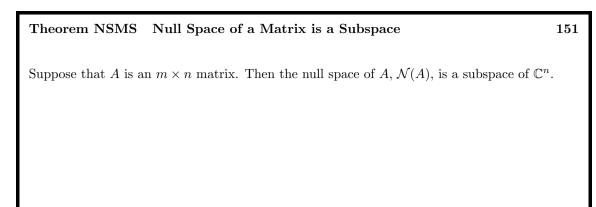
- 1. W is non-empty, $W \neq \emptyset$.
- 2. If $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x} + \mathbf{y} \in W$.
- 3. If $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

© 2005, 2006 Robert A. Beezer

Definition TS Trivial Subspaces

150

Given the vector space V, the subspaces V and $\{\mathbf{0}\}$ are each called a **trivial subspace**.



©2005, 2006 Robert A. Beezer

Definition LC Linear Combination

152

Suppose that V is a vector space. Given n vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ and n scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$, their **linear combination** is the vector

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n.$$

Definition SS Span of a Set

153

Suppose that V is a vector space. Given a set of vectors $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t\}$, their **span**, $\langle S \rangle$, is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t$. Symbolically,

$$\langle S \rangle = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_t \mathbf{u}_t \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$
$$= \left\{ \sum_{i=1}^t \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$

© 2005, 2006 Robert A. Beezer

Theorem SSS Span of a Set is a Subspace

154

Suppose V is a vector space. Given a set of vectors $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t\} \subseteq V$, their span, $\langle S \rangle$, is a subspace.

Theorem CSMS	Column Space of a Matrix is a Subspace	155
Suppose that A is a	n $m \times n$ matrix. Then $\mathcal{C}(A)$ is a subspace of \mathbb{C}^m .	
	©2005, 2006	Robert A. Beezer
TEL DOMO		150
Theorem RSMS	Row Space of a Matrix is a Subspace	156
Suppose that A is a	n $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^n .	

Theorem	LNSMS	Left Null	Space of a	Matrix	is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{L}(A)$ is a subspace of \mathbb{C}^m .

©2005, 2006 Robert A. Beezer

Definition RLD Relation of Linear Dependence

158

Suppose that V is a vector space. Given a set of vectors $S = \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_n\}$, an equation of the form

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n = \mathbf{0}$$

is a **relation of linear dependence** on S. If this equation is formed in a trivial fashion, i.e. $\alpha_i = 0, 1 \le i \le n$, then we say it is a **trivial relation of linear dependence** on S.

Definition LI Linear Independence

159

Suppose that V is a vector space. The set of vectors $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ from V is **linearly dependent** if there is a relation of linear dependence on S that is not trivial. In the case where the *only* relation of linear dependence on S is the trivial one, then S is a **linearly independent** set of vectors.

©2005, 2006 Robert A. Beezer

Definition TSVS To Span a Vector Space

160

Suppose V is a vector space. A subset S of V is a **spanning set** for V if $\langle S \rangle = V$. In this case, we also say S **spans** V.

Theorem VR1	RR Vector	Representation	Relative to a	. Basis
THEOLEM ATO	LLD VECTOR	i itepresemanom	iterative to a	LDasis

162

Suppose that V is a vector space and $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m\}$ is a linearly independent set that spans V. Let \mathbf{w} be any vector in V. Then there exist *unique* scalars $a_1, a_2, a_3, \dots, a_m$ such that

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + \dots + a_m \mathbf{v}_m.$$

©2005, 2006 Robert A. Beezer

Definition B Basis

Suppose V is a vector space. Then a subset $S \subseteq V$ is a **basis** of V if it is linearly independent and spans V.

Theorem SUVB Standard Unit Vectors are a Basis

163

The set of standard unit vectors for \mathbb{C}^m (Definition SUV), $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_m\} = \{\mathbf{e}_i \mid 1 \leq i \leq m\}$ is a basis for the vector space \mathbb{C}^m .

©2005, 2006 Robert A. Beezer

Theorem CNMB Columns of Nonsingular Matrix are a Basis

164

Suppose that A is a square matrix of size m. Then the columns of A are a basis of \mathbb{C}^m if and only if A is nonsingular.

Theorem NME5 Nonsingular Matrix Equivalences, Round 5

165

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{0\}$.
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .

©2005, 2006 Robert A. Beezer

Theorem COB Coordinates and Orthonormal Bases

166

Suppose that $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p\}$ is an orthonormal basis of the subspace W of \mathbb{C}^m . For any $\mathbf{w} \in W$,

$$\mathbf{w} = \langle \mathbf{w}, \, \mathbf{v}_1 \rangle \, \mathbf{v}_1 + \langle \mathbf{w}, \, \mathbf{v}_2 \rangle \, \mathbf{v}_2 + \langle \mathbf{w}, \, \mathbf{v}_3 \rangle \, \mathbf{v}_3 + \dots + \langle \mathbf{w}, \, \mathbf{v}_p \rangle \, \mathbf{v}_p$$

Definition D	Dimension	167

Suppose that V is a vector space and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t\}$ is a basis of V. Then the **dimension** of V is defined by dim (V) = t. If V has no finite bases, we say V has infinite dimension.

©2005, 2006 Robert A. Beezer

Theorem SSLD Spanning Sets and Linear Dependence

168

Suppose that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t\}$ is a finite set of vectors which spans the vector space V. Then any set of t+1 or more vectors from V is linearly dependent.

Theorem BIS Bases have Identical Sizes	169
Suppose that V is a vector space with a finite basis B and a second basis C	C. Then B and C
have the same size.	
©2005, 2006	Robert A. Beezer
Theorem DCM Dimension of \mathbb{C}^m	170
The dimension of \mathbb{C}^m (Example VSCV) is m .	

Theorem DP Dimension of P_n	-	171
The dimension of P_n (Example VSP) is $n+1$.		
		I
		I
		l
	©2005, 2006	Robert A. Beezer
Theorem DM Dimension of M_{mn}		172
The dimension of M_{mn} (Example VSM) is mn .		

Suppose that A is an $m \times n$ matrix. Then the **nullity** of A is the dimension of the null space of A, $n(A) = \dim(\mathcal{N}(A))$.

©2005, 2006 Robert A. Beezer

Definition ROM Rank Of a Matrix

174

Suppose that A is an $m \times n$ matrix. Then the **rank** of A is the dimension of the column space of A, $r(A) = \dim(\mathcal{C}(A))$.

Theorem CRN Computing Rank and Nullity

175

Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then r(A) = r and n(A) = n - r.

©2005, 2006 Robert A. Beezer

Theorem RPNC Rank Plus Nullity is Columns

176

Suppose that A is an $m \times n$ matrix. Then r(A) + n(A) = n.

Theorem RNNM Rank and Nullity of a Nonsingular Matrix

177

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. The rank of A is n, r(A) = n.
- 3. The nullity of A is zero, n(A) = 0.

©2005, 2006 Robert A. Beezer

Theorem NME6 Nonsingular Matrix Equivalences, Round 6

178

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.

