Flash Cards

to accompany

A First Course in Linear Algebra

by
Robert A. Beezer
Department of Mathematics and Computer Science
University of Puget Sound

Copyright © 2005 Robert A. Beezer.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being "Preface", no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

A system of simultaneous linear equations is a collection of m equations in the variable quantities $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ of the form,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

where the values of $a_{i j}, b_{i}$ and x_{j} are from the set of complex numbers, \mathbb{C}.

Two systems of simultaneous linear equations are equivalent if their solution sets are equal.

Given a system of simultaneous linear equations, the following three operations will transform the system into a different one, and each is known as an equation operation.

1. Swap the locations of two equations in the list.
2. Multiply each term of an equation by a nonzero quantity.
3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one

Theorem EOPSS Equation Operations Preserve Solution Sets
Suppose we apply one of the three equation operations of Definition EO to the system of simultaneous linear equations

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m} .
\end{aligned}
$$

Then the original system and the transformed system are equivalent systems.

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns.

Definition AM Augmented Matrix
Suppose we have a system of m equations in the n variables $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ written as

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

then the augmented matrix of the system of equations is the $m \times(n+1)$ matrix

$$
\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} & b_{2} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} & b_{3} \\
\vdots & & & & & \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n} & b_{m}
\end{array}\right]
$$

The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a row operation.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.
3. Multiply each entry of one row by some quantity, and add these values to the entry in the same column of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

Definition REM Row-Equivalent Matrices

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a sequence of row operations.

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations that they represent are equivalent systems.

Definition RREF Reduced Row-Echelon Form
A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero is below any row containing a nonzero entry.
2. The leftmost nonzero entry of a row is equal to 1 .
3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If $i<s$, then $j<t$.

A row of a matrix where every entry is zero is called a zero row.

Definition LO Leading Ones

For a matrix in reduced row-echelon form, the leftmost nonzero entry of any row that is not a zero row will be called a leading 1 .

For a matrix in reduced row-echelon form, a column containing a leading 1 will be called a pivot column.

Theorem REMEF Row-Equivalent Matrix in Echelon Form

Suppose A is a matrix. Then there is a (unique!) matrix B so that

1. A and B are row-equivalent.
2. B is in reduced row-echelon form.

A system of linear equations is consistent if it has at least one solution. Otherwise, the system is called inconsistent.

Suppose A is the augmented matrix of a system of linear equations and B is a row-equivalent matrix in reduced row-echelon form. Suppose j is the number of a column of B that contains the leading 1 for some row, and it is not the last column. Then the variable j is dependent. A variable that is not dependent is called independent or free.

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column $n+1$ of B.

Theorem ICRN Inconsistent Systems, r and n

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If $r=n+1$, then the system of equations is inconsistent.

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If $r=n$, then the system has a unique solution, and if $r<n$, then the system has infinitely many solutions.

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with $n-r$ free variables.

A simultaneous system of linear equations has no solutions, a unique solution or infinitely many solutions.

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions

Suppose a consistent system of linear equations has m equations in n variables. If $n>m$, then the system has infinitely many solutions.

A system of linear equations is homogeneous if each equation has a 0 for its constant term. Such a system then has the form,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =0 \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =0 \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =0 \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =0
\end{aligned}
$$

Theorem HSC Homogeneous Systems are Consistent

Suppose that a system of linear equations is homogeneous. Then the system is consistent.

Suppose a homogeneous system of linear equations has n variables. The solution $x_{1}=0$, $x_{2}=0, \ldots, x_{n}=0$ is called the trivial solution.

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions

Suppose that a homogeneous system of linear equations has m equations and n variables with $n>m$. Then the system has infinitely many solutions.

A column vector of size m is an ordered list of m numbers, which is written vertically, in order from top to bottom. At times, we will refer to a column vector as simply a vector.

Definition ZV Zero Vector

The zero vector of size m is the column vector of size m where each entry is the number zero,

$$
\mathbf{0}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the coefficient matrix is the $m \times n$ matrix

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & & & & \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]
$$

Definition VOC Vector of Constants
For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the vector of constants is the column vector of size m

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right]
$$

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the solution vector is the column vector of size m

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{m}
\end{array}\right]
$$

The null space of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$.

A matrix with m rows and n columns is square if $m=n$. In this case, we say the matrix has size n. To emphasize the situation when a matrix is not square, we will call it rectangular.

Suppose A is a square matrix. And suppose the homogeneous linear system of equations $\mathcal{L S}(A, \mathbf{0})$ has only the trivial solution. Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix.

The $m \times m$ identity matrix, $I_{m}=\left(a_{i j}\right)$ has $a_{i j}=1$ whenever $i=j$, and $a_{i j}=0$ whenever $i \neq j$.

Theorem NSRRI NonSingular matrices Row Reduce to the Identity matrix

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, $\mathcal{N}(A)$, contains only the trivial solution to the system $\mathcal{L S}(A, \mathbf{0})$, i.e. $\mathcal{N}(A)=\{\mathbf{0}\}$.

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b}.

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the trivial solution, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.

The vector space \mathbb{C}^{m} is the set of all column vectors (Definition CV) of size m with entries from the set of complex numbers, \mathbb{C}.

The vectors

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{m}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{m}
\end{array}\right]
$$

are equal, written $\mathbf{u}=\mathbf{v}$ provided that $u_{i}=v_{i}$ for all $1 \leq i \leq m$.

Definition CVA Column Vector Addition
Given the vectors

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{m}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{m}
\end{array}\right]
$$

the sum of \mathbf{u} and \mathbf{v} is the vector

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{m}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3} \\
\vdots \\
u_{m}+v_{m}
\end{array}\right]
$$

Given the vector

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{m}
\end{array}\right]
$$

and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of \mathbf{u} by α is

$$
\alpha \mathbf{u}=\alpha\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{m}
\end{array}\right]=\left[\begin{array}{c}
\alpha u_{1} \\
\alpha u_{2} \\
\alpha u_{3} \\
\vdots \\
\alpha u_{m}
\end{array}\right] .
$$ scalar multiplication as defined in Definition CVA and Definition CVSM. Then

- ACC Additive Closure, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\mathbf{u}+\mathbf{v} \in \mathbb{C}^{m}$.
- SCC Scalar Closure, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $\alpha \mathbf{u} \in \mathbb{C}^{m}$.
- CC Commutativity, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
- AAC Additive Associativity, Column Vectors If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^{m}$, then $\mathbf{u}+$ $(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
- ZC Zero Vector, Column Vectors There is a vector, $\mathbf{0}$, called the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^{m}$.
- AIC Additive Inverses, Column Vectors For each vector $\mathbf{u} \in \mathbb{C}^{m}$, there exists a vector $-\mathbf{u} \in \mathbb{C}^{m}$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
- SMAC Scalar Multiplication Associativity, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $\alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u}$.
- DVAC Distributivity across Vector Addition, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.
- DSAC Distributivity across Scalar Addition, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u}$.

