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Definition SSLE System of Simultaneous Linear Equations 1

A system of simultaneous linear equations is a collection of m equations in the variable
quantities x1, x2, x3, . . . , xn of the form,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

where the values of aij , bi and xj are from the set of complex numbers, C.
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Definition ES Equivalent Systems 2

Two systems of simultaneous linear equations are equivalent if their solution sets are equal.
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Definition EO Equation Operations 3

Given a system of simultaneous linear equations, the following three operations will transform
the system into a different one, and each is known as an equation operation.

1. Swap the locations of two equations in the list.

2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a second
equation, on both sides of the equality. Leave the first equation the same after this
operation, but replace the second equation by the new one.
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Theorem EOPSS Equation Operations Preserve Solution Sets 4

Suppose we apply one of the three equation operations of Definition EO to the system of
simultaneous linear equations

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm.

Then the original system and the transformed system are equivalent systems.
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Definition M Matrix 5

An m× n matrix is a rectangular layout of numbers from C having m rows and n columns.
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Definition AM Augmented Matrix 6

Suppose we have a system of m equations in the n variables x1, x2, x3, . . . , xn written as

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

then the augmented matrix of the system of equations is the m× (n + 1) matrix
a11 a12 a13 . . . a1n b1

a21 a22 a23 . . . a2n b2

a31 a32 a33 . . . a3n b3

...
am1 am2 am3 . . . amn bm
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Definition RO Row Operations 7

The following three operations will transform an m × n matrix into a different matrix of the
same size, and each is known as a row operation.

1. Swap the locations of two rows.

2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the entry in
the same column of a second row. Leave the first row the same after this operation, but
replace the second row by the new values.
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Definition REM Row-Equivalent Matrices 8

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a
sequence of row operations.
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Theorem REMES Row-Equivalent Matrices represent Equivalent Systems 9

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear
equations that they represent are equivalent systems.
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Definition RREF Reduced Row-Echelon Form 10

A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero is below any row containing a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.

3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row i, column j and
the other located in row s, column t. If i < s, then j < t.
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Definition ZRM Zero Row of a Matrix 11

A row of a matrix where every entry is zero is called a zero row.
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Definition LO Leading Ones 12

For a matrix in reduced row-echelon form, the leftmost nonzero entry of any row that is not a
zero row will be called a leading 1.
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Definition PC Pivot Columns 13

For a matrix in reduced row-echelon form, a column containing a leading 1 will be called a
pivot column.
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Theorem REMEF Row-Equivalent Matrix in Echelon Form 14

Suppose A is a matrix. Then there is a (unique!) matrix B so that

1. A and B are row-equivalent.

2. B is in reduced row-echelon form.
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Definition CS Consistent System 15

A system of linear equations is consistent if it has at least one solution. Otherwise, the system
is called inconsistent.
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Definition IDV Independent and Dependent Variables 16

Suppose A is the augmented matrix of a system of linear equations and B is a row-equivalent
matrix in reduced row-echelon form. Suppose j is the number of a column of B that contains
the leading 1 for some row, and it is not the last column. Then the variable j is dependent.
A variable that is not dependent is called independent or free.
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Theorem RCLS Recognizing Consistency of a Linear System 17

Suppose A is the augmented matrix of a system of linear equations with m equations in n
variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not zero rows. Then the system of equations is inconsistent if and only if the
leading 1 of row r is located in column n + 1 of B.
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Theorem ICRN Inconsistent Systems, r and n 18

Suppose A is the augmented matrix of a system of linear equations with m equations in n
variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent.
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Theorem CSRN Consistent Systems, r and n 19

Suppose A is the augmented matrix of a consistent system of linear equations with m equations
in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with
r rows that are not zero rows. Then r ≤ n. If r = n, then the system has a unique solution,
and if r < n, then the system has infinitely many solutions.
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Theorem FVCS Free Variables for Consistent Systems 20

Suppose A is the augmented matrix of a consistent system of linear equations with m equations
in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form
with r rows that are not completely zeros. Then the solution set can be described with n − r
free variables.
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Theorem PSSLS Possible Solution Sets for Linear Systems 21

A simultaneous system of linear equations has no solutions, a unique solution or infinitely many
solutions.

c©2005 Robert Beezer

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions 22

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then
the system has infinitely many solutions.
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Definition HS Homogeneous System 23

A system of linear equations is homogeneous if each equation has a 0 for its constant term.
Such a system then has the form,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = 0
a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = 0
a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = 0

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = 0
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Theorem HSC Homogeneous Systems are Consistent 24

Suppose that a system of linear equations is homogeneous. Then the system is consistent.
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Definition TSHSE Trivial Solution to Homogeneous Systems of Equations 25

Suppose a homogeneous system of linear equations has n variables. The solution x1 = 0,
x2 = 0,. . . , xn = 0 is called the trivial solution.
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Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions 26

Suppose that a homogeneous system of linear equations has m equations and n variables with
n > m. Then the system has infinitely many solutions.
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Definition CV Column Vector 27

A column vector of size m is an ordered list of m numbers, which is written vertically, in
order from top to bottom. At times, we will refer to a column vector as simply a vector.
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Definition ZV Zero Vector 28

The zero vector of size m is the column vector of size m where each entry is the number zero,

0 =


0
0
0
...
0
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Definition CM Coefficient Matrix 29

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the coefficient matrix is the m× n matrix

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
am1 am2 am3 . . . amn
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Definition VOC Vector of Constants 30

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the vector of constants is the column vector of size m

b =


b1

b2

b3

...
bm
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Definition SV Solution Vector 31

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the solution vector is the column vector of size m

x =


x1

x2

x3

...
xm
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Definition NSM Null Space of a Matrix 32

The null space of a matrix A, denoted N (A), is the set of all the vectors that are solutions to
the homogeneous system LS(A, 0).
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Definition SQM Square Matrix 33

A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has
size n. To emphasize the situation when a matrix is not square, we will call it rectangular.
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Definition NM Nonsingular Matrix 34

Suppose A is a square matrix. And suppose the homogeneous linear system of equations
LS(A, 0) has only the trivial solution. Then we say that A is a nonsingular matrix. Otherwise
we say A is a singular matrix.
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Definition IM Identity Matrix 35

The m × m identity matrix, Im = (aij) has aij = 1 whenever i = j, and aij = 0 whenever
i 6= j.
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Theorem NSRRI NonSingular matrices Row Reduce to the Identity matrix 36

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon
form. Then A is nonsingular if and only if B is the identity matrix.
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Theorem NSTNS NonSingular matrices have Trivial Null Spaces 37

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A,
N (A), contains only the trivial solution to the system LS(A, 0), i.e. N (A) = {0}.
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Theorem NSMUS NonSingular Matrices and Unique Solutions 38

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system LS(A, b)
has a unique solution for every choice of the constant vector b.
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Theorem NSME1 NonSingular Matrix Equivalences, Round 1 39

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the trivial solution, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.
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Definition VSCV Vector Space of Column Vectors 40

The vector space Cm is the set of all column vectors (Definition CV) of size m with entries from
the set of complex numbers, C.
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Definition CVE Column Vector Equality 41

The vectors

u =


u1

u2

u3

...
um

 v =


v1

v2

v3

...
vm


are equal, written u = v provided that ui = vi for all 1 ≤ i ≤ m.
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Definition CVA Column Vector Addition 42

Given the vectors

u =


u1

u2

u3

...
um

 v =


v1

v2

v3

...
vm


the sum of u and v is the vector

u + v =


u1

u2

u3

...
um

 +


v1

v2

v3

...
vm

 =


u1 + v1

u2 + v2

u3 + v3

...
um + vm

 .
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Definition CVSM Column Vector Scalar Multiplication 43

Given the vector

u =


u1

u2

u3

...
um


and the scalar α ∈ C, the scalar multiple of u by α is

αu = α


u1

u2

u3

...
um

 =


αu1

αu2

αu3

...
αum

 .
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Theorem VSPCV Vector Space Properties of Column Vectors 44
Suppose that Cm is the set of column vectors of size m (Definition VSCV) with addition and
scalar multiplication as defined in Definition CVA and Definition CVSM. Then

• ACC Additive Closure, Column Vectors If u, v ∈ Cm, then u + v ∈ Cm.

