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Definition SSLE System of Simultaneous Linear Equations 1

A system of simultaneous linear equations is a collection of m equations in the variable
quantities x1, xa, 3, ..., T, of the form,

a1171 + a12T2 + 1373 + - - + a1, Ty = by
a21%1 + A22T2 + A23T3 + -+ + A2pTy = b2

a3121 + azaTz + a33T3 + -+ azpTy = b3

Am1ZT1 + GmaX2 + Am3T3 + -t amn®y = bm

where the values of a;;, b; and z; are from the set of complex numbers, C.
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Definition ES Equivalent Systems

Two systems of simultaneous linear equations are equivalent if their solution sets are equal.
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Definition EO Equation Operations 3

Given a system of simultaneous linear equations, the following three operations will transform
the system into a different one, and each is known as an equation operation.

1. Swap the locations of two equations in the list.
2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a second
equation, on both sides of the equality. Leave the first equation the same after this
operation, but replace the second equation by the new one.

(©2005 Robert Beezer

Theorem EOPSS Equation Operations Preserve Solution Sets 4

Suppose we apply one of the three equation operations of Definition EO to the system of
simultaneous linear equations

a11%1 + a12%2 + a1373 + -+ + a1 Ty = by
a21%1 + A22%2 + A3T3 + - - + AopTy = by

a3121 + azaTy + az3T3 + - - + azpTy = b3

Am1T1 + Gm2X2 + Am3T3 + - - - + Gpn Ty = bm

Then the original system and the transformed system are equivalent systems.
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Definition M Matrix

An m x n matrix is a rectangular layout of numbers from C having m rows and n columns.
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Definition AM Augmented Matrix

Suppose we have a system of m equations in the n variables z1, 2, x3, ..., x, written as

a1171 + 12T + 1373 + - - + a1 Tp = by
2121 + A22T2 + A3T3 + - - + A2pTy = by

a3121 + azaTe + a33T3 + - + azpTy = b3

Am1T1 + Am2T2 + Gm3x3 + - + Gpn®p =

then the augmented matrix of the system of equations is the m x (n + 1) matrix

a1 @12
a21 @22
aszy  as2
Am1l  GAm2

a13
a23
as3

am3

A1n
a2n
a3n

amn

by
by
b3

bm
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Definition RO Row Operations 7

The following three operations will transform an m X n matrix into a different matrix of the
same size, and each is known as a row operation.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the entry in
the same column of a second row. Leave the first row the same after this operation, but
replace the second row by the new values.
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Definition REM Row-Equivalent Matrices 8

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a
sequence of row operations.
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Theorem REMES Row-Equivalent Matrices represent Equivalent Systems 9

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear
equations that they represent are equivalent systems.
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Definition RREF Reduced Row-Echelon Form 10

A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero is below any row containing a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.
3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row 7, column j and
the other located in row s, column ¢. If ¢ < s, then j < t.
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Definition ZRM Zero Row of a Matrix

A row of a matrix where every entry is zero is called a zero row.

11
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Definition LO Leading Ones

12

For a matrix in reduced row-echelon form, the leftmost nonzero entry of any row that is not a

zero row will be called a leading 1.
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Definition PC Pivot Columns 13

For a matrix in reduced row-echelon form, a column containing a leading 1 will be called a
pivot column.

(©2005 Robert Beezer

Theorem REMEF Row-Equivalent Matrix in Echelon Form 14

Suppose A is a matrix. Then there is a (unique!) matrix B so that
1. A and B are row-equivalent.

2. B is in reduced row-echelon form.

(©2005 Robert Beezer




Definition CS Consistent System 15

A system of linear equations is consistent if it has at least one solution. Otherwise, the system
is called inconsistent.
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Definition IDV Independent and Dependent Variables 16

Suppose A is the augmented matrix of a system of linear equations and B is a row-equivalent
matrix in reduced row-echelon form. Suppose j is the number of a column of B that contains
the leading 1 for some row, and it is not the last column. Then the variable j is dependent.
A variable that is not dependent is called independent or free.
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Theorem RCLS Recognizing Consistency of a Linear System 17

Suppose A is the augmented matrix of a system of linear equations with m equations in n
variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not zero rows. Then the system of equations is inconsistent if and only if the
leading 1 of row r is located in column n + 1 of B.
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Theorem ICRN Inconsistent Systems, r and n 18

Suppose A is the augmented matrix of a system of linear equations with m equations in n
variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not completely zeros. If » = n + 1, then the system of equations is inconsistent.
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Theorem CSRN Consistent Systems, r and n 19

Suppose A is the augmented matrix of a consistent system of linear equations with m equations
in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with
r rows that are not zero rows. Then r < n. If r = n, then the system has a unique solution,
and if r < n, then the system has infinitely many solutions.
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Theorem FVCS Free Variables for Consistent Systems 20

Suppose A is the augmented matrix of a consistent system of linear equations with m equations
in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form
with r rows that are not completely zeros. Then the solution set can be described with n — r
free variables.

(©2005 Robert Beezer




Theorem PSSLS Possible Solution Sets for Linear Systems 21

A simultaneous system of linear equations has no solutions, a unique solution or infinitely many
solutions.
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Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions 22

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then
the system has infinitely many solutions.
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Definition HS Homogeneous System

23

A system of linear equations is homogeneous if each equation has a 0 for its constant term.

Such a system then has the form,

(1171 + a12T2 + a1373 + - + a1, =0
(2171 + a22T2 + 2373 + -+ - + a2px, =0

a3171 + azaxa + azzr3 + -+ azpx, =0

Am1T1 + Gpm2T2 + Apm3T3 + -+ + App®y =0
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Theorem HSC Homogeneous Systems are Consistent

Suppose that a system of linear equations is homogeneous. Then the system is consistent.

24
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Definition TSHSE Trivial Solution to Homogeneous Systems of Equations 25

Suppose a homogeneous system of linear equations has n variables. The solution x; = 0,
x9 =0,..., x, = 0 is called the trivial solution.
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Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions 26

Suppose that a homogeneous system of linear equations has m equations and n variables with
n > m. Then the system has infinitely many solutions.
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Definition CV Column Vector

27

A column vector of size m is an ordered list of m numbers, which is written vertically, in
order from top to bottom. At times, we will refer to a column vector as simply a vector.
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Definition ZV Zero Vector

28

The zero vector of size m is the column vector of size m where each entry is the number zero,

0
0
o= |0
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Definition CM Coefficient Matrix

For a system of linear equations,

a1121 + @122 + a13T3 + - - + A1 Ty = by
2171 + a22%2 + A23%3 + - -+ + Aon Ty = bo

as1T1 + azaTo + azzrs + - - + asp Ty, = b3

Am1%1 + Am2aT2 + Am3x3 + - + Gpn®n = bm

the coefficient matrix is the m x n matrix

a1 ai2 aiz ... A1n
a21 G22 A23 ... d2p
A= |@1 G32 433 ... Qa3n
Am1 Am?2 am3 e Amn

©2005
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Definition VOC Vector of Constants

For a system of linear equations,

a1171 + 12T + 1373 + - - + a1, Tp = by
a21%1 + A22T2 + A3T3 + -+ + A2pTy = by

a3121 + azaTz + a33T3 + - + azpTy = b3

Am1T1 + Am2T2 + Gm3T3 + - + Gpn®p = bm

the vector of constants is the column vector of size m

©2005
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Definition SV Solution Vector 31

For a system of linear equations,

a11%1 + a12%2 + a13T3 + - + A1pTy = by
a21T1 + Q22T + A23T3 + -+ - + A2p Ty = b2

az1r1 + azga2 + az3xTz + -+ + azpn = b3

Am121 + AmaX2 + Am3T3 + -t ATy = bm

the solution vector is the column vector of size m

x1
T2
X = Zs3
T
(©2005 Robert Beezer
Definition NSM Null Space of a Matrix 32

The null space of a matrix A, denoted N'(A), is the set of all the vectors that are solutions to
the homogeneous system LS(A, 0).
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Definition SQM Square Matrix

33

A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has
size n. To emphasize the situation when a matrix is not square, we will call it rectangular.
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Definition NM Nonsingular Matrix

34

Suppose A is a square matrix. And suppose the homogeneous linear system of equations
LS (A, 0) has only the trivial solution. Then we say that A is a nonsingular matrix. Otherwise

we say A is a singular matrix.
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Definition IM Identity Matrix

35

The m x m identity matrix, I,, = (a;;) has a;; = 1 whenever ¢ = j, and a;; = 0 whenever

i
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Theorem NSRRI NonSingular matrices Row Reduce to the Identity matrix 36

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon

form. Then A is nonsingular if and only if B is the identity matrix.
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Theorem NSTNS NonSingular matrices have Trivial Null Spaces 37

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A,
N (A), contains only the trivial solution to the system LS(A, 0), i.e. N (A) = {0}.
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Theorem NSMUS NonSingular Matrices and Unique Solutions 38

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system £LS(A4, b)
has a unique solution for every choice of the constant vector b.
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Theorem NSME1 NonSingular Matrix Equivalences, Round 1 39

Suppose that A is a square matrix. The following are equivalent.
1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the trivial solution, N'(A) = {0}.

