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Definition SLE System of Linear Equations 1
A system of linear equations is a collection of m equations in the variable quantities
x1, x2, x3, . . . , xn of the form,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

where the values of aij , bi and xj , 1 ≤ i ≤ m, 1 ≤ j ≤ n, are from the set of complex numbers,
C.
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Definition SSLE Solution of a System of Linear Equations 2
A solution of a system of linear equations in n variables, x1, x2, x3, . . . , xn (such as the system
given in Definition SLE), is an ordered list of n complex numbers, s1, s2, s3, . . . , sn such that if
we substitute s1 for x1, s2 for x2, s3 for x3, , sn for xn, then for every equation of the system
the left side will equal the right side, i.e. each equation is true simultaneously.
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Definition SSSLE Solution Set of a System of Linear Equations 3
The solution set of a linear system of equations is the set which contains every solution to the
system, and nothing more.
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Definition ESYS Equivalent Systems 4
Two systems of linear equations are equivalent if their solution sets are equal.
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Definition EO Equation Operations 5
Given a system of linear equations, the following three operations will transform the system into
a different one, and each operation is known as an equation operation.

1. Swap the locations of two equations in the list of equations.

2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a second equa-
tion, on both sides of the equality. Leave the first equation the same after this operation,
but replace the second equation by the new one.
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Theorem EOPSS Equation Operations Preserve Solution Sets 6
If we apply one of the three equation operations of Definition EO to a system of linear equations
(Definition SLE), then the original system and the transformed system are equivalent.
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Definition M Matrix 7
An m× n matrix is a rectangular layout of numbers from C having m rows and n columns. We
will use upper-case Latin letters from the start of the alphabet (A, B, C, . . . ) to denote matrices
and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets
— the distinction is not important. Rows of a matrix will be referenced starting at the top and
working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e.
column 1 is at the left). For a matrix A, the notation [A]ij will refer to the complex number in
row i and column j of A.
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Definition CV Column Vector 8
A column vector of size m is an ordered list of m numbers, which is written in order vertically,
starting at the top and proceeding to the bottom. At times, we will refer to a column vector
as simply a vector. Column vectors will be written in bold, usually with lower case Latin letter
from the end of the alphabet such as u, v, w, x, y, z. Some books like to write vectors with
arrows, such as ~u. Writing by hand, some like to put arrows on top of the symbol, or a tilde
underneath the symbol, as in u

∼
. To refer to the entry or component of vector v in location i of

the list, we write [v]i.
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Definition ZCV Zero Column Vector 9
The zero vector of size m is the column vector of size m where each entry is the number zero,

0 =


0
0
0
...
0


or defined much more compactly, [0]i = 0 for 1 ≤ i ≤ m.
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Definition CM Coefficient Matrix 10
For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the coefficient matrix is the m× n matrix

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

am1 am2 am3 . . . amn
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Definition VOC Vector of Constants 11
For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the vector of constants is the column vector of size m

b =


b1
b2
b3
...
bm
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Definition SOLV Solution Vector 12
For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the solution vector is the column vector of size n

x =


x1
x2
x3
...
xn
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Definition MRLS Matrix Representation of a Linear System 13
If A is the coefficient matrix of a system of linear equations and b is the vector of constants,
then we will write LS(A, b) as a shorthand expression for the system of linear equations, which
we will refer to as the matrix representation of the linear system.
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Definition AM Augmented Matrix 14
Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of
constants b. Then the augmented matrix of the system of equations is the m × (n + 1) matrix
whose first n columns are the columns of A and whose last column (n+ 1) is the column vector
b. This matrix will be written as [A | b].
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Definition RO Row Operations 15
The following three operations will transform an m×n matrix into a different matrix of the same
size, and each is known as a row operation.

1. Swap the locations of two rows.

2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the entries in
the same columns of a second row. Leave the first row the same after this operation, but
replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

1. Ri ↔ Rj : Swap the location of rows i and j.

2. αRi: Multiply row i by the nonzero scalar α.

3. αRi +Rj : Multiply row i by the scalar α and add to row j.
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Definition REM Row-Equivalent Matrices 16
Two matrices, A and B, are row-equivalent if one can be obtained from the other by a sequence
of row operations.
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Theorem REMES Row-Equivalent Matrices represent Equivalent Systems 17
Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear
equations that they represent are equivalent systems.
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Definition RREF Reduced Row-Echelon Form 18
A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. If there is a row where every entry is zero, then this row lies below any other row that
contains a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.

3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row i, column j and the
other located in row s, column t. If s > i, then t > j.

A row of only zero entries will be called a zero row and the leftmost nonzero entry of a nonzero
row will be called a leading 1. The number of nonzero rows will be denoted by r.
A column containing a leading 1 will be called a pivot column. The set of column indices for all
of the pivot columns will be denoted by D = {d1, d2, d3, . . . , dr} where d1 < d2 < d3 < · · · < dr,
while the columns that are not pivot columns will be denoted as F = {f1, f2, f3, . . . , fn−r}
where f1 < f2 < f3 < · · · < fn−r.
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Theorem REMEF Row-Equivalent Matrix in Echelon Form 19
Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.

2. B is in reduced row-echelon form.
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Theorem RREFU Reduced Row-Echelon Form is Unique 20
Suppose that A is an m×n matrix and that B and C are m×n matrices that are row-equivalent
to A and in reduced row-echelon form. Then B = C.
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Definition CS Consistent System 21
A system of linear equations is consistent if it has at least one solution. Otherwise, the system
is called inconsistent.
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Definition IDV Independent and Dependent Variables 22
Suppose A is the augmented matrix of a consistent system of linear equations and B is a row-
equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that
contains the leading 1 for some row (i.e. column j is a pivot column). Then the variable xj is
dependent. A variable that is not dependent is called independent or free.
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Theorem RCLS Recognizing Consistency of a Linear System 23

Suppose A is the augmented matrix of a system of linear equations with n variables. Suppose
also that B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then
the system of equations is inconsistent if and only if the leading 1 of row r is located in column
n+ 1 of B.
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Theorem ISRN Inconsistent Systems, r and n 24
Suppose A is the augmented matrix of a system of linear equations in n variables. Suppose
also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not
completely zeros. If r = n+ 1, then the system of equations is inconsistent.
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Theorem CSRN Consistent Systems, r and n 25
Suppose A is the augmented matrix of a consistent system of linear equations with n variables.
Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are
not zero rows. Then r ≤ n. If r = n, then the system has a unique solution, and if r < n, then
the system has infinitely many solutions.
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Theorem FVCS Free Variables for Consistent Systems 26
Suppose A is the augmented matrix of a consistent system of linear equations with n variables.
Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are
not completely zeros. Then the solution set can be described with n− r free variables.
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Theorem PSSLS Possible Solution Sets for Linear Systems 27
A system of linear equations has no solutions, a unique solution or infinitely many solutions.
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Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions28
Suppose a consistent system of linear equations has m equations in n variables. If n > m, then
the system has infinitely many solutions.
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Definition HS Homogeneous System 29
A system of linear equations, LS(A, b) is homogeneous if the vector of constants is the zero
vector, in other words, if b = 0.
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Theorem HSC Homogeneous Systems are Consistent 30
Suppose that a system of linear equations is homogeneous. Then the system is consistent.
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Definition TSHSE Trivial Solution to Homogeneous Systems of Equations 31
Suppose a homogeneous system of linear equations has n variables. The solution x1 = 0, x2 = 0,
, xn = 0 (i.e. x = 0) is called the trivial solution.
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Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions
32
Suppose that a homogeneous system of linear equations has m equations and n variables with
n > m. Then the system has infinitely many solutions.
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Definition NSM Null Space of a Matrix 33
The null space of a matrix A, denoted N (A), is the set of all the vectors that are solutions to
the homogeneous system LS(A, 0).
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Definition SQM Square Matrix 34
A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has
size n. To emphasize the situation when a matrix is not square, we will call it rectangular.
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Definition NM Nonsingular Matrix 35
Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear
system of equations LS(A, 0) is {0}, in other words, the system has only the trivial solution.
Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix.
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Definition IM Identity Matrix 36
The m×m identity matrix, Im, is defined by

[Im]ij =

{
1 i = j

0 i 6= j
1 ≤ i, j ≤ m

c©2004—2013 Robert A. Beezer, GFDL License



Theorem NMRRI Nonsingular Matrices Row Reduce to the Identity matrix 37
Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form.
Then A is nonsingular if and only if B is the identity matrix.
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Theorem NMTNS Nonsingular Matrices have Trivial Null Spaces 38
Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A,
N (A), contains only the zero vector, i.e. N (A) = {0}.
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Theorem NMUS Nonsingular Matrices and Unique Solutions 39
Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system LS(A, b)
has a unique solution for every choice of the constant vector b.
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Theorem NME1 Nonsingular Matrix Equivalences, Round 1 40
Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.
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Definition VSCV Vector Space of Column Vectors 41
The vector space Cm is the set of all column vectors (Definition CV) of size m with entries from
the set of complex numbers, C.
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Definition CVE Column Vector Equality 42
Suppose that u, v ∈ Cm. Then u and v are equal, written u = v if

[u]i = [v]i 1 ≤ i ≤ m
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Definition CVA Column Vector Addition 43
Suppose that u, v ∈ Cm. The sum of u and v is the vector u + v defined by

[u + v]i = [u]i + [v]i 1 ≤ i ≤ m
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Definition CVSM Column Vector Scalar Multiplication 44
Suppose u ∈ Cm and α ∈ C, then the scalar multiple of u by α is the vector αu defined by

[αu]i = α [u]i 1 ≤ i ≤ m
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Theorem VSPCV Vector Space Properties of Column Vectors 45
Suppose that Cm is the set of column vectors of size m (Definition VSCV) with addition and
scalar multiplication as defined in Definition CVA and Definition CVSM. Then

• ACC Additive Closure, Column Vectors: If u, v ∈ Cm, then u + v ∈ Cm.

