Flash Cards

to accompany

A First Course in Linear Algebra

by Robert A. Beezer Department of Mathematics and Computer Science University of Puget Sound

> Version 0.88 October 19, 2006 © 2004, 2005, 2006

Copyright © 2004, 2005, 2006 Robert A. Beezer.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the GNU Free Documentation License can be found at http://www.gnu.org/copyleft/fdl.html and is incorporated here by this reference.

The most recent version of this work can always be found at http://linear.ups.edu/.

Definition SLE System of Linear Equations

A system of linear equations is a collection of m equations in the variable quantities $x_1, x_2, x_3, \ldots, x_n$ of the form,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

where the values of a_{ij} , b_i and x_j are from the set of complex numbers, \mathbb{C} .

©2005, 2006 Robert A. Beezer

Definition ESYS Equivalent Systems

Two systems of linear equations are **equivalent** if their solution sets are equal.

1

 $\mathbf{2}$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Definition EO Equation Operations

Given a system of linear equations, the following three operations will transform the system into a different one, and each is known as an **equation operation**.

- 1. Swap the locations of two equations in the list.
- 2. Multiply each term of an equation by a nonzero quantity.
- 3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

©2005, 2006 Robert A. Beezer

Theorem EOPSS Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of Definition EO to a system of linear equations (Definition SLE), then the original system and the transformed system are equivalent.

©2005, 2006 Robert A. Beezer

Definition M Matrix

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns. We will use upper-case Latin letters from the start of the alphabet (A, B, C, ...) to denote matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets — the distinction is not important. Rows of a matrix will be referenced starting at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the notation $[A]_{ij}$ will refer to the complex number in row i and column j of A.

©2005, 2006 Robert A. Beezer

Definition CV Column Vector

A column vector of size m is an ordered list of m numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a vector. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$. Some books like to write vectors with arrows, such as \vec{u} . Writing by hand, some like to put arrows on top of the symbol, or a tilde underneath the symbol, as in u. To refer to the entry or component that is number i in the list that is the vector \mathbf{v} we write $[\mathbf{v}]_i$.

©2005, 2006 Robert A. Beezer

Definition ZV Zero Vector

The **zero vector** of size m is the column vector of size m where each entry is the number zero,

$$\mathbf{0} = \begin{bmatrix} 0\\0\\0\\\vdots\\0 \end{bmatrix}$$

or more compactly, $[\mathbf{0}]_i = 0$ for $1 \le i \le m$.

©2005, 2006 Robert A. Beezer

Definition CM Coefficient Matrix

For a system of linear equations,

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$ \vdots $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

the **coefficient matrix** is the $m \times n$ matrix

 $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Definition VOC Vector of Constants

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

the **vector of constants** is the column vector of size m

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

©2005, 2006 Robert A. Beezer

Definition SV Solution Vector

For a system of linear equations,

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$ \vdots

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

the **solution vector** is the column vector of size n

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

©2005, 2006 Robert A. Beezer

Definition LSMR Matrix Representation of a Linear System

If A is the coefficient matrix of a system of linear equations and **b** is the vector of constants, then we will write $\mathcal{LS}(A, \mathbf{b})$ as a shorthand expression for the system of linear equations, which we will refer to as the **matrix representation** of the linear system.

©2005, 2006 Robert A. Beezer

Definition AM Augmented Matrix

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of constants **b**. Then the **augmented matrix** of the system of equations is the $m \times (n + 1)$ matrix whose first n columns are the columns of A and whose last column (number n + 1) is the column vector **b**. This matrix will be written as $[A \mid \mathbf{b}]$.

©2005, 2006 Robert A. Beezer

Definition RO Row Operations

The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a **row operation**.

- 1. Swap the locations of two rows.
- 2. Multiply each entry of a single row by a nonzero quantity.
- 3. Multiply each entry of one row by some quantity, and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

- 1. $R_i \leftrightarrow R_j$: Swap the location of rows *i* and *j*.
- 2. αR_i : Multiply row *i* by the nonzero scalar α .
- 3. $\alpha R_i + R_j$: Multiply row *i* by the scalar α and add to row *j*.

©2005, 2006 Robert A. Beezer

Definition REM Row-Equivalent Matrices

Two matrices, A and B, are **row-equivalent** if one can be obtained from the other by a sequence of row operations.

$\mathbf{14}$

Theorem REMES Row-Equivalent Matrices represent Equivalent Systems 15

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations that they represent are equivalent systems.

©2005, 2006 Robert A. Beezer

Definition RREF Reduced Row-Echelon Form

A matrix is in **reduced row-echelon form** if it meets all of the following conditions:

- 1. A row where every entry is zero lies below any row that contains a nonzero entry.
- 2. The leftmost nonzero entry of a row is equal to 1.
- 3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
- 4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If s > i, then t > j.

A row of only zero entries will be called a **zero row** and the leftmost nonzero entry of a nonzero row will be called a **leading 1**. The number of nonzero rows will be denoted by r. A column containing a leading 1 will be called a **pivot column**. The set of column indices for all of the pivot columns will be denoted by $D = \{d_1, d_2, d_3, \ldots, d_r\}$ where $d_1 < d_2 < d_3 < \cdots < d_r$, while the columns that are not pivot columns will be denoted as $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ where $f_1 < f_2 < f_3 < \cdots < f_{n-r}$.

Theorem REMEF Row-Equivalent Matrix in Echelon Form

Suppose A is a matrix. Then there is a matrix B so that

- 1. A and B are row-equivalent.
- 2. B is in reduced row-echelon form.

©2005, 2006 Robert A. Beezer

Definition RR Row-Reducing

To **row-reduce** the matrix A means to apply row operations to A and arrive at a row-equivalent matrix B in reduced row-echelon form.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{17}$

A system of linear equations is **consistent** if it has at least one solution. Otherwise, the system is called **inconsistent**.

©2005, 2006 Robert A. Beezer

Definition IDV Independent and Dependent Variables

Suppose A is the augmented matrix of a consistent system of linear equations and B is a rowequivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not the last column. Then the variable x_j is **dependent**. A variable that is not dependent is called **independent** or **free**.

 $\mathbf{20}$

 $\textcircled{O}2005,\,2006$ $\,$ Robert A. Beezer

Theorem RCLS Recognizing Consistency of a Linear System

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column n + 1 of B.

©2005, 2006 Robert A. Beezer

${\bf Theorem \ ISRN} \quad {\bf Inconsistent \ Systems,} \ r \ {\bf and} \ n$

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

 $\mathbf{21}$

 $\mathbf{22}$

Suppose A is the augmented matrix of a *consistent* system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If r = n, then the system has a unique solution, and if r < n, then the system has infinitely many solutions.

©2005, 2006 Robert A. Beezer

Theorem FVCS Free Variables for Consistent Systems

Suppose A is the augmented matrix of a *consistent* system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with n - r free variables.

$\mathbf{24}$

Theorem PSSLS Possible Solution Sets for Linear Systems

A system of linear equations has no solutions, a unique solution or infinitely many solutions.

©2005, 2006 Robert A. Beezer

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions 26

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the system has infinitely many solutions.

Definition HS Homogeneous System

A system of linear equations, $\mathcal{LS}(A, \mathbf{b})$ is **homogeneous** if the vector of constants is the zero vector, in other words, $\mathbf{b} = \mathbf{0}$.

©2005, 2006 Robert A. Beezer

Theorem HSC Homogeneous Systems are Consistent

Suppose that a system of linear equations is homogeneous. Then the system is consistent.

 $\mathbf{28}$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Definition TSHSE Trivial Solution to Homogeneous Systems of Equations 29

Suppose a homogeneous system of linear equations has n variables. The solution $x_1 = 0$, $x_2 = 0, \ldots, x_n = 0$ (i.e. $\mathbf{x} = \mathbf{0}$) is called the **trivial solution**.

©2005, 2006 Robert A. Beezer

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions 30

Suppose that a homogeneous system of linear equations has m equations and n variables with n > m. Then the system has infinitely many solutions.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Definition NSM Null Space of a Matrix

The **null space** of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{LS}(A, \mathbf{0})$.

©2005, 2006 Robert A. Beezer

Definition SQM Square Matrix

A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has size n. To emphasize the situation when a matrix is not square, we will call it rectangular.

 $\mathbf{32}$

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{LS}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, i.e. the system has *only* the trivial solution. Then we say that A is a **nonsingular** matrix. Otherwise we say A is a **singular** matrix.

©2005, 2006 Robert A. Beezer

Definition IM Identity Matrix

The $m \times m$ identity matrix, I_m , is defined by

 $\left[I_m\right]_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

33

 $\mathbf{34}$

 $\textcircled{O}2005,\,2006$ $\,$ Robert A. Beezer

Theorem NMRRI Nonsingular Matrices Row Reduce to the Identity matrix 35

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

©2005, 2006 Robert A. Beezer

36

Theorem NMTNS Nonsingular Matrices have Trivial Null Spaces

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, $\mathcal{N}(A)$, contains only the zero vector, i.e. $\mathcal{N}(A) = \{\mathbf{0}\}$.

Theorem NMUS Nonsingular Matrices and Unique Solutions

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector **b**.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

Theorem NME1 Nonsingular Matrix Equivalences, Round 1

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .

38

©2005, 2006 Robert A. Beezer

Definition VSCV Vector Space of Column Vectors

The vector space \mathbb{C}^m is the set of all column vectors (Definition CV) of size m with entries from the set of complex numbers, \mathbb{C} .