• SCC Scalar Closure, Column Vectors If α ∈ C and u ∈ Cm, then αu ∈ Cm.

• CC Commutativity, Column Vectors If u, v ∈ Cm, then u + v = v + u.

• AAC Additive Associativity, Column Vectors If u, v, w ∈ Cm, then u +
(v + w) = (u + v) + w.

• ZC Zero Vector, Column Vectors There is a vector, 0, called the zero vector, such
that u + 0 = u for all u ∈ Cm.

• AIC Additive Inverses, Column Vectors For each vector u ∈ Cm, there exists a
vector −u ∈ Cm so that u + (−u) = 0.

• SMAC Scalar Multiplication Associativity, Column Vectors If α, β ∈ C and
u ∈ Cm, then α(βu) = (αβ)u.

• DVAC Distributivity across Vector Addition, Column Vectors If α ∈ C and
u, v ∈ Cm, then α(u + v) = αu + αv.

• DSAC Distributivity across Scalar Addition, Column Vectors If α, β ∈ C and
u ∈ Cm, then (α + β)u = αu + βu.

• OC One, Column Vectors If u ∈ Cm, then 1u = u.
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Definition LCCV Linear Combination of Column Vectors 45

Given n vectors u1, u2, u3, . . . , un and n scalars α1, α2, α3, . . . , αn, their linear combination
is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.
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Theorem SLSLC Solutions to Linear Systems are Linear Combinations 46

Denote the columns of the m×n matrix A as the vectors A1, A2, A3, . . . , An. Then x =


α1

α2

α3

...
αn


is a solution to the linear system of equations LS(A, b) if and only if

α1A1 + α2A2 + α3A3 + · · ·+ αnAn = b
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Theorem VFSLS Vector Form of Solutions to Linear Systems 47
Suppose that [A | b] is the augmented matrix for a consistent linear system LS(A, b) of m
equations in n variables. Denote the vector of variables as x = (xi). Let B = (bij) be a row-
equivalent m× (n+1) matrix in reduced row-echelon form. Suppose that B has r nonzero rows,
columns without leading 1’s having indices F = {f1, f2, f3, . . . , fn−r, n + 1}, and columns with
leading 1’s (pivot columns) having indices D = {d1, d2, d3, . . . , dr}. Define vectors c = (ci),
uj = (uij), 1 ≤ j ≤ n− r of size n by

ci =

{
0 if i ∈ F

bk,n+1 if i ∈ D, i = dk

uij =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

−bk,fj
if i ∈ D, i = dk

.

Then the set of solutions to the system of equations represented by the vector equation

x =


x1

x2

x3

...
xn

 = c + xf1u1 + xf2u2 + xf3u3 + · · ·+ xfn−r
un−r

is equal to the set of solutions of LS(A, b).
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Theorem RREFU Reduced Row-Echelon Form is Unique 48

Suppose that A is an m×n matrix and that B and C are m×n matrices that are row-equivalent
to A and in reduced row-echelon form. Then B = C.
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Definition SSCV Span of a Set of Column Vectors 49

Given a set of vectors S = {u1, u2, u3, . . . , ut}, their span, Sp(S), is the set of all possible
linear combinations of u1, u2, u3, . . . , ut. Symbolically,

Sp(S) = {α1u1 + α2u2 + α3u3 + · · ·+ αtut | αi ∈ C, 1 ≤ i ≤ t}

=

{
t∑

i=1

αiui

∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ t

}
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Theorem SSNS Spanning Sets for Null Spaces 50

Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r} be the
sets of column indices where B does and does not (respectively) have leading 1’s. Construct
the n− r vectors uj = (uij), 1 ≤ j ≤ n− r of size n as

uij =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

−bk,fj
if i ∈ D, i = dk

.

Then the null space of A is given by

N (A) = Sp({u1, u2, u3, . . . , un−r}) .
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Definition RLDCV Relation of Linear Dependence for Column Vectors 51

Given a set of vectors S = {u1, u2, u3, . . . , un}, an equation of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e.
αi = 0, 1 ≤ i ≤ n, then we say it is a trivial relation of linear dependence on S.
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Definition LICV Linear Independence of Column Vectors 52

The set of vectors S = {u1, u2, u3, . . . , un} is linearly dependent if there is a relation
of linear dependence on S that is not trivial. In the case where the only relation of linear
dependence on S is the trivial one, then S is a linearly independent set of vectors.
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Theorem LIVHS Linearly Independent Vectors and Homogeneous Systems 53

Suppose that A is an m× n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors in Cm

that are the columns of A. Then S is a linearly independent set if and only if the homogeneous
system LS(A, 0) has a unique solution.
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Theorem LIVRN Linearly Independent Vectors, r and n 54

Suppose that A is an m× n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors in Cm

that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent
to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and
only if n = r.
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Theorem MVSLD More Vectors than Size implies Linear Dependence 55

Suppose that S = {u1, u2, u3, . . . , un} is the set of vectors in Cm, and that n > m. Then S is
a linearly dependent set.
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Theorem DLDS Dependency in Linearly Dependent Sets 56

Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors. Then S is a linearly dependent set
if and only if there is an index t, 1 ≤ t ≤ n such that ut is a linear combination of the vectors
u1, u2, u3, . . . , ut−1, ut+1, . . . , un.
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Theorem NSLIC NonSingular matrices have Linearly Independent Columns 57

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form
a linearly independent set.
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Theorem NSME2 NonSingular Matrix Equivalences, Round 2 58

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A form a linearly independent set.
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Theorem BNS Basis for Null Spaces 59

Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r} be the
sets of column indices where B does and does not (respectively) have leading 1’s. Construct
the n− r vectors zj = (zij), 1 ≤ j ≤ n− r of size n as

zij =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

−bk,fj
if i ∈ D, i = dk

.

Define the set S = {u1, u2, u3, . . . , un−r}. Then

1. N (A) = Sp(S).

2. S is a linearly independent set.
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Definition CCCV Complex Conjugate of a Column Vector 60

Suppose that

u =


u1

u2

u3

...
um


is a vector from Cm. Then the conjugate of the vector is defined as

u =


u1

u2

u3

...
um
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Theorem CRVA Conjugation Respects Vector Addition 61

Suppose x and y are two vectors from Cm. Then

x + y = x + y
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Theorem CRSM Conjugation Respects Vector Scalar Multiplication 62

Suppose x is a vector from Cm, and α ∈ C is a scalar. Then

αx = αx
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Definition IP Inner Product 63

Given the vectors

u =


u1

u2

u3

...
um

 v =


v1

v2

v3

...
vm


the inner product of u and v is the scalar quantity in C,

〈u, v〉 = u1v1 + u2v2 + u3v3 + · · ·+ umvm =
m∑

i=1

uivi
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Theorem IPVA Inner Product and Vector Addition 64

Suppose uv,w ∈ Cm. Then

1. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
2. 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉
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Theorem IPSM Inner Product and Scalar Multiplication 65

Suppose u, v ∈ Cm and α ∈ C. Then

1. 〈αu, v〉 = α 〈u, v〉
2. 〈u, αv〉 = α 〈u, v〉
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Theorem IPAC Inner Product is Anti-Commutative 66