4. The linear system L£S(A, b) has a unique solution for every possible choice of b.
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Definition VSCV Vector Space of Column Vectors 40

The vector space C™ is the set of all column vectors (Definition CV) of size m with entries from
the set of complex numbers, C.
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Definition CVE Column Vector Equality

The vectors

41

(5 U1
U9 V2
u= | us v=|U3
UTYL IU7",
are equal, written u = v provided that u; = v; for all 1 <i < m.
(©2005 Robert Beezer
Definition CVA Column Vector Addition 42
Given the vectors
Uq U1
U V2
u= | U3 v=|U3
Um, Um,
the sum of u and v is the vector
U1 V1 up + U1
Uo Vo U + Vo
u+v=|Us| f|V3| =] ustus
Uy, Um U, + Um
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Definition CVSM Column Vector Scalar Multiplication 43

Given the vector

Uy
Uy

u= U3

Um

and the scalar a € C, the scalar multiple of u by « is

Ul auy
(5 aug
au=q | Y3 | = | @us
Uy QUpy,
(©2005 Robert Beezer
Theorem VSPCV Vector Space Properties of Column Vectors 44

Suppose that C™ is the set of column vectors of size m (Definition VSCV) with addition and
scalar multiplication as defined in Definition CVA and Definition CVSM. Then

ACC Additive Closure, Column Vectors If u, v € C™, then u+v € C™.
SCC Scalar Closure, Column Vectors If o € C and u € C™, then au € C™.
CC Commutativity, Column Vectors If u, ve C™, then u+v=v +u.

AAC Additive Associativity, Column Vectors If u,v,w € C™, then u +
(v+w)=(u+v)+w.

ZC Zero Vector, Column Vectors There is a vector, 0, called the zero vector, such
that u+ 0 = u for all u € C™.

AIC Additive Inverses, Column Vectors For each vector u € C™, there exists a
vector —u € C™ so that u+ (—u) = 0.

SMAC Scalar Multiplication Associativity, Column Vectors If «, § € C and
u € C™, then a(fu) = (af)u.

DVAC Distributivity across Vector Addition, Column Vectors If a € C and
u, v € C", then a(u+v) = au+ av.

DSAC Distributivity across Scalar Addition, Column Vectors If o, § € C and
u € C™, then (a+ f)u = au+ fu.

OO o Vet oIS T e e T
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Definition LCCV Linear Combination of Column Vectors 45

Given n vectors uj, us, us, ..., U, and n scalars ay, as, as, ..., a,, their linear combination
is the vector
ajug + agug + agusg + - - + QpUy.
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Theorem SLSLC Solutions to Linear Systems are Linear Combinations 46
a1
Q2

Denote the columns of the m x n matrix A as the vectors A, Ay, Az, ..., A,. Thenx = |3
a,

is a solution to the linear system of equations LS(A, b) if and only if

A+ A+ azAs+ -+ a,A, =Db
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Theorem VFSLS Vector Form of Solutions to Linear Systems 47
Suppose that [A]| b] is the augmented matrix for a consistent linear system L£S(A, b) of m
equations in n variables. Denote the vector of variables as x = (z;). Let B = (b;;) be a row-
equivalent m x (n+1) matrix in reduced row-echelon form. Suppose that B has r nonzero rows,

columns without leading 1’s having indices F' = {f1, fa, f3, ..., fa—r, n+ 1}, and columns with
leading 1’s (pivot columns) having indices D = {d;, da, ds, ..., d,}. Define vectors ¢ = (¢;),
u; = (u;5), 1 <j <n—rofsize n by
0 ifieF
Ci = [P .
ben+1 ifieD,i=dy
1 ificF,i=f

_bk,fj ifieD,i=d
Then the set of solutions to the system of equations represented by the vector equation

T
T2
3

X = =ct+xpul +xpU2+TpU3+ -+ Tp, Upp

Tn

is equal to the set of solutions of LS(A4, b).

(©2000 Robert beezer

Theorem RREFU Reduced Row-Echelon Form is Unique 48

Suppose that A is an m x n matrix and that B and C' are m x n matrices that are row-equivalent
to A and in reduced row-echelon form. Then B = C.
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Definition SSCV Span of a Set of Column Vectors 49

Given a set of vectors S = {uy, ug, us, ..., w;}, their span, Sp(5), is the set of all possible
linear combinations of uy, ug, us, ..., u;. Symbolically,

Sp(S) ={au; + agus + agug + -+ oy | a; € C, 1 <i <t}

=1

ale(C,lgzgt}
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Theorem SSNS Spanning Sets for Null Spaces 50

Suppose that A is an m X n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {dy, da, d3, ..., d.} and F = {f1, fa, f3, ..., fu—r} be the
sets of column indices where B does and does not (respectively) have leading 1’s. Construct
the n —r vectors u; = (u;), 1 < j <n—r of size n as

1 ifieF,i=f

Ujj = 0 1fZ€P’,Z;éf7

_bk,fj ifieD,i=d

Then the null space of A is given by

N(A) = Sp({ulv uz, us, ..., un—r}) .
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Definition RLDCV Relation of Linear Dependence for Column Vectors 51

Given a set of vectors S = {uj, us, us, ..., u,}, an equation of the form
aju; + asug + agug + -+ au, =0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e.
a; =0, 1 <1< n, then we say it is a trivial relation of linear dependence on S.
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Definition LICV Linear Independence of Column Vectors 52

The set of vectors S = {uj, ug, us, ..., u,} is linearly dependent if there is a relation
of linear dependence on S that is not trivial. In the case where the only relation of linear
dependence on S is the trivial one, then S is a linearly independent set of vectors.
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Theorem LIVHS Linearly Independent Vectors and Homogeneous Systems 53

Suppose that A is an m X n matrix and S = {A1, As, A3, ..., A, } is the set of vectors in C™
that are the columns of A. Then S is a linearly independent set if and only if the homogeneous
system LS(A, 0) has a unique solution.
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Theorem LIVRN Linearly Independent Vectors, r and n 54

Suppose that A is an m x n matrix and S = {A1, Az, As, ..., A,} is the set of vectors in C™
that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent
to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and
only if n =r.
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Theorem MVSLD More Vectors than Size implies Linear Dependence 55

Suppose that S = {uy, us, us, ..., u,} is the set of vectors in C™, and that n > m. Then S is
a linearly dependent set.
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Theorem DLDS Dependency in Linearly Dependent Sets 56

Suppose that S = {uj, ug, us, ..., u,} is a set of vectors. Then S is a linearly dependent set
if and only if there is an index ¢, 1 < ¢ < n such that ut is a linear combination of the vectors
up, Uz, ugz, ..., Us—1, ut+17 ceey Upe
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Theorem NSLIC NonSingular matrices have Linearly Independent Columns 57

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form
a linearly independent set.
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Theorem NSME2 NonSingular Matrix Equivalences, Round 2 58

Suppose that A is a square matrix. The following are equivalent.

1.

2.

A is nonsingular.

A row-reduces to the identity matrix.

. The null space of A contains only the zero vector, N'(A) = {0}.

The linear system L£S(A, b) has a unique solution for every possible choice of b.

. The columns of A form a linearly independent set.
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Theorem BNS Basis for Null Spaces

59

Suppose that A is an m X n matrix, and B is a row-equivalent matrix in reduced row-echelon

form with r nonzero rows. Let D = {dy, da2, d3, ..., d.} and F = {f1, fa, f3, ...

s fn—r} be the

sets of column indices where B does and does not (respectively) have leading 1’s. Construct

the n — r vectors z; = (2;;), 1 < j < n—r of size n as

1 ifiGF,i:fj
2j =40 iticF isf .
7bk7f7. ifie D, i=dy

Define the set S = {uj, us, us, ..., up_,}. Then
1. N(A) = Sp(9).

