# Flash Cards

to accompany

# A First Course in Linear Algebra

by Robert A. Beezer Department of Mathematics and Computer Science University of Puget Sound

> Version 0.84 September 21, 2006 © 2004, 2005, 2006

| Copyright © 2004, 2005, 2006 Robert A. Beezer.                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being "Preface", no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". |
| Most recent version can be found at http://linear.ups.edu/.                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                  |

## Definition SLE System of Linear Equations

1

A system of linear equations is a collection of m equations in the variable quantities  $x_1, x_2, x_3, \ldots, x_n$  of the form,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

where the values of  $a_{ij}$ ,  $b_i$  and  $x_j$  are from the set of complex numbers,  $\mathbb{C}$ . ©2005, 2006

Robert Beezer

# Definition ES Equivalent Systems

 $\mathbf{2}$ 

Two systems of linear equations are **equivalent** if their solution sets are equal. ©2005, 2006

Robert Beezer

#### Definition EO Equation Operations

3

Given a system of linear equations, the following three operations will transform the system into a different one, and each is known as an **equation operation**.

- 1. Swap the locations of two equations in the list.
- 2. Multiply each term of an equation by a nonzero quantity.
- 3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

©2005, 2006 Robert Beezer

#### Theorem EOPSS Equation Operations Preserve Solution Sets

4

If we apply one of the three equation operations of Definition EO to a system of linear equations (Definition SLE), then the original system and the transformed system are equivalent. ©2005,

Definition M Matrix

An  $m \times n$  matrix is a rectangular layout of numbers from  $\mathbb C$  having m rows and n columns. We will use upper-case Latin letters from the start of the alphabet  $(A, B, C, \ldots)$  to denote matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets — the distinction is not important. Rows of a matrix will be referenced starting at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the notation  $[A]_{ij}$  will refer to the complex number in row i and column j of A. ©2005, 2006 Robert Beezer

#### Definition AM Augmented Matrix

6

5

Suppose we have a system of m equations in the n variables  $x_1, x_2, x_3, \ldots, x_n$  written as

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

then the augmented matrix of the system of equations is the  $m \times (n+1)$  matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} & b_3 \\ \vdots & & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} & b_m \end{bmatrix}$$

#### Definition RO Row Operations

The following three operations will transform an  $m \times n$  matrix into a different matrix of the same size, and each is known as a **row operation**.

- 1. Swap the locations of two rows.
- 2. Multiply each entry of a single row by a nonzero quantity.
- 3. Multiply each entry of one row by some quantity, and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

- 1.  $R_i \leftrightarrow R_j$ : Swap the location of rows i and j.
- 2.  $\alpha R_i$ : Multiply row i by the nonzero scalar  $\alpha$ .
- 3.  $\alpha R_i + R_j$ : Multiply row i by the scalar  $\alpha$  and add to row j.

©2005, 2006 Robert Beezer

# Definition REM Row-Equivalent Matrices

8

Two matrices, A and B, are **row-equivalent** if one can be obtained from the other by a sequence of row operations. ©2005, 2006 Robert Beezer

7

| heorem REMES Row-Equivalent Matrices represent Equivalent Systems 9                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| appose that $A$ and $B$ are row-equivalent augmented matrices. Then the systems of linear unit unit unit they represent are equivalent systems. ©2005, 2006 Robert Beezer |
|                                                                                                                                                                           |
|                                                                                                                                                                           |
|                                                                                                                                                                           |
|                                                                                                                                                                           |

#### Definition RREF Reduced Row-Echelon Form

10

A matrix is in **reduced row-echelon form** if it meets all of the following conditions:

- 1. A row where every entry is zero lies below any row that contains a nonzero entry.
- 2. The leftmost nonzero entry of a row is equal to 1.
- 3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
- 4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If s > i, then t > j.

| Definition ZRM Zero Row of a Matrix                                                                                                                  | 11       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| A row of a matrix where every entry is zero is called a <b>zero row</b> . ©2005, 2006                                                                | Robert   |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
| Beezer                                                                                                                                               |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
| Definition LO Leading Ones                                                                                                                           | 12       |
| For a matrix in reduced row-echelon form, the leftmost nonzero entry of any row that zero row will be called a <b>leading 1</b> . ©2005, 2006 Robert | is not a |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |
|                                                                                                                                                      |          |

| Definition PC Pivot Columns                                                                                                            | 13 |
|----------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                        |    |
| For a matrix in reduced row-echelon form, a column containing a leading 1 will be called <b>pivot column</b> . ©2005, 2006 Robert Beez |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |
|                                                                                                                                        |    |

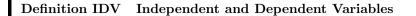
# Theorem REMEF Row-Equivalent Matrix in Echelon Form

**14** 

Suppose A is a matrix. Then there is a matrix B so that

- 1. A and B are row-equivalent.
- 2. B is in reduced row-echelon form.

| Definition RR Row-Reducing                                                                                                   | 15                              |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| To <b>row-reduce</b> the matrix $A$ means to apply row operations to $A$ matrix $B$ in reduced row-echelon form.             | row-equivalent<br>Robert Beezer |
|                                                                                                                              |                                 |
|                                                                                                                              |                                 |
|                                                                                                                              |                                 |
|                                                                                                                              |                                 |
|                                                                                                                              |                                 |
|                                                                                                                              |                                 |
|                                                                                                                              |                                 |
|                                                                                                                              |                                 |
|                                                                                                                              |                                 |
| Definition CS Consistent System                                                                                              | 16                              |
| Definition CS Consistent System  A system of linear equations is consistent if it has at least one s is called inconsistent. |                                 |
| A system of linear equations is <b>consistent</b> if it has at least one s                                                   | vise, the system                |
| A system of linear equations is <b>consistent</b> if it has at least one s                                                   | vise, the system                |
| A system of linear equations is <b>consistent</b> if it has at least one s                                                   | vise, the system                |
| A system of linear equations is <b>consistent</b> if it has at least one s                                                   | vise, the system                |

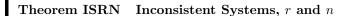


Suppose A is the augmented matrix of a consistent system of linear equations and B is a row-equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not the last column. Then the variable  $x_j$  is **dependent**. A variable that is not dependent is called **independent** or **free**. ©2005, 2006 Robert Beezer

## Theorem RCLS Recognizing Consistency of a Linear System

18

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column n+1 of B. ©2005, 2006 Robert Beezer

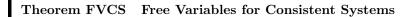


Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent. ©2005, 2006 Robert Beezer

## Theorem CSRN Consistent Systems, r and n

20

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then  $r \leq n$ . If r = n, then the system has a unique solution, and if r < n, then the system has infinitely many solutions. ©2005, 2006 Robert Beezer



 $\mathbf{21}$ 

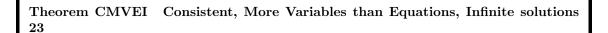
Suppose A is the augmented matrix of a *consistent* system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with n-r free variables.

© 2005, 2006 Robert Beezer

# Theorem PSSLS Possible Solution Sets for Linear Systems

22

A system of linear equations has no solutions, a unique solution or infinitely many solutions.



Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the system has infinitely many solutions. ©2005, 2006 Robert Beezer

## Definition HS Homogeneous System

24

A system of linear equations is homogeneous if each equation has a 0 for its constant term. Such a system then has the form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = 0$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = 0$$

| Theorem HSC Homogeneous Systems are Consistent                                                                                                                                   | 25 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Suppose that a system of linear equations is homogeneous. Then the system is consistent                                                                                          |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
| ©2005, 2006 Robert Beezer                                                                                                                                                        |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
| Definition TSHSE Trivial Solution to Homogeneous Systems of Equations                                                                                                            | 26 |
|                                                                                                                                                                                  |    |
| Suppose a homogeneous system of linear equations has $n$ variables. The solution $x_1 = x_2 = 0, \ldots, x_n = 0$ is called the <b>trivial solution</b> . ©2005, 2006 Robert Bed |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |

| tions                                                                                                                | <b> q</b> -access, | 27                           |
|----------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|
| Suppose that a homogeneous system of linear equations has $m$ $n>m$ . Then the system has infinitely many solutions. |                    | variables with Robert Beezer |
|                                                                                                                      |                    |                              |
|                                                                                                                      |                    |                              |
|                                                                                                                      |                    |                              |
|                                                                                                                      |                    |                              |
|                                                                                                                      |                    |                              |
|                                                                                                                      |                    |                              |

Homogeneous More Variables than Equations Infinite solu-

#### Definition CV Column Vector

A **column vector** of **size** m is an ordered list of m numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a **vector**. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as  $\mathbf{u}$ ,  $\mathbf{v}$ ,  $\mathbf{w}$ ,  $\mathbf{x}$ ,  $\mathbf{y}$ ,  $\mathbf{z}$ . Some books like to write vectors with arrows, such as  $\vec{u}$ . Writing by hand, some like to put arrows on top of the symbol, or a tilde

28

underneath the symbol, as in u. To refer to the **entry** or **component** that is number i in the list that is the vector  $\mathbf{v}$  we write  $[\mathbf{v}]_i$ . ©2005, 2006 Robert Beezer

#### Definition ZV Zero Vector

**29** 

The **zero vector** of size m is the column vector of size m where each entry is the number zero,

$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

or more compactly,  $[\mathbf{0}]_i = 0$  for  $1 \le i \le m$ .

©2005, 2006 Robert Beezer

#### Definition CM Coefficient Matrix

30

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

the **coefficient matrix** is the  $m \times n$  matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

#### Definition VOC Vector of Constants

31

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

the **vector of constants** is the column vector of size m

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

©2005, 2006 Robert Beezer

#### Definition SV Solution Vector

**32** 

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

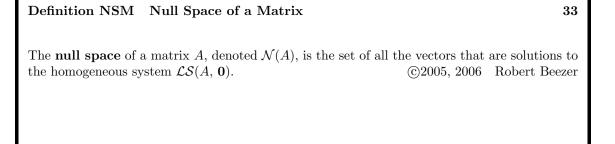
$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

the **solution vector** is the column vector of size n

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$



# Definition SQM Square Matrix

**34** 

A matrix with m rows and n columns is **square** if m = n. In this case, we say the matrix has **size** n. To emphasize the situation when a matrix is not square, we will call it **rectangular**.

# Definition NM Nonsingular Matrix

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations  $\mathcal{LS}(A, \mathbf{0})$  is  $\{\mathbf{0}\}$ , i.e. the system has *only* the trivial solution. Then we say that A is a **nonsingular** matrix. Otherwise we say A is a **singular** matrix. ©2005, 2006

Robert Beezer

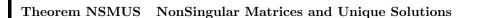
## Definition IM Identity Matrix

36

The  $m \times m$  identity matrix,  $I_m$  is defined by

$$[I_m]_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

| Theorem NSRRI NonSingular matrices Row Reduce to the Identity matrix 37                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                 |
| Suppose that $A$ is a square matrix and $B$ is a row-equivalent matrix in reduced row-echelon form. Then $A$ is nonsingular if and only if $B$ is the identity matrix. ©2005, 2006 Robert                       |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
| Beezer                                                                                                                                                                                                          |
| BCCZCI                                                                                                                                                                                                          |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |
| The NETNIC New Committee and the Principle New York 1 New York 20                                                                                                                                               |
| Theorem NSTNS NonSingular matrices have Trivial Null Spaces 38                                                                                                                                                  |
| Suppose that $A$ is a square matrix. Then $A$ is nonsingular if and only if the null space of $A$ , $\mathcal{N}(A)$ , contains only the zero vector, i.e. $\mathcal{N}(A) = \{0\}$ . ©2005, 2006 Robert Beezer |
|                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 |



Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every choice of the constant vector  $\mathbf{b}$ . ©2005, 2006 Robert Beezer

# Theorem NSME1 NonSingular Matrix Equivalences, Round 1

40

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .



The vector space  $\mathbb{C}^m$  is the set of all column vectors (Definition CV) of size m with entries from the set of complex numbers,  $\mathbb{C}$ . ©2005, 2006 Robert Beezer

# Definition CVE Column Vector Equality

42

The vectors  $\mathbf{u}$  and  $\mathbf{v}$  are equal, written  $\mathbf{u} = \mathbf{v}$  provided that

$$[\mathbf{u}]_i = [\mathbf{v}]_i$$

$$1 \leq i \leq m$$

| Definition | CVA | Column | Vector | Addition |
|------------|-----|--------|--------|----------|

Given the vectors  $\mathbf{u}$  and  $\mathbf{v}$  the sum of  $\mathbf{u}$  and  $\mathbf{v}$  is the vector  $\mathbf{u} + \mathbf{v}$  defined by

$$[\mathbf{u} + \mathbf{v}]_i = [\mathbf{u}]_i + [\mathbf{v}]_i$$

$$1 \leq i \leq m$$

©2005, 2006 Robert Beezer

# Definition CVSM Column Vector Scalar Multiplication

44

Given the vector  $\mathbf{u}$  and the scalar  $\alpha \in \mathbb{C}$ , the **scalar multiple** of  $\mathbf{u}$  by  $\alpha$ ,  $\alpha \mathbf{u}$  is defined by

$$\left[\alpha \mathbf{u}\right]_i = \alpha \left[\mathbf{u}\right]_i$$

$$1 \leq i \leq m$$

#### Theorem VSPCV Vector Space Properties of Column Vectors

45 Suppose that  $\mathbb{C}^m$  is the set of column vectors of size m (Definition VSCV) with addition and scalar multiplication as defined in Definition CVA and Definition CVSM. Then

- Additive Closure, Column Vectors If  $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ , then  $\mathbf{u} + \mathbf{v} \in \mathbb{C}^m$ .
- SCC Scalar Closure, Column Vectors If  $\alpha \in \mathbb{C}$  and  $\mathbf{u} \in \mathbb{C}^m$ , then  $\alpha \mathbf{u} \in \mathbb{C}^m$ .
- Commutativity, Column Vectors If  $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ , then  $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ .
- AAC Additive Associativity, Column Vectors If  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^m$ , then  $\mathbf{u} +$  $(\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$
- Zero Vector, Column Vectors There is a vector, 0, called the zero vector, such that  $\mathbf{u} + \mathbf{0} = \mathbf{u}$  for all  $\mathbf{u} \in \mathbb{C}^m$ .
- AIC Additive Inverses, Column Vectors If  $\mathbf{u} \in \mathbb{C}^m$ , then there exists a vector  $-\mathbf{u} \in \mathbb{C}^m$  so that  $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ .
- SMAC Scalar Multiplication Associativity, Column Vectors If  $\alpha, \beta \in \mathbb{C}$  and  $\mathbf{u} \in \mathbb{C}^m$ , then  $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$ .
- DVAC Distributivity across Vector Addition, Column Vectors If  $\alpha \in \mathbb{C}$  and  $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ , then  $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$ .
- Distributivity across Scalar Addition, Column Vectors If  $\alpha, \beta \in \mathbb{C}$  and  $\mathbf{u} \in \mathbb{C}^m$ , then  $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$ .
- OC One Column Vectors If  $u \in \mathbb{C}^m$  then 1u =

©2005, 2006 Robert Beezer

#### Definition LCCV Linear Combination of Column Vectors

46

Given n vectors  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$  from  $\mathbb{C}^m$  and n scalars  $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ , their linear combination is the vector

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \cdots + \alpha_n \mathbf{u}_n$$
.