Suppose that u and v are vectors in Cm. Then 〈u, v〉 = 〈v, u〉.
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Definition NV Norm of a Vector 67

The norm of the vector

u =


u1

u2

u3

...
um


is the scalar quantity in Cm

‖u‖ =
√
|u1|2 + |u2|2 + |u3|2 + · · ·+ |um|2 =

√√√√ m∑
i=1

|ui|2
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Theorem IPN Inner Products and Norms 68

Suppose that u is a vector in Cm. Then ‖u‖2 = 〈u, u〉.
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Theorem PIP Positive Inner Products 69

Suppose that u is a vector in Cm. Then 〈u, u〉 ≥ 0 with equality if and only if u = 0.
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Definition OV Orthogonal Vectors 70

A pair of vectors, u and v, from Cm are orthogonal if their inner product is zero, that is,
〈u, v〉 = 0.
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Definition OSV Orthogonal Set of Vectors 71

Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors from Cm. Then the set S is or-
thogonal if every pair of different vectors from S is orthogonal, that is 〈ui, uj〉 = 0 whenever
i 6= j.
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Theorem OSLI Orthogonal Sets are Linearly Independent 72

Suppose that S = {u1, u2, u3, . . . , un} is an orthogonal set of nonzero vectors. Then S is
linearly independent.
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Theorem GSPCV Gram-Schmidt Procedure, Column Vectors 73

Suppose that S = {v1, v2, v3, . . . , vp} is a linearly independent set of vectors in Cm. Define
the vectors ui, 1 ≤ i ≤ p by

ui = vi −
〈vi, u1〉
〈u1, u1〉

u1 −
〈vi, u2〉
〈u2, u2〉

u2 −
〈vi, u3〉
〈u3, u3〉

u3 − · · · − 〈vi, ui−1〉
〈ui−1, ui−1〉

ui−1

Then if T = {u1, u2, u3, . . . , up}, then T is an orthogonal set of non-zero vectors, and Sp(T ) =
Sp(S).
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Definition ONS OrthoNormal Set 74

Suppose S = {u1, u2, u3, . . . , un} is an orthogonal set of vectors such that ‖ui‖ = 1 for all
1 ≤ i ≤ n. Then S is an orthonormal set of vectors.
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Definition VSM Vector Space of m× n Matrices 75

The vector space Mmn is the set of all m × n matrices with entries from the set of complex
numbers.
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Definition ME Matrix Equality 76

The m× n matrices

A = (aij) B = (bij)

are equal, written A = B provided aij = bij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Definition MA Matrix Addition 77

Given the m× n matrices

A = (aij) B = (bij)

define the sum of A and B to be A + B = C = (cij), where

cij = aij + bij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Definition MSM Matrix Scalar Multiplication 78

Given the m× n matrix A = (aij) and the scalar α ∈ C, the scalar multiple of A by α is the
matrix αA = C = (cij), where

cij = αaij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Theorem VSPM Vector Space Properties of Matrices 79
Suppose that Mmn is the set of all m× n matrices (Definition VSM) with addition and scalar
multiplication as defined in Definition MA and Definition MSM. Then

• ACM Additive Closure, Matrices If A, B ∈ Mmn, then A + B ∈ Mmn.

• SCM Scalar Closure, Matrices If α ∈ C and A ∈ Mmn, then αA ∈ Mmn.

• CM Commutativity, Matrices If A, B ∈ Mmn, then A + B = B + A.

• AAM Additive Associativity, Matrices If A, B, C ∈ Mmn, then A + (B + C) =
(A + B) + C.

• ZM Zero Vector, Matrices There is a matrix, O, called the zero matrix, such that
A +O = A for all A ∈ Mmn.

• AIM Additive Inverses, Matrices For each matrix A ∈ Mmn, there exists a matrix
−A ∈ Mmn so that A + (−A) = O.

• SMAM Scalar Multiplication Associativity, Matrices If α, β ∈ C and A ∈ Mmn,
then α(βA) = (αβ)A.

• DMAM Distributivity across Matrix Addition, Matrices If α ∈ C and A, B ∈
Mmn, then α(A + B) = αA + αB.

• DSAM Distributivity across Scalar Addition, Matrices If α, β ∈ C and A ∈
Mmn, then (α + β)A = αA + βA.

• OM One, Matrices If A ∈ Mmn, then 1A = A.

c©2005 Robert Beezer

Definition ZM Zero Matrix 80

The m × n zero matrix is written as O = Om×n = (zij) and defined by zij = 0 for all
1 ≤ i ≤ m, 1 ≤ j ≤ n. Or, equivalently, [O]ij = 0, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Definition TM Transpose of a Matrix 81

Given an m× n matrix A, its transpose is the n×m matrix At given by[
At

]
ij

= [A]ji , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Definition SYM Symmetric Matrix 82

The matrix A is symmetric if A = At.
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Theorem SMS Symmetric Matrices are Square 83

Suppose that A is a symmetric matrix. Then A is square.
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Theorem TMA Transpose and Matrix Addition 84

Suppose that A and B are m× n matrices. Then (A + B)t = At + Bt.
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Theorem TMSM Transpose and Matrix Scalar Multiplication 85

Suppose that α ∈ C and A is an m× n matrix. Then (αA)t = αAt.
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Theorem TT Transpose of a Transpose 86

Suppose that A is an m× n matrix. Then (At)t = A.
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Definition CCM Complex Conjugate of a Matrix 87

Suppose A is an m×n matrix. Then the conjugate of A, written A is an m×n matrix defined
by [

A
]
ij

= [A]ij
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Theorem CRMA Conjugation Respects Matrix Addition 88

Suppose that A and B are m× n matrices. Then A + B = A + B.
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Theorem CRMSM Conjugation Respects Matrix Scalar Multiplication 89

Suppose that α ∈ C and A is an m× n matrix. Then αA = αA.
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Definition RM Range of a Matrix 90

Suppose that A is an m × n matrix with columns {A1, A2, A3, . . . , An}. Then the range of
A, written R(A), is the subset of Cm containing all linear combinations of the columns of A,

R(A) = Sp({A1, A2, A3, . . . , An})

c©2005 Robert Beezer



Theorem RCS Range and Consistent Systems 91

Suppose A is an m × n matrix and b is a vector of size m. Then b ∈ R(A) if and only if
LS(A, b) is consistent.
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Theorem BROC Basis of the Range with Original Columns 92

Suppose that A is an m×n matrix with columns A1, A2, A3, . . . , An, and B is a row-equivalent
matrix in reduced row-echelon form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the
set of column indices where B has leading 1’s. Let S = {Ad1 , Ad2 , Ad3 , . . . , Adr

}. Then

1. R(A) = Sp(S).

2. S is a linearly independent set.
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Theorem RNS Range as a Null Space 93

Suppose that A is an m× n matrix. Create the m× (n + m) matrix M by placing the m×m
identity matrix Im to the right of the matrix A. Symbolically, M = [A | Im]. Let N be a matrix
that is row-equivalent to M and in reduced row-echelon form. Suppose there are r leading 1’s
of N in the first n columns. If r = m, then R(A) = Cm. Otherwise, r < m and let K be the
(m − r) ×m matrix formed from the entries of N in the last m − r rows and last m columns.
Then

1. K is in reduced row-echelon form.

2. K has no zero rows, or equivalently, K has m− r leading 1’s.

3. R(A) = N (K).
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Theorem RNSM Range of a NonSingular Matrix 94

Suppose A is a square matrix of size n. Then A is nonsingular if and only if R(A) = Cn.
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Theorem NSME3 NonSingular Matrix Equivalences, Round 3 95

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. The range of A is Cn, R(A) = Cn.
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Definition RSM Row Space of a Matrix 96