Theorem ELIS Extending Linearly Independent Sets

179

Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose \mathbf{w} is a vector such that $\mathbf{w} \notin \langle S \rangle$. Then the set $S' = S \cup \{\mathbf{w}\}$ is linearly independent.

©2005, 2006 Robert A. Beezer

Theorem G Goldilocks

180

Suppose that V is a vector space of dimension t. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m\}$ be a set of vectors from V. Then

- 1. If m > t, then S is linearly dependent.
- 2. If m < t, then S does not span V.
- 3. If m = t and S is linearly independent, then S spans V.
- 4. If m = t and S spans V, then S is linearly independent.

Theorem EB Extending a Basis

181

Suppose that W is a subspace of the vector space V. Then there exists a subspace X of V such that

- 1. For every $\mathbf{v} \in V$ there exists vectors $\mathbf{w} \in W$, $\mathbf{x} \in X$ such that $\mathbf{v} = \mathbf{w} + \mathbf{x}$.
- 2. $W \cap X = \{0\}.$

©2005, 2006 Robert A. Beezer

Definition DS Direct Sum

182

Suppose that V is a vector space with two subspaces U and W such that

- 1. For every $\mathbf{v} \in V$ there exists vectors $\mathbf{u} \in U$, $\mathbf{w} \in W$ such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$
- 2. $U \cap W = \{0\}$

Then V is the **direct sum** of U and W and we write $V = U \oplus W$.

Theorem PSSD	Proper Subspaces have Smaller Dimension 1	183
	d V are subspaces of the vector space W , such that $U \subsetneq V$. Then dim (U)) <
$\dim(V)$.		
	©2005, 2006 Robert A. Beez	ezer
Theorem EDYES	S Equal Dimensions Yields Equal Subspaces 1	184
Theorem 22 12.	Equal Differentiation Flores Equal Superposes _	.0.1
Suppose that U and $\dim(V)$. Then $U =$	d V are subspaces of the vector space W , such that $U \subseteq V$ and dim $(U) = V$.) =

Theorem RMRT	Rank of a Matrix is	s the Rank of the	Transpose

Suppose A is an $m \times n$ matrix. Then $r(A) = r(A^t)$.

©2005, 2006 Robert A. Beezer

Theorem DFS Dimensions of Four Subspaces

186

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then

- 1. dim $(\mathcal{N}(A)) = n r$
- 2. dim $(\mathcal{C}(A)) = r$
- 3. $\dim (\mathcal{R}(A)) = r$
- 4. dim $(\mathcal{L}(A)) = m r$

1. $E_{i,j}$ is the square matrix of size n with

$$[E_{i,j}]_{k\ell} = \begin{cases} 0 & k \neq i, k \neq j, \ell \neq k \\ 1 & k \neq i, k \neq j, \ell = k \\ 0 & k = i, \ell \neq j \\ 1 & k = i, \ell = j \\ 0 & k = j, \ell \neq i \\ 1 & k = j, \ell = i \end{cases}$$

2. $E_i(\alpha)$, for $\alpha \neq 0$, is the square matrix of size n with

$$[E_i(\alpha)]_{k\ell} = \begin{cases} 0 & k \neq i, \ell \neq k \\ 1 & k \neq i, \ell = k \\ \alpha & k = i, \ell = i \end{cases}$$

3. $E_{i,j}(\alpha)$ is the square matrix of size n with

$$[E_{i,j}(\alpha)]_{k\ell} = \begin{cases} 0 & k \neq j, \ell \neq k \\ 1 & k \neq j, \ell = k \\ 0 & k = j, \ell \neq i, \ell \neq j \\ 1 & k = j, \ell = j \\ \alpha & k = j, \ell = i \end{cases}$$

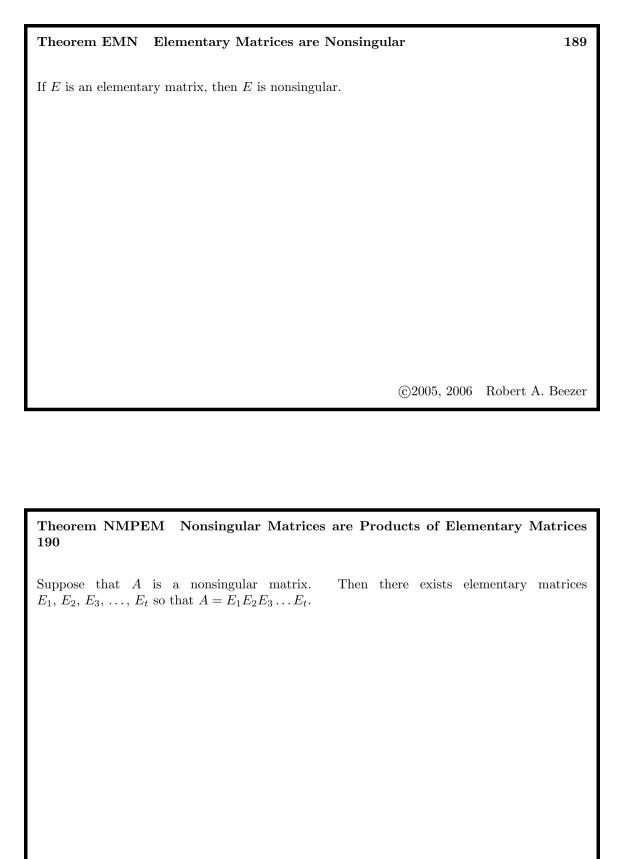
©2005, 2006 Robert A. Beezer

Theorem EMDRO Elementary Matrices Do Row Operations

188

Suppose that A is a matrix, and B is a matrix of the same size that is obtained from A by a single row operation (Definition RO).

- 1. If the row operation swaps rows i and j, then $B = E_{i,j}A$.
- 2. If the row operation multiplies row i by α , then $B = E_i(\alpha) A$.
- 3. If the row operation multiplies row i by α and adds the result to row j, then $B=E_{i,j}\left(\alpha\right)A$.



Definition SM SubMatrix

191

Suppose that A is an $m \times n$ matrix. Then the **submatrix** A(i|j) is the $(m-1) \times (n-1)$ matrix obtained from A by removing row i and column j.

©2005, 2006 Robert A. Beezer

Definition DM Determinant of a Matrix

192

Suppose A is a square matrix. Then its **determinant**, $\det(A) = |A|$, is an element of \mathbb{C} defined recursively by:

If A is a 1×1 matrix, then $det(A) = [A]_{11}$.

If A is a matrix of size n with $n \geq 2$, then

$$\det(A) = [A]_{11} \det(A(1|1)) - [A]_{12} \det(A(1|2)) + [A]_{13} \det(A(1|3)) - [A]_{14} \det(A(1|4)) + \dots + (-1)^{n+1} [A]_{1n} \det(A(1|n))$$

Theorem DMST Determinant of Matrices of Size Two

193

Suppose that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $\det(A) = ad - bc$

©2005, 2006 Robert A. Beezer

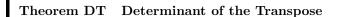
Theorem DER Determinant Expansion about Rows

194

Suppose that A is a square matrix of size n. Then

$$\begin{split} \det{(A)} &= (-1)^{i+1} \left[A \right]_{i1} \det{(A\left(i|1\right))} + (-1)^{i+2} \left[A \right]_{i2} \det{(A\left(i|2\right))} \\ &+ (-1)^{i+3} \left[A \right]_{i3} \det{(A\left(i|3\right))} + \dots + (-1)^{i+n} \left[A \right]_{in} \det{(A\left(i|n\right))} \qquad 1 \leq i \leq n \end{split}$$

which is known as **expansion** about row i.



