Flashcard Supplement to

A First Course in Linear Algebra

Robert A. Beezer
University of Puget Sound
Version 3.00-preview(August 19, 2013)

Robert A. Beezer is a Professor of Mathematics at the University of Puget Sound, where he has been on the faculty since 1984. He received a B.S. in Mathematics (with an Emphasis in Computer Science) from the University of Santa Clara in 1978, a M.S. in Statistics from the University of Illinois at Urbana-Champaign in 1982 and a Ph.D. in Mathematics from the University of Illinois at Urbana-Champaign in 1984.

In addition to his teaching at the University of Puget Sound, he has made sabbatical visits to the University of the West Indies (Trinidad campus) and the University of Western Australia. He has also given several courses in the Master's program at the African Institute for Mathematical Sciences, South Africa. He has been a Sage developer since 2008.

He teaches calculus, linear algebra and abstract algebra regularly, while his research interests include the applications of linear algebra to graph theory. His professional website is at http: //buzzard.ups.edu.

Edition

Version 3.00 Flashcard Supplement
August 19, 2013

Publisher

Robert A. Beezer Congruent Press Gig Harbor, Washington, USA
(C)2004-2012 Robert A. Beezer

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the appendix entitled "GNU Free Documentation License".

Definition SLE System of Linear Equations
A system of linear equations is a collection of m equations in the variable quantities $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ of the form,

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

where the values of $a_{i j}, b_{i}$ and $x_{j}, 1 \leq i \leq m, 1 \leq j \leq n$, are from the set of complex numbers, \mathbb{C}.

Definition SSLE Solution of a System of Linear Equations

A solution of a system of linear equations in n variables, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ (such as the system given in Definition SLE), is an ordered list of n complex numbers, $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ such that if we substitute s_{1} for x_{1}, s_{2} for x_{2}, s_{3} for $x_{3},, s_{n}$ for x_{n}, then for every equation of the system the left side will equal the right side, i.e. each equation is true simultaneously.

Definition SSSLE Solution Set of a System of Linear Equations
The solution set of a linear system of equations is the set which contains every solution to the system, and nothing more.

Definition ESYS Equivalent Systems

Two systems of linear equations are equivalent if their solution sets are equal.

Definition EO Equation Operations
Given a system of linear equations, the following three operations will transform the system into a different one, and each operation is known as an equation operation.

1. Swap the locations of two equations in the list of equations.
2. Multiply each term of an equation by a nonzero quantity.
3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

Theorem EOPSS Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of Definition EO to a system of linear equations (Definition SLE), then the original system and the transformed system are equivalent.

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns. We will use upper-case Latin letters from the start of the alphabet (A, B, C, \ldots) to denote matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets - the distinction is not important. Rows of a matrix will be referenced starting at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the notation $[A]_{i j}$ will refer to the complex number in row i and column j of A.

Definition CV Column Vector

A column vector of size m is an ordered list of m numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a vector. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$. Some books like to write vectors with arrows, such as \vec{u}. Writing by hand, some like to put arrows on top of the symbol, or a tilde underneath the symbol, as in $\underset{\sim}{u}$. To refer to the entry or component of vector \mathbf{v} in location i of the list, we write $[\mathbf{v}]_{i}$.

The zero vector of size m is the column vector of size m where each entry is the number zero,

$$
\mathbf{0}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

or defined much more compactly, $[\mathbf{0}]_{i}=0$ for $1 \leq i \leq m$.

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the coefficient matrix is the $m \times n$ matrix

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & & & & \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]
$$

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the vector of constants is the column vector of size m

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right]
$$

For a system of linear equations,

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

the solution vector is the column vector of size n

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]
$$

If A is the coefficient matrix of a system of linear equations and \mathbf{b} is the vector of constants, then we will write $\mathcal{L} \mathcal{S}(A, \mathbf{b})$ as a shorthand expression for the system of linear equations, which we will refer to as the matrix representation of the linear system.

Definition AM Augmented Matrix

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of constants \mathbf{b}. Then the augmented matrix of the system of equations is the $m \times(n+1)$ matrix whose first n columns are the columns of A and whose last column $(n+1)$ is the column vector b. This matrix will be written as $[A \mid \mathbf{b}]$.

Definition RO Row Operations
The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a row operation.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.
3. Multiply each entry of one row by some quantity, and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

1. $R_{i} \leftrightarrow R_{j}$: Swap the location of rows i and j.
2. αR_{i} : Multiply row i by the nonzero scalar α.
3. $\alpha R_{i}+R_{j}$: Multiply row i by the scalar α and add to row j.

Definition REM Row-Equivalent Matrices

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a sequence of row operations. equations that they represent are equivalent systems.

Definition RREF Reduced Row-Echelon Form

A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. If there is a row where every entry is zero, then this row lies below any other row that contains a nonzero entry.
2. The leftmost nonzero entry of a row is equal to 1 .
3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If $s>i$, then $t>j$.

A row of only zero entries will be called a zero row and the leftmost nonzero entry of a nonzero row will be called a leading 1 . The number of nonzero rows will be denoted by r.
A column containing a leading 1 will be called a pivot column. The set of column indices for all of the pivot columns will be denoted by $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ where $d_{1}<d_{2}<d_{3}<\cdots<d_{r}$, while the columns that are not pivot columns will be denoted as $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ where $f_{1}<f_{2}<f_{3}<\cdots<f_{n-r}$.

Theorem REMEF Row-Equivalent Matrix in Echelon Form

Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.
2. B is in reduced row-echelon form.

Theorem RREFU Reduced Row-Echelon Form is Unique

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then $B=C$.

A system of linear equations is consistent if it has at least one solution. Otherwise, the system is called inconsistent.