©2005, 2006 Robert A. Beezer

Definition CVE Column Vector Equality

The vectors \mathbf{u} and \mathbf{v} are **equal**, written $\mathbf{u} = \mathbf{v}$ provided that

 $\left[\mathbf{u}\right]_i = \left[\mathbf{v}\right]_i \qquad \qquad 1 \le i \le m$

Definition CVA Column Vector Addition

Given the vectors ${\bf u}$ and ${\bf v}$ the sum of ${\bf u}$ and ${\bf v}$ is the vector ${\bf u}+{\bf v}$ defined by

$$[\mathbf{u} + \mathbf{v}]_i = [\mathbf{u}]_i + [\mathbf{v}]_i \qquad 1 \le i \le m$$

©2005, 2006 Robert A. Beezer

Definition CVSM Column Vector Scalar Multiplication

Given the vector **u** and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of **u** by α , α **u** is defined by

 $\left[\alpha \mathbf{u}\right]_{i} = \alpha \left[\mathbf{u}\right]_{i} \qquad 1 \le i \le m$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{42}$

Theorem VSPCV Vector Space Properties of Column Vectors

Suppose that \mathbb{C}^m is the set of column vectors of size m (Definition VSCV) with addition and scalar multiplication as defined in Definition CVA and Definition CVSM. Then

- ACC Additive Closure, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} \in \mathbb{C}^m$.
- SCC Scalar Closure, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha \mathbf{u} \in \mathbb{C}^m$.
- CC Commutativity, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- AAC Additive Associativity, Column Vectors If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^m$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- ZC Zero Vector, Column Vectors There is a vector, 0, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^m$.
- AIC Additive Inverses, Column Vectors If $\mathbf{u} \in \mathbb{C}^m$, then there exists a vector $-\mathbf{u} \in \mathbb{C}^m$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- SMAC Scalar Multiplication Associativity, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- DVAC Distributivity across Vector Addition, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- DSAC Distributivity across Scalar Addition, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.

• OC One Column Vectors If $\mathbf{u} \in \mathbb{C}^m$ then $1\mathbf{u} = \mathbf{u}$

©2005, 2006 Robert A. Beezer

Definition LCCV Linear Combination of Column Vectors

Given *n* vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ from \mathbb{C}^m and *n* scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$, their **linear** combination is the vector

 $\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3 + \dots + \alpha_n\mathbf{u}_n.$

 $\mathbf{43}$

44

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

Theorem SLSLC Solutions to Linear Systems are Linear Combinations

Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$. Then \mathbf{x} is a solution to the linear system of equations $\mathcal{LS}(A, \mathbf{b})$ if and only if

 $[\mathbf{x}]_1 \mathbf{A}_1 + [\mathbf{x}]_2 \mathbf{A}_2 + [\mathbf{x}]_3 \mathbf{A}_3 + \dots + [\mathbf{x}]_n \mathbf{A}_n = \mathbf{b}$

©2005, 2006 Robert A. Beezer

Theorem VFSLS Vector Form of Solutions to Linear Systems

Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{LS}(A, \mathbf{b})$ of m equations in n variables. Let B be a row-equivalent $m \times (n + 1)$ matrix in reduced row-echelon form. Suppose that B has r nonzero rows, columns without leading 1's with indices $F = \{f_1, f_2, f_3, \ldots, f_{n-r}, n+1\}$, and columns with leading 1's (pivot columns) having indices $D = \{d_1, d_2, d_3, \ldots, d_r\}$. Define vectors $\mathbf{c}, \mathbf{u}_j, 1 \leq j \leq n-r$ of size n by

$$\begin{aligned} \left[\mathbf{c} \right]_i &= \begin{cases} 0 & \text{if } i \in F \\ \left[B \right]_{k,n+1} & \text{if } i \in D, \, i = d_k \end{cases} \\ \left[\mathbf{u}_j \right]_i &= \begin{cases} 1 & \text{if } i \in F, \, i = f_j \\ 0 & \text{if } i \in F, \, i \neq f_j \\ -\left[B \right]_{k,f_i} & \text{if } i \in D, \, i = d_k \end{cases} \end{aligned}$$

Then the set of solutions to the system of equations $\mathcal{LS}(A, \mathbf{b})$ is

$$S = \left\{ \mathbf{c} + x_{f_1} \mathbf{u}_1 + x_{f_2} \mathbf{u}_2 + x_{f_3} \mathbf{u}_3 + \dots + x_{f_{n-r}} \mathbf{u}_{n-r} \mid x_{f_1}, x_{f_2}, x_{f_3}, \dots, x_{f_{n-r}} \in \mathbb{C} \right\}$$

©2005, 2006 Robert A. Beezer

Theorem PSPHS Particular Solution Plus Homogeneous Solutions

Suppose that \mathbf{w} is one solution to the linear system of equations $\mathcal{LS}(A, b)$. Then \mathbf{y} is a solution to $\mathcal{LS}(A, b)$ if and only if $\mathbf{y} = \mathbf{w} + \mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$.

©2005, 2006 Robert A. Beezer

Theorem RREFU Reduced Row-Echelon Form is Unique

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then B = C.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{47}$

 $\mathbf{48}$

Definition SSCV Span of a Set of Column Vectors

Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p}$, their **span**, $\langle S \rangle$, is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p$. Symbolically,

$$\langle S \rangle = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_p \mathbf{u}_p \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le p \right\}$$
$$= \left\{ \sum_{i=1}^p \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le p \right\}$$

©2005, 2006 Robert A. Beezer

Theorem SSNS Spanning Sets for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ be the column indices where B has leading 1's (pivot columns) and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the set of column indices where B does not have leading 1's. Construct the n - r vectors \mathbf{z}_j , $1 \le j \le n - r$ of size n as

$$\left[\mathbf{z}_j \right]_i = \begin{cases} 1 & \text{if } i \in F, \ i = f_j \\ 0 & \text{if } i \in F, \ i \neq f_j \\ -\left[B \right]_{k,f_j} & \text{if } i \in D, \ i = d_k \end{cases}$$

Then the null space of A is given by

 $\mathcal{N}(A) = \langle \{\mathbf{z}_1, \, \mathbf{z}_2, \, \mathbf{z}_3, \, \dots, \, \mathbf{z}_{n-r} \} \rangle.$

©2005, 2006 Robert A. Beezer

Definition RLDCV Relation of Linear Dependence for Column Vectors

Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$, a true statement of the form

 $\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3 + \dots + \alpha_n\mathbf{u}_n = \mathbf{0}$

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e. $\alpha_i = 0, 1 \le i \le n$, then we say it is the trivial relation of linear dependence on S.

©2005, 2006 Robert A. Beezer

Definition LICV Linear Independence of Column Vectors

The set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is **linearly dependent** if there is a relation of linear dependence on S that is not trivial. In the case where the *only* relation of linear dependence on S is the trivial one, then S is a **linearly independent** set of vectors.

 $\mathbf{51}$

Theorem LIVHS Linearly Independent Vectors and Homogeneous Systems 53

Suppose that A is an $m \times n$ matrix and $S = {\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n}$ is the set of vectors in \mathbb{C}^m that are the columns of A. Then S is a linearly independent set if and only if the homogeneous system $\mathcal{LS}(A, \mathbf{0})$ has a unique solution.

©2005, 2006 Robert A. Beezer

 $\mathbf{54}$

Theorem LIVRN Linearly Independent Vectors, r and n

Suppose that A is an $m \times n$ matrix and $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$ is the set of vectors in \mathbb{C}^m that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if n = r.

Theorem MVSLD More Vectors than Size implies Linear Dependence

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is the set of vectors in \mathbb{C}^m , and that n > m. Then S is a linearly dependent set.

©2005, 2006 Robert A. Beezer

Theorem NMLIC Nonsingular Matrices have Linearly Independent Columns 56

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.

Theorem NME2 Nonsingular Matrix Equivalences, Round 2

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A form a linearly independent set.

©2005, 2006 Robert A. Beezer

Theorem BNS Basis for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the n - r vectors \mathbf{z}_j , $1 \le j \le n - r$ of size n as

$$\left[\mathbf{z}_j \right]_i = \begin{cases} 1 & \text{if } i \in F, \ i = f_j \\ 0 & \text{if } i \in F, \ i \neq f_j \\ -\left[B\right]_{k,f_i} & \text{if } i \in D, \ i = d_k \end{cases}$$

Define the set $S = \{\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3, \dots, \mathbf{z}_{n-r}\}$. Then

- 1. $\mathcal{N}(A) = \langle S \rangle$.
- 2. S is a linearly independent set.

©2005, 2006 Robert A. Beezer

 $\mathbf{58}$

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \le t \le n$ such that \mathbf{u}_t is a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_n$.

©2005, 2006 Robert A. Beezer

Theorem BS Basis of a Span

Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$ is a set of column vectors. Define $W = \langle S \rangle$ and let A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A, with $D = {d_1, d_2, d_3, \dots, d_r}$ the set of column indices corresponding to the pivot columns of B. Then

- 1. $T = {\mathbf{v}_{d_1}, \mathbf{v}_{d_2}, \mathbf{v}_{d_3}, \dots \mathbf{v}_{d_r}}$ is a linearly independent set.
- 2. $W = \langle T \rangle$.

©2005, 2006 Robert A. Beezer

Definition CCCV Complex Conjugate of a Column Vector

Suppose that **u** is a vector from \mathbb{C}^m . Then the conjugate of the vector, $\overline{\mathbf{u}}$, is defined by

$$[\overline{\mathbf{u}}]_i = [\mathbf{u}]_i \qquad \qquad 1 \le i \le m$$

©2005, 2006 Robert A. Beezer

Theorem CRVA Conjugation Respects Vector Addition

Suppose **x** and **y** are two vectors from \mathbb{C}^m . Then

 $\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

 $\mathbf{62}$

Suppose **x** is a vector from \mathbb{C}^m , and $\alpha \in \mathbb{C}$ is a scalar. Then

Theorem CRSM Conjugation Respects Vector Scalar Multiplication

 $\overline{\alpha \mathbf{x}} = \overline{\alpha} \, \overline{\mathbf{x}}$

©2005, 2006 Robert A. Beezer

Definition IP Inner Product

Given the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ the **inner product** of \mathbf{u} and \mathbf{v} is the scalar quantity in \mathbb{C} ,

$$\langle \mathbf{u}, \mathbf{v} \rangle = \left[\mathbf{u} \right]_1 \overline{\left[\mathbf{v} \right]_1} + \left[\mathbf{u} \right]_2 \overline{\left[\mathbf{v} \right]_2} + \left[\mathbf{u} \right]_3 \overline{\left[\mathbf{v} \right]_3} + \dots + \left[\mathbf{u} \right]_m \overline{\left[\mathbf{v} \right]_m} = \sum_{i=1}^m \left[\mathbf{u} \right]_i \overline{\left[\mathbf{v} \right]_i}$$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem IPVA Inner Product and Vector Addition

Suppose $\mathbf{u}\mathbf{v}, \mathbf{w} \in \mathbb{C}^m$. Then

1. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ 2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$

©2005, 2006 Robert A. Beezer

Theorem IPSM Inner Product and Scalar Multiplication

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ and $\alpha \in \mathbb{C}$. Then

1.
$$\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$$

2. $\langle \mathbf{u}, \alpha \mathbf{v} \rangle = \overline{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem IPAC Inc	er Product i	is Anti-Commutative
------------------	--------------	---------------------

Suppose that **u** and **v** are vectors in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.