• SCC Scalar Closure, Column Vectors: If α ∈ C and u ∈ Cm, then αu ∈ Cm.

• CC Commutativity, Column Vectors: If u, v ∈ Cm, then u + v = v + u.

• AAC Additive Associativity, Column Vectors: If u, v, w ∈ Cm, then u + (v + w) =
(u + v) + w.

• ZC Zero Vector, Column Vectors: There is a vector, 0, called the zero vector, such that
u + 0 = u for all u ∈ Cm.

• AIC Additive Inverses, Column Vectors: If u ∈ Cm, then there exists a vector −u ∈ Cm so
that u + (−u) = 0.

• SMAC Scalar Multiplication Associativity, Column Vectors: If α, β ∈ C and u ∈ Cm, then
α(βu) = (αβ)u.

• DVAC Distributivity across Vector Addition, Column Vectors: If α ∈ C and u, v ∈ Cm,
then α(u + v) = αu + αv.

• DSAC Distributivity across Scalar Addition, Column Vectors: If α, β ∈ C and u ∈ Cm,
then (α+ β)u = αu + βu.

• OC One, Column Vectors: If u ∈ Cm, then 1u = u.
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Definition LCCV Linear Combination of Column Vectors 46
Given n vectors u1, u2, u3, . . . , un from Cm and n scalars α1, α2, α3, . . . , αn, their linear com-
bination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun
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Theorem SLSLC Solutions to Linear Systems are Linear Combinations 47
Denote the columns of the m×n matrix A as the vectors A1, A2, A3, . . . , An. Then x ∈ Cn is a
solution to the linear system of equations LS(A, b) if and only if b equals the linear combination
of the columns of A formed with the entries of x,

[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An = b
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Theorem VFSLS Vector Form of Solutions to Linear Systems 48
Suppose that [A | b] is the augmented matrix for a consistent linear system LS(A, b) of m
equations in n variables. Let B be a row-equivalent m × (n + 1) matrix in reduced row-
echelon form. Suppose that B has r nonzero rows, columns without leading 1’s with indices
F = {f1, f2, f3, . . . , fn−r, n+ 1}, and columns with leading 1’s (pivot columns) having indices
D = {d1, d2, d3, . . . , dr}. Define vectors c, uj , 1 ≤ j ≤ n− r of size n by

[c]i =

{
0 if i ∈ F
[B]k,n+1 if i ∈ D, i = dk

[uj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

.

Then the set of solutions to the system of equations LS(A, b) is

S = {c + α1u1 + α2u2 + α3u3 + · · ·+ αn−run−r|α1, α2, α3, . . . , αn−r ∈ C}
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Theorem PSPHS Particular Solution Plus Homogeneous Solutions 49
Suppose that w is one solution to the linear system of equations LS(A, b). Then y is a solution
to LS(A, b) if and only if y = w + z for some vector z ∈ N (A).
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Definition SSCV Span of a Set of Column Vectors 50
Given a set of vectors S = {u1, u2, u3, . . . , up}, their span, 〈S〉, is the set of all possible linear
combinations of u1, u2, u3, . . . , up. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αpup|αi ∈ C, 1 ≤ i ≤ p}

=

{
p∑
i=1

αiui

∣∣∣∣∣αi ∈ C, 1 ≤ i ≤ p

}
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Theorem SSNS Spanning Sets for Null Spaces 51
Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the column indices where B has
leading 1’s (pivot columns) and F = {f1, f2, f3, . . . , fn−r} be the set of column indices where
B does not have leading 1’s. Construct the n− r vectors zj , 1 ≤ j ≤ n− r of size n as

[zj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

Then the null space of A is given by

N (A) = 〈{z1, z2, z3, . . . , zn−r}〉
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Definition RLDCV Relation of Linear Dependence for Column Vectors 52
Given a set of vectors S = {u1, u2, u3, . . . , un}, a true statement of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e. αi = 0,
1 ≤ i ≤ n, then we say it is the trivial relation of linear dependence on S.
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Definition LICV Linear Independence of Column Vectors 53
The set of vectors S = {u1, u2, u3, . . . , un} is linearly dependent if there is a relation of linear
dependence on S that is not trivial. In the case where the only relation of linear dependence on
S is the trivial one, then S is a linearly independent set of vectors.
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Theorem LIVHS Linearly Independent Vectors and Homogeneous Systems 54

Suppose that A is an m× n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors in Cm
that are the columns of A. Then S is a linearly independent set if and only if the homogeneous
system LS(A, 0) has a unique solution.
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Theorem LIVRN Linearly Independent Vectors, r and n 55
Suppose that A is an m× n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors in Cm
that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent
to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and
only if n = r.
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Theorem MVSLD More Vectors than Size implies Linear Dependence 56
Suppose that S = {u1, u2, u3, . . . , un} is the set of vectors in Cm, and that n > m. Then S is
a linearly dependent set.
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Theorem NMLIC Nonsingular Matrices have Linearly Independent Columns 57
Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form
a linearly independent set.
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Theorem NME2 Nonsingular Matrix Equivalences, Round 2 58
Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A form a linearly independent set.
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Theorem BNS Basis for Null Spaces 59
Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r} be the
sets of column indices where B does and does not (respectively) have leading 1’s. Construct the
n− r vectors zj , 1 ≤ j ≤ n− r of size n as

[zj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

Define the set S = {z1, z2, z3, . . . , zn−r}.Then

1. N (A) = 〈S〉.

2. S is a linearly independent set.
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Theorem DLDS Dependency in Linearly Dependent Sets 60
Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors. Then S is a linearly dependent set
if and only if there is an index t, 1 ≤ t ≤ n such that ut is a linear combination of the vectors
u1, u2, u3, . . . , ut−1, ut+1, . . . , un.
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Theorem BS Basis of a Span 61
Suppose that S = {v1, v2, v3, . . . , vn} is a set of column vectors. Define W = 〈S〉 and let A be
the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A,
with D = {d1, d2, d3, . . . , dr} the set of column indices corresponding to the pivot columns of
B. Then

1. T = {vd1 , vd2 , vd3 , . . . vdr} is a linearly independent set.

2. W = 〈T 〉.
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Definition CCCV Complex Conjugate of a Column Vector 62
Suppose that u is a vector from Cm. Then the conjugate of the vector, u, is defined by

[u]i = [u]i 1 ≤ i ≤ m
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Theorem CRVA Conjugation Respects Vector Addition 63
Suppose x and y are two vectors from Cm. Then

x + y = x + y
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Theorem CRSM Conjugation Respects Vector Scalar Multiplication 64
Suppose x is a vector from Cm, and α ∈ C is a scalar. Then

αx = αx
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Definition IP Inner Product 65
Given the vectors u, v ∈ Cm the inner product of u and v is the scalar quantity in C,

〈u, v〉 = [u]1 [v]1 + [u]2 [v]2 + [u]3 [v]3 + · · ·+ [u]m [v]m =

m∑
i=1

[u]i [v]i
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Theorem IPVA Inner Product and Vector Addition 66
Suppose u, v, w ∈ Cm. Then

1. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉

2. 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉
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Theorem IPSM Inner Product and Scalar Multiplication 67
Suppose u, v ∈ Cm and α ∈ C. Then

1. 〈αu, v〉 = α 〈u, v〉

2. 〈u, αv〉 = α 〈u, v〉
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Theorem IPAC Inner Product is Anti-Commutative 68
Suppose that u and v are vectors in Cm. Then 〈u, v〉 = 〈v, u〉.
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Definition NV Norm of a Vector 69
The norm of the vector u is the scalar quantity in C

‖u‖ =

√
|[u]1|

2
+ |[u]2|

2
+ |[u]3|

2
+ · · ·+ |[u]m|

2
=

√√√√ m∑
i=1

|[u]i|
2
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Theorem IPN Inner Products and Norms 70

Suppose that u is a vector in Cm. Then ‖u‖2 = 〈u, u〉.
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Theorem PIP Positive Inner Products 71
Suppose that u is a vector in Cm. Then 〈u, u〉 ≥ 0 with equality if and only if u = 0.
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Definition OV Orthogonal Vectors 72
A pair of vectors, u and v, from Cm are orthogonal if their inner product is zero, that is,
〈u, v〉 = 0.
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Definition OSV Orthogonal Set of Vectors 73
Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors from Cm. Then S is an orthogonal set
if every pair of different vectors from S is orthogonal, that is 〈ui, uj〉 = 0 whenever i 6= j.
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Definition SUV Standard Unit Vectors 74
Let ej ∈ Cm, 1 ≤ j ≤ m denote the column vectors defined by

[ej ]i =

{
0 if i 6= j

1 if i = j

Then the set

{e1, e2, e3, . . . , em} = {ej | 1 ≤ j ≤ m}

is the set of standard unit vectors in Cm.
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Theorem OSLI Orthogonal Sets are Linearly Independent 75