Definition IDV Independent and Dependent Variables

Suppose A is the augmented matrix of a consistent system of linear equations and B is a rowequivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that contains the leading 1 for some row (i.e. column j is a pivot column). Then the variable x_{j} is dependent. A variable that is not dependent is called independent or free.

Suppose A is the augmented matrix of a system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column $n+1$ of B. also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If $r=n+1$, then the system of equations is inconsistent.

Theorem CSRN Consistent Systems, r and n

Suppose A is the augmented matrix of a consistent system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If $r=n$, then the system has a unique solution, and if $r<n$, then the system has infinitely many solutions.

Suppose A is the augmented matrix of a consistent system of linear equations with n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with $n-r$ free variables.

Theorem PSSLS Possible Solution Sets for Linear Systems

A system of linear equations has no solutions, a unique solution or infinitely many solutions.

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions28 Suppose a consistent system of linear equations has m equations in n variables. If $n>m$, then the system has infinitely many solutions.

Definition HS Homogeneous System
A system of linear equations, $\mathcal{L S}(A, \mathbf{b})$ is homogeneous if the vector of constants is the zero vector, in other words, if $\mathbf{b}=\mathbf{0}$.

Definition TSHSE Trivial Solution to Homogeneous Systems of Equations 31
Suppose a homogeneous system of linear equations has n variables. The solution $x_{1}=0, x_{2}=0$, , $x_{n}=0$ (i.e. $\mathbf{x}=\mathbf{0}$) is called the trivial solution.

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions 32
Suppose that a homogeneous system of linear equations has m equations and n variables with $n>m$. Then the system has infinitely many solutions.

Definition NSM Null Space of a Matrix
The null space of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$.

A matrix with m rows and n columns is square if $m=n$. In this case, we say the matrix has size n. To emphasize the situation when a matrix is not square, we will call it rectangular.

Definition NM Nonsingular Matrix

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{L S}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, in other words, the system has only the trivial solution. Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix.

The $m \times m$ identity matrix, I_{m}, is defined by

$$
\left[I_{m}\right]_{i j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} \quad 1 \leq i, j \leq m\right.
$$

Theorem NMRRI Nonsingular Matrices Row Reduce to the Identity matrix 37
Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, $\mathcal{N}(A)$, contains only the zero vector, i.e. $\mathcal{N}(A)=\{0\}$.

Theorem NMUS Nonsingular Matrices and Unique Solutions
Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b}.

Theorem NME1 Nonsingular Matrix Equivalences, Round 1

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L} \mathcal{S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.

The vector space \mathbb{C}^{m} is the set of all column vectors (Definition CV) of size m with entries from the set of complex numbers, \mathbb{C}.

Definition CVA Column Vector Addition
Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$. The sum of \mathbf{u} and \mathbf{v} is the vector $\mathbf{u}+\mathbf{v}$ defined by

$$
[\mathbf{u}+\mathbf{v}]_{i}=[\mathbf{u}]_{i}+[\mathbf{v}]_{i} \quad 1 \leq i \leq m
$$

Definition CVSM Column Vector Scalar Multiplication

Suppose $\mathbf{u} \in \mathbb{C}^{m}$ and $\alpha \in \mathbb{C}$, then the scalar multiple of \mathbf{u} by α is the vector $\alpha \mathbf{u}$ defined by

$$
[\alpha \mathbf{u}]_{i}=\alpha[\mathbf{u}]_{i} \quad 1 \leq i \leq m
$$ scalar multiplication as defined in Definition CVA and Definition CVSM. Then

- ACC Additive Closure, Column Vectors: If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\mathbf{u}+\mathbf{v} \in \mathbb{C}^{m}$.
- SCC Scalar Closure, Column Vectors: If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $\alpha \mathbf{u} \in \mathbb{C}^{m}$.
- CC Commutativity, Column Vectors: If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
- AAC Additive Associativity, Column Vectors: If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^{m}$, then $\mathbf{u}+(\mathbf{v}+\mathbf{w})=$ $(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
- ZC Zero Vector, Column Vectors: There is a vector, 0, called the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^{m}$.
- AIC Additive Inverses, Column Vectors: If $\mathbf{u} \in \mathbb{C}^{m}$, then there exists a vector $-\mathbf{u} \in \mathbb{C}^{m}$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
- SMAC Scalar Multiplication Associativity, Column Vectors: If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $\alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u}$.
- DVAC Distributivity across Vector Addition, Column Vectors: If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.
- DSAC Distributivity across Scalar Addition, Column Vectors: If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u}$.
- OC One, Column Vectors: If $\mathbf{u} \in \mathbb{C}^{m}$, then $1 \mathbf{u}=\mathbf{u}$.
(C)2004-2012 Robert A. Beezer, GFDL License

Definition LCCV Linear Combination of Column Vectors

Given n vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$ from \mathbb{C}^{m} and n scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, their linear combination is the vector

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}
$$

Theorem SLSLC Solutions to Linear Systems are Linear Combinations

Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$. Then $\mathbf{x} \in \mathbb{C} n$ is a solution to the linear system of equations $\mathcal{L S}(A, \mathbf{b})$ if and only if \mathbf{b} equals the linear combination of the columns of A formed with the entries of \mathbf{x},

$$
[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n}=\mathbf{b}
$$

Theorem VFSLS Vector Form of Solutions to Linear Systems
Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{L S}(A, \mathbf{b})$ of m equations in n variables. Let B be a row-equivalent $m \times(n+1)$ matrix in reduced rowechelon form. Suppose that B has r nonzero rows, columns without leading 1's with indices $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}, n+1\right\}$, and columns with leading 1's (pivot columns) having indices $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$. Define vectors $\mathbf{c}, \mathbf{u}_{j}, 1 \leq j \leq n-r$ of size n by

$$
\begin{aligned}
{[\mathbf{c}]_{i} } & = \begin{cases}0 & \text { if } i \in F \\
{[B]_{k, n+1}} & \text { if } i \in D, i=d_{k}\end{cases} \\
{\left[\mathbf{u}_{j}\right]_{i} } & = \begin{cases}1 & \text { if } i \in F, i=f_{j} \\
0 & \text { if } i \in F, i \neq f_{j} \\
-[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
\end{aligned}
$$

