Flashcard Supplement to A First Course in Linear Algebra

Robert A. Beezer

University of Puget Sound

Version 3.00-preview (December 12, 2014)

Robert A. Beezer is a Professor of Mathematics at the University of Puget Sound, where he has been on the faculty since 1984. He received a B.S. in Mathematics (with an Emphasis in Computer Science) from the University of Santa Clara in 1978, a M.S. in Statistics from the University of Illinois at Urbana-Champaign in 1982 and a Ph.D. in Mathematics from the University of Illinois at Urbana-Champaign in 1984.

In addition to his teaching at the University of Puget Sound, he has made sabbatical visits to the University of the West Indies (Trinidad campus) and the University of Western Australia. He has also given several courses in the Master's program at the African Institute for Mathematical Sciences, South Africa. He has been a Sage developer since 2008.

He teaches calculus, linear algebra and abstract algebra regularly, while his research interests include the applications of linear algebra to graph theory. His professional website is at http://buzzard.ups.edu.

Edition Version 3.40 Flashcard Supplement December 12, 2014

Publisher

Robert A. Beezer Congruent Press Gig Harbor, Washington, USA

©2004—2014 Robert A. Beezer

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the appendix entitled "GNU Free Documentation License".

Definition SLE System of Linear Equations 1 A system of linear equations is a collection of m equations in the variable quantities $x_1, x_2, x_3, \ldots, x_n$ of the form,

> $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$ \vdots $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

where the values of a_{ij} , b_i and x_j , $1 \le i \le m$, $1 \le j \le n$, are from the set of complex numbers, \mathbb{C} .

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{2}$

Definition SSLE Solution of a System of Linear Equations

A solution of a system of linear equations in n variables, $x_1, x_2, x_3, \ldots, x_n$ (such as the system given in Definition SLE), is an ordered list of n complex numbers, $s_1, s_2, s_3, \ldots, s_n$ such that if we substitute s_1 for x_1, s_2 for x_2, s_3 for x_3, \ldots, s_n for x_n , then for every equation of the system the left side will equal the right side, i.e. each equation is true simultaneously.

Definition SSSLE Solution Set of a System of Linear Equations 3
The solution set of a linear system of equations is the set which contains every solution to the
system, and nothing more.

 $\textcircled{O}2004 \mbox{---}2014$ Robert A. Beezer, GFDL License

 $\mathbf{4}$

Definition ESYS	Equivalent Systems
Two systems of linea	r equations are equivalent if their solution sets are equal.

Definition EO Equation Operations

Given a system of linear equations, the following three operations will transform the system into a different one, and each operation is known as an equation operation.

- 1. Swap the locations of two equations in the list of equations.
- 2. Multiply each term of an equation by a nonzero quantity.
- 3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

©2004—2014 Robert A. Beezer, GFDL License

Theorem EOPSS Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of Definition EO to a system of linear equations (Definition SLE), then the original system and the transformed system are equivalent.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{5}$

Definition M Matrix

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns. We will use upper-case Latin letters from the start of the alphabet (A, B, C, ...) to denote matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets — the distinction is not important. Rows of a matrix will be referenced starting at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the notation $[A]_{ij}$ will refer to the complex number in row i and column j of A.

©2004—2014 Robert A. Beezer, GFDL License

Definition CV Column Vector

A column vector of size m is an ordered list of m numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a vector. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$. Some books like to write vectors with arrows, such as \vec{u} . Writing by hand, some like to put arrows on top of the symbol, or a tilde underneath the symbol, as in u. To refer to the entry or component of vector \mathbf{v} in location i of the list, we write $[\mathbf{v}]_i$.

8

 $\mathbf{7}$

Definition ZCV Zero Column Vector The zero vector of size *m* is the column vector of size *m* where each entry is the number zero,

$$\mathbf{0} = \begin{bmatrix} 0\\0\\0\\\vdots\\0 \end{bmatrix}$$

or defined much more compactly, $[\mathbf{0}]_i = 0$ for $1 \le i \le m$.

©2004—2014 Robert A. Beezer, GFDL License

9

10

 $\begin{aligned} \text{Definition CM Coefficient Matrix} \\ \text{For a system of linear equations,} \\ & a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m \end{aligned}$ the coefficient matrix is the $m \times n$ matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$

Definition VOC Vector of Constants For a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

the vector of constants is the column vector of size \boldsymbol{m}

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Definition SOLV Solution Vector For a system of linear equations, $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$ \vdots $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$ the solution vector is the column vector of size n $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

 $\mathbf{11}$

Definition MRLS Matrix Representation of a Linear System

If A is the coefficient matrix of a system of linear equations and **b** is the vector of constants, then we will write $\mathcal{LS}(A, \mathbf{b})$ as a shorthand expression for the system of linear equations, which we will refer to as the matrix representation of the linear system.

©2004—2014 Robert A. Beezer, GFDL License

Definition AM Augmented Matrix

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of constants **b**. Then the augmented matrix of the system of equations is the $m \times (n + 1)$ matrix whose first n columns are the columns of A and whose last column (n + 1) is the column vector **b**. This matrix will be written as $[A \mid \mathbf{b}]$.

14

©2004—2014 Robert A. Beezer, GFDL License

Definition RO Row Operations

The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a row operation.

- 1. Swap the locations of two rows.
- 2. Multiply each entry of a single row by a nonzero quantity.
- 3. Multiply each entry of one row by some quantity, and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

- 1. $R_i \leftrightarrow R_j$: Swap the location of rows *i* and *j*.
- 2. αR_i : Multiply row *i* by the nonzero scalar α .
- 3. $\alpha R_i + R_j$: Multiply row *i* by the scalar α and add to row *j*.

©2004—2014 Robert A. Beezer, GFDL License

Definition REM Row-Equivalent Matrices

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a sequence of row operations.

©2004—2014 Robert A. Beezer, GFDL License

15

Theorem REMES Row-Equivalent Matrices represent Equivalent Systems 17 Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations that they represent are equivalent systems.

©2004—2014 Robert A. Beezer, GFDL License

18

Definition RREF Reduced Row-Echelon Form

A matrix is in reduced row-echelon form if it meets all of the following conditions:

- 1. If there is a row where every entry is zero, then this row lies below any other row that contains a nonzero entry.
- 2. The leftmost nonzero entry of a row is equal to 1.
- 3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
- 4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If s > i, then t > j.

A row of only zero entries is called a zero row and the leftmost nonzero entry of a nonzero row is a leading 1. A column containing a leading 1 will be called a pivot column. The number of nonzero rows will be denoted by r, which is also equal to the number of leading 1's and the number of pivot columns.

The set of column indices for the pivot columns will be denoted by $D = \{d_1, d_2, d_3, \ldots, d_r\}$ where $d_1 < d_2 < d_3 < \cdots < d_r$, while the columns that are not pivot columns will be denoted as $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ where $f_1 < f_2 < f_3 < \cdots < f_{n-r}$.

Theorem REMEF Row-Equivalent Matrix in Echelon FormSuppose A is a matrix. Then there is a matrix B so that
1. A and B are row-equivalent.
2. B is in reduced row-echelon form.

©2004—2014 Robert A. Beezer, GFDL License

Theorem RREFU Reduced Row-Echelon Form is Unique

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then B = C.

©2004—2014 Robert A. Beezer, GFDL License

19

 $\mathbf{20}$

Definition CS Consistent System 21 A system of linear equations is consistent if it has at least one solution. Otherwise, the system is called inconsistent.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{22}$

Definition IDV Independent and Dependent Variables

Suppose A is the augmented matrix of a consistent system of linear equations and B is a rowequivalent matrix in reduced row-echelon form. Suppose j is the index of a pivot column of B. Then the variable x_j is dependent. A variable that is not dependent is called independent or free.

Theorem RCLS Recognizing Consistency of a Linear System

Suppose A is the augmented matrix of a system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then the system of equations is inconsistent if and only if column n + 1 of B is a pivot column.

©2004—2014 Robert A. Beezer, GFDL License

Theorem CSRN Consistent Systems, r and n

Suppose A is the augmented matrix of a consistent system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r pivot columns. Then $r \leq n$. If r = n, then the system has a unique solution, and if r < n, then the system has infinitely many solutions.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{23}$

 $\mathbf{24}$

Theorem FVCS Free Variables for Consistent Systems

Suppose A is the augmented matrix of a consistent system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with n - r free variables.

©2004—2014 Robert A. Beezer, GFDL License

Theorem PSSLS Possible Solution Sets for Linear Systems A system of linear equations has no solutions, a unique solution or infinitely many solutions		26

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{25}$

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions27 Suppose a consistent system of linear equations has m equations in n variables. If n > m, then the system has infinitely many solutions.

 $\textcircled{0}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Definition HS Homogeneous System 28 A system of linear equations, $\mathcal{LS}(A, \mathbf{b})$ is homogeneous if the vector of constants is the zero vector, in other words, if $\mathbf{b} = \mathbf{0}$.

Theorem HSC Homogeneous Systems are Consistent	29
Suppose that a system of linear equations is homogeneous. Then the system is consistent one solution is found by setting each variable to zero.	t and
one solution is found by setting each variable to zero.	

©2004—2014 Robert A. Beezer, GFDL License

Definition TSHSE Trivial Solution to Homogeneous Systems of Equations 30 Suppose a homogeneous system of linear equations has *n* variables. The solution $x_1 = 0$, $x_2 = 0$, , $x_n = 0$ (i.e. $\mathbf{x} = \mathbf{0}$) is called the trivial solution.

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions 31

Suppose that a homogeneous system of linear equations has m equations and n variables with n > m. Then the system has infinitely many solutions.

©2004—2014 Robert A. Beezer, GFDL License

Definition NSM Null Space of a Matrix 32 The null space of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{LS}(A, \mathbf{0})$.

Definition SQM Square Matrix A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has size n. To emphasize the situation when a matrix is not square, we will call it rectangular.

©2004—2014 Robert A. Beezer, GFDL License

Definition NM Nonsingular Matrix

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{LS}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, in other words, the system has only the trivial solution. Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix.

©2004—2014 Robert A. Beezer, GFDL License

33

 $\mathbf{34}$

Definition IM Identity Matrix The $m \times m$ identity matrix, I_m , is defined by

$$\left[I_m\right]_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \qquad 1 \le i, \, j \le m$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem NMRRI Nonsingular Matrices Row Reduce to the Identity matrix 36 Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

 $\mathbf{35}$

Theorem NMTNS Nonsingular Matrices have Trivial Null Spaces	37
Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A	A is
the set containing only the zero vector, i.e. $\mathcal{N}(A) = \{0\}.$	

©2004—2014 Robert A. Beezer, GFDL License

Theorem NMUS	Nonsingular Matrices and Unique Solutions	38
Suppose that A is a s	square matrix. A is a nonsingular matrix if and only if the system \mathcal{L}	$\mathcal{S}(A, \mathbf{b})$
has a unique solution	n for every choice of the constant vector \mathbf{b} .	

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem NME1Nonsingular Matrix Equivalences, Round 1 Suppose that A is a square matrix. The following are equivalent.	
1. A is nonsingular.	
2. A row-reduces to the identity matrix.	
3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{0\}.$	
4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .	

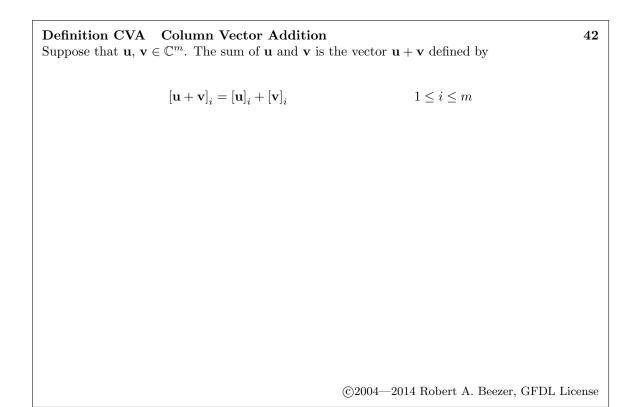
©2004—2014 Robert A. Beezer, GFDL License

39

Definition VSCV	Vector Space of Column Vectors	40
The vector space \mathbb{C}^m	is the set of all column vectors (Definition CV) of size m with entries from
the set of complex nu	mbers, \mathbb{C} .	

Definition CVE Column Vector Equality 41 Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$. Then \mathbf{u} and \mathbf{v} are equal, written $\mathbf{u} = \mathbf{v}$ if $[\mathbf{u}]_i = [\mathbf{v}]_i$ $1 \le i \le m$

 $\textcircled{O}2004\mbox{--}2014$ Robert A. Beezer, GFDL License



Definition CVSM Column Vector Scalar Multiplication 43 Suppose $\mathbf{u} \in \mathbb{C}^m$ and $\alpha \in \mathbb{C}$, then the scalar multiple of \mathbf{u} by α is the vector $\alpha \mathbf{u}$ defined by $[\alpha \mathbf{u}]_i = \alpha [\mathbf{u}]_i$ $1 \le i \le m$

©2004—2014 Robert A. Beezer, GFDL License

Theorem VSPCVVector Space Properties of Column Vectors44Suppose that \mathbb{C}^m is the set of column vectors of size m (Definition VSCV) with addition and
scalar multiplication as defined in Definition CVA and Definition CVSM. Then44

- ACC Additive Closure, Column Vectors: If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} \in \mathbb{C}^m$.
- SCC Scalar Closure, Column Vectors: If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha \mathbf{u} \in \mathbb{C}^m$.
- CC Commutativity, Column Vectors: If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- AAC Additive Associativity, Column Vectors: If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^m$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- ZC Zero Vector, Column Vectors: There is a vector, **0**, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^m$.
- AIC Additive Inverses, Column Vectors: If $\mathbf{u} \in \mathbb{C}^m$, then there exists a vector $-\mathbf{u} \in \mathbb{C}^m$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- SMAC Scalar Multiplication Associativity, Column Vectors: If α , $\beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- DVAC Distributivity across Vector Addition, Column Vectors: If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- DSAC Distributivity across Scalar Addition, Column Vectors: If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^m$, then $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.
- OC One, Column Vectors: If $\mathbf{u} \in \mathbb{C}^m$, then $1\mathbf{u} = \mathbf{u}$.

