Flash Cards

to accompany

A First Course in Linear Algebra

by Robert A. Beezer Department of Mathematics and Computer Science University of Puget Sound

> Version 0.40 April 14, 2005 © 2004, 2005

Copyright ©2005 Robert A. Beezer.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being "Preface", no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Definition SSLE System of Simultaneous Linear Equations

A system of simultaneous linear equations is a collection of m equations in the variable quantities $x_1, x_2, x_3, \ldots, x_n$ of the form,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

where the values of a_{ij} , b_i and x_j are from the set of complex numbers, \mathbb{C} .

C2005 Robert Beezer

 $\mathbf{2}$

Definition ES Equivalent Systems

Two systems of simultaneous linear equations are **equivalent** if their solution sets are equal.

$\odot 2005$	Robert	Beezei
$\odot 2005$	Robert	Beeze

Definition EO Equation Operations

Given a system of simultaneous linear equations, the following three operations will transform the system into a different one, and each is known as an **equation operation**.

- 1. Swap the locations of two equations in the list.
- 2. Multiply each term of an equation by a nonzero quantity.
- 3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

©2005 Robert Beezer

4

Theorem EOPSS Equation Operations Preserve Solution Sets

Suppose we apply one of the three equation operations of Definition EO to the system of simultaneous linear equations

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$ $\vdots \quad \vdots$ $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m.$

Then the original system and the transformed system are equivalent systems.

Definition M Matrix

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns.

©2005 Robert Beezer

6

Definition AM Augmented Matrix

Suppose we have a system of m equations in the n variables $x_1, x_2, x_3, \ldots, x_n$ written as

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$ \vdots $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

then the **augmented matrix** of the system of equations is the $m \times (n+1)$ matrix

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} & b_3 \\ \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} & b_m \end{bmatrix}$

Definition RO Row Operations

The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a **row operation**.

- 1. Swap the locations of two rows.
- 2. Multiply each entry of a single row by a nonzero quantity.
- 3. Multiply each entry of one row by some quantity, and add these values to the entry in the same column of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

©2005 Robert Beezer

8

Definition REM Row-Equivalent Matrices

Two matrices, A and B, are **row-equivalent** if one can be obtained from the other by a sequence of row operations.

Theorem REMES Row-Equivalent Matrices represent Equivalent Systems

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations that they represent are equivalent systems.

©2005 Robert Beezer

10

Definition RREF Reduced Row-Echelon Form

A matrix is in **reduced row-echelon form** if it meets all of the following conditions:

- 1. A row where every entry is zero is below any row containing a nonzero entry.
- 2. The leftmost nonzero entry of a row is equal to 1.
- 3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
- 4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If i < s, then j < t.

Definition ZRM Zero Row of a Matrix		11	
A row of a matrix where every entry is zero is called a zero row .			
	©2005	Robert Beezer	

Definition LO Leading Ones

For a matrix in reduced row-echelon form, the leftmost nonzero entry of any row that is not a zero row will be called a **leading 1**.

 $\mathbf{12}$

For a matrix in reduced row-echelon form, a column containing a leading 1 will be called a **pivot column**.

C2005 Robert Beezer

 $\mathbf{14}$

Theorem REMEF Row-Equivalent Matrix in Echelon Form

Suppose A is a matrix. Then there is a (unique!) matrix B so that

- 1. A and B are row-equivalent.
- 2. B is in reduced row-echelon form.

A system of linear equations is **consistent** if it has at least one solution. Otherwise, the system is called **inconsistent**.

©2005 Robert Beezer

16

Definition IDV Independent and Dependent Variables

Suppose A is the augmented matrix of a system of linear equations and B is a row-equivalent matrix in reduced row-echelon form. Suppose j is the number of a column of B that contains the leading 1 for some row, and it is not the last column. Then the variable j is **dependent**. A variable that is not dependent is called **independent** or **free**.

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column n + 1 of B.

C2005 Robert Beezer

Theorem ICRN Inconsistent Systems, r and n

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent.

©2005 Robert Beezer

18

Suppose A is the augmented matrix of a *consistent* system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If r = n, then the system has a unique solution, and if r < n, then the system has infinitely many solutions.

©2005 Robert Beezer

20

Theorem FVCS Free Variables for Consistent Systems

Suppose A is the augmented matrix of a *consistent* system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with n - r free variables.

A simultaneous system of linear equations has no solutions, a unique solution or infinitely many solutions.

©2005 Robert Beezer

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions 22

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the system has infinitely many solutions.

Definition HS Homogeneous System

A system of linear equations is **homogeneous** if each equation has a 0 for its constant term. Such a system then has the form,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = 0$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = 0$$

C2005 Robert Beezer

 $\mathbf{24}$

Theorem HSC Homogeneous Systems are Consistent

Suppose that a system of linear equations is homogeneous. Then the system is consistent.

$\odot 2005$	Robert	Beezer
--------------	--------	--------

Definition TSHSE Trivial Solution to Homogeneous Systems of Equations

Suppose a homogeneous system of linear equations has n variables. The solution $x_1 = 0$, $x_2 = 0, \ldots, x_n = 0$ is called the **trivial solution**.

C2005 Robert Beezer

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions 26

Suppose that a homogeneous system of linear equations has m equations and n variables with n > m. Then the system has infinitely many solutions.

A column vector of size m is an ordered list of m numbers, which is written vertically, in order from top to bottom. At times, we will refer to a column vector as simply a vector.

©2005 Robert Beezer

 $\mathbf{28}$

Definition ZV Zero Vector

The **zero vector** of size m is the column vector of size m where each entry is the number zero,

$$\mathbf{0} = \begin{bmatrix} 0\\0\\0\\\vdots\\0 \end{bmatrix}$$

27

C2005 Robert Beezer

Definition CM Coefficient Matrix

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

the **coefficient matrix** is the $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

©2005 Robert Beezer

Definition VOC Vector of Constants 30 For a system of linear equations, $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$: $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$ the vector of constants is the column vector of size m $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$

 $\mathbf{29}$

${\bf Definition \ SV} \quad {\rm Solution \ Vector}$

For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

the **solution vector** is the column vector of size m

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_m \end{bmatrix}$$

C2005 Robert Beezer

Definition NSM Null Space of a Matrix

The **null space** of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{LS}(A, \mathbf{0})$.

$\mathbf{32}$

A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has size n. To emphasize the situation when a matrix is not square, we will call it rectangular.

C2005 Robert Beezer

Definition NM Nonsingular Matrix

Suppose A is a square matrix. And suppose the homogeneous linear system of equations $\mathcal{LS}(A, \mathbf{0})$ has only the trivial solution. Then we say that A is a **nonsingular** matrix. Otherwise we say A is a **singular** matrix.

©2005 Robert Beezer

34

Definition IM Identity Matrix

The $m \times m$ identity matrix, $I_m = (a_{ij})$ has $a_{ij} = 1$ whenever i = j, and $a_{ij} = 0$ whenever $i \neq j$.

©2005 Robert Beezer

36

Theorem NSRRI NonSingular matrices Row Reduce to the Identity matrix

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

Theorem NSTNS NonSingular matrices have Trivial Null Spaces

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, $\mathcal{N}(A)$, contains only the trivial solution to the system $\mathcal{LS}(A, \mathbf{0})$, i.e. $\mathcal{N}(A) = \{\mathbf{0}\}$.

©2005 Robert Beezer

38

Theorem NSMUS NonSingular Matrices and Unique Solutions

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector **b**.

Theorem NSME1 NonSingular Matrix Equivalences, Round 1

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the trivial solution, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .

©2005 Robert Beezer

Definition VSCV Vector Space of Column Vectors

The vector space \mathbb{C}^m is the set of all column vectors (Definition CV) of size m with entries from the set of complex numbers, \mathbb{C} .

40

Definition CVE Column Vector Equality

The vectors

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{bmatrix} \qquad \qquad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_m \end{bmatrix}$$

are **equal**, written $\mathbf{u} = \mathbf{v}$ provided that $u_i = v_i$ for all $1 \le i \le m$.

©2005 Robert Beezer

Definition CVA Column Vector Addition

Given the vectors

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{bmatrix} \qquad \qquad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_m \end{bmatrix}$$

the \mathbf{sum} of \mathbf{u} and \mathbf{v} is the vector

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_m \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \\ \vdots \\ u_m + v_m \end{bmatrix}$$

©2005 Robert Beezer

 $\mathbf{42}$

Definition CVSM Column Vector Scalar Multiplication

Given the vector

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{bmatrix}$$

and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of **u** by α is

$$\alpha \mathbf{u} = \alpha \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \alpha u_2 \\ \alpha u_3 \\ \vdots \\ \alpha u_m \end{bmatrix}$$

©2005 Robert Beezer

Theorem VSPCV Vector Space Properties of Column Vectors 44 Suppose that \mathbb{C}^m is the set of column vectors of size m (Definition VSCV) with addition and scalar multiplication as defined in Definition CVA and Definition CVSM. Then

- ACC Additive Closure, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} \in \mathbb{C}^m$.
- SCC Scalar Closure, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha \mathbf{u} \in \mathbb{C}^m$.
- CC Commutativity, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- AAC Additive Associativity, Column Vectors If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^m$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- ZC Zero Vector, Column Vectors There is a vector, 0, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^m$.
- AIC Additive Inverses, Column Vectors For each vector $\mathbf{u} \in \mathbb{C}^m$, there exists a vector $-\mathbf{u} \in \mathbb{C}^m$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- SMAC Scalar Multiplication Associativity, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- DVAC Distributivity across Vector Addition, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- DSAC Distributivity across Scalar Addition, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.