Suppose that A is a square matrix. Then $\det(A^t) = \det(A)$.

©2005, 2006 Robert A. Beezer

Theorem DEC Determinant Expansion about Columns

196

Suppose that A is a square matrix of size n. Then

$$\begin{split} \det{(A)} &= (-1)^{1+j} \left[A \right]_{1j} \det{(A \, (1|j))} + (-1)^{2+j} \left[A \right]_{2j} \det{(A \, (2|j))} \\ &+ (-1)^{3+j} \left[A \right]_{3j} \det{(A \, (3|j))} + \dots + (-1)^{n+j} \left[A \right]_{nj} \det{(A \, (n|j))} \qquad 1 \leq j \leq n \end{split}$$

which is known as **expansion** about column j.

Theorem DZRC Determinant with Zero Row or Column

197

Suppose that A is a square matrix with a row where every entry is zero, or a column where every entry is zero. Then $\det(A) = 0$.

©2005, 2006 Robert A. Beezer

Theorem DRCS Determinant for Row or Column Swap

198

Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging the location of two rows, or interchanging the location of two columns. Then $\det(B) = -\det(A)$.

Theorem DRCM	Determinant for Row or Column Multiples	199
	square matrix. Let B be the square matrix obtained from A by much calar α , or by multiplying a single column by the scalar α . Then define A is a square matrix obtained from A by much calar α .	
	©2005, 2006 Robert A	Beezer
Theorem DERC	Determinant with Equal Rows or Columns	200
	Determinant with Equal Rows or Columns quare matrix with two equal rows, or two equal columns. Then det (

Theorem DRCMA Determinant for Row or Column Multiples and Addition 20	1
Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a row by the scalar α and then adding it to another row, or by multiplying a column by the scalar α and then adding it to another column. Then $\det(B) = \det(A)$.	
©2005, 2006 Robert A. Beeze	r
Theorem DIM Determinant of the Identity Matrix 20:	2
For every $n \ge 1$, $\det(I_n) = 1$.	

For the three possible versions of an elementary matrix (Definition ELEM) we have the determinants,

- 1. $\det(E_{i,j}) = -1$
- 2. $\det (E_i(\alpha)) = \alpha$
- 3. $\det (E_{i,j}(\alpha)) = 1$

©2005, 2006 Robert A. Beezer

Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication 204

Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

$$\det\left(EA\right)=\det\left(E\right)\det\left(A\right)$$

Theorem SMZD Singular Matrices have Zero Determinants

205

Let A be a square matrix. Then A is singular if and only if $\det(A) = 0$.

©2005, 2006 Robert A. Beezer

Theorem NME7 Nonsingular Matrix Equivalences, Round 7

206

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero, $det(A) \neq 0$.

Theorem DRMM Determinant Respects Matrix Multiplication	207
Suppose that A and B are square matrices of the same size. Then $\det(AB) = \det(A) \det(AB)$	(B).

Definition EEM Eigenvalues and Eigenvectors of a Matrix

208

Suppose that A is a square matrix of size n, $\mathbf{x} \neq \mathbf{0}$ is a vector in \mathbb{C}^n , and λ is a scalar in \mathbb{C} . Then we say \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ if

$$A\mathbf{x} = \lambda \mathbf{x}$$

Theorem EMHE Every Matrix Has an Eigenvalue	209
Suppose A is a square matrix. Then A has at least one eigenvalue.	
©2005, 2006 Robert A. I	Beezer
	-
Definition CP Characteristic Polynomial	210
Commence that A is a sequence matrix of size or. Then the characteristic malary anciel of A	:- 4la a
Suppose that A is a square matrix of size n. Then the characteristic polynomial of A polynomial $p_A(x)$ defined by	is the

$$p_A(x) = \det\left(A - xI_n\right)$$

Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic als	Polynomi- 211
Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_{A}(\lambda) =$: 0 .
©2005, 2006 Rober	rt A. Beezer
Definition EM Eigenspace of a Matrix	212

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **eigenspace** of A for λ , $\mathcal{E}_A(\lambda)$, is the set of all the eigenvectors of A for λ , together with the inclusion of the zero vector.

Theorem EMS Eigenspace for a Matrix is a Subspace

213

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace $\mathcal{E}_{A}(\lambda)$ is a subspace of the vector space \mathbb{C}^{n} .

©2005, 2006 Robert A. Beezer

Theorem EMNS Eigenspace of a Matrix is a Null Space

214

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

$$\mathcal{E}_A(\lambda) = \mathcal{N}(A - \lambda I_n)$$

Definition AME	Algebraic Multiplicity of an Eigenvalue 2	215
Suppose that A is a so	quare matrix and λ is an eigenvalue of A . Then the algebraic multiplic ignest power of $(x - \lambda)$ that divides the characteristic polynomial, p_A (x)	ity
	©2005, 2006 Robert A. Beer	zer
Definition GME	Geometric Multiplicity of an Eigenvalue 2	216
	square matrix and λ is an eigenvalue of A . Then the geometric mul is the dimension of the eigenspace $\mathcal{E}_A(\lambda)$.	lti-

Theorem EDELI	Eigenvectors with Distinct Eigenvalues are Linearly Independent
217	

Suppose that A is an $n \times n$ square matrix and $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p\}$ is a set of eigenvectors with eigenvalues $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_p$ such that $\lambda_i \neq \lambda_j$ whenever $i \neq j$. Then S is a linearly independent set.

©2005, 2006 Robert A. Beezer

Theorem SMZE Singular Matrices have Zero Eigenvalues

218

Suppose A is a square matrix. Then A is singular if and only if $\lambda=0$ is an eigenvalue of A.

Theorem NME8 Nonsingular Matrix Equivalences, Round 8

219

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{0\}$.
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero, $\det(A) \neq 0$.
- 12. $\lambda = 0$ is not an eigenvalue of A.

© 2005, 2006 Robert A. Beezer

Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix

220

Suppose A is a square matrix and λ is an eigenvalue of A. Then $\alpha\lambda$ is an eigenvalue of αA .

Theorem EO	${ m MP} { m Eigen}$	nvalues Of 1	Matrix Powers	

221

Suppose A is a square matrix, λ is an eigenvalue of A, and $s \ge 0$ is an integer. Then λ^s is an eigenvalue of A^s .

©2005, 2006 Robert A. Beezer

Theorem EPM Eigenvalues of the Polynomial of a Matrix

222

Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the variable x. Then $q(\lambda)$ is an eigenvalue of the matrix q(A).