 Definition LCCV
 Linear Combination of Column Vectors
 45

 Given n vectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , ..., \mathbf{u}_n from \mathbb{C}^m and n scalars α_1 , α_2 , α_3 , ..., α_n , their linear combination is the vector

 $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n$

©2004—2014 Robert A. Beezer, GFDL License

Theorem SLSLC Solutions to Linear Systems are Linear Combinations 46 Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$. Then $\mathbf{x} \in \mathbb{C}^n$ is a solution to the linear system of equations $\mathcal{LS}(A, \mathbf{b})$ if and only if \mathbf{b} equals the linear combination of the columns of A formed with the entries of \mathbf{x} ,

 $[\mathbf{x}]_1 \mathbf{A}_1 + [\mathbf{x}]_2 \mathbf{A}_2 + [\mathbf{x}]_3 \mathbf{A}_3 + \dots + [\mathbf{x}]_n \mathbf{A}_n = \mathbf{b}$

Theorem VFSLS Vector Form of Solutions to Linear Systems

Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{LS}(A, \mathbf{b})$ of m equations in n variables. Let B be a row-equivalent $m \times (n+1)$ matrix in reduced row-echelon form. Suppose that B has r pivot columns, with indices $D = \{d_1, d_2, d_3, \ldots, d_r\}$, while the n-r non-pivot columns have indices in $F = \{f_1, f_2, f_3, \ldots, f_{n-r}, n+1\}$. Define vectors $\mathbf{c}, \mathbf{u}_j, 1 \leq j \leq n-r$ of size n by

$$\begin{split} \left[\mathbf{c}\right]_i &= \begin{cases} 0 & \text{if } i \in F \\ \left[B\right]_{k,n+1} & \text{if } i \in D, \, i = d_k \end{cases} \\ \left[\mathbf{u}_j\right]_i &= \begin{cases} 1 & \text{if } i \in F, \, i = f_j \\ 0 & \text{if } i \in F, \, i \neq f_j \\ -\left[B\right]_{k,f_i} & \text{if } i \in D, \, i = d_k \end{cases} \end{split}$$

Then the set of solutions to the system of equations $\mathcal{LS}(A, \mathbf{b})$ is

$$S = \{ \mathbf{c} + \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_{n-r} \mathbf{u}_{n-r} | \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{n-r} \in \mathbb{C} \}$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem PSPHS Particular Solution Plus Homogeneous Solutions 48 Suppose that **w** is one solution to the linear system of equations $\mathcal{LS}(A, \mathbf{b})$. Then **y** is a solution to $\mathcal{LS}(A, \mathbf{b})$ if and only if $\mathbf{y} = \mathbf{w} + \mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{47}$

49

Definition SSCV Span of a Set of Column Vectors

Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p}$, their span, $\langle S \rangle$, is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p$. Symbolically,

$$\langle S \rangle = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_p \mathbf{u}_p \middle| \alpha_i \in \mathbb{C}, \ 1 \le i \le p \right\}$$
$$= \left\{ \sum_{i=1}^p \alpha_i \mathbf{u}_i \middle| \alpha_i \in \mathbb{C}, \ 1 \le i \le p \right\}$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem SSNS Spanning Sets for Null Spaces 50 Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form. Suppose that B has r pivot columns, with indices given by $D = \{d_1, d_2, d_3, \ldots, d_r\}$, while the n-r non-pivot columns have indices $F = \{f_1, f_2, f_3, \ldots, f_{n-r}, n+1\}$. Construct the n-rvectors $\mathbf{z}_j, 1 \le j \le n-r$ of size n,

$$\left[\mathbf{z}_j \right]_i = \begin{cases} 1 & \text{if } i \in F, \ i = f_j \\ 0 & \text{if } i \in F, \ i \neq f_j \\ -\left[B\right]_{k,f_j} & \text{if } i \in D, \ i = d_k \end{cases}$$

Then the null space of A is given by

$$\mathcal{N}(A) = \langle \{\mathbf{z}_1, \, \mathbf{z}_2, \, \mathbf{z}_3, \, \dots, \, \mathbf{z}_{n-r} \} \rangle$$

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Definition RLDCV Relation of Linear Dependence for Column Vectors Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$, a true statement of the form

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n = \mathbf{0}$$

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e. $\alpha_i = 0$, $1 \le i \le n$, then we say it is the trivial relation of linear dependence on S.

©2004—2014 Robert A. Beezer, GFDL License

Definition LICV Linear Independence of Column Vectors

The set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors.

51

 $\mathbf{52}$

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem LIVHS Linearly Independent Vectors and Homogeneous Systems

Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n} \subseteq \mathbb{C}^m$ is a set of vectors and A is the $m \times n$ matrix whose columns are the vectors in S. Then S is a linearly independent set if and only if the homogeneous system $\mathcal{LS}(A, \mathbf{0})$ has a unique solution.

©2004—2014 Robert A. Beezer, GFDL License

53

 $\mathbf{54}$

Theorem LIVRN Linearly Independent Vectors, r and n

Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n} \subseteq \mathbb{C}^m$ is a set of vectors and A is the $m \times n$ matrix whose columns are the vectors in S. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of pivot columns in B. Then S is linearly independent if and only if n = r.

Theorem MVSLD More Vectors than Size implies Linear Dependence 55 Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n} \subseteq \mathbb{C}^m$ and n > m. Then S is a linearly dependent set.

 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem NMLIC Nonsingular Matrices have Linearly Independent Columns 56 Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

- 1. A is nonsingular.
- 2. ${\cal A}$ row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A form a linearly independent set.

©2004—2014 Robert A. Beezer, GFDL License

57

 $\mathbf{58}$

Theorem BNS Basis for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r pivot columns. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ and $F = \{f_1, f_2, f_3, \ldots, f_{n-r}\}$ be the sets of column indices where B does and does not (respectively) have pivot columns. Construct the n - r vectors \mathbf{z}_j , $1 \le j \le n - r$ of size n as

$$\left[\mathbf{z}_j \right]_i = \begin{cases} 1 & \text{if } i \in F, \, i = f_j \\ 0 & \text{if } i \in F, \, i \neq f_j \\ -\left[B\right]_{k,f_i} & \text{if } i \in D, \, i = d_k \end{cases}$$

Define the set $S = \{\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3, \dots, \mathbf{z}_{n-r}\}$. Then

- 1. $\mathcal{N}(A) = \langle S \rangle$.
- 2. S is a linearly independent set.

Theorem DLDS Dependency in Linearly Dependent Sets

Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \le t \le n$ such that \mathbf{u}_t is a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \dots, \mathbf{u}_n$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem BS Basis of a Span

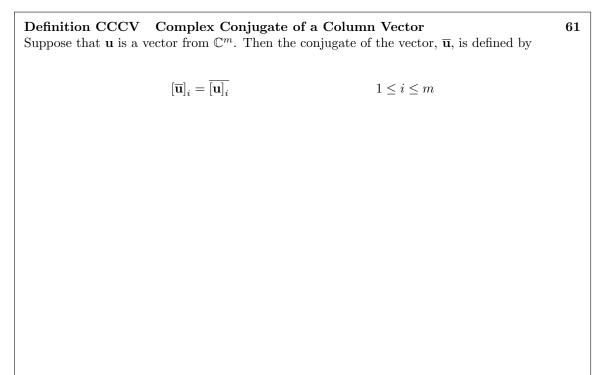
Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$ is a set of column vectors. Define $W = \langle S \rangle$ and let A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A, with $D = {d_1, d_2, d_3, \dots, d_r}$ the set of indices for the pivot columns of B. Then

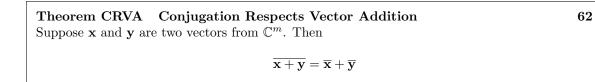
1. $T = {\mathbf{v}_{d_1}, \mathbf{v}_{d_2}, \mathbf{v}_{d_3}, \dots, \mathbf{v}_{d_r}}$ is a linearly independent set.

2. $W = \langle T \rangle$.

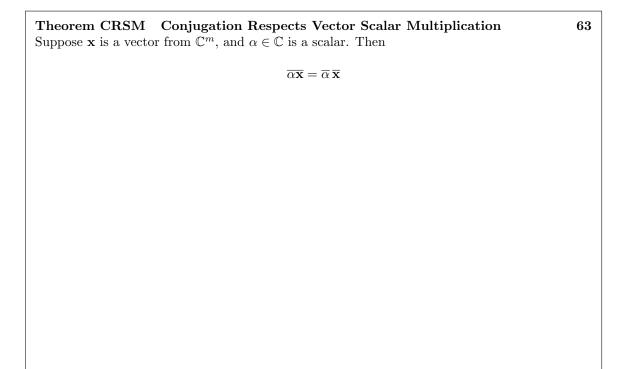
 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

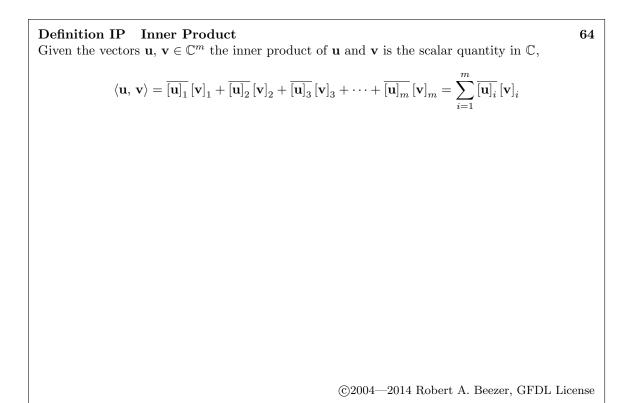
 $\mathbf{59}$





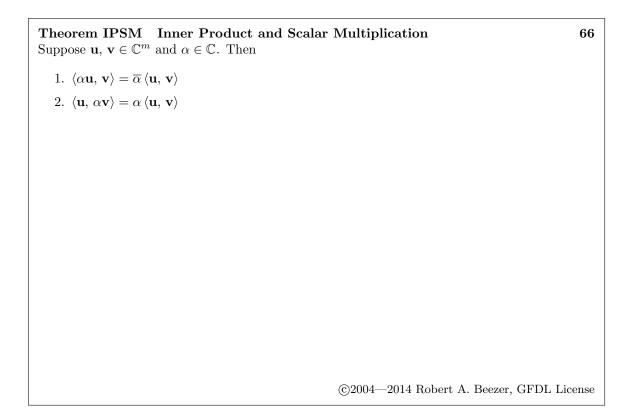
©2004—2014 Robert A. Beezer, GFDL License





Theorem IPVA Inner Product and Vector Addition Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^m$. Then 1. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ 2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$

©2004—2014 Robert A. Beezer, GFDL License



Theorem IPAC Inner Product is Anti-Commutative Suppose that **u** and **v** are vectors in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.

©2004—2014 Robert A. Beezer, GFDL License

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{Definition NV} \quad \textbf{Norm of a Vector} \\ \textbf{The norm of the vector \mathbf{u} is the scalar quantity in \mathbb{C}} \end{array} \end{array} \end{array} \\ & \|\|\mathbf{u}\| = \sqrt{|[\mathbf{u}]_1|^2 + |[\mathbf{u}]_2|^2 + |[\mathbf{u}]_3|^2 + \dots + |[\mathbf{u}]_m|^2} = \sqrt{\sum_{i=1}^m |[\mathbf{u}]_i|^2} \end{array} \end{array}$$

Theorem IPN Inner Products and Norms

Suppose that \mathbf{u} is a vector in \mathbb{C}^m . Then $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem PIPPositive Inner ProductsSuppose that \mathbf{u} is a vector in \mathbb{C}^m . Then $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ with equality if and only if $\mathbf{u} = 0$.	70
©2004—2014 Robert A. Beezer, GFDL Lic	ense

D	efini	tio	n OV	Or	thog	gon	al Ve	ector	s									71
А	pair	of	vectors,	\mathbf{u}	and	$\mathbf{v},$	from	\mathbb{C}^m	are	orthogonal	if	their	inner	product	is	zero,	that	is,
$\langle u$	$\mathbf{i}, \mathbf{v} \rangle$	= 0).															

Definition OSV Orthogonal Set of Vectors	72
Suppose that $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is a set of vectors from \mathbb{C}^m . Then S is an or	thogonal set
if every pair of different vectors from S is orthogonal, that is $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ whenever	$i \neq j.$

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Definition SUV Standard Unit Vectors Let $\mathbf{e}_j \in \mathbb{C}^m$, $1 \leq j \leq m$ denote the column vectors defined by

$$\left[\mathbf{e}_{j}\right]_{i} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Then the set

$$\{\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3, \, \dots, \, \mathbf{e}_m\} = \{\, \mathbf{e}_j | \, 1 \le j \le m\}$$

is the set of standard unit vectors in \mathbb{C}^m .