Denote the columns of the  $m \times n$  matrix A as the vectors  $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$ . Then  $\mathbf{x}$  is a solution to the linear system of equations  $\mathcal{LS}(A, \mathbf{b})$  if and only if

$$[\mathbf{x}]_1 \mathbf{A}_1 + [\mathbf{x}]_2 \mathbf{A}_2 + [\mathbf{x}]_3 \mathbf{A}_3 + \dots + [\mathbf{x}]_n \mathbf{A}_n = \mathbf{b}$$

©2005, 2006 Robert Beezer

## Theorem VFSLS Vector Form of Solutions to Linear Systems

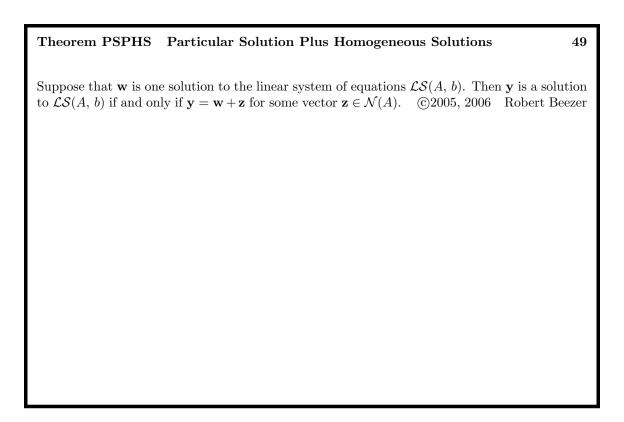
48

Suppose that  $[A \mid \mathbf{b}]$  is the augmented matrix for a consistent linear system  $\mathcal{LS}(A, \mathbf{b})$  of m equations in n variables. Let B be a row-equivalent  $m \times (n+1)$  matrix in reduced row-echelon form. Suppose that B has r nonzero rows, columns without leading 1's with indices  $F = \{f_1, f_2, f_3, \ldots, f_{n-r}, n+1\}$ , and columns with leading 1's (pivot columns) having indices  $D = \{d_1, d_2, d_3, \ldots, d_r\}$ . Define vectors  $\mathbf{c}, \mathbf{u}_j, 1 \le j \le n-r$  of size n by

$$\begin{split} \left[\mathbf{c}\right]_i &= \begin{cases} 0 & \text{if } i \in F \\ \left[B\right]_{k,n+1} & \text{if } i \in D, \, i = d_k \end{cases} \\ \left[\mathbf{u}_j\right]_i &= \begin{cases} 1 & \text{if } i \in F, \, i = f_j \\ 0 & \text{if } i \in F, \, i \neq f_j \\ -\left[B\right]_{k,f_j} & \text{if } i \in D, \, i = d_k \end{cases} \end{split}$$

Then the set of solutions to the system of equations  $\mathcal{LS}(A, \mathbf{b})$  is

$$S = \left\{ \mathbf{c} + x_{f_1} \mathbf{u}_1 + x_{f_2} \mathbf{u}_2 + x_{f_3} \mathbf{u}_3 + \dots + x_{f_{n-r}} \mathbf{u}_{n-r} \mid x_{f_1}, x_{f_2}, x_{f_3}, \dots, x_{f_{n-r}} \in \mathbb{C} \right\}$$



# Theorem RREFU Reduced Row-Echelon Form is Unique

**50** 

Suppose that A is an  $m \times n$  matrix and that B and C are  $m \times n$  matrices that are row-equivalent to A and in reduced row-echelon form. Then B = C. ©2005, 2006 Robert Beezer

Given a set of vectors  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p\}$ , their **span**,  $\langle S \rangle$ , is the set of all possible linear combinations of  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p$ . Symbolically,

$$\langle S \rangle = \{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_p \mathbf{u}_p \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le p \}$$
$$= \left\{ \sum_{i=1}^p \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le p \right\}$$

©2005, 2006 Robert Beezer

# Theorem SSNS Spanning Sets for Null Spaces

Suppose that A is an  $m \times n$  matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let  $D = \{d_1, d_2, d_3, \ldots, d_r\}$  be the column indices where B has leading 1's (pivot columns) and  $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$  be the set of column indices where B does not have leading 1's. Construct the n-r vectors  $\mathbf{z}_j$ ,  $1 \le j \le n-r$  of size n as

$$[\mathbf{z}_j]_i = \begin{cases} 1 & \text{if } i \in F, i = f_j \\ 0 & \text{if } i \in F, i \neq f_j \\ -[B]_{k,f_i} & \text{if } i \in D, i = d_k \end{cases}$$

Then the null space of A is given by

$$\mathcal{N}(A) = \langle \{\mathbf{z}_1, \, \mathbf{z}_2, \, \mathbf{z}_3, \, \dots, \, \mathbf{z}_{n-r}\} \rangle.$$

#### Definition RLDCV Relation of Linear Dependence for Column Vectors

Given a set of vectors  $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n}$ , a true statement of the form

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n = \mathbf{0}$$

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e.  $\alpha_i = 0, 1 \le i \le n$ , then we say it is the **trivial relation of linear dependence** on S.

©2005, 2006 Robert Beezer

#### Definition LICV Linear Independence of Column Vectors

**54** 

The set of vectors  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  is **linearly dependent** if there is a relation of linear dependence on S that is not trivial. In the case where the *only* relation of linear dependence on S is the trivial one, then S is a **linearly independent** set of vectors. ©2005,

Suppose that A is an  $m \times n$  matrix and  $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$  is the set of vectors in  $\mathbb{C}^m$  that are the columns of A. Then S is a linearly independent set if and only if the homogeneous system  $\mathcal{LS}(A, \mathbf{0})$  has a unique solution. ©2005, 2006 Robert Beezer

## Theorem LIVRN Linearly Independent Vectors, r and n

**56** 

Suppose that A is an  $m \times n$  matrix and  $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$  is the set of vectors in  $\mathbb{C}^m$  that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if n = r. ©2005, 2006 Robert Beezer

Suppose that  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  is the set of vectors in  $\mathbb{C}^m$ , and that n > m. Then S is a linearly dependent set. ©2005, 2006 Robert Beezer

# Theorem NSLIC NonSingular matrices have Linearly Independent Columns 58

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set. ©2005, 2006 Robert Beezer

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .
- 5. The columns of A form a linearly independent set.

©2005, 2006 Robert Beezer

#### Theorem BNS Basis for Null Spaces

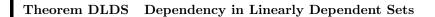
60

Suppose that A is an  $m \times n$  matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let  $D = \{d_1, d_2, d_3, \ldots, d_r\}$  and  $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$  be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the n-r vectors  $\mathbf{z}_i$ ,  $1 \le j \le n-r$  of size n as

$$\left[\mathbf{z}_{j}\right]_{i} = \begin{cases} 1 & \text{if } i \in F, \ i = f_{j} \\ 0 & \text{if } i \in F, \ i \neq f_{j} \\ -\left[B\right]_{k,f_{j}} & \text{if } i \in D, \ i = d_{k} \end{cases}$$

Define the set  $S = \{\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3, \dots, \mathbf{z}_{n-r}\}$ . Then

- 1.  $\mathcal{N}(A) = \langle S \rangle$ .
- 2. S is a linearly independent set.



Suppose that  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  is a set of vectors. Then S is a linearly dependent set if and only if there is an index  $t, 1 \le t \le n$  such that  $\mathbf{u}_t$  is a linear combination of the vectors  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_n$ . ©2005, 2006 Robert Beezer

# Theorem BS Basis of a Span

**62** 

Suppose that  $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$  is a set of column vectors. Define  $W = \langle S \rangle$  and let A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A, with  $D = \{d_1, d_2, d_3, \dots, d_r\}$  the set of column indices corresponding to the pivot columns of B. Then

- 1.  $T = \{\mathbf{v}_{d_1}, \mathbf{v}_{d_2}, \mathbf{v}_{d_3}, \dots \mathbf{v}_{d_r}\}$  is a linearly independent set.
- 2.  $W = \langle T \rangle$ .

# Definition CCCV Complex Conjugate of a Column Vector

63

Suppose that **u** is a vector from  $\mathbb{C}^m$ . Then the conjugate of the vector,  $\overline{\mathbf{u}}$ , is defined by

$$[\overline{\mathbf{u}}]_i = \overline{[\mathbf{u}]_i}$$

$$1 \leq i \leq m$$

©2005, 2006 Robert Beezer

# Theorem CRVA Conjugation Respects Vector Addition

64

Suppose **x** and **y** are two vectors from  $\mathbb{C}^m$ . Then

$$\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$$

# Theorem CRSM Conjugation Respects Vector Scalar Multiplication

65

Suppose **x** is a vector from  $\mathbb{C}^m$ , and  $\alpha \in \mathbb{C}$  is a scalar. Then

$$\overline{\alpha}\overline{\mathbf{x}} = \overline{\alpha}\,\overline{\mathbf{x}}$$

©2005, 2006 Robert Beezer

#### Definition IP Inner Product

66

Given the vectors  $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$  the **inner product** of  $\mathbf{u}$  and  $\mathbf{v}$  is the scalar quantity in  $\mathbb{C}$ ,

$$\langle \mathbf{u}, \mathbf{v} \rangle = \left[ \mathbf{u} \right]_1 \overline{\left[ \mathbf{v} \right]_1} + \left[ \mathbf{u} \right]_2 \overline{\left[ \mathbf{v} \right]_2} + \left[ \mathbf{u} \right]_3 \overline{\left[ \mathbf{v} \right]_3} + \dots + \left[ \mathbf{u} \right]_m \overline{\left[ \mathbf{v} \right]_m} = \sum_{i=1}^m \left[ \mathbf{u} \right]_i \overline{\left[ \mathbf{v} \right]_i}$$

#### Theorem IPVA Inner Product and Vector Addition

67

Suppose  $\mathbf{u}\mathbf{v}, \mathbf{w} \in \mathbb{C}^m$ . Then

1. 
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

2. 
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$

©2005, 2006 Robert Beezer

# ${\bf Theorem~IPSM~~Inner~Product~and~Scalar~Multiplication}$

68

Suppose  $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$  and  $\alpha \in \mathbb{C}$ . Then

1. 
$$\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$$

2. 
$$\langle \mathbf{u}, \, \alpha \mathbf{v} \rangle = \overline{\alpha} \, \langle \mathbf{u}, \, \mathbf{v} \rangle$$

### Theorem IPAC Inner Product is Anti-Commutative

69

Suppose that  $\mathbf{u}$  and  $\mathbf{v}$  are vectors in  $\mathbb{C}^m$ . Then  $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$ .

©2005, 2006 Robert

Beezer

#### Definition NV Norm of a Vector

70

The **norm** of the vector  $\mathbf{u}$  is the scalar quantity in  $\mathbb{C}$ 

$$\|\mathbf{u}\| = \sqrt{\left|\left[\mathbf{u}\right]_{1}\right|^{2} + \left|\left[\mathbf{u}\right]_{2}\right|^{2} + \left|\left[\mathbf{u}\right]_{3}\right|^{2} + \dots + \left|\left[\mathbf{u}\right]_{m}\right|^{2}} = \sqrt{\sum_{i=1}^{m} \left|\left[\mathbf{u}\right]_{i}\right|^{2}}$$



Suppose that **u** is a vector in  $\mathbb{C}^m$ . Then  $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$ . ©2005, 2006 Robert Beezer

### Theorem PIP Positive Inner Products

72

Suppose that  $\mathbf{u}$  is a vector in  $\mathbb{C}^m$ . Then  $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$  with equality if and only if  $\mathbf{u} = \mathbf{0}$ . ©2005,

Robert Beezer



A pair of vectors,  $\mathbf{u}$  and  $\mathbf{v}$ , from  $\mathbb{C}^m$  are **orthogonal** if their inner product is zero, that is,  $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ . ©2005, 2006 Robert Beezer

### Definition OSV Orthogonal Set of Vectors

**74** 

Suppose that  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  is a set of vectors from  $\mathbb{C}^m$ . Then the set S is **orthogonal** if every pair of different vectors from S is orthogonal, that is  $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$  whenever  $i \neq j$ . ©2005, 2006 Robert Beezer

### Theorem OSLI Orthogonal Sets are Linearly Independent

**75** 

Suppose that  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  is an orthogonal set of nonzero vectors. Then S is linearly independent. ©2005, 2006 Robert Beezer

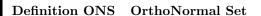
### Theorem GSPCV Gram-Schmidt Procedure, Column Vectors

**76** 

Suppose that  $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p\}$  is a linearly independent set of vectors in  $\mathbb{C}^m$ . Define the vectors  $\mathbf{u}_i$ ,  $1 \le i \le p$  by

$$\mathbf{u}_i = \mathbf{v}_i - \frac{\langle \mathbf{v}_i, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \frac{\langle \mathbf{v}_i, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 - \frac{\langle \mathbf{v}_i, \mathbf{u}_3 \rangle}{\langle \mathbf{u}_3, \mathbf{u}_3 \rangle} \mathbf{u}_3 - \dots - \frac{\langle \mathbf{v}_i, \mathbf{u}_{i-1} \rangle}{\langle \mathbf{u}_{i-1}, \mathbf{u}_{i-1} \rangle} \mathbf{u}_{i-1}$$

Then if  $T = \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_p\}$ , then T is an orthogonal set of non-zero vectors, and  $\langle T \rangle = \langle S \rangle$ . ©2005, 2006 Robert Beezer



Suppose  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  is an orthogonal set of vectors such that  $\|\mathbf{u}_i\| = 1$  for all  $1 \le i \le n$ . Then S is an **orthonormal** set of vectors. ©2005, 2006 Robert Beezer

## $\textbf{Definition VSM} \quad \textbf{Vector Space of} \ m \times n \ \textbf{Matrices}$

**78** 

The vector space  $M_{mn}$  is the set of all  $m \times n$  matrices with entries from the set of complex numbers. ©2005, 2006 Robert Beezer

# Definition ME Matrix Equality

The  $m \times n$  matrices A and B are **equal**, written A = B provided  $[A]_{ij} = [B]_{ij}$  for all  $1 \le i \le m$ ,  $1 \le j \le n$ . ©2005, 2006 Robert Beezer