©2005, 2006 Robert A. Beezer

Definition NV Norm of a Vector

The \mathbf{norm} of the vector $\mathbf u$ is the scalar quantity in $\mathbb C$

$$\|\mathbf{u}\| = \sqrt{|[\mathbf{u}]_1|^2 + |[\mathbf{u}]_2|^2 + |[\mathbf{u}]_3|^2 + \dots + |[\mathbf{u}]_m|^2} = \sqrt{\sum_{i=1}^m |[\mathbf{u}]_i|^2}$$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem IPN Inner Products and Norms

Suppose that **u** is a vector in \mathbb{C}^m . Then $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$.

©2005, 2006 Robert A. Beezer

Theorem PIP Positive Inner Products

Suppose that **u** is a vector in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ with equality if and only if $\mathbf{u} = \mathbf{0}$.

 $\mathbf{70}$

Definition OV Orthogonal Vectors

A pair of vectors, **u** and **v**, from \mathbb{C}^m are **orthogonal** if their inner product is zero, that is, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

©2005, 2006 Robert A. Beezer

Definition OSV Orthogonal Set of Vectors

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a set of vectors from \mathbb{C}^m . Then the set S is **orthogonal** if every pair of different vectors from S is orthogonal, that is $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ whenever $i \neq j$.

Theorem OSLI Orthogonal Sets are Linearly Independent

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is an orthogonal set of nonzero vectors. Then S is linearly independent.

©2005, 2006 Robert A. Beezer

Theorem GSPCV Gram-Schmidt Procedure, Column Vectors

Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p}$ is a linearly independent set of vectors in \mathbb{C}^m . Define the vectors $\mathbf{u}_i, 1 \leq i \leq p$ by

$$\mathbf{u}_i = \mathbf{v}_i - rac{\langle \mathbf{v}_i, \, \mathbf{u}_1
angle}{\langle \mathbf{u}_1, \, \mathbf{u}_1
angle} \mathbf{u}_1 - rac{\langle \mathbf{v}_i, \, \mathbf{u}_2
angle}{\langle \mathbf{u}_2, \, \mathbf{u}_2
angle} \mathbf{u}_2 - rac{\langle \mathbf{v}_i, \, \mathbf{u}_3
angle}{\langle \mathbf{u}_3, \, \mathbf{u}_3
angle} \mathbf{u}_3 - \dots - rac{\langle \mathbf{v}_i, \, \mathbf{u}_{i-1}
angle}{\langle \mathbf{u}_{i-1}, \, \mathbf{u}_{i-1}
angle} \mathbf{u}_{i-1}$$

Then if $T = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p}$, then T is an orthogonal set of non-zero vectors, and $\langle T \rangle = \langle S \rangle$.

 $\mathbf{74}$

Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is an orthogonal set of vectors such that $||\mathbf{u}_i|| = 1$ for all $1 \le i \le n$. Then S is an **orthonormal** set of vectors.

©2005, 2006 Robert A. Beezer

Definition VSM Vector Space of $m \times n$ Matrices

The vector space M_{mn} is the set of all $m \times n$ matrices with entries from the set of complex numbers.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

The $m \times n$ matrices A and B are **equal**, written A = B provided $[A]_{ij} = [B]_{ij}$ for all $1 \le i \le m$, $1 \le j \le n$.

©2005, 2006 Robert A. Beezer

Definition MA Matrix Addition

Given the $m \times n$ matrices A and B, define the **sum** of A and B as an $m \times n$ matrix, written A + B, according to

$$[A+B]_{ij} = [A]_{ij} + [B]_{ij} \qquad 1 \le i \le m, \ 1 \le j \le n$$

 $\mathbf{78}$

©2005, 2006 Robert A. Beezer

Theorem VSPM Vector Space Properties of Matrices

Suppose that M_{mn} is the set of all $m \times n$ matrices (Definition VSM) with addition and scalar multiplication as defined in Definition MA and Definition MSM. Then

- ACM Additive Closure, Matrices If $A, B \in M_{mn}$, then $A + B \in M_{mn}$.
- SCM Scalar Closure, Matrices If $\alpha \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha A \in M_{mn}$.
- CM Commutativity, Matrices If $A, B \in M_{mn}$, then A + B = B + A.
- AAM Additive Associativity, Matrices If $A, B, C \in M_{mn}$, then A + (B + C) = (A + B) + C.
- ZM Zero Vector, Matrices There is a matrix, \mathcal{O} , called the zero matrix, such that $A + \mathcal{O} = A$ for all $A \in M_{mn}$.
- AIM Additive Inverses, Matrices If $A \in M_{mn}$, then there exists a matrix $-A \in M_{mn}$ so that $A + (-A) = \mathcal{O}$.
- SMAM Scalar Multiplication Associativity, Matrices If α , $\beta \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha(\beta A) = (\alpha \beta)A$.
- **DMAM** Distributivity across Matrix Addition, Matrices If $\alpha \in \mathbb{C}$ and $A, B \in M_{mn}$, then $\alpha(A+B) = \alpha A + \alpha B$.
- DSAM Distributivity across Scalar Addition, Matrices If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{mn}$, then $(\alpha + \beta)A = \alpha A + \beta A$.
- **OM** One Matrices If $A \in M$ then 1A A

$\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Given the $m \times n$ matrix A and the scalar $\alpha \in \mathbb{C}$, the **scalar multiple** of A is an $m \times n$ matrix, written αA and defined according to

$$\left[\alpha A\right]_{ij} = \alpha \left[A\right]_{ij} \qquad \qquad 1 \le i \le m, \ 1 \le j \le n$$

The $m \times n$ zero matrix is written as $\mathcal{O} = \mathcal{O}_{m \times n}$ and defined by $[\mathcal{O}]_{ij} = 0$, for all $1 \le i \le m$, $1 \le j \le n$.

©2005, 2006 Robert A. Beezer

Definition TM Transpose of a Matrix

Given an $m \times n$ matrix A, its **transpose** is the $n \times m$ matrix A^t given by

 $\left[A^t\right]_{ij} = \left[A\right]_{ji}, \quad 1 \le i \le n, \, 1 \le j \le m.$

Definition SYM Symmetric Matrix	83
The matrix A is symmetric if $A = A^t$.	

 $\textcircled{O}2005,\,2006$ $\,$ Robert A. Beezer

84

Theorem SMS Symmetric Matrices are Square

Suppose that A is a symmetric matrix. Then A is square.

Theorem TMA Transpose and Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $(A + B)^t = A^t + B^t$.

©2005, 2006 Robert A. Beezer

Theorem TMSM Transpose and Matrix Scalar Multiplication

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $(\alpha A)^t = \alpha A^t$.

86

Theorem TT Transpose of a Transpose

Suppose that A is an $m \times n$ matrix. Then $(A^t)^t = A$.

©2005, 2006 Robert A. Beezer

Definition CCM Complex Conjugate of a Matrix

Suppose A is an $m \times n$ matrix. Then the **conjugate** of A, written \overline{A} is an $m \times n$ matrix defined by

 $\left[\overline{A}\right]_{ij} = \overline{[A]_{ij}}$

 $\textcircled{O}2005,\,2006$ $\,$ Robert A. Beezer

Theorem CRMA Conjugation Respects Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $\overline{A + B} = \overline{A} + \overline{B}$.

©2005, 2006 Robert A. Beezer

Theorem CRMSM Conjugation Respects Matrix Scalar Multiplication

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $\overline{\alpha A} = \overline{\alpha} \overline{A}$.

 $\textcircled{C}2005,\,2006$ $\$ Robert A. Beezer

Suppose that A is an $m \times n$ matrix. Then $\overline{(A^t)} = (\overline{A})^t$.

Theorem MCT

©2005, 2006 Robert A. Beezer

Definition MVP **Matrix-Vector Product**

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$ and **u** is a vector of size n. Then the **matrix-vector product** of A with \mathbf{u} is the linear combination

 $A\mathbf{u} = [\mathbf{u}]_1 \mathbf{A}_1 + [\mathbf{u}]_2 \mathbf{A}_2 + [\mathbf{u}]_3 \mathbf{A}_3 + \dots + [\mathbf{u}]_n \mathbf{A}_n$

©2005, 2006 Robert A. Beezer

Theorem SLEMM

Systems of Linear Equations as Matrix Multiplication

Solutions to the linear system $\mathcal{LS}(A, \mathbf{b})$ are the solutions for \mathbf{x} in the vector equation $A\mathbf{x} = \mathbf{b}$.

©2005, 2006 Robert A. Beezer

93

94

Theorem EMMVP Equal Matrices and Matrix-Vector Products

Suppose that A and B are $m \times n$ matrices such that $A\mathbf{x} = B\mathbf{x}$ for every $\mathbf{x} \in \mathbb{C}^n$. Then A = B.

Definition MM Matrix Multiplication

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \ldots, \mathbf{B}_p$. Then the **matrix product** of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A\mathbf{B}_i$. Symbolically,

 $AB = A \left[\mathbf{B}_1 | \mathbf{B}_2 | \mathbf{B}_3 | \dots | \mathbf{B}_p \right] = \left[A \mathbf{B}_1 | A \mathbf{B}_2 | A \mathbf{B}_3 | \dots | A \mathbf{B}_p \right].$

©2005, 2006 Robert A. Beezer

Theorem EMP Entries of Matrix Products

Suppose A is an $m \times n$ matrix and B =is an $n \times p$ matrix. Then for $1 \le i \le m, 1 \le j \le p$, the individual entries of AB are given by

$$[AB]_{ij} = [A]_{i1} [B]_{1j} + [A]_{i2} [B]_{2j} + [A]_{i3} [B]_{3j} + \dots + [A]_{in} [B]_{nj}$$
$$= \sum_{k=1}^{n} [A]_{ik} [B]_{kj}$$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem MMZM Matrix Multiplication and the Zero Matrix

Suppose A is an $m \times n$ matrix. Then 1. $A\mathcal{O}_{n \times p} = \mathcal{O}_{m \times p}$ 2. $\mathcal{O}_{p \times m} A = \mathcal{O}_{p \times n}$

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

Theorem MMIM Matrix Multiplication and Identity Matrix

Suppose A is an $m \times n$ matrix. Then 1. $AI_n = A$

2. $I_m A = A$

Theorem MMDAA Matrix Multiplication Distributes Across Addition

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then 1. A(B+C) = AB + AC2. (B+C)D = BD + CD

©2005, 2006 Robert A. Beezer

Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 100

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then A(BD) = (AB)D.