©2004—2014 Robert A. Beezer, GFDL License

Theorem OSLI Orthogonal Sets are Linearly Independent

Suppose that S is an orthogonal set of nonzero vectors. Then S is linearly independent.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{73}$

 $\mathbf{74}$

Theorem GSP Gram-Schmidt Procedure

Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p}$ is a linearly independent set of vectors in \mathbb{C}^m . Define the vectors $\mathbf{u}_i, 1 \leq i \leq p$ by

$$\mathbf{u}_i = \mathbf{v}_i - \frac{\langle \mathbf{u}_1, \, \mathbf{v}_i \rangle}{\langle \mathbf{u}_1, \, \mathbf{u}_1
angle} \mathbf{u}_1 - \frac{\langle \mathbf{u}_2, \, \mathbf{v}_i \rangle}{\langle \mathbf{u}_2, \, \mathbf{u}_2
angle} \mathbf{u}_2 - \frac{\langle \mathbf{u}_3, \, \mathbf{v}_i
angle}{\langle \mathbf{u}_3, \, \mathbf{u}_3
angle} \mathbf{u}_3 - \dots - \frac{\langle \mathbf{u}_{i-1}, \, \mathbf{v}_i
angle}{\langle \mathbf{u}_{i-1}, \, \mathbf{u}_{i-1}
angle} \mathbf{u}_{i-1}$$

Let $T = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_p}$. Then T is an orthogonal set of nonzero vectors, and $\langle T \rangle = \langle S \rangle$.

©2004—2014 Robert A. Beezer, GFDL License

Definition ONS OrthoNormal Set 76 Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ is an orthogonal set of vectors such that $||\mathbf{u}_i|| = 1$ for all $1 \le i \le n$. Then S is an orthonormal set of vectors.

©2004—2014 Robert A. Beezer, GFDL License

Definition VSM Vector Space of $m \times n$ Matrices 77 The vector space M_{mn} is the set of all $m \times n$ matrices with entries from the set of complex numbers.

 $\textcircled{C}2004{---}2014$ Robert A. Beezer, GFDL License

Definition ME Matrix Equality 78 The $m \times n$ matrices A and B are equal, written A = B provided $[A]_{ij} = [B]_{ij}$ for all $1 \le i \le m$, $1 \le j \le n$.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Definition MA Matrix Addition 79 Given the $m \times n$ matrices A and B, define the sum of A and B as an $m \times n$ matrix, written A + B, according to

$$[A+B]_{ij}=[A]_{ij}+[B]_{ij} \qquad \qquad 1\leq i\leq m,\, 1\leq j\leq n$$

©2004—2014 Robert A. Beezer, GFDL License

 Definition MSM
 Matrix Scalar Multiplication
 80

 Given the $m \times n$ matrix A and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of A is an $m \times n$ matrix, written αA and defined according to
 $[\alpha A]_{ij} = \alpha [A]_{ij}$ $1 \le i \le m, 1 \le j \le n$

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem VSPM Vector Space Properties of Matrices

Suppose that M_{mn} is the set of all $m \times n$ matrices (Definition VSM) with addition and scalar multiplication as defined in Definition MA and Definition MSM. Then

- ACM Additive Closure, Matrices: If $A, B \in M_{mn}$, then $A + B \in M_{mn}$.
- SCM Scalar Closure, Matrices: If $\alpha \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha A \in M_{mn}$.
- CM Commutativity, Matrices: If $A, B \in M_{mn}$, then A + B = B + A.
- AAM Additive Associativity, Matrices: If A, B, $C \in M_{mn}$, then A + (B + C) = (A + B) + C.
- ZM Zero Matrix, Matrices: There is a matrix, \mathcal{O} , called the zero matrix, such that $A + \mathcal{O} = A$ for all $A \in M_{mn}$.
- AIM Additive Inverses, Matrices: If $A \in M_{mn}$, then there exists a matrix $-A \in M_{mn}$ so that $A + (-A) = \mathcal{O}$.
- SMAM Scalar Multiplication Associativity, Matrices: If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{mn}$, then $\alpha(\beta A) = (\alpha \beta)A$.
- DMAM Distributivity across Matrix Addition, Matrices: If $\alpha \in \mathbb{C}$ and $A, B \in M_{mn}$, then $\alpha(A+B) = \alpha A + \alpha B$.
- DSAM Distributivity across Scalar Addition, Matrices: If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{mn}$, then $(\alpha + \beta)A = \alpha A + \beta A$.
- OM One, Matrices: If $A \in M_{mn}$, then 1A = A.

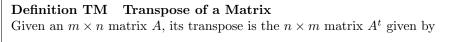
 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Definition ZM Zero Matrix

The $m \times n$ zero matrix is written as $\mathcal{O} = \mathcal{O}_{m \times n}$ and defined by $[\mathcal{O}]_{ij} = 0$, for all $1 \leq i \leq m$, $1 \leq j \leq n$.

©2004—2014 Robert A. Beezer, GFDL License

81



$$[A^t]_{ij} = [A]_{ji}, \quad 1 \le i \le n, \ 1 \le j \le m.$$

Definition	\mathbf{SYM}	Symmetric Matrix
The matrix	A is syn	nmetric if $A = A^t$.

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

83

Theorem SMS Symmetric Matrices are Square Suppose that *A* is a symmetric matrix. Then *A* is square.

©2004—2014 Robert A. Beezer, GFDL License

Theorem TMA	Transpose and Matrix Addition
Suppose that A and	d B are $m \times n$ matrices. Then $(A + B)^t = A^t + B^t$.

 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

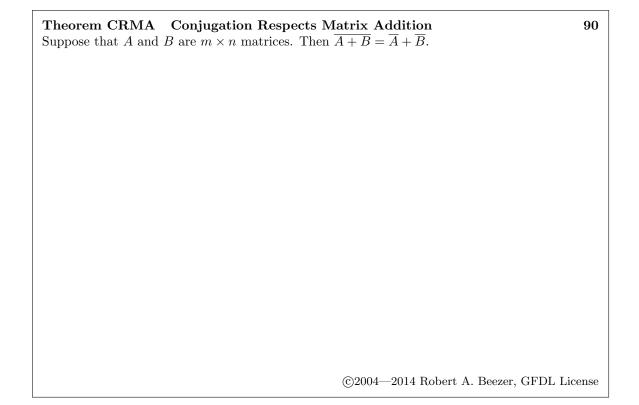
85

Theorem TMSM	Transpose and Matrix	Scalar Multiplication
Suppose that $\alpha \in \mathbb{C}$ a	and A is an $m \times n$ matrix.	Then $(\alpha A)^t = \alpha A^t$.

Theorem TT Transpose of a Transpose	88
Suppose that A is an $m \times n$ matrix. Then $(A^t)^t = A$.	

©2004—2014 Robert A. Beezer, GFDL License

$$\left[\overline{A}\right]_{ij} = \overline{\left[A\right]_{ij}}$$



Theorem CRMSM	Conjugation Respe	ects Matrix Scalar Multiplication	L
Suppose that $\alpha \in \mathbb{C}$ and	d A is an $m \times n$ matrix	ix. Then $\overline{\alpha A} = \overline{\alpha} \overline{A}$.	

Theorem CCM Conjugate of the Conjugate of a Matrix	
Suppose that A is an $m \times n$ matrix. Then $\overline{(A)} = A$.	

©2004—2014 Robert A. Beezer, GFDL License

91

 $\mathbf{92}$

Theorem MCT	Matrix Conjugation and Transposes
Suppose that A is a	an $m \times n$ matrix. Then $\overline{(A^t)} = (\overline{A})^t$.

Definition A Adjoint If A is a matrix, then its adjoint is $A^* = (\overline{A})^t$.

©2004—2014 Robert A. Beezer, GFDL License

93

Theorem AMA Adjoint and Matrix Addition Suppose A and B are matrices of the same size. Then $(A + B)^* = A^* + B^*$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem AMSM	Adjoint and Matri	x Scalar Multiplication
Suppose $\alpha \in \mathbb{C}$ is a set	calar and A is a matrix	x. Then $(\alpha A)^* = \overline{\alpha} A^*$.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{95}$

Theorem AA Adjoint of an Adjoint Suppose that A is a matrix. Then $(A^*)^* = A$.

©2004—2014 Robert A. Beezer, GFDL License

Definition MVP Matrix-Vector Product

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$ and \mathbf{u} is a vector of size n. Then the matrix-vector product of A with \mathbf{u} is the linear combination

$$A\mathbf{u} = [\mathbf{u}]_1 \mathbf{A}_1 + [\mathbf{u}]_2 \mathbf{A}_2 + [\mathbf{u}]_3 \mathbf{A}_3 + \dots + [\mathbf{u}]_n \mathbf{A}_n$$

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{97}$

Theorem SLEMM Systems of Linear Equations as Matrix Multiplication 99 The set of solutions to the linear system $\mathcal{LS}(A, \mathbf{b})$ equals the set of solutions for \mathbf{x} in the vector equation $A\mathbf{x} = \mathbf{b}$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem EMMVP Equal Matrices and Matri	ix-Vector Products 100
Suppose that A and B are $m \times n$ matrices such that A	$A\mathbf{x} = B\mathbf{x}$ for every $\mathbf{x} \in \mathbb{C}^n$. Then $A = B$.
	v
C2	2004—2014 Robert A. Beezer, GFDL License

Γ

Definition MM Matrix Multiplication

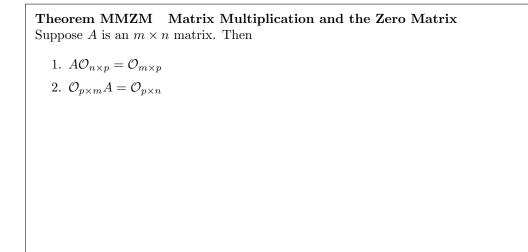
101

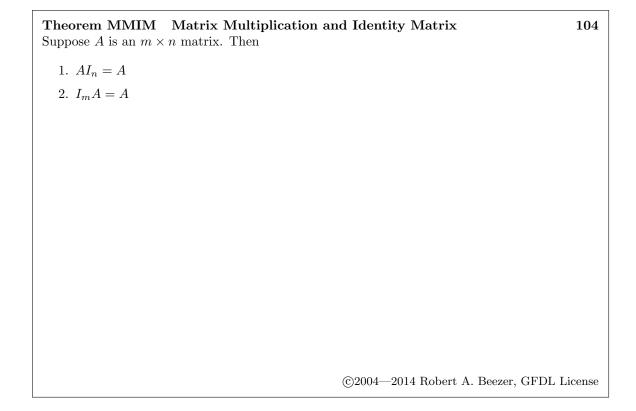
Suppose A is an $m \times n$ matrix and $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \ldots, \mathbf{B}_p$ are the columns of an $n \times p$ matrix B. Then the matrix product of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A\mathbf{B}_i$. Symbolically,

$$AB = A \left[\mathbf{B}_1 | \mathbf{B}_2 | \mathbf{B}_3 | \dots | \mathbf{B}_p \right] = \left[A \mathbf{B}_1 | A \mathbf{B}_2 | A \mathbf{B}_3 | \dots | A \mathbf{B}_p \right].$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem EMP Entries of Matrix Products 102 Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then for $1 \le i \le m, 1 \le j \le p$, the individual entries of AB are given by $[AB]_{ij} = [A]_{i1} [B]_{1j} + [A]_{i2} [B]_{2j} + [A]_{i3} [B]_{3j} + \dots + [A]_{in} [B]_{nj}$ $= \sum_{k=1}^{n} [A]_{ik} [B]_{kj}$ (c)204-2014 Robert A. Beezer, GFDL License





Theorem MMDAAMatrix Multiplication Distributes Across Addition105Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then

1. A(B+C) = AB + AC

2. (B+C)D = BD + CD

©2004—2014 Robert A. Beezer, GFDL License

Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 106 Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

Theorem MMA Matrix Multiplication is Associative 107 Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then A(BD) = (AB)D.

©2004—2014 Robert A. Beezer, GFDL License

108

Theorem MMIP Matrix Multiplication and Inner Products If we consider the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ as $m \times 1$ matrices then

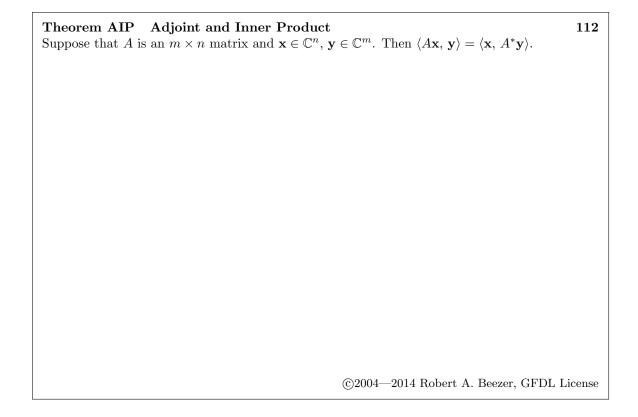
 $\langle \mathbf{u},\,\mathbf{v}
angle = \overline{\mathbf{u}}^t\mathbf{v} = \mathbf{u}^*\mathbf{v}$

Theorem MMCC	Matrix Multiplication and Complex Conjugation	
Suppose A is an $m \times$	<i>n</i> matrix and <i>B</i> is an $n \times p$ matrix. Then $\overline{AB} = \overline{A}\overline{B}$.	