Suppose A is an m × n matrix. Then the row space of A, RS(A), is the range of At, i.e.
RS(A) = R(At).
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Theorem REMRS Row-Equivalent Matrices have equal Row Spaces 97

Suppose A and B are row-equivalent matrices. Then RS(A) = RS(B).
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Theorem BRS Basis for the Row Space 98

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let
S be the set of nonzero columns of Bt. Then

1. RS(A) = Sp(S).

2. S is a linearly independent set.
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Theorem RMRST Range of a Matrix is Row Space of Transpose 99

Suppose A is a matrix. Then R(A) = RS(At).
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Definition MVP Matrix-Vector Product 100

Suppose A is an m × n matrix with columns A1, A2, A3, . . . , An and u is a vector of size n.
Then the matrix-vector product of A with u is

Au = [A1|A2|A3| . . . |An]


u1

u2

u3

...
un

 = u1A1 + u2A2 + u3A3 + · · ·+ unAn
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Theorem SLEMM Systems of Linear Equations as Matrix Multiplication 101

Solutions to the linear system LS(A, b) are the solutions for x in the vector equation Ax = b.
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Definition MM Matrix Multiplication 102

Suppose A is an m × n matrix and B is an n × p matrix with columns B1, B2, B3, . . . , Bp.
Then the matrix product of A with B is the m×p matrix where column i is the matrix-vector
product ABi. Symbolically,

AB = A [B1|B2|B3| . . . |Bp] = [AB1|AB2|AB3| . . . |ABp] .
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Theorem EMP Entries of Matrix Products 103

Suppose A = (aij) is an m × n matrix and B = (bij) is an n × p matrix. Then the entries of
AB = C = (cij) are given by

[C]ij = cij = ai1b1j + ai2b2j + ai3b3j + · · ·+ ainbnj =
n∑

k=1

aikbkj =
n∑

k=1

[A]ik [B]kj
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Theorem MMZM Matrix Multiplication and the Zero Matrix 104

Suppose A is an m× n matrix. Then
1. AOn×p = Om×p

2. Op×mA = Op×n
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Theorem MMIM Matrix Multiplication and Identity Matrix 105

Suppose A is an m× n matrix. Then
1. AIn = A
2. ImA = A
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Theorem MMDAA Matrix Multiplication Distributes Across Addition 106

Suppose A is an m× n matrix and B and C are n× p matrices and D is a p× s matrix. Then
1. A(B + C) = AB + AC
2. (B + C)D = BD + CD
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Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 107

Suppose A is an m × n matrix and B is an n × p matrix. Let α be a scalar. Then α(AB) =
(αA)B = A(αB).
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Theorem MMA Matrix Multiplication is Associative 108

Suppose A is an m× n matrix, B is an n× p matrix and D is a p× s matrix. Then A(BD) =
(AB)D.
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Theorem MMIP Matrix Multiplication and Inner Products 109

If we consider the vectors u, v ∈ Cm as m× 1 matrices then

〈u, v〉 = utv
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Theorem MMCC Matrix Multiplication and Complex Conjugation 110

Suppose A is an m× n matrix and B is an n× p matrix. Then AB = A B.
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Theorem MMT Matrix Multiplication and Transposes 111

Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)t = BtAt.
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Theorem PSPHS Particular Solution Plus Homogeneous Solutions 112

Suppose that z is one solution to the linear system of equations LS(A, b). Then y is a solution
to LS(A, b) if and only if y = z + w for some vector w ∈ N(A).
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Definition MI Matrix Inverse 113

Suppose A and B are square matrices of size n such that AB = In and BA = In. Then A is
invertible and B is the inverse of A. In this situation, we write B = A−1.
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Definition SUV Standard Unit Vectors 114

Let ei ∈ Cm denote the column vector that is column i of the m×m identity matrix Im. Then
the set

{e1, e2, e3, . . . , em} = {ei | 1 ≤ i ≤ m}

is the set of standard unit vectors in Cm.
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Theorem TTMI Two-by-Two Matrix Inverse 115

Suppose

A =
[
a b
c d

]
Then A is invertible if and only if ad− bc 6= 0. When A is invertible, we have

A−1 =
1

ad− bc

[
d −b
−c a

]
.
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Theorem CINSM Computing the Inverse of a NonSingular Matrix 116

Suppose A is a nonsingular square matrix of size n. Create the n× 2n matrix M by placing the
n×n identity matrix In to the right of the matrix A. Let N be a matrix that is row-equivalent
to M and in reduced row-echelon form. Finally, let B be the matrix formed from the final n
columns of N . Then AB = In.
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Theorem MIU Matrix Inverse is Unique 117

Suppose the square matrix A has an inverse. Then A−1 is unique.
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Theorem SS Socks and Shoes 118

Suppose A and B are invertible matrices of size n. Then (AB)−1 = B−1A−1 and AB is an
invertible matrix.
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Theorem MIMI Matrix Inverse of a Matrix Inverse 119

Suppose A is an invertible matrix. Then (A−1)−1 = A and A−1 is invertible.
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Theorem MIT Matrix Inverse of a Transpose 120

Suppose A is an invertible matrix. Then (At)−1 = (A−1)t and At is invertible.
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Theorem MISM Matrix Inverse of a Scalar Multiple 121

Suppose A is an invertible matrix and α is a nonzero scalar. Then (αA)−1 = 1
αA−1 and αA is

invertible.
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Theorem PWSMS Product With a Singular Matrix is Singular 122

Suppose that A or B are matrices of size n, and one, or both, is singular. Then their product,
AB, is singular.
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Theorem OSIS One-Sided Inverse is Sufficient 123

Suppose A and B are square matrices of size n such that AB = In. Then BA = In.
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Theorem NSI NonSingularity is Invertibility 124

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.
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Theorem NSME4 NonSingular Matrix Equivalences, Round 4 125

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. The range of A is Cn, R(A) = Cn.

7. A is invertible.
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Theorem SNSCM Solution with NonSingular Coefficient Matrix 126

Suppose that A is nonsingular. Then the unique solution to LS(A, b) is A−1b.
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Definition OM Orthogonal Matrices 127

Suppose that Q is a square matrix of size n such that
(
Q

)t
Q = In. Then we say Q is orthog-

onal.
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Theorem OMI Orthogonal Matrices are Invertible 128

Suppose that Q is an orthogonal matrix of size n. Then Q is nonsingular, and Q−1 = (Q)t.
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Theorem COMOS Columns of Orthogonal Matrices are Orthonormal Sets 129

Suppose that A is a square matrix of size n with columns S = {A1, A2, A3, . . . , An}. Then A
is an orthogonal matrix if and only if S is an orthonormal set.
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Theorem OMPIP Orthogonal Matrices Preserve Inner Products 130

Suppose that Q is an orthogonal matrix of size n and u and v are two vectors from Cn. Then

〈Qu, Qv〉 = 〈u, v〉 and ‖Qv‖ = ‖v‖
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Definition A Adjoint 131

If A is a square matrix, then its adjoint is AH =
(
A

)t
.
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Definition HM Hermitian Matrix 132

The square matrix A is Hermitian (or self-adjoint) if A =
(
A

)t
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Definition VS Vector Space 133
Suppose that V is a set upon which we have defined two operations: (1) vector addition,
which combines two elements of V and is denoted by “+”, and (2) scalar multiplication,
which combines a complex number with an element of V and is denoted by juxtaposition. Then
V , along with the two operations, is a vector space if the following ten requirements (better
known as “axioms”) are met.