©2005, 2006 Robert A. Beezer

Theorem MMIP Matrix Multiplication and Inner Products

If we consider the vectors $\mathbf{u},\,\mathbf{v}\in\mathbb{C}^m$ as $m\times 1$ matrices then

 $\langle \mathbf{u},\,\mathbf{v}
angle = \mathbf{u}^t\overline{\mathbf{v}}$

101

102

Suppose A is an $m \times n$ matrix and B is an $n \times n$	$< p$ matrix. Then $\overline{AB} = \overline{A} \overline{B}$.

Theorem MMCC Matrix Multiplication and Complex Conjugation

©2005, 2006 Robert A. Beezer

103

104

Theorem MMT Matrix Multiplication and Transposes

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(AB)^t = B^t A^t$.

Suppose A and B are square matrices of size n such that $AB = I_n$ and $BA = I_n$. Then A is **invertible** and B is the **inverse** of A. In this situation, we write $B = A^{-1}$.

©2005, 2006 Robert A. Beezer

Definition SUV Standard Unit Vectors

Let $\mathbf{e}_j \in \mathbb{C}^m$ denote the column vector that is column j of the $m \times m$ identity matrix I_m . Then the set

 $\{\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3, \, \dots, \, \mathbf{e}_m\} = \{\, \mathbf{e}_j \mid 1 \le j \le m\}$

is the set of standard unit vectors in \mathbb{C}^m .

Theorem TTMI Two-by-Two Matrix Inverse

Suppose

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then A is invertible if and only if $ad - bc \neq 0$. When A is invertible, we have

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

©2005, 2006 Robert A. Beezer

Theorem CINM Computing the Inverse of a Nonsingular Matrix

Suppose A is a nonsingular square matrix of size n. Create the $n \times 2n$ matrix M by placing the $n \times n$ identity matrix I_n to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns of N. Then $AJ = I_n$.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

108

Theorem SS Socks and Shoes

Suppose A and B are invertible matrices of size n. Then $(AB)^{-1} = B^{-1}A^{-1}$ and AB is an invertible matrix.

 $\textcircled{O}2005,\,2006$ $\,$ Robert A. Beezer

Theorem MIU Matrix Inverse is Unique

Suppose the square matrix A has an inverse. Then A^{-1} is unique.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Suppose A is an invertible matrix. Then A^{-1} is invertible and $(A^{-1})^{-1} = A$.

©2005, 2006 Robert A. Beezer

Theorem MIT Matrix Inverse of a Transpose

Suppose A is an invertible matrix. Then A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.

112

Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1} = \frac{1}{\alpha}A^{-1}$ and αA is invertible.

©2005, 2006 Robert A. Beezer

Theorem NPNT Nonsingular Product has Nonsingular Terms

Suppose that A and B are square matrices of size n and the product AB is nonsingular. Then A and B are both nonsingular.

 $\mathbf{114}$

Theorem OSIS One-Sided Inverse is Sufficient	115
Suppose A and B are square matrices of size n such that $AB = I_n$. Then $BA = I_n$.	

©2005, 2006 Robert A. Beezer

116

Theorem NI Nonsingularity is Invertibility

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.

Theorem NME3 Nonsingular Matrix Equivalences, Round 3

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.

©2005, 2006 Robert A. Beezer

Theorem SNCM Solution with Nonsingular Coefficient Matrix

Suppose that A is nonsingular. Then the unique solution to $\mathcal{LS}(A, \mathbf{b})$ is $A^{-1}\mathbf{b}$.

118

Definition OM Orthogonal Matrices

Suppose that Q is a square matrix of size n such that $(\overline{Q})^t Q = I_n$. Then we say Q is **orthogonal**.

©2005, 2006 Robert A. Beezer

Theorem OMI Orthogonal Matrices are Invertible

Suppose that Q is an orthogonal matrix of size n. Then Q is nonsingular, and $Q^{-1} = (\overline{Q})^t$.

Theorem COMOS Columns of Orthogonal Matrices are Orthonormal Sets 121

Suppose that A is a square matrix of size n with columns $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$. Then A is an orthogonal matrix if and only if S is an orthonormal set.

©2005, 2006 Robert A. Beezer

Theorem OMPIP Orthogonal Matrices Preserve Inner Products 122

Suppose that Q is an orthogonal matrix of size n and **u** and **v** are two vectors from \mathbb{C}^n . Then

 $\langle Q\mathbf{u}, Q\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ and $\|Q\mathbf{v}\| = \|\mathbf{v}\|$

Definition A Adjoint

If A is a square matrix, then its **adjoint** is $A^{H} = \left(\overline{A}\right)^{t}$.

©2005, 2006 Robert A. Beezer

Definition HM Hermitian Matrix

The square matrix A is **Hermitian** (or **self-adjoint**) if $A = (\overline{A})^t$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Definition CSM Column Space of a Matrix

Suppose that A is an $m \times n$ matrix with columns $\{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n\}$. Then the **column space** of A, written $\mathcal{C}(A)$, is the subset of \mathbb{C}^m containing all linear combinations of the columns of A,

 $\mathcal{C}(A) = \langle \{\mathbf{A}_1, \, \mathbf{A}_2, \, \mathbf{A}_3, \, \dots, \, \mathbf{A}_n \} \rangle$

©2005, 2006 Robert A. Beezer

Theorem CSCS Column Spaces and Consistent Systems

Suppose A is an $m \times n$ matrix and **b** is a vector of size m. Then $\mathbf{b} \in \mathcal{C}(A)$ if and only if $\mathcal{LS}(A, \mathbf{b})$ is consistent.

Theorem BCS Basis of the Column Space

Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ be the set of column indices where B has leading 1's. Let $T = \{\mathbf{A}_{d_1}, \mathbf{A}_{d_2}, \mathbf{A}_{d_3}, \ldots, \mathbf{A}_{d_r}\}$. Then

- 1. T is a linearly independent set.
- 2. $\mathcal{C}(A) = \langle T \rangle$.

©2005, 2006 Robert A. Beezer

Theorem CSNM Column Space of a Nonsingular Matrix

Suppose A is a square matrix of size n. Then A is nonsingular if and only if $\mathcal{C}(A) = \mathbb{C}^n$.

Theorem NME4 Nonsingular Matrix Equivalences, Round 4

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.

©2005, 2006 Robert A. Beezer

Definition RSM Row Space of a Matrix

Suppose A is an $m \times n$ matrix. Then the **row space** of A, $\mathcal{R}(A)$, is the column space of A^t , i.e. $\mathcal{R}(A) = \mathcal{C}(A^t)$.

©2005, 2006 Robert A. Beezer

130

Theorem REMRS Row-Equivalent Matrices have equal Row Spaces

Suppose A and B are row-equivalent matrices. Then $\mathcal{R}(A) = \mathcal{R}(B)$.

©2005, 2006 Robert A. Beezer

Theorem BRS Basis for the Row Space

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of B^t . Then

- 1. $\mathcal{R}(A) = \langle S \rangle$.
- 2. S is a linearly independent set.

Suppose A is a matrix. Then $\mathcal{C}(A) = \mathcal{R}(A^t)$.

©2005, 2006 Robert A. Beezer

Definition LNS Left Null Space

Suppose A is an $m \times n$ matrix. Then the **left null space** is defined as $\mathcal{L}(A) = \mathcal{N}(A^t) \subseteq \mathbb{C}^m$.

 $\mathbf{134}$

Definition EEF Extended Echelon Form

Suppose A is an $m \times n$ matrix. Add m new columns to A that together equal an $m \times m$ identity matrix to form an $m \times (n+m)$ matrix M. Use row operations to bring M to reduced row-echelon form and call the result N. N is the **extended reduced row-echelon form** of A, and we will standardize on names for five submatrices (B, C, J, K, L) of N.

Let B denote the $m \times n$ matrix formed from the first n columns of N and let J denote the $m \times m$ matrix formed from the last m columns of N. Suppose that B has r nonzero rows. Further partition N by letting C denote the $r \times n$ matrix formed from all of the non-zero rows of B. Let K be the $r \times m$ matrix formed from the first r rows of J, while L will be the $(m - r) \times m$ matrix formed from the bottom m - r rows of J. Pictorially,

$$M = [A|I_m] \xrightarrow{\text{RREF}} N = [B|J] = \begin{bmatrix} C & K \\ \hline 0 & L \end{bmatrix}$$

©2005, 2006 Robert A. Beezer

Theorem PEEF Properties of Extended Echelon Form

Suppose that A is an $m \times n$ matrix and that N is its extended echelon form. Then

- 1. J is nonsingular.
- 2. B = JA.
- 3. If $\mathbf{x} \in \mathbb{C}^n$ and $\mathbf{y} \in \mathbb{C}^m$, then $A\mathbf{x} = \mathbf{y}$ if and only if $B\mathbf{x} = J\mathbf{y}$.
- 4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.
- 5. L is in reduced row-echelon form, has no zero rows and has m r pivot columns.

©2005, 2006 Robert A. Beezer

Theorem FS Four Subsets

Suppose A is an $m \times n$ matrix with extended echelon form N. Suppose the reduced row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the first n columns and L is the submatrix of N formed from the last m columns and the last m - r rows. Then

- 1. The null space of A is the null space of C, $\mathcal{N}(A) = \mathcal{N}(C)$.
- 2. The row space of A is the row space of C, $\mathcal{R}(A) = \mathcal{R}(C)$.
- 3. The column space of A is the null space of L, $C(A) = \mathcal{N}(L)$.
- 4. The left null space of A is the row space of L, $\mathcal{L}(A) = \mathcal{R}(L)$.

©2005, 2006 Robert A. Beezer

Definition VS Vector Space

Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by "+", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space if the following ten properties hold.

- AC Additive Closure If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} \in V$.
- SC Scalar Closure If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$.
- C Commutativity If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- AA Additive Associativity If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- Z Zero Vector There is a vector, 0, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- AI Additive Inverses If $\mathbf{u} \in V$, then there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- SMA Scalar Multiplication Associativity If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- DVA Distributivity across Vector Addition If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- DSA Distributivity across Scalar Addition If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.