Theorem MMT Matrix Multiplication and Transposes	110
Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(AB)^{\circ} = B^{\circ}A^{\circ}$.	
©2004—2014 Robert A. Beezer, GFDL I	license
	Theorem MMT Matrix Multiplication and Transposes Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(AB)^t = B^t A^t$. (©2004—2014 Robert A. Beezer, GFDL L

Γ

Theorem MMAD Matrix Multiplication and Adjoints				
Suppose A is an $m \times $	<i>n</i> matrix and <i>B</i> is an $n \times p$ matrix. Then $(AB)^* = B^*A^*$.			



Definition HM Hermitian Matrix The square matrix A is Hermitian (or self-adjoint) if $A = A^*$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem HMIP Hermitian Matrices and Inner Products 114 Suppose that A is a square matrix of size n. Then A is Hermitian if and only if $\langle A\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

©2004—2014 Robert A. Beezer, GFDL License

Definition MI Matrix Inverse Suppose A and B are square matrices of size n such that $AB = I_n$ and $BA = I_n$. Then A is invertible and B is the inverse of A. In this situation, we write $B = A^{-1}$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem TTMI Two-by-Two Matrix Inverse Suppose

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then A is invertible if and only if $ad - bc \neq 0$. When A is invertible, then

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

©2004—2014 Robert A. Beezer, GFDL License

$$A^{-1} = \frac{1}{ad-ba} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

115

 $\mathbf{116}$

Theorem CINM Computing the Inverse of a Nonsingular Matrix

Suppose A is a nonsingular square matrix of size n. Create the $n \times 2n$ matrix M by placing the $n \times n$ identity matrix I_n to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns of N. Then $AJ = I_n$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem MIU Matrix Inverse is Unique	118
Suppose the square matrix A has an inverse. Then A^{-1} is unique.	

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem SS Socks and Shoes

Suppose A and B are invertible matrices of size n. Then AB is an invertible matrix and $(AB)^{-1} = B^{-1}A^{-1}$.

©2004—2014 Robert A. Beezer, GFDL License

119

20

Suppose A is an invertible matrix. Then A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem MISM Matrix Inverse of a Scalar Multiple	122
Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1} = \frac{1}{\alpha}A$ invertible.	a^{-1} and αA is

121

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

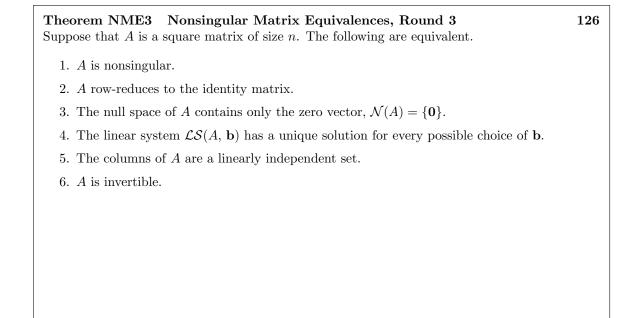
Theorem NPNT	Nonsingular Product has Nonsingular Terms	123
Suppose that A and A	B are square matrices of size n . The product AB is nonsingular if	and only
if A and B are both	nonsingular.	

Theorem OSIS One-Sided Inverse is Sufficient	124
Suppose A and B are square matrices of size n such that $AB = I_n$. Then B	$BA = I_n.$
©2004—2014 Robert A. I	Beezer, GFDL License

Theorem NI Nonsingularity is Invertibility

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.

©2004—2014 Robert A. Beezer, GFDL License



 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem SNCM	Solution wit	h Nonsingular	• Coefficient I	Matrix
Suppose that A is no	nsingular. The	n the unique sol	ution to $\mathcal{LS}(A)$, b) is A^{-1} b .

127

 Definition UM Unitary Matrices
 128

 Suppose that U is a square matrix of size n such that $U^*U = I_n$. Then we say U is unitary.
 128

 (©2004—2014 Robert A. Beezer, GFDL License)
 128

Theorem UMI Unitary Matrices are Invertible	129
Suppose that U is a unitary matrix of size n. Then U is nonsingular, and $U^{-1} = U^*$.	

Theorem CUMOS Columns of Unitary Matrices are Orthonormal Sets 130 Suppose that $S = \{A_1, A_2, A_3, \dots, A_n\}$ is the set of columns of a square matrix A of size n. Then A is a unitary matrix if and only if S is an orthonormal set.

Theorem UMPIP Unitary Matrices Preserve Inner Products
 131

 Suppose that U is a unitary matrix of size n and u and v are two vectors from \mathbb{C}^n . Then

 $\langle U\mathbf{u}, U\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ and
 $||U\mathbf{v}|| = ||\mathbf{v}||$

©2004—2014 Robert A. Beezer, GFDL License

Definition CSM Column Space of a Matrix 132 Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$. Then the column space of A, written $\mathcal{C}(A)$, is the subset of \mathbb{C}^m containing all linear combinations of the columns of A,

 $\mathcal{C}(A) = \langle \{\mathbf{A}_1, \, \mathbf{A}_2, \, \mathbf{A}_3, \, \dots, \, \mathbf{A}_n \} \rangle$

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem CSCSColumn Spaces and Consistent Systems133Suppose A is an $m \times n$ matrix and **b** is a vector of size m. Then $\mathbf{b} \in \mathcal{C}(A)$ if and only if $\mathcal{LS}(A, \mathbf{b})$ is consistent.

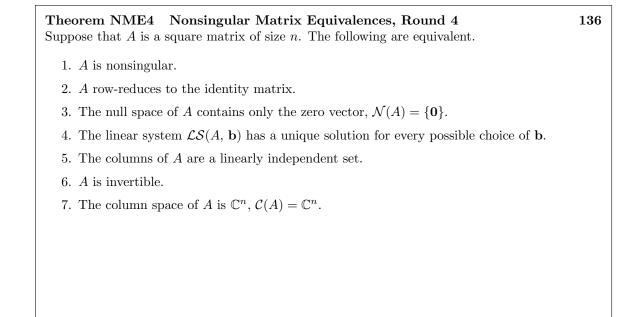
©2004—2014 Robert A. Beezer, GFDL License

Theorem BCSBasis of the Column Space134Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n$, and B is a row-equivalentmatrix in reduced row-echelon form with r nonzero rows. Let $D = \{d_1, d_2, d_3, \ldots, d_r\}$ be theset of indices for the pivot columns of B Let $T = \{\mathbf{A}_{d_1}, \mathbf{A}_{d_2}, \mathbf{A}_{d_3}, \ldots, \mathbf{A}_{d_r}\}$. Then1. T is a linearly independent set.2. $C(A) = \langle T \rangle$.

Theorem	CSNM	Column	Space	ofa	Nonsing	rular	Matrix
THEOLEIII	CONTRACT	Column	space	UI a	TAOHPHIE	zuiai	WIAUIIA

Suppose A is a square matrix of size n. Then A is nonsingular if and only if $\mathcal{C}(A) = \mathbb{C}^n$.

©2004—2014 Robert A. Beezer, GFDL License



©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{135}$

Definition RSM Row Space of a Matrix 137 Suppose A is an $m \times n$ matrix. Then the row space of A, $\mathcal{R}(A)$, is the column space of A^t , i.e. $\mathcal{R}(A) = \mathcal{C}(A^t)$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem REMRS	Row-Equivalent Matrices have equal Row Spaces	138	
Suppose A and B are row-equivalent matrices. Then $\mathcal{R}(A) = \mathcal{R}(B)$.			

Theorem BRS Basis for the Row Space 139
Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of B^t. Then
1. R(A) = ⟨S⟩.
2. S is a linearly independent set.

Theorem CSRST	Column Space, Row Space, Transpose	140	
Suppose A is a matrix. Then $\mathcal{C}(A) = \mathcal{R}(A^t)$.			
	©2004—2014 Robert A. Beezer, GFDL L	license	

Definition LNS Left Null Space 141 Suppose A is an $m \times n$ matrix. Then the left null space is defined as $\mathcal{L}(A) = \mathcal{N}(A^t) \subseteq \mathbb{C}^m$.

©2004—2014 Robert A. Beezer, GFDL License

Definition EEF Extended Echelon Form

142

Suppose A is an $m \times n$ matrix. Extend A on its right side with the addition of an $m \times m$ identity matrix to form an $m \times (n+m)$ matrix M. Use row operations to bring M to reduced row-echelon form and call the result N. N is the extended reduced row-echelon form of A, and we will standardize on names for five submatrices (B, C, J, K, L) of N.

Let B denote the $m \times n$ matrix formed from the first n columns of N and let J denote the $m \times m$ matrix formed from the last m columns of N. Suppose that B has r nonzero rows. Further partition N by letting C denote the $r \times n$ matrix formed from all of the nonzero rows of B. Let K be the $r \times m$ matrix formed from the first r rows of J, while L will be the $(m-r) \times m$ matrix formed from the bottom m - r rows of J. Pictorially,

$$M = [A|I_m] \xrightarrow{\text{RREF}} N = [B|J] = \begin{bmatrix} C & K \\ \hline 0 & L \end{bmatrix}$$

144

Theorem PEEF Properties of Extended Echelon Form Suppose that A is an $m \times n$ matrix and that N is its extended echelon form. Then

- 1. J is nonsingular.
- 2. B = JA.
- 3. If $\mathbf{x} \in \mathbb{C}^n$ and $\mathbf{y} \in \mathbb{C}^m$, then $A\mathbf{x} = \mathbf{y}$ if and only if $B\mathbf{x} = J\mathbf{y}$.
- 4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.
- 5. L is in reduced row-echelon form, has no zero rows and has m r pivot columns.

©2004—2014 Robert A. Beezer, GFDL License

Theorem FS Four Subsets

Suppose A is an $m \times n$ matrix with extended echelon form N. Suppose the reduced row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the first n columns and L is the submatrix of N formed from the last m columns and the last m - r rows. Then

- 1. The null space of A is the null space of C, $\mathcal{N}(A) = \mathcal{N}(C)$.
- 2. The row space of A is the row space of C, $\mathcal{R}(A) = \mathcal{R}(C)$.
- 3. The column space of A is the null space of L, $C(A) = \mathcal{N}(L)$.
- 4. The left null space of A is the row space of L, $\mathcal{L}(A) = \mathcal{R}(L)$.

Definition VS Vector Space

Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by "+", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space over \mathbb{C} if the following ten properties hold.

- AC Additive Closure: If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} \in V$.
- SC Scalar Closure: If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$.
- C Commutativity: If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- AA Additive Associativity: If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- Z Zero Vector: There is a vector, $\mathbf{0}$, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- AI Additive Inverses: If $\mathbf{u} \in V$, then there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- SMA Scalar Multiplication Associativity: If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u}) = (\alpha \beta)\mathbf{u}$.
- DVA Distributivity across Vector Addition: If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- DSA Distributivity across Scalar Addition: If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$.
- O One: If $\mathbf{u} \in V$, then $1\mathbf{u} = \mathbf{u}$.

The objects in V are called vectors, no matter what else they might really be, simply by virtue of being elements of a vector space.

 $\textcircled{O}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem ZVU Zero Vector is Unique Suppose that V is a vector space. The zero vector, $\mathbf{0}$, is unique.

145

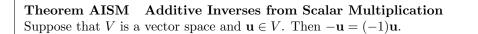
Theorem AIU	Additive Inverses are Unique	147
Suppose that V is	a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$, is unique.	

 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem ZSSM Zero Scalar in Scalar Multiplication Suppose that V is a vector space and $\mathbf{u} \in V$. Then $0\mathbf{u} = 0$.	148

Theorem ZVSM	Zero Vector in Scalar Multiplication
Suppose that V is a	vector space and $\alpha \in \mathbb{C}$. Then $\alpha 0 = 0$.

©2004—2014 Robert A. Beezer, GFDL License



150

 $\textcircled{O}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem SMEZV	Scalar Multiplication Equals the Zero Vector	151
Suppose that V is a v	ector space and $\alpha \in \mathbb{C}$. If $\alpha \mathbf{u} = 0$, then either $\alpha = 0$ or $\mathbf{u} = 0$.	

©2004—2014 Robert A. Beezer, GFDL License

Definition S Subspace

152

Suppose that V and W are two vector spaces that have identical definitions of vector addition and scalar multiplication, and that W is a subset of V, $W \subseteq V$. Then W is a subspace of V.

Theorem TSS Testing Subsets for Subspaces

Suppose that V is a vector space and W is a subset of V, $W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

- 1. W is nonempty, $W \neq \emptyset$.
- 2. If $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x} + \mathbf{y} \in W$.
- 3. If $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Definition TS Trivial Subspaces	154
Given the vector space V, the subspaces V and $\{0\}$ are each called a trivial subspace.	

©2004—2014 Robert A. Beezer, GFDL License

Theorem NSMS	Null Space of	a Matrix is a Subspace	155
Suppose that A is an	$m \times n$ matrix.	Then the null space of A , $\mathcal{N}(A)$, is a subspace of \mathbb{C}^n .	

 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

156

Definition LC Linear Combination

Suppose that V is a vector space. Given n vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ and n scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$, their linear combination is the vector

 $\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3 + \dots + \alpha_n\mathbf{u}_n.$

Definition SS Span of a Set

157

Suppose that V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t}$, their span, $\langle S \rangle$, is the set of all possible linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t$. Symbolically,

$$\langle S \rangle = \left\{ \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_t \mathbf{u}_t \middle| \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$
$$= \left\{ \sum_{i=1}^t \alpha_i \mathbf{u}_i \middle| \alpha_i \in \mathbb{C}, \ 1 \le i \le t \right\}$$

©2004—2014 Robert A. Beezer, GFDL License

 Theorem SSS
 Span of a Set is a Subspace
 158

 Suppose V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_t} \subseteq V$, their span, $\langle S \rangle$, is a subspace.
 $\langle S \rangle$, is a subspace.