Then the set of solutions to the system of equations $\mathcal{L S}(A, \mathbf{b})$ is

$$
S=\left\{\mathbf{c}+\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n-r} \mathbf{u}_{n-r} \mid \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-r} \in \mathbb{C}\right\}
$$

Theorem PSPHS Particular Solution Plus Homogeneous Solutions
Suppose that \mathbf{w} is one solution to the linear system of equations $\mathcal{L S}(A, \mathbf{b})$. Then \mathbf{y} is a solution to $\mathcal{L S}(A, \mathbf{b})$ if and only if $\mathbf{y}=\mathbf{w}+\mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$.

Definition SSCV Span of a Set of Column Vectors

Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}\right\}$, their span, $\langle S\rangle$, is the set of all possible linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}$. Symbolically,

$$
\begin{aligned}
\langle S\rangle & =\left\{\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{p} \mathbf{u}_{p} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq p\right\} \\
& =\left\{\sum_{i=1}^{p} \alpha_{i} \mathbf{u}_{i} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq p\right\}
\end{aligned}
$$

Theorem SSNS Spanning Sets for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ be the column indices where B has leading 1's (pivot columns) and $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ be the set of column indices where B does not have leading 1 's. Construct the $n-r$ vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ of size n as

$$
\left[\mathbf{z}_{j}\right]_{i}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\ 0 & \text { if } i \in F, i \neq f_{j} \\ -[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
$$

Then the null space of A is given by

$$
\mathcal{N}(A)=\left\langle\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{n-r}\right\}\right\rangle
$$

Definition RLDCV Relation of Linear Dependence for Column Vectors
Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$, a true statement of the form

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e. $\alpha_{i}=0$, $1 \leq i \leq n$, then we say it is the trivial relation of linear dependence on S.

Definition LICV Linear Independence of Column Vectors
The set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors.

Suppose that A is an $m \times n$ matrix and $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m} that are the columns of A. Then S is a linearly independent set if and only if the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ has a unique solution.

Theorem LIVRN Linearly Independent Vectors, r and n

Suppose that A is an $m \times n$ matrix and $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m} that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if $n=r$.

Theorem NMLIC Nonsingular Matrices have Linearly Independent Columns 57 Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.

Theorem NME2 Nonsingular Matrix Equivalences, Round 2

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L} \mathcal{S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A form a linearly independent set.

Theorem BNS Basis for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ and $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ be the sets of column indices where B does and does not (respectively) have leading 1 's. Construct the $n-r$ vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ of size n as

$$
\left[\mathbf{z}_{j}\right]_{i}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\ 0 & \text { if } i \in F, i \neq f_{j} \\ -[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
$$

Define the set $S=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{n-r}\right\}$.Then

1. $\mathcal{N}(A)=\langle S\rangle$.
2. S is a linearly independent set.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \leq t \leq n$ such that $\mathbf{u}_{\mathbf{t}}$ is a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \ldots, \mathbf{u}_{n}$.

Theorem BS Basis of a Span

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ is a set of column vectors. Define $W=\langle S\rangle$ and let A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A, with $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ the set of column indices corresponding to the pivot columns of B. Then

1. $T=\left\{\mathbf{v}_{d_{1}}, \mathbf{v}_{d_{2}}, \mathbf{v}_{d_{3}}, \ldots \mathbf{v}_{d_{r}}\right\}$ is a linearly independent set.
2. $W=\langle T\rangle$.

Definition CCCV Complex Conjugate of a Column Vector

Suppose that \mathbf{u} is a vector from \mathbb{C}^{m}. Then the conjugate of the vector, $\overline{\mathbf{u}}$, is defined by

$$
[\overline{\mathbf{u}}]_{i}=\overline{[\mathbf{u}]_{i}} \quad 1 \leq i \leq m
$$

Theorem CRVA Conjugation Respects Vector Addition
Suppose \mathbf{x} and \mathbf{y} are two vectors from \mathbb{C}^{m}. Then

$$
\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathbf{y}}
$$

Theorem CRSM Conjugation Respects Vector Scalar Multiplication
Suppose \mathbf{x} is a vector from \mathbb{C}^{m}, and $\alpha \in \mathbb{C}$ is a scalar. Then

$$
\overline{\alpha \mathbf{x}}=\bar{\alpha} \overline{\mathbf{x}}
$$

Definition IP Inner Product
Given the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ the inner product of \mathbf{u} and \mathbf{v} is the scalar quantity in \mathbb{C},

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\overline{[\mathbf{u}]_{1}}[\mathbf{v}]_{1}+\overline{[\mathbf{u}]_{2}}[\mathbf{v}]_{2}+\overline{[\mathbf{u}]_{3}}[\mathbf{v}]_{3}+\cdots+\overline{[\mathbf{u}]_{m}}[\mathbf{v}]_{m}=\sum_{i=1}^{m} \overline{[\mathbf{u}]_{i}}[\mathbf{v}]_{i}
$$

Theorem IPVA Inner Product and Vector Addition

66
Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^{m}$. Then

1. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$
2. $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$

Theorem IPSM Inner Product and Scalar Multiplication
Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ and $\alpha \in \mathbb{C}$. Then

1. $\langle\alpha \mathbf{u}, \mathbf{v}\rangle=\bar{\alpha}\langle\mathbf{u}, \mathbf{v}\rangle$
2. $\langle\mathbf{u}, \alpha \mathbf{v}\rangle=\alpha\langle\mathbf{u}, \mathbf{v}\rangle$

The norm of the vector \mathbf{u} is the scalar quantity in \mathbb{C}

$$
\|\mathbf{u}\|=\sqrt{\left|[\mathbf{u}]_{1}\right|^{2}+\left|[\mathbf{u}]_{2}\right|^{2}+\left|[\mathbf{u}]_{3}\right|^{2}+\cdots+\left|[\mathbf{u}]_{m}\right|^{2}}=\sqrt{\sum_{i=1}^{m}\left|[\mathbf{u}]_{i}\right|^{2}}
$$

Theorem IPN Inner Products and Norms

Suppose that \mathbf{u} is a vector in \mathbb{C}^{m}. Then $\|\mathbf{u}\|^{2}=\langle\mathbf{u}, \mathbf{u}\rangle$.