Theorem EIM Eigenvalues of the Inverse of a Matrix	223
Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. The	n $\frac{1}{\lambda}$ is an eigenvalue
of the matrix A^{-1} .	
Qanor anno	Dalamet A. Danam
©2005, 2006	Robert A. Beezer
Theorem ETM Eigenvalues of the Transpose of a Matrix	224
Theorem ETM Eigenvalues of the Transpose of a Matrix Suppose A is a square matrix and λ is an eigenvalue of A . Then λ is an eigenvalue of A .	
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue	
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue	
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue	
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue	
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue	
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue	
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue	

Theorem ERMCP Ei	igenvalues of Real Matrices come in Conjugate Pairs	225
	atrix with real entries and $\underline{\mathbf{x}}$ is an eigenvector of A for the eigenvalue $\overline{\lambda}$.	envalue

©2005, 2006 Robert A. Beezer

Theorem DCP Degree of the Characteristic Polynomial

226

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, $p_{A}\left(x\right)$, has degree n.

Theorem NEM Number of Eigenvalues of a Matrix

227

Suppose that A is a square matrix of size n with distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_k$. Then

$$\sum_{i=1}^{k} \alpha_A \left(\lambda_i \right) = n$$

©2005, 2006 Robert A. Beezer

Theorem ME Multiplicities of an Eigenvalue

228

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

$$1 \le \gamma_A(\lambda) \le \alpha_A(\lambda) \le n$$

Theorem MINEM Maximum Number of Eigenvalues of a Matrix	229
Suppose that A is a square matrix of size n . Then A cannot have more than n	distinct eigen-
values.	
©2005, 2006 Ro	bert A. Beezer
Theorem HMRE Hermitian Matrices have Real Eigenvalues	230
Theorem HMRE Hermitian Matrices have Real Eigenvalues $\text{Suppose that } A \text{ is a Hermitian matrix and } \lambda \text{ is an eigenvalue of } A. \text{ Then } \lambda \in \mathbb{R}$	

Theorem HMOE Hermitian Matrices have Orthogonal Ei	genvect	tors 231
Suppose that A is a Hermitian matrix and \mathbf{x} and \mathbf{y} are two eige eigenvalues. Then \mathbf{x} and \mathbf{y} are orthogonal vectors.	${ m nvectors}$	of A for different
©200	5, 2006	Robert A. Beezer
Definition SIM Similar Matrices		232

Suppose A and B are two square matrices of size n. Then A and B are **similar** if there exists a nonsingular matrix of size n, S, such that $A = S^{-1}BS$.

Theorem SER Similarity is an Equivalence Relation

233

Suppose A, B and C are square matrices of size n. Then

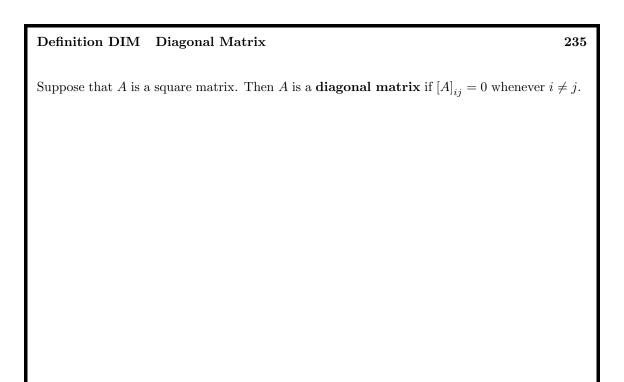
- 1. A is similar to A. (Reflexive)
- 2. If A is similar to B, then B is similar to A. (Symmetric)
- 3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

©2005, 2006 Robert A. Beezer

Theorem SMEE Similar Matrices have Equal Eigenvalues

234

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is $p_A(x) = p_B(x)$.



Definition DZM Diagonalizable Matrix

236

Suppose A is a square matrix. Then A is ${f diagonalizable}$ if A is similar to a diagonal matrix.

©2005, 2006 Robert A. Beezer

Theorem DC	Diagonalization Characterization

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly independent set S that contains n eigenvectors of A.

©2005, 2006 Robert A. Beezer

Theorem DMFE Diagonalizable Matrices have Full Eigenspaces

238

237

Suppose A is a square matrix. Then A is diagonalizable if and only if $\gamma_A(\lambda) = \alpha_A(\lambda)$ for every eigenvalue λ of A.

Theorem DED Distinct Eigenvalues implies Diagonalizable	239
Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonal	ılizable.
©2005, 2006 Robert A	A. Beezer

Definition LT Linear Transformation

241

A linear transformation, $T \colon U \mapsto V$, is a function that carries elements of the vector space U (called the **domain**) to the vector space V (called the **codomain**), and which has two additional properties

- 1. $T(\mathbf{u}_1 + \mathbf{u}_2) = T(\mathbf{u}_1) + T(\mathbf{u}_2)$ for all $\mathbf{u}_1, \mathbf{u}_2 \in U$
- 2. $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$

© 2005, 2006 Robert A. Beezer

Theorem LTTZZ Linear Transformations Take Zero to Zero

242

Suppose $T \colon U \mapsto V$ is a linear transformation. Then $T\left(\mathbf{0}\right) = \mathbf{0}$.

Theorem MBLT Matrices Build Linear Transformations

243

Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^n \mapsto \mathbb{C}^m$ by $T(\mathbf{x}) = A\mathbf{x}$. Then T is a linear transformation.

©2005, 2006 Robert A. Beezer

Theorem MLTCV Matrix of a Linear Transformation, Column Vectors 244

Suppose that $T: \mathbb{C}^n \to \mathbb{C}^m$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

Theorem LTLC Linear Transformations and Linear Combinations

245

Suppose that $T: U \mapsto V$ is a linear transformation, $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t$ are vectors from U and $a_1, a_2, a_3, \ldots, a_t$ are scalars from \mathbb{C} . Then

$$T(a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3 + \dots + a_t\mathbf{u}_t) = a_1T(\mathbf{u}_1) + a_2T(\mathbf{u}_2) + a_3T(\mathbf{u}_3) + \dots + a_tT(\mathbf{u}_t)$$

© 2005, 2006 Robert A. Beezer

Theorem LTDB Linear Transformation Defined on a Basis

246

Suppose that $T: U \mapsto V$ is a linear transformation, $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ is a basis for U and \mathbf{w} is a vector from U. Let $a_1, a_2, a_3, \dots, a_n$ be the scalars from $\mathbb C$ such that

$$\mathbf{w} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + a_3 \mathbf{u}_3 + \dots + a_n \mathbf{u}_n$$

Then

$$T(\mathbf{w}) = a_1 T(\mathbf{u}_1) + a_2 T(\mathbf{u}_2) + a_3 T(\mathbf{u}_3) + \dots + a_n T(\mathbf{u}_n)$$

Definition PI Pre-Image

247

Suppose that $T: U \mapsto V$ is a linear transformation. For each \mathbf{v} , define the **pre-image** of \mathbf{v} to be the subset of U given by

$$T^{-1}(\mathbf{v}) = \{ \mathbf{u} \in U \mid T(\mathbf{u}) = \mathbf{v} \}$$

©2005, 2006 Robert A. Beezer

Definition LTA Linear Transformation Addition

248

Suppose that $T\colon U\mapsto V$ and $S\colon U\mapsto V$ are two linear transformations with the same domain and codomain. Then their **sum** is the function $T+S\colon U\mapsto V$ whose outputs are defined by

$$(T+S)(\mathbf{u}) = T(\mathbf{u}) + S(\mathbf{u})$$

Theorem SLTLT	Sum of Linear	Transformations is a	a Linear '	Transformation	249

Suppose that $T\colon U\mapsto V$ and $S\colon U\mapsto V$ are two linear transformations with the same domain and codomain. Then $T+S\colon U\mapsto V$ is a linear transformation.