2. S is a linearly independent set.

©2005
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Definition CCCV Complex Conjugate of a Column Vector
Suppose that

Uy
Uz

u3

U,

is a vector from C™. Then the conjugate of the vector is defined as

Uy
U
us

el
I

_ﬂm |

©2005
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Theorem CRVA Conjugation Respects Vector Addition

Suppose x and y are two vectors from C". Then

XTy=%x+y

©2005
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Theorem CRSM Conjugation Respects Vector Scalar Multiplication

Suppose x is a vector from C™, and « € C is a scalar. Then

ax =ax

©2005
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Definition IP Inner Product

Given the vectors

U U1

U2 V2

u= | 3 v=|1U3
um v’ﬂl

the inner product of u and v is the scalar quantity in C,

m

63

(0, V) = w07 + ugl3 + usT3 + - + U T = »_ Ty
=1
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Theorem IPVA Inner Product and Vector Addition

Suppose uv,w € C™. Then

1. (u+v,w)=(u w)+(v,w)
2. (u,v+w)={u,v)+(u w)

64
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Theorem IPSM Inner Product and Scalar Multiplication 65

Suppose u, v € C"™ and o € C. Then
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Theorem IPAC Inner Product is Anti-Commutative 66

Suppose that u and v are vectors in C™. Then (u, v) = (v, u).
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Definition NV Norm of a Vector 67

The norm of the vector

Ui
U2
us

u'ﬂL

is the scalar quantity in C™

afl = /L P + fual® + fual® + -+ Jum|? =

(©2005 Robert Beezer

Theorem IPN Inner Products and Norms 68

Suppose that u is a vector in C™. Then |ju? = (u, u).

)
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Theorem PIP Positive Inner Products 69

Suppose that u is a vector in C™. Then (u, u) > 0 with equality if and only if u = 0.
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Definition OV Orthogonal Vectors 70

A pair of vectors, u and v, from C" are orthogonal if their inner product is zero, that is,
(u, v) =0.
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Definition OSV Orthogonal Set of Vectors 71

Suppose that S = {uj, us, us, ..., u,} is a set of vectors from C™. Then the set S is or-
thogonal if every pair of different vectors from S is orthogonal, that is (u;, u;) = 0 whenever

i .
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Theorem OSLI Orthogonal Sets are Linearly Independent 72

Suppose that S = {uj, us, us, ..., u,} is an orthogonal set of nonzero vectors. Then S is
linearly independent.
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Theorem GSPCV Gram-Schmidt Procedure, Column Vectors 73

Suppose that S = {v1, Vo, v3, ..., vp} is a linearly independent set of vectors in C™. Define
the vectors u;, 1 <¢ < p by

B (vi, ug) (vi, ug) (vi, us) (Vi, wi_1)
u; =V; — u; — uz — ug — = 5 ——— U1
(ug, uy) (ug, ug) (u3, uz) (Wi—1, wi-1)
Then if T = {uy, ug, us, ..., u,}, then T is an orthogonal set of non-zero vectors, and Sp(T') =
Sp(S).

(©2005 Robert Beezer

Definition ONS OrthoNormal Set 74

Suppose S = {uy, us, us, ..., u,} is an orthogonal set of vectors such that ||u;|| = 1 for all
1 <i<n. Then S is an orthonormal set of vectors.
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Definition VSM Vector Space of m x n Matrices

75

The vector space M,,, is the set of all m x n matrices with entries from the set of complex

numbers.
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Definition ME Matrix Equality

The m X n matrices

A = (aiz)

76

are equal, written A = B provided a;; = b;; forall 1 <i<m, 1 <j<n.
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Definition MA Matrix Addition 7T

Given the m x n matrices
A = (aij) B = (bij)
define the sum of A and B to be A+ B = C = (¢;;), where

cij:aij—i-bij, 1§Z§m,1§]§n

(©2005 Robert Beezer

Definition MSM Matrix Scalar Multiplication 78

Given the m x n matrix A = (a;;) and the scalar o € C, the scalar multiple of A by « is the
matrix oA = C = (¢;;), where

cij =aay;, 1<i<m,1<j5<n.
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Theorem VSPM Vector Space Properties of Matrices 79
Suppose that M,,, is the set of all m x n matrices (Definition VSM) with addition and scalar
multiplication as defined in Definition MA and Definition MSM. Then

ACM Additive Closure, Matrices If A, B € M,,,, then A+ B € M,,,.
SCM Scalar Closure, Matrices If « € C and A € M,,,,, then aA € M,,,.
CM Commutativity, Matrices If A, B € M,,,,, then A+ B =B + A.

AAM Additive Associativity, Matrices If A, B, C' € M,,,, then A+ (B+C) =
(A+B)+C.

ZM Zero Vector, Matrices There is a matrix, O, called the zero matrix, such that
A+ O =Aforall Ae M,,,.

AIM Additive Inverses, Matrices For each matrix A € M,,,, there exists a matrix
—A € My, so that A+ (—A) = O.

SMAM Scalar Multiplication Associativity, Matrices If o, § € C and A € M,,,,,
then a(BA) = (af)A.

DMAM Distributivity across Matrix Addition, Matrices If « € C and A, B €
Mpp, then a(A+ B) = A+ aB.

DSAM Distributivity across Scalar Addition, Matrices If o, 6 € C and A €
Mn, then (a+ B)A = aA + BA.

L@ 0% B @3 § [P\ R 17 o L VLS 8 G WS ey 53 G W
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Definition ZM Zero Matrix 80

The m x n zero matrix is written as O = O,,xn, = (2;;) and defined by z;; = 0 for all
1<i<m,1<j<n. Or, equivalently, [0];; =0, forall1 <i<m,1<j<n.
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Definition TM Transpose of a Matrix 81

Given an m X n matrix A, its transpose is the n x m matrix A given by

(A, =[4];,, 1<i<n, 1<j<m.

ij

(©2005 Robert Beezer

Definition SYM Symmetric Matrix 82

The matrix A is symmetric if A = A?.
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Theorem SMS Symmetric Matrices are Square 83

Suppose that A is a symmetric matrix. Then A is square.
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Theorem TMA Transpose and Matrix Addition 84

Suppose that A and B are m x n matrices. Then (A + B)! = A® + Bt.
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Theorem TMSM Transpose and Matrix Scalar Multiplication 85

Suppose that a € C and A is an m x n matrix. Then (aA)! = aAt.
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Theorem TT Transpose of a Transpose 86

Suppose that A is an m x n matrix. Then (A!)" = A.
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Definition CCM Complex Conjugate of a Matrix 87

Suppose A is an m x n matrix. Then the conjugate of A, written A is an m x n matrix defined
by
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Theorem CRMA Conjugation Respects Matrix Addition 88

Suppose that A and B are m x n matrices. Then A+ B = A + B.
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Theorem CRMSM Conjugation Respects Matrix Scalar Multiplication 89

Suppose that o € C and A is an m x n matrix. Then aA = aA.
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Definition RM Range of a Matrix 90

Suppose that A is an m X n matrix with columns {Ay, Ay, As, ..., A,}. Then the range of
A, written R(A), is the subset of C™ containing all linear combinations of the columns of A,

R(A) = Sp({Al, AQ, A3, ey An})
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Theorem RCS Range and Consistent Systems

91

Suppose A is an m x n matrix and b is a vector of size m. Then b € R(A) if and only if

LS (A, b) is consistent.
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Theorem BROC Basis of the Range with Original Columns 92
Suppose that A is an m xn matrix with columns A1, Ay, As, ..., A,, and B is a row-equivalent
matrix in reduced row-echelon form with r nonzero rows. Let D = {dy, da, d3, ..., d,-} be the

set of column indices where B has leading 1’s. Let S = {Ay,, Ag,, Ag,, ..., Ag.}. Then

1. R(A) = Sp(S).

2. S is a linearly independent set.
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Theorem RNS Range as a Null Space 93

Suppose that A is an m x n matrix. Create the m x (n + m) matrix M by placing the m x m
identity matrix I, to the right of the matrix A. Symbolically, M = [A] I,,]. Let N be a matrix
that is row-equivalent to M and in reduced row-echelon form. Suppose there are r leading 1’s
of N in the first n columns. If r = m, then R(A) = C™. Otherwise, r < m and let K be the
(m — r) x m matrix formed from the entries of N in the last m — r rows and last m columns.
Then

1. K is in reduced row-echelon form.

2. K has no zero rows, or equivalently, K has m — r leading 1’s.

3. R(A) = N(K).
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Theorem RNSM Range of a NonSingular Matrix 94

Suppose A is a square matrix of size n. Then A is nonsingular if and only if R(A) = C™.
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Theorem NSME3 NonSingular Matrix Equivalences, Round 3 95

Suppose that A is a square matrix of size n. The following are equivalent.