1. AC Additive Closure If u, v ∈ V , then u + v ∈ V .

2. SC Scalar Closure If α ∈ C and u ∈ V , then αu ∈ V .

3. C Commutativity If u, v ∈ V , then u + v = v + u.

4. AA Additive Associativity If u, v, w ∈ V , then u + (v + w) = (u + v) + w.

5. Z Zero Vector There is a vector, 0, called the zero vector, such that u + 0 = u for
all u ∈ V .

6. AI Additive Inverses For each vector u ∈ V , there exists a vector −u ∈ V so that
u + (−u) = 0.

7. SMA Scalar Multiplication Associativity If α, β ∈ C and u ∈ V , then α(βu) =
(αβ)u.

8. DVA Distributivity across Vector Addition If α ∈ C and u, v ∈ V , then α(u +
v) = αu + αv.

9. DSA Distributivity across Scalar Addition If α, β ∈ C and u ∈ V , then (α+β)u =
αu + βu.

10. O One If u ∈ V , then 1u = u.

The objects in V are called vectors, no matter what else they might really be, simply by virtue
of being elements of a vector space.
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Theorem ZVU Zero Vector is Unique 134

Suppose that V is a vector space. The zero vector, 0, is unique.
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Theorem AIU Additive Inverses are Unique 135

Suppose that V is a vector space. For each u ∈ V , the additive inverse, −u, is unique.
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Theorem ZSSM Zero Scalar in Scalar Multiplication 136

Suppose that V is a vector space and u ∈ V . Then 0u = 0.
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Theorem ZVSM Zero Vector in Scalar Multiplication 137

Suppose that V is a vector space and α ∈ C. Then α0 = 0.
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Theorem AISM Additive Inverses from Scalar Multiplication 138

Suppose that V is a vector space and u ∈ V . Then −u = (−1)u.
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Theorem SMEZV Scalar Multiplication Equals the Zero Vector 139

Suppose that V is a vector space and α ∈ C. Then if αu = 0, then either α = 0 or u = 0 (or
both).
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Theorem VAC Vector Addition Cancellation 140

Suppose that V is a vector space, and u, v, w ∈ V . If w + u = w + v, then u = v.
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Theorem CSSM Canceling Scalars in Scalar Multiplication 141

Suppose V is a vector space, u, v ∈ V and α is a nonzero scalar from C. If αu = αv, then
u = v.
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Theorem CVSM Canceling Vectors in Scalar Multiplication 142

Suppose V is a vector space, u 6= 0 is a vector in V and α, β ∈ C. If αu = βu, then α = β.
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Definition S Subspace 143

Suppose that V and W are two vector spaces that have identical definitions of vector addition
and scalar multiplication, and that W is a subset of V , W ⊆ V . Then W is a subspace of V .
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Theorem TSS Testing Subsets for Subspaces 144

Suppose that V is a vector space and W is a subset of V , W ⊆ V . Endow W with the same
operations as V . Then W is a subspace if and only if three conditions are met

1. W is non-empty, W 6= ∅.

2. Whenever x ∈ W and y ∈ W , then x + y ∈ W .

3. Whenever α ∈ C and x ∈ W , then αx ∈ W .
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Definition TS Trivial Subspaces 145

Given the vector space V , the subspaces V and {0} are each called a trivial subspace.
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Theorem NSMS Null Space of a Matrix is a Subspace 146

Suppose that A is an m× n matrix. Then the null space of A, N (A), is a subspace of Cn.
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Definition LC Linear Combination 147

Suppose that V is a vector space. Given n vectors u1, u2, u3, . . . , un and n scalars
α1, α2, α3, . . . , αn, their linear combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.
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Definition SS Span of a Set 148

Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut}, their span,
Sp(S), is the set of all possible linear combinations of u1, u2, u3, . . . , ut. Symbolically,

Sp(S) = {α1u1 + α2u2 + α3u3 + · · ·+ αtut | αi ∈ C, 1 ≤ i ≤ t}

=

{
t∑

i=1

αiui

∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ t

}

c©2005 Robert Beezer



Theorem SSS Span of a Set is a Subspace 149

Suppose V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut} ⊆ V , their span,
Sp(S), is a subspace.
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Theorem RMS Range of a Matrix is a Subspace 150

Suppose that A is an m× n matrix. Then R(A) is a subspace of Cm.
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Theorem RSMS Row Space of a Matrix is a Subspace 151

Suppose that A is an m× n matrix. Then RS(A) is a subspace of Cn.
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Definition RLD Relation of Linear Dependence 152

Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , un}, an equation
of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e.
αi = 0, 1 ≤ i ≤ n, then we say it is a trivial relation of linear dependence on S.
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Definition LI Linear Independence 153

Suppose that V is a vector space. The set of vectors S = {u1, u2, u3, . . . , un} is linearly
dependent if there is a relation of linear dependence on S that is not trivial. In the case where
the only relation of linear dependence on S is the trivial one, then S is a linearly independent
set of vectors.
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Definition TSS To Span a Subspace 154

Suppose V is a vector space and W is a subspace. A subset S of W is a spanning set for W
if Sp(S) = W . In this case, we also say S spans W .
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Definition B Basis 155

Suppose V is a vector space. Then a subset S ⊆ V is a basis of V if it is linearly independent
and spans V .
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Theorem SUVB Standard Unit Vectors are a Basis 156

The set of standard unit vectors for Cm, B = {e1, e2, e3, . . . , em} = {ei | 1 ≤ i ≤ m} is a basis
for the vector space Cm.
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Theorem CNSMB Columns of NonSingular Matrix are a Basis 157

Suppose that A is a square matrix. Then the columns of A are a basis of Cm if and only if A
is nonsingular.
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Theorem NSME5 NonSingular Matrix Equivalences, Round 5 158

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. The range of A is Cn, R(A) = Cn.

7. A is invertible.

8. The columns of A are a basis for Cn.
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Theorem VRRB Vector Representation Relative to a Basis 159

Suppose that V is a vector space with basis B = {v1, v2, v3, . . . , vm} and that w is a vector
in V . Then there exist unique scalars a1, a2, a3, . . . , am such that

w = a1v1 + a2v2 + a3v3 + · · ·+ amvm.
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Definition D Dimension 160

Suppose that V is a vector space and {v1, v2, v3, . . . , vt} is a basis of V . Then the dimension
of V is defined by dim (V ) = t. If V has no finite bases, we say V has infinite dimension.
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Theorem SSLD Spanning Sets and Linear Dependence 161

Suppose that S = {v1, v2, v3, . . . , vt} is a finite set of vectors which spans the vector space V .
Then any set of t + 1 or more vectors from V is linearly dependent.
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Theorem BIS Bases have Identical Sizes 162

Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C
have the same size.
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Theorem DCM Dimension of Cm 163

The dimension of Cm (Example VSCV) is m.
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Theorem DP Dimension of Pn 164

The dimension of Pn (Example VSP) is n + 1.
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Theorem DM Dimension of Mmn 165

The dimension of Mmn (Example VSM) is mn.
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Definition NOM Nullity Of a Matrix 166

Suppose that A is an m × n matrix. Then the nullity of A is the dimension of the null space
of A, n (A) = dim (N (A)).
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Definition ROM Rank Of a Matrix 167

Suppose that A is an m × n matrix. Then the rank of A is the dimension of the range of A,
r (A) = dim (R(A)).
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Theorem CRN Computing Rank and Nullity 168

Suppose that A is an m × n matrix and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Then r (A) = r and n (A) = n− r.

c©2005 Robert Beezer



Theorem RPNC Rank Plus Nullity is Columns 169

Suppose that A is an m× n matrix. Then r (A) + n (A) = n.
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Theorem RNNSM Rank and Nullity of a NonSingular Matrix 170

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. The rank of A is n, r (A) = n.

3. The nullity of A is zero, n (A) = 0.
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Theorem NSME6 NonSingular Matrix Equivalences, Round 6 171
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. The range of A is Cn, R(A) = Cn.