OC One, Column Vectors If $\mathbf{u} \in \mathbb{C}^{m}$, then $\mathbf{i}\mathbf{u} = \mathbf{u}$.

 Definition LCCV
 Linear Combination of Column Vectors
 45

 Given n vectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , ..., \mathbf{u}_n and n scalars α_1 , α_2 , α_3 , ..., α_n , their linear combination is the vector
 $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \cdots + \alpha_n \mathbf{u}_n$.

Theorem SLSLC Solutions to Linear Systems are Linear Combinations **46** Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n$. Then $\mathbf{x} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_n \end{bmatrix}$

is a solution to the linear system of equations $\mathcal{LS}(A, \mathbf{b})$ if and only if

 $\alpha_1 \mathbf{A}_1 + \alpha_2 \mathbf{A}_2 + \alpha_3 \mathbf{A}_3 + \dots + \alpha_n \mathbf{A}_n = \mathbf{b}$

Robert Beezer

©2005

Theorem VFSLS Vector Form of Solutions to Linear Systems

Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{LS}(A, \mathbf{b})$ of m equations in n variables. Denote the vector of variables as $\mathbf{x} = (x_i)$. Let $B = (b_{ij})$ be a rowequivalent $m \times (n+1)$ matrix in reduced row-echelon form. Suppose that B has r nonzero rows, columns without leading 1's having indices $F = \{f_1, f_2, f_3, \dots, f_{n-r}, n+1\}$, and columns with leading 1's (pivot columns) having indices $D = \{d_1, d_2, d_3, \dots, d_r\}$. Define vectors $\mathbf{c} = (c_i)$, $\mathbf{u}_j = (u_{ij}), 1 \le j \le n - r$ of size n by

$$c_{i} = \begin{cases} 0 & \text{if } i \in F \\ b_{k,n+1} & \text{if } i \in D, \ i = d_{k} \end{cases}$$
$$u_{ij} = \begin{cases} 1 & \text{if } i \in F, \ i = f_{j} \\ 0 & \text{if } i \in F, \ i \neq f_{j} \\ -b_{k,f_{j}} & \text{if } i \in D, \ i = d_{k} \end{cases}$$

Then the set of solutions to the system of equations represented by the vector equation

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \mathbf{c} + x_{f_1} \mathbf{u}_1 + x_{f_2} \mathbf{u}_2 + x_{f_3} \mathbf{u}_3 + \dots + x_{f_{n-r}} \mathbf{u}_{n-r}$$

is equal to the set of solutions of $\mathcal{LS}(A, \mathbf{b})$.

r.

(c)2005 Robert Beezer

Theorem RREFU Reduced Row-Echelon Form is Unique

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then B = C.

48

 $\mathbf{47}$

Definition SSCV Span of a Set of Column Vectors

Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t}$, their **span**, Sp(S), is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t$. Symbolically,

$$Sp(S) = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_t \mathbf{u}_t \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$
$$= \left\{ \sum_{i=1}^t \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$

©2005 Robert Beezer

Theorem SSNS Spanning Sets for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the n - r vectors $\mathbf{u}_j = (u_{ij}), 1 \le j \le n - r$ of size n as

$$u_{ij} = \begin{cases} 1 & \text{if } i \in F, \ i = f_j \\ 0 & \text{if } i \in F, \ i \neq f_j \\ -b_{k,f_j} & \text{if } i \in D, \ i = d_k \end{cases}$$

Then the null space of A is given by

 $\mathcal{N}(A) = \mathcal{S}p(\{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_{n-r}\}).$

©2005 Robert Beezer

$\mathbf{50}$

Definition RLDCV Relation of Linear Dependence for Column Vectors

Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$, an equation of the form

$$\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3 + \dots + \alpha_n\mathbf{u}_n = \mathbf{0}$$

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. $\alpha_i = 0, 1 \le i \le n$, then we say it is a trivial relation of linear dependence on S.

C2005 Robert Beezer

Definition LICV Linear Independence of Column Vectors

The set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is **linearly dependent** if there is a relation of linear dependence on S that is not trivial. In the case where the *only* relation of linear dependence on S is the trivial one, then S is a **linearly independent** set of vectors.

 $\mathbf{52}$

51

Theorem LIVHS Linearly Independent Vectors and Homogeneous Systems

Suppose that A is an $m \times n$ matrix and $S = {\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n}$ is the set of vectors in \mathbb{C}^m that are the columns of A. Then S is a linearly independent set if and only if the homogeneous system $\mathcal{LS}(A, \mathbf{0})$ has a unique solution.

©2005 Robert Beezer

Theorem LIVRN Linearly Independent Vectors, r and n

 $\mathbf{54}$

Suppose that A is an $m \times n$ matrix and $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$ is the set of vectors in \mathbb{C}^m that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if n = r.

Theorem MVSLD More Vectors than Size implies Linear Dependence

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is the set of vectors in \mathbb{C}^m , and that n > m. Then S is a linearly dependent set.

©2005 Robert Beezer

Theorem DLDS Dependency in Linearly Dependent Sets

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \le t \le n$ such that \mathbf{u}_t is a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_n$.

 $\mathbf{56}$

Theorem NSLIC NonSingular matrices have Linearly Independent Columns

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.

©2005 Robert Beezer

 $\mathbf{58}$

Theorem NSME2 NonSingular Matrix Equivalences, Round 2

Suppose that A is a square matrix. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A form a linearly independent set.

Theorem BNS Basis for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the n - r vectors $\mathbf{z}_j = (z_{ij}), 1 \le j \le n - r$ of size n as

$$z_{ij} = \begin{cases} 1 & \text{if } i \in F, \, i = f_j \\ 0 & \text{if } i \in F, \, i \neq f_j \\ -b_{k,f_j} & \text{if } i \in D, \, i = d_k \end{cases}$$

Define the set $S = \{ \mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_{n-r} \}$. Then

- 1. $\mathcal{N}(A) = \mathcal{S}p(S)$.
- 2. S is a linearly independent set.

©2005 Robert Beezer

60

Definition CCCV Complex Conjugate of a Column Vector

Suppose that

 $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{bmatrix}$

is a vector from \mathbb{C}^m . Then the conjugate of the vector is defined as

$$\overline{\mathbf{u}} = \begin{bmatrix} \overline{u}_1 \\ \overline{u}_2 \\ \overline{u}_3 \\ \vdots \\ \overline{u}_m \end{bmatrix}$$

 Theorem CRVA
 Conjugation Respects Vector Addition
 61

 Suppose x and y are two vectors from \mathbb{C}^m . Then
 $\overline{x+y} = \overline{x} + \overline{y}$
 $\overline{x+y} = \overline{x} + \overline{y}$ \overline{c} 2005 Robert Beezer

Theorem CRSM Conjugation Respects Vector Scalar Multiplication

Suppose **x** is a vector from \mathbb{C}^m , and $\alpha \in \mathbb{C}$ is a scalar. Then

 $\overline{\alpha \mathbf{x}} = \overline{\alpha} \, \overline{\mathbf{x}}$

C2005 Robert Beezer

62

Definition IP Inner Product

Given the vectors

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{bmatrix} \qquad \qquad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_m \end{bmatrix}$$

the inner product of \mathbf{u} and \mathbf{v} is the scalar quantity in \mathbb{C} ,

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 \overline{v_1} + u_2 \overline{v_2} + u_3 \overline{v_3} + \dots + u_m \overline{v_m} = \sum_{i=1}^m u_i \overline{v_i}$$

©2005 Robert Beezer

Theorem IPVA Inner Product and Vector Addition

Suppose $\mathbf{u}\mathbf{v}, \mathbf{w} \in \mathbb{C}^m$. Then

1.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$

C2005 Robert Beezer

64

63

Theorem IPSM Inner Product and Scalar Multiplication

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ and $\alpha \in \mathbb{C}$. Then

1. $\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$ 2. $\langle \mathbf{u}, \alpha \mathbf{v} \rangle = \overline{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle$

©2005 Robert Beezer

66

Theorem IPAC Inner Product is Anti-Commutative

Suppose that **u** and **v** are vectors in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.