©2005, 2006 Robert A. Beezer

Definition LTSM Linear Transformation Scalar Multiplication

250

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the **scalar multiple** is the function $\alpha T: U \mapsto V$ whose outputs are defined by

$$\left(\alpha T\right)\left(\mathbf{u}\right)=\alpha T\left(\mathbf{u}\right)$$

Theorem MLTLT 251	Multiple of a Linear Transformation is a Linear Transformat		

Suppose that $T\colon U\mapsto V$ is a linear transformation and $\alpha\in\mathbb{C}$. Then $(\alpha T)\colon U\mapsto V$ is a linear transformation.

©2005, 2006 Robert A. Beezer

Theorem VSLT Vector Space of Linear Transformations

252

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V, $\mathrm{LT}(U,V)$ is a vector space when the operations are those given in Definition LTA and Definition LTSM.

253

Suppose that $T \colon U \mapsto V$ and $S \colon V \mapsto W$ are linear transformations. Then the **composition** of S and T is the function $(S \circ T) \colon U \mapsto W$ whose outputs are defined by

$$(S \circ T)(\mathbf{u}) = S(T(\mathbf{u}))$$

©2005, 2006 Robert A. Beezer

Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 254

Suppose that $T\colon U\mapsto V$ and $S\colon V\mapsto W$ are linear transformations. Then $(S\circ T)\colon U\mapsto W$ is a linear transformation.

Definition ILT Injective Linear Transformation

255

Suppose $T: U \mapsto V$ is a linear transformation. Then T is **injective** if whenever $T(\mathbf{x}) = T(\mathbf{y})$, then $\mathbf{x} = \mathbf{y}$.

©2005, 2006 Robert A. Beezer

Definition KLT Kernel of a Linear Transformation

256

Suppose $T\colon U\mapsto V$ is a linear transformation. Then the \mathbf{kernel} of T is the set

$$\mathcal{K}(T) = \{ \mathbf{u} \in U \mid T(\mathbf{u}) = \mathbf{0} \}$$

Theorem KLTS Kernel of a Linear Transformation is a Subspace

257

Suppose that $T: U \mapsto V$ is a linear transformation. Then the kernel of T, $\mathcal{K}(T)$, is a subspace of U.

©2005, 2006 Robert A. Beezer

Theorem KPI Kernel and Pre-Image

258

Suppose $T: U \mapsto V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is non-empty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

$$T^{-1}\left(\mathbf{v}\right) = \left\{ \left. \mathbf{u} + \mathbf{z} \, \right| \, \mathbf{z} \in \mathcal{K}(T) \right\} = \mathbf{u} + \mathcal{K}(T)$$



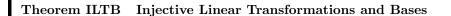
259

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is injective if and only if the kernel of T is trivial, $\mathcal{K}(T) = \{\mathbf{0}\}.$

©2005, 2006 Robert A. Beezer

Theorem ILTLI Injective Linear Transformations and Linear Independence 260

Suppose that $T: U \mapsto V$ is an injective linear transformation and $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t\}$ is a linearly independent subset of U. Then $R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \ldots, T(\mathbf{u}_t)\}$ is a linearly independent subset of V.



261

Suppose that $T: U \mapsto V$ is a linear transformation and $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m\}$ is a basis of U. Then T is injective if and only if $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}$ is a linearly independent subset of V.

©2005, 2006 Robert A. Beezer

Theorem ILTD Injective Linear Transformations and Dimension

262

Suppose that $T \colon U \mapsto V$ is an injective linear transformation. Then $\dim (U) \leq \dim (V)$.

Theorem CILTI Composition of Injective Linear Transformations is Injective 263				
Suppose that $T\colon U\mapsto V$ and $S\colon V\mapsto W$ are injective linear transformations. Then $(S\circ T)\colon U\mapsto W$ is an injective linear transformation.				
©2005, 2006 Robert A. Beezer				
Definition SLT Surjective Linear Transformation 264				
Suppose $T: U \mapsto V$ is a linear transformation. Then T is surjective if for every $\mathbf{v} \in V$ there				

Suppose $T: U \mapsto V$ is a linear transformation. Then T is **surjective** if for every $\mathbf{v} \in V$ there exists a $\mathbf{u} \in U$ so that $T(\mathbf{u}) = \mathbf{v}$.

Definition RLT Range of a Linear Transformation

265

Suppose $T: U \mapsto V$ is a linear transformation. Then the **range** of T is the set

$$\mathcal{R}(T) = \{ T(\mathbf{u}) \mid \mathbf{u} \in U \}$$

©2005, 2006 Robert A. Beezer

Theorem RLTS Range of a Linear Transformation is a Subspace

266

Suppose that $T \colon U \mapsto V$ is a linear transformation. Then the range of T, $\mathcal{R}(T)$, is a subspace of V.

Theorem RSLT Range of a Surjective Linear Transformation

267

Suppose that $T \colon U \mapsto V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T) = V$.

©2005, 2006 Robert A. Beezer

Theorem SSRLT Spanning Set for Range of a Linear Transformation

268

Suppose that $T: U \mapsto V$ is a linear transformation and $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t\}$ spans U. Then $R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_t)\}$ spans $\mathcal{R}(T)$.

Theorem RPI Range and Pre-Image

269

Suppose that $T \colon U \mapsto V$ is a linear transformation. Then

 $\mathbf{v} \in \mathcal{R}(T)$ if and only if $T^{-1}(\mathbf{v}) \neq \emptyset$

©2005, 2006 Robert A. Beezer

Theorem SLTB Surjective Linear Transformations and Bases

270

Suppose that $T: U \mapsto V$ is a linear transformation and $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m\}$ is a basis of U. Then T is surjective if and only if $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}$ is a spanning set for V.

Theorem SLTD	Surjective Linear Transformations a	and Dimensio	n 271
Suppose that $T: U$	$\mapsto V$ is a surjective linear transformation.	Then $\dim (U)$	$\geq \dim(V).$
		©2005, 2006	Robert A. Beezer

Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 272

Suppose that $T\colon U\mapsto V$ and $S\colon V\mapsto W$ are surjective linear transformations. Then $(S\circ T)\colon U\mapsto W$ is a surjective linear transformation.

Definition IDLT Identity Linear Transformation

273

The identity linear transformation on the vector space W is defined as

$$I_W \colon W \mapsto W, \qquad I_W (\mathbf{w}) = \mathbf{w}$$

©2005, 2006 Robert A. Beezer

Definition IVLT Invertible Linear Transformations

274

Suppose that $T\colon U\mapsto V$ is a linear transformation. If there is a function $S\colon V\mapsto U$ such that

$$S \circ T = I_U$$

$$T \circ S = I_V$$

then T is **invertible**. In this case, we call S the **inverse** of T and write $S = T^{-1}$.