 (S)
 $\langle S \rangle$ $\langle S \rangle$ $\langle S \rangle$

 (S)
 $\langle S \rangle$ $\langle S \rangle$

Theorem CSMS	Column Space	e of a Matrix i	is a Subspace
Suppose that A is an	$m \times n$ matrix.	Then $\mathcal{C}(A)$ is a	subspace of \mathbb{C}^m .

©2004—2014 Robert A. Beezer, GFDL License

Theorem RSMS	Row Space of a Matrix is a Subspace	
Suppose that A is a	n $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^n .	

©2004—2014 Robert A. Beezer, GFDL License

159

Theorem LNSMS Left Null Space of a Matrix is a Subspace Suppose that A is an $m \times n$ matrix. Then $\mathcal{L}(A)$ is a subspace of \mathbb{C}^m .

©2004—2014 Robert A. Beezer, GFDL License

Definition RLD Relation of Linear Dependence 162 Suppose that V is a vector space. Given a set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$, an equation of the form

 $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \dots + \alpha_n \mathbf{u}_n = \mathbf{0}$

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. $\alpha_i = 0$, $1 \le i \le n$, then we say it is a trivial relation of linear dependence on S.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Definition LI Linear Independence Suppose that V is a vector space. The set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n}$ from V is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors.

©2004—2014 Robert A. Beezer, GFDL License

Definition SSVS Spanning Set of a Vector Space 164 Suppose V is a vector space. A subset S of V is a spanning set of V if $\langle S \rangle = V$. In this case, we also frequently say S spans V.

 $\textcircled{O}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem VRRB Vector Representation Relative to a Basis

Suppose that V is a vector space and $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m}$ is a linearly independent set that spans V. Let **w** be any vector in V. Then there exist unique scalars $a_1, a_2, a_3, \dots, a_m$ such that

 $\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + \dots + a_m \mathbf{v}_m.$

©2004—2014 Robert A. Beezer, GFDL License

Definition B Basis 166 Suppose V is a vector space. Then a subset $S \subseteq V$ is a basis of V if it is linearly independent and spans V.

©2004—2014 Robert A. Beezer, GFDL License

Theorem SUVB Standard Unit Vectors are a Basis 167 The set of standard unit vectors for \mathbb{C}^m (Definition SUV), $B = \{\mathbf{e}_i | 1 \le i \le m\}$ is a basis for the vector space \mathbb{C}^m .

©2004—2014 Robert A. Beezer, GFDL License

Theorem CNMBColumns of Nonsingular Matrix are a Basis168Suppose that A is a square matrix of size m. Then the columns of A are a basis of \mathbb{C}^m if and
only if A is nonsingular.

Theorem NME5 Nonsingular Matrix Equivalences, Round 5
Suppose that A is a square matrix of size n. The following are equivalent.
1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, N(A) = {0}.
4. The linear system LS(A, b) has a unique solution for every possible choice of b.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is Cⁿ, C(A) = Cⁿ.
8. The columns of A are a basis for Cⁿ.

©2004—2014 Robert A. Beezer, GFDL License

Theorem COB Coordinates and Orthonormal Bases 170 Suppose that $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_p}$ is an orthonormal basis of the subspace W of \mathbb{C}^m . For any $\mathbf{w} \in W$,

 $\mathbf{w} = \langle \mathbf{v}_1, \, \mathbf{w} \rangle \, \mathbf{v}_1 + \langle \mathbf{v}_2, \, \mathbf{w} \rangle \, \mathbf{v}_2 + \langle \mathbf{v}_3, \, \mathbf{w} \rangle \, \mathbf{v}_3 + \dots + \langle \mathbf{v}_p, \, \mathbf{w} \rangle \, \mathbf{v}_p$

Theorem UMCOB Unitary Matrices Convert Orthonormal Bases 171 Let A be an $n \times n$ matrix and $B = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_n}$ be an orthonormal basis of \mathbb{C}^n . Define

$$C = \{A\mathbf{x}_1, A\mathbf{x}_2, A\mathbf{x}_3, \dots, A\mathbf{x}_n\}$$

Then A is a unitary matrix if and only if C is an orthonormal basis of \mathbb{C}^n .

©2004—2014 Robert A. Beezer, GFDL License

Definition D Dimension

172

Suppose that V is a vector space and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t\}$ is a basis of V. Then the dimension of V is defined by dim (V) = t. If V has no finite bases, we say V has infinite dimension.

Theorem SSLD	Spanning Sets and Linear Dependence	173
Suppose that $S = \{$	$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots, \mathbf{v}_t\}$ is a finite set of vectors which spans the vector	space V .
Then any set of $t +$	1 or more vectors from V is linearly dependent.	

©2004—2014 Robert A. Beezer, GFDL License

Theorem BISBases have Identical Sizes174Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have
the same size.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem DCM Dimension of \mathbb{C}^m The dimension of \mathbb{C}^m (Example VSCV) is m.

©2004—2014 Robert A. Beezer, GFDL License

Theorem DP Dimension of P_n The dimension of P_n (Example VSP) is n + 1.

176

©2004—2014 Robert A. Beezer, GFDL License

Theorem DM Dimension of M_{mn} The dimension of M_{mn} (Example VSM) is mn.

©2004—2014 Robert A. Beezer, GFDL License

Definition NOM Nullity Of a Matrix

Suppose that A is an $m \times n$ matrix. Then the nullity of A is the dimension of the null space of $A, n(A) = \dim(\mathcal{N}(A)).$

177

178

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Definition ROM Rank Of a Matrix 179 Suppose that *A* is an $m \times n$ matrix. Then the rank of *A* is the dimension of the column space of *A*, $r(A) = \dim (\mathcal{C}(A))$.

©2004—2014 Robert A. Beezer, GFDL License

180

Theorem CRN Computing Rank and Nullity

Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form. Let r denote the number of pivot columns (or the number of nonzero rows). Then r(A) = r and n(A) = n - r.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem RPNC Rank Plus Nullity is Columns Suppose that A is an $m \times n$ matrix. Then r(A) + n(A) = n.

©2004—2014 Robert A. Beezer, GFDL License

Theorem RNNM Rank and Nullity of a Nonsingular Matrix

Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. The rank of A is n, r(A) = n.
- 3. The nullity of A is zero, n(A) = 0.

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem NME6 Nonsingular Matrix Equivalences, Round 6
Suppose that A is a square matrix of size n. The following are equivalent.
1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, N(A) = {0}.
4. The linear system LS(A, b) has a unique solution for every possible choice of b.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is Cⁿ, C(A) = Cⁿ.
8. The columns of A are a basis for Cⁿ.
9. The rank of A is n, r (A) = n.
10. The nullity of A is zero, n (A) = 0.

©2004—2014 Robert A. Beezer, GFDL License

184

Theorem ELIS Extending Linearly Independent Sets

Suppose V is a vector space and S is a linearly independent set of vectors from V. Suppose **w** is a vector such that $\mathbf{w} \notin \langle S \rangle$. Then the set $S' = S \cup \{\mathbf{w}\}$ is linearly independent.

Theorem G Goldilocks

Suppose that V is a vector space of dimension t. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_m}$ be a set of vectors from V. Then

- 1. If m > t, then S is linearly dependent.
- 2. If m < t, then S does not span V.
- 3. If m = t and S is linearly independent, then S spans V.
- 4. If m = t and S spans V, then S is linearly independent.

©2004—2014 Robert A. Beezer, GFDL License

185

 $\mathbf{186}$

Inforem PSSD Proper Subspaces have Smaller Dimension	Theorem PSSD	Proper Subspaces have Smaller Dimension
--	--------------	---

Suppose that U and V are subspaces of the vector space W, such that $U \subsetneq V$. Then dim $(U) < \dim(V)$.

Theorem EDYES Equal Dimensions Yields Equal Subspaces 187 Suppose that U and V are subspaces of the vector space W, such that $U \subseteq V$ and $\dim(U) = \dim(V)$. Then U = V.

©2004—2014 Robert A. Beezer, GFDL License

Theorem RMRT Rank of a Matrix is the Rank of the Transpose Suppose A is an $m \times n$ matrix. Then $r(A) = r(A^t)$. 188

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem DFS Dimensions of Four Subspaces Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then

- 1. dim $(\mathcal{N}(A)) = n r$
- 2. dim $(\mathcal{C}(A)) = r$
- 3. dim $(\mathcal{R}(A)) = r$
- 4. dim $(\mathcal{L}(A)) = m r$

©2004—2014 Robert A. Beezer, GFDL License

Definition ELEM Elementary Matrices

1. For $i \neq j$, $E_{i,j}$ is the square matrix of size n with

$$[E_{i,j}]_{k\ell} = \begin{cases} 0 & k \neq i, k \neq j, \ell \neq k \\ 1 & k \neq i, k \neq j, \ell = k \\ 0 & k = i, \ell \neq j \\ 1 & k = i, \ell = j \\ 0 & k = j, \ell \neq i \\ 1 & k = j, \ell = i \end{cases}$$

2. For $\alpha \neq 0$, $E_i(\alpha)$ is the square matrix of size n with

$$\left[E_{i}\left(\alpha\right)\right]_{k\ell} = \begin{cases} 0 & k \neq i, \ell \neq k \\ 1 & k \neq i, \ell = k \\ \alpha & k = i, \ell = i \end{cases}$$

3. For $i \neq j$, $E_{i,j}(\alpha)$ is the square matrix of size n with

$$\underline{[E_{i,j}(\alpha)]}_{k\ell} = \begin{cases} 0 & k \neq j, \ell \neq k \\ 1 & k \neq j, \ell = k \\ 0 & k = j, \ell \neq i, \ell \neq j \\ 1 & k = j, \ell = j \\ \alpha & k = j, \ell = i \end{cases}$$

©2004—2014 Robert A. Beezer, GFDL License

190

Theorem EMDRO Elementary Matrices Do Row Operations

Suppose that A is an $m \times n$ matrix, and B is a matrix of the same size that is obtained from A by a single row operation (Definition RO). Then there is an elementary matrix of size m that will convert A to B via matrix multiplication on the left. More precisely,

- 1. If the row operation swaps rows i and j, then $B = E_{i,j}A$.
- 2. If the row operation multiplies row *i* by α , then $B = E_i(\alpha) A$.
- 3. If the row operation multiplies row i by α and adds the result to row j, then $B = E_{i,j}(\alpha) A$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem EMN Elementary Matrices are Nonsingular
If E is an elementary matrix, then E is nonsingular.

191

Theorem NMPEM Nonsingular Matrices are Products of Elementary Matrices193 Suppose that A is a nonsingular matrix. Then there exists elementary matrices $E_1, E_2, E_3, \ldots, E_t$ so that $A = E_1 E_2 E_3 \ldots E_t$.

©2004—2014 Robert A. Beezer, GFDL License

194

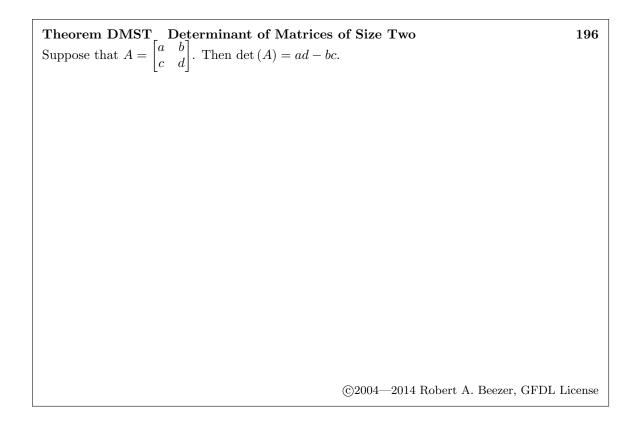
Definition SM SubMatrix

Suppose that A is an $m \times n$ matrix. Then the submatrix A(i|j) is the $(m-1) \times (n-1)$ matrix obtained from A by removing row i and column j.

Definition DM Determinant of a Matrix 195 Suppose A is a square matrix. Then its determinant, det(A) = |A|, is an element of \mathbb{C} defined recursively by:

- 1. If A is a 1×1 matrix, then det $(A) = [A]_{11}$.
- 2. If A is a matrix of size n with $n \ge 2$, then

$$det (A) = [A]_{11} det (A (1|1)) - [A]_{12} det (A (1|2)) + [A]_{13} det (A (1|3)) - [A]_{14} det (A (1|4)) + \dots + (-1)^{n+1} [A]_{1n} det (A (1|n))$$



Theorem DERDeterminant Expansion about Rows197Suppose that A is a square matrix of size n. Then for $1 \le i \le n$ $det(A) = (-1)^{i+1} [A]_{i1} det(A(i|1)) + (-1)^{i+2} [A]_{i2} det(A(i|2)) + (-1)^{i+3} [A]_{i3} det(A(i|3)) + \dots + (-1)^{i+n} [A]_{in} det(A(i|n))$ u(A(i|n))which is known as expansion about row i. $u(A(i|3)) + \dots + (-1)^{i+n} [A]_{in} det(A(i|n))$

©2004—2014 Robert A. Beezer, GFDL License

Theorem DT Determinant of the Transpose Suppose that A is a square matrix. Then $det(A^t) = det(A)$.	198

Theorem DEC Determinant Expansion about Columns199Suppose that A is a square matrix of size n. Then for $1 \le j \le n$ $det(A) = (-1)^{1+j} [A]_{1j} det(A(1|j)) + (-1)^{2+j} [A]_{2j} det(A(2|j)) + (-1)^{3+j} [A]_{3j} det(A(3|j)) + \dots + (-1)^{n+j} [A]_{nj} det(A(n|j))$ which is known as expansion about column j.