C2005 Robert Beezer

Definition NV Norm of a Vector

The **norm** of the vector

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_m \end{bmatrix}$$

г

is the scalar quantity in \mathbb{C}^m

$$\|\mathbf{u}\| = \sqrt{|u_1|^2 + |u_2|^2 + |u_3|^2 + \dots + |u_m|^2} = \sqrt{\sum_{i=1}^m |u_i|^2}$$

©2005 Robert Beezer

Theorem IPN Inner Products and Norms

Suppose that \mathbf{u} is a vector in \mathbb{C}^m . Then $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$.

©2005 Robert Beezer

68
Theorem PIP Positive Inner Products

Suppose that **u** is a vector in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ with equality if and only if $\mathbf{u} = \mathbf{0}$.

©2005 Robert Beezer

Definition OV Orthogonal Vectors

A pair of vectors, **u** and **v**, from \mathbb{C}^m are **orthogonal** if their inner product is zero, that is, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

$\mathbf{70}$

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a set of vectors from \mathbb{C}^m . Then the set S is **orthogonal** if every pair of different vectors from S is orthogonal, that is $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ whenever $i \neq j$.

©2005 Robert Beezer

 $\mathbf{72}$

Theorem OSLI Orthogonal Sets are Linearly Independent

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is an orthogonal set of nonzero vectors. Then S is linearly independent.

Theorem GSPCV Gram-Schmidt Procedure, Column Vectors

Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p}$ is a linearly independent set of vectors in \mathbb{C}^m . Define the vectors $\mathbf{u}_i, 1 \leq i \leq p$ by

$$\mathbf{u}_{i} = \mathbf{v}_{i} - \frac{\langle \mathbf{v}_{i}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} \mathbf{u}_{1} - \frac{\langle \mathbf{v}_{i}, \mathbf{u}_{2} \rangle}{\langle \mathbf{u}_{2}, \mathbf{u}_{2} \rangle} \mathbf{u}_{2} - \frac{\langle \mathbf{v}_{i}, \mathbf{u}_{3} \rangle}{\langle \mathbf{u}_{3}, \mathbf{u}_{3} \rangle} \mathbf{u}_{3} - \dots - \frac{\langle \mathbf{v}_{i}, \mathbf{u}_{i-1} \rangle}{\langle \mathbf{u}_{i-1}, \mathbf{u}_{i-1} \rangle} \mathbf{u}_{i-1}$$

Then if $T = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p}$, then T is an orthogonal set of non-zero vectors, and Sp(T) = Sp(S).

©2005 Robert Beezer

Definition ONS OrthoNormal Set

Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is an orthogonal set of vectors such that $||\mathbf{u}_i|| = 1$ for all $1 \le i \le n$. Then S is an **orthonormal** set of vectors.

 $\mathbf{74}$

The vector space M_{mn} is the set of all $m \times n$ matrices with entries from the set of complex numbers.

C2005 Robert Beezer

Definition ME Matrix Equality

The $m \times n$ matrices

$$A = (a_{ij}) \qquad \qquad B = (b_{ij})$$

are **equal**, written A = B provided $a_{ij} = b_{ij}$ for all $1 \le i \le m, 1 \le j \le n$.

C2005 Robert Beezer

Definition MA Matrix Addition

Given the $m \times n$ matrices

$$A = (a_{ij}) \qquad \qquad B = (b_{ij})$$

define the **sum** of A and B to be $A + B = C = (c_{ij})$, where

$$c_{ij} = a_{ij} + b_{ij}, \quad 1 \le i \le m, \ 1 \le j \le n.$$

©2005 Robert Beezer

Definition MSM Matrix Scalar Multiplication

Given the $m \times n$ matrix $A = (a_{ij})$ and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of A by α is the matrix $\alpha A = C = (c_{ij})$, where

$$c_{ij} = \alpha a_{ij}, \quad 1 \le i \le m, \ 1 \le j \le n.$$

C2005 Robert Beezer

 $\mathbf{78}$

Theorem VSPM Vector Space Properties of Matrices

Suppose that M_{mn} is the set of all $m \times n$ matrices (Definition VSM) with addition and scalar multiplication as defined in Definition MA and Definition MSM. Then

- ACM Additive Closure, Matrices If $A, B \in M_{mn}$, then $A + B \in M_{mn}$.
- SCM Scalar Closure, Matrices If $\alpha \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha A \in M_{mn}$.
- CM Commutativity, Matrices If $A, B \in M_{mn}$, then A + B = B + A.
- AAM Additive Associativity, Matrices If $A, B, C \in M_{mn}$, then A + (B + C) = (A + B) + C.
- ZM Zero Vector, Matrices There is a matrix, \mathcal{O} , called the zero matrix, such that $A + \mathcal{O} = A$ for all $A \in M_{mn}$.
- AIM Additive Inverses, Matrices For each matrix $A \in M_{mn}$, there exists a matrix $-A \in M_{mn}$ so that $A + (-A) = \mathcal{O}$.
- SMAM Scalar Multiplication Associativity, Matrices If α , $\beta \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha(\beta A) = (\alpha \beta)A$.
- DMAM Distributivity across Matrix Addition, Matrices If $\alpha \in \mathbb{C}$ and $A, B \in M_{mn}$, then $\alpha(A+B) = \alpha A + \alpha B$.
- DSAM Distributivity across Scalar Addition, Matrices If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{mn}$, then $(\alpha + \beta)A = \alpha A + \beta A$.

ONI One, Matrices If $A \in M_{mn}$, then 1A = A.

©2005 Robert Beezer

80

 $\mathbf{79}$

Definition ZM Zero Matrix

The $m \times n$ zero matrix is written as $\mathcal{O} = \mathcal{O}_{m \times n} = (z_{ij})$ and defined by $z_{ij} = 0$ for all $1 \leq i \leq m, 1 \leq j \leq n$. Or, equivalently, $[\mathcal{O}]_{ij} = 0$, for all $1 \leq i \leq m, 1 \leq j \leq n$.

Definition TM Transpose of a Matrix

Given an $m \times n$ matrix A, its **transpose** is the $n \times m$ matrix A^t given by

 $\left[A^t\right]_{ij} = [A]_{ji}\,,\quad 1\leq i\leq n,\, 1\leq j\leq m.$

©2005 Robert Beezer

82

Definition SYM Symmetric Matrix

The matrix A is symmetric if $A = A^t$.

Theorem SMS Symmetric Matrices are Square	83
Suppose that A is a symmetric matrix. Then A is square.	

©2005 Robert Beezer

84

Theorem TMA Transpose and Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $(A + B)^t = A^t + B^t$.

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $(\alpha A)^t = \alpha A^t$.

Theorem TMSM Transpose and Matrix Scalar Multiplication

©2005 Robert Beezer

86

Theorem TT Transpose of a Transpose

Suppose that A is an $m \times n$ matrix. Then $(A^t)^t = A$.

Suppose A is an $m \times n$ matrix. Then the **conjugate** of A, written \overline{A} is an $m \times n$ matrix defined by

$$\left[\overline{A}\right]_{ij} = \overline{\left[A\right]_{ij}}$$

C2005 Robert Beezer

Theorem CRMA Conjugation Respects Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $\overline{A + B} = \overline{A} + \overline{B}$.

©2005 Robert Beezer

Theorem CRMSM Conjugation Respects Matrix Scalar Multiplication

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $\overline{\alpha A} = \overline{\alpha} \overline{A}$.

C2005 Robert Beezer

Definition RM Range of a Matrix

Suppose that A is an $m \times n$ matrix with columns $\{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$. Then the **range** of A, written $\mathcal{R}(A)$, is the subset of \mathbb{C}^m containing all linear combinations of the columns of A,

 $\mathcal{R}(A) = \mathcal{S}p(\{\mathbf{A}_1, \, \mathbf{A}_2, \, \mathbf{A}_3, \, \dots, \, \mathbf{A}_n\})$

90

Suppose A is an $m \times n$ matrix and **b** is a vector of size m. Then $\mathbf{b} \in \mathcal{R}(A)$ if and only if $\mathcal{LS}(A, \mathbf{b})$ is consistent.

C2005 Robert Beezer

92

Theorem BROC Basis of the Range with Original Columns

Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ be the set of column indices where B has leading 1's. Let $S = \{\mathbf{A}_{d_1}, \mathbf{A}_{d_2}, \mathbf{A}_{d_3}, \ldots, \mathbf{A}_{d_r}\}$. Then

- 1. $\mathcal{R}(A) = \mathcal{S}p(S)$.
- 2. S is a linearly independent set.

Theorem RNS Range as a Null Space

Suppose that A is an $m \times n$ matrix. Create the $m \times (n+m)$ matrix M by placing the $m \times m$ identity matrix I_m to the right of the matrix A. Symbolically, $M = [A \mid I_m]$. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Suppose there are r leading 1's of N in the first n columns. If r = m, then $\mathcal{R}(A) = \mathbb{C}^m$. Otherwise, r < m and let K be the $(m-r) \times m$ matrix formed from the entries of N in the last m - r rows and last m columns. Then

- 1. K is in reduced row-echelon form.
- 2. K has no zero rows, or equivalently, K has m r leading 1's.
- 3. $\mathcal{R}(A) = \mathcal{N}(K)$.