Suppose that S is an orthogonal set of nonzero vectors. Then S is linearly independent.
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Theorem GSP Gram-Schmidt Procedure 76
Suppose that S = {v1, v2, v3, . . . , vp} is a linearly independent set of vectors in Cm. Define
the vectors ui, 1 ≤ i ≤ p by

ui = vi −
〈u1, vi〉
〈u1, u1〉

u1 −
〈u2, vi〉
〈u2, u2〉

u2 −
〈u3, vi〉
〈u3, u3〉

u3 − · · · −
〈ui−1, vi〉
〈ui−1, ui−1〉

ui−1

Then if T = {u1, u2, u3, . . . , up}, then T is an orthogonal set of non-zero vectors, and 〈T 〉 = 〈S〉.
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Definition ONS OrthoNormal Set 77
Suppose S = {u1, u2, u3, . . . , un} is an orthogonal set of vectors such that ‖ui‖ = 1 for all
1 ≤ i ≤ n. Then S is an orthonormal set of vectors.
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Definition VSM Vector Space of m× n Matrices 78
The vector space Mmn is the set of all m × n matrices with entries from the set of complex
numbers.
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Definition ME Matrix Equality 79
The m× n matrices A and B are equal, written A = B provided [A]ij = [B]ij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.
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Definition MA Matrix Addition 80
Given the m × n matrices A and B, define the sum of A and B as an m × n matrix, written
A+B, according to

[A+B]ij = [A]ij + [B]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n
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Definition MSM Matrix Scalar Multiplication 81
Given the m × n matrix A and the scalar α ∈ C, the scalar multiple of A is an m × n matrix,
written αA and defined according to

[αA]ij = α [A]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n
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Theorem VSPM Vector Space Properties of Matrices 82
Suppose that Mmn is the set of all m × n matrices (Definition VSM) with addition and scalar
multiplication as defined in Definition MA and Definition MSM. Then

• ACM Additive Closure, Matrices: If A, B ∈Mmn, then A+B ∈Mmn.

• SCM Scalar Closure, Matrices: If α ∈ C and A ∈Mmn, then αA ∈Mmn.

• CM Commutativity, Matrices: If A, B ∈Mmn, then A+B = B +A.

• AAM Additive Associativity, Matrices: If A, B, C ∈Mmn, then A+ (B + C) = (A+B) +
C.

• ZM Zero Vector, Matrices: There is a matrix, O, called the zero matrix, such that A+O = A
for all A ∈Mmn.

• AIM Additive Inverses, Matrices: If A ∈ Mmn, then there exists a matrix −A ∈ Mmn so
that A+ (−A) = O.

• SMAM Scalar Multiplication Associativity, Matrices: If α, β ∈ C and A ∈ Mmn, then
α(βA) = (αβ)A.

• DMAM Distributivity across Matrix Addition, Matrices: If α ∈ C and A, B ∈Mmn, then
α(A+B) = αA+ αB.

• DSAM Distributivity across Scalar Addition, Matrices: If α, β ∈ C and A ∈ Mmn, then
(α+ β)A = αA+ βA.

• OM One, Matrices: If A ∈Mmn, then 1A = A.
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Definition ZM Zero Matrix 83
The m × n zero matrix is written as O = Om×n and defined by [O]ij = 0, for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.
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Definition TM Transpose of a Matrix 84
Given an m× n matrix A, its transpose is the n×m matrix At given by[

At
]
ij

= [A]ji , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Definition SYM Symmetric Matrix 85
The matrix A is symmetric if A = At.
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Theorem SMS Symmetric Matrices are Square 86
Suppose that A is a symmetric matrix. Then A is square.
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Theorem TMA Transpose and Matrix Addition 87
Suppose that A and B are m× n matrices. Then (A+B)t = At +Bt.
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Theorem TMSM Transpose and Matrix Scalar Multiplication 88
Suppose that α ∈ C and A is an m× n matrix. Then (αA)t = αAt.
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Theorem TT Transpose of a Transpose 89

Suppose that A is an m× n matrix. Then (At)
t

= A.
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Definition CCM Complex Conjugate of a Matrix 90
Suppose A is an m× n matrix. Then the conjugate of A, written A is an m× n matrix defined
by [

A
]
ij

= [A]ij
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Theorem CRMA Conjugation Respects Matrix Addition 91
Suppose that A and B are m× n matrices. Then A+B = A+B.
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Theorem CRMSM Conjugation Respects Matrix Scalar Multiplication 92
Suppose that α ∈ C and A is an m× n matrix. Then αA = αA.
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Theorem CCM Conjugate of the Conjugate of a Matrix 93

Suppose that A is an m× n matrix. Then
(
A
)

= A.
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Theorem MCT Matrix Conjugation and Transposes 94

Suppose that A is an m× n matrix. Then (At) =
(
A
)t

.

c©2004—2013 Robert A. Beezer, GFDL License



Definition A Adjoint 95

If A is a matrix, then its adjoint is A∗ =
(
A
)t

.
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Theorem AMA Adjoint and Matrix Addition 96
Suppose A and B are matrices of the same size. Then (A+B)

∗
= A∗ +B∗.
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Theorem AMSM Adjoint and Matrix Scalar Multiplication 97
Suppose α ∈ C is a scalar and A is a matrix. Then (αA)

∗
= αA∗.
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Theorem AA Adjoint of an Adjoint 98
Suppose that A is a matrix. Then (A∗)

∗
= A.
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Definition MVP Matrix-Vector Product 99
Suppose A is an m × n matrix with columns A1, A2, A3, . . . , An and u is a vector of size n.
Then the matrix-vector product of A with u is the linear combination

Au = [u]1 A1 + [u]2 A2 + [u]3 A3 + · · ·+ [u]n An
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Theorem SLEMM Systems of Linear Equations as Matrix Multiplication 100
The set of solutions to the linear system LS(A, b) equals the set of solutions for x in the vector
equation Ax = b.
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Theorem EMMVP Equal Matrices and Matrix-Vector Products 101
Suppose that A and B are m× n matrices such that Ax = Bx for every x ∈ Cn. Then A = B.
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Definition MM Matrix Multiplication 102
Suppose A is an m× n matrix and B1, B2, B3, . . . , Bp are the columns of an n× p matrix B.
Then the matrix product of A with B is the m× p matrix where column i is the matrix-vector
product ABi. Symbolically,

AB = A [B1|B2|B3| . . . |Bp] = [AB1|AB2|AB3| . . . |ABp] .
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Theorem EMP Entries of Matrix Products 103
Suppose A is an m × n matrix and B is an n × p matrix. Then for 1 ≤ i ≤ m, 1 ≤ j ≤ p, the
individual entries of AB are given by

[AB]ij = [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj

=

n∑
k=1

[A]ik [B]kj
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Theorem MMZM Matrix Multiplication and the Zero Matrix 104
Suppose A is an m× n matrix. Then

1. AOn×p = Om×p
2. Op×mA = Op×n
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Theorem MMIM Matrix Multiplication and Identity Matrix 105
Suppose A is an m× n matrix. Then

1. AIn = A

2. ImA = A
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Theorem MMDAA Matrix Multiplication Distributes Across Addition 106
Suppose A is an m× n matrix and B and C are n× p matrices and D is a p× s matrix. Then

1. A(B + C) = AB +AC

2. (B + C)D = BD + CD

c©2004—2013 Robert A. Beezer, GFDL License



Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 107
Suppose A is an m × n matrix and B is an n × p matrix. Let α be a scalar. Then α(AB) =
(αA)B = A(αB).
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Theorem MMA Matrix Multiplication is Associative 108
Suppose A is an m × n matrix, B is an n × p matrix and D is a p × s matrix. Then A(BD) =
(AB)D.
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Theorem MMIP Matrix Multiplication and Inner Products 109
If we consider the vectors u, v ∈ Cm as m× 1 matrices then

〈u, v〉 = utv = u∗v
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Theorem MMCC Matrix Multiplication and Complex Conjugation 110
Suppose A is an m× n matrix and B is an n× p matrix. Then AB = AB.
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Theorem MMT Matrix Multiplication and Transposes 111
Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)t = BtAt.
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Theorem MMAD Matrix Multiplication and Adjoints 112
Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)∗ = B∗A∗.
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Theorem AIP Adjoint and Inner Product 113
Suppose that A is an m× n matrix and x ∈ Cn, y ∈ Cm. Then 〈Ax, y〉 = 〈x, A∗y〉.
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Definition HM Hermitian Matrix 114
The square matrix A is Hermitian (or self-adjoint) if A = A∗.
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Theorem HMIP Hermitian Matrices and Inner Products 115
Suppose that A is a square matrix of size n. Then A is Hermitian if and only if 〈Ax, y〉 = 〈x, Ay〉
for all x, y ∈ Cn.
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Definition MI Matrix Inverse 116
Suppose A and B are square matrices of size n such that AB = In and BA = In. Then A is
invertible and B is the inverse of A. In this situation, we write B = A−1.
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Theorem TTMI Two-by-Two Matrix Inverse 117
Suppose

A =

[
a b
c d

]
Then A is invertible if and only if ad− bc 6= 0. When A is invertible, then

A−1 =
1

ad− bc

[
d −b
−c a

]
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Theorem CINM Computing the Inverse of a Nonsingular Matrix 118
Suppose A is a nonsingular square matrix of size n. Create the n× 2n matrix M by placing the
n× n identity matrix In to the right of the matrix A. Let N be a matrix that is row-equivalent
to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n
columns of N . Then AJ = In.
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Theorem MIU Matrix Inverse is Unique 119
Suppose the square matrix A has an inverse. Then A−1 is unique.
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Theorem SS Socks and Shoes 120