### Definition MA Matrix Addition

80

Given the  $m \times n$  matrices A and B, define the **sum** of A and B as an  $m \times n$  matrix, written A + B, according to

$$[A+B]_{ij} = [A]_{ij} + [B]_{ij}$$

$$1 \le i \le m, \ 1 \le j \le n$$

Given the  $m \times n$  matrix A and the scalar  $\alpha \in \mathbb{C}$ , the **scalar multiple** of A is an  $m \times n$  matrix, written  $\alpha A$  and defined according to

$$[\alpha A]_{ij} = \alpha [A]_{ij} \qquad 1 \le i \le m, \ 1 \le j \le n$$

©2005, 2006 Robert Beezer

# Theorem VSPM Vector Space Properties of Matrices

82

Suppose that  $M_{mn}$  is the set of all  $m \times n$  matrices (Definition VSM) with addition and scalar multiplication as defined in Definition MA and Definition MSM. Then

- ACM Additive Closure, Matrices If  $A, B \in M_{mn}$ , then  $A + B \in M_{mn}$ .
- SCM Scalar Closure, Matrices If  $\alpha \in \mathbb{C}$  and  $A \in M_{mn}$ , then  $\alpha A \in M_{mn}$ .
- CM Commutativity, Matrices If  $A, B \in M_{mn}$ , then A + B = B + A.
- AAM Additive Associativity, Matrices If  $A, B, C \in M_{mn}$ , then A + (B + C) = (A + B) + C.
- ZM Zero Vector, Matrices There is a matrix,  $\mathcal{O}$ , called the zero matrix, such that  $A + \mathcal{O} = A$  for all  $A \in M_{mn}$ .
- AIM Additive Inverses, Matrices If  $A \in M_{mn}$ , then there exists a matrix  $-A \in M_{mn}$  so that  $A + (-A) = \mathcal{O}$ .
- SMAM Scalar Multiplication Associativity, Matrices If  $\alpha$ ,  $\beta \in \mathbb{C}$  and  $A \in M_{mn}$ , then  $\alpha(\beta A) = (\alpha \beta)A$ .
- DMAM Distributivity across Matrix Addition, Matrices If  $\alpha \in \mathbb{C}$  and  $A, B \in M_{mn}$ , then  $\alpha(A+B) = \alpha A + \alpha B$ .
- DSAM Distributivity across Scalar Addition, Matrices If  $\alpha, \beta \in \mathbb{C}$  and  $A \in M_{mn}$ , then  $(\alpha + \beta)A = \alpha A + \beta A$ .
- OM One Matrices If  $A \subseteq M$  then 1A = A

| Definition | $\mathbf{Z}\mathbf{N}\mathbf{I}$ | Zero | Matrix |
|------------|----------------------------------|------|--------|

The  $m \times n$  **zero matrix** is written as  $\mathcal{O} = \mathcal{O}_{m \times n}$  and defined by  $[\mathcal{O}]_{ij} = 0$ , for all  $1 \le i \le m$ ,  $1 \le j \le n$ . ©2005, 2006 Robert Beezer

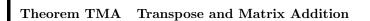
## Definition TM Transpose of a Matrix

84

Given an  $m \times n$  matrix A, its **transpose** is the  $n \times m$  matrix  $A^t$  given by

$$\left[A^t\right]_{ij} = [A]_{ji}\,,\quad 1 \leq i \leq n,\, 1 \leq j \leq m.$$

| Definition SYM Symmetric Matrix                             |             | 85            |
|-------------------------------------------------------------|-------------|---------------|
| The matrix A is <b>symmetric</b> if $A = A^t$ .             | ©2005, 2006 | Robert Beezer |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
| Theorem SMS Symmetric Matrices are Square                   |             | 86            |
| Suppose that $A$ is a symmetric matrix. Then $A$ is square. | ©2005, 2006 | Robert Beezer |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |
|                                                             |             |               |



Suppose that A and B are  $m \times n$  matrices. Then  $(A+B)^t = A^t + B^t$ .

©2005, 2006

Robert Beezer

## Theorem TMSM Transpose and Matrix Scalar Multiplication

88

Suppose that  $\alpha \in \mathbb{C}$  and A is an  $m \times n$  matrix. Then  $(\alpha A)^t = \alpha A^t$ . ©2005, 2006 Robert

Beezer

|         |    |           | _    |           |
|---------|----|-----------|------|-----------|
| Theorem | TT | Transpose | of a | Transpose |

Suppose that A is an  $m \times n$  matrix. Then  $(A^t)^t = A$ .

©2005, 2006 Robert Beezer

# Definition CCM Complex Conjugate of a Matrix

90

Suppose A is an  $m \times n$  matrix. Then the **conjugate** of A, written  $\overline{A}$  is an  $m \times n$  matrix defined by

 $\left[\overline{A}\right]_{ij} = \overline{[A]_{ij}}$ 

| Theorem CRMA Conjugation Respects Matrix Addition                                                                     | 91     |
|-----------------------------------------------------------------------------------------------------------------------|--------|
| Suppose that $A$ and $B$ are $m \times n$ matrices. Then $\overline{A+B} = \overline{A} + \overline{B}$ . ©2005, 2006 | Robert |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |

Beezer

#### Theorem CRMSM Conjugation Respects Matrix Scalar Multiplication 92

Suppose that  $\alpha \in \mathbb{C}$  and A is an  $m \times n$  matrix. Then  $\overline{\alpha A} = \overline{\alpha} \overline{A}$ . ©2005, 2006 Robert

Beezer



Suppose that A is an  $m \times n$  matrix. Then  $\overline{(A^t)} = (\overline{A})^t$ .

©2005, 2006 Robert Beezer

#### Definition MVP Matrix-Vector Product

94

Suppose A is an  $m \times n$  matrix with columns  $\mathbf{A}_1$ ,  $\mathbf{A}_2$ ,  $\mathbf{A}_3$ , ...,  $\mathbf{A}_n$  and  $\mathbf{u}$  is a vector of size n. Then the **matrix-vector product** of A with  $\mathbf{u}$  is the linear combination

$$A\mathbf{u} = [\mathbf{u}]_1 \mathbf{A}_1 + [\mathbf{u}]_2 \mathbf{A}_2 + [\mathbf{u}]_3 \mathbf{A}_3 + \dots + [\mathbf{u}]_n \mathbf{A}_n$$

| Theorem SLEMM Systems of Linear Equations as Matrix Multiplication 95                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solutions to the linear system $\mathcal{LS}(A, \mathbf{b})$ are the solutions for $\mathbf{x}$ in the vector equation $A\mathbf{x} = \mathbf{b}$ .                         |
| ©2005, 2006 Robert Beezer                                                                                                                                                   |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
| Theorem EMMVP Equal Matrices and Matrix-Vector Products 96                                                                                                                  |
| Suppose that $A$ and $B$ are $m \times n$ matrices such that $A\mathbf{x} = B\mathbf{x}$ for every $\mathbf{x} \in \mathbb{C}^n$ . Then $A = B$ . ©2005, 2006 Robert Beezer |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |

### Definition MM Matrix Multiplication

97

Suppose A is an  $m \times n$  matrix and B is an  $n \times p$  matrix with columns  $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \ldots, \mathbf{B}_p$ . Then the **matrix product** of A with B is the  $m \times p$  matrix where column i is the matrix-vector product  $A\mathbf{B}_i$ . Symbolically,

$$AB = A \left[ \mathbf{B}_1 | \mathbf{B}_2 | \mathbf{B}_3 | \dots | \mathbf{B}_p \right] = \left[ A \mathbf{B}_1 | A \mathbf{B}_2 | A \mathbf{B}_3 | \dots | A \mathbf{B}_p \right].$$

©2005, 2006 Robert Beezer

#### Theorem EMP Entries of Matrix Products

98

Suppose A is an  $m \times n$  matrix and B =is an  $n \times p$  matrix. Then for  $1 \le i \le m$ ,  $1 \le j \le p$ , the individual entries of AB are given by

$$[AB]_{ij} = [A]_{i1} [B]_{1j} + [A]_{i2} [B]_{2j} + [A]_{i3} [B]_{3j} + \dots + [A]_{in} [B]_{nj} = \sum_{k=1}^{n} [A]_{ik} [B]_{kj}$$

## Theorem MMZM Matrix Multiplication and the Zero Matrix

Suppose A is an  $m \times n$  matrix. Then

- 1.  $A\mathcal{O}_{n\times p} = \mathcal{O}_{m\times p}$
- $2. \quad \mathcal{O}_{p \times m} A = \mathcal{O}_{p \times n}$

©2005, 2006 Robert Beezer

# Theorem MMIM Matrix Multiplication and Identity Matrix

100

Suppose A is an  $m\times n$  matrix. Then

- 1.  $AI_n = A$
- $2. \quad I_m A = A$

| Theorem MMDAA | Matrix Multiplication | Distributes Across | Addition |
|---------------|-----------------------|--------------------|----------|

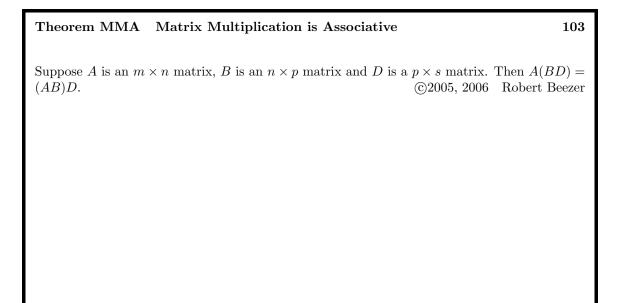
Suppose A is an  $m \times n$  matrix and B and C are  $n \times p$  matrices and D is a  $p \times s$  matrix. Then

- 1. A(B+C) = AB + AC
- $2. \quad (B+C)D = BD + CD$

©2005, 2006 Robert Beezer

### Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 102

Suppose A is an  $m \times n$  matrix and B is an  $n \times p$  matrix. Let  $\alpha$  be a scalar. Then  $\alpha(AB) = (\alpha A)B = A(\alpha B)$ . ©2005, 2006 Robert Beezer



## Theorem MMIP Matrix Multiplication and Inner Products

104

If we consider the vectors  $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$  as  $m \times 1$  matrices then

$$\langle \mathbf{u},\,\mathbf{v}\rangle = \mathbf{u}^t \overline{\mathbf{v}}$$

| Matrix Multiplication and Complex Conjugation                                               | 105                                                                                                                                     |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| $n$ matrix and $B$ is an $n\times p$ matrix. Then $\overline{AB}=\overline{A}\overline{B}.$ | ©2005, 2006                                                                                                                             |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
| Matrix Multiplication and Transposes                                                        | 106                                                                                                                                     |
| $n$ matrix and $B$ is an $n \times p$ matrix. Then $(AB)^t = B^t A^t$ .                     | ©2005, 2006                                                                                                                             |
|                                                                                             |                                                                                                                                         |
|                                                                                             |                                                                                                                                         |
|                                                                                             | $n$ matrix and $B$ is an $n \times p$ matrix. Then $\overline{AB} = \overline{A}  \overline{B}$ .  Matrix Multiplication and Transposes |

Robert Beezer

| Definition | MI | Matrix | Inverse |
|------------|----|--------|---------|

Suppose A and B are square matrices of size n such that  $AB = I_n$  and  $BA = I_n$ . Then A is **invertible** and B is the **inverse** of A. In this situation, we write  $B = A^{-1}$ . ©2005, 2006

Robert Beezer

#### Definition SUV Standard Unit Vectors

108

Let  $\mathbf{e}_j \in \mathbb{C}^m$  denote the column vector that is column j of the  $m \times m$  identity matrix  $I_m$ . Then the set

$$\{\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3, \, \dots, \, \mathbf{e}_m\} = \{\, \mathbf{e}_j \, | \, 1 \le j \le m\}$$

is the set of standard unit vectors in  $\mathbb{C}^m$ .

Suppose

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then A is invertible if and only if  $ad - bc \neq 0$ . When A is invertible, we have

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

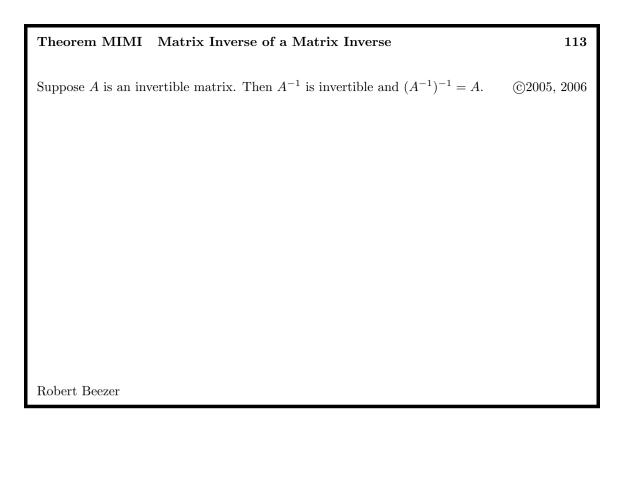
©2005, 2006 Robert Beezer

### Theorem CINSM Computing the Inverse of a NonSingular Matrix

110

Suppose A is a nonsingular square matrix of size n. Create the  $n \times 2n$  matrix M by placing the  $n \times n$  identity matrix  $I_n$  to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns of N. Then  $AJ = I_n$ .

| Theorem MIU Matrix Inverse is Unique                                                                                             | 111      |
|----------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                  |          |
| Suppose the square matrix $A$ has an inverse. Then $A^{-1}$ is unique. ©2005, 2006                                               | Robert   |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
| Beezer                                                                                                                           |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
| Theorem SS Socks and Shoes                                                                                                       | 112      |
|                                                                                                                                  |          |
| Suppose A and B are invertible matrices of size n. Then $(AB)^{-1} = B^{-1}A^{-1}$ and A                                         | IR is an |
| Suppose A and B are invertible matrices of size n. Then $(AB)^{-1} = B^{-1}A^{-1}$ and A invertible matrix. $(2005, 2006)$ Rober | t Beezer |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |

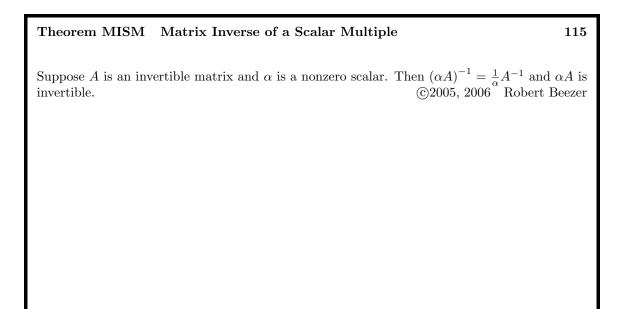


## Theorem MIT Matrix Inverse of a Transpose

114

Suppose A is an invertible matrix. Then  $A^t$  is invertible and  $(A^t)^{-1} = (A^{-1})^t$ . ©2005, 2006

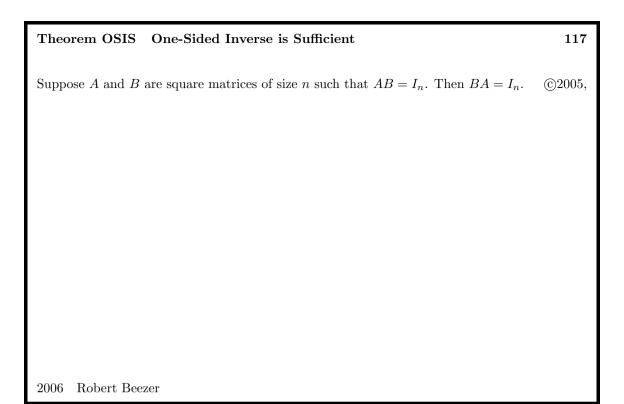
Robert Beezer



# Theorem NPNT Nonsingular Product has Nonsingular Terms

116

Suppose that A and B are square matrices of size n and the product AB is nonsingular. Then A and B are both nonsingular. ©2005, 2006 Robert Beezer



### Theorem NSI NonSingularity is Invertibility

118

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.