7. A is invertible.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.
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Theorem ELIS Extending Linearly Independent Sets 172

Suppose V is vector space and S is a linearly independent set of vectors from V . Suppose w is
a vector such that w 6∈ Sp(S). Then the set S′ = S ∪ {w} is linearly independent.
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Theorem G Goldilocks 173

Suppose that V is a vector space of dimension t. Let S = {v1, v2, v3, . . . , vm} be a set of
vectors from V . Then

1. If m > t, then S is linearly dependent.

2. If m < t, then S does not span V .

3. If m = t and S is linearly independent, then S spans V .

4. If m = t and S spans V , then S is linearly independent.
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Theorem EDYES Equal Dimensions Yields Equal Subspaces 174

Suppose that U and V are subspaces of the vector space W , such that U ⊆ V and dim (U) =
dim (V ). Then U = V .
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Theorem RMRT Rank of a Matrix is the Rank of the Transpose 175

Suppose A is an m× n matrix. Then r (A) = r (At).
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Theorem COB Coordinates and Orthonormal Bases 176

Suppose that B = {v1, v2, v3, . . . , vp} is an orthonormal basis of the subspace W of Cm. For
any w ∈ W ,

w = 〈w, v1〉v1 + 〈w, v2〉v2 + 〈w, v3〉v3 + · · ·+ 〈w, vp〉vp
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Definition SM SubMatrix 177

Suppose that A is an m× n matrix. Then the submatrix Aij is the (m− 1)× (n− 1) matrix
obtained from A by removing row i and column j.
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Definition DM Determinant 178

Suppose A is a square matrix. Then its determinant, det (A) = |A|, is an element of C defined
recursively by:

If A =
[
a
]

is a 1× 1 matrix, then det (A) = a.

If A = (aij) is a matrix of size n with n ≥ 2, then

det (A) = a11 det (A11)− a12 det (A12) + a13 det (A13)− · · ·+ (−1)n+1a1n det (A1n)
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Theorem DMST Determinant of Matrices of Size Two 179

Suppose that A =
[
a b
c d

]
. Then det (A) = ad− bc
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Definition MIM Minor In a Matrix 180

Suppose A is an n× n matrix and Aij is the (n− 1)× (n− 1) submatrix formed by removing
row i and column j. Then the minor for A at location i j is the determinant of the submatrix,
MA,ij = det (Aij).
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Definition CIM Cofactor In a Matrix 181

Suppose A is an n× n matrix and Aij is the (n− 1)× (n− 1) submatrix formed by removing
row i and column j. Then the cofactor for A at location i j is the signed determinant of the
submatrix, CA,ij = (−1)i+j det (Aij).

c©2005 Robert Beezer

Theorem DERC Determinant Expansion about Rows and Columns 182

Suppose that A = (aij) is a square matrix of size n. Then

det (A) = ai1CA,i1 + ai2CA,i2 + ai3CA,i3 + · · ·+ ainCA,in 1 ≤ i ≤ n

which is known as expansion about row i, and

det (A) = a1jCA,1j + a2jCA,2j + a3jCA,3j + · · ·+ anjCA,nj 1 ≤ j ≤ n

which is known as expansion about column j.
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Theorem DT Determinant of the Transpose 183

Suppose that A is a square matrix. Then det (At) = det (A).
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Theorem DRMM Determinant Respects Matrix Multiplication 184

Suppose that A and B are square matrices of size n. Then det (AB) = det (A) det (B).

c©2005 Robert Beezer



Theorem SMZD Singular Matrices have Zero Determinants 185

Let A be a square matrix. Then A is singular if and only if det (A) = 0.
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Theorem NSME7 NonSingular Matrix Equivalences, Round 7 186
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. The range of A is Cn, R(A) = Cn.

7. A is invertible.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.
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Definition EEM Eigenvalues and Eigenvectors of a Matrix 187

Suppose that A is a square matrix of size n, x 6= 0 is a vector from Cn, and λ is a scalar from
C such that

Ax = λx

Then we say x is an eigenvector of A with eigenvalue λ.
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Theorem EMHE Every Matrix Has an Eigenvalue 188

Suppose A is a square matrix. Then A has at least one eigenvalue.
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Definition CP Characteristic Polynomial 189

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the
polynomial pA (x) defined by

pA (x) = det (A− xIn)
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Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials 190

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if pA (λ) = 0.
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Definition EM Eigenspace of a Matrix 191

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for
λ, EA (λ), is the set of all the eigenvectors of A for λ, with the addition of the zero vector.
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Theorem EMS Eigenspace for a Matrix is a Subspace 192

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace EA (λ)
is a subspace of the vector space Cn.
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Theorem EMNS Eigenspace of a Matrix is a Null Space 193

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

EA (λ) = N (A− λIn)
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Definition AME Algebraic Multiplicity of an Eigenvalue 194

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity
of λ, αA (λ), is the highest power of (x− λ) that divides the characteristic polynomial, pA (x).
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Definition GME Geometric Multiplicity of an Eigenvalue 195

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multi-
plicity of λ, γA (λ), is the dimension of the eigenspace EA (λ).
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Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 196

Suppose that A is a square matrix and S = {x1, x2, x3, . . . , xp} is a set of eigenvectors with
eigenvalues λ1, λ2, λ3, . . . , λp such that λi 6= λj whenever i 6= j. Then S is a linearly indepen-
dent set.
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Theorem SMZE Singular Matrices have Zero Eigenvalues 197

Suppose A is a square matrix. Then A is singular if and only if λ = 0 is an eigenvalue of A.

c©2005 Robert Beezer

Theorem NSME8 NonSingular Matrix Equivalences, Round 8 198
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. The range of A is Cn, R(A) = Cn.

7. A is invertible.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.
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Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix 199

Suppose A is a square matrix and λ is an eigenvalue of A. Then αλ is an eigenvalue of αA.
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Theorem EOMP Eigenvalues Of Matrix Powers 200

Suppose A is a square matrix, λ is an eigenvalue of A, and s ≥ 0 is an integer. Then λs is an
eigenvalue of As.
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Theorem EPM Eigenvalues of the Polynomial of a Matrix 201

Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the
variable x. Then q(λ) is an eigenvalue of the matrix q(A).
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Theorem EIM Eigenvalues of the Inverse of a Matrix 202

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then 1
λ is an eigenvalue

of the matrix A−1.
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Theorem ETM Eigenvalues of the Transpose of a Matrix 203

Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix
At.
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Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs 204

Suppose A is a square matrix with real entries and x is an eigenvector of A for the eigenvalue
λ. Then x is an eigenvector of A for the eigenvalue λ.
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Theorem DCP Degree of the Characteristic Polynomial 205

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, pA (x),
has degree n.
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Theorem NEM Number of Eigenvalues of a Matrix 206

Suppose that A is a square matrix of size n with distinct eigenvalues λ1, λ2, λ3, . . . , λk. Then

k∑
i=1

αA (λi) = n
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Theorem ME Multiplicities of an Eigenvalue 207

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

1 ≤ γA (λ) ≤ αA (λ) ≤ n
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Theorem MNEM Maximum Number of Eigenvalues of a Matrix 208

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigen-
values.
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Theorem HMRE Hermitian Matrices have Real Eigenvalues 209

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then λ ∈ R.
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Theorem HMOE Hermitian Matrices have Orthogonal Eigenvectors 210

Suppose that A is a Hermitian matrix and x and y are two eigenvectors of A for different
eigenvalues. Then x and y are orthogonal vectors.
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Definition SIM Similar Matrices 211

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists
a nonsingular matrix of size n, S, such that A = S−1BS.
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Theorem SER Similarity is an Equivalence Relation 212

Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)

2. If A is similar to B, then B is similar to A. (Symmetric)

3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)
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Theorem SMEE Similar Matrices have Equal Eigenvalues 213