• O One If $\mathbf{u} \in V$ then $1\mathbf{u} - \mathbf{u}$

The objects in V are called **vectors**, no matter what else they might really be, simply by virtue

137

Theorem ZVU Zero Vector is Unique	139
Suppose that V is a vector space. The zero vector, 0 , is unique.	

©2005, 2006 Robert A. Beezer

Theorem AIU Additive Inverses are Unique

Suppose that V is a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$, is unique.

 Theorem ZSSM
 Zero Scalar in Scalar Multiplication
 141

 Suppose that V is a vector space and $\mathbf{u} \in V$. Then $0\mathbf{u} = \mathbf{0}$.
 141

$\textcircled{O}2005,\,2006$ Robert A. Beezer

142

Theorem ZVSM Zero Vector in Scalar Multiplication

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then $\alpha \mathbf{0} = \mathbf{0}$.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem AISM Additive Inverses from Scalar Multiplication

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $-\mathbf{u} = (-1)\mathbf{u}$.

©2005, 2006 Robert A. Beezer

Theorem SMEZV Scalar Multiplication Equals the Zero Vector

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. If $\alpha \mathbf{u} = \mathbf{0}$, then either $\alpha = 0$ or $\mathbf{u} = \mathbf{0}$.

 $\mathbf{144}$

Suppose that V is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. If $\mathbf{w} + \mathbf{u} = \mathbf{w} + \mathbf{v}$, then $\mathbf{u} = \mathbf{v}$.

©2005, 2006 Robert A. Beezer

Theorem CSSM Canceling Scalars in Scalar Multiplication

Suppose V is a vector space, $\mathbf{u}, \mathbf{v} \in V$ and α is a nonzero scalar from \mathbb{C} . If $\alpha \mathbf{u} = \alpha \mathbf{v}$, then $\mathbf{u} = \mathbf{v}$.

Theorem CVSM Canceling Vectors in Scalar Multiplication

Suppose V is a vector space, $\mathbf{u} \neq \mathbf{0}$ is a vector in V and $\alpha, \beta \in \mathbb{C}$. If $\alpha \mathbf{u} = \beta \mathbf{u}$, then $\alpha = \beta$.

©2005, 2006 Robert A. Beezer

Definition S Subspace

Suppose that V and W are two vector spaces that have identical definitions of vector addition and scalar multiplication, and that W is a subset of $V, W \subseteq V$. Then W is a **subspace** of V.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

$\mathbf{148}$

Theorem TSS Testing Subsets for Subspaces

Suppose that V is a vector space and W is a subset of V, $W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

- 1. W is non-empty, $W \neq \emptyset$.
- 2. If $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x} + \mathbf{y} \in W$.
- 3. If $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

©2005, 2006 Robert A. Beezer

Definition TS Trivial Subspaces

Given the vector space V, the subspaces V and $\{0\}$ are each called a **trivial subspace**.

Theorem NSMS Null Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then the null space of A, $\mathcal{N}(A)$, is a subspace of \mathbb{C}^n .

©2005, 2006 Robert A. Beezer

Definition LC Linear Combination

Suppose that V is a vector space. Given n vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ and n scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$, their linear combination is the vector

 $\alpha_1\mathbf{u}_1+\alpha_2\mathbf{u}_2+\alpha_3\mathbf{u}_3+\cdots+\alpha_n\mathbf{u}_n.$

©2005, 2006 Robert A. Beezer

Definition SS Span of a Set

Suppose that V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t}$, their **span**, $\langle S \rangle$, is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t$. Symbolically,

$$\langle S \rangle = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_t \mathbf{u}_t \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$
$$= \left\{ \sum_{i=1}^t \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$

©2005, 2006 Robert A. Beezer

Theorem SSS Span of a Set is a Subspace

Suppose V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t} \subseteq V$, their span, $\langle S \rangle$, is a subspace.

Theorem CSMS Column Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{C}(A)$ is a subspace of \mathbb{C}^m .

©2005, 2006 Robert A. Beezer

Theorem RSMS Row Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^n .

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

156

Theorem LNSMS Left Null Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{L}(A)$ is a subspace of \mathbb{C}^m .

©2005, 2006 Robert A. Beezer

Definition B Basis

Suppose V is a vector space. Then a subset $S \subseteq V$ is a **basis** of V if it is linearly independent and spans V.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

The set of standard unit vectors for \mathbb{C}^m (Definition SUV), $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_m\} = \{\mathbf{e}_i \mid 1 \le i \le m\}$ is a basis for the vector space \mathbb{C}^m .

©2005, 2006 Robert A. Beezer

Theorem CNMB Columns of Nonsingular Matrix are a Basis

Suppose that A is a square matrix of size m. Then the columns of A are a basis of \mathbb{C}^m if and only if A is nonsingular.

Theorem NME5 Nonsingular Matrix Equivalences, Round 5

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .

©2005, 2006 Robert A. Beezer

Theorem COB Coordinates and Orthonormal Bases

Suppose that $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p}$ is an orthonormal basis of the subspace W of \mathbb{C}^m . For any $\mathbf{w} \in W$,

 $\mathbf{w} = \langle \mathbf{w}, \, \mathbf{v}_1 \rangle \, \mathbf{v}_1 + \langle \mathbf{w}, \, \mathbf{v}_2 \rangle \, \mathbf{v}_2 + \langle \mathbf{w}, \, \mathbf{v}_3 \rangle \, \mathbf{v}_3 + \dots + \langle \mathbf{w}, \, \mathbf{v}_p \rangle \, \mathbf{v}_p$

Definition D Dimension

Suppose that V is a vector space and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t\}$ is a basis of V. Then the **dimension** of V is defined by dim (V) = t. If V has no finite bases, we say V has infinite dimension.

©2005, 2006 Robert A. Beezer

Theorem SSLD Spanning Sets and Linear Dependence

Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t}$ is a finite set of vectors which spans the vector space V. Then any set of t + 1 or more vectors from V is linearly dependent.

Theorem BIS Bases have Identical Sizes

Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have the same size.

 $\textcircled{C}2005,\,2006$ $\$ Robert A. Beezer

Theorem DCM Dimension of \mathbb{C}^m

The dimension of \mathbb{C}^m (Example VSCV) is m.

 $\textcircled{C}2005,\,2006$ $\$ Robert A. Beezer

Theorem	DP	Dimension	of P_n	
			n	

The dimension of P_n (Example VSP) is n + 1.

©2005, 2006 Robert A. Beezer

Theorem DM Dimension of M_{mn}

The dimension of M_{mn} (Example VSM) is mn.

Suppose that A is an $m \times n$ matrix. Then the **nullity** of A is the dimension of the null space of A, $n(A) = \dim(\mathcal{N}(A))$.

©2005, 2006 Robert A. Beezer

Definition ROM Rank Of a Matrix

Suppose that A is an $m \times n$ matrix. Then the **rank** of A is the dimension of the column space of A, $r(A) = \dim (\mathcal{C}(A))$.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem CRN Computing Rank and Nullity

Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then r(A) = r and n(A) = n - r.

©2005, 2006 Robert A. Beezer

Theorem RPNC Rank Plus Nullity is Columns

Suppose that A is an $m \times n$ matrix. Then r(A) + n(A) = n.

Theorem RNNM Rank and Nullity of a Nonsingular Matrix

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. The rank of A is n, r(A) = n.
- 3. The nullity of A is zero, n(A) = 0.

©2005, 2006 Robert A. Beezer

Theorem NME6 Nonsingular Matrix Equivalences, Round 6 174 Construction The full state is a state in the full state in the full state is a state in the full state in the full state is a state in the full state in the full state is a state in the full state in the full state is a state in the full state in the f

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.

©2005, 2006 Robert A. Beezer

Theorem ELIS Extending Linearly Independent Sets

Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose \mathbf{w} is a vector such that $\mathbf{w} \notin \langle S \rangle$. Then the set $S' = S \cup \{\mathbf{w}\}$ is linearly independent.

©2005, 2006 Robert A. Beezer

Theorem G Goldilocks

Suppose that V is a vector space of dimension t. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m}$ be a set of vectors from V. Then

- 1. If m > t, then S is linearly dependent.
- 2. If m < t, then S does not span V.
- 3. If m = t and S is linearly independent, then S spans V.
- 4. If m = t and S spans V, then S is linearly independent.

Theorem EDYES Equal Dimensions Yields Equal Subspaces

Suppose that U and V are subspaces of the vector space W, such that $U \subseteq V$ and dim $(U) = \dim(V)$. Then U = V.

©2005, 2006 Robert A. Beezer

Theorem RMRT Rank of a Matrix is the Rank of the Transpose

Suppose A is an $m \times n$ matrix. Then $r(A) = r(A^t)$.

Theorem DFS Dimensions of Four Subspaces

Suppose that A is an $m\times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then

- 1. dim $(\mathcal{N}(A)) = n r$
- 2. dim $(\mathcal{C}(A)) = r$
- 3. dim $(\mathcal{R}(A)) = r$
- 4. dim $(\mathcal{L}(A)) = m r$

©2005, 2006 Robert A. Beezer

Definition ELEM Elementary Matrices

1. $E_{i,j}$ is the square matrix of size n with

$$[E_{i,j}]_{k\ell} = \begin{cases} 0 & k \neq i, k \neq j, \ell \neq k \\ 1 & k \neq i, k \neq j, \ell = k \\ 0 & k = i, \ell \neq j \\ 1 & k = i, \ell = j \\ 0 & k = j, \ell \neq i \\ 1 & k = j, \ell = i \end{cases}$$

2. $E_i(\alpha)$, for $\alpha \neq 0$, is the square matrix of size *n* with

$$[E_i(\alpha)]_{k\ell} = \begin{cases} 0 & k \neq i, \ell \neq k \\ 1 & k \neq i, \ell = k \\ \alpha & k = i, \ell = i \end{cases}$$

3. $E_{i,j}(\alpha)$ is the square matrix of size n with

$$[E_{i,j}(\alpha)]_{k\ell} = \begin{cases} 0 & k \neq j, \ell \neq k \\ 1 & k \neq j, \ell = k \\ 0 & k = j, \ell \neq i, \ell \neq j \\ 1 & k = j, \ell = j \\ \alpha & k = j, \ell = i \end{cases}$$

180

©2005, 2006 Robert A. Beezer

Theorem EMDRO Elementary Matrices Do Row Operations

Suppose that A is a matrix, and B is a matrix of the same size that is obtained from A by a single row operation (Definition RO).