1.

2.

A is nonsingular.

A row-reduces to the identity matrix.

. The null space of A contains only the zero vector, N'(A) = {0}.

The linear system L£LS(A, b) has a unique solution for every possible choice of b.

. The columns of A are a linearly independent set.

. The range of A is C"*, R(A) = C".
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Definition RSM Row Space of a Matrix 96

Suppose A is an m x n matrix. Then the row space of A, RS(A), is the range of A!, i.e.
RS(A) = R(A?).
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Theorem REMRS Row-Equivalent Matrices have equal Row Spaces 97

Suppose A and B are row-equivalent matrices. Then RS(A) = RS(B).
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Theorem BRS Basis for the Row Space 98

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let
S be the set of nonzero columns of Bf. Then

1. RS(A) = Sp(S).

2. S is a linearly independent set.

(©2005 Robert Beezer




Theorem RMRST Range of a Matrix is Row Space of Transpose 99

Suppose A is a matrix. Then R(A) = RS(A?).
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Definition MVP Matrix-Vector Product 100

Suppose A is an m X n matrix with columns A, As, Ag, ..., A, and u is a vector of size n.
Then the matrix-vector product of A with u is

u1
Ug

Au=[A1|As]As| .. JA,] | Y| =u1 Ay +usAg +uzAgz + - +uz A,

Un
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Theorem SLEMM Systems of Linear Equations as Matrix Multiplication 101

Solutions to the linear system L£S(A, b) are the solutions for x in the vector equation Ax = b.
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Definition MM Matrix Multiplication 102

Suppose A is an m x n matrix and B is an n X p matrix with columns B;, By, Bs, ..., B,.
Then the matrix product of A with B is the m X p matrix where column i is the matrix-vector
product AB;. Symbolically,

AB = A[B1|B3[Bs|...|B,] = [AB|AB,|AB;|...|AB,)].
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Theorem EMP Entries of Matrix Products 103

Suppose A = (a;;) is an m x n matrix and B = (b;;) is an n X p matrix. Then the entries of
AB = C = (¢;5) are given by

n

n
[C]z‘j =Cij = ailbu + aigbgj + ai3b3j + -+ ai’n,b'rbj = Zaikbkj = Z [A]ik [B]kj
k=1 k=1

(©2005 Robert Beezer

Theorem MMZM Matrix Multiplication and the Zero Matrix 104

Suppose A is an m X n matrix. Then
1. Aonxp = OmXp
2. OpxmA = Opxn
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Theorem MMIM Matrix Multiplication and Identity Matrix 105

Suppose A is an m X n matrix. Then

1. Al,=A
2. I,A=A
(©2005 Robert Beezer
Theorem MMDAA Matrix Multiplication Distributes Across Addition 106

Suppose A is an m x n matrix and B and C are n X p matrices and D is a p X s matrix. Then
1. A(B+C)=AB+ AC
2. (B+C)D=BD+CD
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Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 107

Suppose A is an m X n matrix and B is an n x p matrix. Let «a be a scalar. Then a(AB) =
(e¢A)B = A(aB).
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Theorem MMA Matrix Multiplication is Associative 108

Suppose A is an m X n matrix, B is an n X p matrix and D is a p x s matrix. Then A(BD) =
(AB)D.
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Theorem MMIP Matrix Multiplication and Inner Products 109

If we consider the vectors u, v € C™ as m x 1 matrices then

(u, v) = u'v
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Theorem MMCC Matrix Multiplication and Complex Conjugation 110

Suppose A is an m x n matrix and B is an n x p matrix. Then AB = A B.
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Theorem MMT Matrix Multiplication and Transposes 111

Suppose A is an m x n matrix and B is an n x p matrix. Then (AB)! = BtA®.
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Theorem PSPHS Particular Solution Plus Homogeneous Solutions 112

Suppose that z is one solution to the linear system of equations LS(A, b). Then y is a solution
to LS(A, b) if and only if y = z + w for some vector w € N(A).
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Definition MI Matrix Inverse 113

Suppose A and B are square matrices of size n such that AB = I,, and BA = I,,. Then A is
invertible and B is the inverse of A. In this situation, we write B = AL,
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Definition SUV Standard Unit Vectors 114

Let e; € C™ denote the column vector that is column 4 of the m x m identity matrix I,,,. Then
the set
{e1, ez, €3, ....,en}=1{e;| 1 <i<m}

is the set of standard unit vectors in C™.
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Theorem TTMI Two-by-Two Matrix Inverse 115

A=l

Then A is invertible if and only if ad — bc # 0. When A is invertible, we have

-1 1 d —b
A T ad—bc|—c a|’

Suppose
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Theorem CINSM Computing the Inverse of a NonSingular Matrix 116

Suppose A is a nonsingular square matrix of size n. Create the n x 2n matrix M by placing the
n X n identity matrix I,, to the right of the matrix A. Let N be a matrix that is row-equivalent
to M and in reduced row-echelon form. Finally, let B be the matrix formed from the final n
columns of N. Then AB = I,,.
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Theorem MIU Matrix Inverse is Unique 117

Suppose the square matrix A has an inverse. Then A~! is unique.
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Theorem SS Socks and Shoes 118

Suppose A and B are invertible matrices of size n. Then (AB)™' = B7'A~! and AB is an
invertible matrix.
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Theorem MIMI Matrix Inverse of a Matrix Inverse

119

Suppose A is an invertible matrix. Then (A~1)~1 = A and A1 is invertible.
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Theorem MIT Matrix Inverse of a Transpose

120

Suppose A is an invertible matrix. Then (A*)™1 = (A7) and A® is invertible.
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Theorem MISM Matrix Inverse of a Scalar Multiple

121

1

Suppose A is an invertible matrix and « is a nonzero scalar. Then (@A)~ " = LA " and 0A is

invertible.
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Theorem PWSMS Product With a Singular Matrix is Singular

122

Suppose that A or B are matrices of size n, and one, or both, is singular. Then their product,

AB, is singular.
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Theorem OSIS One-Sided Inverse is Sufficient 123

Suppose A and B are square matrices of size n such that AB = I,,. Then BA = I,,.
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Theorem NSI NonSingularity is Invertibility 124

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.
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Theorem NSME4 NonSingular Matrix Equivalences, Round 4 125

Suppose that A is a square matrix of size n. The following are equivalent.

1.
2.

Nos ok @

A is nonsingular.

A row-reduces to the identity matrix.

The null space of A contains only the zero vector, N(A4) = {0}.

The linear system L£S(A, b) has a unique solution for every possible choice of b.
The columns of A are a linearly independent set.

The range of A is C", R(A) = C™.

A is invertible.

(©2005 Robert Beezer

Theorem SNSCM Solution with NonSingular Coefficient Matrix 126

Suppose that A is nonsingular. Then the unique solution to £LS(A, b) is A~ 'b.
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Definition OM Orthogonal Matrices

127

Suppose that @ is a square matrix of size n such that (@)t @ = I,,. Then we say @ is orthog-

onal.
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Theorem OMI

Orthogonal Matrices are Invertible

128

Suppose that @ is an orthogonal matrix of size n. Then @ is nonsingular, and Q! = (Q)*.
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Theorem COMOS Columns of Orthogonal Matrices are Orthonormal Sets 129

Suppose that A is a square matrix of size n with columns S = {A;, Ag, As, ..., A,}. Then A
is an orthogonal matrix if and only if S is an orthonormal set.
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Theorem OMPIP Orthogonal Matrices Preserve Inner Products 130

Suppose that @ is an orthogonal matrix of size n and u and v are two vectors from C™. Then

(Qu, Qv) = (u, v) and Qv = lIv]
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Definition A Adjoint 131

If A is a square matrix, then its adjoint is A7 = (Z)t.
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Definition HM Hermitian Matrix 132

The square matrix A is Hermitian (or self-adjoint) if A = (Z)t
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Definition VS Vector Space 133
Suppose that V' is a set upon which we have defined two operations: (1) vector addition,
which combines two elements of V' and is denoted by “+”, and (2) scalar multiplication,
which combines a complex number with an element of V' and is denoted by juxtaposition. Then
V', along with the two operations, is a vector space if the following ten requirements (better
known as “axioms”) are met.