Suppose A and B are invertible matrices of size n. Then AB is an invertible matrix and (AB)−1 =
B−1A−1.
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Theorem MIMI Matrix Inverse of a Matrix Inverse 121

Suppose A is an invertible matrix. Then A−1 is invertible and (A−1)−1 = A.
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Theorem MIT Matrix Inverse of a Transpose 122

Suppose A is an invertible matrix. Then At is invertible and (At)−1 = (A−1)t.
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Theorem MISM Matrix Inverse of a Scalar Multiple 123

Suppose A is an invertible matrix and α is a nonzero scalar. Then (αA)
−1

= 1
αA
−1 and αA is

invertible.
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Theorem NPNT Nonsingular Product has Nonsingular Terms 124
Suppose that A and B are square matrices of size n. The product AB is nonsingular if and only
if A and B are both nonsingular.
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Theorem OSIS One-Sided Inverse is Sufficient 125
Suppose A and B are square matrices of size n such that AB = In. Then BA = In.
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Theorem NI Nonsingularity is Invertibility 126

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.
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Theorem NME3 Nonsingular Matrix Equivalences, Round 3 127
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.
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Theorem SNCM Solution with Nonsingular Coefficient Matrix 128
Suppose that A is nonsingular. Then the unique solution to LS(A, b) is A−1b.
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Definition UM Unitary Matrices 129
Suppose that U is a square matrix of size n such that U∗U = In. Then we say U is unitary.
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Theorem UMI Unitary Matrices are Invertible 130
Suppose that U is a unitary matrix of size n. Then U is nonsingular, and U−1 = U∗.
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Theorem CUMOS Columns of Unitary Matrices are Orthonormal Sets 131
Suppose that S = {A1, A2, A3, . . . , An} is the set of columns of a square matrix A of size n.
Then A is a unitary matrix if and only if S is an orthonormal set.
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Theorem UMPIP Unitary Matrices Preserve Inner Products 132
Suppose that U is a unitary matrix of size n and u and v are two vectors from Cn. Then

〈Uu, Uv〉 = 〈u, v〉 and ‖Uv‖ = ‖v‖
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Definition CSM Column Space of a Matrix 133
Suppose that A is an m × n matrix with columns {A1, A2, A3, . . . , An}. Then the column
space of A, written C(A), is the subset of Cm containing all linear combinations of the columns
of A,

C(A) = 〈{A1, A2, A3, . . . , An}〉
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Theorem CSCS Column Spaces and Consistent Systems 134
Suppose A is an m×n matrix and b is a vector of size m. Then b ∈ C(A) if and only if LS(A, b)
is consistent.
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Theorem BCS Basis of the Column Space 135
Suppose that A is an m×n matrix with columns A1, A2, A3, . . . , An, and B is a row-equivalent
matrix in reduced row-echelon form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the
set of column indices where B has leading 1’s. Let T = {Ad1 , Ad2 , Ad3 , . . . , Adr}. Then

1. T is a linearly independent set.

2. C(A) = 〈T 〉.
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Theorem CSNM Column Space of a Nonsingular Matrix 136

Suppose A is a square matrix of size n. Then A is nonsingular if and only if C(A) = Cn.
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Theorem NME4 Nonsingular Matrix Equivalences, Round 4 137
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.
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Definition RSM Row Space of a Matrix 138
Suppose A is an m × n matrix. Then the row space of A, R(A), is the column space of At, i.e.
R(A) = C(At).
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Theorem REMRS Row-Equivalent Matrices have equal Row Spaces 139

Suppose A and B are row-equivalent matrices. Then R(A) = R(B).
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Theorem BRS Basis for the Row Space 140
Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let
S be the set of nonzero columns of Bt. Then

1. R(A) = 〈S〉.

2. S is a linearly independent set.
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Theorem CSRST Column Space, Row Space, Transpose 141

Suppose A is a matrix. Then C(A) = R(At).
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Definition LNS Left Null Space 142
Suppose A is an m× n matrix. Then the left null space is defined as L(A) = N (At) ⊆ Cm.
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Definition EEF Extended Echelon Form 143
Suppose A is an m × n matrix. Extend A on its right side with the addition of an m × m
identity matrix to form an m × (n + m) matrix M. Use row operations to bring M to reduced
row-echelon form and call the result N . N is the extended reduced row-echelon form of A, and
we will standardize on names for five submatrices (B, C, J , K, L) of N .
Let B denote the m×n matrix formed from the first n columns of N and let J denote the m×m
matrix formed from the last m columns of N . Suppose that B has r nonzero rows. Further
partition N by letting C denote the r×n matrix formed from all of the non-zero rows of B. Let
K be the r×m matrix formed from the first r rows of J , while L will be the (m− r)×m matrix
formed from the bottom m− r rows of J . Pictorially,

M = [A|Im]
RREF−−−−→ N = [B|J ] =

[
C K
0 L

]
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Theorem PEEF Properties of Extended Echelon Form 144
Suppose that A is an m× n matrix and that N is its extended echelon form. Then

1. J is nonsingular.

2. B = JA.

3. If x ∈ Cn and y ∈ Cm, then Ax = y if and only if Bx = Jy.

4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.

5. L is in reduced row-echelon form, has no zero rows and has m− r pivot columns.
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Theorem FS Four Subsets 145

Suppose A is an m× n matrix with extended echelon form N . Suppose the reduced row-echelon
form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and
the first n columns and L is the submatrix of N formed from the last m columns and the last
m− r rows. Then

1. The null space of A is the null space of C, N (A) = N (C).

2. The row space of A is the row space of C, R(A) = R(C).

3. The column space of A is the null space of L, C(A) = N (L).

4. The left null space of A is the row space of L, L(A) = R(L).
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Definition VS Vector Space 146
Suppose that V is a set upon which we have defined two operations: (1) vector addition, which
combines two elements of V and is denoted by “+”, and (2) scalar multiplication, which combines
a complex number with an element of V and is denoted by juxtaposition. Then V , along with
the two operations, is a vector space over C if the following ten properties hold.

• AC Additive Closure: If u, v ∈ V , then u + v ∈ V .

• SC Scalar Closure: If α ∈ C and u ∈ V , then αu ∈ V .

• C Commutativity: If u, v ∈ V , then u + v = v + u.

• AA Additive Associativity: If u, v, w ∈ V , then u + (v + w) = (u + v) + w.

• Z Zero Vector: There is a vector, 0, called the zero vector, such that u + 0 = u for all
u ∈ V .

• AI Additive Inverses: If u ∈ V , then there exists a vector −u ∈ V so that u + (−u) = 0.

• SMA Scalar Multiplication Associativity: If α, β ∈ C and u ∈ V , then α(βu) = (αβ)u.

• DVA Distributivity across Vector Addition: If α ∈ C and u, v ∈ V , then α(u + v) =
αu + αv.

• DSA Distributivity across Scalar Addition: If α, β ∈ C and u ∈ V , then (α+β)u = αu+βu.

• O One: If u ∈ V , then 1u = u.

The objects in V are called vectors, no matter what else they might really be, simply by virtue
of being elements of a vector space.
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Theorem ZVU Zero Vector is Unique 147
Suppose that V is a vector space. The zero vector, 0, is unique.
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Theorem AIU Additive Inverses are Unique 148
Suppose that V is a vector space. For each u ∈ V , the additive inverse, −u, is unique.
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Theorem ZSSM Zero Scalar in Scalar Multiplication 149
Suppose that V is a vector space and u ∈ V . Then 0u = 0.
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Theorem ZVSM Zero Vector in Scalar Multiplication 150
Suppose that V is a vector space and α ∈ C. Then α0 = 0.
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Theorem AISM Additive Inverses from Scalar Multiplication 151
Suppose that V is a vector space and u ∈ V . Then −u = (−1)u.
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Theorem SMEZV Scalar Multiplication Equals the Zero Vector 152
Suppose that V is a vector space and α ∈ C. If αu = 0, then either α = 0 or u = 0.
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Definition S Subspace 153
Suppose that V and W are two vector spaces that have identical definitions of vector addition
and scalar multiplication, and that W is a subset of V , W ⊆ V . Then W is a subspace of V .
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Theorem TSS Testing Subsets for Subspaces 154
Suppose that V is a vector space and W is a subset of V , W ⊆ V . Endow W with the same
operations as V . Then W is a subspace if and only if three conditions are met

1. W is non-empty, W 6= ∅.

2. If x ∈W and y ∈W , then x + y ∈W .

3. If α ∈ C and x ∈W , then αx ∈W .
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Definition TS Trivial Subspaces 155
Given the vector space V , the subspaces V and {0} are each called a trivial subspace.
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Theorem NSMS Null Space of a Matrix is a Subspace 156
Suppose that A is an m× n matrix. Then the null space of A, N (A), is a subspace of Cn.
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Definition LC Linear Combination 157
Suppose that V is a vector space. Given n vectors u1, u2, u3, . . . , un and n scalars
α1, α2, α3, . . . , αn, their linear combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.
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Definition SS Span of a Set 158
Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut}, their span,
〈S〉, is the set of all possible linear combinations of u1, u2, u3, . . . , ut. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αtut|αi ∈ C, 1 ≤ i ≤ t}

=

{
t∑
i=1

αiui

∣∣∣∣∣αi ∈ C, 1 ≤ i ≤ t

}
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Theorem SSS Span of a Set is a Subspace 159
Suppose V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut} ⊆ V , their span,
〈S〉, is a subspace.
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Theorem CSMS Column Space of a Matrix is a Subspace 160
Suppose that A is an m× n matrix. Then C(A) is a subspace of Cm.