Given n vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$ and n scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, their linear combination is the vector

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n} .
$$

Theorem SLSLC Solutions to Linear Systems are Linear Combinations
Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$. Then $\mathbf{x}=\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \vdots \\ \alpha_{n}\end{array}\right]$
is a solution to the linear system of equations $\mathcal{L S}(A, \mathbf{b})$ if and only if

$$
\alpha_{1} \mathbf{A}_{1}+\alpha_{2} \mathbf{A}_{2}+\alpha_{3} \mathbf{A}_{3}+\cdots+\alpha_{n} \mathbf{A}_{n}=\mathbf{b}
$$

Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{L S}(A, \mathbf{b})$ of m equations in n variables. Denote the vector of variables as $\mathbf{x}=\left(x_{i}\right)$. Let $B=\left(b_{i j}\right)$ be a rowequivalent $m \times(n+1)$ matrix in reduced row-echelon form. Suppose that B has r nonzero rows, columns without leading 1's having indices $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}, n+1\right\}$, and columns with leading 1's (pivot columns) having indices $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$. Define vectors $\mathbf{c}=\left(c_{i}\right)$, $\mathbf{u}_{j}=\left(u_{i j}\right), 1 \leq j \leq n-r$ of size n by

$$
\begin{aligned}
& c_{i}= \begin{cases}0 & \text { if } i \in F \\
b_{k, n+1} & \text { if } i \in D, i=d_{k}\end{cases} \\
& u_{i j}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\
0 & \text { if } i \in F, i \neq f_{j} \\
-b_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
\end{aligned}
$$

Then the set of solutions to the system of equations represented by the vector equation

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\mathbf{c}+x_{f_{1}} \mathbf{u}_{1}+x_{f_{2}} \mathbf{u}_{2}+x_{f_{3}} \mathbf{u}_{3}+\cdots+x_{f_{n-r}} \mathbf{u}_{n-r}
$$

is equal to the set of solutions of $\mathcal{L S}(A, \mathbf{b})$.

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then $B=C$.

Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$, their span, $\mathcal{S} p(S)$, is the set of all possible linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$. Symbolically,

$$
\begin{aligned}
\mathcal{S} p(S) & =\left\{\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\} \\
& =\left\{\sum_{i=1}^{t} \alpha_{i} \mathbf{u}_{i} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\}
\end{aligned}
$$

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ and $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the $n-r$ vectors $\mathbf{u}_{j}=\left(u_{i j}\right), 1 \leq j \leq n-r$ of size n as

$$
u_{i j}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\ 0 & \text { if } i \in F, i \neq f_{j} \\ -b_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
$$

Then the null space of A is given by

$$
\mathcal{N}(A)=\mathcal{S} p\left(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n-r}\right\}\right) .
$$

Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$, an equation of the form

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. $\alpha_{i}=0,1 \leq i \leq n$, then we say it is a trivial relation of linear dependence on S.

The set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors.

Suppose that A is an $m \times n$ matrix and $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m} that are the columns of A. Then S is a linearly independent set if and only if the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ has a unique solution.

Theorem LIVRN Linearly Independent Vectors, r and n

Suppose that A is an $m \times n$ matrix and $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m} that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if $n=r$.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m}, and that $n>m$. Then S is a linearly dependent set.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \leq t \leq n$ such that $\mathbf{u}_{\mathbf{t}}$ is a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \ldots, \mathbf{u}_{n}$.

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.

Theorem NSME2 NonSingular Matrix Equivalences, Round 2
Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A form a linearly independent set.

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ and $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the $n-r$ vectors $\mathbf{z}_{j}=\left(z_{i j}\right), 1 \leq j \leq n-r$ of size n as

$$
z_{i j}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\ 0 & \text { if } i \in F, i \neq f_{j} \\ -b_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
$$

Define the set $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n-r}\right\}$. Then

1. $\mathcal{N}(A)=\mathcal{S p}(S)$.
2. S is a linearly independent set.

Definition CCCV Complex Conjugate of a Column Vector
Suppose that

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{m}
\end{array}\right]
$$

is a vector from \mathbb{C}^{m}. Then the conjugate of the vector is defined as

$$
\overline{\mathbf{u}}=\left[\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2} \\
\bar{u}_{3} \\
\vdots \\
\bar{u}_{m}
\end{array}\right]
$$

Suppose \mathbf{x} and \mathbf{y} are two vectors from \mathbb{C}^{m}. Then

$$
\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}
$$

Theorem CRSM Conjugation Respects Vector Scalar Multiplication

Suppose \mathbf{x} is a vector from \mathbb{C}^{m}, and $\alpha \in \mathbb{C}$ is a scalar. Then

$$
\overline{\alpha \mathbf{x}}=\bar{\alpha} \overline{\mathbf{x}}
$$

Given the vectors

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{m}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{m}
\end{array}\right]
$$

the inner product of \mathbf{u} and \mathbf{v} is the scalar quantity in \mathbb{C},

$$
\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} \overline{v_{1}}+u_{2} \overline{v_{2}}+u_{3} \overline{v_{3}}+\cdots+u_{m} \overline{v_{m}}=\sum_{i=1}^{m} u_{i} \overline{v_{i}}
$$

Theorem IPVA Inner Product and Vector Addition

Suppose $\mathbf{u v}, \mathbf{w} \in \mathbb{C}^{m}$. Then

> 1. $\quad\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$
> 2. $\quad\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ and $\alpha \in \mathbb{C}$. Then

$$
\begin{aligned}
& \text { 1. } \quad\langle\alpha \mathbf{u}, \mathbf{v}\rangle=\alpha\langle\mathbf{u}, \mathbf{v}\rangle \\
& \text { 2. } \quad\langle\mathbf{u}, \alpha \mathbf{v}\rangle=\bar{\alpha}\langle\mathbf{u}, \mathbf{v}\rangle
\end{aligned}
$$

Theorem IPAC Inner Product is Anti-Commutative

Suppose that \mathbf{u} and \mathbf{v} are vectors in \mathbb{C}^{m}. Then $\langle\mathbf{u}, \mathbf{v}\rangle=\overline{\langle\mathbf{v}, \mathbf{u}\rangle}$.

The norm of the vector

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{m}
\end{array}\right]
$$

is the scalar quantity in \mathbb{C}^{m}

$$
\|\mathbf{u}\|=\sqrt{\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}+\left|u_{3}\right|^{2}+\cdots+\left|u_{m}\right|^{2}}=\sqrt{\sum_{i=1}^{m}\left|u_{i}\right|^{2}}
$$

Theorem IPN Inner Products and Norms

Suppose that \mathbf{u} is a vector in \mathbb{C}^{m}. Then $\|\mathbf{u}\|^{2}=\langle\mathbf{u}, \mathbf{u}\rangle$.