1. AC Additive Closure If u,ve V,thenu+veV.

2. SC Scalar Closure If € C and u € V, then au € V.

3. C Commutativity If u, ve V, thenu+v=v+u.

4. AA Additive Associativity If u, v, we V, thenu+ (v+w) = (u+v)+w.
5

. Z Zero Vector There is a vector, 0, called the zero vector, such that u + 0 = u for
allueV.

6. AI Additive Inverses For each vector u € V, there exists a vector —u € V so that
u+ (—u)=0.

7. SMA Scalar Multiplication Associativity If «, § € C and u € V, then a(fu) =
(af)u.

8. DVA Distributivity across Vector Addition If & € C and u, v € V| then a(u+
v) =au+ av.

9 DSA  Distributivitv across Scalar AdditionIf o. 3 c Canduc V. then (a+3)yu =

au + fu.
10. O Omne IfueV, then lu=u.

The objects in V' are called vectors, no matter what else they might really be, simply by virtue
of being elements of a vector space.
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Theorem ZVU Zero Vector is Unique 134

Suppose that V' is a vector space. The zero vector, 0, is unique.
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Theorem AIU Additive Inverses are Unique 135

Suppose that V' is a vector space. For each u € V, the additive inverse, —u, is unique.
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Theorem ZSSM Zero Scalar in Scalar Multiplication 136

Suppose that V is a vector space and u € V. Then Ou = 0.
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Theorem ZVSM Zero Vector in Scalar Multiplication

Suppose that V is a vector space and a € C. Then a0 = 0.

137
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Theorem AISM Additive Inverses from Scalar Multiplication

Suppose that V is a vector space and u € V. Then —u = (—1)u.

138

(©2005 Robert Beezer




Theorem SMEZV Scalar Multiplication Equals the Zero Vector

139

Suppose that V is a vector space and « € C. Then if cu = 0, then either « = 0 or u = 0 (or

both).
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Theorem VAC Vector Addition Cancellation

140

Suppose that V is a vector space, and u, v, we V. f w+u=w+ v, then u=v.
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Theorem CSSM Canceling Scalars in Scalar Multiplication

141

Suppose V' is a vector space, u, v € V and « is a nonzero scalar from C. If au = av, then

u=yV.
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Theorem CVSM Canceling Vectors in Scalar Multiplication

142

Suppose V is a vector space, u # 0 is a vector in V and «, § € C. If au = fu, then o = .
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Definition S Subspace 143

Suppose that V' and W are two vector spaces that have identical definitions of vector addition
and scalar multiplication, and that W is a subset of V, W C V. Then W is a subspace of V.
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Theorem TSS Testing Subsets for Subspaces 144

Suppose that V' is a vector space and W is a subset of V, W C V. Endow W with the same
operations as V. Then W is a subspace if and only if three conditions are met

1. W is non-empty, W # 0.
2. Whenever x ¢ W andy € W, thenx+y € W.

3. Whenever a € C and x € W, then ax € W.
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Definition TS Trivial Subspaces 145

Given the vector space V, the subspaces V and {0} are each called a trivial subspace.
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Theorem NSMS Null Space of a Matrix is a Subspace 146

Suppose that A is an m x n matrix. Then the null space of A, N'(4), is a subspace of C™.
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Definition LC Linear Combination 147

Suppose that V is a vector space. Given n vectors uj, ug, us, ..., u, and n scalars
a1, g, 3, ..., Qy, their linear combination is the vector

aiug + agUg + agug + - - + apUy.
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Definition SS Span of a Set 148
Suppose that V' is a vector space. Given a set of vectors S = {uy, us, us, ..., u;}, their span,
Sp(S), is the set of all possible linear combinations of uy, us, ug, ..., u;. Symbolically,

Sp(S) ={aqu; + agus + azuz + -+ u| a; € C, 1 <5 <t}

i=1

OéiG(C,1<’i<t}
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Theorem SSS Span of a Set is a Subspace 149

Suppose V' is a vector space. Given a set of vectors S = {uy, ug, us, ..., uz} CV, their span,
Sp(S), is a subspace.
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Theorem RMS Range of a Matrix is a Subspace 150

Suppose that A is an m x n matrix. Then R(A) is a subspace of C™.
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Theorem RSMS Row Space of a Matrix is a Subspace 151

Suppose that A is an m x n matrix. Then RS(A) is a subspace of C™.
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Definition RLD Relation of Linear Dependence 152

Suppose that V is a vector space. Given a set of vectors S = {uy, us, us, ..., u,}, an equation
of the form
aiu; + agug + agug + -+ azu, =0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e.
a; = 0,1 <1i<n, then we say it is a trivial relation of linear dependence on S.
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Definition LI Linear Independence 153

Suppose that V' is a vector space. The set of vectors S = {uy, us, us, ..., u,} is linearly
dependent if there is a relation of linear dependence on S that is not trivial. In the case where
the only relation of linear dependence on S is the trivial one, then S is a linearly independent
set of vectors.

(©2005 Robert Beezer

Definition TSS To Span a Subspace 154

Suppose V is a vector space and W is a subspace. A subset S of W is a spanning set for W
if Sp(S) = W. In this case, we also say S spans W.
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Definition B Basis 155

Suppose V is a vector space. Then a subset S C V is a basis of V if it is linearly independent
and spans V.
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Theorem SUVB Standard Unit Vectors are a Basis 156

The set of standard unit vectors for C™, B = {ey, €3, €3, ..., ey} = {e;| 1 <i < m} is a basis
for the vector space C™.
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Theorem CNSMB Columns of NonSingular Matrix are a Basis 157

Suppose that A is a square matrix. Then the columns of A are a basis of C™ if and only if A
is nonsingular.
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Theorem NSMES5 NonSingular Matrix Equivalences, Round 5 158

Suppose that A is a square matrix of size n. The following are equivalent.

1.
2.

e ok

*®

A is nonsingular.

A row-reduces to the identity matrix.

The null space of A contains only the zero vector, N'(4) = {0}.

The linear system £S(A, b) has a unique solution for every possible choice of b.
The columns of A are a linearly independent set.

The range of A is C"*, R(A) = C™.

A is invertible.

The columns of A are a basis for C".
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Theorem VRRB Vector Representation Relative to a Basis 159

Suppose that V is a vector space with basis B = {v1, va, vs3, ..., v, and that w is a vector
in V. Then there exist unique scalars aq, as, as, ..., G, such that

W = a1V] +asve +azvs + -+ am V.

(©2005 Robert Beezer

Definition D Dimension 160

Suppose that V is a vector space and {v1, va, V3, ..., v;} is a basis of V. Then the dimension
of V is defined by dim (V') = ¢. If V has no finite bases, we say V has infinite dimension.
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Theorem SSLD Spanning Sets and Linear Dependence 161

Suppose that S = {vy, va, V3, ..., v¢} is a finite set of vectors which spans the vector space V.
Then any set of ¢ + 1 or more vectors from V is linearly dependent.
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Theorem BIS Bases have Identical Sizes 162

Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C
have the same size.
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Theorem DCM Dimension of C™ 163

The dimension of C™ (Example VSCV) is m.
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Theorem DP Dimension of P, 164

The dimension of P, (Example VSP) is n + 1.
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Theorem DM Dimension of M,,, 165

The dimension of M,,,, (Example VSM) is mn.
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Definition NOM Nullity Of a Matrix 166

Suppose that A is an m x n matrix. Then the nullity of A is the dimension of the null space

of A, n(A) =dim (N (A)).
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Definition ROM Rank Of a Matrix

167

Suppose that A is an m x n matrix. Then the rank of A is the dimension of the range of A,

r(A) = dim (R(A)).
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Theorem CRN Computing Rank and Nullity

168

Suppose that A is an m X n matrix and B is a row-equivalent matrix in reduced row-echelon

form with r nonzero rows. Then r (A) = r and n(A) =n —r.
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Theorem RPNC Rank Plus Nullity is Columns

Suppose that A is an m x n matrix. Then r (A) +n (A) = n.

©2005
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Robert Beezer

Theorem RNNSM Rank and Nullity of a NonSingular Matrix

Suppose that A is a square matrix of size n. The following are equivalent.
1. A is nonsingular.
2. The rank of A is n, r (4) = n.

3. The nullity of A is zero, n (A) = 0.

©2005
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Theorem NSME6 NonSingular Matrix Equivalences, Round 6 171
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N'(A) = {0}.

4. The linear system L£LS(A, b) has a unique solution for every possible choice of b.
5. The columns of A are a linearly independent set.