#### Theorem NSME3 NonSingular Matrix Equivalences, Round 3

119

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.

©2005, 2006 Robert Beezer

### Theorem SNSCM Solution with NonSingular Coefficient Matrix

120

Suppose that A is nonsingular. Then the unique solution to  $\mathcal{LS}(A, \mathbf{b})$  is  $A^{-1}\mathbf{b}$ . ©2005, 2006

Robert Beezer



Suppose that Q is a square matrix of size n such that  $\left(\overline{Q}\right)^tQ=I_n$ . Then we say Q is **orthogonal**. ©2005, 2006 Robert

Beezer

### Theorem OMI Orthogonal Matrices are Invertible

122

Suppose that Q is an orthogonal matrix of size n. Then Q is nonsingular, and  $Q^{-1}=(\overline{Q})^t$ .

| Theorem COMOS Columns of Outhers and Matrices are Outhers and Sets 12 |               |                                                       |    |
|-----------------------------------------------------------------------|---------------|-------------------------------------------------------|----|
| Theorem COMOS Columns of Orthogonal Matrices are Orthonormal Sets 12  | Theorem COMOS | olumns of Orthogonal Matrices are Orthonormal Sets 12 | 13 |

Suppose that A is a square matrix of size n with columns  $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$ . Then A is an orthogonal matrix if and only if S is an orthonormal set. ©2005, 2006 Robert Beezer

# Theorem OMPIP Orthogonal Matrices Preserve Inner Products

124

Suppose that Q is an orthogonal matrix of size n and  $\mathbf{u}$  and  $\mathbf{v}$  are two vectors from  $\mathbb{C}^n$ . Then

$$\langle Q\mathbf{u},\,Q\mathbf{v}\rangle = \langle \mathbf{u},\,\mathbf{v}\rangle$$

$$\|Q\mathbf{v}\| = \|\mathbf{v}\|$$



If A is a square matrix, then its **adjoint** is  $A^H = \left(\overline{A}\right)^t$ . ©2005, 2006 Robert Beezer

#### Definition HM **Hermitian Matrix**

126

The square matrix A is **Hermitian** (or **self-adjoint**) if  $A = (\overline{A})^t$  ©2005, 2006 Robert

Beezer

Suppose that A is an  $m \times n$  matrix with columns  $\{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n\}$ . Then the **column space** of A, written  $\mathcal{C}(A)$ , is the subset of  $\mathbb{C}^m$  containing all linear combinations of the columns of A,

$$\mathcal{C}(A) = \langle \{\mathbf{A}_1, \, \mathbf{A}_2, \, \mathbf{A}_3, \, \dots, \, \mathbf{A}_n \} \rangle$$

©2005, 2006 Robert Beezer

## Theorem CSCS Column Spaces and Consistent Systems

**128** 

Suppose A is an  $m \times n$  matrix and **b** is a vector of size m. Then  $\mathbf{b} \in \mathcal{C}(A)$  if and only if  $\mathcal{LS}(A, \mathbf{b})$  is consistent. ©2005, 2006 Robert Beezer

### Theorem BCS Basis of the Column Space

129

Suppose that A is an  $m \times n$  matrix with columns  $\mathbf{A}_1$ ,  $\mathbf{A}_2$ ,  $\mathbf{A}_3$ , ...,  $\mathbf{A}_n$ , and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let  $D = \{d_1, d_2, d_3, \ldots, d_r\}$  be the set of column indices where B has leading 1's. Let  $T = \{\mathbf{A}_{d_1}, \mathbf{A}_{d_2}, \mathbf{A}_{d_3}, \ldots, \mathbf{A}_{d_r}\}$ . Then

- 1. T is a linearly independent set.
- 2.  $C(A) = \langle T \rangle$ .

©2005, 2006 Robert Beezer

### Theorem CSNSM Column Space of a NonSingular Matrix

130

Suppose A is a square matrix of size n. Then A is nonsingular if and only if  $\mathcal{C}(A) = \mathbb{C}^n$ .

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is  $\mathbb{C}^n$ ,  $\mathcal{C}(A) = \mathbb{C}^n$ .

©2005, 2006 Robert Beezer

### Definition RSM Row Space of a Matrix

**132** 

Suppose A is an  $m \times n$  matrix. Then the **row space** of A,  $\mathcal{R}(A)$ , is the column space of  $A^t$ , i.e.  $\mathcal{R}(A) = \mathcal{C}(A^t)$ . ©2005, 2006 Robert Beezer

Suppose A and B are row-equivalent matrices. Then  $\mathcal{R}(A) = \mathcal{R}(B)$ . ©2005, 2006 Robert

Beezer

### Theorem BRS Basis for the Row Space

**134** 

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of  $B^t$ . Then

- 1.  $\mathcal{R}(A) = \langle S \rangle$ .
- $2.\ S$  is a linearly independent set.

| Theorem CSRST Column Space, Row Space, Transpo          | se          | 135           |
|---------------------------------------------------------|-------------|---------------|
| Suppose A is a matrix. Then $C(A) = \mathcal{R}(A^t)$ . | ©2005, 2006 | Robert Beezer |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |
|                                                         |             |               |

# Definition LNS Left Null Space

136

Suppose A is an  $m \times n$  matrix. Then the **left null space** is defined as  $\mathcal{L}(A) = \mathcal{N}(A^t) \subseteq \mathbb{C}^m$ . ©2005, 2006 Robert Beezer

Suppose A is an  $m \times n$  matrix. Add m new columns to A that together equal an  $m \times m$  identity matrix to form an  $m \times (n+m)$  matrix M. Use row operations to bring M to reduced row-echelon form and call the result N. N is the **extended reduced row-echelon form** of A, and we will standardize on names for five submatrices (B, C, J, K, L) of N.

Let B denote the  $m \times n$  matrix formed from the first n columns of N and let J denote the  $m \times m$  matrix formed from the last m columns of N. Suppose that B has r nonzero rows. Further partition N by letting C denote the  $r \times n$  matrix formed from all of the non-zero rows of B. Let K be the  $r \times m$  matrix formed from the first r rows of J, while L will be the  $(m-r) \times m$  matrix formed from the bottom m-r rows of J. Pictorially,

$$M = [A|I_m] \xrightarrow{\text{RREF}} N = [B|J] = \begin{bmatrix} C & K \\ \hline 0 & L \end{bmatrix}$$

©2005, 2006 Robert Beezer

### Theorem PEEF Properties of Extended Echelon Form

138

Suppose that A is an  $m \times n$  matrix and that N is its extended echelon form. Then

- 1. J is nonsingular.
- 2. B = JA.
- 3. If  $\mathbf{x} \in \mathbb{C}^n$  and  $\mathbf{y} \in \mathbb{C}^m$ , then  $A\mathbf{x} = \mathbf{y}$  if and only if  $B\mathbf{x} = J\mathbf{y}$ .
- 4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.
- 5. L is in reduced row-echelon form, has no zero rows and has m-r pivot columns.

Suppose A is an  $m \times n$  matrix with extended echelon form N. Suppose the reduced row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the first n columns and L is the submatrix of N formed from the last m columns and the last m-r rows. Then

- 1. The null space of A is the null space of C,  $\mathcal{N}(A) = \mathcal{N}(C)$ .
- 2. The row space of A is the row space of C,  $\mathcal{R}(A) = \mathcal{R}(C)$ .
- 3. The column space of A is the null space of L,  $C(A) = \mathcal{N}(L)$ .
- 4. The left null space of A is the row space of L,  $\mathcal{L}(A) = \mathcal{R}(L)$ .

©2005, 2006 Robert Beezer

#### Definition VS Vector Space

140

Suppose that V is a set upon which we have defined two operations: (1) **vector addition**, which combines two elements of V and is denoted by "+", and (2) **scalar multiplication**, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a **vector space** if the following ten properties hold.

- AC Additive Closure If  $\mathbf{u}, \mathbf{v} \in V$ , then  $\mathbf{u} + \mathbf{v} \in V$ .
- SC Scalar Closure If  $\alpha \in \mathbb{C}$  and  $\mathbf{u} \in V$ , then  $\alpha \mathbf{u} \in V$ .
- C Commutativity If  $\mathbf{u}, \mathbf{v} \in V$ , then  $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ .
- AA Additive Associativity If  $\mathbf{u}$ ,  $\mathbf{v}$ ,  $\mathbf{w} \in V$ , then  $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ .
- **Z Zero Vector** There is a vector, **0**, called the **zero vector**, such that  $\mathbf{u} + \mathbf{0} = \mathbf{u}$  for all  $\mathbf{u} \in V$ .
- AI Additive Inverses If  $\mathbf{u} \in V$ , then there exists a vector  $-\mathbf{u} \in V$  so that  $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ .
- SMA Scalar Multiplication Associativity If  $\alpha, \beta \in \mathbb{C}$  and  $\mathbf{u} \in V$ , then  $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$ .
- DVA Distributivity across Vector Addition If  $\alpha \in \mathbb{C}$  and  $\mathbf{u}, \mathbf{v} \in V$ , then  $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$ .
- DSA Distributivity across Scalar Addition If  $\alpha$ ,  $\beta \in \mathbb{C}$  and  $\mathbf{u} \in V$ , then  $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$ .
- O One If  $\mathbf{u} \in V$ , then  $1\mathbf{u} = \mathbf{u}$ .

| Theorem ZVU Zero Vector is Unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 141      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Suppose that $V$ is a vector space. The zero vector, $0$ , is unique. ©2005, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 Robert |
| Suppose vilate V is a vector apartite and a vector and a vector apartite and a vector and a vector apartite an |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Beezer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Theorem AIU Additive Inverses are Unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 142      |
| Suppose that $V$ is a vector space. For each $\mathbf{u} \in V$ , the additive inverse, $-\mathbf{u}$ , is unique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ©2005,   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

| Theorem ZSSM          | Zero Scalar in Scalar Multiplication                                                                  |             | 143                  |
|-----------------------|-------------------------------------------------------------------------------------------------------|-------------|----------------------|
| Suppose that $V$ is a | vector space and $\mathbf{u} \in V$ . Then $0\mathbf{u} = 0$ .                                        | ©2005, 2006 | Robert Beezer        |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
|                       |                                                                                                       |             |                      |
| Theorem ZVSM          | Zero Vector in Scalar Multiplication                                                                  |             | 144                  |
|                       | Zero Vector in Scalar Multiplication vector space and $\alpha \in \mathbb{C}$ . Then $\alpha 0 = 0$ . | ©2005, 2006 | 144<br>Robert Beezer |
|                       |                                                                                                       | ©2005, 2006 |                      |
|                       |                                                                                                       | ©2005, 2006 |                      |
|                       |                                                                                                       | ©2005, 2006 |                      |
|                       |                                                                                                       | ©2005, 2006 |                      |
|                       |                                                                                                       | ©2005, 2006 |                      |
|                       |                                                                                                       | ©2005, 2006 |                      |
|                       |                                                                                                       | ©2005, 2006 |                      |

| Theorem AISM | Additive | Inverses | from | Scalar | Multiplication |
|--------------|----------|----------|------|--------|----------------|

Suppose that V is a vector space and  $\mathbf{u} \in V$ . Then  $-\mathbf{u} = (-1)\mathbf{u}$ . ©2005, 2006

Robert

Beezer

#### Scalar Multiplication Equals the Zero Vector Theorem SMEZV

146

Suppose that V is a vector space and  $\alpha \in \mathbb{C}$ . If  $\alpha \mathbf{u} = \mathbf{0}$ , then either  $\alpha = 0$  or  $\mathbf{u} = \mathbf{0}$ . ©2005,

Robert Beezer 2006

| Theorem VAC Vector Addition Cancellation                                                                                                                                               | 147                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                                                                                        |                                       |
| Suppose that V is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ . If $\mathbf{w} + \mathbf{u} = \mathbf{w} + \mathbf{v}$ , then $\mathbf{u} = \mathbf{v}$ .           | ©2005,                                |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
| 2006 Robert Beezer                                                                                                                                                                     |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                        |                                       |
| Theorem CSSM Canceling Scalars in Scalar Multiplication                                                                                                                                | 148                                   |
|                                                                                                                                                                                        | .,                                    |
| Suppose $V$ is a vector space, $\mathbf{u}, \mathbf{v} \in V$ and $\alpha$ is a nonzero scalar from $\mathbb{C}$ . If $\alpha \mathbf{u} = \mathbf{u} = \mathbf{v}$ . ©2005, 2006 Robe | $\alpha \mathbf{v}$ , then ert Beezer |

| Theorem CVSM | Canceling Vectors in Scalar Multiplication |  |
|--------------|--------------------------------------------|--|
|              |                                            |  |

Suppose V is a vector space,  $\mathbf{u} \neq \mathbf{0}$  is a vector in V and  $\alpha, \beta \in \mathbb{C}$ . If  $\alpha \mathbf{u} = \beta \mathbf{u}$ , then  $\alpha = \beta$ .

©2005, 2006 Robert Beezer

# Definition S Subspace

**150** 

Suppose that V and W are two vector spaces that have identical definitions of vector addition and scalar multiplication, and that W is a subset of V,  $W \subseteq V$ . Then W is a **subspace** of V. ©2005, 2006 Robert Beezer

#### Theorem TSS Testing Subsets for Subspaces

151

Suppose that V is a vector space and W is a subset of V,  $W \subseteq V$ . Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

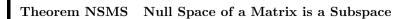
- 1. W is non-empty,  $W \neq \emptyset$ .
- 2. If  $\mathbf{x} \in W$  and  $\mathbf{y} \in W$ , then  $\mathbf{x} + \mathbf{y} \in W$ .
- 3. If  $\alpha \in \mathbb{C}$  and  $\mathbf{x} \in W$ , then  $\alpha \mathbf{x} \in W$ .