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are
equal, that is pA (x) = pB (x).
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Definition DIM Diagonal Matrix 214

Suppose that A = (aij) is a square matrix. Then A is a diagonal matrix if aij = 0 whenever
i 6= j.
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Definition DZM Diagonalizable Matrix 215

Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.
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Theorem DC Diagonalization Characterization 216

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a
linearly independent set S that contains n eigenvectors of A.
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Theorem DMLE Diagonalizable Matrices have Large Eigenspaces 217

Suppose A is a square matrix. Then A is diagonalizable if and only if γA (λ) = αA (λ) for every
eigenvalue λ of A.
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Theorem DED Distinct Eigenvalues implies Diagonalizable 218

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.
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c©2005 Robert Beezer

Definition LT Linear Transformation 220

A linear transformation, T : U 7→ V , is a function that carries elements of the vector space U
(called the domain) to the vector space V (called the codomain), and which has two additional
properties

1. T (u1 + u2) = T (u1) + T (u2) for all u1, u2 ∈ U

2. T (αu) = αT (u) for all u ∈ U and all α ∈ C
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Theorem LTTZZ Linear Transformations Take Zero to Zero 221

Suppose T : U 7→ V is a linear transformation. Then T (0) = 0.

c©2005 Robert Beezer

Theorem MBLT Matrices Build Linear Transformations 222

Suppose that A is an m× n matrix. Define a function T : Cn 7→ Cm by T (x) = Ax. Then T is
a linear transformation.
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Theorem MLTCV Matrix of a Linear Transformation, Column Vectors 223

Suppose that T : Cn 7→ Cm is a linear transformation. Then there is an m × n matrix A such
that T (x) = Ax.

c©2005 Robert Beezer

Theorem LTLC Linear Transformations and Linear Combinations 224

Suppose that T : U 7→ V is a linear transformation, u1, u2, u3, . . . , ut are vectors from U and
a1, a2, a3, . . . , at are scalars from C. Then

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut)

c©2005 Robert Beezer



Theorem LTDB Linear Transformation Defined on a Basis 225

Suppose that T : U 7→ V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis for U
and w is a vector from U . Let a1, a2, a3, . . . , an be the scalars from C such that

w = a1u1 + a2u2 + a3u3 + · · ·+ anun

Then
T (w) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ anT (un)
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Definition PI Pre-Image 226

Suppose that T : U 7→ V is a linear transformation. For each v, define the pre-image of v to
be the subset of U given by

T−1 (v) = {u ∈ U | T (u) = v}
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Definition LTA Linear Transformation Addition 227

Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same domain
and codomain. Then their sum is the function T + S : U 7→ V whose outputs are defined by

(T + S) (u) = T (u) + S (u)
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Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 228

Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same domain
and codomain. Then T + S : U 7→ V is a linear transformation.
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Definition LTSM Linear Transformation Scalar Multiplication 229

Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then the scalar multiple is
the function αT : U 7→ V whose outputs are defined by

(αT ) (u) = αT (u)

c©2005 Robert Beezer

Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 230

Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then (αT ) : U 7→ V is a linear
transformation.
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Theorem VSLT Vector Space of Linear Transformations 231

Suppose that U and V are vector spaces. Then the set of all linear transformations from U
to V , LT (U, V ) is a vector space when the operations are those given in Definition LTA and
Definition LTSM.

c©2005 Robert Beezer

Definition LTC Linear Transformation Composition 232

Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then the composition of
S and T is the function (S ◦ T ) : U 7→ W whose outputs are defined by

(S ◦ T ) (u) = S (T (u))
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Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 233

Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then (S ◦ T ) : U 7→ W is
a linear transformation.
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Definition ILT Injective Linear Transformation 234

Suppose T : U 7→ V is a linear transformation. Then T is injective if whenever T (x) = T (y),
then x = y.

c©2005 Robert Beezer



Definition NSLT Null Space of a Linear Transformation 235

Suppose T : U 7→ V is a linear transformation. Then the null space of T is the set N (T ) =
{u ∈ U | T (u) = 0}

c©2005 Robert Beezer

Theorem NSLTS Null Space of a Linear Transformation is a Subspace 236

Suppose that T : U 7→ V is a linear transformation. Then the null space of T , N (T ), is a
subspace of U .
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Theorem NSPI Null Space and Pre-Image 237

Suppose T : U 7→ V is a linear transformation and v ∈ V . If the preimage T−1 (v) is non-empty,
and u ∈ T−1 (v) then

T−1 (v) = {u + z | z ∈ N (T )} = u +N (T )

c©2005 Robert Beezer

Theorem NSILT Null Space of an Injective Linear Transformation 238

Suppose that T : U 7→ V is a linear transformation. Then T is injective if and only if the null
space of T is trivial, N (T ) = {0}.
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Theorem ILTLI Injective Linear Transformations and Linear Independence 239

Suppose that T : U 7→ V is an injective linear transformation and S = {u1, u2, u3, . . . , ut} is a
linearly independent subset of U . Then R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)} is a linearly
independent subset of V .

c©2005 Robert Beezer

Theorem ILTB Injective Linear Transformations and Bases 240

Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a basis
of U . Then T is injective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)} is a linearly
independent subset of V .
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Theorem ILTD Injective Linear Transformations and Dimension 241

Suppose that T : U 7→ V is an injective linear transformation. Then dim (U) ≤ dim (V ).
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Theorem CILTI Composition of Injective Linear Transformations is Injective 242

Suppose that T : U 7→ V and S : V 7→ W are injective linear transformations. Then (S◦T ) : U 7→
W is an injective linear transformation.
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Definition SLT Surjective Linear Transformation 243

Suppose T : U 7→ V is a linear transformation. Then T is surjective if for every v ∈ V there
exists a u ∈ U so that T (u) = v.
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Definition RLT Range of a Linear Transformation 244

Suppose T : U 7→ V is a linear transformation. Then the range of T is the set

R(T ) = {T (u) | u ∈ U}
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Theorem RLTS Range of a Linear Transformation is a Subspace 245

Suppose that T : U 7→ V is a linear transformation. Then the range of T , R(T ), is a subspace
of V .
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Theorem RSLT Range of a Surjective Linear Transformation 246

Suppose that T : U 7→ V is a linear transformation. Then T is surjective if and only if the range
of T equals the codomain, R(T ) = V .
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Theorem SSRLT Spanning Set for Range of a Linear Transformation 247

Suppose that T : U 7→ V is a linear transformation and S = {u1, u2, u3, . . . , ut} spans U .
Then R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)} spans R(T ).
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Theorem RPI Range and Pre-Image 248

Suppose that T : U 7→ V is a linear transformation. Then

v ∈ R(T ) if and only if T−1 (v) 6= ∅
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Theorem SLTB Surjective Linear Transformations and Bases 249

Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a basis of
U . Then T is surjective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)} is a spanning
set for V .
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Theorem SLTD Surjective Linear Transformations and Dimension 250

Suppose that T : U 7→ V is a surjective linear transformation. Then dim (U) ≥ dim (V ).
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Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 251

Suppose that T : U 7→ V and S : V 7→ W are surjective linear transformations. Then (S ◦
T ) : U 7→ W is a surjective linear transformation.
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Definition IDLT Identity Linear Transformation 252

The identity linear transformation on the vector space W is defined as

IW : W 7→ W, IW (w) = w
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Definition IVLT Invertible Linear Transformations 253

Suppose that T : U 7→ V is a linear transformation. If there is a function S : V 7→ U such that

S ◦ T = IU T ◦ S = IV

then T is invertible. In this case, we call S the inverse of T and write S = T−1.
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Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation 254

Suppose that T : U 7→ V is an invertible linear transformation. Then the function T−1 : V 7→ U
is a linear transformation.
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Theorem IILT Inverse of an Invertible Linear Transformation 255