- 1. If the row operation swaps rows i and j, then $B = E_{i,j}A$.
- 2. If the row operation multiplies row *i* by α , then $B = E_i(\alpha) A$.
- 3. If the row operation multiplies row *i* by α and adds the result to row *j*, then $B = E_{i,j}(\alpha) A$.

©2005, 2006 Robert A. Beezer

182

Theorem EMN Elementary Matrices are Nonsingular

If E is an elementary matrix, then E is nonsingular.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

Theorem NMPEM Nonsingular Matrices are Products of Elementary Matrices 183

Suppose that A is a nonsingular matrix. $E_1, E_2, E_3, \ldots, E_t$ so that $A = E_1 E_2 E_3 \ldots E_t$. Then there exists elementary matrices

©2005, 2006 Robert A. Beezer

Definition SM SubMatrix

Suppose that A is an $m \times n$ matrix. Then the **submatrix** A(i|j) is the $(m-1) \times (n-1)$ matrix obtained from A by removing row i and column j.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{184}$

Definition DM Determinant of a Matrix

Suppose A is a square matrix. Then its **determinant**, det (A) = |A|, is an element of \mathbb{C} defined recursively by:

If A is a 1×1 matrix, then det $(A) = [A]_{11}$.

If A is a matrix of size n with $n \ge 2$, then

 $\det (A) = [A]_{11} \det (A(1|1)) - [A]_{12} \det (A(1|2)) + [A]_{13} \det (A(1|3)) - \dots + (-1)^{n+1} [A]_{1n} \det (A(1|r)) + [A]_{1n} \det (A(1|r))$

©2005, 2006 Robert A. Beezer

Theorem DMST Determinant of Matrices of Size Two

Suppose that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then det (A) = ad - bc

Theorem DER Determinant Expansion about Rows

Suppose that A is a square matrix of size n. Then

$$det (A) = (-1)^{i+1} [A]_{i1} det (A(i|1)) + (-1)^{i+2} [A]_{i2} det (A(i|2)) + (-1)^{i+3} [A]_{i3} det (A(i|3)) + \dots + (-1)^{i+n} [A]_{in} det (A(i|n)) \qquad 1 \le i \le n$$

which is known as **expansion** about row i.

©2005, 2006 Robert A. Beezer

Theorem DT Determinant of the Transpose

Suppose that A is a square matrix. Then $\det(A^t) = \det(A)$.

 $\textcircled{O}2005,\,2006$ $\,$ Robert A. Beezer $\,$

 $\mathbf{188}$

Theorem DEC Determinant Expansion about Columns

Suppose that A is a square matrix of size n. Then

$$\det (A) = (-1)^{1+j} [A]_{1j} \det (A(1|j)) + (-1)^{2+j} [A]_{2j} \det (A(2|j)) + (-1)^{3+j} [A]_{3j} \det (A(3|j)) + \dots + (-1)^{n+j} [A]_{nj} \det (A(n|j)) \qquad 1 \le j \le n$$

which is known as **expansion** about column j.

©2005, 2006 Robert A. Beezer

Theorem DZRC Determinant with Zero Row or Column

Suppose that A is a square matrix with a row where every entry is zero, or a column where every entry is zero. Then det (A) = 0.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

189

Theorem DRCS Determinant for Row or Column Swap

Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging the location of two rows, or interchanging the location of two columns. Then $\det(B) = -\det(A)$.

©2005, 2006 Robert A. Beezer

Theorem DRCM Determinant for Row or Column Multiples

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a single row by the scalar α , or by multiplying a single column by the scalar α . Then det $(B) = \alpha \det(A)$.

$\mathbf{192}$

Theorem DERC Determinant with Equal Rows or Columns

Suppose that A is a square matrix with two equal rows, or two equal columns. Then det (A) = 0.

©2005, 2006 Robert A. Beezer

Theorem DRCMA Determinant for Row or Column Multiples and Addition 194

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a row by the scalar α and then adding it to another row, or by multiplying a column by the scalar α and then adding it to another column. Then det $(B) = \det(A)$.

For every $n \ge 1$, det $(I_n) = 1$.

©2005, 2006 Robert A. Beezer

Theorem DEM Determinants of Elementary Matrices

For the three possible versions of an elementary matrix (Definition ELEM) we have the determinants,

- 1. det $(E_{i,j}) = -1$
- 2. det $(E_i(\alpha)) = \alpha$
- 3. det $(E_{i,j}(\alpha)) = 1$

Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication 197

Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

 $\det (EA) = \det (E) \det (A)$

©2005, 2006 Robert A. Beezer

198

Theorem SMZD Singular Matrices have Zero Determinants

Let A be a square matrix. Then A is singular if and only if det(A) = 0.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem NME7 Nonsingular Matrix Equivalences, Round 7

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero, $det(A) \neq 0$.

©2005, 2006 Robert A. Beezer

Theorem DRMM Determinant Respects Matrix Multiplication

Suppose that A and B are square matrices of the same size. Then $\det(AB) = \det(A) \det(B)$.

Definition EEM Eigenvalues and Eigenvectors of a Matrix

Suppose that A is a square matrix of size $n, \mathbf{x} \neq \mathbf{0}$ is a vector in \mathbb{C}^n , and λ is a scalar in \mathbb{C} . Then we say \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ if

 $A\mathbf{x} = \lambda \mathbf{x}$

©2005, 2006 Robert A. Beezer

Theorem EMHE Every Matrix Has an Eigenvalue

Suppose A is a square matrix. Then A has at least one eigenvalue.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

202

$\mathbf{201}$

Definition CP Characteristic Polynomial

Suppose that A is a square matrix of size n. Then the **characteristic polynomial** of A is the polynomial $p_A(x)$ defined by

 $p_A(x) = \det\left(A - xI_n\right)$

©2005, 2006 Robert A. Beezer

Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials 204

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_A(\lambda) = 0$.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **eigenspace** of A for λ , $E_A(\lambda)$, is the set of all the eigenvectors of A for λ , together with the inclusion of the zero vector.

©2005, 2006 Robert A. Beezer

Theorem EMS Eigenspace for a Matrix is a Subspace

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace $E_A(\lambda)$ is a subspace of the vector space \mathbb{C}^n .

$\mathbf{206}$

Theorem EMNS Eigenspace of a Matrix is a Null Space

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

 $E_A(\lambda) = \mathcal{N}(A - \lambda I_n)$

©2005, 2006 Robert A. Beezer

Definition AME Algebraic Multiplicity of an Eigenvalue

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **algebraic multiplicity** of λ , $\alpha_A(\lambda)$, is the highest power of $(x - \lambda)$ that divides the characteristic polynomial, $p_A(x)$.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

$\mathbf{208}$

Definition GME Geometric Multiplicity of an Eigenvalue

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **geometric multiplicity** of λ , $\gamma_A(\lambda)$, is the dimension of the eigenspace $E_A(\lambda)$.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 210

Suppose that A is a square matrix and $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p\}$ is a set of eigenvectors with eigenvalues $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_p$ such that $\lambda_i \neq \lambda_j$ whenever $i \neq j$. Then S is a linearly independent set.

©2005, 2006 Robert A. Beezer

 $\mathbf{209}$

Theorem SMZE Singular Matrices have Zero Eigenvalues

Suppose A is a square matrix. Then A is singular if and only if $\lambda = 0$ is an eigenvalue of A.

©2005, 2006 Robert A. Beezer

Theorem NME8Nonsingular Matrix Equivalences, Round 8212Suppose that A is a square matrix of size n. The following are equivalent.212

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero, $\det(A) \neq 0$.
- 12. $\lambda = 0$ is not an eigenvalue of A.

©2005, 2006 Robert A. Beezer

Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix

Suppose A is a square matrix and λ is an eigenvalue of A. Then $\alpha\lambda$ is an eigenvalue of αA .

©2005, 2006 Robert A. Beezer

Theorem EOMP Eigenvalues Of Matrix Powers

Suppose A is a square matrix, λ is an eigenvalue of A, and $s \ge 0$ is an integer. Then λ^s is an eigenvalue of A^s .

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

$\mathbf{214}$

Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the variable x. Then $q(\lambda)$ is an eigenvalue of the matrix q(A).

©2005, 2006 Robert A. Beezer

Theorem EIM Eigenvalues of the Inverse of a Matrix

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then $\frac{1}{\lambda}$ is an eigenvalue of the matrix A^{-1} .

216

Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix A^t .

©2005, 2006 Robert A. Beezer

Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs 218

Suppose A is a square matrix with real entries and \mathbf{x} is an eigenvector of A for the eigenvalue λ . Then $\overline{\mathbf{x}}$ is an eigenvector of A for the eigenvalue $\overline{\lambda}$.

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, $p_A(x)$, has degree n.

©2005, 2006 Robert A. Beezer

Theorem NEM Number of Eigenvalues of a Matrix

Suppose that A is a square matrix of size n with distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_k$. Then

$$\sum_{i=1}^{k} \alpha_A\left(\lambda_i\right) = n$$

 $\mathbf{220}$

Theorem ME Multiplicities of an Eigenvalue

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

 $1 \le \gamma_A(\lambda) \le \alpha_A(\lambda) \le n$

©2005, 2006 Robert A. Beezer

Theorem MNEM Maximum Number of Eigenvalues of a Matrix

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigenvalues.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{222}$

Theorem HMRE Hermitian Matrices have Real Eigenvalues

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then $\lambda \in \mathbb{R}$.

©2005, 2006 Robert A. Beezer

Theorem HMOE Hermitian Matrices have Orthogonal Eigenvectors

Suppose that A is a Hermitian matrix and \mathbf{x} and \mathbf{y} are two eigenvectors of A for different eigenvalues. Then \mathbf{x} and \mathbf{y} are orthogonal vectors.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

224

Definition SIM Similar Matrices

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix of size n, S, such that $A = S^{-1}BS$.

©2005, 2006 Robert A. Beezer

Theorem SER Similarity is an Equivalence Relation

Suppose A, B and C are square matrices of size n. Then

- 1. A is similar to A. (Reflexive)
- 2. If A is similar to B, then B is similar to A. (Symmetric)
- 3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

226

Theorem SMEE Similar Matrices have Equal Eigenvalues

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is $p_A(x) = p_B(x)$.