6. The range of A is C", R(A) = C".

7. A is invertible.

8. The columns of A are a basis for C".

9. The rank of A is n, r (4) = n.

10. The nullity of A is zero, n (A4) = 0.
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Theorem ELIS Extending Linearly Independent Sets 172

Suppose V' is vector space and S is a linearly independent set of vectors from V. Suppose w is
a vector such that w ¢ Sp(S). Then the set S’ = S U {w} is linearly independent.
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Theorem G Goldilocks 173

Suppose that V' is a vector space of dimension ¢. Let S = {vy, va, v3, ..., Vi } be a set of
vectors from V. Then

1. If m > ¢, then S is linearly dependent.
2. If m < t, then S does not span V.
3. If m =t and S is linearly independent, then S spans V.

4. If m =t and S spans V, then S is linearly independent.
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Theorem EDYES Equal Dimensions Yields Equal Subspaces 174

Suppose that U and V are subspaces of the vector space W, such that U C V and dim (U) =
dim (V). Then U = V.
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Theorem RMRT Rank of a Matrix is the Rank of the Transpose 175

Suppose A is an m x n matrix. Then r (A4) = r (A?).
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Theorem COB Coordinates and Orthonormal Bases 176
Suppose that B = {vi, va, V3, ..., V,} is an orthonormal basis of the subspace W of C™. For
any w € W,

w = (W, v1) V1 + (W, Vo) Vo + (W, V3) vz + - + (W, V) v,
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Definition SM  SubMatrix 177

Suppose that A is an m x n matrix. Then the submatrix A;; is the (m — 1) x (n — 1) matrix
obtained from A by removing row ¢ and column j.
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Definition DM Determinant 178

Suppose A is a square matrix. Then its determinant, det (A) = |A|, is an element of C defined
recursively by:

If A= [a]isalx 1 matrix, then det (4) = a.

If A = (a;;) is a matrix of size n with n > 2, then

det (A) = qq1 det (AH) — a1 det (Alg) + a1z det (Alg) — et (—l)nJrlaln det (Aln)
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Theorem DMST Determinant of Matrices of Size Two 179

Suppose that A = {CCL Z} . Then det (A) = ad — be
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Definition MIM Minor In a Matrix 180

Suppose A is an n X n matrix and A;; is the (n — 1) x (n — 1) submatrix formed by removing
row 4 and column j. Then the minor for A at location ¢ j is the determinant of the submatrix,
]\/[Aﬂ’j = det (AZJ)
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Definition CIM Cofactor In a Matrix 181

Suppose A is an n X n matrix and A;; is the (n — 1) x (n — 1) submatrix formed by removing
row ¢ and column j. Then the cofactor for A at location i j is the signed determinant of the
submatrix, Cy;; = (—1)"7 det (A4;).
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Theorem DERC Determinant Expansion about Rows and Columns 182
Suppose that A = (a;;) is a square matrix of size n. Then
det (A) = a;1Cai1 + a:2Ca,2 + ai3Cais + - - + ainCain 1<:<n
which is known as expansion about row i, and
det (A) = a1;Ca1; + a2;Ca2j + a3jCasj+ -+ anjCanm; 1<j<n

which is known as expansion about column j.
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Theorem DT Determinant of the Transpose

Suppose that A is a square matrix. Then det (A*) = det (A).

183

(©2005 Robert Beezer

Theorem DRMM Determinant Respects Matrix Multiplication

184

Suppose that A and B are square matrices of size n. Then det (AB) = det (A4) det (B).
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Theorem SMZD Singular Matrices have Zero Determinants 185

Let A be a square matrix. Then A is singular if and only if det (4) = 0.
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Theorem NSME7 NonSingular Matrix Equivalences, Round 7 186
Suppose that A is a square matrix of size n. The following are equivalent.

1.
2.

10.
11.

© »® N o oos W

A is nonsingular.

A row-reduces to the identity matrix.

The null space of A contains only the zero vector, N'(A4) = {0}.
The linear system L£S(A, b) has a unique solution for every possible choice of b.
The columns of A are a linearly independent set.

The range of A is C", R(A) = C™.

A is invertible.

The columns of A are a basis for C".

The rank of A is n, r (A) =n.

The nullity of A is zero, n (A) = 0.

The determinant of A is nonzero, det (A) # 0.
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Definition EEM Eigenvalues and Eigenvectors of a Matrix 187

Suppose that A is a square matrix of size n, x # 0 is a vector from C”, and X is a scalar from
C such that
Ax = Ax

Then we say x is an eigenvector of A with eigenvalue A.
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Theorem EMHE Every Matrix Has an Eigenvalue 188

Suppose A is a square matrix. Then A has at least one eigenvalue.
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Definition CP Characteristic Polynomial 189

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the
polynomial p4 () defined by
pa (x) =det (A — zI,)
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Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials 190

Suppose A is a square matrix. Then A is an eigenvalue of A if and only if p4 (A) = 0.
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Definition EM Eigenspace of a Matrix 191

Suppose that A is a square matrix and A is an eigenvalue of A. Then the eigenspace of A for
A, E4 (N), is the set of all the eigenvectors of A for A, with the addition of the zero vector.
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Theorem EMS Eigenspace for a Matrix is a Subspace 192

Suppose A is a square matrix of size n and X is an eigenvalue of A. Then the eigenspace E4 (\)
is a subspace of the vector space C".
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Theorem EMNS Eigenspace of a Matrix is a Null Space 193

Suppose A is a square matrix of size n and A is an eigenvalue of A. Then

Es(\) =N(A-),)
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Definition AME Algebraic Multiplicity of an Eigenvalue 194

Suppose that A is a square matrix and ) is an eigenvalue of A. Then the algebraic multiplicity
of A\, as (N), is the highest power of (z — ) that divides the characteristic polynomial, pa ().
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Definition GME Geometric Multiplicity of an Eigenvalue 195

Suppose that A is a square matrix and A is an eigenvalue of A. Then the geometric multi-
plicity of A, y4 (A\), is the dimension of the eigenspace E4 (X).
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Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 196

Suppose that A is a square matrix and S = {x1, X2, X3, ..., X} is a set of eigenvectors with
eigenvalues A1, A2, A3, ..., Ap such that A\; # A; whenever ¢ # j. Then S is a linearly indepen-
dent set.
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Theorem SMZE Singular Matrices have Zero Eigenvalues 197

Suppose A is a square matrix. Then A is singular if and only if A = 0 is an eigenvalue of A.
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Theorem NSMES8 NonSingular Matrix Equivalences, Round 8 198
Suppose that A is a square matrix of size n. The following are equivalent.

1.

11.
12.

A is nonsingular.

. A row-reduces to the identity matrix.
. The null space of A contains only the zero vector, N'(4) = {0}.
. The linear system L£S(A, b) has a unique solution for every possible choice of b.

2
3
4
5.
6
7
8
9

The columns of A are a linearly independent set.

. The range of A is C", R(A) = C".

. A is invertible.

. The columns of A are a basis for C".
. The rank of A is n, r (4) = n.

10.

The nullity of A is zero, n (A) = 0.
The determinant of A is nonzero, det (A) # 0.
A =0 is not an eigenvalue of A.
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Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix

199

Suppose A is a square matrix and A is an eigenvalue of A. Then a is an eigenvalue of aA.
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Theorem EOMP Eigenvalues Of Matrix Powers

200

Suppose A is a square matrix, A is an eigenvalue of A, and s > 0 is an integer. Then \° is an

eigenvalue of A°.
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Theorem EPM Eigenvalues of the Polynomial of a Matrix 201

Suppose A is a square matrix and A is an eigenvalue of A. Let g(x) be a polynomial in the
variable . Then ¢()) is an eigenvalue of the matrix g(A).
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Theorem EIM Eigenvalues of the Inverse of a Matrix 202

Suppose A is a square nonsingular matrix and A is an eigenvalue of A. Then % is an eigenvalue
of the matrix A~".
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Theorem ETM Eigenvalues of the Transpose of a Matrix

203

Suppose A is a square matrix and ) is an eigenvalue of A. Then ) is an eigenvalue of the matrix

At
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Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs 204

Suppose A is a square matrix with real entries and x is an eigenvector of A for the eigenvalue

A. Then X is an eigenvector of A for the eigenvalue A.
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Theorem DCP Degree of the Characteristic Polynomial

205

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, pa (),

has degree n.
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Theorem NEM Number of Eigenvalues of a Matrix 206
Suppose that A is a square matrix of size n with distinct eigenvalues A1, Ao, A3, ..., Ax. Then
k
Z as (M) =n
i=1
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Theorem ME Multiplicities of an Eigenvalue 207