Theorem PIP Positive Inner Products
Suppose that \mathbf{u} is a vector in \mathbb{C}^{m}. Then $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ with equality if and only if $\mathbf{u}=\mathbf{0}$.

Definition OV Orthogonal Vectors

A pair of vectors, \mathbf{u} and \mathbf{v}, from \mathbb{C}^{m} are orthogonal if their inner product is zero, that is, $\langle\mathbf{u}, \mathbf{v}\rangle=0$.

Definition OSV Orthogonal Set of Vectors

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a set of vectors from \mathbb{C}^{m}. Then S is an orthogonal set if every pair of different vectors from S is orthogonal, that is $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0$ whenever $i \neq j$.

Definition SUV Standard Unit Vectors
Let $\mathbf{e}_{j} \in \mathbb{C}^{m}, 1 \leq j \leq m$ denote the column vectors defined by

$$
\left[\mathbf{e}_{j}\right]_{i}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

Then the set

$$
\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{m}\right\}=\left\{\mathbf{e}_{j} \mid 1 \leq j \leq m\right\}
$$

is the set of standard unit vectors in \mathbb{C}^{m}.

Suppose that S is an orthogonal set of nonzero vectors. Then S is linearly independent.

Theorem GSP Gram-Schmidt Procedure

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly independent set of vectors in \mathbb{C}^{m}. Define the vectors $\mathbf{u}_{i}, 1 \leq i \leq p$ by

$$
\mathbf{u}_{i}=\mathbf{v}_{i}-\frac{\left\langle\mathbf{u}_{1}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\frac{\left\langle\mathbf{u}_{2}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{u}_{3}, \mathbf{u}_{3}\right\rangle} \mathbf{u}_{3}-\cdots-\frac{\left\langle\mathbf{u}_{i-1}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{u}_{i-1}, \mathbf{u}_{i-1}\right\rangle} \mathbf{u}_{i-1}
$$

Then if $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}\right\}$, then T is an orthogonal set of non-zero vectors, and $\langle T\rangle=\langle S\rangle$.

Definition ONS OrthoNormal Set

Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of vectors such that $\left\|\mathbf{u}_{i}\right\|=1$ for all $1 \leq i \leq n$. Then S is an orthonormal set of vectors.

The vector space $M_{m n}$ is the set of all $m \times n$ matrices with entries from the set of complex numbers.

Definition ME Matrix Equality
The $m \times n$ matrices A and B are equal, written $A=B$ provided $[A]_{i j}=[B]_{i j}$ for all $1 \leq i \leq m$, $1 \leq j \leq n$.

Given the $m \times n$ matrices A and B, define the sum of A and B as an $m \times n$ matrix, written $A+B$, according to

$$
[A+B]_{i j}=[A]_{i j}+[B]_{i j} \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

Given the $m \times n$ matrix A and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of A is an $m \times n$ matrix, written αA and defined according to

$$
[\alpha A]_{i j}=\alpha[A]_{i j} \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

Suppose that $M_{m n}$ is the set of all $m \times n$ matrices (Definition VSM) with addition and scalar multiplication as defined in Definition MA and Definition MSM. Then

- ACM Additive Closure, Matrices: If $A, B \in M_{m n}$, then $A+B \in M_{m n}$.
- SCM Scalar Closure, Matrices: If $\alpha \in \mathbb{C}$ and $A \in M_{m n}$, then $\alpha A \in M_{m n}$.
- CM Commutativity, Matrices: If $A, B \in M_{m n}$, then $A+B=B+A$.
- AAM Additive Associativity, Matrices: If $A, B, C \in M_{m n}$, then $A+(B+C)=(A+B)+$ C.
- ZM Zero Vector, Matrices: There is a matrix, \mathcal{O}, called the zero matrix, such that $A+\mathcal{O}=A$ for all $A \in M_{m n}$.
- AIM Additive Inverses, Matrices: If $A \in M_{m n}$, then there exists a matrix $-A \in M_{m n}$ so that $A+(-A)=\mathcal{O}$.
- SMAM Scalar Multiplication Associativity, Matrices: If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{m n}$, then $\alpha(\beta A)=(\alpha \beta) A$.
- DMAM Distributivity across Matrix Addition, Matrices: If $\alpha \in \mathbb{C}$ and $A, B \in M_{m n}$, then $\alpha(A+B)=\alpha A+\alpha B$.
- DSAM Distributivity across Scalar Addition, Matrices: If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{m n}$, then $(\alpha+\beta) A=\alpha A+\beta A$.
- OM One, Matrices: If $A \in M_{m n}$, then $1 A=A$.

The $m \times n$ zero matrix is written as $\mathcal{O}=\mathcal{O}_{m \times n}$ and defined by $[\mathcal{O}]_{i j}=0$, for all $1 \leq i \leq m$, $1 \leq j \leq n$.

Definition TM Transpose of a Matrix

Given an $m \times n$ matrix A, its transpose is the $n \times m$ matrix A^{t} given by

$$
\left[A^{t}\right]_{i j}=[A]_{j i}, \quad 1 \leq i \leq n, 1 \leq j \leq m
$$

The matrix A is symmetric if $A=A^{t}$.