c©2004—2013 Robert A. Beezer, GFDL License



Theorem RSMS Row Space of a Matrix is a Subspace 161
Suppose that A is an m× n matrix. Then R(A) is a subspace of Cn.
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Theorem LNSMS Left Null Space of a Matrix is a Subspace 162
Suppose that A is an m× n matrix. Then L(A) is a subspace of Cm.
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Definition RLD Relation of Linear Dependence 163
Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , un}, an equation
of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. αi = 0,
1 ≤ i ≤ n, then we say it is a trivial relation of linear dependence on S.
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Definition LI Linear Independence 164
Suppose that V is a vector space. The set of vectors S = {u1, u2, u3, . . . , un} from V is linearly
dependent if there is a relation of linear dependence on S that is not trivial. In the case where
the only relation of linear dependence on S is the trivial one, then S is a linearly independent
set of vectors.
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Definition SSVS Spanning Set of a Vector Space 165
Suppose V is a vector space. A subset S of V is a spanning set of V if 〈S〉 = V . In this case, we
also frequently say S spans V .
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Theorem VRRB Vector Representation Relative to a Basis 166
Suppose that V is a vector space and B = {v1, v2, v3, . . . , vm} is a linearly independent set
that spans V . Let w be any vector in V . Then there exist unique scalars a1, a2, a3, . . . , am such
that

w = a1v1 + a2v2 + a3v3 + · · ·+ amvm.
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Definition B Basis 167
Suppose V is a vector space. Then a subset S ⊆ V is a basis of V if it is linearly independent
and spans V .
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Theorem SUVB Standard Unit Vectors are a Basis 168
The set of standard unit vectors for Cm (Definition SUV), B = {ei| 1 ≤ i ≤ m} is a basis for the
vector space Cm.
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Theorem CNMB Columns of Nonsingular Matrix are a Basis 169
Suppose that A is a square matrix of size m. Then the columns of A are a basis of Cm if and
only if A is nonsingular.
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Theorem NME5 Nonsingular Matrix Equivalences, Round 5 170
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.
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Theorem COB Coordinates and Orthonormal Bases 171
Suppose that B = {v1, v2, v3, . . . , vp} is an orthonormal basis of the subspace W of Cm. For
any w ∈W ,

w = 〈v1, w〉v1 + 〈v2, w〉v2 + 〈v3, w〉v3 + · · ·+ 〈vp, w〉vp
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Theorem UMCOB Unitary Matrices Convert Orthonormal Bases 172
Let A be an n× n matrix and B = {x1, x2, x3, . . . , xn} be an orthonormal basis of Cn. Define

C = {Ax1, Ax2, Ax3, . . . , Axn}

Then A is a unitary matrix if and only if C is an orthonormal basis of Cn.
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Definition D Dimension 173
Suppose that V is a vector space and {v1, v2, v3, . . . , vt} is a basis of V . Then the dimension
of V is defined by dim (V ) = t. If V has no finite bases, we say V has infinite dimension.
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Theorem SSLD Spanning Sets and Linear Dependence 174
Suppose that S = {v1, v2, v3, . . . , vt} is a finite set of vectors which spans the vector space V .
Then any set of t+ 1 or more vectors from V is linearly dependent.
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Theorem BIS Bases have Identical Sizes 175
Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have
the same size.
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Theorem DCM Dimension of Cm 176
The dimension of Cm (Example VSCV) is m.
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Theorem DP Dimension of Pn 177
The dimension of Pn (Example VSP) is n+ 1.
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Theorem DM Dimension of Mmn 178
The dimension of Mmn (Example VSM) is mn.
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Definition NOM Nullity Of a Matrix 179
Suppose that A is an m× n matrix. Then the nullity of A is the dimension of the null space of
A, n (A) = dim (N (A)).
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Definition ROM Rank Of a Matrix 180
Suppose that A is an m×n matrix. Then the rank of A is the dimension of the column space of
A, r (A) = dim (C(A)).
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Theorem CRN Computing Rank and Nullity 181

Suppose that A is an m × n matrix and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Then r (A) = r and n (A) = n− r.
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Theorem RPNC Rank Plus Nullity is Columns 182
Suppose that A is an m× n matrix. Then r (A) + n (A) = n.
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Theorem RNNM Rank and Nullity of a Nonsingular Matrix 183

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. The rank of A is n, r (A) = n.

3. The nullity of A is zero, n (A) = 0.
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Theorem NME6 Nonsingular Matrix Equivalences, Round 6 184
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.
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Theorem ELIS Extending Linearly Independent Sets 185
Suppose V is vector space and S is a linearly independent set of vectors from V . Suppose w is
a vector such that w 6∈ 〈S〉. Then the set S′ = S ∪ {w} is linearly independent.

c©2004—2013 Robert A. Beezer, GFDL License

Theorem G Goldilocks 186
Suppose that V is a vector space of dimension t. Let S = {v1, v2, v3, . . . , vm} be a set of
vectors from V . Then

1. If m > t, then S is linearly dependent.

2. If m < t, then S does not span V .

3. If m = t and S is linearly independent, then S spans V .

4. If m = t and S spans V , then S is linearly independent.
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Theorem PSSD Proper Subspaces have Smaller Dimension 187

Suppose that U and V are subspaces of the vector space W , such that U ( V . Then dim (U) <
dim (V ).
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Theorem EDYES Equal Dimensions Yields Equal Subspaces 188
Suppose that U and V are subspaces of the vector space W , such that U ⊆ V and dim (U) =
dim (V ). Then U = V .
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Theorem RMRT Rank of a Matrix is the Rank of the Transpose 189
Suppose A is an m× n matrix. Then r (A) = r (At).
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Theorem DFS Dimensions of Four Subspaces 190
Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Then

1. dim (N (A)) = n− r

2. dim (C(A)) = r

3. dim (R(A)) = r

4. dim (L(A)) = m− r
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Definition ELEM Elementary Matrices 191

1. For i 6= j, Ei,j is the square matrix of size n with

[Ei,j ]k` =



0 k 6= i, k 6= j, ` 6= k

1 k 6= i, k 6= j, ` = k

0 k = i, ` 6= j

1 k = i, ` = j

0 k = j, ` 6= i

1 k = j, ` = i

2. For α 6= 0, Ei (α) is the square matrix of size n with

[Ei (α)]k` =


0 k 6= i, ` 6= k

1 k 6= i, ` = k

α k = i, ` = i

3. For i 6= j, Ei,j (α) is the square matrix of size n with

[Ei,j (α)]k` =



0 k 6= j, ` 6= k

1 k 6= j, ` = k

0 k = j, ` 6= i, ` 6= j

1 k = j, ` = j

α k = j, ` = i
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Theorem EMDRO Elementary Matrices Do Row Operations 192

Suppose that A is an m × n matrix, and B is a matrix of the same size that is obtained from
A by a single row operation (Definition RO). Then there is an elementary matrix of size m that
will convert A to B via matrix multiplication on the left. More precisely,

1. If the row operation swaps rows i and j, then B = Ei,jA.

2. If the row operation multiplies row i by α, then B = Ei (α)A.

3. If the row operation multiplies row i by α and adds the result to row j, then B = Ei,j (α)A.
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Theorem EMN Elementary Matrices are Nonsingular 193
If E is an elementary matrix, then E is nonsingular.
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Theorem NMPEM Nonsingular Matrices are Products of Elementary Matrices194
Suppose that A is a nonsingular matrix. Then there exists elementary matrices
E1, E2, E3, . . . , Et so that A = E1E2E3 . . . Et.
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Definition SM SubMatrix 195
Suppose that A is an m× n matrix. Then the submatrix A (i|j) is the (m− 1)× (n− 1) matrix
obtained from A by removing row i and column j.
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Definition DM Determinant of a Matrix 196
Suppose A is a square matrix. Then its determinant, det (A) = |A|, is an element of C defined
recursively by:

1. If A is a 1× 1 matrix, then det (A) = [A]11.

2. If A is a matrix of size n with n ≥ 2, then

det (A) = [A]11 det (A (1|1))− [A]12 det (A (1|2)) + [A]13 det (A (1|3))−
[A]14 det (A (1|4)) + · · ·+ (−1)n+1 [A]1n det (A (1|n))
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Theorem DMST Determinant of Matrices of Size Two 197

Suppose that A =

[
a b
c d

]
. Then det (A) = ad− bc.
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Theorem DER Determinant Expansion about Rows 198
Suppose that A is a square matrix of size n. Then for 1 ≤ i ≤ n

det (A) = (−1)i+1 [A]i1 det (A (i|1)) + (−1)i+2 [A]i2 det (A (i|2))

+ (−1)i+3 [A]i3 det (A (i|3)) + · · ·+ (−1)i+n [A]in det (A (i|n))

which is known as expansion about row i.
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Theorem DT Determinant of the Transpose 199
Suppose that A is a square matrix. Then det (At) = det (A).
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Theorem DEC Determinant Expansion about Columns 200
Suppose that A is a square matrix of size n. Then for 1 ≤ j ≤ n

det (A) = (−1)1+j [A]1j det (A (1|j)) + (−1)2+j [A]2j det (A (2|j))