Theorem ILTLT	Inverse of a Linear Train	nsformation is a Linea	r Transformation
275			

Suppose that $T\colon U\mapsto V$ is an invertible linear transformation. Then the function $T^{-1}\colon V\mapsto U$ is a linear transformation.

©2005, 2006 Robert A. Beezer

Theorem IILT Inverse of an Invertible Linear Transformation

276

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then T^{-1} is an invertible linear transformation and $(T^{-1})^{-1} = T$.

Theorem ILTIS Invertible Linear Transformations are Injective and Surjective 277				
Suppose $T: U \mapsto V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.				
©2005, 2006 Robert A. Beeze				
Theorem CIVLT Composition of Invertible Linear Transformations 27				
Suppose that $T\colon U\mapsto V$ and $S\colon V\mapsto W$ are invertible linear transformations. Then the composition, $(S\circ T)\colon U\mapsto W$ is an invertible linear transformation.				

Theorem ICLT Inverse of a Composition of Linear Transformations

279

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then $S \circ T$ is invertible and $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$.

©2005, 2006 Robert A. Beezer

Definition IVS Isomorphic Vector Spaces

280

Two vector spaces U and V are **isomorphic** if there exists an invertible linear transformation T with domain U and codomain V, $T: U \mapsto V$. In this case, we write $U \cong V$, and the linear transformation T is known as an **isomorphism** between U and V.

Theorem IVSED Isomorphic Vector Spaces have Equal Dimension 2	81
Suppose U and V are isomorphic vector spaces. Then $\dim(U) = \dim(V)$.	
©2005, 2006 Robert A. Bee	zer

Definition ROLT Rank Of a Linear Transformation

282

Suppose that $T:U\mapsto V$ is a linear transformation. Then the **rank** of T, r(T), is the dimension of the range of T,

$$r\left(T\right)=\dim\left(\mathcal{R}(T)\right)$$

Definition NOLT Nullity Of a Linear Transformation

283

Suppose that $T: U \mapsto V$ is a linear transformation. Then the **nullity** of T, n(T), is the dimension of the kernel of T,

$$n(T) = \dim (\mathcal{K}(T))$$

©2005, 2006 Robert A. Beezer

Theorem ROSLT Rank Of a Surjective Linear Transformation

284

Suppose that $T:U\mapsto V$ is a linear transformation. Then the rank of T is the dimension of V, $r\left(T\right)=\dim\left(V\right)$, if and only if T is surjective.

Theorem NOILT Nullity Of an Injective Linear Transformation

285

Suppose that $T:U\mapsto V$ is an injective linear transformation. Then the nullity of T is zero, $n\left(T\right)=0$, if and only if T is injective.

©2005, 2006 Robert A. Beezer

Theorem RPNDD Rank Plus Nullity is Domain Dimension

286

Suppose that $T \colon U \mapsto V$ is a linear transformation. Then

$$r\left(T\right)+n\left(T\right)=\dim\left(U\right)$$

Definition VR Vector Representation

287

Suppose that V is a vector space with a basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$. Define a function $\rho_B \colon V \mapsto \mathbb{C}^n$ as follows. For $\mathbf{w} \in V$, find scalars $a_1, a_2, a_3, \dots, a_n$ so that

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + \dots + a_n \mathbf{v}_n$$

then

$$\left[\rho_B\left(\mathbf{w}\right)\right]_i = a_i$$

$$1 \le i \le n$$

©2005, 2006 Robert A. Beezer

Theorem VRLT Vector Representation is a Linear Transformation

288

The function ρ_B (Definition VR) is a linear transformation.

Theorem VKI Vector Representation is injective	289
The function ρ_B (Definition VR) is an injective linear transformation.	
©2005, 2006	Robert A. Beezer
Theorem VRS Vector Representation is Surjective	290
Theorem VRS Vector Representation is Surjective	290
Theorem VRS Vector Representation is Surjective The function ρ_B (Definition VR) is a surjective linear transformation.	290
	290
	290
	290
	290
	290
	290
	290
	290
	290

©2005, 2006 Robert A. Beezer

291
The function ρ_B (Definition VR) is an invertible linear transformation.
©2005, 2006 Robert A. Beezer
Theorem CFDVS Characterization of Finite Dimensional Vector Spaces 292
Connected that V is a vector space with dimension of Theory V is isomorphic to \mathbb{C}^n
Suppose that V is a vector space with dimension n. Then V is isomorphic to \mathbb{C}^n .
Suppose that V is a vector space with dimension n . Then V is isomorphic to \mathbb{C}^n .
Suppose that V is a vector space with dimension n . Then V is isomorphic to \mathbb{C}^n .
Suppose that V is a vector space with dimension n . Then V is isomorphic to \mathbb{C}^n .
Suppose that V is a vector space with dimension n . Then V is isomorphic to \mathbb{C}^n .
Suppose that V is a vector space with dimension n . Then V is isomorphic to \mathbb{C}^n .
Suppose that V is a vector space with dimension n . Then V is isomorphic to \mathbb{C}^n .
Suppose that V is a vector space with dimension n . Then V is isomorphic to \mathbb{C}^n .
Suppose that v is a vector space with dimension n . Then v is isomorphic to $\mathbb C$.

©2005, 2006 Robert A. Beezer

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and only if $\dim(U) = \dim(V)$.

©2005, 2006 Robert A. Beezer

Theorem CLI Coordinatization and Linear Independence

294

Suppose that U is a vector space with a basis B of size n. Then $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_k\}$ is a linearly independent subset of U if and only if $R = \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \ldots, \rho_B(\mathbf{u}_k)\}$ is a linearly independent subset of \mathbb{C}^n .

Theorem CSS Coordinatization and Spanning Sets

295

Suppose that U is a vector space with a basis B of size n. Then $\mathbf{u} \in \langle \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_k\} \rangle$ if and only if $\rho_B(\mathbf{u}) \in \langle \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \ldots, \rho_B(\mathbf{u}_k)\} \rangle$.