©2005, 2006 Robert Beezer

#### Definition TS Trivial Subspaces

**152** 

Given the vector space V, the subspaces V and  $\{0\}$  are each called a **trivial subspace**.



Suppose that A is an  $m \times n$  matrix. Then the null space of A,  $\mathcal{N}(A)$ , is a subspace of  $\mathbb{C}^n$ .

©2005, 2006 Robert Beezer

# Definition LC Linear Combination

**154** 

Suppose that V is a vector space. Given n vectors  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$  and n scalars  $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ , their **linear combination** is the vector

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n.$$

©2005, 2006 Robert Beezer

Suppose that V is a vector space. Given a set of vectors  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t\}$ , their **span**,  $\langle S \rangle$ , is the set of all possible linear combinations of  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t$ . Symbolically,

$$\langle S \rangle = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_t \mathbf{u}_t \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$
$$= \left\{ \sum_{i=1}^t \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$

©2005, 2006 Robert Beezer

# ${\bf Theorem~SSS~~Span~of~a~Set~is~a~Subspace}$

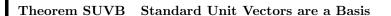
**156** 

Suppose V is a vector space. Given a set of vectors  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t\} \subseteq V$ , their span,  $\langle S \rangle$ , is a subspace. ©2005, 2006 Robert Beezer

|                                                                                              |                                         | 1      |
|----------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| Theorem CSMS Column Space of a Matrix is a Subspace                                          | ;e                                      | 157    |
| Suppose that A is an $m \times n$ matrix. Then $\mathcal{C}(A)$ is a subspace of $\mathbb C$ | $\mathbb{C}^m$ . ©2005, 2006            | Robert |
| Suppose that A is an $m \wedge n$ matrix. Then $C(n)$ is a subspace of                       | , . <u>©</u> 2000, 2000                 | TODGL  |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
| 5                                                                                            |                                         |        |
| Beezer                                                                                       |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
| Theorem RSMS Row Space of a Matrix is a Subspace                                             |                                         | 158    |
|                                                                                              | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - |        |
| Suppose that A is an $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of $\emptyset$ | $\mathbb{C}^n$ . ©2005, 2006            | Robert |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |
|                                                                                              |                                         |        |

 ${\rm Beezer}$ 

| Theorem LNSMS Left Null Space of a Matrix is a Subspace                                                                                                | 159               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Suppose that A is an $m \times n$ matrix. Then $\mathcal{L}(A)$ is a subspace of $\mathbb{C}^m$ . ©2005, 2006                                          | Robert            |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
| Beezer                                                                                                                                                 |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
| Definition B Basis                                                                                                                                     | 160               |
|                                                                                                                                                        |                   |
| Suppose $V$ is a vector space. Then a subset $S \subseteq V$ is a <b>basis</b> of $V$ if it is linearly independent and spans $V$ . ©2005, 2006 Robert | pendent<br>Beezer |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |
|                                                                                                                                                        |                   |



The set of standard unit vectors for  $\mathbb{C}^m$  (Definition SUV),  $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_m\} = \{\mathbf{e}_i \mid 1 \leq i \leq m\}$  is a basis for the vector space  $\mathbb{C}^m$ . ©2005, 2006 Robert Beezer

# ${\bf Theorem~CNSMB~~Columns~of~NonSingular~Matrix~are~a~Basis}$

162

Suppose that A is a square matrix of size m. Then the columns of A are a basis of  $\mathbb{C}^m$  if and only if A is nonsingular. ©2005, 2006 Robert Beezer

#### Theorem NSME5 NonSingular Matrix Equivalences, Round 5

163

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{0\}$ .
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is  $\mathbb{C}^n$ ,  $\mathcal{C}(A) = \mathbb{C}^n$ .
- 8. The columns of A are a basis for  $\mathbb{C}^n$ .

©2005, 2006 Robert Beezer

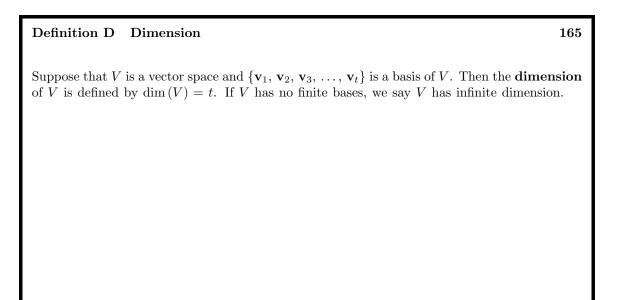
#### Theorem COB Coordinates and Orthonormal Bases

164

Suppose that  $B = \{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \dots, \, \mathbf{v}_p\}$  is an orthonormal basis of the subspace W of  $\mathbb{C}^m$ . For any  $\mathbf{w} \in W$ ,

$$\mathbf{w} = \langle \mathbf{w}, \, \mathbf{v}_1 \rangle \, \mathbf{v}_1 + \langle \mathbf{w}, \, \mathbf{v}_2 \rangle \, \mathbf{v}_2 + \langle \mathbf{w}, \, \mathbf{v}_3 \rangle \, \mathbf{v}_3 + \dots + \langle \mathbf{w}, \, \mathbf{v}_p \rangle \, \mathbf{v}_p$$

©2005, 2006 Robert Beezer



©2005, 2006 Robert Beezer

# Theorem SSLD Spanning Sets and Linear Dependence

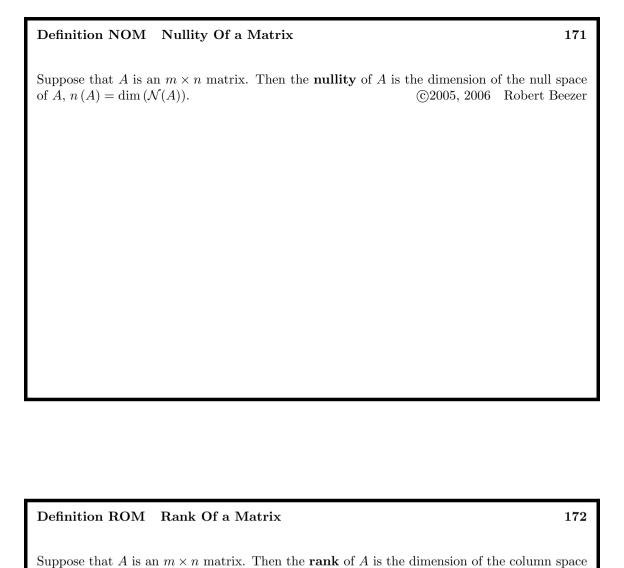
166

Suppose that  $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t\}$  is a finite set of vectors which spans the vector space V. Then any set of t+1 or more vectors from V is linearly dependent. ©2005, 2006 Robert

Beezer

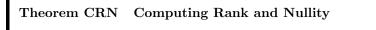
| Theorem BIS Bases have Identical Sizes                                                                              | 167                               |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Suppose that $V$ is a vector space with a finite basis $B$ and a second basis $C$ . have the same size. ©2005, 2006 | Then $B$ and $C$<br>Robert Beezer |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
| Theorem DCM Dimension of $\mathbb{C}^m$                                                                             | 168                               |
| The dimension of $\mathbb{C}^m$ (Example VSCV) is $m$ . ©2005, 2006                                                 | Robert Beezer                     |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |
|                                                                                                                     |                                   |

| Theorem DP Dimension of $P_n$                      |             | 169           |
|----------------------------------------------------|-------------|---------------|
| The dimension of $P_n$ (Example VSP) is $n+1$ .    | ©2005, 2006 | Robert Beezer |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
| Theorem DM Dimension of $M_{mn}$                   |             | 170           |
| The dimension of $M_{mn}$ (Example VSM) is $mn$ .  | @2005_2006  | Robert Beezer |
| The difficultion of $M_{mn}$ (Example VSM) is not. | ©2009, 2000 | ROBERT BECZET |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |
|                                                    |             |               |



©2005, 2006 Robert Beezer

of A,  $r(A) = \dim(\mathcal{C}(A))$ .



Suppose that A is an  $m \times n$  matrix and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then r(A) = r and n(A) = n - r. ©2005, 2006 Robert Beezer

# Theorem RPNC Rank Plus Nullity is Columns

174

Suppose that A is an  $m \times n$  matrix. Then r(A) + n(A) = n. ©2005, 2006 Robert Beezer

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. The rank of A is n, r(A) = n.
- 3. The nullity of A is zero, n(A) = 0.

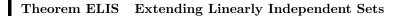
©2005, 2006 Robert Beezer

### Theorem NSME6 NonSingular Matrix Equivalences, Round 6

176

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is  $\mathbb{C}^n$ ,  $\mathcal{C}(A) = \mathbb{C}^n$ .
- 8. The columns of A are a basis for  $\mathbb{C}^n$ .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.



Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose  $\mathbf{w}$  is a vector such that  $\mathbf{w} \notin \langle S \rangle$ . Then the set  $S' = S \cup \{\mathbf{w}\}$  is linearly independent. ©2005, 2006

Robert Beezer

#### Theorem G Goldilocks

178

Suppose that V is a vector space of dimension t. Let  $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m\}$  be a set of vectors from V. Then

- 1. If m > t, then S is linearly dependent.
- 2. If m < t, then S does not span V.
- 3. If m = t and S is linearly independent, then S spans V.
- 4. If m = t and S spans V, then S is linearly independent.

| Theorem EDYES Equal Dimensions Yields Equal Sub                                             | spaces | 179                           |
|---------------------------------------------------------------------------------------------|--------|-------------------------------|
|                                                                                             |        |                               |
| Suppose that $U$ and $V$ are subspaces of the vector space $W$ , sudim $(V)$ . Then $U=V$ . |        | and $\dim(U) =$ Robert Beezer |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |
|                                                                                             |        |                               |

# Theorem RMRT Rank of a Matrix is the Rank of the Transpose

180

Suppose A is an  $m \times n$  matrix. Then  $r(A) = r(A^t)$ . ©2005, 2006 Robert Beezer

Suppose that A is an  $m \times n$  matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then

- 1. dim  $(\mathcal{N}(A)) = n r$
- 2. dim  $(\mathcal{C}(A)) = r$
- 3. dim  $(\mathcal{R}(A)) = r$
- 4. dim  $(\mathcal{L}(A)) = m r$

©2005, 2006 Robert Beezer

## Definition ELEM Elementary Matrices

1.  $E_{i,j}$  is the square matrix of size n with

$$[E_{i,j}]_{k\ell} = \begin{cases} 0 & k \neq i, k \neq j, \ell \neq k \\ 1 & k \neq i, k \neq j, \ell = k \\ 0 & k = i, \ell \neq j \\ 1 & k = i, \ell = j \\ 0 & k = j, \ell \neq i \\ 1 & k = j, \ell = i \end{cases}$$

2.  $E_i(\alpha)$ , for  $\alpha \neq 0$ , is the square matrix of size n with

$$[E_i(\alpha)]_{k\ell} = \begin{cases} 0 & k \neq i, \ell \neq k \\ 1 & k \neq i, \ell = k \\ \alpha & k = i, \ell = i \end{cases}$$

3.  $E_{i,j}(\alpha)$  is the square matrix of size n with

$$[E_{i,j}(\alpha)]_{k\ell} = \begin{cases} 0 & k \neq j, \ell \neq k \\ 1 & k \neq j, \ell = k \\ 0 & k = j, \ell \neq i, \ell \neq j \\ 1 & k = j, \ell = j \\ \alpha & k = j, \ell = i \end{cases}$$

## Theorem EMDRO Elementary Matrices Do Row Operations

183

Suppose that A is a matrix, and B is a matrix of the same size that is obtained from A by a single row operation (Definition RO).

- 1. If the row operation swaps rows i and j, then  $B = E_{i,j}A$ .
- 2. If the row operation multiplies row i by  $\alpha$ , then  $B = E_i(\alpha) A$ .
- 3. If the row operation multiplies row i by  $\alpha$  and adds the result to row j, then  $B = E_{i,j}(\alpha) A$ .

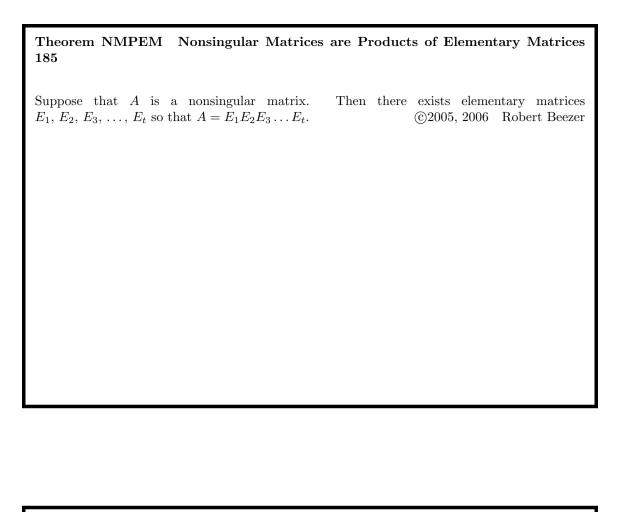
©2005, 2006 Robert Beezer

#### Theorem EMN Elementary Matrices are Nonsingular

184

If E is an elementary matrix, then E is nonsingular.

©2005, 2006 Robert Beezer



#### Definition SM SubMatrix

186

Suppose that A is an  $m \times n$  matrix. Then the **submatrix** A(i|j) is the  $(m-1) \times (n-1)$  matrix obtained from A by removing row i and column j. ©2005, 2006 Robert Beezer

Suppose A is a square matrix. Then its **determinant**,  $\det(A) = |A|$ , is an element of  $\mathbb{C}$  defined recursively by:

If A is a  $1 \times 1$  matrix, then  $\det(A) = [A]_{11}$ .

If A is a matrix of size n with  $n \geq 2$ , then

$$\det\left(A\right) = [A]_{11} \det\left(A\left(1|1\right)\right) - [A]_{12} \det\left(A\left(1|2\right)\right) + [A]_{13} \det\left(A\left(1|3\right)\right) - \dots + (-1)^{n+1} [A]_{1n} \det\left(A\left(1|n\right)\right)$$

©2005, 2006 Robert Beezer

Theorem DMST Determinant of Matrices of Size Two

188

Suppose that 
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then  $\det(A) = ad - bc$ 

©2005, 2006 Robert Beezer

## Theorem DER Determinant Expansion about Rows

189

Suppose that A is a square matrix of size n. Then

$$\begin{split} \det{(A)} &= (-1)^{i+1} \left[ A \right]_{i1} \det{(A \, (i|1))} + (-1)^{i+2} \left[ A \right]_{i2} \det{(A \, (i|2))} \\ &+ (-1)^{i+3} \left[ A \right]_{i3} \det{(A \, (i|3))} + \dots + (-1)^{i+n} \left[ A \right]_{in} \det{(A \, (i|n))} \qquad 1 \leq i \leq n \end{split}$$

which is known as **expansion** about row i.