Suppose that \mathbf{u} is a vector in \mathbb{C}^{m}. Then $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ with equality if and only if $\mathbf{u}=\mathbf{0}$.

Definition OV Orthogonal Vectors

A pair of vectors, \mathbf{u} and \mathbf{v}, from \mathbb{C}^{m} are orthogonal if their inner product is zero, that is, $\langle\mathbf{u}, \mathbf{v}\rangle=0$.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a set of vectors from \mathbb{C}^{m}. Then the set S is orthogonal if every pair of different vectors from S is orthogonal, that is $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0$ whenever $i \neq j$.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of nonzero vectors. Then S is linearly independent.

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly independent set of vectors in \mathbb{C}^{m}. Define the vectors $\mathbf{u}_{i}, 1 \leq i \leq p$ by

$$
\mathbf{u}_{i}=\mathbf{v}_{i}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{3}\right\rangle}{\left\langle\mathbf{u}_{3}, \mathbf{u}_{3}\right\rangle} \mathbf{u}_{3}-\cdots-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{i-1}\right\rangle}{\left\langle\mathbf{u}_{i-1}, \mathbf{u}_{i-1}\right\rangle} \mathbf{u}_{i-1}
$$

Then if $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}\right\}$, then T is an orthogonal set of non-zero vectors, and $\mathcal{S} p(T)=$ $\mathcal{S p}(S)$.

Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of vectors such that $\left\|\mathbf{u}_{i}\right\|=1$ for all $1 \leq i \leq n$. Then S is an orthonormal set of vectors.

The vector space $M_{m n}$ is the set of all $m \times n$ matrices with entries from the set of complex numbers.

Definition ME Matrix Equality

The $m \times n$ matrices

$$
A=\left(a_{i j}\right) \quad B=\left(b_{i j}\right)
$$

are equal, written $A=B$ provided $a_{i j}=b_{i j}$ for all $1 \leq i \leq m, 1 \leq j \leq n$.

Given the $m \times n$ matrices

$$
A=\left(a_{i j}\right) \quad B=\left(b_{i j}\right)
$$

define the sum of A and B to be $A+B=C=\left(c_{i j}\right)$, where

$$
c_{i j}=a_{i j}+b_{i j}, \quad 1 \leq i \leq m, 1 \leq j \leq n .
$$

Given the $m \times n$ matrix $A=\left(a_{i j}\right)$ and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of A by α is the matrix $\alpha A=C=\left(c_{i j}\right)$, where

$$
c_{i j}=\alpha a_{i j}, \quad 1 \leq i \leq m, 1 \leq j \leq n .
$$

Suppose that $M_{m n}$ is the set of all $m \times n$ matrices (Definition VSM) with addition and scalar multiplication as defined in Definition MA and Definition MSM. Then

- ACM Additive Closure, Matrices If $A, B \in M_{m n}$, then $A+B \in M_{m n}$.
- SCM Scalar Closure, Matrices If $\alpha \in \mathbb{C}$ and $A \in M_{m n}$, then $\alpha A \in M_{m n}$.
- CM Commutativity, Matrices If $A, B \in M_{m n}$, then $A+B=B+A$.
- AAM Additive Associativity, Matrices If $A, B, C \in M_{m n}$, then $A+(B+C)=$ $(A+B)+C$.
- ZM Zero Vector, Matrices There is a matrix, \mathcal{O}, called the zero matrix, such that $A+\mathcal{O}=A$ for all $A \in M_{m n}$.
- AIM Additive Inverses, Matrices For each matrix $A \in M_{m n}$, there exists a matrix $-A \in M_{m n}$ so that $A+(-A)=\mathcal{O}$.
- SMAM Scalar Multiplication Associativity, Matrices If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{m n}$, then $\alpha(\beta A)=(\alpha \beta) A$.
- DMAM Distributivity across Matrix Addition, Matrices If $\alpha \in \mathbb{C}$ and $A, B \in$ $M_{m n}$, then $\alpha(A+B)=\alpha A+\alpha B$.
- DSAM Distributivity across Scalar Addition, Matrices If $\alpha, \beta \in \mathbb{C}$ and $A \in$ $M_{m n}$, then $(\alpha+\beta) A=\alpha A+\beta A$.
© 2005 Robert Beezer

Definition ZM Zero Matrix

The $m \times n$ zero matrix is written as $\mathcal{O}=\mathcal{O}_{m \times n}=\left(z_{i j}\right)$ and defined by $z_{i j}=0$ for all $1 \leq i \leq m, 1 \leq j \leq n$. Or, equivalently, $[\mathcal{O}]_{i j}=0$, for all $1 \leq i \leq m, 1 \leq j \leq n$.

Given an $m \times n$ matrix A, its transpose is the $n \times m$ matrix A^{t} given by

$$
\left[A^{t}\right]_{i j}=[A]_{j i}, \quad 1 \leq i \leq n, 1 \leq j \leq m .
$$

The matrix A is symmetric if $A=A^{t}$.

Suppose that A is a symmetric matrix. Then A is square.

Theorem TMA Transpose and Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $(A+B)^{t}=A^{t}+B^{t}$.

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $(\alpha A)^{t}=\alpha A^{t}$.

Theorem TT Transpose of a Transpose

Suppose that A is an $m \times n$ matrix. Then $\left(A^{t}\right)^{t}=A$.

Suppose A is an $m \times n$ matrix. Then the conjugate of A, written \bar{A} is an $m \times n$ matrix defined by

$$
[\bar{A}]_{i j}=\overline{[A]_{i j}}
$$

Theorem CRMA Conjugation Respects Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $\overline{A+B}=\bar{A}+\bar{B}$.

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $\overline{\alpha A}=\bar{\alpha} \bar{A}$.

Suppose that A is an $m \times n$ matrix with columns $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$. Then the range of A, written $\mathcal{R}(A)$, is the subset of \mathbb{C}^{m} containing all linear combinations of the columns of A,

$$
\mathcal{R}(A)=\mathcal{S} p\left(\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}\right)
$$

Suppose A is an $m \times n$ matrix and \mathbf{b} is a vector of size m. Then $\mathbf{b} \in \mathcal{R}(A)$ if and only if $\mathcal{L S}(A, \mathbf{b})$ is consistent.

Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ be the set of column indices where B has leading 1's. Let $S=\left\{\mathbf{A}_{d_{1}}, \mathbf{A}_{d_{2}}, \mathbf{A}_{d_{3}}, \ldots, \mathbf{A}_{d_{r}}\right\}$. Then

1. $\mathcal{R}(A)=\mathcal{S p}(S)$.
2. S is a linearly independent set.