©2005 Robert Beezer

Theorem RNSM Range of a NonSingular Matrix

Suppose A is a square matrix of size n. Then A is nonsingular if and only if $\mathcal{R}(A) = \mathbb{C}^n$.

Theorem NSME3 NonSingular Matrix Equivalences, Round 3

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. The range of A is \mathbb{C}^n , $\mathcal{R}(A) = \mathbb{C}^n$.

©2005 Robert Beezer

Definition RSM Row Space of a Matrix

Suppose A is an $m \times n$ matrix. Then the row space of A, $\mathcal{RS}(A)$, is the range of A^t , i.e. $\mathcal{RS}(A) = \mathcal{R}(A^t)$.

Suppose A and B are row-equivalent matrices. Then $\mathcal{RS}(A) = \mathcal{RS}(B)$.

Theorem REMRS Row-Equivalent Matrices have equal Row Spaces

©2005 Robert Beezer

Theorem BRS Basis for the Row Space

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of B^t . Then

- 1. $\mathcal{RS}(A) = \mathcal{Sp}(S).$
- 2. S is a linearly independent set.

98

C2005 Robert Beezer

Definition MVP Matrix-Vector Product

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$ and \mathbf{u} is a vector of size n. Then the **matrix-vector product** of A with \mathbf{u} is

$$A\mathbf{u} = \begin{bmatrix} \mathbf{A}_1 | \mathbf{A}_2 | \mathbf{A}_3 | \dots | \mathbf{A}_n \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_n \end{bmatrix} = u_1 \mathbf{A}_1 + u_2 \mathbf{A}_2 + u_3 \mathbf{A}_3 + \dots + u_n \mathbf{A}_n$$

Theorem RMRST Range of a Matrix is Row Space of Transpose

Suppose A is a matrix. Then $\mathcal{R}(A) = \mathcal{RS}(A^t)$.

C2005 Robert Beezer

100

Theorem SLEMM Systems of Linear Equations as Matrix Multiplication

Solutions to the linear system $\mathcal{LS}(A, \mathbf{b})$ are the solutions for \mathbf{x} in the vector equation $A\mathbf{x} = \mathbf{b}$.

C2005 Robert Beezer

Definition MM Matrix Multiplication

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \ldots, \mathbf{B}_p$. Then the **matrix product** of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A\mathbf{B}_i$. Symbolically,

 $AB = A \left[\mathbf{B}_1 | \mathbf{B}_2 | \mathbf{B}_3 | \dots | \mathbf{B}_p \right] = \left[A \mathbf{B}_1 | A \mathbf{B}_2 | A \mathbf{B}_3 | \dots | A \mathbf{B}_p \right].$

©2005 Robert Beezer

Theorem EMP Entries of Matrix Products

Suppose $A = (a_{ij})$ is an $m \times n$ matrix and $B = (b_{ij})$ is an $n \times p$ matrix. Then the entries of $AB = C = (c_{ij})$ are given by

$$[C]_{ij} = c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj} = \sum_{k=1}^{n} [A]_{ik} [B]_{kj}$$

C2005 Robert Beezer

104

Theorem MMZM Matrix Multiplication and the Zero Matrix

Suppose A is an $m \times n$ matrix. Then 1. $A\mathcal{O}_{n \times p} = \mathcal{O}_{m \times p}$ 2. $\mathcal{O}_{p \times m} A = \mathcal{O}_{p \times n}$

C2005 Robert Beezer

Theorem MMIM Matrix Multiplication and Identity Matrix

Suppose A is an $m \times n$ matrix. Then 1. $AI_n = A$ 2. $I_m A = A$

C2005 Robert Beezer

106

Theorem MMDAA Matrix Multiplication Distributes Across Addition

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then 1. A(B+C) = AB + AC2. (B+C)D = BD + CD

C2005 Robert Beezer

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

C2005 Robert Beezer

108

Theorem MMA Matrix Multiplication is Associative

Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then A(BD) = (AB)D.

Theorem MMIP Matrix Multiplication and Inner Products If we consider the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ as $m \times 1$ matrices then $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^t \overline{\mathbf{v}}$

©2005 Robert Beezer

109

C2005 Robert Beezer

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(AB)^t = B^t A^t$.

Theorem MMT Matrix Multiplication and Transposes

©2005 Robert Beezer

112

Theorem PSPHS Particular Solution Plus Homogeneous Solutions

Suppose that \mathbf{z} is one solution to the linear system of equations $\mathcal{LS}(A, b)$. Then \mathbf{y} is a solution to $\mathcal{LS}(A, b)$ if and only if $\mathbf{y} = \mathbf{z} + \mathbf{w}$ for some vector $\mathbf{w} \in N(A)$.

Suppose A and B are square matrices of size n such that $AB = I_n$ and $BA = I_n$. Then A is **invertible** and B is the **inverse** of A. In this situation, we write $B = A^{-1}$.

©2005 Robert Beezer

114

Definition SUV Standard Unit Vectors

Let $\mathbf{e}_i \in \mathbb{C}^m$ denote the column vector that is column *i* of the $m \times m$ identity matrix I_m . Then the set

 $\{\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3, \, \dots, \, \mathbf{e}_m\} = \{\, \mathbf{e}_i \mid 1 \le i \le m\}$

is the set of standard unit vectors in \mathbb{C}^m .

C2005 Robert Beezer

Theorem TTMI Two-by-Two Matrix Inverse

Suppose

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then A is invertible if and only if $ad - bc \neq 0$. When A is invertible, we have

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

©2005 Robert Beezer

Theorem CINSM Computing the Inverse of a NonSingular Matrix

Suppose A is a nonsingular square matrix of size n. Create the $n \times 2n$ matrix M by placing the $n \times n$ identity matrix I_n to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let B be the matrix formed from the final n columns of N. Then $AB = I_n$.

©2005 Robert Beezer

©2005 Robert Beezer

118

Theorem SS Socks and Shoes

Suppose A and B are invertible matrices of size n. Then $(AB)^{-1} = B^{-1}A^{-1}$ and AB is an invertible matrix.

C2005 Robert Beezer

Suppose A is an invertible matrix. Then $(A^{-1})^{-1} = A$ and A^{-1} is invertible.

©2005 Robert Beezer

Theorem MIT Matrix Inverse of a Transpose

Suppose A is an invertible matrix. Then $(A^t)^{-1} = (A^{-1})^t$ and A^t is invertible.

Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1} = \frac{1}{\alpha}A^{-1}$ and αA is invertible.

C2005 Robert Beezer

122

Theorem PWSMS Product With a Singular Matrix is Singular

Suppose that A or B are matrices of size n, and one, or both, is singular. Then their product, AB, is singular.

Theorem OSIS One-Sided Inverse is Sufficient	123
Suppose A and B are square matrices of size n such that $AB = I_n$. Then $BA = I_n$.	

©2005 Robert Beezer

Theorem NSI NonSingularity is Invertibility

124

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.

Theorem NSME4 NonSingular Matrix Equivalences, Round 4

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. The range of A is \mathbb{C}^n , $\mathcal{R}(A) = \mathbb{C}^n$.
- 7. A is invertible.

©2005 Robert Beezer

126

Theorem SNSCM Solution with NonSingular Coefficient Matrix

Suppose that A is nonsingular. Then the unique solution to $\mathcal{LS}(A, \mathbf{b})$ is $A^{-1}\mathbf{b}$.

Suppose that Q is a square matrix of size n such that $(\overline{Q})^t Q = I_n$. Then we say Q is **orthogonal**.

©2005 Robert Beezer

Theorem COMOS Columns of Orthogonal Matrices are Orthonormal Sets

Suppose that A is a square matrix of size n with columns $S = \{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \dots, \mathbf{A}_n\}$. Then A is an orthogonal matrix if and only if S is an orthonormal set.

C2005 Robert Beezer

Theorem OMPIPOrthogonal Matrices Preserve Inner Products130

Suppose that Q is an orthogonal matrix of size n and **u** and **v** are two vectors from \mathbb{C}^n . Then

 $\langle Q\mathbf{u}, Q\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ and $\|Q\mathbf{v}\| = \|\mathbf{v}\|$

Definition A Adjoint

If A is a square matrix, then its **adjoint** is $A^{H} = \left(\overline{A}\right)^{t}$.

©2005 Robert Beezer

Definition VS Vector Space

Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by "+", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space if the following ten requirements (better known as "axioms") are met.