Theorem SMS Symmetric Matrices are Square
Suppose that A is a symmetric matrix. Then A is square.

Theorem TMA Transpose and Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $(A+B)^{t}=A^{t}+B^{t}$.

Suppose that A is an $m \times n$ matrix. Then $\left(A^{t}\right)^{t}=A$.

[^0]Suppose that A is an $m \times n$ matrix. Then $\overline{(\bar{A})}=A$.

Suppose that A is an $m \times n$ matrix. Then $\overline{\left(A^{t}\right)}=(\bar{A})^{t}$.

Definition A Adjoint

If A is a matrix, then its adjoint is $A^{*}=(\bar{A})^{t}$.

Suppose A and B are matrices of the same size. Then $(A+B)^{*}=A^{*}+B^{*}$.

Suppose that A is a matrix. Then $\left(A^{*}\right)^{*}=A$.

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$ and \mathbf{u} is a vector of size n. Then the matrix-vector product of A with \mathbf{u} is the linear combination

$$
A \mathbf{u}=[\mathbf{u}]_{1} \mathbf{A}_{1}+[\mathbf{u}]_{2} \mathbf{A}_{2}+[\mathbf{u}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{u}]_{n} \mathbf{A}_{n}
$$

Theorem EMMVP Equal Matrices and Matrix-Vector Products

Suppose that A and B are $m \times n$ matrices such that $A \mathbf{x}=B \mathbf{x}$ for every $\mathbf{x} \in \mathbb{C}^{n}$. Then $A=B$.

Definition MM Matrix Multiplication

Suppose A is an $m \times n$ matrix and $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \ldots, \mathbf{B}_{p}$ are the columns of an $n \times p$ matrix B. Then the matrix product of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A \mathbf{B}_{i}$. Symbolically,

$$
A B=A\left[\mathbf{B}_{1}\left|\mathbf{B}_{2}\right| \mathbf{B}_{3}|\ldots| \mathbf{B}_{p}\right]=\left[A \mathbf{B}_{1}\left|A \mathbf{B}_{2}\right| A \mathbf{B}_{3}|\ldots| A \mathbf{B}_{p}\right] .
$$

Theorem EMP Entries of Matrix Products
Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then for $1 \leq i \leq m, 1 \leq j \leq p$, the individual entries of $A B$ are given by

$$
\begin{aligned}
{[A B]_{i j} } & =[A]_{i 1}[B]_{1 j}+[A]_{i 2}[B]_{2 j}+[A]_{i 3}[B]_{3 j}+\cdots+[A]_{i n}[B]_{n j} \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}
\end{aligned}
$$

Suppose A is an $m \times n$ matrix. Then

1. $A \mathcal{O}_{n \times p}=\mathcal{O}_{m \times p}$
2. $\mathcal{O}_{p \times m} A=\mathcal{O}_{p \times n}$

Suppose A is an $m \times n$ matrix. Then

1. $A I_{n}=A$
2. $I_{m} A=A$

Theorem MMDAA Matrix Multiplication Distributes Across Addition 106 Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then

1. $A(B+C)=A B+A C$
2. $(B+C) D=B D+C D$

Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 107 Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(A B)=$ $(\alpha A) B=A(\alpha B)$.

Theorem MMA Matrix Multiplication is Associative 108

Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then $A(B D)=$ $(A B) D$.

If we consider the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ as $m \times 1$ matrices then

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\overline{\mathbf{u}}^{t} \mathbf{v}=\mathbf{u}^{*} \mathbf{v}
$$

Theorem MMT Matrix Multiplication and Transposes
Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(A B)^{t}=B^{t} A^{t}$.

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(A B)^{*}=B^{*} A^{*}$.

Suppose that A is an $m \times n$ matrix and $\mathbf{x} \in \mathbb{C}^{n}, \mathbf{y} \in \mathbb{C}^{m}$. Then $\langle A \mathbf{x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, A^{*} \mathbf{y}\right\rangle$.

Definition HM Hermitian Matrix

The square matrix A is Hermitian (or self-adjoint) if $A=A^{*}$.

Theorem HMIP Hermitian Matrices and Inner Products
Suppose that A is a square matrix of size n. Then A is Hermitian if and only if $\langle A \mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{x}, A \mathbf{y}\rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$.

[^1]\[

A=\left[$$
\begin{array}{ll}
a & b \\
c & d
\end{array}
$$\right]
\]

Then A is invertible if and only if $a d-b c \neq 0$. When A is invertible, then

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Theorem CINM Computing the Inverse of a Nonsingular Matrix

Suppose A is a nonsingular square matrix of size n. Create the $n \times 2 n$ matrix M by placing the $n \times n$ identity matrix I_{n} to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns of N. Then $A J=I_{n}$.

Theorem MIU Matrix Inverse is Unique
Suppose the square matrix A has an inverse. Then A^{-1} is unique.

Suppose A and B are invertible matrices of size n. Then $A B$ is an invertible matrix and $(A B)^{-1}=$ $B^{-1} A^{-1}$.

Suppose A is an invertible matrix. Then A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.

Suppose A is an invertible matrix. Then A^{t} is invertible and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.

Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$ and αA is invertible.

Theorem OSIS One-Sided Inverse is Sufficient
Suppose A and B are square matrices of size n such that $A B=I_{n}$. Then $B A=I_{n}$.

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.

Theorem NME3 Nonsingular Matrix Equivalences, Round 3

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.

Suppose that U is a square matrix of size n such that $U^{*} U=I_{n}$. Then we say U is unitary.

Suppose that U is a unitary matrix of size n. Then U is nonsingular, and $U^{-1}=U^{*}$.

Theorem CUMOS Columns of Unitary Matrices are Orthonormal Sets

Suppose that $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of columns of a square matrix A of size n. Then A is a unitary matrix if and only if S is an orthonormal set.