+ (−1)3+j [A]3j det (A (3|j)) + · · ·+ (−1)n+j [A]nj det (A (n|j))

which is known as expansion about column j.
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Theorem DZRC Determinant with Zero Row or Column 201
Suppose that A is a square matrix with a row where every entry is zero, or a column where every
entry is zero. Then det (A) = 0.
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Theorem DRCS Determinant for Row or Column Swap 202
Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging
the location of two rows, or interchanging the location of two columns. Then det (B) = − det (A).
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Theorem DRCM Determinant for Row or Column Multiples 203
Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying
a single row by the scalar α, or by multiplying a single column by the scalar α. Then det (B) =
α det (A).
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Theorem DERC Determinant with Equal Rows or Columns 204
Suppose that A is a square matrix with two equal rows, or two equal columns. Then det (A) = 0.
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Theorem DRCMA Determinant for Row or Column Multiples and Addition 205
Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying
a row by the scalar α and then adding it to another row, or by multiplying a column by the
scalar α and then adding it to another column. Then det (B) = det (A).
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Theorem DIM Determinant of the Identity Matrix 206

For every n ≥ 1, det (In) = 1.
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Theorem DEM Determinants of Elementary Matrices 207
For the three possible versions of an elementary matrix (Definition ELEM) we have the determi-
nants,

1. det (Ei,j) = −1

2. det (Ei (α)) = α

3. det (Ei,j (α)) = 1
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Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication208
Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

det (EA) = det (E) det (A)
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Theorem SMZD Singular Matrices have Zero Determinants 209

Let A be a square matrix. Then A is singular if and only if det (A) = 0.
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Theorem NME7 Nonsingular Matrix Equivalences, Round 7 210
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.
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Theorem DRMM Determinant Respects Matrix Multiplication 211
Suppose that A and B are square matrices of the same size. Then det (AB) = det (A) det (B).
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Definition EEM Eigenvalues and Eigenvectors of a Matrix 212
Suppose that A is a square matrix of size n, x 6= 0 is a vector in Cn, and λ is a scalar in C. Then
we say x is an eigenvector of A with eigenvalue λ if

Ax = λx
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Theorem EMHE Every Matrix Has an Eigenvalue 213
Suppose A is a square matrix. Then A has at least one eigenvalue.
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Definition CP Characteristic Polynomial 214
Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the
polynomial pA (x) defined by

pA (x) = det (A− xIn)
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Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials
215
Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if pA (λ) = 0.
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Definition EM Eigenspace of a Matrix 216
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for λ,
EA (λ), is the set of all the eigenvectors of A for λ, together with the inclusion of the zero vector.
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Theorem EMS Eigenspace for a Matrix is a Subspace 217
Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace EA (λ)
is a subspace of the vector space Cn.
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Theorem EMNS Eigenspace of a Matrix is a Null Space 218
Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

EA (λ) = N (A− λIn)
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Definition AME Algebraic Multiplicity of an Eigenvalue 219
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity
of λ, αA (λ), is the highest power of (x− λ) that divides the characteristic polynomial, pA (x).

c©2004—2013 Robert A. Beezer, GFDL License

Definition GME Geometric Multiplicity of an Eigenvalue 220
Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multiplicity
of λ, γA (λ), is the dimension of the eigenspace EA (λ).

c©2004—2013 Robert A. Beezer, GFDL License



Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent
221
Suppose that A is an n× n square matrix and S = {x1, x2, x3, . . . , xp} is a set of eigenvectors
with eigenvalues λ1, λ2, λ3, . . . , λp such that λi 6= λj whenever i 6= j. Then S is a linearly
independent set.
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Theorem SMZE Singular Matrices have Zero Eigenvalues 222
Suppose A is a square matrix. Then A is singular if and only if λ = 0 is an eigenvalue of A.
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Theorem NME8 Nonsingular Matrix Equivalences, Round 8 223
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

c©2004—2013 Robert A. Beezer, GFDL License

Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix 224
Suppose A is a square matrix and λ is an eigenvalue of A. Then αλ is an eigenvalue of αA.
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Theorem EOMP Eigenvalues Of Matrix Powers 225
Suppose A is a square matrix, λ is an eigenvalue of A, and s ≥ 0 is an integer. Then λs is an
eigenvalue of As.
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Theorem EPM Eigenvalues of the Polynomial of a Matrix 226
Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the
variable x. Then q(λ) is an eigenvalue of the matrix q(A).
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Theorem EIM Eigenvalues of the Inverse of a Matrix 227
Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then λ−1 is an eigenvalue
of the matrix A−1.
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Theorem ETM Eigenvalues of the Transpose of a Matrix 228
Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix
At.
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Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs 229

Suppose A is a square matrix with real entries and x is an eigenvector of A for the eigenvalue λ.
Then x is an eigenvector of A for the eigenvalue λ.
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Theorem DCP Degree of the Characteristic Polynomial 230
Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, pA (x),
has degree n.
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Theorem NEM Number of Eigenvalues of a Matrix 231
Suppose that λ1, λ2, λ3, . . . , λk are the distinct eigenvalues of a square matrix A of size n. Then

k∑
i=1

αA (λi) = n
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Theorem ME Multiplicities of an Eigenvalue 232
Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

1 ≤ γA (λ) ≤ αA (λ) ≤ n
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Theorem MNEM Maximum Number of Eigenvalues of a Matrix 233
Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigenvalues.
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Theorem HMRE Hermitian Matrices have Real Eigenvalues 234
Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then λ ∈ R.
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Theorem HMOE Hermitian Matrices have Orthogonal Eigenvectors 235
Suppose that A is a Hermitian matrix and x and y are two eigenvectors of A for different
eigenvalues. Then x and y are orthogonal vectors.
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Definition SIM Similar Matrices 236
Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a
nonsingular matrix of size n, S, such that A = S−1BS.
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Theorem SER Similarity is an Equivalence Relation 237
Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)

2. If A is similar to B, then B is similar to A. (Symmetric)

3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)
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Theorem SMEE Similar Matrices have Equal Eigenvalues 238
Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are
equal, that is, pA (x) = pB (x).
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Definition DIM Diagonal Matrix 239
Suppose that A is a square matrix. Then A is a diagonal matrix if [A]ij = 0 whenever i 6= j.

c©2004—2013 Robert A. Beezer, GFDL License

Definition DZM Diagonalizable Matrix 240
Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.
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Theorem DC Diagonalization Characterization 241
Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a
linearly independent set S that contains n eigenvectors of A.
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Theorem DMFE Diagonalizable Matrices have Full Eigenspaces 242
Suppose A is a square matrix. Then A is diagonalizable if and only if γA (λ) = αA (λ) for every
eigenvalue λ of A.

c©2004—2013 Robert A. Beezer, GFDL License



Theorem DED Distinct Eigenvalues implies Diagonalizable 243
Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.
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Definition LT Linear Transformation 244
A linear transformation, T : U → V , is a function that carries elements of the vector space U
(called the domain) to the vector space V (called the codomain), and which has two additional
properties

1. T (u1 + u2) = T (u1) + T (u2) for all u1, u2 ∈ U

2. T (αu) = αT (u) for all u ∈ U and all α ∈ C
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Theorem LTTZZ Linear Transformations Take Zero to Zero 245
Suppose T : U → V is a linear transformation. Then T (0) = 0.
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Theorem MBLT Matrices Build Linear Transformations 246
Suppose that A is an m× n matrix. Define a function T : Cn → Cm by T (x) = Ax. Then T is
a linear transformation.
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Theorem MLTCV Matrix of a Linear Transformation, Column Vectors 247

Suppose that T : Cn → Cm is a linear transformation. Then there is an m × n matrix A such
that T (x) = Ax.
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Theorem LTLC Linear Transformations and Linear Combinations 248

Suppose that T : U → V is a linear transformation, u1, u2, u3, . . . , ut are vectors from U and
a1, a2, a3, . . . , at are scalars from C. Then

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut)
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Theorem LTDB Linear Transformation Defined on a Basis 249
Suppose U is a vector space with basis B = {u1, u2, u3, . . . , un} and the vector space V con-
tains the vectors v1, v2, v3, . . . , vn (which may not be distinct). Then there is a unique linear
transformation, T : U → V , such that T (ui) = vi, 1 ≤ i ≤ n.
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Definition PI Pre-Image 250
Suppose that T : U → V is a linear transformation. For each v, define the pre-image of v to be
the subset of U given by

T−1 (v) = {u ∈ U |T (u) = v}
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Definition LTA Linear Transformation Addition 251
Suppose that T : U → V and S : U → V are two linear transformations with the same domain
and codomain. Then their sum is the function T + S : U → V whose outputs are defined by

(T + S) (u) = T (u) + S (u)
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Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 252
Suppose that T : U → V and S : U → V are two linear transformations with the same domain
and codomain. Then T + S : U → V is a linear transformation.
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Definition LTSM Linear Transformation Scalar Multiplication 253
Suppose that T : U → V is a linear transformation and α ∈ C. Then the scalar multiple is the
function αT : U → V whose outputs are defined by

(αT ) (u) = αT (u)
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Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation
254
Suppose that T : U → V is a linear transformation and α ∈ C. Then (αT ) : U → V is a linear
transformation.
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Theorem VSLT Vector Space of Linear Transformations 255

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V ,
LT (U, V ) is a vector space when the operations are those given in Definition LTA and Definition
LTSM.
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Definition LTC Linear Transformation Composition 256
Suppose that T : U → V and S : V →W are linear transformations. Then the composition of S
and T is the function (S ◦ T ) : U →W whose outputs are defined by