- 1. AC Additive Closure If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} \in V$.
- 2. SC Scalar Closure If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$.
- 3. C Commutativity If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- 4. AA Additive Associativity If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- 5. Z Zero Vector There is a vector, 0, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- 6. AI Additive Inverses For each vector $\mathbf{u} \in V$, there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 7. SMA Scalar Multiplication Associativity If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- 8. **DVA** Distributivity across Vector Addition If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- 9. **DSA** Distributivity across Scalar Addition If α , $\beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.
- 10. O One If $\mathbf{u} \in V$, then $1\mathbf{u} = \mathbf{u}$.

The objects in V are called **vectors**, no matter what else they might really be, simply by virtue of being elements of a vector space.

©2005 Robert Beezer

Theorem ZVU Zero Vector is Unique

Suppose that V is a vector space. The zero vector, $\mathbf{0}$, is unique.

133

 $\mathbf{134}$

Suppose that V is a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$, is unique.

©2005 Robert Beezer

 $\mathbf{136}$

Theorem ZSSM Zero Scalar in Scalar Multiplication

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $0\mathbf{u} = \mathbf{0}$.

C2005 Robert Beezer

Theorem ZVSMZero Vector in Scalar Multiplication137Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then $\alpha \mathbf{0} = \mathbf{0}$.

©2005 Robert Beezer

 $\mathbf{138}$

Theorem AISM Additive Inverses from Scalar Multiplication

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $-\mathbf{u} = (-1)\mathbf{u}$.

C2005 Robert Beezer

Theorem SMEZV Scalar Multiplication Equals the Zero Vector

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then if $\alpha \mathbf{u} = \mathbf{0}$, then either $\alpha = 0$ or $\mathbf{u} = \mathbf{0}$ (or both).

©2005 Robert Beezer

140

Suppose that V is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. If $\mathbf{w} + \mathbf{u} = \mathbf{w} + \mathbf{v}$, then $\mathbf{u} = \mathbf{v}$.
Suppose V is a vector space, $\mathbf{u}, \mathbf{v} \in V$ and α is a nonzero scalar from \mathbb{C} . If $\alpha \mathbf{u} = \alpha \mathbf{v}$, then $\mathbf{u} = \mathbf{v}$.

C2005 Robert Beezer

142

Theorem CVSM Canceling Vectors in Scalar Multiplication

Suppose V is a vector space, $\mathbf{u} \neq \mathbf{0}$ is a vector in V and $\alpha, \beta \in \mathbb{C}$. If $\alpha \mathbf{u} = \beta \mathbf{u}$, then $\alpha = \beta$.

C2005 Robert Beezer

Definition S Subspace

Suppose that V and W are two vector spaces that have identical definitions of vector addition and scalar multiplication, and that W is a subset of V, $W \subseteq V$. Then W is a subspace of V.

©2005 Robert Beezer

Theorem TSS Testing Subsets for Subspaces

Suppose that V is a vector space and W is a subset of V, $W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

- 1. W is non-empty, $W \neq \emptyset$.
- 2. Whenever $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x} + \mathbf{y} \in W$.
- 3. Whenever $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

©2005 Robert Beezer

Given the vector space V, the subspaces V and $\{0\}$ are each called a **trivial subspace**.

©2005 Robert Beezer

146

Theorem NSMS Null Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then the null space of A, $\mathcal{N}(A)$, is a subspace of \mathbb{C}^n .

Suppose that V is a vector space. Given n vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ and n scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$, their linear combination is the vector

 $\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3 + \cdots + \alpha_n\mathbf{u}_n.$

©2005 Robert Beezer

${\bf Definition \ SS} \quad {\rm Span \ of \ a \ Set}$

Suppose that V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t}$, their **span**, Sp(S), is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t$. Symbolically,

$$Sp(S) = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_t \mathbf{u}_t \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$
$$= \left\{ \sum_{i=1}^t \alpha_i \mathbf{u}_i \mid \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$

C2005 Robert Beezer

Theorem SSS Span of a Set is a Subspace

Suppose V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t} \subseteq V$, their span, Sp(S), is a subspace.

C2005 Robert Beezer

Theorem RMS Range of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^m .

©2005 Robert Beezer

152

Definition RLD Relation of Linear Dependence

Suppose that V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$, an equation of the form

 $\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3 + \dots + \alpha_n\mathbf{u}_n = \mathbf{0}$

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. $\alpha_i = 0, 1 \le i \le n$, then we say it is a trivial relation of linear dependence on S.

Suppose that V is a vector space. The set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is **linearly dependent** if there is a relation of linear dependence on S that is not trivial. In the case where the *only* relation of linear dependence on S is the trivial one, then S is a **linearly independent** set of vectors.

C2005 Robert Beezer

Definition TSS To Span a Subspace

Suppose V is a vector space and W is a subspace. A subset S of W is a **spanning set** for W if Sp(S) = W. In this case, we also say S **spans** W.

Definition B Basis

Suppose V is a vector space. Then a subset $S \subseteq V$ is a **basis** of V if it is linearly independent and spans V.

©2005 Robert Beezer

156

Theorem SUVB Standard Unit Vectors are a Basis

The set of standard unit vectors for \mathbb{C}^m , $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_m\} = \{\mathbf{e}_i \mid 1 \le i \le m\}$ is a basis for the vector space \mathbb{C}^m .

Suppose that A is a square matrix. Then the columns of A are a basis of \mathbb{C}^m if and only if A is nonsingular.

©2005 Robert Beezer

Theorem NSME5NonSingular Matrix Equivalences, Round 5158Suppose that A is a square matrix of size n. The following are equivalent.1. A is nonsingular.

- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. The range of A is \mathbb{C}^n , $\mathcal{R}(A) = \mathbb{C}^n$.
- 7. A is invertible.
- 8. The columns of A are a basis for \mathbb{C}^n .

Theorem VRRB Vector Representation Relative to a Basis

Suppose that V is a vector space with basis $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m}$ and that **w** is a vector in V. Then there exist *unique* scalars $a_1, a_2, a_3, \dots, a_m$ such that

 $\mathbf{w} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 + \dots + a_m\mathbf{v}_m.$

©2005 Robert Beezer

${\bf Definition} \ {\bf D} \quad {\rm Dimension} \quad$

Suppose that V is a vector space and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t\}$ is a basis of V. Then the **dimension** of V is defined by dim (V) = t. If V has no finite bases, we say V has infinite dimension.

C2005 Robert Beezer

159

Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t}$ is a finite set of vectors which spans the vector space V. Then any set of t + 1 or more vectors from V is linearly dependent.

©2005 Robert Beezer

Theorem BIS Bases have Identical Sizes

Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have the same size.

Theorem DCM Dimension of \mathbb{C}^m	163
The dimension of \mathbb{C}^m (Example VSCV) is m .	
©2005 Robert B	eezer

Theorem DP Dimension of P_n

The dimension of P_n (Example VSP) is n + 1.

The dimension of M_{mn} (Example VSM) is mn.

©2005 Robert Beezer

Definition NOM Nullity Of a Matrix

Suppose that A is an $m \times n$ matrix. Then the **nullity** of A is the dimension of the null space of A, $n(A) = \dim(\mathcal{N}(A))$.

©2005 Robert Beezer

Suppose that A is an $m \times n$ matrix. Then the **rank** of A is the dimension of the range of A, $r(A) = \dim(\mathcal{R}(A))$.

©2005 Robert Beezer

Theorem CRN Computing Rank and Nullity

Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then r(A) = r and n(A) = n - r.

Theorem RPNC Rank Plus Nullity is Columns**169**Suppose that A is an $m \times n$ matrix. Then r(A) + n(A) = n.

©2005 Robert Beezer

170

Theorem RNNSM Rank and Nullity of a NonSingular Matrix

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. The rank of A is n, r(A) = n.
- 3. The nullity of A is zero, n(A) = 0.

Theorem NSME6 NonSingular Matrix Equivalences, Round 6 Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. The range of A is \mathbb{C}^n , $\mathcal{R}(A) = \mathbb{C}^n$.
- 7. A is invertible.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.

©2005 Robert Beezer

Theorem ELIS Extending Linearly Independent Sets

172

171

Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose \mathbf{w} is a vector such that $\mathbf{w} \notin Sp(S)$. Then the set $S' = S \cup \{\mathbf{w}\}$ is linearly independent.

Theorem G Goldilocks

Suppose that V is a vector space of dimension t. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m}$ be a set of vectors from V. Then

- 1. If m > t, then S is linearly dependent.
- 2. If m < t, then S does not span V.
- 3. If m = t and S is linearly independent, then S spans V.
- 4. If m = t and S spans V, then S is linearly independent.

C2005 Robert Beezer

Theorem EDYES Equal Dimensions Yields Equal Subspaces

174

Suppose that U and V are subspaces of the vector space W, such that $U \subseteq V$ and dim $(U) = \dim(V)$. Then U = V.

Theorem RMRT Rank of a Matrix is the Rank of the Transpose

Suppose A is an $m \times n$ matrix. Then $r(A) = r(A^t)$.