©2005, 2006 Robert A. Beezer

Definition MR Matrix Representation

296

Suppose that $T: U \mapsto V$ is a linear transformation, $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ is a basis for U of size n, and C is a basis for V of size m. Then the **matrix representation** of T relative to B and C is the $m \times n$ matrix,

$$M_{B,C}^{T} = \left[\left.\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)\right|\left.\rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)\right|\left.\rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right)\right|...\left|\rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]$$

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U, C is a basis for V and $M_{B,C}^T$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$\rho_{C}\left(T\left(\mathbf{u}\right)\right) = M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)$$

or equivalently

$$T\left(\mathbf{u}\right) = \rho_{C}^{-1}\left(M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)\right)$$

©2005, 2006 Robert A. Beezer

Theorem MRSLT Matrix Representation of a Sum of Linear Transformations298

Suppose that $T\colon U\mapsto V$ and $S\colon U\mapsto V$ are linear transformations, B is a basis of U and C is a basis of V. Then

$$M_{B,C}^{T+S} = M_{B,C}^T + M_{B,C}^S$$

Theorem MRMLT	Matrix Representation of a Multiple of a Linear	Transforma-
tion		299

Suppose that $T\colon U\mapsto V$ is a linear transformation, $\alpha\in\mathbb{C},\,B$ is a basis of U and C is a basis of V. Then

$$M_{B,C}^{\alpha T} = \alpha M_{B,C}^T$$

©2005, 2006 Robert A. Beezer

Theorem MRCLT Matrix Representation of a Composition of Linear Transformations 300

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

$$M_{B,D}^{S\circ T}=M_{C,D}^SM_{B,C}^T$$

Theorem KNSI Kernel and Null Space Isomorphism

301

Suppose that $T \colon U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the kernel of T is isomorphic to the null space of $M_{B,C}^T$,

$$\mathcal{K}(T) \cong \mathcal{N}(M_{B,C}^T)$$

© 2005, 2006 Robert A. Beezer

Theorem RCSI Range and Column Space Isomorphism

302

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the column space of $M_{B,C}^T$,

$$\mathcal{R}(T) \cong \mathcal{C}(M_{B,C}^T)$$

Theorem IMR Invertible Matrix Representations

303

Suppose that $T: U \mapsto V$ is an invertible linear transformation, B is a basis for U and C is a basis for V. Then the matrix representation of T relative to B and C, $M_{B,C}^T$ is an invertible matrix, and

$$M_{C,B}^{T^{-1}} = \left(M_{B,C}^T\right)^{-1}$$

©2005, 2006 Robert A. Beezer

Theorem IMILT Invertible Matrices, Invertible Linear Transformation

304

Suppose that A is a square matrix of size n and $T: \mathbb{C}^n \to \mathbb{C}^n$ is the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$. Then A is invertible matrix if and only if T is an invertible linear transformation.

©2005, 2006 Robert A. Beezer

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero, $\det(A) \neq 0$.
- 12. $\lambda = 0$ is not an eigenvalue of A.
- 13. The linear transformation $T: \mathbb{C}^n \mapsto \mathbb{C}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is invertible.

©2005, 2006 Robert A. Beezer

Definition EELT Eigenvalue and Eigenvector of a Linear Transformation

Suppose that $T: V \mapsto V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an **eigenvector** of T for the **eigenvalue** λ if $T(\mathbf{v}) = \lambda \mathbf{v}$.

© 2005, 2006 Robert A. Beezer

Definition CBM Change-of-Basis Matrix

307

Suppose that V is a vector space, and $I_V: V \mapsto V$ is the identity linear transformation on V. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$ and C be two bases of V. Then the **change-of-basis matrix** from B to C is the matrix representation of I_V relative to B and C,

$$C_{B,C} = M_{B,C}^{I_V}$$

$$= \left[\rho_C \left(I_V \left(\mathbf{v}_1 \right) \right) \middle| \rho_C \left(I_V \left(\mathbf{v}_2 \right) \right) \middle| \rho_C \left(I_V \left(\mathbf{v}_3 \right) \right) \middle| \dots \middle| \rho_C \left(I_V \left(\mathbf{v}_n \right) \right) \right]$$

$$= \left[\rho_C \left(\mathbf{v}_1 \right) \middle| \rho_C \left(\mathbf{v}_2 \right) \middle| \rho_C \left(\mathbf{v}_3 \right) \middle| \dots \middle| \rho_C \left(\mathbf{v}_n \right) \right]$$

©2005, 2006 Robert A. Beezer

Theorem CB Change-of-Basis

308

Suppose that \mathbf{v} is a vector in the vector space V and B and C are bases of V. Then

$$\rho_{C}\left(\mathbf{v}\right)=C_{B,C}\rho_{B}\left(\mathbf{v}\right)$$

Theorem ICBM Inverse of Change-of-Basis Matrix

309

Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis matrix $C_{B,C}$ is nonsingular and

$$C_{B,C}^{-1} = C_{C,B}$$

©2005, 2006 Robert A. Beezer

Theorem MRCB Matrix Representation and Change of Basis

310

Suppose that $T\colon U\mapsto V$ is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

$$M_{B,D}^T = C_{E,D} M_{C,E}^T C_{B,C}$$

Theorem SCB Similarity and Change of Basis

311

Suppose that $T: V \mapsto V$ is a linear transformation and B and C are bases of V. Then

$$M_{B,B}^T = C_{B,C}^{-1} M_{C,C}^T C_{B,C}$$

©2005, 2006 Robert A. Beezer

Theorem EER Eigenvalues, Eigenvectors, Representations

312

Suppose that $T: V \mapsto V$ is a linear transformation and B is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_B(\mathbf{v})$ is an eigenvector of $M_{B,B}^T$ for the eigenvalue λ .

Definition NLT Nilpotent Linear Transformation

313

Suppose that $T: V \mapsto V$ is a linear transformation such that there is an integer p > 0 such that $T^p(\mathbf{v}) = \mathbf{0}$ for every $\mathbf{v} \in V$. The smallest p for which this condition is met is called the **index** of T.

©2005, 2006 Robert A. Beezer

Definition JB Jordan Block

314

Given the scalar $\lambda \in \mathbb{C}$, the Jordan block $J_n(\lambda)$ is the $n \times n$ matrix defined by

$$\left[J_{n}\left(\lambda\right)\right]_{ij} = \begin{cases} \lambda & i = j\\ 1 & j = i+1\\ 0 & \text{otherwise} \end{cases}$$

	Eigenvalues of Nilpotent Linear Transformations	315
Suppose that $T \colon V$	$T \mapsto V$ is a linear transformation and λ is an eigenvalue of T . The	$\lambda = 0$
suppose that 1.7	The first transformation and A is an eigenvalue of 1. 1.	. O.
	©2005, 2006 Rober	nt A Doogon
	©2005, 2000 Robe	It A. Deezei
Theorem DNLT	Diagonalizable Nilpotent Linear Transformations	316
Suppose the linear		
	transformation $T \colon V \mapsto V$ is nilpotent. Then T is diagonalizable	e if and only
T is the zero linear		e if and only
		e if and only

©2005, 2006 Robert A. Beezer

Theorem KPLT Kernels of Powers of Linear Transformations

317

Suppose $T: V \mapsto V$ is a linear transformation, where $\dim(V) = n$. Then there is an integer m, $0 \le m \le n$, such that

$$\{\mathbf{0}\} = \mathcal{K}(T^0) \subsetneq \mathcal{K}(T^1) \subsetneq \mathcal{K}(T^2) \subsetneq \cdots \subsetneq \mathcal{K}(T^m) = \mathcal{K}(T^{m+1}) = \mathcal{K}(T^{m+2}) = \cdots$$

© 2005, 2006 Robert A. Beezer

Theorem KPNLT Kernels of Powers of Nilpotent Linear Transformations 318

Suppose $T: V \mapsto V$ is a nilpotent linear transformation with index p and dim (V) = n. Then $0 \le p \le n$ and

$$\{\mathbf{0}\} = \mathcal{K}(T^0) \subsetneq \mathcal{K}(T^1) \subsetneq \mathcal{K}(T^2) \subsetneq \cdots \subsetneq \mathcal{K}(T^p) = \mathcal{K}(T^{p+1}) = \cdots = V$$

Theorem	CENIT	Canonical	Form	for	Nilpotent	Linear	Transformations
THEOLEIN	OLIMA	Canonicai	TOILL	LUL	TAIDOCCIIC	Lincai	Transiormanons

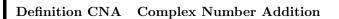
Suppose that $T\colon V\mapsto V$ is a nilpotent linear transformation of index d. Then there is a basis for V so that the matrix representation, $M_{B,B}^T$, is block diagonal with each block being a Jordan block, $J_n(0)$. The size of the largest block is the index d, and the total number of blocks is the nullity of T, n(T).