©2004—2014 Robert A. Beezer, GFDL License

Theorem DZRCDeterminant with Zero Row or Column200Suppose that A is a square matrix with a row where every entry is zero, or a column where every
entry is zero. Then det
$$(A) = 0$$
.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem DRCSDeterminant for Row or Column Swap201Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging
the location of two rows, or interchanging the location of two columns. Then det $(B) = -\det(A)$.

©2004—2014 Robert A. Beezer, GFDL License

202

Theorem DRCM Determinant for Row or Column Multiples

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a single row by the scalar α , or by multiplying a single column by the scalar α . Then det $(B) = \alpha \det(A)$.

Theorem DERC	Determinant with Equal Rows or Columns	203
Suppose that A is a s	square matrix with two equal rows, or two equal columns.	Then $\det(A) = 0$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem DRCMA Determinant for Row or Column Multiples and Addition 204 Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a row by the scalar α and then adding it to another row, or by multiplying a column by the scalar α and then adding it to another column. Then det $(B) = \det(A)$.

For every $n \ge 1$, det $(I_n) = 1$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem DEMDeterminants of Elementary Matrices206For the three possible versions of an elementary matrix (Definition ELEM) we have the determinants,

1. det
$$(E_{i,j}) = -1$$

2. det
$$(E_i(\alpha)) = \alpha$$

3. det $(E_{i,j}(\alpha)) = 1$

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

 $\mathbf{205}$

Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication207 Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

 $\det (EA) = \det (E) \det (A)$

©2004—2014 Robert A. Beezer, GFDL License

Theorem SMZD Singular Matrices have Zero Determinants	208
Let A be a square matrix. Then A is singular if and only if det $(A) = 0$.	

Theorem NME7 Nonsingular Matrix Equivalences, Round 7
209
Suppose that A is a square matrix of size n. The following are equivalent.
1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, N(A) = {0}.
4. The linear system LS(A, b) has a unique solution for every possible choice of b.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is Cⁿ, C(A) = Cⁿ.
8. The columns of A are a basis for Cⁿ.
9. The rank of A is n, r (A) = n.
10. The nullity of A is zero, n (A) = 0.
11. The determinant of A is nonzero, det (A) ≠ 0.

Theorem DRMMDeterminant Respects Matrix Multiplication210Suppose that A and B are square matrices of the same size. Then det(AB) = det(A) det(B).

Definition EEMEigenvalues and Eigenvectors of a Matrix211 Suppose that A is a square matrix of size $n, \mathbf{x} \neq 0$ is a vector in \mathbb{C}^n , and λ is a scalar in \mathbb{C} . Then we say \mathbf{x} is an eigenvector of A with eigenvalue λ if	
$A\mathbf{x} = \lambda \mathbf{x}$	

©2004—2014 Robert A. Beezer, GFDL License

Theorem EMHEEvery Matrix Has an Eigenvalue Suppose A is a square matrix. Then A has at least one eigenvalue.	212

Definition CPCharacteristic Polynomial213Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the
polynomial $p_A(x)$ defined by $p_A(x) = \det(A - xI_n)$

©2004—2014 Robert A. Beezer, GFDL License

 Theorem EMRCP
 Eigenvalues of a Matrix are Roots of Characteristic Polynomials

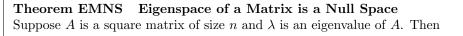
 214

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_A(\lambda) = 0$.

Definition EM	Eigenspace of a Matrix	215
Suppose that A is	a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for	or λ ,
$\mathcal{E}_A(\lambda)$, is the set o	f all the eigenvectors of A for λ , together with the inclusion of the zero vectors	ctor.

©2004—2014 Robert A. Beezer, GFDL License

Theorem EMS Eigenspace for a Matrix is a Subspace 216 Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace $\mathcal{E}_A(\lambda)$ is a subspace of the vector space \mathbb{C}^n .



 $\mathcal{E}_A(\lambda) = \mathcal{N}(A - \lambda I_n)$

©2004—2014 Robert A. Beezer, GFDL License

Definition AME Algebraic Multiplicity of an Eigenvalue

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity of λ , $\alpha_A(\lambda)$, is the highest power of $(x - \lambda)$ that divides the characteristic polynomial, $p_A(x)$.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{217}$

 $\mathbf{218}$

Definition GMEGeometric Multiplicity of an Eigenvalue219Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multiplicityof λ , $\gamma_A(\lambda)$, is the dimension of the eigenspace $\mathcal{E}_A(\lambda)$.

©2004—2014 Robert A. Beezer, GFDL License

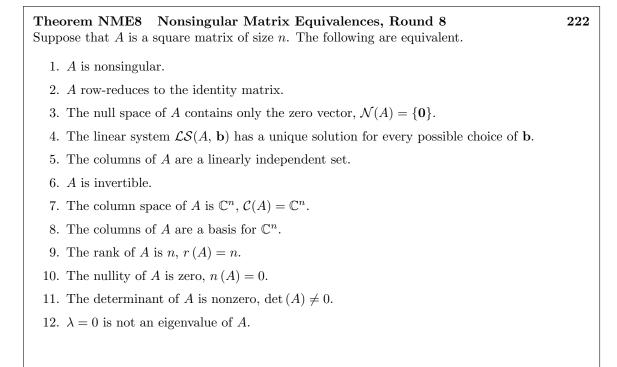
Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 220

Suppose that A is an $n \times n$ square matrix and $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots, \mathbf{x}_p\}$ is a set of eigenvectors with eigenvalues $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_p$ such that $\lambda_i \neq \lambda_j$ whenever $i \neq j$. Then S is a linearly independent set.

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem SMZESingular Matrices have Zero Eigenvalues221Suppose A is a square matrix. Then A is singular if and only if $\lambda = 0$ is an eigenvalue of A.

©2004—2014 Robert A. Beezer, GFDL License



Theorem E	ESMM 1	Eigenvalues	of a S	calar Multiple	of a Matrix		223
Suppose A is	s a square	matrix and λ	is an e	eigenvalue of A .	Then $\alpha\lambda$ is an	eigenvalue of αA .	

©2004—2014 Robert A. Beezer, GFDL License

Theorem EOMPEigenvalues Of Matrix Powers224Suppose A is a square matrix, λ is an eigenvalue of A, and $s \ge 0$ is an integer. Then λ^s is an eigenvalue of A^s .

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem EPM Eigenvalues of the Polynomial of a Matrix 225 Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the variable x. Then $q(\lambda)$ is an eigenvalue of the matrix q(A).

©2004—2014 Robert A. Beezer, GFDL License

Theorem EIMEigenvalues of the Inverse of a Matrix226Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then λ^{-1} is an eigenvalue of the matrix A^{-1} .

Theorem ETMEigenvalues of the Transpose of a Matrix227Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix A^t .

©2004—2014 Robert A. Beezer, GFDL License

Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs 228

Suppose A is a square matrix with real entries and \mathbf{x} is an eigenvector of A for the eigenvalue λ . Then $\overline{\mathbf{x}}$ is an eigenvector of A for the eigenvalue $\overline{\lambda}$.

Theorem DCP Degree of the Characteristic Polynomial Suppose that A is a square matrix of size n . Then the characteristic polynomial of A , p_A has degree n .	229 $(x),$

©2004—2014 Robert A. Beezer, GFDL License

Theorem NEMNumber of Eigenvalues of a Matrix230Suppose that $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_k$ are the distinct eigenvalues of a square matrix A of size n. Then

$$\sum_{i=1}^{k} \alpha_A \left(\lambda_i \right) = n$$

Theorem ME Multiplicities of an Eigenvalue Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

 $1 \le \gamma_A(\lambda) \le \alpha_A(\lambda) \le n$

©2004—2014 Robert A. Beezer, GFDL License

Theorem MNEM	Maximum Number of Eigenvalues of a Matrix	232
Suppose that A is a squ	uare matrix of size n . Then A cannot have more than n distinct eigen	nvalues.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{231}$

Theorem HMRE	Hermitian Matrices have Real Eigenvalues	
Suppose that A is a l	Hermitian matrix and λ is an eigenvalue of A . Then $\lambda \in \mathbb{R}$.	

©2004—2014 Robert A. Beezer, GFDL License

Theorem HMOEHermitian Matrices have Orthogonal Eigenvectors234Suppose that A is a Hermitian matrix and x and y are two eigenvectors of A for different
eigenvalues. Then x and y are orthogonal vectors.234

©2004—2014 Robert A. Beezer, GFDL License

233

Definition SIM Similar Matrices

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix of size n, S, such that $A = S^{-1}BS$.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{235}$

236

Theorem SER Similarity is an Equivalence Relation Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)

- 2. If A is similar to B, then B is similar to A. (Symmetric)
- 3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

Theorem SMEESimilar Matrices have Equal Eigenvalues237Suppose A and B are similar matrices.Then the characteristic polynomials of A and B areequal, that is, $p_A(x) = p_B(x)$.

 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Definition DIM Diagonal Matrix Suppose that A is a square matrix. Then A is a dia	gonal matrix if $[A]_{ij} = 0$ whenever $i \neq j$.
	©2004—2014 Robert A. Beezer, GFDL License

Definition DZM Diagonalizable Matrix	239
Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matri	x.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{240}$

Theorem DC Diagonalization Characterization

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly independent set S that contains n eigenvectors of A.

Theorem DMFE Diagonalizable Matrices have Full Eigenspaces 241 Suppose A is a square matrix. Then A is diagonalizable if and only if $\gamma_A(\lambda) = \alpha_A(\lambda)$ for every eigenvalue λ of A.

 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem DED	Distinct Eigenvalues implies Diagonalizable	242
Suppose A is a sq	uare matrix of size n with n distinct eigenvalues. Then A is diagonal	izable.
	©2004—2014 Robert A. Beezer, GFD	L License

Definition LT Linear Transformation A linear transformation, $T: U \to V$, is a function that carries elements of the vector space U

(called the domain) to the vector space V (called the codomain), and which has two additional properties

1. $T(\mathbf{u}_{1} + \mathbf{u}_{2}) = T(\mathbf{u}_{1}) + T(\mathbf{u}_{2})$ for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$

2. $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$

©2004—2014 Robert A. Beezer, GFDL License

Theorem LTTZZ	Linear Transformations Take Zero to Zero
Suppose $T \colon U \to V$ is	s a linear transformation. Then $T(0) = 0$.

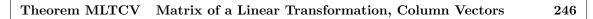
©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{243}$

 $\mathbf{244}$

Theorem MBLT Matrices Build Linear Transformations 245 Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^n \to \mathbb{C}^m$ by $T(\mathbf{x}) = A\mathbf{x}$. Then T is a linear transformation.

©2004—2014 Robert A. Beezer, GFDL License



Suppose that $T: \mathbb{C}^n \to \mathbb{C}^m$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem LTLC Linear Transformations and Linear Combinations

Suppose that $T: U \to V$ is a linear transformation, $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_t$ are vectors from U and $a_1, a_2, a_3, \ldots, a_t$ are scalars from \mathbb{C} . Then

 $T(a_{1}\mathbf{u}_{1} + a_{2}\mathbf{u}_{2} + a_{3}\mathbf{u}_{3} + \dots + a_{t}\mathbf{u}_{t}) = a_{1}T(\mathbf{u}_{1}) + a_{2}T(\mathbf{u}_{2}) + a_{3}T(\mathbf{u}_{3}) + \dots + a_{t}T(\mathbf{u}_{t})$

©2004—2014 Robert A. Beezer, GFDL License

Theorem LTDB Linear Transformation Defined on a Basis

Suppose U is a vector space with basis $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n}$ and the vector space V contains the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots, \mathbf{v}_n$ (which may not be distinct). Then there is a unique linear transformation, $T: U \to V$, such that $T(\mathbf{u}_i) = \mathbf{v}_i, 1 \le i \le n$.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{247}$

 $\mathbf{248}$

Definition PI Pre-Image

Suppose that $T: U \to V$ is a linear transformation. For each **v**, define the pre-image of **v** to be the subset of U given by

$$T^{-1}\left(\mathbf{v}\right) = \left\{ \mathbf{u} \in U | T\left(\mathbf{u}\right) = \mathbf{v} \right\}$$

©2004—2014 Robert A. Beezer, GFDL License

Definition LTA Linear Transformation Addition 250 Suppose that $T: U \to V$ and $S: U \to V$ are two linear transformations with the same domain and codomain. Then their sum is the function $T + S: U \to V$ whose outputs are defined by

$$(T+S)(\mathbf{u}) = T(\mathbf{u}) + S(\mathbf{u})$$

©2004—2014 Robert A. Beezer, GFDL License

249

Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 251 Suppose that $T: U \to V$ and $S: U \to V$ are two linear transformations with the same domain and codomain. Then $T + S: U \to V$ is a linear transformation.

©2004—2014 Robert A. Beezer, GFDL License

Definition LTSM Linear Transformation Scalar Multiplication 252 Suppose that $T: U \to V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the scalar multiple is the function $\alpha T: U \to V$ whose outputs are defined by

 $\left(\alpha T\right)\left(\mathbf{u}\right) = \alpha T\left(\mathbf{u}\right)$

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 253

Suppose that $T: U \to V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then $(\alpha T): U \to V$ is a linear transformation.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{254}$

Theorem VSLT Vector Space of Linear Transformations

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V, $\mathcal{L}T(U, V)$, is a vector space when the operations are those given in Definition LTA and Definition LTSM.