©2005 Robert Beezer

Theorem COB Coordinates and Orthonormal Bases

Suppose that $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p}$ is an orthonormal basis of the subspace W of \mathbb{C}^m . For any $\mathbf{w} \in W$, $\mathbf{w} = \langle \mathbf{w}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{w}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \langle \mathbf{w}, \mathbf{v}_3 \rangle \mathbf{v}_3 + \dots + \langle \mathbf{w}, \mathbf{v}_p \rangle \mathbf{v}_p$

176

Definition SM SubMatrix

Suppose that A is an $m \times n$ matrix. Then the **submatrix** A_{ij} is the $(m-1) \times (n-1)$ matrix obtained from A by removing row i and column j.

©2005 Robert Beezer

Definition DM Determinant

Suppose A is a square matrix. Then its **determinant**, det (A) = |A|, is an element of \mathbb{C} defined recursively by:

If A = [a] is a 1×1 matrix, then det (A) = a.

If $A = (a_{ij})$ is a matrix of size n with $n \ge 2$, then

 $\det (A) = a_{11} \det (A_{11}) - a_{12} \det (A_{12}) + a_{13} \det (A_{13}) - \dots + (-1)^{n+1} a_{1n} \det (A_{1n})$

Theorem DMST Determinant of Matrices of Size Two

Suppose that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then det (A) = ad - bc

©2005 Robert Beezer

Definition MIM Minor In a Matrix

Suppose A is an $n \times n$ matrix and A_{ij} is the $(n-1) \times (n-1)$ submatrix formed by removing row i and column j. Then the **minor** for A at location ij is the determinant of the submatrix, $M_{A,ij} = \det(A_{ij})$.

C2005 Robert Beezer

Suppose A is an $n \times n$ matrix and A_{ij} is the $(n-1) \times (n-1)$ submatrix formed by removing row i and column j. Then the **cofactor** for A at location ij is the signed determinant of the submatrix, $C_{A,ij} = (-1)^{i+j} \det(A_{ij})$.

©2005 Robert Beezer

Theorem DERC Determinant Expansion about Rows and Columns182Suppose that $A = (a_{ij})$ is a square matrix of size n. Then $det(A) = a_{i1}C_{A,i1} + a_{i2}C_{A,i2} + a_{i3}C_{A,i3} + \dots + a_{in}C_{A,in}$ $1 \le i \le n$ which is known as **expansion** about row i, and $det(A) = a_{1j}C_{A,1j} + a_{2j}C_{A,2j} + a_{3j}C_{A,3j} + \dots + a_{nj}C_{A,nj}$ $1 \le j \le n$ which is known as **expansion** about column j.

Theorem DTDeterminant of the Transpose183Suppose that A is a square matrix. Then $det(A^t) = det(A)$.

©2005 Robert Beezer

 $\mathbf{184}$

Theorem DRMM Determinant Respects Matrix Multiplication

Suppose that A and B are square matrices of size n. Then $\det(AB) = \det(A) \det(B)$.

Let A be a square matrix. Then A is singular if and only if det(A) = 0.

©2005 Robert Beezer

186

Theorem NSME7 NonSingular Matrix Equivalences, Round 7 Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. The range of A is \mathbb{C}^n , $\mathcal{R}(A) = \mathbb{C}^n$.
- 7. A is invertible.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero, $det(A) \neq 0$.

185

Definition EEM Eigenvalues and Eigenvectors of a Matrix

Suppose that A is a square matrix of size $n, \mathbf{x} \neq \mathbf{0}$ is a vector from \mathbb{C}^n , and λ is a scalar from \mathbb{C} such that

$$A\mathbf{x} = \lambda \mathbf{x}$$

Then we say \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ .

C2005 Robert Beezer

Theorem EMHE Every Matrix Has an Eigenvalue

Suppose A is a square matrix. Then A has at least one eigenvalue.

©2005 Robert Beezer

 $\mathbf{188}$

Suppose that A is a square matrix of size n. Then the **characteristic polynomial** of A is the polynomial $p_A(x)$ defined by

$$p_A(x) = \det\left(A - xI_n\right)$$

O2005 Robert Beezer

Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials 190

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_A(\lambda) = 0$.

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **eigenspace** of A for λ , $E_A(\lambda)$, is the set of all the eigenvectors of A for λ , with the addition of the zero vector.

C2005 Robert Beezer

Theorem EMS Eigenspace for a Matrix is a Subspace

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace $E_A(\lambda)$ is a subspace of the vector space \mathbb{C}^n .

Theorem EMNS Eigenspace of a Matrix is a Null Space

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

 $E_A(\lambda) = \mathcal{N}(A - \lambda I_n)$

©2005 Robert Beezer

Definition AME Algebraic Multiplicity of an Eigenvalue

194

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **algebraic multiplicity** of λ , $\alpha_A(\lambda)$, is the highest power of $(x - \lambda)$ that divides the characteristic polynomial, $p_A(x)$.

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the **geometric multiplicity** of λ , $\gamma_A(\lambda)$, is the dimension of the eigenspace $E_A(\lambda)$.

©2005 Robert Beezer

Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 196

Suppose that A is a square matrix and $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p\}$ is a set of eigenvectors with eigenvalues $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_p$ such that $\lambda_i \neq \lambda_j$ whenever $i \neq j$. Then S is a linearly independent set.

Suppose A is a square matrix. Then A is singular if and only if $\lambda = 0$ is an eigenvalue of A.

©2005 Robert Beezer

Theorem NSME8NonSingular Matrix Equivalences, Round 8198Suppose that A is a square matrix of size n. The following are equivalent.198

- 1. A is nonsingular.
- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. The range of A is \mathbb{C}^n , $\mathcal{R}(A) = \mathbb{C}^n$.
- 7. A is invertible.
- 8. The columns of A are a basis for \mathbb{C}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.
- 11. The determinant of A is nonzero, $\det(A) \neq 0$.
- 12. $\lambda = 0$ is not an eigenvalue of A.

197

Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix

Suppose A is a square matrix and λ is an eigenvalue of A. Then $\alpha\lambda$ is an eigenvalue of αA .

©2005 Robert Beezer

Theorem EOMP Eigenvalues Of Matrix Powers

Suppose A is a square matrix, λ is an eigenvalue of A, and $s \ge 0$ is an integer. Then λ^s is an eigenvalue of A^s .

©2005 Robert Beezer

Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the variable x. Then $q(\lambda)$ is an eigenvalue of the matrix q(A).

©2005 Robert Beezer

Theorem EIM Eigenvalues of the Inverse of a Matrix

202

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then $\frac{1}{\lambda}$ is an eigenvalue of the matrix A^{-1} .

Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix A^t .

©2005 Robert Beezer

 $\mathbf{204}$

Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs

Suppose A is a square matrix with real entries and \mathbf{x} is an eigenvector of A for the eigenvalue λ . Then $\overline{\mathbf{x}}$ is an eigenvector of A for the eigenvalue $\overline{\lambda}$.

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, $p_A(x)$, has degree n.

C2005 Robert Beezer

Theorem NEM Number of Eigenvalues of a Matrix

Suppose that A is a square matrix of size n with distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_k$. Then

$$\sum_{i=1}^{k} \alpha_A\left(\lambda_i\right) = n$$

©2005 Robert Beezer

 $\mathbf{206}$

Theorem ME Multiplicities of an Eigenvalue

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

 $1 \le \gamma_A(\lambda) \le \alpha_A(\lambda) \le n$

©2005 Robert Beezer

Theorem MNEM Maximum Number of Eigenvalues of a Matrix

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigenvalues.

Theorem HMRE Hermitian Matrices have Real Eigenvalues

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then $\lambda \in \mathbb{R}$.

C2005 Robert Beezer

210

Theorem HMOE Hermitian Matrices have Orthogonal Eigenvectors

Suppose that A is a Hermitian matrix and \mathbf{x} and \mathbf{y} are two eigenvectors of A for different eigenvalues. Then \mathbf{x} and \mathbf{y} are orthogonal vectors.

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix of size n, S, such that $A = S^{-1}BS$.

©2005 Robert Beezer

Theorem SER Similarity is an Equivalence Relation	212
Suppose A, B and C are square matrices of size n . Then	
1. A is similar to A . (Reflexive)	
2. If A is similar to B , then B is similar to A. (Symmetric)	
3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)	
Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is $p_A(x) = p_B(x)$.

©2005 Robert Beezer

Definition DIM Diagonal Matrix

 $\mathbf{214}$

Suppose that $A = (a_{ij})$ is a square matrix. Then A is a **diagonal matrix** if $a_{ij} = 0$ whenever $i \neq j$.

C2005 Robert Beezer

Suppose A is a square matrix. Then A is **diagonalizable** if A is similar to a diagonal matrix.

©2005 Robert Beezer

Theorem DC Diagonalization Characterization

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly independent set S that contains n eigenvectors of A.

$\mathbf{216}$

Theorem DMLE Diagonalizable Matrices have Large Eigenspaces

Suppose A is a square matrix. Then A is diagonalizable if and only if $\gamma_A(\lambda) = \alpha_A(\lambda)$ for every eigenvalue λ of A.