Suppose that A is an $m \times n$ matrix. Create the $m \times(n+m)$ matrix M by placing the $m \times m$ identity matrix I_{m} to the right of the matrix A. Symbolically, $M=\left[A \mid I_{m}\right]$. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Suppose there are r leading 1's of N in the first n columns. If $r=m$, then $\mathcal{R}(A)=\mathbb{C}^{m}$. Otherwise, $r<m$ and let K be the $(m-r) \times m$ matrix formed from the entries of N in the last $m-r$ rows and last m columns. Then

1. K is in reduced row-echelon form.
2. K has no zero rows, or equivalently, K has $m-r$ leading 1 's.
3. $\mathcal{R}(A)=\mathcal{N}(K)$.

Suppose A is a square matrix of size n. Then A is nonsingular if and only if $\mathcal{R}(A)=\mathbb{C}^{n}$.

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. The range of A is $\mathbb{C}^{n}, \mathcal{R}(A)=\mathbb{C}^{n}$.

Definition RSM Row Space of a Matrix

Suppose A is an $m \times n$ matrix. Then the row space of $A, \mathcal{R} \mathcal{S}(A)$, is the range of A^{t}, i.e. $\mathcal{R S}(A)=\mathcal{R}\left(A^{t}\right)$.

Suppose A and B are row-equivalent matrices. Then $\mathcal{R S}(A)=\mathcal{R} \mathcal{S}(B)$.

Theorem BRS Basis for the Row Space

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of B^{t}. Then

1. $\mathcal{R S}(A)=\mathcal{S} p(S)$.
2. S is a linearly independent set.

Suppose A is a matrix. Then $\mathcal{R}(A)=\mathcal{R} \mathcal{S}\left(A^{t}\right)$.

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$ and \mathbf{u} is a vector of size n. Then the matrix-vector product of A with \mathbf{u} is

$$
A \mathbf{u}=\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}|\ldots| \mathbf{A}_{n}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n}
\end{array}\right]=u_{1} \mathbf{A}_{1}+u_{2} \mathbf{A}_{2}+u_{3} \mathbf{A}_{3}+\cdots+u_{n} \mathbf{A}_{n}
$$

Solutions to the linear system $\mathcal{L S}(A, \mathbf{b})$ are the solutions for \mathbf{x} in the vector equation $A \mathbf{x}=\mathbf{b}$.

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \ldots, \mathbf{B}_{p}$. Then the matrix product of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A \mathbf{B}_{i}$. Symbolically,

$$
A B=A\left[\mathbf{B}_{1}\left|\mathbf{B}_{2}\right| \mathbf{B}_{3}|\ldots| \mathbf{B}_{p}\right]=\left[A \mathbf{B}_{1}\left|A \mathbf{B}_{2}\right| A \mathbf{B}_{3}|\ldots| A \mathbf{B}_{p}\right] .
$$

Suppose $A=\left(a_{i j}\right)$ is an $m \times n$ matrix and $B=\left(b_{i j}\right)$ is an $n \times p$ matrix. Then the entries of $A B=C=\left(c_{i j}\right)$ are given by

$$
[C]_{i j}=c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\cdots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{k=1}^{n}[A]_{i k}[B]_{k j}
$$

Suppose A is an $m \times n$ matrix. Then

1. $A \mathcal{O}_{n \times p}=\mathcal{O}_{m \times p}$
2. $\mathcal{O}_{p \times m} A=\mathcal{O}_{p \times n}$

Suppose A is an $m \times n$ matrix. Then

1. $A I_{n}=A$
2. $I_{m} A=A$

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then 1. $A(B+C)=A B+A C$
2. $(B+C) D=B D+C D$

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(A B)=$ $(\alpha A) B=A(\alpha B)$.

Theorem MMA Matrix Multiplication is Associative

Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then $A(B D)=$ $(A B) D$.

If we consider the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ as $m \times 1$ matrices then

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{t} \overline{\mathbf{v}}
$$

Theorem MMCC Matrix Multiplication and Complex Conjugation

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $\overline{A B}=\bar{A} \bar{B}$.

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(A B)^{t}=B^{t} A^{t}$.

Suppose that \mathbf{z} is one solution to the linear system of equations $\mathcal{L S}(A, b)$. Then \mathbf{y} is a solution to $\mathcal{L S}(A, b)$ if and only if $\mathbf{y}=\mathbf{z}+\mathbf{w}$ for some vector $\mathbf{w} \in N(A)$.

Suppose A and B are square matrices of size n such that $A B=I_{n}$ and $B A=I_{n}$. Then A is invertible and B is the inverse of A. In this situation, we write $B=A^{-1}$.

Let $\mathbf{e}_{i} \in \mathbb{C}^{m}$ denote the column vector that is column i of the $m \times m$ identity matrix I_{m}. Then the set

$$
\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{m}\right\}=\left\{\mathbf{e}_{i} \mid 1 \leq i \leq m\right\}
$$

is the set of standard unit vectors in \mathbb{C}^{m}.

Suppose

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then A is invertible if and only if $a d-b c \neq 0$. When A is invertible, we have

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Suppose A is a nonsingular square matrix of size n. Create the $n \times 2 n$ matrix M by placing the $n \times n$ identity matrix I_{n} to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let B be the matrix formed from the final n columns of N. Then $A B=I_{n}$.

Suppose the square matrix A has an inverse. Then A^{-1} is unique.

Theorem SS Socks and Shoes

Suppose A and B are invertible matrices of size n. Then $(A B)^{-1}=B^{-1} A^{-1}$ and $A B$ is an invertible matrix.

Suppose A is an invertible matrix. Then $\left(A^{-1}\right)^{-1}=A$ and A^{-1} is invertible.

Suppose A is an invertible matrix. Then $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$ and A^{t} is invertible.

Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$ and αA is invertible.

Theorem PWSMS Product With a Singular Matrix is Singular

Suppose that A or B are matrices of size n, and one, or both, is singular. Then their product, $A B$, is singular.

Suppose A and B are square matrices of size n such that $A B=I_{n}$. Then $B A=I_{n}$.

Theorem NSI NonSingularity is Invertibility

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. The range of A is $\mathbb{C}^{n}, \mathcal{R}(A)=\mathbb{C}^{n}$.
7. A is invertible.

Suppose that A is nonsingular. Then the unique solution to $\mathcal{L S}(A, \mathbf{b})$ is $A^{-1} \mathbf{b}$.

Suppose that Q is a square matrix of size n such that $(\bar{Q})^{t} Q=I_{n}$. Then we say Q is orthogonal.

Suppose that Q is an orthogonal matrix of size n. Then Q is nonsingular, and $Q^{-1}=(\bar{Q})^{t}$.

Suppose that A is a square matrix of size n with columns $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$. Then A is an orthogonal matrix if and only if S is an orthonormal set.

Theorem OMPIP Orthogonal Matrices Preserve Inner Products

Suppose that Q is an orthogonal matrix of size n and \mathbf{u} and \mathbf{v} are two vectors from \mathbb{C}^{n}. Then

$$
\langle Q \mathbf{u}, Q \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle \quad \text { and } \quad\|Q \mathbf{v}\|=\|\mathbf{v}\|
$$

Definition A Adjoint 131

If A is a square matrix, then its adjoint is $A^{H}=(\bar{A})^{t}$.