Definition LTCLinear Transformation Composition255Suppose that $T: U \to V$ and $S: V \to W$ are linear transformations. Then the composition of Sand T is the function $(S \circ T): U \to W$ whose outputs are defined by

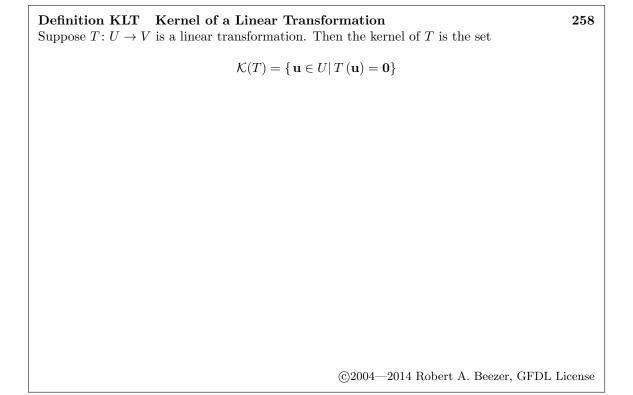
 $(S \circ T) (\mathbf{u}) = S (T (\mathbf{u}))$

©2004—2014 Robert A. Beezer, GFDL License

Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 256 Suppose that $T: U \to V$ and $S: V \to W$ are linear transformations. Then $(S \circ T): U \to W$ is a linear transformation.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Definition ILT Injective Linear Transformation 257 Suppose $T: U \to V$ is a linear transformation. Then T is injective if whenever $T(\mathbf{x}) = T(\mathbf{y})$, then $\mathbf{x} = \mathbf{y}$.



Theorem KLTS Kernel of a Linear Transformation is a Subspace 259 Suppose that $T: U \to V$ is a linear transformation. Then the kernel of $T, \mathcal{K}(T)$, is a subspace of U.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{260}$

Theorem KPI Kernel and Pre-Image

Suppose $T: U \to V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is nonempty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

 $T^{-1}(\mathbf{v}) = \{\mathbf{u} + \mathbf{z} | \mathbf{z} \in \mathcal{K}(T)\} = \mathbf{u} + \mathcal{K}(T)$

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem KILT Kernel of an Injective Linear Transformation 261 Suppose that $T: U \to V$ is a linear transformation. Then T is injective if and only if the kernel of T is trivial, $\mathcal{K}(T) = \{\mathbf{0}\}.$

©2004—2014 Robert A. Beezer, GFDL License

Theorem ILTLI Injective Linear Transformations and Linear Independence 262 Suppose that $T: U \to V$ is an injective linear transformation and

$$S = {\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_t}$$

is a linearly independent subset of U. Then

$$R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_t)\}\$$

is a linearly independent subset of V.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem ILTB Injective Linear Transformations and Bases Suppose that $T: U \to V$ is a linear transformation and

$$B = \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_m\}$$

is a basis of U. Then T is injective if and only if

$$C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}\$$

is a linearly independent subset of V.

©2004—2014 Robert A. Beezer, GFDL License

Theorem ILTD Injective Linear Transformations and Dimension Suppose that $T: U \to V$ is an injective linear transformation. Then dim $(U) \le \dim(V)$.	264
©2004—2014 Robert A. Beezer, GFDL Lice	ense

 $\mathbf{263}$

Theorem CILTI Composition of Injective Linear Transformations is Injective 265 Suppose that $T: U \to V$ and $S: V \to W$ are injective linear transformations. Then $(S \circ T): U \to W$ is an injective linear transformation.

©2004—2014 Robert A. Beezer, GFDL License

Definition SLT Surjective Linear Transformation 266 Suppose $T: U \to V$ is a linear transformation. Then T is surjective if for every $\mathbf{v} \in V$ there exists a $\mathbf{u} \in U$ so that $T(\mathbf{u}) = \mathbf{v}$.

Definition RLT Range of a Linear Transformation Suppose $T: U \to V$ is a linear transformation. Then the range of T is the set

 $\mathcal{R}(T) = \{ T(\mathbf{u}) | \mathbf{u} \in U \}$

©2004—2014 Robert A. Beezer, GFDL License

Theorem RLTS Range of a Linear Transformation is a Subspace 268 Suppose that $T: U \to V$ is a linear transformation. Then the range of $T, \mathcal{R}(T)$, is a subspace of V.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{267}$

Theorem RSLT Range of a Surjective Linear Transformation 269 Suppose that $T: U \to V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T) = V$.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{270}$

Theorem SSRLT Spanning Set for Range of a Linear Transformation Suppose that $T: U \to V$ is a linear transformation and

$$S = \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_t\}$$

spans U. Then

$$R = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_t)\}\$$

spans $\mathcal{R}(T)$.

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem RPI Range and Pre-Image Suppose that $T: U \to V$ is a linear transformation. Then

 $\mathbf{v} \in \mathcal{R}(T)$ if and only if $T^{-1}(\mathbf{v}) \neq \emptyset$

©2004—2014 Robert A. Beezer, GFDL License

Theorem SLTB Surjective Linear Transformations and Bases Suppose that $T: U \to V$ is a linear transformation and

 $B = \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_m\}$

is a basis of U. Then T is surjective if and only if

$$C = \{T(\mathbf{u}_1), T(\mathbf{u}_2), T(\mathbf{u}_3), \dots, T(\mathbf{u}_m)\}\$$

is a spanning set for V.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{271}$

Theorem SLTDSurjective Linear Transformations and Dimension273Suppose that $T: U \to V$ is a surjective linear transformation. Then $\dim(U) \ge \dim(V)$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 274

Suppose that $T: U \to V$ and $S: V \to W$ are surjective linear transformations. Then $(S \circ T): U \to W$ is a surjective linear transformation.

Definition IDLT Identity Linear Transformation The identity linear transformation on the vector space W is defined as $I_W \colon W \to W, \qquad I_W(\mathbf{w}) = \mathbf{w}$

©2004—2014 Robert A. Beezer, GFDL License

Definition IVLTInvertible Linear Transformations276Suppose that $T: U \to V$ is a linear transformation. If there is a function $S: V \to U$ such that

$$S \circ T = I_U \qquad \qquad T \circ S = I_V$$

then T is invertible. In this case, we call S the inverse of T and write $S = T^{-1}$.

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

 $\mathbf{275}$

Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation277 Suppose that $T: U \to V$ is an invertible linear transformation. Then the function $T^{-1}: V \to U$ is a linear transformation.

©2004—2014 Robert A. Beezer, GFDL License

Theorem IILT Inverse of an Invertible Linear Transformation 278 Suppose that $T: U \to V$ is an invertible linear transformation. Then T^{-1} is an invertible linear transformation and $(T^{-1})^{-1} = T$.

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem ILTIS Invertible Linear Transformations are Injective and Surjective279 Suppose $T: U \to V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.

©2004—2014 Robert A. Beezer, GFDL License

Theorem CIVLT Composition of Invertible Linear Transformations 280 Suppose that $T: U \to V$ and $S: V \to W$ are invertible linear transformations. Then the composition, $(S \circ T): U \to W$ is an invertible linear transformation.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem ICLT Inverse of a Composition of Linear Transformations 281 Suppose that $T: U \to V$ and $S: V \to W$ are invertible linear transformations. Then $S \circ T$ is invertible and $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{282}$

Definition IVS Isomorphic Vector Spaces

Two vector spaces U and V are isomorphic if there exists an invertible linear transformation T with domain U and codomain $V, T: U \to V$. In this case, we write $U \cong V$, and the linear transformation T is known as an isomorphism between U and V.

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

Theorem IVSED	Isomorphic Vector Spaces have Equal Dimension
Suppose U and V are	e isomorphic vector spaces. Then $\dim(U) = \dim(V)$.

©2004—2014 Robert A. Beezer, GFDL License

Definition ROLT Rank Of a Linear Transformation 284 Suppose that $T: U \to V$ is a linear transformation. Then the rank of T, r(T), is the dimension of the range of T,

 $r(T) = \dim\left(\mathcal{R}(T)\right)$

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{283}$

Definition NOLT Nullity Of a Linear Transformation Suppose that $T: U \to V$ is a linear transformation. Then the nullity of T, n(T), is the dimension of the kernel of T,

 $n(T) = \dim\left(\mathcal{K}(T)\right)$

©2004—2014 Robert A. Beezer, GFDL License

Theorem ROSLT Rank Of a Surjective Linear Transformation 286 Suppose that $T: U \to V$ is a linear transformation. Then the rank of T is the dimension of V, $r(T) = \dim(V)$, if and only if T is surjective.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{285}$

Theorem NOILT Nullity Of an Injective Linear Transformation 287 Suppose that $T: U \to V$ is a linear transformation. Then the nullity of T is zero, n(T) = 0, if and only if T is injective.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{288}$

Theorem RPNDD Rank Plus Nullity is Domain Dimension Suppose that $T: U \to V$ is a linear transformation. Then

 $r(T) + n(T) = \dim(U)$

Definition VR Vector Representation Suppose that V is a vector space with a basis $B = \{V, V, V\}$

Suppose that V is a vector space with a basis $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n}$. Define a function $\rho_B: V \to \mathbb{C}^n$ as follows. For $\mathbf{w} \in V$ define the column vector $\rho_B(\mathbf{w}) \in \mathbb{C}^n$ by

$$\mathbf{w} = \left[\rho_B\left(\mathbf{w}\right)\right]_1 \mathbf{v}_1 + \left[\rho_B\left(\mathbf{w}\right)\right]_2 \mathbf{v}_2 + \left[\rho_B\left(\mathbf{w}\right)\right]_3 \mathbf{v}_3 + \dots + \left[\rho_B\left(\mathbf{w}\right)\right]_n \mathbf{v}_n$$

©2004—2014 Robert A. Beezer, GFDL License

289

Theorem VRLT Vector Representation is a Linear Transformation The function ρ_B (Definition VR) is a linear transformation.	290

Theorem VRI	Vector Representation is Injective	
The function ρ_B	(Definition VR) is an injective linear transformation.	

©2004—2014 Robert A. Beezer, GFDL License

291

Theorem VRS Vector Representation is Surjective	292
The function ρ_B (Definition VR) is a surjective linear transformation.	

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem VRILT Vector Representation is an Invertible Linear Transformation 293 The function ρ_B (Definition VR) is an invertible linear transformation.

 $\textcircled{C}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem CFDVS Characterization of Finite Dimensional Vector Spaces	294
Suppose that V is a vector space with dimension n. Then V is isomorphic to \mathbb{C}^n .	

Г

Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces 295 Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and only if dim $(U) = \dim(V)$.

©2004—2014 Robert A. Beezer, GFDL License

296

Theorem CLI Coordinatization and Linear Independence Suppose that U is a vector space with a basis B of size n. Then

 $S = \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_k\}$

is a linearly independent subset of U if and only if

 $R = \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \dots, \rho_B(\mathbf{u}_k)\}\$

is a linearly independent subset of \mathbb{C}^n .

Theorem CSS Coordinatization and Spanning Sets Suppose that U is a vector space with a basis B of size n. Then

$$\mathbf{u} \in \langle \{\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \dots, \, \mathbf{u}_k \} \rangle$$

if and only if

$$\rho_B(\mathbf{u}) \in \langle \{\rho_B(\mathbf{u}_1), \rho_B(\mathbf{u}_2), \rho_B(\mathbf{u}_3), \dots, \rho_B(\mathbf{u}_k) \} \rangle$$

©2004—2014 Robert A. Beezer, GFDL License

Definition MR Matrix Representation 298 Suppose that $T: U \to V$ is a linear transformation, $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$ is a basis for U of size n, and C is a basis for V of size m. Then the matrix representation of T relative to B and C is the $m \times n$ matrix,

 $M_{B,C}^{T} = \left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right) \middle| \rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right) \middle| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right) \middle| \dots \left|\rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]$

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem FTMR Fundamental Theorem of Matrix Representation 299 Suppose that $T: U \to V$ is a linear transformation, B is a basis for U, C is a basis for V and $M_{B,C}^T$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$\rho_{C}\left(T\left(\mathbf{u}\right)\right) = M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)$$

or equivalently

$$T\left(\mathbf{u}\right) = \rho_{C}^{-1}\left(M_{B,C}^{T}\left(\rho_{B}\left(\mathbf{u}\right)\right)\right)$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem MRSLT Matrix Representation of a Sum of Linear Transformations 300 Suppose that $T: U \to V$ and $S: U \to V$ are linear transformations, B is a basis of U and C is a basis of V. Then

$$M_{B,C}^{T+S} = M_{B,C}^{T} + M_{B,C}^{S}$$

Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation 301

Suppose that $T \colon U \to V$ is a linear transformation, $\alpha \in \mathbb{C}$, B is a basis of U and C is a basis of V. Then

$$M^{\alpha T}_{B,C} = \alpha M^T_{B,C}$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem MRCLT Matrix Representation of a Composition of Linear Transformations 302

Suppose that $T: U \to V$ and $S: V \to W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

$$M_{B,D}^{S \circ T} = M_{C,D}^S M_{B,C}^T$$

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem KNSI Kernel and Null Space Isomorphism

Suppose that $T: U \to V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the kernel of T is isomorphic to the null space of $M_{B,C}^T$,

$$\mathcal{K}(T) \cong \mathcal{N}(M_{B,C}^T)$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem RCSI Range and Column Space Isomorphism

Suppose that $T: U \to V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the column space of $M_{B,C}^T$,

 $\mathcal{R}(T) \cong \mathcal{C}\left(M_{B,C}^T\right)$

 $\textcircled{O}2004{---}2014$ Robert A. Beezer, GFDL License

303

Theorem IMR Invertible Matrix Representations

Suppose that $T: U \to V$ is a linear transformation, B is a basis for U and C is a basis for V. Then T is an invertible linear transformation if and only if the matrix representation of T relative to B and C, $M_{B,C}^T$ is an invertible matrix. When T is invertible,

$$M_{C,B}^{T^{-1}} = \left(M_{B,C}^T\right)^{-1}$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem IMILT Invertible Matrices, Invertible Linear Transformation 306 Suppose that A is a square matrix of size n and $T: \mathbb{C}^n \to \mathbb{C}^n$ is the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$. Then A is an invertible matrix if and only if T is an invertible linear transformation.