©2005, 2006 Robert Beezer

## Theorem DT Determinant of the Transpose

190

Suppose that A is a square matrix. Then  $\det(A^t) = \det(A)$ . ©2005, 2006 Robert Beezer

| Theorem  | DEC | Determinant | Expansion | about | Columns |
|----------|-----|-------------|-----------|-------|---------|
| THEOLEIN |     | Determinant | Lapansion | about | Columb  |

Suppose that A is a square matrix of size n. Then

$$\begin{split} \det\left(A\right) &= (-1)^{1+j} \left[A\right]_{1j} \det\left(A\left(1|j\right)\right) + (-1)^{2+j} \left[A\right]_{2j} \det\left(A\left(2|j\right)\right) \\ &+ (-1)^{3+j} \left[A\right]_{3j} \det\left(A\left(3|j\right)\right) + \dots + (-1)^{n+j} \left[A\right]_{nj} \det\left(A\left(n|j\right)\right) \qquad 1 \leq j \leq n \end{split}$$

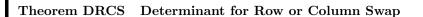
which is known as **expansion** about column j.

©2005, 2006 Robert Beezer

#### Theorem DZRC Determinant with Zero Row or Column

192

Suppose that A is a square matrix with a row where every entry is zero, or a column where every entry is zero. Then  $\det(A) = 0$ . ©2005, 2006 Robert Beezer



Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging the location of two rows, or interchanging the location of two columns. Then  $\det(B) = -\det(A)$ . ©2005, 2006 Robert Beezer

## Theorem DRCM Determinant for Row or Column Multiples

194

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a single row by the scalar  $\alpha$ , or by multiplying a single column by the scalar  $\alpha$ . Then det  $(B) = \alpha \det(A)$ . ©2005, 2006 Robert Beezer

| ©2005, 2006 Robert Beezer                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
| Theorem DRCMA Determinant for Row or Column Multiples and Addition 196                                                                                                                         |
| Suppose that $A$ is a square matrix. Let $B$ be the square matrix obtained from $A$ by multiplying                                                                                             |
| a row by the scalar $\alpha$ and then adding it to another row, or by multiplying a column by the scalar $\alpha$ and then adding it to another column. Then $\det(B) = \det(A)$ . ©2005, 2006 |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |

Theorem DERC Determinant with Equal Rows or Columns

195

| Theorem DIM | Determinant of | the Identity Matrix |
|-------------|----------------|---------------------|

For every  $n \ge 1$ ,  $\det(I_n) = 1$ .

©2005, 2006 Robert Beezer

# Theorem DEM Determinants of Elementary Matrices

198

For the three possible versions of an elementary matrix (Definition ELEM) we have the determinants,

- 1.  $\det(E_{i,j}) = -1$
- 2.  $\det (E_i(\alpha)) = \alpha$
- 3.  $\det (E_{i,j}(\alpha)) = 1$

| Suppose that $A$ is a square matrix of size $n$ and $E$ is any elementary matrix of size $n$ . Then                     |             |                        |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|--|
| $\det\left(EA\right) = \det\left(E\right)\det\left(A\right)$                                                            |             |                        |  |
|                                                                                                                         | ©2005, 2006 | Robert Beezer          |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
| Theorem SMZD Singular Matrices have Zero Determine                                                                      | inants      | 200                    |  |
|                                                                                                                         |             |                        |  |
| Theorem SMZD Singular Matrices have Zero Determined Let $A$ be a square matrix. Then $A$ is singular if and only if det |             | <b>200</b> ©2005, 2006 |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |
|                                                                                                                         |             |                        |  |

Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication

199

### Theorem NSME7 NonSingular Matrix Equivalences, Round 7

201

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{0\}$ .
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is  $\mathbb{C}^n$ ,  $\mathcal{C}(A) = \mathbb{C}^n$ .
- 8. The columns of A are a basis for  $\mathbb{C}^n$ .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero,  $\det(A) \neq 0$ .

©2005, 2006 Robert Beezer

### Theorem DRMM Determinant Respects Matrix Multiplication

202

Suppose that A and B are square matrices of the same size. Then  $\det(AB) = \det(A) \det(B)$ . © 2005, 2006 Robert Beezer

| Definition EEM | Eigenvalues | and Eigenvectors | ofa | Matrix |
|----------------|-------------|------------------|-----|--------|

Suppose that A is a square matrix of size n,  $\mathbf{x} \neq \mathbf{0}$  is a vector in  $\mathbb{C}^n$ , and  $\lambda$  is a scalar in  $\mathbb{C}$ . Then we say  $\mathbf{x}$  is an **eigenvector** of A with **eigenvalue**  $\lambda$  if

$$A\mathbf{x} = \lambda \mathbf{x}$$

©2005, 2006 Robert Beezer

## Theorem EMHE Every Matrix Has an Eigenvalue

204

Suppose A is a square matrix. Then A has at least one eigenvalue. ©2005, 2006 Robert

Beezer

| Definition CP | Characteristic | Polynomial |
|---------------|----------------|------------|

Suppose that A is a square matrix of size n. Then the **characteristic polynomial** of A is the polynomial  $p_{A}(x)$  defined by

$$p_A(x) = \det(A - xI_n)$$

©2005, 2006 Robert Beezer

# Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials 206

Suppose A is a square matrix. Then  $\lambda$  is an eigenvalue of A if and only if  $p_A(\lambda) = 0$ . ©2005,

| Definition EM Eigenspace of a Matrix                                                                                                                                                | 207                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                                                                                                                                     |                                                                 |
| Suppose that $A$ is a square matrix and $\lambda$ is an eigenvalue of $A$ . $\lambda$ , $E_A(\lambda)$ , is the set of all the eigenvectors of $A$ for $\lambda$ , together vector. |                                                                 |
| vector.                                                                                                                                                                             | ©2000, 2000 1000010 Ecc.                                        |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |
| Theorem EMS Eigenspace for a Matrix is a Subspace                                                                                                                                   | 208                                                             |
| Suppose $A$ is a square matrix of size $n$ and $\lambda$ is an eigenvalue of is a subspace of the vector space $\mathbb{C}^n$ .                                                     | A. Then the eigenspace $E_A(\lambda)$ ©2005, 2006 Robert Beezer |
| •                                                                                                                                                                                   |                                                                 |
|                                                                                                                                                                                     |                                                                 |
|                                                                                                                                                                                     |                                                                 |

| Theorem EMNS | Eigenspace of | of a | Matrix | is a | a Null | Space |
|--------------|---------------|------|--------|------|--------|-------|

Suppose A is a square matrix of size n and  $\lambda$  is an eigenvalue of A. Then

$$E_A(\lambda) = \mathcal{N}(A - \lambda I_n)$$

©2005, 2006 Robert Beezer

# Definition AME Algebraic Multiplicity of an Eigenvalue

210

Suppose that A is a square matrix and  $\lambda$  is an eigenvalue of A. Then the **algebraic multiplicity** of  $\lambda$ ,  $\alpha_A(\lambda)$ , is the highest power of  $(x - \lambda)$  that divides the characteristic polynomial,  $p_A(x)$ . ©2005, 2006 Robert Beezer

| Definition GME Geometric Multiplicity of an Eigenvalue                                                                | 211    |
|-----------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                       |        |
| Suppose that A is a square matrix and $\lambda$ is an eigenvalue of A. Then the <b>geometric</b> in                   | nulti- |
| <b>plicity</b> of $\lambda$ , $\gamma_A(\lambda)$ , is the dimension of the eigenspace $E_A(\lambda)$ . ©2005, 2006 F | Robert |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |
|                                                                                                                       |        |

Beezer

# Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 212

Suppose that A is a square matrix and  $S = \{\mathbf{x}_1, \, \mathbf{x}_2, \, \mathbf{x}_3, \, \dots, \, \mathbf{x}_p\}$  is a set of eigenvectors with eigenvalues  $\lambda_1, \, \lambda_2, \, \lambda_3, \, \dots, \, \lambda_p$  such that  $\lambda_i \neq \lambda_j$  whenever  $i \neq j$ . Then S is a linearly independent set. ©2005, 2006 Robert

Beezer

Suppose A is a square matrix. Then A is singular if and only if  $\lambda = 0$  is an eigenvalue of A.

©2005, 2006 Robert Beezer

# Theorem NSME8 NonSingular Matrix Equivalences, Round 8

214

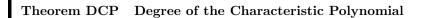
Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is  $\mathbb{C}^n$ ,  $\mathcal{C}(A) = \mathbb{C}^n$ .
- 8. The columns of A are a basis for  $\mathbb{C}^n$ .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero,  $\det(A) \neq 0$ .
- 12.  $\lambda = 0$  is not an eigenvalue of A.

| Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix                                                                                                                 | 215          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Suppose A is a square matrix and $\lambda$ is an eigenvalue of A. Then $\alpha\lambda$ is an eigenvalue of                                                                | $\alpha A$ . |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
| ©2005, 2006 Robert Beezer                                                                                                                                                 |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
| Theorem EOMP Eigenvalues Of Matrix Powers                                                                                                                                 | 216          |
| Suppose $A$ is a square matrix, $\lambda$ is an eigenvalue of $A$ , and $s \geq 0$ is an integer. Then $\lambda$ eigenvalue of $A^s$ . $\textcircled{c}2005, 2006$ Robert |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |
|                                                                                                                                                                           |              |

| Theorem EPM Eigenvalues of the Polynomial of a Matrix                                                                                                                         | 217    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Suppose A is a square matrix and $\lambda$ is an eigenvalue of A. Let $q(x)$ be a polynomial in variable of Theory $q(\lambda)$ is an eigenvalue of the matrix $q(\lambda)$ . |        |
| variable $x$ . Then $q(\lambda)$ is an eigenvalue of the matrix $q(A)$ . ©2005, 2006 Robert B                                                                                 | eezer  |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
| Theorem EIM Eigenvalues of the Inverse of a Matrix                                                                                                                            | 218    |
| Suppose A is a square nonsingular matrix and $\lambda$ is an eigenvalue of A. Then $\frac{1}{\lambda}$ is an eigen                                                            | value  |
| of the matrix $A^{-1}$ . ©2005, 2006 Robert B                                                                                                                                 | Seezer |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |
|                                                                                                                                                                               |        |

| Theorem ETM Eigenvalues of the Transpose of a Matrix                                                                                                            | 219 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Suppose $A$ is a square matrix and $\lambda$ is an eigenvalue of $A$ . Then $\lambda$ is an eigenvalue of the result. $A^t$ .                                   |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
| Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs                                                                                              | 220 |
| Suppose $A$ is a square matrix with real entries and $\mathbf{x}$ is an eigenvector of $A$ for the eigenvalue $\overline{\lambda}$ . Color, 2005, 2006 Robert 1 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |
|                                                                                                                                                                 |     |



Suppose that A is a square matrix of size n. Then the characteristic polynomial of A,  $p_{A}\left(x\right)$ , has degree n. ©2005, 2006 Robert Beezer

# Theorem NEM Number of Eigenvalues of a Matrix

222

Suppose that A is a square matrix of size n with distinct eigenvalues  $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_k$ . Then

$$\sum_{i=1}^{k} \alpha_A \left( \lambda_i \right) = n$$

# Theorem ME Multiplicities of an Eigenvalue

223

Suppose that A is a square matrix of size n and  $\lambda$  is an eigenvalue. Then

$$1 \le \gamma_A(\lambda) \le \alpha_A(\lambda) \le n$$

©2005, 2006 Robert Beezer

#### Theorem MNEM Maximum Number of Eigenvalues of a Matrix

 $\mathbf{224}$ 

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigenvalues. ©2005, 2006 Robert

Beezer

| Theorem HMRE I           | Hermitian Matrices have Real Eigenvalues                                                                                                                | 225   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Suppose that $A$ is a He | ermitian matrix and $\lambda$ is an eigenvalue of $A$ . Then $\lambda \in \mathbb{R}$ .                                                                 | 2005, |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
| 2006 Robert Beezer       |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |
| Theorem HMOE I           | Hermitian Matrices have Orthogonal Eigenvectors                                                                                                         | 226   |
|                          | Hermitian matrix and $\mathbf{x}$ and $\mathbf{y}$ are two eigenvectors of $A$ for different $\mathbf{y}$ are orthogonal vectors. ©2005, 2006 Robert Be |       |
|                          |                                                                                                                                                         |       |
|                          |                                                                                                                                                         |       |

#### Definition SIM Similar Matrices

227

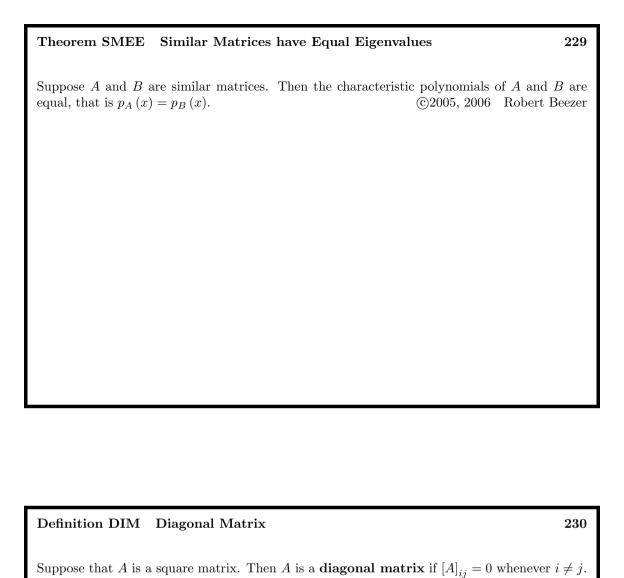
Suppose A and B are two square matrices of size n. Then A and B are **similar** if there exists a nonsingular matrix of size n, S, such that  $A = S^{-1}BS$ . ©2005, 2006 Robert Beezer

#### Theorem SER Similarity is an Equivalence Relation

228

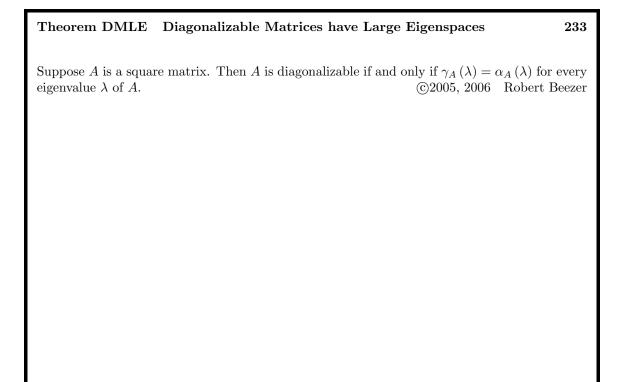
Suppose A, B and C are square matrices of size n. Then