Theorem UMPIP Unitary Matrices Preserve Inner Products

Suppose that U is a unitary matrix of size n and \mathbf{u} and \mathbf{v} are two vectors from \mathbb{C}^{n}. Then

$$
\langle U \mathbf{u}, U \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle \quad \text { and } \quad\|U \mathbf{v}\|=\|\mathbf{v}\|
$$

Definition CSM Column Space of a Matrix

Suppose that A is an $m \times n$ matrix with columns $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$. Then the column space of A, written $\mathcal{C}(A)$, is the subset of \mathbb{C}^{m} containing all linear combinations of the columns of A,

$$
\mathcal{C}(A)=\left\langle\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}\right\rangle
$$

Theorem CSCS Column Spaces and Consistent Systems

Suppose A is an $m \times n$ matrix and \mathbf{b} is a vector of size m. Then $\mathbf{b} \in \mathcal{C}(A)$ if and only if $\mathcal{L S}(A, \mathbf{b})$ is consistent.

Theorem BCS Basis of the Column Space

Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ be the set of column indices where B has leading 1's. Let $T=\left\{\mathbf{A}_{d_{1}}, \mathbf{A}_{d_{2}}, \mathbf{A}_{d_{3}}, \ldots, \mathbf{A}_{d_{r}}\right\}$. Then

1. T is a linearly independent set.
2. $\mathcal{C}(A)=\langle T\rangle$.

Suppose A is a square matrix of size n. Then A is nonsingular if and only if $\mathcal{C}(A)=\mathbb{C}^{n}$.

Theorem NME4 Nonsingular Matrix Equivalences, Round 4

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.

Definition RSM Row Space of a Matrix

Suppose A is an $m \times n$ matrix. Then the row space of $A, \mathcal{R}(A)$, is the column space of A^{t}, i.e. $\mathcal{R}(A)=\mathcal{C}\left(A^{t}\right)$.

Suppose A and B are row-equivalent matrices. Then $\mathcal{R}(A)=\mathcal{R}(B)$.

1. $\mathcal{R}(A)=\langle S\rangle$.
2. S is a linearly independent set.

Theorem CSRST Column Space, Row Space, Transpose

Suppose A is a matrix. Then $\mathcal{C}(A)=\mathcal{R}\left(A^{t}\right)$.

Definition LNS Left Null Space

Suppose A is an $m \times n$ matrix. Then the left null space is defined as $\mathcal{L}(A)=\mathcal{N}\left(A^{t}\right) \subseteq \mathbb{C}^{m}$.

Suppose A is an $m \times n$ matrix. Extend A on its right side with the addition of an $m \times m$ identity matrix to form an $m \times(n+m)$ matrix M. Use row operations to bring M to reduced row-echelon form and call the result $N . N$ is the extended reduced row-echelon form of A, and we will standardize on names for five submatrices (B, C, J, K, L) of N.
Let B denote the $m \times n$ matrix formed from the first n columns of N and let J denote the $m \times m$ matrix formed from the last m columns of N. Suppose that B has r nonzero rows. Further partition N by letting C denote the $r \times n$ matrix formed from all of the non-zero rows of B. Let K be the $r \times m$ matrix formed from the first r rows of J, while L will be the $(m-r) \times m$ matrix formed from the bottom $m-r$ rows of J. Pictorially,

$$
M=\left[A \mid I_{m}\right] \xrightarrow{\mathrm{RREF}} N=[B \mid J]=\left[\begin{array}{cc}
C & K \\
0 & L
\end{array}\right]
$$

Theorem PEEF Properties of Extended Echelon Form

Suppose that A is an $m \times n$ matrix and that N is its extended echelon form. Then

1. J is nonsingular.
2. $B=J A$.
3. If $\mathbf{x} \in \mathbb{C}^{n}$ and $\mathbf{y} \in \mathbb{C}^{m}$, then $A \mathbf{x}=\mathbf{y}$ if and only if $B \mathbf{x}=J \mathbf{y}$.
4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.
5. L is in reduced row-echelon form, has no zero rows and has $m-r$ pivot columns.

Theorem FS Four Subsets

Suppose A is an $m \times n$ matrix with extended echelon form N. Suppose the reduced row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the first n columns and L is the submatrix of N formed from the last m columns and the last $m-r$ rows. Then

1. The null space of A is the null space of $C, \mathcal{N}(A)=\mathcal{N}(C)$.
2. The row space of A is the row space of $C, \mathcal{R}(A)=\mathcal{R}(C)$.
3. The column space of A is the null space of $L, \mathcal{C}(A)=\mathcal{N}(L)$.
4. The left null space of A is the row space of $L, \mathcal{L}(A)=\mathcal{R}(L)$.

Definition VS Vector Space

146
Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by " + ", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space over \mathbb{C} if the following ten properties hold.

- AC Additive Closure: If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v} \in V$.
- SC Scalar Closure: If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$.
- C Commutativity: If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
- AA Additive Associativity: If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
- Z Zero Vector: There is a vector, $\mathbf{0}$, called the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in V$.
- AI Additive Inverses: If $\mathbf{u} \in V$, then there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
- SMA Scalar Multiplication Associativity: If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u}$.
- DVA Distributivity across Vector Addition: If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u}+\mathbf{v})=$ $\alpha \mathbf{u}+\alpha \mathbf{v}$.
- DSA Distributivity across Scalar Addition: If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u}$.
- O One: If $\mathbf{u} \in V$, then $1 \mathbf{u}=\mathbf{u}$.

The objects in V are called vectors, no matter what else they might really be, simply by virtue of being elements of a vector space.
(C)2004-2012 Robert A. Beezer, GFDL License

Suppose that V is a vector space. The zero vector, $\mathbf{0}$, is unique.

Suppose that V is a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$, is unique.

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then $\alpha \mathbf{0}=\mathbf{0}$.