©2005, 2006 Robert A. Beezer

Definition CNE Complex Number Equality

320

The complex numbers $\alpha = a + bi$ and $\beta = c + di$ are **equal**, denoted $\alpha = \beta$, if a = c and b = d.



The **sum** of the complex numbers $\alpha = a + bi$ and $\beta = c + di$, denoted $\alpha + \beta$, is (a+c) + (b+d)i.

©2005, 2006 Robert A. Beezer

Definition CNM Complex Number Multiplication

322

The **product** of the complex numbers $\alpha = a + bi$ and $\beta = c + di$, denoted $\alpha\beta$, is (ac - bd) + (ad + bc)i.

Theorem PCNA Properties of Complex Number Arithmetic

323

The operations of addition and multiplication of complex numbers have the following properties.

- ACCN Additive Commutativity, Complex Numbers For any α , $\beta \in \mathbb{C}$, $\alpha + \beta = \beta + \alpha$.
- MCCN Multiplicative Commutativity, Complex Numbers For any $\alpha, \beta \in \mathbb{C}$, $\alpha\beta = \beta\alpha$.
- AACN Additive Associativity, Complex Numbers For any $\alpha, \beta, \gamma \in \mathbb{C}$, $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$.
- MACN Multiplicative Associativity, Complex Numbers For any $\alpha, \beta, \gamma \in \mathbb{C}$, $\alpha(\beta\gamma) = (\alpha\beta)\gamma$.
- DCN Distributivity, Complex Numbers For any $\alpha, \beta, \gamma \in \mathbb{C}$, $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$.
- **ZCN Zero, Complex Numbers** There is a complex number 0 = 0 + 0i so that for any $\alpha \in \mathbb{C}$, $0 + \alpha = \alpha$.
- OCN One, Complex Numbers There is a complex number 1 = 1 + 0i so that for any $\alpha \in \mathbb{C}$, $1\alpha = \alpha$.
- AICN Additive Inverse, Complex Numbers For every $\alpha \in \mathbb{C}$ there exists $-\alpha \in \mathbb{C}$ so that $\alpha + (-\alpha) = 0$.
- MICN Multiplicative Inverse, Complex Numbers For every $\alpha \in \mathbb{C}$, $\alpha \neq 0$ there exists $\frac{1}{\alpha} \in \mathbb{C}$ so that $\frac{1}{\alpha}\alpha = 1$.

©2005, 2006 Robert A. Beezer

Definition CCN Conjugate of a Complex Number

324

The **conjugate** of the complex number $c = a + bi \in \mathbb{C}$ is the complex number $\overline{c} = a - bi$.

Theorem C	CRA C	omplex Co	oniugation 1	Respects A	ddition

Suppose that c and d are complex numbers. Then $\overline{c+d} = \overline{c} + \overline{d}$.

©2005, 2006 Robert A. Beezer

Theorem CCRM Complex Conjugation Respects Multiplication

326

Suppose that c and d are complex numbers. Then $\overline{cd}=\overline{c}\overline{d}.$

Theorem CCT	Complex Conjugation Twice	

Suppose that c is a complex number. Then $\overline{\overline{c}} = c$.

©2005, 2006 Robert A. Beezer

Definition MCN Modulus of a Complex Number

328

The **modulus** of the complex number $c = a + bi \in \mathbb{C}$, is the nonnegative real number

$$|c| = \sqrt{c\overline{c}} = \sqrt{a^2 + b^2}.$$

Definition SET Set 329

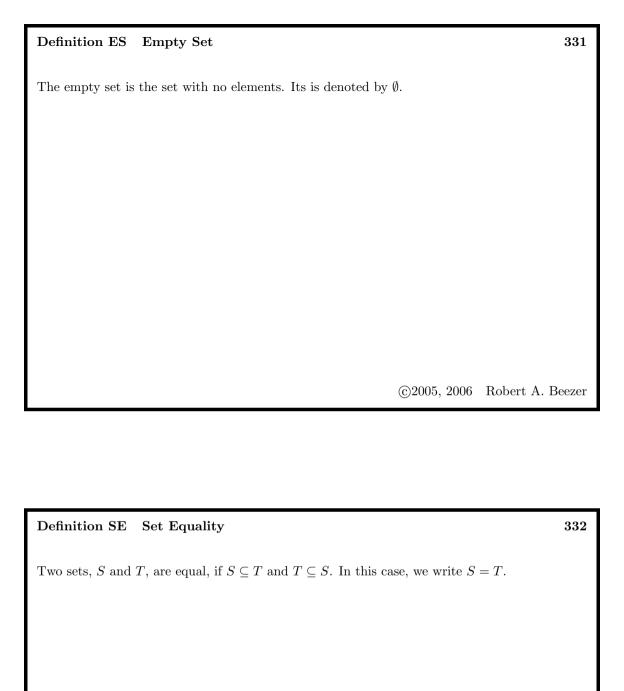
A set is an unordered collection of objects. If S is a set and x is an object that is in the set S, we write $x \in S$. If x is not in S, then we write $x \notin S$. We refer to the objects in a set as its elements.

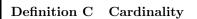
©2005, 2006 Robert A. Beezer

Definition SSET Subset

330

If S and T are two sets, then S is a subset of T, written $S \subseteq T$ if whenever $x \in S$ then $x \in T$.





Suppose S is a finite set. Then the number of elements in S is called the **cardinality** or **size** of S, and is denoted |S|.

©2005, 2006 Robert A. Beezer

Definition SU Set Union

334

Suppose S and T are sets. Then the **union** of S and T, denoted $S \cup T$, is the set whose elements are those that are elements of S or of T, or both. More formally,

 $x \in S \cup T$ if and only if $x \in S$ or $x \in T$

Definition SI Set Intersection

335

Suppose S and T are sets. Then the **intersection** of S and T, denoted $S \cap T$, is the set whose elements are only those that are elements of S and of T. More formally,

 $x \in S \cap T$ if and only if $x \in S$ and $x \in T$

© 2005, 2006 Robert A. Beezer

Definition SC Set Complement

336

Suppose S is a set that is a subset of a universal set U. Then the **complement** of S, denoted \overline{S} , is the set whose elements are those that are elements of U and not elements of S. More formally,

 $x\in \overline{S}$ if and only if $x\in U$ and $x\not\in S$