- 1. A is similar to A. (Reflexive)
- 2. If A is similar to B, then B is similar to A. (Symmetric)
- 3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)



| Definition DZM Diagonalizable Matrix                                                                                                    | 231                        |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Suppose $A$ is a square matrix. Then $A$ is <b>diagonalizable</b> if $A$ is similar to a diagonalizable $\textcircled{0}2005, 2006$ Rob | nal matrix.<br>bert Beezer |
|                                                                                                                                         |                            |
|                                                                                                                                         |                            |
|                                                                                                                                         |                            |
|                                                                                                                                         |                            |
|                                                                                                                                         |                            |
|                                                                                                                                         |                            |
|                                                                                                                                         |                            |
| Theorem DC Diagonalization Characterization                                                                                             | 232                        |
| Theorem DC Diagonalization Characterization  Suppose $A$ is a square matrix of size $n$ . Then $A$ is diagonalizable if and only if the |                            |
|                                                                                                                                         | ere exists a               |
| Suppose $A$ is a square matrix of size $n$ . Then $A$ is diagonalizable if and only if the                                              | ere exists a               |
| Suppose $A$ is a square matrix of size $n$ . Then $A$ is diagonalizable if and only if the                                              | ere exists a               |
| Suppose $A$ is a square matrix of size $n$ . Then $A$ is diagonalizable if and only if the                                              | ere exists a               |
| Suppose $A$ is a square matrix of size $n$ . Then $A$ is diagonalizable if and only if the                                              | ere exists a               |

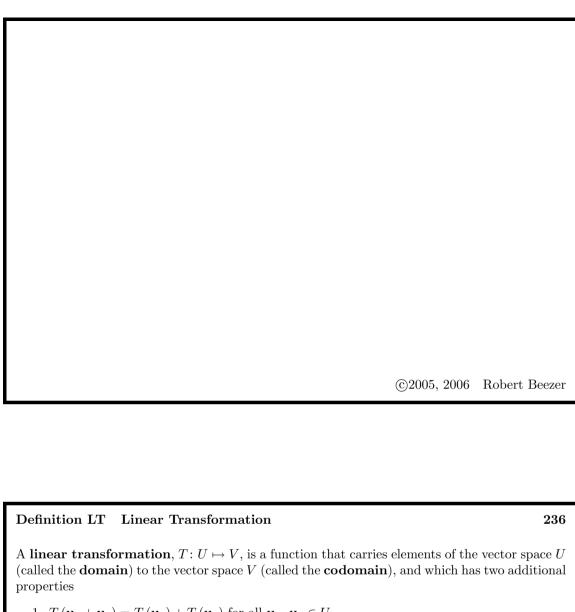
г



# Theorem DED Distinct Eigenvalues implies Diagonalizable

234

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.



1. 
$$T(\mathbf{u}_1 + \mathbf{u}_2) = T(\mathbf{u}_1) + T(\mathbf{u}_2)$$
 for all  $\mathbf{u}_1, \mathbf{u}_2 \in U$ 

2. 
$$T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$$
 for all  $\mathbf{u} \in U$  and all  $\alpha \in \mathbb{C}$ 

| Theorem LTTZZ | Linear Transformations Take Zero to Zero |
|---------------|------------------------------------------|
|               |                                          |

Suppose  $T\colon U\mapsto V$  is a linear transformation. Then  $T\left(\mathbf{0}\right)=\mathbf{0}.$  ©2005, 2006 Robert

Beezer

#### Theorem MBLT Matrices Build Linear Transformations

238

237

Suppose that A is an  $m \times n$  matrix. Define a function  $T: \mathbb{C}^n \mapsto \mathbb{C}^m$  by  $T(\mathbf{x}) = A\mathbf{x}$ . Then T is a linear transformation. ©2005, 2006 Robert Beezer

| Theorem MLTCV | Matrix of a Linear | Transformation. | Column Vectors |
|---------------|--------------------|-----------------|----------------|

Suppose that  $T: \mathbb{C}^n \mapsto \mathbb{C}^m$  is a linear transformation. Then there is an  $m \times n$  matrix A such that  $T(\mathbf{x}) = A\mathbf{x}$ . ©2005, 2006 Robert Beezer

#### Theorem LTLC Linear Transformations and Linear Combinations

240

Suppose that  $T: U \mapsto V$  is a linear transformation,  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t$  are vectors from U and  $a_1, a_2, a_3, \ldots, a_t$  are scalars from  $\mathbb{C}$ . Then

$$T\left(a_{1}\mathbf{u}_{1}+a_{2}\mathbf{u}_{2}+a_{3}\mathbf{u}_{3}+\cdots+a_{t}\mathbf{u}_{t}\right)=a_{1}T\left(\mathbf{u}_{1}\right)+a_{2}T\left(\mathbf{u}_{2}\right)+a_{3}T\left(\mathbf{u}_{3}\right)+\cdots+a_{t}T\left(\mathbf{u}_{t}\right)$$

#### Theorem LTDB Linear Transformation Defined on a Basis

241

Suppose that  $T: U \mapsto V$  is a linear transformation,  $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  is a basis for U and  $\mathbf{w}$  is a vector from U. Let  $a_1, a_2, a_3, \dots, a_n$  be the scalars from  $\mathbb C$  such that

$$\mathbf{w} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + a_3 \mathbf{u}_3 + \dots + a_n \mathbf{u}_n$$

Then

$$T(\mathbf{w}) = a_1 T(\mathbf{u}_1) + a_2 T(\mathbf{u}_2) + a_3 T(\mathbf{u}_3) + \dots + a_n T(\mathbf{u}_n)$$

©2005, 2006 Robert Beezer

#### Definition PI Pre-Image

242

Suppose that  $T: U \mapsto V$  is a linear transformation. For each  $\mathbf{v}$ , define the **pre-image** of  $\mathbf{v}$  to be the subset of U given by

$$T^{-1}\left(\mathbf{v}\right) = \left\{ \mathbf{u} \in U \mid T\left(\mathbf{u}\right) = \mathbf{v} \right\}$$

| Definition LTA | Linear Transformatio | n Addition |
|----------------|----------------------|------------|

Suppose that  $T: U \mapsto V$  and  $S: U \mapsto V$  are two linear transformations with the same domain and codomain. Then their **sum** is the function  $T+S: U \mapsto V$  whose outputs are defined by

$$(T+S)(\mathbf{u}) = T(\mathbf{u}) + S(\mathbf{u})$$

©2005, 2006 Robert Beezer

#### Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 244

Suppose that  $T: U \mapsto V$  and  $S: U \mapsto V$  are two linear transformations with the same domain and codomain. Then  $T+S: U \mapsto V$  is a linear transformation. ©2005, 2006 Robert Beezer

| Definition | LTSM   | Linear | Transformation   | Scalar | Multiplication |
|------------|--------|--------|------------------|--------|----------------|
| Demmon     | TIDIVI | Linear | 11 ansion mation | Scarai | Munipheanon    |

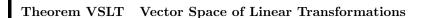
Suppose that  $T: U \mapsto V$  is a linear transformation and  $\alpha \in \mathbb{C}$ . Then the **scalar multiple** is the function  $\alpha T: U \mapsto V$  whose outputs are defined by

$$(\alpha T)(\mathbf{u}) = \alpha T(\mathbf{u})$$

©2005, 2006 Robert Beezer

# Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 246

Suppose that  $T\colon U\mapsto V$  is a linear transformation and  $\alpha\in\mathbb{C}$ . Then  $(\alpha T)\colon U\mapsto V$  is a linear transformation. ©2005, 2006 Robert Beezer



Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V, LT (U, V) is a vector space when the operations are those given in Definition LTA and Definition LTSM. ©2005, 2006 Robert Beezer

#### Definition LTC Linear Transformation Composition

248

Suppose that  $T \colon U \mapsto V$  and  $S \colon V \mapsto W$  are linear transformations. Then the **composition** of S and T is the function  $(S \circ T) \colon U \mapsto W$  whose outputs are defined by

$$(S \circ T)(\mathbf{u}) = S(T(\mathbf{u}))$$

| Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 249                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suppose that $T\colon U\mapsto V$ and $S\colon V\mapsto W$ are linear transformations. Then $(S\circ T)\colon U\mapsto W$ is a linear transformation. ©2005, 2006 Robert Beezer            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
|                                                                                                                                                                                            |
| Definition ILT Injective Linear Transformation 250                                                                                                                                         |
| Suppose $T: U \mapsto V$ is a linear transformation. Then $T$ is <b>injective</b> if whenever $T(\mathbf{x}) = T(\mathbf{y})$ , then $\mathbf{x} = \mathbf{y}$ . ©2005, 2006 Robert Beezer |

| Definition KLT | Kernel of a Linear | Transformation |
|----------------|--------------------|----------------|

Suppose  $T \colon U \mapsto V$  is a linear transformation. Then the **kernel** of T is the set

$$\mathcal{K}(T) = \{ \mathbf{u} \in U \mid T(\mathbf{u}) = \mathbf{0} \}$$

©2005, 2006 Robert Beezer

#### Theorem KLTS Kernel of a Linear Transformation is a Subspace

**252** 

Suppose that  $T: U \mapsto V$  is a linear transformation. Then the kernel of T,  $\mathcal{K}(T)$ , is a subspace of U. ©2005, 2006 Robert Beezer

| Theorem | $\mathbf{KPI}$ | Kernel | and | Pre- | Image |
|---------|----------------|--------|-----|------|-------|

Suppose  $T: U \mapsto V$  is a linear transformation and  $\mathbf{v} \in V$ . If the preimage  $T^{-1}(\mathbf{v})$  is non-empty, and  $\mathbf{u} \in T^{-1}(\mathbf{v})$  then

$$T^{-1}(\mathbf{v}) = \{\mathbf{u} + \mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T)\} = \mathbf{u} + \mathcal{K}(T)$$

©2005, 2006 Robert Beezer

# Theorem KILT Kernel of an Injective Linear Transformation

**254** 

Suppose that  $T: U \mapsto V$  is a linear transformation. Then T is injective if and only if the kernel of T is trivial,  $\mathcal{K}(T) = \{\mathbf{0}\}$ . ©2005, 2006 Robert Beezer

| Theorem ILTLI   | Injective Linea  | r Transformations and   | Linear In | dependence | 255 |
|-----------------|------------------|-------------------------|-----------|------------|-----|
| THOUSE THE LEFT | III CCUIVC LINCA | i ii ansioi maddons and | Linca in  | acpenachee | 400 |

Suppose that  $T \colon U \mapsto V$  is an injective linear transformation and  $S = \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_t\}$  is a linearly independent subset of U. Then  $R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_t)\}$  is a linearly independent subset of V. ©2005, 2006 Robert Beezer

#### 

256

Suppose that  $T: U \mapsto V$  is a linear transformation and  $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m\}$  is a basis of U. Then T is injective if and only if  $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}$  is a linearly independent subset of V. ©2005, 2006 Robert Beezer

| Theorem ILTD Injective Linear Transformations and Dimension 257                                                          |
|--------------------------------------------------------------------------------------------------------------------------|
| Suppose that $T: U \mapsto V$ is an injective linear transformation. Then $\dim(U) \leq \dim(V)$ .                       |
| Suppose that $T: C \mapsto V$ is an injective linear transformation. Then $\dim(C) \leq \dim(V)$ .                       |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
| ©2005, 2006 Robert Beezer                                                                                                |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
| Theorem CILTI Composition of Injective Linear Transformations is Injective 258                                           |
| Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are injective linear transformations. Then $(S \circ T): U \mapsto W$ |
| W is an injective linear transformation. ©2005, 2006 Robert Beezer                                                       |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |

| Definition | $\operatorname{SLT}$ | Surjective | Linear | Transf | formation |
|------------|----------------------|------------|--------|--------|-----------|

Suppose  $T \colon U \mapsto V$  is a linear transformation. Then T is **surjective** if for every  $\mathbf{v} \in V$  there exists a  $\mathbf{u} \in U$  so that  $T(\mathbf{u}) = \mathbf{v}$ . ©2005, 2006 Robert Beezer

# Definition RLT Range of a Linear Transformation

260

Suppose  $T \colon U \mapsto V$  is a linear transformation. Then the  ${\bf range}$  of T is the set

$$\mathcal{R}(T) = \{ T(\mathbf{u}) \mid \mathbf{u} \in U \}$$

| Theorem RLTS Range of a Linear Transformation is a Subspace                                                                                                                 | 261 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Suppose that $T: U \mapsto V$ is a linear transformation. Then the range of $T$ , $\mathcal{R}(T)$ , is a sub of $V$ . ©2005, 2006 Robert B                                 |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
| Theorem RSLT Range of a Surjective Linear Transformation                                                                                                                    | 262 |
| Suppose that $T: U \mapsto V$ is a linear transformation. Then $T$ is surjective if and only if the of $T$ equals the codomain, $\mathcal{R}(T) = V$ . ©2005, 2006 Robert B |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |
|                                                                                                                                                                             |     |

| Theorem SSRLT | Spanning Set for | Range of a Linear | Transformation |
|---------------|------------------|-------------------|----------------|

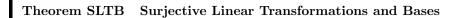
Suppose that  $T: U \mapsto V$  is a linear transformation and  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t\}$  spans U. Then  $R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_t)\}$  spans  $\mathcal{R}(T)$ . ©2005, 2006 Robert Beezer

# Theorem RPI Range and Pre-Image

**264** 

Suppose that  $T\colon U\mapsto V$  is a linear transformation. Then

$$\mathbf{v} \in \mathcal{R}(T)$$
 if and only if  $T^{-1}(\mathbf{v}) \neq \emptyset$ 



Suppose that  $T: U \mapsto V$  is a linear transformation and  $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m\}$  is a basis of U. Then T is surjective if and only if  $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}$  is a spanning set for V.