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $-\mathbf{u}=(-1) \mathbf{u}$.

Theorem SMEZV Scalar Multiplication Equals the Zero Vector

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. If $\alpha \mathbf{u}=\mathbf{0}$, then either $\alpha=0$ or $\mathbf{u}=\mathbf{0}$.

Suppose that V and W are two vector spaces that have identical definitions of vector addition and scalar multiplication, and that W is a subset of $V, W \subseteq V$. Then W is a subspace of V.

Theorem TSS Testing Subsets for Subspaces
Suppose that V is a vector space and W is a subset of $V, W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

1. W is non-empty, $W \neq \emptyset$.
2. If $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x}+\mathbf{y} \in W$.
3. If $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

Given the vector space V, the subspaces V and $\{\mathbf{0}\}$ are each called a trivial subspace.

Theorem NSMS Null Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then the null space of $A, \mathcal{N}(A)$, is a subspace of \mathbb{C}^{n}.

Suppose that V is a vector space. Given n vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$ and n scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, their linear combination is the vector

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}
$$

Definition SS Span of a Set

Suppose that V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$, their span, $\langle S\rangle$, is the set of all possible linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$. Symbolically,

$$
\begin{aligned}
\langle S\rangle & =\left\{\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\} \\
& =\left\{\sum_{i=1}^{t} \alpha_{i} \mathbf{u}_{i} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\}
\end{aligned}
$$

Suppose V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\} \subseteq V$, their span, $\langle S\rangle$, is a subspace.

Theorem RSMS Row Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^{n}.

Suppose that A is an $m \times n$ matrix. Then $\mathcal{L}(A)$ is a subspace of \mathbb{C}^{m}.

Definition RLD Relation of Linear Dependence
Suppose that V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$, an equation of the form

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. $\alpha_{i}=0$, $1 \leq i \leq n$, then we say it is a trivial relation of linear dependence on S.

Definition LI Linear Independence

Suppose that V is a vector space. The set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ from V is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors.

Suppose V is a vector space. A subset S of V is a spanning set of V if $\langle S\rangle=V$. In this case, we also frequently say S spans V.

Theorem VRRB Vector Representation Relative to a Basis

 166Suppose that V is a vector space and $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ is a linearly independent set that spans V. Let \mathbf{w} be any vector in V. Then there exist unique scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ such that

$$
\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m} .
$$

Suppose V is a vector space. Then a subset $S \subseteq V$ is a basis of V if it is linearly independent and spans V. only if A is nonsingular.

Theorem NME5 Nonsingular Matrix Equivalences, Round 5

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L} \mathcal{S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.

Theorem COB Coordinates and Orthonormal Bases
Suppose that $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is an orthonormal basis of the subspace W of \mathbb{C}^{m}. For any $\mathbf{w} \in W$,

$$
\mathbf{w}=\left\langle\mathbf{v}_{1}, \mathbf{w}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{v}_{2}, \mathbf{w}\right\rangle \mathbf{v}_{2}+\left\langle\mathbf{v}_{3}, \mathbf{w}\right\rangle \mathbf{v}_{3}+\cdots+\left\langle\mathbf{v}_{p}, \mathbf{w}\right\rangle \mathbf{v}_{p}
$$

Theorem UMCOB Unitary Matrices Convert Orthonormal Bases

Let A be an $n \times n$ matrix and $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{n}\right\}$ be an orthonormal basis of \mathbb{C}^{n}. Define

$$
C=\left\{A \mathbf{x}_{1}, A \mathbf{x}_{2}, A \mathbf{x}_{3}, \ldots, A \mathbf{x}_{n}\right\}
$$

Then A is a unitary matrix if and only if C is an orthonormal basis of \mathbb{C}^{n}.

Suppose that V is a vector space and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a basis of V. Then the dimension of V is defined by $\operatorname{dim}(V)=t$. If V has no finite bases, we say V has infinite dimension.

Theorem SSLD Spanning Sets and Linear Dependence

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a finite set of vectors which spans the vector space V. Then any set of $t+1$ or more vectors from V is linearly dependent.

Theorem BIS Bases have Identical Sizes
Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have the same size.

The dimension of P_{n} (Example VSP) is $n+1$.

The dimension of $M_{m n}$ (Example VSM) is $m n$.

Suppose that A is an $m \times n$ matrix. Then the nullity of A is the dimension of the null space of $A, n(A)=\operatorname{dim}(\mathcal{N}(A))$.

[^2]Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then $r(A)=r$ and $n(A)=n-r$.

Theorem RPNC Rank Plus Nullity is Columns

Suppose that A is an $m \times n$ matrix. Then $r(A)+n(A)=n$.

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. The rank of A is $n, r(A)=n$.
3. The nullity of A is zero, $n(A)=0$.

Theorem NME6 Nonsingular Matrix Equivalences, Round 6

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L} \mathcal{S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.

Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose w is a vector such that $\mathbf{w} \notin\langle S\rangle$. Then the set $S^{\prime}=S \cup\{\mathbf{w}\}$ is linearly independent.

Theorem G Goldilocks

Suppose that V is a vector space of dimension t. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ be a set of vectors from V. Then

1. If $m>t$, then S is linearly dependent.
2. If $m<t$, then S does not span V.
3. If $m=t$ and S is linearly independent, then S spans V.
4. If $m=t$ and S spans V, then S is linearly independent.

Suppose that U and V are subspaces of the vector space W, such that $U \subsetneq V$. Then $\operatorname{dim}(U)<$ $\operatorname{dim}(V)$. $\operatorname{dim}(V)$. Then $U=V$.