©2005, 2006 Robert A. Beezer

Definition DIM Diagonal Matrix

Suppose that A is a square matrix. Then A is a **diagonal matrix** if $[A]_{ij} = 0$ whenever $i \neq j$.

227

 $\mathbf{228}$

Definition DZM Diagonalizable Matrix

Suppose A is a square matrix. Then A is **diagonalizable** if A is similar to a diagonal matrix.

©2005, 2006 Robert A. Beezer

Theorem DC Diagonalization Characterization

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly independent set S that contains n eigenvectors of A.

$\mathbf{230}$

Theorem DMLE Diagonalizable Matrices have Large Eigenspaces

Suppose A is a square matrix. Then A is diagonalizable if and only if $\gamma_A(\lambda) = \alpha_A(\lambda)$ for every eigenvalue λ of A.

©2005, 2006 Robert A. Beezer

Theorem DED Distinct Eigenvalues implies Diagonalizable

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.

 $\mathbf{232}$

©2005, 2006 Robert A. Beezer

Definition LT Linear Transformation

A linear transformation, $T: U \mapsto V$, is a function that carries elements of the vector space U (called the **domain**) to the vector space V (called the **codomain**), and which has two additional properties

- 1. $T(\mathbf{u}_1 + \mathbf{u}_2) = T(\mathbf{u}_1) + T(\mathbf{u}_2)$ for all $\mathbf{u}_1, \mathbf{u}_2 \in U$
- 2. $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$

$\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{234}$

Theorem LTTZZ Linear Transformations Take Zero to Zero

Suppose $T: U \mapsto V$ is a linear transformation. Then $T(\mathbf{0}) = \mathbf{0}$.

©2005, 2006 Robert A. Beezer

Theorem MBLT Matrices Build Linear Transformations

Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^n \mapsto \mathbb{C}^m$ by $T(\mathbf{x}) = A\mathbf{x}$. Then T is a linear transformation.

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

236

Suppose that $T: \mathbb{C}^n \mapsto \mathbb{C}^m$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

©2005, 2006 Robert A. Beezer

Theorem LTLC Linear Transformations and Linear Combinations

Suppose that $T: U \mapsto V$ is a linear transformation, $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t$ are vectors from U and $a_1, a_2, a_3, \ldots, a_t$ are scalars from \mathbb{C} . Then

 $T (a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + a_3 \mathbf{u}_3 + \dots + a_t \mathbf{u}_t) = a_1 T (\mathbf{u}_1) + a_2 T (\mathbf{u}_2) + a_3 T (\mathbf{u}_3) + \dots + a_t T (\mathbf{u}_t)$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

238

237

Theorem LTDB Linear Transformation Defined on a Basis

Suppose that $T: U \mapsto V$ is a linear transformation, $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n}$ is a basis for U and \mathbf{w} is a vector from U. Let $a_1, a_2, a_3, \ldots, a_n$ be the scalars from \mathbb{C} such that

$$\mathbf{w} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3 + \dots + a_n\mathbf{u}_n$$

Then

$$T\left(\mathbf{w}\right) = a_1 T\left(\mathbf{u}_1\right) + a_2 T\left(\mathbf{u}_2\right) + a_3 T\left(\mathbf{u}_3\right) + \dots + a_n T\left(\mathbf{u}_n\right)$$

©2005, 2006 Robert A. Beezer

Definition PI Pre-Image

Suppose that $T: U \mapsto V$ is a linear transformation. For each **v**, define the **pre-image** of **v** to be the subset of U given by

 $T^{-1}(\mathbf{v}) = \{ \mathbf{u} \in U \mid T(\mathbf{u}) = \mathbf{v} \}$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{240}$

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then their **sum** is the function $T + S: U \mapsto V$ whose outputs are defined by

 $(T+S)(\mathbf{u}) = T(\mathbf{u}) + S(\mathbf{u})$

©2005, 2006 Robert A. Beezer

Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 242

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then $T + S: U \mapsto V$ is a linear transformation.

Definition LTSM Linear Transformation Scalar Multiplication

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the scalar multiple is the function $\alpha T: U \mapsto V$ whose outputs are defined by

 $\left(\alpha T\right)\left(\mathbf{u}\right) = \alpha T\left(\mathbf{u}\right)$

©2005, 2006 Robert A. Beezer

Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 244

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then $(\alpha T): U \mapsto V$ is a linear transformation.

Theorem VSLT Vector Space of Linear Transformations

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V, LT (U, V) is a vector space when the operations are those given in Definition LTA and Definition LTSM.

©2005, 2006 Robert A. Beezer

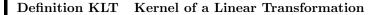
Definition LTC Linear Transformation Composition

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then the **composition** of S and T is the function $(S \circ T): U \mapsto W$ whose outputs are defined by

 $\left(S\circ T\right)\left(\mathbf{u}\right)=S\left(T\left(\mathbf{u}\right)\right)$

246

Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 247


Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then $(S \circ T): U \mapsto W$ is a linear transformation.

©2005, 2006 Robert A. Beezer

 $\mathbf{248}$

Definition ILT Injective Linear Transformation

Suppose $T: U \mapsto V$ is a linear transformation. Then T is **injective** if whenever $T(\mathbf{x}) = T(\mathbf{y})$, then $\mathbf{x} = \mathbf{y}$.

Suppose $T: U \mapsto V$ is a linear transformation. Then the **kernel** of T is the set

 $\mathcal{K}(T) = \{ \mathbf{u} \in U \mid T(\mathbf{u}) = \mathbf{0} \}$

©2005, 2006 Robert A. Beezer

Theorem KLTS Kernel of a Linear Transformation is a Subspace

Suppose that $T: U \mapsto V$ is a linear transformation. Then the kernel of $T, \mathcal{K}(T)$, is a subspace of U.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{250}$

Theorem KPI Kernel and Pre-Image

Suppose $T: U \mapsto V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is non-empty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

$$T^{-1}(\mathbf{v}) = \{ \mathbf{u} + \mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T) \} = \mathbf{u} + \mathcal{K}(T)$$

©2005, 2006 Robert A. Beezer

Theorem KILT Kernel of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is injective if and only if the kernel of T is trivial, $\mathcal{K}(T) = \{\mathbf{0}\}.$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{252}$

Theorem ILTLI Injective Linear Transformations and Linear Independence 253

Suppose that $T: U \mapsto V$ is an injective linear transformation and $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t\}$ is a linearly independent subset of U. Then $R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \ldots, T(\mathbf{u}_t)\}$ is a linearly independent subset of V.

©2005, 2006 Robert A. Beezer

Theorem ILTB Injective Linear Transformations and Bases

 $\mathbf{254}$

Suppose that $T: U \mapsto V$ is a linear transformation and $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m\}$ is a basis of U. Then T is injective if and only if $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}$ is a linearly independent subset of V.

Theorem ILTD Injective Linear Transformations and Dimension

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then dim $(U) \leq \dim(V)$.

©2005, 2006 Robert A. Beezer

Theorem CILTI Composition of Injective Linear Transformations is Injective 256

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are injective linear transformations. Then $(S \circ T): U \mapsto W$ is an injective linear transformation.

Suppose $T: U \mapsto V$ is a linear transformation. Then T is **surjective** if for every $\mathbf{v} \in V$ there exists a $\mathbf{u} \in U$ so that $T(\mathbf{u}) = \mathbf{v}$.

©2005, 2006 Robert A. Beezer

Definition RLT Range of a Linear Transformation

Suppose $T: U \mapsto V$ is a linear transformation. Then the **range** of T is the set

 $\mathcal{R}(T) = \{ T(\mathbf{u}) \mid \mathbf{u} \in U \}$

 $\mathbf{258}$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the range of T, $\mathcal{R}(T)$, is a subspace of V.

©2005, 2006 Robert A. Beezer

Theorem RSLT Range of a Surjective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T) = V$.

 $\mathbf{260}$

Theorem SSRLT Spanning Set for Range of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation and $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t}$ spans U. Then $R = {T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_t)}$ spans $\mathcal{R}(T)$.

©2005, 2006 Robert A. Beezer

Theorem RPI Range and Pre-Image

Suppose that $T \colon U \mapsto V$ is a linear transformation. Then

 $\mathbf{v} \in \mathcal{R}(T)$ if and only if $T^{-1}(\mathbf{v}) \neq \emptyset$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{262}$

Theorem SLTB Surjective Linear Transformations and Bases

Suppose that $T: U \mapsto V$ is a linear transformation and $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_m\}$ is a basis of U. Then T is surjective if and only if $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \ldots, T(\mathbf{u}_m)\}$ is a spanning set for V.

©2005, 2006 Robert A. Beezer

Theorem SLTD Surjective Linear Transformations and Dimension

Suppose that $T: U \mapsto V$ is a surjective linear transformation. Then dim $(U) \ge \dim(V)$.

264

Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 265

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are surjective linear transformations. Then $(S \circ T): U \mapsto W$ is a surjective linear transformation.

©2005, 2006 Robert A. Beezer

266

Definition IDLT Identity Linear Transformation

The identity linear transformation on the vector space W is defined as

 $I_W \colon W \mapsto W, \qquad I_W(\mathbf{w}) = \mathbf{w}$

Definition IVLT Invertible Linear Transformations

Suppose that $T \colon U \mapsto V$ is a linear transformation. If there is a function $S \colon V \mapsto U$ such that

$$S \circ T = I_U \qquad \qquad T \circ S = I_V$$

then T is **invertible**. In this case, we call S the **inverse** of T and write $S = T^{-1}$.

©2005, 2006 Robert A. Beezer

Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation 268

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then the function $T^{-1}: V \mapsto U$ is a linear transformation.

Theorem IILT Inverse of an Invertible Linear Transformation

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then T^{-1} is an invertible linear transformation and $(T^{-1})^{-1} = T$.

©2005, 2006 Robert A. Beezer

Theorem ILTIS Invertible Linear Transformations are Injective and Surjective270

Suppose $T: U \mapsto V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.

Theorem CIVLT Composition of Invertible Linear Transformations

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then the composition, $(S \circ T): U \mapsto W$ is an invertible linear transformation.

©2005, 2006 Robert A. Beezer

Theorem ICLT Inverse of a Composition of Linear Transformations 272

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then $S \circ T$ is invertible and $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$.

Two vector spaces U and V are **isomorphic** if there exists an invertible linear transformation T with domain U and codomain $V, T: U \mapsto V$. In this case, we write $U \cong V$, and the linear transformation T is known as an **isomorphism** between U and V.