©2004—2014 Robert A. Beezer, GFDL License

307 Theorem NME9 Nonsingular Matrix Equivalences, Round 9 Suppose that A is a square matrix of size n. The following are equivalent. 1. A is nonsingular. 2. A row-reduces to the identity matrix. 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}.$ 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of **b**. 5. The columns of A are a linearly independent set. 6. A is invertible. 7. The column space of A is \mathbb{C}^n , $\mathcal{C}(A) = \mathbb{C}^n$. 8. The columns of A are a basis for \mathbb{C}^n . 9. The rank of A is n, r(A) = n. 10. The nullity of A is zero, n(A) = 0. 11. The determinant of A is nonzero, $\det(A) \neq 0$. 12. $\lambda = 0$ is not an eigenvalue of A. 13. The linear transformation $T: \mathbb{C}^n \to \mathbb{C}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is invertible. ©2004—2014 Robert A. Beezer, GFDL License

Definition EELT Eigenvalue and Eigenvector of a Linear Transformation 308 Suppose that $T: V \to V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if $T(\mathbf{v}) = \lambda \mathbf{v}$.

Definition CBM Change-of-Basis Matrix

Suppose that V is a vector space, and $I_V: V \to V$ is the identity linear transformation on V. Let $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \ldots, \mathbf{v}_n}$ and C be two bases of V. Then the change-of-basis matrix from B to C is the matrix representation of I_V relative to B and C,

$$C_{B,C} = M_{B,C}^{I_V}$$

= $[\rho_C (I_V (\mathbf{v}_1)) | \rho_C (I_V (\mathbf{v}_2)) | \rho_C (I_V (\mathbf{v}_3)) | \dots | \rho_C (I_V (\mathbf{v}_n))]$
= $[\rho_C (\mathbf{v}_1) | \rho_C (\mathbf{v}_2) | \rho_C (\mathbf{v}_3) | \dots | \rho_C (\mathbf{v}_n)]$

©2004—2014 Robert A. Beezer, GFDL License

Theorem CB Change-of-Basis Suppose that \mathbf{v} is a vector in the vector space V and B and C are bases of V. Then

 $\rho_{C}\left(\mathbf{v}\right) = C_{B,C}\rho_{B}\left(\mathbf{v}\right)$

©2004—2014 Robert A. Beezer, GFDL License

309

Theorem ICBMInverse of Change-of-Basis Matrix311Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis matrix $C_{B,C}$ is nonsingular and

$$C_{B,C}^{-1} = C_{C,B}$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem MRCB Matrix Representation and Change of Basis 312 Suppose that $T: U \to V$ is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

$$M_{B,D}^T = C_{E,D} M_{C,E}^T C_{B,C}$$

Theorem SCB Similarity and Change of Basis Suppose that $T: V \to V$ is a linear transformation and B and C are bases of V. Then

$$M_{B,B}^{T} = C_{B,C}^{-1} M_{C,C}^{T} C_{B,C}$$

©2004—2014 Robert A. Beezer, GFDL License

Theorem EER Eigenvalues, Eigenvectors, Representations

 $\mathbf{314}$ Suppose that $T: V \to V$ is a linear transformation and B is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_B(\mathbf{v})$ is an eigenvector of $M_{B,B}^T$ for the eigenvalue λ .

©2004—2014 Robert A. Beezer, GFDL License

Definition UTM	Upper Triangular Matrix
The $n \times n$ square n	hatrix A is upper triangular if $[A]_{ij} = 0$ whenever $i > j$.

©2004—2014 Robert A. Beezer, GFDL License

Definition LTM Lower Triangular Matrix	316
The $n \times n$ square matrix A is lower triangular if $[A]_{ij} = 0$ whenever $i < j$.	
©2004—2014 Robert A. Beezer, GFDL Li	cense

 $\mathbf{315}$

317 Theorem PTMT Product of Triangular Matrices is Triangular Suppose that A and B are square matrices of size n that are triangular of the same type. Then AB is also triangular of that type.

©2004—2014 Robert A. Beezer, GFDL License

Theorem ITMT Inverse of a Triangular Matrix is Triangular

318 Suppose that A is a nonsingular matrix of size n that is triangular. Then the inverse of A, A^{-1} , is triangular of the same type. Furthermore, the diagonal entries of A^{-1} are the reciprocals of the corresponding diagonal entries of A. More precisely, $[A^{-1}]_{ii} = [A]_{ii}^{-1}$.

 $\textcircled{O}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem UTMR Upper Triangular Matrix Representation Suppose that $T: V \to V$ is a linear transformation. Then there is a basis B for V such that the matrix representation of T relative to B, $M_{B,B}^T$, is an upper triangular matrix. Each diagonal entry is an eigenvalue of T, and if λ is an eigenvalue of T, then λ occurs $\alpha_T(\lambda)$ times on the

diagonal.

©2004—2014 Robert A. Beezer, GFDL License

Theorem OBUTR Orthonormal Basis for Upper Triangular Representation 320 Suppose that A is a square matrix. Then there is a unitary matrix U, and an upper triangular matrix T, such that

$U^*AU = T$

and T has the eigenvalues of A as the entries of the diagonal.

 $\textcircled{O}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Definition NRML Normal Matrix The square matrix A is normal if $A^*A = AA^*$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem OD Orthonormal Diagonalization

Suppose that A is a square matrix. Then there is a unitary matrix U and a diagonal matrix D, with diagonal entries equal to the eigenvalues of A, such that $U^*AU = D$ if and only if A is a normal matrix.

 $\mathbf{321}$

322

 $\textcircled{O}2004\mbox{---}2014$ Robert A. Beezer, GFDL License

Theorem OBNM Orthonormal Bases and Normal Matrices 323 Suppose that A is a normal matrix of size n. Then there is an orthonormal basis of \mathbb{C}^n composed of eigenvectors of A.

©2004—2014 Robert A. Beezer, GFDL License

Definition CNE Complex Number Equality 324 The complex numbers $\alpha = a + bi$ and $\beta = c + di$ are equal, denoted $\alpha = \beta$, if a = c and b = d. **Definition CNA** Complex Number Addition 325 The sum of the complex numbers $\alpha = a + bi$ and $\beta = c + di$, denoted $\alpha + \beta$, is (a + c) + (b + d)i.

©2004—2014 Robert A. Beezer, GFDL License

Definition CNMComplex Number Multiplication326The product of the complex numbers $\alpha = a+bi$ and $\beta = c+di$, denoted $\alpha\beta$, is (ac-bd)+(ad+bc)i.

Theorem PCNA Properties of Complex Number Arithmetic

The operations of addition and multiplication of complex numbers have the following properties.

- ACCN Additive Closure, Complex Numbers: If $\alpha, \beta \in \mathbb{C}$, then $\alpha + \beta \in \mathbb{C}$.
- MCCN Multiplicative Closure, Complex Numbers: If $\alpha, \beta \in \mathbb{C}$, then $\alpha\beta \in \mathbb{C}$.
- CACN Commutativity of Addition, Complex Numbers: For any $\alpha, \beta \in \mathbb{C}, \alpha + \beta = \beta + \alpha$.
- CMCN Commutativity of Multiplication, Complex Numbers: For any $\alpha, \beta \in \mathbb{C}, \alpha\beta = \beta\alpha$.
- AACN Additive Associativity, Complex Numbers: For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$.
- MACN Multiplicative Associativity, Complex Numbers: For any $\alpha, \beta, \gamma \in \mathbb{C}$, $\alpha(\beta\gamma) = (\alpha\beta)\gamma$.
- DCN Distributivity, Complex Numbers: For any α , β , $\gamma \in \mathbb{C}$, $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$.
- ZCN Zero, Complex Numbers: There is a complex number 0 = 0 + 0i so that for any $\alpha \in \mathbb{C}$, $0 + \alpha = \alpha$.
- OCN One, Complex Numbers: There is a complex number 1 = 1 + 0i so that for any $\alpha \in \mathbb{C}$, $1\alpha = \alpha$.
- AICN Additive Inverse, Complex Numbers: For every $\alpha \in \mathbb{C}$ there exists $-\alpha \in \mathbb{C}$ so that $\alpha + (-\alpha) = 0$.
- MICN Multiplicative Inverse, Complex Numbers: For every $\alpha \in \mathbb{C}$, $\alpha \neq 0$ there exists $\frac{1}{\alpha} \in \mathbb{C}$ so that $\alpha\left(\frac{1}{\alpha}\right) = 1$.

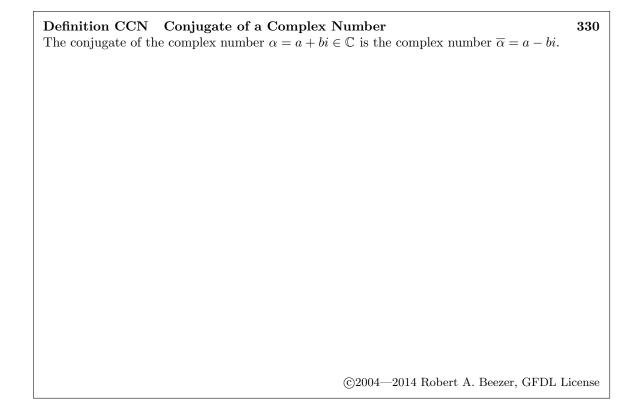
 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

Theorem ZPCN Zero Product, Complex Numbers Suppose $\alpha \in \mathbb{C}$. Then $0\alpha = 0$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem ZPZT Zero Product, Zero Terms Suppose $\alpha, \beta \in \mathbb{C}$. Then $\alpha\beta = 0$ if and only if at least one of $\alpha = 0$ or $\beta = 0$.

©2004—2014 Robert A. Beezer, GFDL License



Theorem CCRA	Complex Conjugation Respects Addition
Suppose that α and β	β are complex numbers. Then $\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$.

©2004—2014 Robert A. Beezer, GFDL License

Theorem CCRM Complex Conjugation Respects Multiplication Suppose that α and β are complex numbers. Then $\alpha\beta = \overline{\alpha}\overline{\beta}$.	332
©2004—2014 Robert A. Beezer, GFDL Lic	onso

 $\mathbf{331}$

Theorem CCT Complex Conjugation Twice Suppose that α is a complex number. Then $\overline{\overline{\alpha}} = \alpha$.

©2004—2014 Robert A. Beezer, GFDL License

 Definition MCN
 Modulus of a Complex Number
 334

 The modulus of the complex number $\alpha = a + bi \in \mathbb{C}$, is the nonnegative real number
 $|\alpha| = \sqrt{\overline{\alpha}\alpha} = \sqrt{a^2 + b^2}$.

 $|\alpha| = \sqrt{\overline{\alpha}\alpha} = \sqrt{a^2 + b^2}$.

©2004—2014 Robert A. Beezer, GFDL License

Definition SET Set

A set is an unordered collection of objects. If S is a set and x is an object that is in the set S, we write $x \in S$. If x is not in S, then we write $x \notin S$. We refer to the objects in a set as its elements.

©2004—2014 Robert A. Beezer, GFDL License

Definition SSET Subset 336 If S and T are two sets, then S is a subset of T, written $S \subseteq T$ if whenever $x \in S$ then $x \in T$.

©2004—2014 Robert A. Beezer, GFDL License

 $\mathbf{335}$

Definition ES Empty Set The empty set is the set with no elements. It is denoted by \emptyset .

©2004—2014 Robert A. Beezer, GFDL License

Definition SE Set Equality 338 Two sets, S and T, are equal, if $S \subseteq T$ and $T \subseteq S$. In this case, we write S = T. ©2004—2014 Robert A. Beezer, GFDL License

Definition C Cardinality

Suppose S is a finite set. Then the number of elements in S is called the cardinality or size of S, and is denoted |S|.

©2004—2014 Robert A. Beezer, GFDL License

339

340

Definition SU Set Union

Suppose S and T are sets. Then the union of S and T, denoted $S \cup T$, is the set whose elements are those that are elements of S or of T, or both. More formally,

 $x \in S \cup T$ if and only if $x \in S$ or $x \in T$

Definition SI Set Intersection

Suppose S and T are sets. Then the intersection of S and T, denoted $S \cap T$, is the set whose elements are only those that are elements of S and of T. More formally,

 $x \in S \cap T$ if and only if $x \in S$ and $x \in T$

©2004—2014 Robert A. Beezer, GFDL License

Definition SC Set Complement

Suppose S is a set that is a subset of a universal set U. Then the complement of S, denoted \overline{S} , is the set whose elements are those that are elements of U and not elements of S. More formally,

 $x \in \overline{S}$ if and only if $x \in U$ and $x \notin S$

 $\textcircled{O}2004{--}2014$ Robert A. Beezer, GFDL License

$\mathbf{341}$