(S ◦ T ) (u) = S (T (u))
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Theorem CLTLT Composition of Linear Transformations is a Linear Transforma-
tion 257
Suppose that T : U → V and S : V →W are linear transformations. Then (S ◦ T ) : U →W is a
linear transformation.
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Definition ILT Injective Linear Transformation 258
Suppose T : U → V is a linear transformation. Then T is injective if whenever T (x) = T (y),
then x = y.
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Definition KLT Kernel of a Linear Transformation 259
Suppose T : U → V is a linear transformation. Then the kernel of T is the set

K(T ) = {u ∈ U |T (u) = 0}
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Theorem KLTS Kernel of a Linear Transformation is a Subspace 260
Suppose that T : U → V is a linear transformation. Then the kernel of T , K(T ), is a subspace of
U .
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Theorem KPI Kernel and Pre-Image 261

Suppose T : U → V is a linear transformation and v ∈ V . If the preimage T−1 (v) is non-empty,
and u ∈ T−1 (v) then

T−1 (v) = {u + z| z ∈ K(T )} = u +K(T )
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Theorem KILT Kernel of an Injective Linear Transformation 262
Suppose that T : U → V is a linear transformation. Then T is injective if and only if the kernel
of T is trivial, K(T ) = {0}.
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Theorem ILTLI Injective Linear Transformations and Linear Independence 263
Suppose that T : U → V is an injective linear transformation and

S = {u1, u2, u3, . . . , ut}

is a linearly independent subset of U . Then

R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)}

is a linearly independent subset of V .

c©2004—2013 Robert A. Beezer, GFDL License

Theorem ILTB Injective Linear Transformations and Bases 264
Suppose that T : U → V is a linear transformation and

B = {u1, u2, u3, . . . , um}

is a basis of U . Then T is injective if and only if

C = {T (u1) , T (u2) , T (u3) , . . . , T (um)}

is a linearly independent subset of V .
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Theorem ILTD Injective Linear Transformations and Dimension 265
Suppose that T : U → V is an injective linear transformation. Then dim (U) ≤ dim (V ).
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Theorem CILTI Composition of Injective Linear Transformations is Injective 266
Suppose that T : U → V and S : V →W are injective linear transformations. Then (S ◦T ) : U →
W is an injective linear transformation.
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Definition SLT Surjective Linear Transformation 267
Suppose T : U → V is a linear transformation. Then T is surjective if for every v ∈ V there
exists a u ∈ U so that T (u) = v.
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Definition RLT Range of a Linear Transformation 268
Suppose T : U → V is a linear transformation. Then the range of T is the set

R(T ) = {T (u)|u ∈ U}
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Theorem RLTS Range of a Linear Transformation is a Subspace 269
Suppose that T : U → V is a linear transformation. Then the range of T , R(T ), is a subspace of
V .
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Theorem RSLT Range of a Surjective Linear Transformation 270
Suppose that T : U → V is a linear transformation. Then T is surjective if and only if the range
of T equals the codomain, R(T ) = V .
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Theorem SSRLT Spanning Set for Range of a Linear Transformation 271
Suppose that T : U → V is a linear transformation and

S = {u1, u2, u3, . . . , ut}

spans U . Then

R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)}

spans R(T ).
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Theorem RPI Range and Pre-Image 272
Suppose that T : U → V is a linear transformation. Then

v ∈ R(T ) if and only if T−1 (v) 6= ∅

c©2004—2013 Robert A. Beezer, GFDL License



Theorem SLTB Surjective Linear Transformations and Bases 273
Suppose that T : U → V is a linear transformation and

B = {u1, u2, u3, . . . , um}

is a basis of U . Then T is surjective if and only if

C = {T (u1) , T (u2) , T (u3) , . . . , T (um)}

is a spanning set for V .
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Theorem SLTD Surjective Linear Transformations and Dimension 274
Suppose that T : U → V is a surjective linear transformation. Then dim (U) ≥ dim (V ).
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Theorem CSLTS Composition of Surjective Linear Transformations is Surjective
275
Suppose that T : U → V and S : V →W are surjective linear transformations. Then (S◦T ) : U →
W is a surjective linear transformation.
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Definition IDLT Identity Linear Transformation 276
The identity linear transformation on the vector space W is defined as

IW : W →W, IW (w) = w
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Definition IVLT Invertible Linear Transformations 277
Suppose that T : U → V is a linear transformation. If there is a function S : V → U such that

S ◦ T = IU T ◦ S = IV

then T is invertible. In this case, we call S the inverse of T and write S = T−1.
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Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation278
Suppose that T : U → V is an invertible linear transformation. Then the function T−1 : V → U
is a linear transformation.
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Theorem IILT Inverse of an Invertible Linear Transformation 279
Suppose that T : U → V is an invertible linear transformation. Then T−1 is an invertible linear

transformation and
(
T−1

)−1
= T .
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Theorem ILTIS Invertible Linear Transformations are Injective and Surjective280
Suppose T : U → V is a linear transformation. Then T is invertible if and only if T is injective
and surjective.

c©2004—2013 Robert A. Beezer, GFDL License



Theorem CIVLT Composition of Invertible Linear Transformations 281
Suppose that T : U → V and S : V →W are invertible linear transformations. Then the compo-
sition, (S ◦ T ) : U →W is an invertible linear transformation.
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Theorem ICLT Inverse of a Composition of Linear Transformations 282
Suppose that T : U → V and S : V → W are invertible linear transformations. Then S ◦ T is
invertible and (S ◦ T )

−1
= T−1 ◦ S−1.
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Definition IVS Isomorphic Vector Spaces 283
Two vector spaces U and V are isomorphic if there exists an invertible linear transformation
T with domain U and codomain V , T : U → V . In this case, we write U ∼= V , and the linear
transformation T is known as an isomorphism between U and V .
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Theorem IVSED Isomorphic Vector Spaces have Equal Dimension 284
Suppose U and V are isomorphic vector spaces. Then dim (U) = dim (V ).
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Definition ROLT Rank Of a Linear Transformation 285
Suppose that T : U → V is a linear transformation. Then the rank of T , r (T ), is the dimension
of the range of T ,

r (T ) = dim (R(T ))
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Definition NOLT Nullity Of a Linear Transformation 286
Suppose that T : U → V is a linear transformation. Then the nullity of T , n (T ), is the dimension
of the kernel of T ,

n (T ) = dim (K(T ))
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Theorem ROSLT Rank Of a Surjective Linear Transformation 287
Suppose that T : U → V is a linear transformation. Then the rank of T is the dimension of V ,
r (T ) = dim (V ), if and only if T is surjective.
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Theorem NOILT Nullity Of an Injective Linear Transformation 288
Suppose that T : U → V is a linear transformation. Then the nullity of T is zero, n (T ) = 0, if
and only if T is injective.
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Theorem RPNDD Rank Plus Nullity is Domain Dimension 289
Suppose that T : U → V is a linear transformation. Then

r (T ) + n (T ) = dim (U)
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Definition VR Vector Representation 290
Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}. Define a function
ρB : V → Cn as follows. For w ∈ V define the column vector ρB (w) ∈ Cn by

w = [ρB (w)]1 v1 + [ρB (w)]2 v2 + [ρB (w)]3 v3 + · · ·+ [ρB (w)]n vn
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Theorem VRLT Vector Representation is a Linear Transformation 291
The function ρB (Definition VR) is a linear transformation.
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Theorem VRI Vector Representation is Injective 292
The function ρB (Definition VR) is an injective linear transformation.
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Theorem VRS Vector Representation is Surjective 293
The function ρB (Definition VR) is a surjective linear transformation.
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Theorem VRILT Vector Representation is an Invertible Linear Transformation294
The function ρB (Definition VR) is an invertible linear transformation.
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Theorem CFDVS Characterization of Finite Dimensional Vector Spaces 295
Suppose that V is a vector space with dimension n. Then V is isomorphic to Cn.
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Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces 296
Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if
and only if dim (U) = dim (V ).
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Theorem CLI Coordinatization and Linear Independence 297
Suppose that U is a vector space with a basis B of size n. Then

S = {u1, u2, u3, . . . , uk}

is a linearly independent subset of U if and only if

R = {ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}

is a linearly independent subset of Cn.
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Theorem CSS Coordinatization and Spanning Sets 298
Suppose that U is a vector space with a basis B of size n. Then

u ∈ 〈{u1, u2, u3, . . . , uk}〉

if and only if

ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉
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Definition MR Matrix Representation 299
Suppose that T : U → V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis for U of
size n, and C is a basis for V of size m. Then the matrix representation of T relative to B and
C is the m× n matrix,

MT
B,C = [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]
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Theorem FTMR Fundamental Theorem of Matrix Representation 300
Suppose that T : U → V is a linear transformation, B is a basis for U , C is a basis for V and
MT
B,C is the matrix representation of T relative to B and C. Then, for any u ∈ U ,

ρC (T (u)) = MT
B,C (ρB (u))

or equivalently

T (u) = ρ−1C
(
MT
B,C (ρB (u))

)
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Theorem MRSLT Matrix Representation of a Sum of Linear Transformations 301
Suppose that T : U → V and S : U → V are linear transformations, B is a basis of U and C is a
basis of V . Then

MT+S
B,C = MT

B,C +MS
B,C
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Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation
302
Suppose that T : U → V is a linear transformation, α ∈ C, B is a basis of U and C is a basis of
V . Then

MαT
B,C = αMT

B,C
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Theorem MRCLT Matrix Representation of a Composition of Linear Transforma-
tions 303
Suppose that T : U → V and S : V → W are linear transformations, B is a basis of U , C is a
basis of V , and D is a basis of W . Then