©2005, 2006 Robert A. Beezer

Theorem IVSED Isomorphic Vector Spaces have Equal Dimension

Suppose U and V are isomorphic vector spaces. Then $\dim(U) = \dim(V)$.

274

Definition ROLT Rank Of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then the **rank** of T, r(T), is the dimension of the range of T,

 $r(T) = \dim\left(\mathcal{R}(T)\right)$

©2005, 2006 Robert A. Beezer

Definition NOLT Nullity Of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then the **nullity** of T, n(T), is the dimension of the kernel of T,

 $n(T) = \dim\left(\mathcal{K}(T)\right)$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

$\mathbf{276}$

Theorem ROSLT Rank Of a Surjective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then the rank of T is the dimension of V, $r(T) = \dim(V)$, if and only if T is surjective.

©2005, 2006 Robert A. Beezer

Theorem NOILT Nullity Of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then the nullity of T is zero, n(T) = 0, if and only if T is injective.

 $\mathbf{278}$

Theorem RPNDD Rank Plus Nullity is Domain Dimension

Suppose that $T: U \mapsto V$ is a linear transformation. Then

 $r(T) + n(T) = \dim(U)$

©2005, 2006 Robert A. Beezer

Definition VR Vector Representation

Suppose that V is a vector space with a basis $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$. Define a function $\rho_B: V \mapsto \mathbb{C}^n$ as follows. For $\mathbf{w} \in V$, find scalars $a_1, a_2, a_3, \dots, a_n$ so that

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + \dots + a_n \mathbf{v}_n$$

then

$$\left[\rho_B\left(\mathbf{w}\right)\right]_i = a_i \qquad \qquad 1 \le i \le n$$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

$\mathbf{280}$

The function ρ_B (Definition VR) is a linear transformation.

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem VRI Vector Representation is Injective

The function ρ_B (Definition VR) is an injective linear transformation.

The function ρ_B (Definition VR) is a surjective linear transformation.

©2005, 2006 Robert A. Beezer

Theorem VRILT Vector Representation is an Invertible Linear Transformation 284

The function ρ_B (Definition VR) is an invertible linear transformation.

Suppose that V is a vector space with dimension n. Then V is isomorphic to \mathbb{C}^n .

©2005, 2006 Robert A. Beezer

286

Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and only if dim $(U) = \dim(V)$.

Theorem CLI Coordinatization and Linear Independence

Suppose that U is a vector space with a basis B of size n. Then $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_k\}$ is a linearly independent subset of U if and only if $R = \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \ldots, \rho_B(\mathbf{u}_k)\}$ is a linearly independent subset of \mathbb{C}^n .

©2005, 2006 Robert A. Beezer

Theorem CSS Coordinatization and Spanning Sets

Suppose that U is a vector space with a basis B of size n. Then $\mathbf{u} \in \langle \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_k\} \rangle$ if and only if $\rho_B(\mathbf{u}) \in \langle \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \ldots, \rho_B(\mathbf{u}_k)\} \rangle$.

 $\mathbf{288}$

Definition MR Matrix Representation

Suppose that $T: U \mapsto V$ is a linear transformation, $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a basis for U of size n, and C is a basis for V of size m. Then the **matrix representation** of T relative to B and C is the $m \times n$ matrix,

 $M_{B.C}^{T} = \left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right) \middle| \rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right) \middle| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right) \middle| \dots \left|\rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]$

©2005, 2006 Robert A. Beezer

Theorem FTMR Fundamental Theorem of Matrix Representation

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U, C is a basis for V and $M_{B,C}^T$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$\rho_{C}\left(T\left(\mathbf{u}\right)\right) = M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)$$

or equivalently

$$T\left(\mathbf{u}\right) = \rho_{C}^{-1}\left(M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)\right)$$

290

C2005, 2006 Robert A. Beezer

Theorem MRSLT Matrix Representation of a Sum of Linear Transformations291

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are linear transformations, B is a basis of U and C is a basis of V. Then

 $M_{B,C}^{T+S} = M_{B,C}^T + M_{B,C}^S$

©2005, 2006 Robert A. Beezer

Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation 292

Suppose that $T: U \mapsto V$ is a linear transformation, $\alpha \in \mathbb{C}$, B is a basis of U and C is a basis of V. Then

$$M_{B,C}^{\alpha T} = \alpha M_{B,C}^T$$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem MRCLT Matrix Representation of a Composition of Linear Transformations 293

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

 $M_{B,D}^{S \circ T} = M_{C,D}^S M_{B,C}^T$

©2005, 2006 Robert A. Beezer

Theorem KNSI Kernel and Null Space Isomorphism

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the kernel of T is isomorphic to the null space of $M_{B,C}^T$,

 $\mathcal{K}(T) \cong \mathcal{N}\big(M_{B,C}^T\big)$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{294}$

Theorem RCSI Range and Column Space Isomorphism

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the column space of $M_{B,C}^T$,

 $\mathcal{R}(T) \cong \mathcal{C}(M_{B,C}^T)$

©2005, 2006 Robert A. Beezer

Theorem IMR Invertible Matrix Representations

Suppose that $T: U \mapsto V$ is an invertible linear transformation, B is a basis for U and C is a basis for V. Then the matrix representation of T relative to B and C, $M_{B,C}^{T}$ is an invertible matrix, and

$$M_{C,B}^{T^{-1}} = \left(M_{B,C}^{T}\right)^{-1}$$

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

 $\mathbf{296}$

Theorem IMILT Invertible Matrices, Invertible Linear Transformation

Suppose that A is a square matrix of size n and $T: \mathbb{C}^n \to \mathbb{C}^n$ is the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$. Then A is invertible matrix if and only if T is an invertible linear transformation.

©2005, 2006 Robert A. Beezer

Theorem NME9Nonsingular Matrix Equivalences, Round 9298Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero, $det(A) \neq 0$.
- 12. $\lambda = 0$ is not an eigenvalue of A.
- 13. The linear transformation $T: \mathbb{C}^n \mapsto \mathbb{C}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is invertible.

©2005, 2006 Robert A. Beezer

Definition EELT Eigenvalue and Eigenvector of a Linear Transformation 299

Suppose that $T: V \mapsto V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an **eigenvector** of T for the **eigenvalue** λ if $T(\mathbf{v}) = \lambda \mathbf{v}$.

©2005, 2006 Robert A. Beezer

Definition CBM Change-of-Basis Matrix

Suppose that V is a vector space, and $I_V: V \mapsto V$ is the identity linear transformation on V. Let $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots, \mathbf{v}_n}$ and C be two bases of V. Then the **change-of-basis matrix** from B to C is the matrix representation of I_V relative to B and C,

> $C_{B,C} = M_{B,C}^{I_V}$ = $[\rho_C (I_V (\mathbf{v}_1)) | \rho_C (I_V (\mathbf{v}_2)) | \rho_C (I_V (\mathbf{v}_3)) | \dots | \rho_C (I_V (\mathbf{v}_n))]$ = $[\rho_C (\mathbf{v}_1) | \rho_C (\mathbf{v}_2) | \rho_C (\mathbf{v}_3) | \dots | \rho_C (\mathbf{v}_n)]$

> > $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Theorem CB Change-of-Basis

Suppose that \mathbf{v} is a vector in the vector space V and B and C are bases of V. Then

 $\rho_C\left(\mathbf{v}\right) = C_{B,C}\rho_B\left(\mathbf{v}\right)$

©2005, 2006 Robert A. Beezer

Theorem ICBM Inverse of Change-of-Basis Matrix

Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis matrix $C_{B,C}$ is nonsingular and

 $C_{B,C}^{-1} = C_{C,B}$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

 $\mathbf{302}$

Theorem MRCB Matrix Representation and Change of Basis

Suppose that $T: U \mapsto V$ is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

 $M_{B,D}^T = C_{E,D} M_{C,E}^T C_{B,C}$

©2005, 2006 Robert A. Beezer

Theorem SCB Similarity and Change of Basis

Suppose that $T: V \mapsto V$ is a linear transformation and B and C are bases of V. Then

 $M_{B,B}^{T} = C_{B,C}^{-1} M_{C,C}^{T} C_{B,C}$

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

303

Theorem EER Eigenvalues, Eigenvectors, Representations

Suppose that $T: V \mapsto V$ is a linear transformation and B is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_B(\mathbf{v})$ is an eigenvector of $M_{B,B}^T$ for the eigenvalue λ .

©2005, 2006 Robert A. Beezer

Definition CCN Conjugate of a Complex Number

The **conjugate** of the complex number $c = a + bi \in \mathbb{C}$ is the complex number $\overline{c} = a - bi$.

Theorem CCRA Complex Conjugation Respects Addition

Suppose that c and d are complex numbers. Then $\overline{c+d} = \overline{c} + \overline{d}$.

©2005, 2006 Robert A. Beezer

307

308

Theorem CCRM Complex Conjugation Respects Multiplication

Suppose that c and d are complex numbers. Then $\overline{cd} = \overline{cd}$.

 $\textcircled{C}2005,\,2006$ $\$ Robert A. Beezer

Theorem CCT Complex Conjugation Twice	309
Suppose that c is a complex number. Then $\overline{\overline{c}} = c$.	

 $\textcircled{C}2005,\,2006$ Robert A. Beezer

310

Definition MCN Modulus of a Complex Number

The **modulus** of the complex number $c = a + bi \in \mathbb{C}$, is the nonnegative real number

$$|c| = \sqrt{c\overline{c}} = \sqrt{a^2 + b^2}.$$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer

Definition SET Set

A set is an unordered collection of objects. If S is a set and x is an object that is in the set S, we write $x \in S$. If x is not in S, then we write $x \notin S$. we refer to the objects in a set as its elements.

©2005, 2006 Robert A. Beezer

Definition SSET Subset

If S and T are two sets, then S is a subset of T, written $S \subseteq T$ if whenever $x \in S$ then $x \in T$.

 $\textcircled{O}2005,\,2006$ $\,$ Robert A. Beezer

Definition ES Empty Set

The empty set is the set with no elements. Its is denoted by \emptyset .

©2005, 2006 Robert A. Beezer

Definition SE Set Equality

Two sets, S and T, are equal, if $S \subseteq T$ and $T \subseteq S$. in this case, we write S = T.

 $\mathbf{314}$

 $\textcircled{C}2005,\,2006$ $\,$ Robert A. Beezer