#### Theorem SLTD Surjective Linear Transformations and Dimension

266

Suppose that  $T: U \mapsto V$  is a surjective linear transformation. Then  $\dim(U) \geq \dim(V)$ .

| Theorem CSLTS Composition of Surjective Linear Trans<br>267                                                                                     | sformations is Surjective                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Suppose that $T\colon U\mapsto V$ and $S\colon V\mapsto W$ are surjective linear t $T)\colon U\mapsto W$ is a surjective linear transformation. | transformations. Then $(S \circ 2005, 2006]$ Robert Beezer |
|                                                                                                                                                 |                                                            |
|                                                                                                                                                 |                                                            |
|                                                                                                                                                 |                                                            |
|                                                                                                                                                 |                                                            |
|                                                                                                                                                 |                                                            |
|                                                                                                                                                 |                                                            |
|                                                                                                                                                 |                                                            |
|                                                                                                                                                 |                                                            |
|                                                                                                                                                 |                                                            |

©2005, 2006 Robert Beezer

**Identity Linear Transformation** 

 $I_W \colon W \mapsto W, \qquad I_W (\mathbf{w}) = \mathbf{w}$ 

The identity linear transformation on the vector space W is defined as

**Definition IDLT** 

Suppose that  $T\colon U\mapsto V$  is a linear transformation. If there is a function  $S\colon V\mapsto U$  such that

$$S \circ T = I_U \qquad \qquad T \circ S = I_V$$

then T is **invertible**. In this case, we call S the **inverse** of T and write  $S = T^{-1}$ . ©2005,

2006 Robert Beezer

# Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation 270

Suppose that  $T: U \mapsto V$  is an invertible linear transformation. Then the function  $T^{-1}: V \mapsto U$  is a linear transformation. ©2005, 2006 Robert Beezer

| Theorem IILT | Inverse of an Invertible Linear Transformation |
|--------------|------------------------------------------------|

Suppose that  $T: U \mapsto V$  is an invertible linear transformation. Then  $T^{-1}$  is an invertible linear transformation and  $(T^{-1})^{-1} = T$ . ©2005, 2006 Robert Beezer

# Theorem ILTIS Invertible Linear Transformations are Injective and Surjective 272

Suppose  $T: U \mapsto V$  is a linear transformation. Then T is invertible if and only if T is injective and surjective. ©2005, 2006 Robert Beezer

| Theorem CIVLT | Composition | of Invertible Li | near Transformations |
|---------------|-------------|------------------|----------------------|

Suppose that  $T\colon U\mapsto V$  and  $S\colon V\mapsto W$  are invertible linear transformations. Then the composition,  $(S\circ T)\colon U\mapsto W$  is an invertible linear transformation. ©2005, 2006 Robert

Beezer

# Theorem ICLT Inverse of a Composition of Linear Transformations

274

Suppose that  $T: U \mapsto V$  and  $S: V \mapsto W$  are invertible linear transformations. Then  $S \circ T$  is invertible and  $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$ . ©2005, 2006 Robert Beezer

| Definition | IVS | Isomorphic | Vector | Spaces |
|------------|-----|------------|--------|--------|

Two vector spaces U and V are **isomorphic** if there exists an invertible linear transformation T with domain U and codomain V,  $T: U \mapsto V$ . In this case, we write  $U \cong V$ , and the linear transformation T is known as an **isomorphism** between U and V. ©2005, 2006 Robert

Beezer

# Theorem IVSED Isomorphic Vector Spaces have Equal Dimension 276

Suppose U and V are isomorphic vector spaces. Then  $\dim(U) = \dim(V)$ . ©2005, 2006

Robert Beezer

| Definition | ROLT | Rank Of a | Linear | Transformation |
|------------|------|-----------|--------|----------------|

Suppose that  $T: U \mapsto V$  is a linear transformation. Then the **rank** of T, r(T), is the dimension of the range of T,

$$r(T) = \dim \left( \mathcal{R}(T) \right)$$

©2005, 2006 Robert Beezer

# 

**278** 

Suppose that  $T:U\mapsto V$  is a linear transformation. Then the **nullity** of T, n(T), is the dimension of the kernel of T,

$$n(T) = \dim (\mathcal{K}(T))$$

| Theorem ROSLT | Rank Of a Surjective Linear Transformation |  |
|---------------|--------------------------------------------|--|
|               |                                            |  |
|               |                                            |  |

Suppose that  $T\colon U\mapsto V$  is a linear transformation. Then the rank of T is the dimension of V,  $r\left(T\right)=\dim\left(V\right)$ , if and only if T is surjective.

# ${\bf Theorem~NOILT~~Nullity~Of~an~Injective~Linear~Transformation}$

280

279

Suppose that  $T\colon U\mapsto V$  is an injective linear transformation. Then the nullity of T is zero,  $n\left(T\right)=0$ , if and only if T is injective.

#### Theorem RPNDD Rank Plus Nullity is Domain Dimension

**281** 

Suppose that  $T: U \mapsto V$  is a linear transformation. Then

$$r(T) + n(T) = \dim(U)$$

©2005, 2006 Robert Beezer

#### Definition VR Vector Representation

**282** 

Suppose that V is a vector space with a basis  $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$ . Define a function  $\rho_B \colon V \mapsto \mathbb{C}^n$  as follows. For  $\mathbf{w} \in V$ , find scalars  $a_1, a_2, a_3, \dots, a_n$  so that

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + \dots + a_n \mathbf{v}_n$$

then

$$\left[\rho_B\left(\mathbf{w}\right)\right]_i = a_i$$

$$1 \le i \le n$$

| Theorem VRLT Vector Representation is a Linear Transform                     | nation        | 283      |
|------------------------------------------------------------------------------|---------------|----------|
| The function $\rho_B$ (Definition VR) is a linear transformation. ©2008      | 5, 2006 Rober | t Beezer |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
| Theorem VRI Vector Representation is Injective                               |               | 284      |
| The function $\rho_B$ (Definition VR) is an injective linear transformation. | ©2005, 2006   | Robert   |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |
|                                                                              |               |          |

 $\operatorname{Beezer}$ 

| Theorem VRS Vector Representation is Surjective                                          | 285     |
|------------------------------------------------------------------------------------------|---------|
| The function $\rho_B$ (Definition VR) is a surjective linear transformation. ©2005, 2006 | Robert  |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
| Beezer                                                                                   |         |
|                                                                                          |         |
|                                                                                          |         |
| Theorem VRILT Vector Representation is an Invertible Linear Transform                    | nation  |
| 286                                                                                      |         |
| The function $\rho_B$ (Definition VR) is an invertible linear transformation. ©200       | 5, 2006 |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |
|                                                                                          |         |

| Theorem CFDVS Characterization of Finite Dimensional Vector Spaces                                                                               | 287    |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Suppose that $V$ is a vector space with dimension $n$ . Then $V$ is isomorphic to $\mathbb{C}^n$ .                                               | ©2005, |
|                                                                                                                                                  |        |
|                                                                                                                                                  |        |
|                                                                                                                                                  |        |
|                                                                                                                                                  |        |
|                                                                                                                                                  |        |
|                                                                                                                                                  |        |
|                                                                                                                                                  |        |
|                                                                                                                                                  |        |
| 2006 Robert Beezer                                                                                                                               |        |
|                                                                                                                                                  |        |
|                                                                                                                                                  |        |
|                                                                                                                                                  | 1      |
| Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces                                                                                    | 288    |
| Suppose $U$ and $V$ are both finite-dimensional vector spaces. Then $U$ and $V$ are isomorand only if $\dim(U) = \dim(V)$ . ©2005, 2006 Robert 1 |        |
|                                                                                                                                                  |        |



289

Suppose that U is a vector space with a basis B of size n. Then  $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_k\}$  is a linearly independent subset of U if and only if  $R = \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \dots, \rho_B(\mathbf{u}_k)\}$  is a linearly independent subset of  $\mathbb{C}^n$ . ©2005, 2006 Robert Beezer

#### Theorem CSS Coordinatization and Spanning Sets

290

Suppose that U is a vector space with a basis B of size n. Then  $\mathbf{u} \in \langle \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_k\} \rangle$  if and only if  $\rho_B(\mathbf{u}) \in \langle \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \dots, \rho_B(\mathbf{u}_k)\} \rangle$ . ©2005, 2006 Robert

Beezer

# Definition MR Matrix Representation

291

Suppose that  $T: U \mapsto V$  is a linear transformation,  $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  is a basis for U of size n, and C is a basis for V of size m. Then the **matrix representation** of T relative to B and C is the  $m \times n$  matrix,

$$M_{B,C}^{T} = \left[ \left. \rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)\right| \right. \rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)\right| \left. \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right)\right| \ldots \left| \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]$$

©2005, 2006 Robert Beezer

#### Theorem FTMR Fundamental Theorem of Matrix Representation

**292** 

Suppose that  $T: U \mapsto V$  is a linear transformation, B is a basis for U, C is a basis for V and  $M_{B,C}^T$  is the matrix representation of T relative to B and C. Then, for any  $\mathbf{u} \in U$ ,

$$\rho_{C}\left(T\left(\mathbf{u}\right)\right)=M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)$$

or equivalently

$$T\left(\mathbf{u}\right) = \rho_{C}^{-1}\left(M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)\right)$$

| Theorem MRSLT M | Matrix Representation | of a Sum of Linear | Transformations293 |
|-----------------|-----------------------|--------------------|--------------------|
|-----------------|-----------------------|--------------------|--------------------|

Suppose that  $T\colon U\mapsto V$  and  $S\colon U\mapsto V$  are linear transformations, B is a basis of U and C is a basis of V. Then

$$M_{B,C}^{T+S} = M_{B,C}^{T} + M_{B,C}^{S}$$

©2005, 2006 Robert Beezer

# Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation 294

Suppose that  $T \colon U \mapsto V$  is a linear transformation,  $\alpha \in \mathbb{C}$ , B is a basis of U and C is a basis of V. Then

$$M_{B,C}^{\alpha T} = \alpha M_{B,C}^T$$

# Theorem MRCLT Matrix Representation of a Composition of Linear Transformations 295

Suppose that  $T: U \mapsto V$  and  $S: V \mapsto W$  are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

$$M_{B,D}^{S \circ T} = M_{C,D}^S M_{B,C}^T$$

©2005, 2006 Robert Beezer

#### Theorem KNSI Kernel and Null Space Isomorphism

296

Suppose that  $T: U \mapsto V$  is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the kernel of T is isomorphic to the null space of  $M_{B,C}^T$ ,

$$\mathcal{K}(T) \cong \mathcal{N}\big(M_{B,C}^T\big)$$

#### Theorem RCSI Range and Column Space Isomorphism

297

Suppose that  $T \colon U \mapsto V$  is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the column space of  $M_{B,C}^T$ ,

$$\mathcal{R}(T) \cong \mathcal{C}(M_{B,C}^T)$$

©2005, 2006 Robert Beezer

#### Theorem IMR Invertible Matrix Representations

298

Suppose that  $T\colon U\mapsto V$  is an invertible linear transformation, B is a basis for U and C is a basis for V. Then the matrix representation of T relative to B and C,  $M_{B,C}^T$  is an invertible matrix, and

$$M_{C,B}^{T^{-1}} = \left(M_{B,C}^T\right)^{-1}$$

Suppose that A is a square matrix of size n and  $T: \mathbb{C}^n \to \mathbb{C}^n$  is the linear transformation defined by  $T(\mathbf{x}) = A\mathbf{x}$ . Then A is invertible matrix if and only if T is an invertible linear transformation.

# ${\bf Theorem~NSME9~~Non Singular~Matrix~Equivalences,~Round~9}$

300

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector,  $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system  $\mathcal{LS}(A, \mathbf{b})$  has a unique solution for every possible choice of  $\mathbf{b}$ .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is  $\mathbb{C}^n$ ,  $\mathcal{C}(A) = \mathbb{C}^n$ .
- 8. The columns of A are a basis for  $\mathbb{C}^n$ .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero,  $\det(A) \neq 0$ .
- 12.  $\lambda = 0$  is not an eigenvalue of A.
- 13. The linear transformation  $T: \mathbb{C}^n \mapsto \mathbb{C}^n$  defined by  $T(\mathbf{x}) = A\mathbf{x}$  is invertible.

Suppose that  $T\colon V\mapsto V$  is a linear transformation. Then a nonzero vector  $\mathbf{v}\in V$  is an **eigenvector** of T for the **eigenvalue**  $\lambda$  if  $T(\mathbf{v})=\lambda\mathbf{v}$ .

# Definition CBM Change-of-Basis Matrix

**302** 

Suppose that V is a vector space, and  $I_V: V \mapsto V$  is the identity linear transformation on V. Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$  and C be two bases of V. Then the **change-of-basis matrix** from B to C is the matrix representation of  $I_V$  relative to B and C,

$$C_{B,C} = M_{B,C}^{I_V}$$

$$= \left[ \rho_C \left( I_V \left( \mathbf{v}_1 \right) \right) \middle| \rho_C \left( I_V \left( \mathbf{v}_2 \right) \right) \middle| \rho_C \left( I_V \left( \mathbf{v}_3 \right) \right) \middle| \dots \middle| \rho_C \left( I_V \left( \mathbf{v}_n \right) \right) \right]$$

$$= \left[ \rho_C \left( \mathbf{v}_1 \right) \middle| \rho_C \left( \mathbf{v}_2 \right) \middle| \rho_C \left( \mathbf{v}_3 \right) \middle| \dots \middle| \rho_C \left( \mathbf{v}_n \right) \right]$$

| Theorem | CB | Change-of-Basis |
|---------|----|-----------------|

Suppose that  $\mathbf{v}$  is a vector in the vector space V and B and C are bases of V. Then

$$\rho_C\left(\mathbf{v}\right) = C_{B,C}\rho_B\left(\mathbf{v}\right)$$

©2005, 2006 Robert Beezer

# Theorem ICBM Inverse of Change-of-Basis Matrix

**304** 

Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis matrix  $C_{B,C}$  is nonsingular and

$$C_{B,C}^{-1} = C_{C,B}$$

| Theorem MRCB | Matrix | Representation | and | Change | of | Basis |
|--------------|--------|----------------|-----|--------|----|-------|

305

Suppose that  $T \colon U \mapsto V$  is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

$$M_{B,D}^T = C_{E,D} M_{C,E}^T C_{B,C}$$

©2005, 2006 Robert Beezer

# Theorem SCB Similarity and Change of Basis

306

Suppose that  $T: V \mapsto V$  is a linear transformation and B and C are bases of V. Then

$$M_{B,B}^T = C_{B,C}^{-1} M_{C,C}^T C_{B,C}$$

| Theorem      | EER. | Eigenvalues.   | Eigenvectors.    | Representations |
|--------------|------|----------------|------------------|-----------------|
| T IICOI CIII |      | Ligori varaco, | Ligorive Colors, | recht eperiodic |

307

Suppose that  $T\colon V\mapsto V$  is a linear transformation and B is a basis of V. Then  $\mathbf{v}\in V$  is an eigenvector of T for the eigenvalue  $\lambda$  if and only if  $\rho_B\left(\mathbf{v}\right)$  is an eigenvector of  $M_{B,B}^T$  for the eigenvalue  $\lambda$ .