Suppose that A is a square matrix of size n and A is an eigenvalue. Then

1<y4(N) <as(A)<n
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Theorem MINEM Maximum Number of Eigenvalues of a Matrix 208

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigen-
values.
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Theorem HMRE Hermitian Matrices have Real Eigenvalues 209

Suppose that A is a Hermitian matrix and A is an eigenvalue of A. Then A € R.
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Theorem HMOE Hermitian Matrices have Orthogonal Eigenvectors 210

Suppose that A is a Hermitian matrix and x and y are two eigenvectors of A for different
eigenvalues. Then x and y are orthogonal vectors.
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Definition SIM Similar Matrices 211

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists
a nonsingular matrix of size n, S, such that A = S~'BS.
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Theorem SER Similarity is an Equivalence Relation 212

Suppose A, B and C are square matrices of size n. Then
1. A is similar to A. (Reflexive)
2. If A is similar to B, then B is similar to A. (Symmetric)

3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)
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Theorem SMEE Similar Matrices have Equal Eigenvalues

213

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are

equal, that is pa (x) = pp (2).
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Definition DIM Diagonal Matrix

214

Suppose that A = (a;;) is a square matrix. Then A is a diagonal matrix if a;; = 0 whenever

i j.
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Definition DZM Diagonalizable Matrix

215

Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.

(©2005 Robert Beezer

Theorem DC Diagonalization Characterization

216

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a

linearly independent set S that contains n eigenvectors of A.
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Theorem DMLE Diagonalizable Matrices have Large Eigenspaces

217

Suppose A4 is a square matrix. Then A is diagonalizable if and only if y4 (A) = a4 (A) for every

eigenvalue A of A.
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Theorem DED Distinct Eigenvalues implies Diagonalizable

218

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.
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(©2005 Robert Beezer

Definition LT Linear Transformation 220

A linear transformation, 7: U — V| is a function that carries elements of the vector space U
(called the domain) to the vector space V' (called the codomain), and which has two additional
properties

1. T(ug +u) =T (u1) + T (up) for allug, up €U
2. T(au) =aT (u) forallu e U and all « € C

(©2005 Robert Beezer




Theorem LTTZZ Linear Transformations Take Zero to Zero

Suppose T': U — V is a linear transformation. Then 7' (0) = 0.

221

(©2005 Robert Beezer

Theorem MBLT Matrices Build Linear Transformations

222

Suppose that A is an m x n matrix. Define a function T': C" — C™ by T (x) = Ax. Then T is

a linear transformation.
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Theorem MLTCV Matrix of a Linear Transformation, Column Vectors 223

Suppose that T: C™* — C™ is a linear transformation. Then there is an m X n matrix A such
that T (x) = Ax.
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Theorem LTLC Linear Transformations and Linear Combinations 224
Suppose that T': U +— V is a linear transformation, uy, us, us, ..., u; are vectors from U and
ai, ag, as, ..., a; are scalars from C. Then

T (a1u1 + asgug +aszug + - -+ atut) = alT(ul) + CLQT (112) + (13T (U3) + -4 CLtT (ut)

(©2005 Robert Beezer




Theorem LTDB Linear Transformation Defined on a Basis 225

Suppose that T: U — V is a linear transformation, B = {uy, us, ug, ..., u,} is a basis for U
and w is a vector from U. Let aj, a9, as, ..., a, be the scalars from C such that

W = aju; + a2us +azus + -+ a,Uy

Then
T (w)=a1T (u1) + axT (uz) 4 a3 (u3) + - + a, T (uy)

(©2005 Robert Beezer

Definition PI Pre-Image 226

Suppose that T: U — V is a linear transformation. For each v, define the pre-image of v to
be the subset of U given by

T '(v)={uelU|T(u)=v}
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Definition LTA Linear Transformation Addition 227

Suppose that T: U +— V and S: U — V are two linear transformations with the same domain
and codomain. Then their sum is the function T'+ S: U — V whose outputs are defined by

(T+S)(u)=T )+ S (u)

(©2005 Robert Beezer

Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 228

Suppose that T: U +— V and S: U — V are two linear transformations with the same domain
and codomain. Then T+ S: U — V is a linear transformation.
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Definition LTSM Linear Transformation Scalar Multiplication 229

Suppose that T: U — V is a linear transformation and o € C. Then the scalar multiple is
the function oT': U +— V whose outputs are defined by

(aT) (u) = aT (u)

(©2005 Robert Beezer

Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 230

Suppose that T: U — V is a linear transformation and o € C. Then (aT): U — V is a linear
transformation.
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Theorem VSLT Vector Space of Linear Transformations 231

Suppose that U and V are vector spaces. Then the set of all linear transformations from U
to V, LT (U, V) is a vector space when the operations are those given in Definition LTA and
Definition LTSM.
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Definition LTC Linear Transformation Composition 232

Suppose that T: U +— V and S: V +— W are linear transformations. Then the composition of
S and T is the function (S oT): U — W whose outputs are defined by

(§0T)(u) = S(T (u))

(©2005 Robert Beezer




Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 233

Suppose that T: U — V and S: V — W are linear transformations. Then (SoT): U — W is
a linear transformation.
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Definition ILT Injective Linear Transformation 234

Suppose T: U — V is a linear transformation. Then T is injective if whenever T (x) =T (y),
then x =y.
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Definition NSLT Null Space of a Linear Transformation

235

Suppose T: U — V is a linear transformation. Then the null space of T is the set N (T) =

{ueU|T(u) =0}

(©2005 Robert Beezer

Theorem NSLTS Null Space of a Linear Transformation is a Subspace 236

Suppose that T: U +— V is a linear transformation. Then the null space of T, N(T), is a

subspace of U.
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Theorem NSPI Null Space and Pre-Image 237

Suppose T': U + V is a linear transformation and v € V. If the preimage T~! (v) is non-empty,
and u € T~ (v) then

T (v) = {ut2| 2 € N(T)} = u+N(T)

(©2005 Robert Beezer

Theorem NSILT Null Space of an Injective Linear Transformation 238

Suppose that T: U — V is a linear transformation. Then T is injective if and only if the null
space of T is trivial, N'(T') = {0}.
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Theorem ILTLI Injective Linear Transformations and Linear Independence 239

Suppose that T: U — V is an injective linear transformation and S = {uy, us, us, ..., us} is a
linearly independent subset of U. Then R = {T (u1), T (u2), T (u3), ..., T (us)} is a linearly
independent subset of V.

(©2005 Robert Beezer

Theorem ILTB Injective Linear Transformations and Bases 240
Suppose that T: U — V is a linear transformation and B = {uj, us, ug, ..., u,,} is a basis
of U. Then T is injective if and only if C = {T" (u1), T (ug), T (u3), ..., T (uy)} is a linearly

independent subset of V.
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Theorem ILTD Injective Linear Transformations and Dimension 241

Suppose that T': U +— V is an injective linear transformation. Then dim (U) < dim (V).

(©2005 Robert Beezer

Theorem CILTI Composition of Injective Linear Transformations is Injective 242

Suppose that T: U — V and S: V — W are injective linear transformations. Then (SoT): U —
W is an injective linear transformation.
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Definition SLT Surjective Linear Transformation

243

Suppose T: U — V is a linear transformation. Then T is surjective if for every v € V there

exists a u € U so that T'(u) = v.
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Definition RLT Range of a Linear Transformation

244

Suppose T: U — V is a linear transformation. Then the range of T is the set

R(T) = {T (w)| ue U}
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Theorem RLTS Range of a Linear Transformation is a Subspace

245

Suppose that T: U — V is a linear transformation. Then the range of T, R(T), is a subspace

of V.
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Theorem RSLT Range of a Surjective Linear Transformation

246

Suppose that T': U — V is a linear transformation. Then T is surjective if and only if the range

of T equals the codomain, R(T) = V.
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Theorem SSRLT Spanning Set for Range of a Linear Transformation 247

Suppose that T: U — V is a linear transformation and S = {uy, ug, us, ..., u} spans U.
Then R = {T (u1), T (uz), T (u3), ..., T (us)} spans R(T).
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Theorem RPI Range and Pre-Image 248

Suppose that T: U — V is a linear transformation. Then

v € R(T) if and only if T~ (v) # 0
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Theorem SLTB Surjective Linear Transformations and Bases 249

Suppose that T: U +— V is a linear transformation and B = {uy, us, us, ..., u,,} is a basis of
U. Then T is surjective if and only if C = {T (u;), T (uz2), T (us3), ..., T (u,;,)} is a spanning
set for V.