C2005 Robert Beezer

218

Theorem DED Distinct Eigenvalues implies Diagonalizable

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.

©2005 Robert Beezer

C2005 Robert Beezer

Definition LT Linear Transformation

A linear transformation, $T: U \mapsto V$, is a function that carries elements of the vector space U (called the **domain**) to the vector space V (called the **codomain**), and which has two additional properties

- 1. $T(\mathbf{u}_1 + \mathbf{u}_2) = T(\mathbf{u}_1) + T(\mathbf{u}_2)$ for all $\mathbf{u}_1, \mathbf{u}_2 \in U$
- 2. $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$

©2005 Robert Beezer

220

Theorem LTTZZ Linear Transformations Take Zero to Zero

Suppose $T: U \mapsto V$ is a linear transformation. Then $T(\mathbf{0}) = \mathbf{0}$.

C2005 Robert Beezer

Theorem MBLT Matrices Build Linear Transformations

 $\mathbf{222}$

Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^n \mapsto \mathbb{C}^m$ by $T(\mathbf{x}) = A\mathbf{x}$. Then T is a linear transformation.

Suppose that $T: \mathbb{C}^n \to \mathbb{C}^m$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

C2005 Robert Beezer

 $\mathbf{224}$

Theorem LTLC Linear Transformations and Linear Combinations

Suppose that $T: U \mapsto V$ is a linear transformation, $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t$ are vectors from U and $a_1, a_2, a_3, \ldots, a_t$ are scalars from \mathbb{C} . Then

$$T(a_{1}\mathbf{u}_{1} + a_{2}\mathbf{u}_{2} + a_{3}\mathbf{u}_{3} + \dots + a_{t}\mathbf{u}_{t}) = a_{1}T(\mathbf{u}_{1}) + a_{2}T(\mathbf{u}_{2}) + a_{3}T(\mathbf{u}_{3}) + \dots + a_{t}T(\mathbf{u}_{t})$$

Theorem LTDB Linear Transformation Defined on a Basis

Suppose that $T: U \mapsto V$ is a linear transformation, $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n}$ is a basis for U and \mathbf{w} is a vector from U. Let $a_1, a_2, a_3, \ldots, a_n$ be the scalars from \mathbb{C} such that

 $\mathbf{w} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3 + \dots + a_n\mathbf{u}_n$

Then

$$T(\mathbf{w}) = a_1 T(\mathbf{u}_1) + a_2 T(\mathbf{u}_2) + a_3 T(\mathbf{u}_3) + \dots + a_n T(\mathbf{u}_n)$$

©2005 Robert Beezer

Definition PI Pre-Image

Suppose that $T: U \mapsto V$ is a linear transformation. For each **v**, define the **pre-image** of **v** to be the subset of U given by

 $T^{-1}\left(\mathbf{v}\right) = \left\{\mathbf{u} \in U \mid T\left(\mathbf{u}\right) = \mathbf{v}\right\}$

C2005 Robert Beezer

226

Definition LTA Linear Transformation Addition

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then their **sum** is the function $T + S: U \mapsto V$ whose outputs are defined by

 $(T+S)(\mathbf{u}) = T(\mathbf{u}) + S(\mathbf{u})$

©2005 Robert Beezer

Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 228

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then $T + S: U \mapsto V$ is a linear transformation.

Definition LTSM Linear Transformation Scalar Multiplication

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the scalar multiple is the function $\alpha T: U \mapsto V$ whose outputs are defined by

$$\left(\alpha T\right)\left(\mathbf{u}\right) = \alpha T\left(\mathbf{u}\right)$$

C2005 Robert Beezer

Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 230

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then $(\alpha T): U \mapsto V$ is a linear transformation.

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V, LT (U, V) is a vector space when the operations are those given in Definition LTA and Definition LTSM.

C2005 Robert Beezer

 $\mathbf{232}$

Definition LTC Linear Transformation Composition

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then the **composition** of S and T is the function $(S \circ T): U \mapsto W$ whose outputs are defined by

 $(S \circ T)(\mathbf{u}) = S(T(\mathbf{u}))$

©2005 Robert Beezer

Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 233

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then $(S \circ T): U \mapsto W$ is a linear transformation.

©2005 Robert Beezer

Definition ILT Injective Linear Transformation

$\mathbf{234}$

Suppose $T: U \mapsto V$ is a linear transformation. Then T is **injective** if whenever $T(\mathbf{x}) = T(\mathbf{y})$, then $\mathbf{x} = \mathbf{y}$.

Suppose $T: U \mapsto V$ is a linear transformation. Then the **null space** of T is the set $\mathcal{N}(T) = \{\mathbf{u} \in U \mid T(\mathbf{u}) = \mathbf{0}\}$

©2005 Robert Beezer

236

Theorem NSLTS Null Space of a Linear Transformation is a Subspace

Suppose that $T: U \mapsto V$ is a linear transformation. Then the null space of T, $\mathcal{N}(T)$, is a subspace of U.

©2005 Robert Beezer

Theorem NSPI Null Space and Pre-Image

Suppose $T: U \mapsto V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is non-empty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

 $T^{-1}(\mathbf{v}) = \{\mathbf{u} + \mathbf{z} \mid \mathbf{z} \in \mathcal{N}(T)\} = \mathbf{u} + \mathcal{N}(T)$

©2005 Robert Beezer

Theorem NSILT Null Space of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is injective if and only if the null space of T is trivial, $\mathcal{N}(T) = \{\mathbf{0}\}.$

 $\mathbf{238}$

Theorem ILTLI Injective Linear Transformations and Linear Independence

Suppose that $T: U \mapsto V$ is an injective linear transformation and $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t\}$ is a linearly independent subset of U. Then $R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \ldots, T(\mathbf{u}_t)\}$ is a linearly independent subset of V.

©2005 Robert Beezer

Theorem ILTB Injective Linear Transformations and Bases

 $\mathbf{240}$

Suppose that $T: U \mapsto V$ is a linear transformation and $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m\}$ is a basis of U. Then T is injective if and only if $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}$ is a linearly independent subset of V.

Theorem ILTD Injective Linear Transformations and Dimension

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then dim $(U) \leq \dim(V)$.

©2005 Robert Beezer

Theorem CILTI Composition of Injective Linear Transformations is Injective 242

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are injective linear transformations. Then $(S \circ T): U \mapsto W$ is an injective linear transformation.

Suppose $T: U \mapsto V$ is a linear transformation. Then T is **surjective** if for every $\mathbf{v} \in V$ there exists a $\mathbf{u} \in U$ so that $T(\mathbf{u}) = \mathbf{v}$.

©2005 Robert Beezer

Definition RLT Range of a Linear Transformation

Suppose $T \colon U \mapsto V$ is a linear transformation. Then the **range** of T is the set

 $\mathcal{R}(T) = \{ T(\mathbf{u}) \mid \mathbf{u} \in U \}$

 $\mathbf{244}$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the range of T, $\mathcal{R}(T)$, is a subspace of V.

©2005 Robert Beezer

246

Theorem RSLT Range of a Surjective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T) = V$.

Theorem SSRLT Spanning Set for Range of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation and $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t}$ spans U. Then $R = {T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_t)}$ spans $\mathcal{R}(T)$.

©2005 Robert Beezer

Theorem RPI Range and Pre-Image

Suppose that $T\colon U\mapsto V$ is a linear transformation. Then

 $\mathbf{v} \in \mathcal{R}(T)$ if and only if $T^{-1}(\mathbf{v}) \neq \emptyset$

 $\mathbf{248}$

Theorem SLTB Surjective Linear Transformations and Bases

Suppose that $T: U \mapsto V$ is a linear transformation and $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_m\}$ is a basis of U. Then T is surjective if and only if $C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \ldots, T(\mathbf{u}_m)\}$ is a spanning set for V.

©2005 Robert Beezer

 $\mathbf{250}$

Theorem SLTD Surjective Linear Transformations and Dimension

Suppose that $T: U \mapsto V$ is a surjective linear transformation. Then dim $(U) \ge \dim(V)$.

©2005 Robert Beezer

Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 251

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are surjective linear transformations. Then $(S \circ T): U \mapsto W$ is a surjective linear transformation.

©2005 Robert Beezer

Definition IDLT Identity Linear Transformation

252

The identity linear transformation on the vector space W is defined as

 $I_W \colon W \mapsto W, \qquad I_W(\mathbf{w}) = \mathbf{w}$

C2005 Robert Beezer

Definition IVLT Invertible Linear Transformations

Suppose that $T \colon U \mapsto V$ is a linear transformation. If there is a function $S \colon V \mapsto U$ such that

$$S \circ T = I_U \qquad \qquad T \circ S = I_V$$

then T is **invertible**. In this case, we call S the **inverse** of T and write $S = T^{-1}$.