The square matrix A is Hermitian (or self-adjoint) if $A=(\bar{A})^{t}$

Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by " + ", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space if the following ten requirements (better known as "axioms") are met.

1. AC Additive Closure If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v} \in V$.
2. SC Scalar Closure If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$.
3. C Commutativity If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
4. AA Additive Associativity If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
5. Z Zero Vector There is a vector, $\mathbf{0}$, called the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in V$.
6. AI Additive Inverses For each vector $\mathbf{u} \in V$, there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
7. SMA Scalar Multiplication Associativity If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u})=$ $(\alpha \beta) \mathbf{u}$.
8. DVA Distributivity across Vector Addition If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u}+$ $\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.
9. DSA Distributivity across Scalar Addition If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$ then $(\alpha+\beta) \mathbf{u}=$ $\alpha \mathbf{u}+\beta \mathbf{u}$.
10. O One If $\mathbf{u} \in V$, then $1 \mathbf{u}=\mathbf{u}$.

The objects in V are called vectors, no matter what else they might really be, simply by virtue of being elements of a vector space.
(C)2005 Robert Beezer

Theorem ZVU Zero Vector is Unique 134

Suppose that V is a vector space. The zero vector, $\mathbf{0}$, is unique.

Suppose that V is a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$, is unique.

Theorem ZSSM Zero Scalar in Scalar Multiplication

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $0 \mathbf{u}=\mathbf{0}$.

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then $\alpha \mathbf{0}=\mathbf{0}$.

Theorem AISM Additive Inverses from Scalar Multiplication

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $-\mathbf{u}=(-1) \mathbf{u}$.

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then if $\alpha \mathbf{u}=\mathbf{0}$, then either $\alpha=0$ or $\mathbf{u}=\mathbf{0}$ (or both).

Theorem VAC Vector Addition Cancellation

Suppose that V is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. If $\mathbf{w}+\mathbf{u}=\mathbf{w}+\mathbf{v}$, then $\mathbf{u}=\mathbf{v}$.

Suppose V is a vector space, $\mathbf{u}, \mathbf{v} \in V$ and α is a nonzero scalar from \mathbb{C}. If $\alpha \mathbf{u}=\alpha \mathbf{v}$, then $\mathbf{u}=\mathbf{v}$.

Suppose V is a vector space, $\mathbf{u} \neq \mathbf{0}$ is a vector in V and $\alpha, \beta \in \mathbb{C}$. If $\alpha \mathbf{u}=\beta \mathbf{u}$, then $\alpha=\beta$.

Suppose that V and W are two vector spaces that have identical definitions of vector addition and scalar multiplication, and that W is a subset of $V, W \subseteq V$. Then W is a subspace of V.

Theorem TSS Testing Subsets for Subspaces

Suppose that V is a vector space and W is a subset of $V, W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

1. W is non-empty, $W \neq \emptyset$.
2. Whenever $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x}+\mathbf{y} \in W$.
3. Whenever $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

Given the vector space V, the subspaces V and $\{0\}$ are each called a trivial subspace.

Suppose that A is an $m \times n$ matrix. Then the null space of $A, \mathcal{N}(A)$, is a subspace of \mathbb{C}^{n}.

Suppose that V is a vector space. Given n vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$ and n scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, their linear combination is the vector

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}
$$

Suppose that V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$, their span, $\mathcal{S} p(S)$, is the set of all possible linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$. Symbolically,

$$
\begin{aligned}
\mathcal{S} p(S) & =\left\{\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\} \\
& =\left\{\sum_{i=1}^{t} \alpha_{i} \mathbf{u}_{i} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\}
\end{aligned}
$$

Suppose V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\} \subseteq V$, their span, $\mathcal{S} p(S)$, is a subspace.

Suppose that A is an $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^{m}.

Suppose that A is an $m \times n$ matrix. Then $\mathcal{R S}(A)$ is a subspace of \mathbb{C}^{n}.

Definition RLD Relation of Linear Dependence

Suppose that V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$, an equation of the form

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. $\alpha_{i}=0,1 \leq i \leq n$, then we say it is a trivial relation of linear dependence on S.

Suppose that V is a vector space. The set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors.

Suppose V is a vector space and W is a subspace. A subset S of W is a spanning set for W if $\mathcal{S} p(S)=W$. In this case, we also say S spans W.

Suppose V is a vector space. Then a subset $S \subseteq V$ is a basis of V if it is linearly independent and spans V.

The set of standard unit vectors for $\mathbb{C}^{m}, B=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{m}\right\}=\left\{\mathbf{e}_{i} \mid 1 \leq i \leq m\right\}$ is a basis for the vector space \mathbb{C}^{m}.

Suppose that A is a square matrix. Then the columns of A are a basis of \mathbb{C}^{m} if and only if A is nonsingular.

Theorem NSME5 NonSingular Matrix Equivalences, Round 5
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. The range of A is $\mathbb{C}^{n}, \mathcal{R}(A)=\mathbb{C}^{n}$.
7. A is invertible.
8. The columns of A are a basis for \mathbb{C}^{n}.

Suppose that V is a vector space with basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ and that \mathbf{w} is a vector in V. Then there exist unique scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ such that

$$
\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m}
$$

Suppose that V is a vector space and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a basis of V. Then the dimension of V is defined by $\operatorname{dim}(V)=t$. If V has no finite bases, we say V has infinite dimension.

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a finite set of vectors which spans the vector space V. Then any set of $t+1$ or more vectors from V is linearly dependent.

Theorem BIS Bases have Identical Sizes

Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have the same size.

The dimension of \mathbb{C}^{m} (Example VSCV) is m.

Theorem DP Dimension of P_{n}

The dimension of P_{n} (Example VSP) is $n+1$.

The dimension of $M_{m n}$ (Example VSM) is $m n$.

Suppose that A is an $m \times n$ matrix. Then the nullity of A is the dimension of the null space of $A, n(A)=\operatorname{dim}(\mathcal{N}(A))$.

Suppose that A is an $m \times n$ matrix. Then the rank of A is the dimension of the range of A, $r(A)=\operatorname{dim}(\mathcal{R}(A))$.

Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then $r(A)=r$ and $n(A)=n-r$.

Suppose that A is an $m \times n$ matrix. Then $r(A)+n(A)=n$.

Theorem RNNSM Rank and Nullity of a NonSingular Matrix

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. The rank of A is $n, r(A)=n$.
3. The nullity of A is zero, $n(A)=0$.
4. A is nonsingular.
5. A row-reduces to the identity matrix.
6. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
7. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
8. The columns of A are a linearly independent set.
9. The range of A is $\mathbb{C}^{n}, \mathcal{R}(A)=\mathbb{C}^{n}$.
10. A is invertible.
11. The columns of A are a basis for \mathbb{C}^{n}.
12. The rank of A is $n, r(A)=n$.
13. The nullity of A is zero, $n(A)=0$.

Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose w is a vector such that $\mathbf{w} \notin \mathcal{S} p(S)$. Then the set $S^{\prime}=S \cup\{\mathbf{w}\}$ is linearly independent.

Suppose that V is a vector space of dimension t. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ be a set of vectors from V. Then

1. If $m>t$, then S is linearly dependent.
2. If $m<t$, then S does not span V.
3. If $m=t$ and S is linearly independent, then S spans V.
4. If $m=t$ and S spans V, then S is linearly independent.

Suppose that U and V are subspaces of the vector space W, such that $U \subseteq V$ and $\operatorname{dim}(U)=$ $\operatorname{dim}(V)$. Then $U=V$.

Suppose A is an $m \times n$ matrix. Then $r(A)=r\left(A^{t}\right)$.

Suppose that $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is an orthonormal basis of the subspace W of \mathbb{C}^{m}. For any $\mathbf{w} \in W$,

$$
\mathbf{w}=\left\langle\mathbf{w}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{w}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}+\left\langle\mathbf{w}, \mathbf{v}_{3}\right\rangle \mathbf{v}_{3}+\cdots+\left\langle\mathbf{w}, \mathbf{v}_{p}\right\rangle \mathbf{v}_{p}
$$

Suppose that A is an $m \times n$ matrix. Then the submatrix $A_{i j}$ is the $(m-1) \times(n-1)$ matrix obtained from A by removing row i and column j.

Suppose A is a square matrix. Then its determinant, $\operatorname{det}(A)=|A|$, is an element of \mathbb{C} defined recursively by:
If $A=[a]$ is a 1×1 matrix, then $\operatorname{det}(A)=a$.
If $A=\left(a_{i j}\right)$ is a matrix of size n with $n \geq 2$, then

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+a_{13} \operatorname{det}\left(A_{13}\right)-\cdots+(-1)^{n+1} a_{1 n} \operatorname{det}\left(A_{1 n}\right)
$$

Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $\operatorname{det}(A)=a d-b c$

Suppose A is an $n \times n$ matrix and $A_{i j}$ is the $(n-1) \times(n-1)$ submatrix formed by removing row i and column j. Then the minor for A at location $i j$ is the determinant of the submatrix, $M_{A, i j}=\operatorname{det}\left(A_{i j}\right)$.

Suppose A is an $n \times n$ matrix and $A_{i j}$ is the $(n-1) \times(n-1)$ submatrix formed by removing row i and column j. Then the cofactor for A at location $i j$ is the signed determinant of the submatrix, $C_{A, i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

Theorem DERC Determinant Expansion about Rows and Columns
Suppose that $A=\left(a_{i j}\right)$ is a square matrix of size n. Then

$$
\operatorname{det}(A)=a_{i 1} C_{A, i 1}+a_{i 2} C_{A, i 2}+a_{i 3} C_{A, i 3}+\cdots+a_{i n} C_{A, i n} \quad 1 \leq i \leq n
$$

which is known as expansion about row i, and

$$
\operatorname{det}(A)=a_{1 j} C_{A, 1 j}+a_{2 j} C_{A, 2 j}+a_{3 j} C_{A, 3 j}+\cdots+a_{n j} C_{A, n j} \quad 1 \leq j \leq n
$$

which is known as expansion about column j.

Suppose that A is a square matrix. Then $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.

Theorem DRMM Determinant Respects Matrix Multiplication

Suppose that A and B are square matrices of size n. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Let A be a square matrix. Then A is singular if and only if $\operatorname{det}(A)=0$.

Theorem NSME7 NonSingular Matrix Equivalences, Round 7
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. The range of A is $\mathbb{C}^{n}, \mathcal{R}(A)=\mathbb{C}^{n}$.
7. A is invertible.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.

Suppose that A is a square matrix of size $n, \mathbf{x} \neq \mathbf{0}$ is a vector from \mathbb{C}^{n}, and λ is a scalar from \mathbb{C} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Then we say \mathbf{x} is an eigenvector of A with eigenvalue λ.

Theorem EMHE Every Matrix Has an Eigenvalue

Suppose A is a square matrix. Then A has at least one eigenvalue.

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the polynomial $p_{A}(x)$ defined by

$$
p_{A}(x)=\operatorname{det}\left(A-x I_{n}\right)
$$

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_{A}(\lambda)=0$.

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for $\lambda, E_{A}(\lambda)$, is the set of all the eigenvectors of A for λ, with the addition of the zero vector.

Theorem EMS Eigenspace for a Matrix is a Subspace

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace $E_{A}(\lambda)$ is a subspace of the vector space \mathbb{C}^{n}.

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

$$
E_{A}(\lambda)=\mathcal{N}\left(A-\lambda I_{n}\right)
$$

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity of $\lambda, \alpha_{A}(\lambda)$, is the highest power of $(x-\lambda)$ that divides the characteristic polynomial, $p_{A}(x)$.

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multiplicity of $\lambda, \gamma_{A}(\lambda)$, is the dimension of the eigenspace $E_{A}(\lambda)$.

Suppose that A is a square matrix and $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{p}\right\}$ is a set of eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{p}$ such that $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$. Then S is a linearly independent set.

Suppose A is a square matrix. Then A is singular if and only if $\lambda=0$ is an eigenvalue of A.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. The range of A is $\mathbb{C}^{n}, \mathcal{R}(A)=\mathbb{C}^{n}$.
7. A is invertible.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.
12. $\lambda=0$ is not an eigenvalue of A.

Suppose A is a square matrix and λ is an eigenvalue of A. Then $\alpha \lambda$ is an eigenvalue of αA.

Suppose A is a square matrix, λ is an eigenvalue of A, and $s \geq 0$ is an integer. Then λ^{s} is an eigenvalue of A^{s}.

Suppose A is a square matrix and λ is an eigenvalue of A. Let $q(x)$ be a polynomial in the variable x. Then $q(\lambda)$ is an eigenvalue of the matrix $q(A)$.

Theorem EIM Eigenvalues of the Inverse of a Matrix

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then $\frac{1}{\lambda}$ is an eigenvalue of the matrix A^{-1}.

Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix A^{t}.

Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs

Suppose A is a square matrix with real entries and \mathbf{x} is an eigenvector of A for the eigenvalue λ. Then $\overline{\mathrm{x}}$ is an eigenvector of A for the eigenvalue $\bar{\lambda}$.

Suppose that A is a square matrix of size n. Then the characteristic polynomial of $A, p_{A}(x)$, has degree n.

Theorem NEM Number of Eigenvalues of a Matrix

Suppose that A is a square matrix of size n with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}$. Then

$$
\sum_{i=1}^{k} \alpha_{A}\left(\lambda_{i}\right)=n
$$

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

$$
1 \leq \gamma_{A}(\lambda) \leq \alpha_{A}(\lambda) \leq n
$$

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigenvalues.