(©2005 Robert Beezer

Theorem SLTD Surjective Linear Transformations and Dimension 250

Suppose that T': U +— V is a surjective linear transformation. Then dim (U) > dim (V).
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Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 251

Suppose that T: U — V and S: V +— W are surjective linear transformations. Then (S o
T): U — W is a surjective linear transformation.
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Definition IDLT Identity Linear Transformation 252

The identity linear transformation on the vector space W is defined as
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Definition IVLT Invertible Linear Transformations 253

Suppose that T: U — V is a linear transformation. If there is a function S: V +— U such that
SoT =1y ToS=1Iy

then T is invertible. In this case, we call S the inverse of T and write S = T,
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Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation 254

Suppose that T: U — V is an invertible linear transformation. Then the function 77!: V — U
is a linear transformation.
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Theorem IILT Inverse of an Invertible Linear Transformation

255

Suppose that T: U — V is an invertible linear transformation. Then 7! is an invertible linear

transformation and (T‘l)_1 =T.
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Theorem ILTIS Invertible Linear Transformations are Injective and Surjective 256

Suppose T: U — V is a linear transformation. Then T is invertible if and only if T is injective

and surjective.
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Theorem CIVLT Composition of Invertible Linear Transformations 257

Suppose that T: U +— V and S: V +— W are invertible linear transformations. Then the
composition, (SoT): U — W is an invertible linear transformation.
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Theorem ICLT Inverse of a Composition of Linear Transformations 258

Suppose that T: U — V and S: V — W are invertible linear transformations. Then S o T is
invertible and (SoT) ' =710 51,
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Definition IVS Isomorphic Vector Spaces 259

Two vector spaces U and V are isomorphic if there exists an invertible linear transformation
T with domain U and codomain V', T': U — V. In this case, we write U = V, and the linear
transformation 7" is known as an isomorphism between U and V.
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Theorem IVSED Isomorphic Vector Spaces have Equal Dimension 260

Suppose U and V' are isomorphic vector spaces. Then dim (U) = dim (V).
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Definition ROLT Rank Of a Linear Transformation 261

Suppose that T': U +— V is a linear transformation. Then the rank of T', r (T'), is the dimension
of the range of T,
r(T) = dim (R(T))
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Definition NOLT Nullity Of a Linear Transformation 262

Suppose that T: U — V is a linear transformation. Then the nullity of T, n (T), is the
dimension of the null space of T',

n (T) = dim (N (T))
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Theorem ROSLT Rank Of a Surjective Linear Transformation

263

Suppose that T: U — V is a linear transformation. Then the rank of T is the dimension of V,

r(T) = dim (V), if and only if T is surjective.

(©2005 Robert Beezer

Theorem NOILT Nullity Of an Injective Linear Transformation

264

Suppose that T: U — V is an injective linear transformation. Then the nullity of T is zero,

n(T) =0, if and only if T is injective.
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Theorem RPNDD Rank Plus Nullity is Domain Dimension 265

Suppose that T': U — V is a linear transformation. Then

r(T)+n(T) =dim (U)
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Definition VR Vector Representation 266
Suppose that V' is a vector space with a basis B = {v1, va, v3, ..., v, }. Define a function
pp: V — C" as follows. For w € V| find scalars a1, a2, as, ..., a, so that

W =a1Vy +agvy +asgvy+---+apvn
then
ai
az
as

Qn
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Theorem VRLT Vector Representation is a Linear Transformation

The function pp (Definition VR) is a linear transformation.

267

(©2005 Robert Beezer

Theorem VRI Vector Representation is Injective

The function pp (Definition VR) is an injective linear transformation.

268
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Theorem VRS Vector Representation is Surjective 269

The function pp (Definition VR) is a surjective linear transformation.
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Theorem VRILT Vector Representation is an Invertible Linear Transformation 270

The function pp (Definition VR) is an invertible linear transformation.
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Theorem CFDVS Characterization of Finite Dimensional Vector Spaces 271

Suppose that V is a vector space with dimension n. Then V' is isomorphic to C™.
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Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces 272

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if
and only if dim (U) = dim (V).
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Theorem CLI Coordinatization and Linear Independence 273

Suppose that U is a vector space with a basis B of size n. Then S = {uj, ug, us, ..., ug} is a
linearly independent subset of U if and only if R = {pg (u1), ps (us2), pg(us), ..., pp (ug)}
is a linearly independent subset of C".
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Theorem CSS Coordinatization and Spanning Sets 274
Suppose that U is a vector space with a basis B of size n. Then u € Sp({uy, us, us, ..., u;})
if and only if pp (u) € Sp({pp (w1), p5 (12), pp (u3), ..., pp (Uk)}).
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Definition MR Matrix Representation 275

Suppose that T: U — V is a linear transformation, B = {uy, ug, us, ..., u,} is a basis for U
of size n, and C' is a basis for V of size m. The the matrix representation of T relative to B
and C is the m x n matrix,

Mg o = [pe (T ()] pe (T (w2))] pe (T (uz))]- .. |lpc (T ()]
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Theorem FTMR Fundamental Theorem of Matrix Representation 276

Suppose that T: U — V is a linear transformation, B is a basis for U, C' is a basis for V and
J\/Ig!c is the matrix representation of T relative to B and C. Then, for any u € U,

pc (T (0) = Mf ¢ (pp (w))

or equivalently
T (u) = pg' (Mg ¢ (o5 (w)))
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Theorem MRSLT Matrix Representation of a Sum of Linear Transformations 277

Suppose that T: U +— V and S: U — V are linear transformations, B is a basis of U and C' is
a basis of V. Then
M?BUES = Mg,c + Mig,c
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Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation 278

Suppose that T: U — V is a linear transformation, o € C, B is a basis of U and C' is a basis
of V.. Then
Mgl = aMp o
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Theorem MRCLT Matrix Representation of a Composition of Linear Transformations279

Suppose that T: U +— V and S: V +— W are linear transformations, B is a basis of U, C' is a
basis of V', and D is a basis of W. Then

SoT __ S T
Mg’p = Mg pMp ¢
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Theorem INS Isomorphic Null Spaces 280

Suppose that T: U +— V is a linear transformation, B is a basis for U of size n, and C' is a basis
for V. Then the null space of T is isomorphic to the null space of ZWET;@,

N(T) = N (M} ()
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Theorem IR Isomorphic Ranges 281

Suppose that T': U — V is a linear transformation, B is a basis for U of size n, and C' is a basis
for V of size m. Then the range of T is isomorphic to the range of ML o

R(T) = R(Mp,c)
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Theorem IMR Invertible Matrix Representations 282

Suppose that T: U — V is an invertible linear transformation, B is a basis for U and C is a
basis for V. Then the matrix representation of T relative to B and C, M% . is an invertible
matrix, and
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Definition EELT Eigenvalue and Eigenvector of a Linear Transformation 283

Suppose that T: V +— V is a linear transformation. Then a nonzero vector v € V is an
eigenvector of T for the eigenvalue \ if T'(v) = Av.
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Definition CBM Change-of-Basis Matrix 284

Suppose that V is a vector space, and Iy : V — V is the identity linear transformation on V.
Let B = {v1, va, v3, ..., v, } and C be two bases of V. Then the change-of-basis matrix
from B to C is the matrix representation of Iy relative to B and C,

Cpc=Mpe

= [pc (v (vi))l po (Iv (v2))| po (v (v3))] - - [pc (Iv (Va))]
= [po (w)] po (u2)] po (us)] - .- |pc (un)]
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Theorem CB Change-of-Basis 285

Suppose that u is a vector in the vector space V and B and C are bases of V. Then

Cp.cps (V) = pc (V)
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Theorem ICBM Inverse of Change-of-Basis Matrix 286

Suppose that V' is a vector space, and B and C' are bases of V. Then the change-of-basis matrix
Cp,c is nonsingular and
ng,lc =Co,B
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Theorem MRCB Matrix Representation and Change of Basis 287

Suppose that T': U +— V is a linear transformation, B and C are bases for U, and D and E are
bases for V. Then
M} p=CppME pCh.e
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Theorem SCB Similarity and Change of Basis 288

Suppose that T: V — V is a linear transformation and B and C' are bases of V. Then

]V[g,B = CE}CAIE,CCB,C
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Theorem EER Eigenvalues, Eigenvectors, Representations

289

Suppose that T: V +— V is a linear transformation and B is a basis of V. Then v € V is an
eigenvector of T for the eigenvalue A if and only if pp (V) is an eigenvector of Mg’ p for the

eigenvalue \.
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