MS◦T
B,D = MS

C,DM
T
B,C
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Theorem KNSI Kernel and Null Space Isomorphism 304

Suppose that T : U → V is a linear transformation, B is a basis for U of size n, and C is a basis
for V . Then the kernel of T is isomorphic to the null space of MT

B,C ,

K(T ) ∼= N
(
MT
B,C

)
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Theorem RCSI Range and Column Space Isomorphism 305

Suppose that T : U → V is a linear transformation, B is a basis for U of size n, and C is a basis
for V of size m. Then the range of T is isomorphic to the column space of MT

B,C ,

R(T ) ∼= C
(
MT
B,C

)
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Theorem IMR Invertible Matrix Representations 306
Suppose that T : U → V is a linear transformation, B is a basis for U and C is a basis for V .
Then T is an invertible linear transformation if and only if the matrix representation of T relative
to B and C, MT

B,C is an invertible matrix. When T is invertible,

MT−1

C,B =
(
MT
B,C

)−1
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Theorem IMILT Invertible Matrices, Invertible Linear Transformation 307
Suppose that A is a square matrix of size n and T : Cn → Cn is the linear transformation defined
by T (x) = Ax. Then A is invertible matrix if and only if T is an invertible linear transformation.
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Theorem NME9 Nonsingular Matrix Equivalences, Round 9 308
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

13. The linear transformation T : Cn → Cn defined by T (x) = Ax is invertible.
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Definition EELT Eigenvalue and Eigenvector of a Linear Transformation 309
Suppose that T : V → V is a linear transformation. Then a nonzero vector v ∈ V is an eigenvector
of T for the eigenvalue λ if T (v) = λv.
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Definition CBM Change-of-Basis Matrix 310
Suppose that V is a vector space, and IV : V → V is the identity linear transformation on V .
Let B = {v1, v2, v3, . . . , vn} and C be two bases of V . Then the change-of-basis matrix from
B to C is the matrix representation of IV relative to B and C,

CB,C = M IV
B,C

= [ρC (IV (v1))| ρC (IV (v2))| ρC (IV (v3))| . . . |ρC (IV (vn)) ]

= [ρC (v1)| ρC (v2)| ρC (v3)| . . . |ρC (vn) ]
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Theorem CB Change-of-Basis 311
Suppose that v is a vector in the vector space V and B and C are bases of V . Then

ρC (v) = CB,CρB (v)
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Theorem ICBM Inverse of Change-of-Basis Matrix 312
Suppose that V is a vector space, and B and C are bases of V . Then the change-of-basis matrix
CB,C is nonsingular and

C−1B,C = CC,B
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Theorem MRCB Matrix Representation and Change of Basis 313
Suppose that T : U → V is a linear transformation, B and C are bases for U , and D and E are
bases for V . Then

MT
B,D = CE,DM

T
C,ECB,C

c©2004—2013 Robert A. Beezer, GFDL License

Theorem SCB Similarity and Change of Basis 314
Suppose that T : V → V is a linear transformation and B and C are bases of V . Then

MT
B,B = C−1B,CM

T
C,CCB,C
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Theorem EER Eigenvalues, Eigenvectors, Representations 315
Suppose that T : V → V is a linear transformation and B is a basis of V . Then v ∈ V is an
eigenvector of T for the eigenvalue λ if and only if ρB (v) is an eigenvector of MT

B,B for the
eigenvalue λ.
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Definition UTM Upper Triangular Matrix 316
The n× n square matrix A is upper triangular if [A]ij = 0 whenever i > j.
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Definition LTM Lower Triangular Matrix 317
The n× n square matrix A is lower triangular if [A]ij = 0 whenever i < j.
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Theorem PTMT Product of Triangular Matrices is Triangular 318
Suppose that A and B are square matrices of size n that are triangular of the same type. Then
AB is also triangular of that type.
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Theorem ITMT Inverse of a Triangular Matrix is Triangular 319
Suppose that A is a nonsingular matrix of size n that is triangular. Then the inverse of A, A−1,
is triangular of the same type. Furthermore, the diagonal entries of A−1 are the reciprocals of
the corresponding diagonal entries of A. More precisely,

[
A−1

]
ii

= [A]
−1
ii .
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Theorem UTMR Upper Triangular Matrix Representation 320
Suppose that T : V → V is a linear transformation. Then there is a basis B for V such that the
matrix representation of T relative to B, MT

B,B , is an upper triangular matrix. Each diagonal
entry is an eigenvalue of T , and if λ is an eigenvalue of T , then λ occurs αT (λ) times on the
diagonal.
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Theorem OBUTR Orthonormal Basis for Upper Triangular Representation 321
Suppose that A is a square matrix. Then there is a unitary matrix U , and an upper triangular
matrix T , such that

U∗AU = T

and T has the eigenvalues of A as the entries of the diagonal.
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Definition NRML Normal Matrix 322
The square matrix A is normal if A∗A = AA∗.
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Theorem OD Orthonormal Diagonalization 323
Suppose that A is a square matrix. Then there is a unitary matrix U and a diagonal matrix D,
with diagonal entries equal to the eigenvalues of A, such that U∗AU = D if and only if A is a
normal matrix.
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Theorem OBNM Orthonormal Bases and Normal Matrices 324
Suppose that A is a normal matrix of size n. Then there is an orthonormal basis of Cn composed
of eigenvectors of A.
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Definition CNE Complex Number Equality 325
The complex numbers α = a+ bi and β = c+ di are equal, denoted α = β, if a = c and b = d.
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Definition CNA Complex Number Addition 326
The sum of the complex numbers α = a+ bi and β = c+ di , denoted α+ β, is (a+ c) + (b+ d)i.
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Definition CNM Complex Number Multiplication 327
The product of the complex numbers α = a+bi and β = c+di , denoted αβ, is (ac−bd)+(ad+bc)i.
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Theorem PCNA Properties of Complex Number Arithmetic 328
The operations of addition and multiplication of complex numbers have the following properties.

• ACCN Additive Closure, Complex Numbers: If α, β ∈ C, then α+ β ∈ C.

• MCCN Multiplicative Closure, Complex Numbers: If α, β ∈ C, then αβ ∈ C.

• CACN Commutativity of Addition, Complex Numbers: For any α, β ∈ C, α+ β = β + α.

• CMCN Commutativity of Multiplication, Complex Numbers: For any α, β ∈ C, αβ = βα.

• AACN Additive Associativity, Complex Numbers: For any α, β, γ ∈ C, α + (β + γ) =
(α+ β) + γ.

• MACN Multiplicative Associativity, Complex Numbers: For any α, β, γ ∈ C, α (βγ) =
(αβ) γ.

• DCN Distributivity, Complex Numbers: For any α, β, γ ∈ C, α(β + γ) = αβ + αγ.

• ZCN Zero, Complex Numbers: There is a complex number 0 = 0+0i so that for any α ∈ C,
0 + α = α.

• OCN One, Complex Numbers: There is a complex number 1 = 1+0i so that for any α ∈ C,
1α = α.

• AICN Additive Inverse, Complex Numbers: For every α ∈ C there exists −α ∈ C so that
α+ (−α) = 0.

• MICN Multiplicative Inverse, Complex Numbers: For every α ∈ C, α 6= 0 there exists
1
α ∈ C so that α

(
1
α

)
= 1.
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Definition CCN Conjugate of a Complex Number 329
The conjugate of the complex number α = a+ bi ∈ C is the complex number α = a− bi.
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Theorem CCRA Complex Conjugation Respects Addition 330
Suppose that α and β are complex numbers. Then α+ β = α+ β.
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Theorem CCRM Complex Conjugation Respects Multiplication 331
Suppose that α and β are complex numbers. Then αβ = αβ.
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Theorem CCT Complex Conjugation Twice 332
Suppose that α is a complex number. Then α = α.
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Definition MCN Modulus of a Complex Number 333
The modulus of the complex number α = a+ bi ∈ C, is the nonnegative real number

|α| =
√
αα =

√
a2 + b2.
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Definition SET Set 334
A set is an unordered collection of objects. If S is a set and x is an object that is in the set S,
we write x ∈ S. If x is not in S, then we write x 6∈ S. We refer to the objects in a set as its
elements.
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Definition SSET Subset 335
If S and T are two sets, then S is a subset of T , written S ⊆ T if whenever x ∈ S then x ∈ T .
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Definition ES Empty Set 336
The empty set is the set with no elements. It is denoted by ∅.
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Definition SE Set Equality 337
Two sets, S and T , are equal, if S ⊆ T and T ⊆ S. In this case, we write S = T .
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Definition C Cardinality 338
Suppose S is a finite set. Then the number of elements in S is called the cardinality or size of S,
and is denoted |S|.
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Definition SU Set Union 339
Suppose S and T are sets. Then the union of S and T , denoted S ∪ T , is the set whose elements
are those that are elements of S or of T , or both. More formally,

x ∈ S ∪ T if and only if x ∈ S or x ∈ T
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Definition SI Set Intersection 340
Suppose S and T are sets. Then the intersection of S and T , denoted S ∩ T , is the set whose
elements are only those that are elements of S and of T . More formally,

x ∈ S ∩ T if and only if x ∈ S and x ∈ T
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Definition SC Set Complement 341
Suppose S is a set that is a subset of a universal set U . Then the complement of S, denoted S,
is the set whose elements are those that are elements of U and not elements of S. More formally,

x ∈ S if and only if x ∈ U and x 6∈ S
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