Suppose that T : U 7→ V is an invertible linear transformation. Then T−1 is an invertible linear
transformation and

(
T−1

)−1 = T .
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Theorem ILTIS Invertible Linear Transformations are Injective and Surjective 256

Suppose T : U 7→ V is a linear transformation. Then T is invertible if and only if T is injective
and surjective.
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Theorem CIVLT Composition of Invertible Linear Transformations 257

Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then the
composition, (S ◦ T ) : U 7→ W is an invertible linear transformation.
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Theorem ICLT Inverse of a Composition of Linear Transformations 258

Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then S ◦ T is
invertible and (S ◦ T )−1 = T−1 ◦ S−1.
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Definition IVS Isomorphic Vector Spaces 259

Two vector spaces U and V are isomorphic if there exists an invertible linear transformation
T with domain U and codomain V , T : U 7→ V . In this case, we write U ∼= V , and the linear
transformation T is known as an isomorphism between U and V .
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Theorem IVSED Isomorphic Vector Spaces have Equal Dimension 260

Suppose U and V are isomorphic vector spaces. Then dim (U) = dim (V ).
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Definition ROLT Rank Of a Linear Transformation 261

Suppose that T : U 7→ V is a linear transformation. Then the rank of T , r (T ), is the dimension
of the range of T ,

r (T ) = dim (R(T ))
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Definition NOLT Nullity Of a Linear Transformation 262

Suppose that T : U 7→ V is a linear transformation. Then the nullity of T , n (T ), is the
dimension of the null space of T ,

n (T ) = dim (N (T ))
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Theorem ROSLT Rank Of a Surjective Linear Transformation 263

Suppose that T : U 7→ V is a linear transformation. Then the rank of T is the dimension of V ,
r (T ) = dim (V ), if and only if T is surjective.
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Theorem NOILT Nullity Of an Injective Linear Transformation 264

Suppose that T : U 7→ V is an injective linear transformation. Then the nullity of T is zero,
n (T ) = 0, if and only if T is injective.
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Theorem RPNDD Rank Plus Nullity is Domain Dimension 265

Suppose that T : U 7→ V is a linear transformation. Then

r (T ) + n (T ) = dim (U)
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Definition VR Vector Representation 266

Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}. Define a function
ρB : V 7→ Cn as follows. For w ∈ V , find scalars a1, a2, a3, . . . , an so that

w = a1v1 + a2v2 + a3v3 + · · ·+ anvn

then

ρB (w) =


a1

a2

a3

...
an
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Theorem VRLT Vector Representation is a Linear Transformation 267

The function ρB (Definition VR) is a linear transformation.
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Theorem VRI Vector Representation is Injective 268

The function ρB (Definition VR) is an injective linear transformation.
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Theorem VRS Vector Representation is Surjective 269

The function ρB (Definition VR) is a surjective linear transformation.
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Theorem VRILT Vector Representation is an Invertible Linear Transformation 270

The function ρB (Definition VR) is an invertible linear transformation.
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Theorem CFDVS Characterization of Finite Dimensional Vector Spaces 271

Suppose that V is a vector space with dimension n. Then V is isomorphic to Cn.
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Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces 272

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if
and only if dim (U) = dim (V ).

c©2005 Robert Beezer



Theorem CLI Coordinatization and Linear Independence 273

Suppose that U is a vector space with a basis B of size n. Then S = {u1, u2, u3, . . . , uk} is a
linearly independent subset of U if and only if R = {ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}
is a linearly independent subset of Cn.

c©2005 Robert Beezer

Theorem CSS Coordinatization and Spanning Sets 274

Suppose that U is a vector space with a basis B of size n. Then u ∈ Sp({u1, u2, u3, . . . , uk})
if and only if ρB (u) ∈ Sp({ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}).
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Definition MR Matrix Representation 275

Suppose that T : U 7→ V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis for U
of size n, and C is a basis for V of size m. The the matrix representation of T relative to B
and C is the m× n matrix,

MT
B,C = [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]
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Theorem FTMR Fundamental Theorem of Matrix Representation 276

Suppose that T : U 7→ V is a linear transformation, B is a basis for U , C is a basis for V and
MT

B,C is the matrix representation of T relative to B and C. Then, for any u ∈ U ,

ρC (T (u)) = MT
B,C (ρB (u))

or equivalently
T (u) = ρ−1

C

(
MT

B,C (ρB (u))
)

c©2005 Robert Beezer



Theorem MRSLT Matrix Representation of a Sum of Linear Transformations 277

Suppose that T : U 7→ V and S : U 7→ V are linear transformations, B is a basis of U and C is
a basis of V . Then

MT+S
B,C = MT

B,C + MS
B,C
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Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation 278

Suppose that T : U 7→ V is a linear transformation, α ∈ C, B is a basis of U and C is a basis
of V . Then

MαT
B,C = αMT

B,C
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Theorem MRCLT Matrix Representation of a Composition of Linear Transformations279

Suppose that T : U 7→ V and S : V 7→ W are linear transformations, B is a basis of U , C is a
basis of V , and D is a basis of W . Then

MS◦T
B,D = MS

C,DMT
B,C
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Theorem INS Isomorphic Null Spaces 280

Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C is a basis
for V . Then the null space of T is isomorphic to the null space of MT

B,C ,

N (T ) ∼= N
(
MT

B,C

)
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Theorem IR Isomorphic Ranges 281

Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C is a basis
for V of size m. Then the range of T is isomorphic to the range of MT

B,C ,

R(T ) ∼= R
(
MT

B,C

)
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Theorem IMR Invertible Matrix Representations 282

Suppose that T : U 7→ V is an invertible linear transformation, B is a basis for U and C is a
basis for V . Then the matrix representation of T relative to B and C, MT

B,C is an invertible
matrix, and

MT−1

C,B =
(
MT

B,C

)−1
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Definition EELT Eigenvalue and Eigenvector of a Linear Transformation 283

Suppose that T : V 7→ V is a linear transformation. Then a nonzero vector v ∈ V is an
eigenvector of T for the eigenvalue λ if T (v) = λv.
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Definition CBM Change-of-Basis Matrix 284

Suppose that V is a vector space, and IV : V 7→ V is the identity linear transformation on V .
Let B = {v1, v2, v3, . . . , vn} and C be two bases of V . Then the change-of-basis matrix
from B to C is the matrix representation of IV relative to B and C,

CB,C = M IV

B,C

= [ρC (IV (v1))| ρC (IV (v2))| ρC (IV (v3))| . . . |ρC (IV (vn)) ]
= [ρC (u1)| ρC (u2)| ρC (u3)| . . . |ρC (un) ]
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Theorem CB Change-of-Basis 285

Suppose that u is a vector in the vector space V and B and C are bases of V . Then

CB,CρB (v) = ρC (v)
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Theorem ICBM Inverse of Change-of-Basis Matrix 286

Suppose that V is a vector space, and B and C are bases of V . Then the change-of-basis matrix
CB,C is nonsingular and

C−1
B,C = CC,B
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Theorem MRCB Matrix Representation and Change of Basis 287

Suppose that T : U 7→ V is a linear transformation, B and C are bases for U , and D and E are
bases for V . Then

MT
B,D = CE,DMT

C,ECB,C
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Theorem SCB Similarity and Change of Basis 288

Suppose that T : V 7→ V is a linear transformation and B and C are bases of V . Then

MT
B,B = C−1

B,CMT
C,CCB,C
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Theorem EER Eigenvalues, Eigenvectors, Representations 289

Suppose that T : V 7→ V is a linear transformation and B is a basis of V . Then v ∈ V is an
eigenvector of T for the eigenvalue λ if and only if ρB (v) is an eigenvector of MT

B,B for the
eigenvalue λ.
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