©2005 Robert Beezer

Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation 254

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then the function $T^{-1}: V \mapsto U$ is a linear transformation.

Theorem IILT Inverse of an Invertible Linear Transformation

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then T^{-1} is an invertible linear transformation and $(T^{-1})^{-1} = T$.

©2005 Robert Beezer

Theorem ILTIS Invertible Linear Transformations are Injective and Surjective 256

Suppose $T: U \mapsto V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.

Theorem CIVLT Composition of Invertible Linear Transformations 257 Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then the composition, $(S \circ T): U \mapsto W$ is an invertible linear transformation.

©2005 Robert Beezer

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then $S \circ T$ is invertible and $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$.

Two vector spaces U and V are **isomorphic** if there exists an invertible linear transformation T with domain U and codomain $V, T: U \mapsto V$. In this case, we write $U \cong V$, and the linear transformation T is known as an **isomorphism** between U and V.

©2005 Robert Beezer

Theorem IVSED Isomorphic Vector Spaces have Equal Dimension260Suppose U and V are isomorphic vector spaces. Then $\dim(U) = \dim(V)$.

C2005 Robert Beezer

Suppose that $T: U \mapsto V$ is a linear transformation. Then the **rank** of T, r(T), is the dimension of the range of T,

 $r(T) = \dim\left(\mathcal{R}(T)\right)$

©2005 Robert Beezer

 $\mathbf{262}$

Definition NOLT Nullity Of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then the **nullity** of T, n(T), is the dimension of the null space of T,

 $n\left(T\right) = \dim\left(\mathcal{N}(T)\right)$

 $\mathbf{261}$

©2005 Robert Beezer

Suppose that $T: U \mapsto V$ is a linear transformation. Then the rank of T is the dimension of V, $r(T) = \dim(V)$, if and only if T is surjective.

C2005 Robert Beezer

 $\mathbf{264}$

Theorem NOILT Nullity Of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then the nullity of T is zero, n(T) = 0, if and only if T is injective.

Definition VR Vector Representation

Suppose that V is a vector space with a basis $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$. Define a function $\rho_B: V \mapsto \mathbb{C}^n$ as follows. For $\mathbf{w} \in V$, find scalars $a_1, a_2, a_3, \ldots, a_n$ so that

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + \dots + a_n \mathbf{v}_n$$

then

$r(T) + n(T) = \dim(U)$

Suppose that $T: U \mapsto V$ is a linear transformation. Then

Robert Beezer ©2005

 $\rho_B\left(\mathbf{w}\right) = \begin{bmatrix} a_1\\a_2\\a_3\\\vdots \end{bmatrix}$

266

Theorem VRLTVector Representation is a Linear Transformation267The function ρ_B (Definition VR) is a linear transformation.

©2005 Robert Beezer

 $\mathbf{268}$

Theorem VRI Vector Representation is Injective

The function ρ_B (Definition VR) is an injective linear transformation.

C2005 Robert Beezer

Theorem VRS Vector Representation is Surjective	269
The function ρ_B (Definition VR) is a surjective linear transformation.	

©2005 Robert Beezer

Theorem VRILTVector Representation is an Invertible Linear Transformation270

The function ρ_B (Definition VR) is an invertible linear transformation.

Suppose that V is a vector space with dimension n. Then V is isomorphic to \mathbb{C}^n .

Theorem CFDVS Characterization of Finite Dimensional Vector Spaces

C2005 Robert Beezer

 $\mathbf{272}$

Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and only if dim $(U) = \dim(V)$.

271

©2005 Robert Beezer

Theorem CLI Coordinatization and Linear Independence

Suppose that U is a vector space with a basis B of size n. Then $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_k\}$ is a linearly independent subset of U if and only if $R = \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \dots, \rho_B(\mathbf{u}_k)\}$ is a linearly independent subset of \mathbb{C}^n .

©2005 Robert Beezer

Theorem CSS Coordinatization and Spanning Sets

Suppose that U is a vector space with a basis B of size n. Then $\mathbf{u} \in Sp(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_k\})$ if and only if $\rho_B(\mathbf{u}) \in Sp(\{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \dots, \rho_B(\mathbf{u}_k)\})$.

 $\mathbf{274}$

Definition MR Matrix Representation

Suppose that $T: U \mapsto V$ is a linear transformation, $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a basis for U of size n, and C is a basis for V of size m. The the **matrix representation** of T relative to B and C is the $m \times n$ matrix,

 $M_{B,C}^{T} = \left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right) \mid \rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right) \mid \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right) \mid \dots \mid \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]$

©2005 Robert Beezer

276

Theorem FTMR Fundamental Theorem of Matrix Representation

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U, C is a basis for V and $M_{B,C}^T$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$\rho_{C}\left(T\left(\mathbf{u}\right)\right) = M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)$$

or equivalently

$$T\left(\mathbf{u}\right) = \rho_{C}^{-1}\left(M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)\right)$$

Theorem MRSLT Matrix Representation of a Sum of Linear Transformations

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are linear transformations, B is a basis of U and C is a basis of V. Then

$$M_{B,C}^{T+S} = M_{B,C}^{T} + M_{B,C}^{S}$$

C2005 Robert Beezer

Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation 278

Suppose that $T: U \mapsto V$ is a linear transformation, $\alpha \in \mathbb{C}$, B is a basis of U and C is a basis of V. Then

 $M_{B,C}^{\alpha T} = \alpha M_{B,C}^T$

©2005 Robert Beezer

Theorem MRCLT Matrix Representation of a Composition of Linear Transformations 279

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

 $M_{B,D}^{S \circ T} = M_{C,D}^S M_{B,C}^T$

©2005 Robert Beezer

Theorem INS Isomorphic Null Spaces

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the null space of T is isomorphic to the null space of $M_{B,C}^T$,

 $\mathcal{N}(T) \cong \mathcal{N}\left(M_{B,C}^T\right)$

©2005 Robert Beezer

$\mathbf{280}$

Theorem IR Isomorphic Ranges

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the range of $M_{B,C}^T$,

$$\mathcal{R}(T) \cong \mathcal{R}\big(M_{B,C}^T\big)$$

©2005 Robert Beezer

Theorem IMR Invertible Matrix Representations

Suppose that $T: U \mapsto V$ is an invertible linear transformation, B is a basis for U and C is a basis for V. Then the matrix representation of T relative to B and C, $M_{B,C}^T$ is an invertible matrix, and

$$M_{C,B}^{T^{-1}} = \left(M_{B,C}^{T}\right)^{-1}$$

C2005 Robert Beezer

 $\mathbf{282}$

Definition EELT Eigenvalue and Eigenvector of a Linear Transformation

Suppose that $T: V \mapsto V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an **eigenvector** of T for the **eigenvalue** λ if $T(\mathbf{v}) = \lambda \mathbf{v}$.

©2005 Robert Beezer

Definition CBM Change-of-Basis Matrix

Suppose that V is a vector space, and $I_V: V \mapsto V$ is the identity linear transformation on V. Let $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$ and C be two bases of V. Then the **change-of-basis matrix** from B to C is the matrix representation of I_V relative to B and C,

> $C_{B,C} = M_{B,C}^{I_V}$ = $[\rho_C (I_V (\mathbf{v}_1)) | \rho_C (I_V (\mathbf{v}_2)) | \rho_C (I_V (\mathbf{v}_3)) | \dots | \rho_C (I_V (\mathbf{v}_n))]$ = $[\rho_C (\mathbf{u}_1) | \rho_C (\mathbf{u}_2) | \rho_C (\mathbf{u}_3) | \dots | \rho_C (\mathbf{u}_n)]$

C2005 Robert Beezer

 $\mathbf{284}$
Theorem CB Change-of-Basis

Suppose that \mathbf{u} is a vector in the vector space V and B and C are bases of V. Then

 $C_{B,C}\rho_{B}\left(\mathbf{v}\right)=\rho_{C}\left(\mathbf{v}\right)$

©2005 Robert Beezer

Theorem ICBM Inverse of Change-of-Basis Matrix

Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis matrix $C_{B,C}$ is nonsingular and

$$C_{B,C}^{-1} = C_{C,B}$$

©2005 Robert Beezer

 $\mathbf{286}$

Theorem MRCB Matrix Representation and Change of Basis

Suppose that $T: U \mapsto V$ is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

$$M_{B,D}^T = C_{E,D} M_{C,E}^T C_{B,C}$$

©2005 Robert Beezer

Theorem SCB Similarity and Change of Basis

Suppose that $T: V \mapsto V$ is a linear transformation and B and C are bases of V. Then

 $M_{B,B}^{T} = C_{B,C}^{-1} M_{C,C}^{T} C_{B,C}$

C2005 Robert Beezer

Theorem EER Eigenvalues, Eigenvectors, Representations

Suppose that $T: V \mapsto V$ is a linear transformation and B is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_B(\mathbf{v})$ is an eigenvector of $M_{B,B}^T$ for the eigenvalue λ .

©2005 Robert Beezer