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then $\lambda \in \mathbb{R}$.

Theorem HMOE Hermitian Matrices have Orthogonal Eigenvectors

Suppose that A is a Hermitian matrix and \mathbf{x} and \mathbf{y} are two eigenvectors of A for different eigenvalues. Then \mathbf{x} and \mathbf{y} are orthogonal vectors.

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix of size n, S, such that $A=S^{-1} B S$.

Theorem SER Similarity is an Equivalence Relation

Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)
2. If A is similar to B, then B is similar to A. (Symmetric)
3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is $p_{A}(x)=p_{B}(x)$.

Suppose that $A=\left(a_{i j}\right)$ is a square matrix. Then A is a diagonal matrix if $a_{i j}=0$ whenever $i \neq j$.

Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly independent set S that contains n eigenvectors of A.

Suppose A is a square matrix. Then A is diagonalizable if and only if $\gamma_{A}(\lambda)=\alpha_{A}(\lambda)$ for every eigenvalue λ of A.

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.

A linear transformation, $T: U \mapsto V$, is a function that carries elements of the vector space U (called the domain) to the vector space V (called the codomain), and which has two additional properties

1. $T\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)=T\left(\mathbf{u}_{1}\right)+T\left(\mathbf{u}_{2}\right)$ for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$
2. $T(\alpha \mathbf{u})=\alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$

Suppose $T: U \mapsto V$ is a linear transformation. Then $T(\mathbf{0})=\mathbf{0}$.

Theorem MBLT Matrices Build Linear Transformations

Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}$ by $T(\mathbf{x})=A \mathbf{x}$. Then T is a linear transformation.

Suppose that $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$.

Suppose that $T: U \mapsto V$ is a linear transformation, $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$ are vectors from U and $a_{1}, a_{2}, a_{3}, \ldots, a_{t}$ are scalars from \mathbb{C}. Then

$$
T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}\right)=a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{t} T\left(\mathbf{u}_{t}\right)
$$

Suppose that $T: U \mapsto V$ is a linear transformation, $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a basis for U and \mathbf{w} is a vector from U. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be the scalars from \mathbb{C} such that

$$
\mathbf{w}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{n} \mathbf{u}_{n}
$$

Then

$$
T(\mathbf{w})=a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{n} T\left(\mathbf{u}_{n}\right)
$$

Suppose that $T: U \mapsto V$ is a linear transformation. For each \mathbf{v}, define the pre-image of \mathbf{v} to be the subset of U given by

$$
T^{-1}(\mathbf{v})=\{\mathbf{u} \in U \mid T(\mathbf{u})=\mathbf{v}\}
$$

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then their sum is the function $T+S: U \mapsto V$ whose outputs are defined by

$$
(T+S)(\mathbf{u})=T(\mathbf{u})+S(\mathbf{u})
$$

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then $T+S: U \mapsto V$ is a linear transformation.

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the scalar multiple is the function $\alpha T: U \mapsto V$ whose outputs are defined by

$$
(\alpha T)(\mathbf{u})=\alpha T(\mathbf{u})
$$

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then $(\alpha T): U \mapsto V$ is a linear transformation.

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to $V, \operatorname{LT}(U, V)$ is a vector space when the operations are those given in Definition LTA and Definition LTSM.

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then the composition of S and T is the function $(S \circ T): U \mapsto W$ whose outputs are defined by

$$
(S \circ T)(\mathbf{u})=S(T(\mathbf{u}))
$$

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then $(S \circ T): U \mapsto W$ is a linear transformation.

Suppose $T: U \mapsto V$ is a linear transformation. Then T is injective if whenever $T(\mathbf{x})=T(\mathbf{y})$, then $\mathbf{x}=\mathbf{y}$.

Suppose $T: U \mapsto V$ is a linear transformation. Then the null space of T is the set $\mathcal{N}(T)=$ $\{\mathbf{u} \in U \mid T(\mathbf{u})=\mathbf{0}\}$

Theorem NSLTS Null Space of a Linear Transformation is a Subspace

Suppose that $T: U \mapsto V$ is a linear transformation. Then the null space of $T, \mathcal{N}(T)$, is a subspace of U.

Suppose $T: U \mapsto V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is non-empty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

$$
T^{-1}(\mathbf{v})=\{\mathbf{u}+\mathbf{z} \mid \mathbf{z} \in \mathcal{N}(T)\}=\mathbf{u}+\mathcal{N}(T)
$$

Theorem NSILT Null Space of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is injective if and only if the null space of T is trivial, $\mathcal{N}(T)=\{\mathbf{0}\}$.

Suppose that $T: U \mapsto V$ is an injective linear transformation and $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$ is a linearly independent subset of U. Then $R=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{t}\right)\right\}$ is a linearly independent subset of V.

Suppose that $T: U \mapsto V$ is a linear transformation and $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$ is a basis of U. Then T is injective if and only if $C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}$ is a linearly independent subset of V.

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are injective linear transformations. Then $(S \circ T): U \mapsto$ W is an injective linear transformation.

Suppose $T: U \mapsto V$ is a linear transformation. Then T is surjective if for every $\mathbf{v} \in V$ there exists a $\mathbf{u} \in U$ so that $T(\mathbf{u})=\mathbf{v}$.

Definition RLT Range of a Linear Transformation

Suppose $T: U \mapsto V$ is a linear transformation. Then the range of T is the set

$$
\mathcal{R}(T)=\{T(\mathbf{u}) \mid \mathbf{u} \in U\}
$$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the range of $T, \mathcal{R}(T)$, is a subspace of V.

Suppose that T : $U \mapsto V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T)=V$.

Suppose that $T: U \mapsto V$ is a linear transformation and $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$ spans U. Then $R=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{t}\right)\right\}$ spans $\mathcal{R}(T)$.

Theorem RPI Range and Pre-Image

Suppose that $T: U \mapsto V$ is a linear transformation. Then

$$
\mathbf{v} \in \mathcal{R}(T) \text { if and only if } T^{-1}(\mathbf{v}) \neq \emptyset
$$

Suppose that $T: U \mapsto V$ is a linear transformation and $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$ is a basis of U. Then T is surjective if and only if $C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}$ is a spanning set for V.

Suppose that $T: U \mapsto V$ is a surjective linear transformation. Then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$.

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are surjective linear transformations. Then $(S \circ$ $T): U \mapsto W$ is a surjective linear transformation.

The identity linear transformation on the vector space W is defined as

$$
I_{W}: W \mapsto W, \quad I_{W}(\mathbf{w})=\mathbf{w}
$$

Suppose that $T: U \mapsto V$ is a linear transformation. If there is a function $S: V \mapsto U$ such that

$$
S \circ T=I_{U} \quad T \circ S=I_{V}
$$

then T is invertible. In this case, we call S the inverse of T and write $S=T^{-1}$.

Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then the function $T^{-1}: V \mapsto U$ is a linear transformation.

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then T^{-1} is an invertible linear transformation and $\left(T^{-1}\right)^{-1}=T$.

Theorem ILTIS Invertible Linear Transformations are Injective and Surjective

Suppose $T: U \mapsto V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then the composition, $(S \circ T): U \mapsto W$ is an invertible linear transformation.

Theorem ICLT Inverse of a Composition of Linear Transformations

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then $S \circ T$ is invertible and $(S \circ T)^{-1}=T^{-1} \circ S^{-1}$.

Two vector spaces U and V are isomorphic if there exists an invertible linear transformation T with domain U and codomain $V, T: U \mapsto V$. In this case, we write $U \cong V$, and the linear transformation T is known as an isomorphism between U and V.

Theorem IVSED Isomorphic Vector Spaces have Equal Dimension

Suppose U and V are isomorphic vector spaces. Then $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Suppose that $T: U \mapsto V$ is a linear transformation. Then the $\mathbf{r a n k}$ of $T, r(T)$, is the dimension of the range of T,

$$
r(T)=\operatorname{dim}(\mathcal{R}(T))
$$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the nullity of $T, n(T)$, is the dimension of the null space of T,

$$
n(T)=\operatorname{dim}(\mathcal{N}(T))
$$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the rank of T is the dimension of V, $r(T)=\operatorname{dim}(V)$, if and only if T is surjective.

Theorem NOILT Nullity Of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then the nullity of T is zero, $n(T)=0$, if and only if T is injective.

Suppose that $T: U \mapsto V$ is a linear transformation. Then

$$
r(T)+n(T)=\operatorname{dim}(U)
$$

Suppose that V is a vector space with a basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$. Define a function $\rho_{B}: V \mapsto \mathbb{C}^{n}$ as follows. For $\mathbf{w} \in V$, find scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ so that

$$
\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{n} \mathbf{v}_{n}
$$

then

$$
\rho_{B}(\mathbf{w})=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n}
\end{array}\right]
$$

The function ρ_{B} (Definition VR) is a linear transformation.

Theorem VRI Vector Representation is Injective

The function ρ_{B} (Definition VR) is an injective linear transformation.

The function ρ_{B} (Definition VR) is a surjective linear transformation.

Theorem VRILT Vector Representation is an Invertible Linear Transformation

The function ρ_{B} (Definition VR) is an invertible linear transformation.

Suppose that V is a vector space with dimension n. Then V is isomorphic to \mathbb{C}^{n}.

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and only if $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Suppose that U is a vector space with a basis B of size n. Then $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent subset of U if and only if $R=\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}$ is a linearly independent subset of \mathbb{C}^{n}.

Suppose that U is a vector space with a basis B of size n. Then $\mathbf{u} \in \mathcal{S} p\left(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}\right)$ if and only if $\rho_{B}(\mathbf{u}) \in \mathcal{S} p\left(\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}\right)$.

Suppose that $T: U \mapsto V$ is a linear transformation, $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a basis for U of size n, and C is a basis for V of size m. The the matrix representation of T relative to B and C is the $m \times n$ matrix,

$$
M_{B, C}^{T}=\left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)\left|\rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)\right| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right)|\ldots| \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]
$$

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U, C is a basis for V and $M_{B, C}^{T}$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$
\rho_{C}(T(\mathbf{u}))=M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)
$$

or equivalently

$$
T(\mathbf{u})=\rho_{C}^{-1}\left(M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)\right)
$$

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are linear transformations, B is a basis of U and C is a basis of V. Then

$$
M_{B, C}^{T+S}=M_{B, C}^{T}+M_{B, C}^{S}
$$

Suppose that $T: U \mapsto V$ is a linear transformation, $\alpha \in \mathbb{C}, B$ is a basis of U and C is a basis of V. Then

$$
M_{B, C}^{\alpha T}=\alpha M_{B, C}^{T}
$$

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

$$
M_{B, D}^{S \circ T}=M_{C, D}^{S} M_{B, C}^{T}
$$

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the null space of T is isomorphic to the null space of $M_{B, C}^{T}$,

$$
\mathcal{N}(T) \cong \mathcal{N}\left(M_{B, C}^{T}\right)
$$

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the range of $M_{B, C}^{T}$,

$$
\mathcal{R}(T) \cong \mathcal{R}\left(M_{B, C}^{T}\right)
$$

Suppose that $T: U \mapsto V$ is an invertible linear transformation, B is a basis for U and C is a basis for V. Then the matrix representation of T relative to B and $C, M_{B, C}^{T}$ is an invertible matrix, and

$$
M_{C, B}^{T^{-1}}=\left(M_{B, C}^{T}\right)^{-1}
$$

Suppose that $T: V \mapsto V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if $T(\mathbf{v})=\lambda \mathbf{v}$.

Suppose that V is a vector space, and $I_{V}: V \mapsto V$ is the identity linear transformation on V. Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ and C be two bases of V. Then the change-of-basis matrix from B to C is the matrix representation of I_{V} relative to B and C,

$$
\begin{aligned}
C_{B, C} & =M_{B, C}^{I_{V}} \\
& =\left[\rho_{C}\left(I_{V}\left(\mathbf{v}_{1}\right)\right)\left|\rho_{C}\left(I_{V}\left(\mathbf{v}_{2}\right)\right)\right| \rho_{C}\left(I_{V}\left(\mathbf{v}_{3}\right)\right)|\ldots| \rho_{C}\left(I_{V}\left(\mathbf{v}_{n}\right)\right)\right] \\
& =\left[\rho_{C}\left(\mathbf{u}_{1}\right)\left|\rho_{C}\left(\mathbf{u}_{2}\right)\right| \rho_{C}\left(\mathbf{u}_{3}\right)|\ldots| \rho_{C}\left(\mathbf{u}_{n}\right)\right]
\end{aligned}
$$

Suppose that \mathbf{u} is a vector in the vector space V and B and C are bases of V. Then

$$
C_{B, C} \rho_{B}(\mathbf{v})=\rho_{C}(\mathbf{v})
$$

Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis matrix $C_{B, C}$ is nonsingular and

$$
C_{B, C}^{-1}=C_{C, B}
$$

Suppose that $T: U \mapsto V$ is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

$$
M_{B, D}^{T}=C_{E, D} M_{C, E}^{T} C_{B, C}
$$

Suppose that $T: V \mapsto V$ is a linear transformation and B and C are bases of V. Then

$$
M_{B, B}^{T}=C_{B, C}^{-1} M_{C, C}^{T} C_{B, C}
$$

Suppose that $T: V \mapsto V$ is a linear transformation and B is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_{B}(\mathbf{v})$ is an eigenvector of $M_{B, B}^{T}$ for the eigenvalue λ.