1. $\operatorname{dim}(\mathcal{N}(A))=n-r$
2. $\operatorname{dim}(\mathcal{C}(A))=r$
3. $\operatorname{dim}(\mathcal{R}(A))=r$
4. $\operatorname{dim}(\mathcal{L}(A))=m-r$
5. For $i \neq j, E_{i, j}$ is the square matrix of size n with

$$
\left[E_{i, j}\right]_{k \ell}= \begin{cases}0 & k \neq i, k \neq j, \ell \neq k \\ 1 & k \neq i, k \neq j, \ell=k \\ 0 & k=i, \ell \neq j \\ 1 & k=i, \ell=j \\ 0 & k=j, \ell \neq i \\ 1 & k=j, \ell=i\end{cases}
$$

2. For $\alpha \neq 0, E_{i}(\alpha)$ is the square matrix of size n with

$$
\left[E_{i}(\alpha)\right]_{k \ell}= \begin{cases}0 & k \neq i, \ell \neq k \\ 1 & k \neq i, \ell=k \\ \alpha & k=i, \ell=i\end{cases}
$$

3. For $i \neq j, E_{i, j}(\alpha)$ is the square matrix of size n with

$$
\left[E_{i, j}(\alpha)\right]_{k \ell}= \begin{cases}0 & k \neq j, \ell \neq k \\ 1 & k \neq j, \ell=k \\ 0 & k=j, \ell \neq i, \ell \neq j \\ 1 & k=j, \ell=j \\ \alpha & k=j, \ell=i\end{cases}
$$

(C)2004-2012 Robert A. Beezer, GFDL License

Theorem EMDRO Elementary Matrices Do Row Operations

Suppose that A is an $m \times n$ matrix, and B is a matrix of the same size that is obtained from A by a single row operation (Definition RO). Then there is an elementary matrix of size m that will convert A to B via matrix multiplication on the left. More precisely,

1. If the row operation swaps rows i and j, then $B=E_{i, j} A$.
2. If the row operation multiplies row i by α, then $B=E_{i}(\alpha) A$.
3. If the row operation multiplies row i by α and adds the result to row j, then $B=E_{i, j}(\alpha) A$.

Theorem EMN Elementary Matrices are Nonsingular
If E is an elementary matrix, then E is nonsingular.

Theorem NMPEM Nonsingular Matrices are Products of Elementary Matrices 194 Suppose that A is a nonsingular matrix. Then there exists elementary matrices $E_{1}, E_{2}, E_{3}, \ldots, E_{t}$ so that $A=E_{1} E_{2} E_{3} \ldots E_{t}$.

Suppose that A is an $m \times n$ matrix. Then the submatrix $A(i \mid j)$ is the $(m-1) \times(n-1)$ matrix obtained from A by removing row i and column j.

Definition DM Determinant of a Matrix

Suppose A is a square matrix. Then its determinant, $\operatorname{det}(A)=|A|$, is an element of \mathbb{C} defined recursively by:

1. If A is a 1×1 matrix, then $\operatorname{det}(A)=[A]_{11}$.
2. If A is a matrix of size n with $n \geq 2$, then

$$
\begin{aligned}
\operatorname{det}(A)= & {[A]_{11} \operatorname{det}(A(1 \mid 1))-[A]_{12} \operatorname{det}(A(1 \mid 2))+[A]_{13} \operatorname{det}(A(1 \mid 3))-} \\
& {[A]_{14} \operatorname{det}(A(1 \mid 4))+\cdots+(-1)^{n+1}[A]_{1 n} \operatorname{det}(A(1 \mid n)) }
\end{aligned}
$$

Theorem DMST Determinant of Matrices of Size Two
Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $\operatorname{det}(A)=a d-b c$.

Theorem DER Determinant Expansion about Rows
Suppose that A is a square matrix of size n. Then for $1 \leq i \leq n$

$$
\begin{aligned}
\operatorname{det}(A)= & (-1)^{i+1}[A]_{i 1} \operatorname{det}(A(i \mid 1))+(-1)^{i+2}[A]_{i 2} \operatorname{det}(A(i \mid 2)) \\
& +(-1)^{i+3}[A]_{i 3} \operatorname{det}(A(i \mid 3))+\cdots+(-1)^{i+n}[A]_{i n} \operatorname{det}(A(i \mid n))
\end{aligned}
$$

which is known as expansion about row i.

Suppose that A is a square matrix. Then $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.

Theorem DEC Determinant Expansion about Columns
Suppose that A is a square matrix of size n. Then for $1 \leq j \leq n$

$$
\begin{aligned}
\operatorname{det}(A)= & (-1)^{1+j}[A]_{1 j} \operatorname{det}(A(1 \mid j))+(-1)^{2+j}[A]_{2 j} \operatorname{det}(A(2 \mid j)) \\
& +(-1)^{3+j}[A]_{3 j} \operatorname{det}(A(3 \mid j))+\cdots+(-1)^{n+j}[A]_{n j} \operatorname{det}(A(n \mid j))
\end{aligned}
$$

which is known as expansion about column j.

Suppose that A is a square matrix with a row where every entry is zero, or a column where every entry is zero. Then $\operatorname{det}(A)=0$.

Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging the location of two rows, or interchanging the location of two columns. Then $\operatorname{det}(B)=-\operatorname{det}(A)$. a single row by the scalar α, or by multiplying a single column by the scalar α. Then $\operatorname{det}(B)=$ $\alpha \operatorname{det}(A)$.

Theorem DRCMA Determinant for Row or Column Multiples and Addition 205
Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a row by the scalar α and then adding it to another row, or by multiplying a column by the scalar α and then adding it to another column. Then $\operatorname{det}(B)=\operatorname{det}(A)$.

For every $n \geq 1, \operatorname{det}\left(I_{n}\right)=1$.

For the three possible versions of an elementary matrix (Definition ELEM) we have the determinants,

1. $\operatorname{det}\left(E_{i, j}\right)=-1$
2. $\operatorname{det}\left(E_{i}(\alpha)\right)=\alpha$
3. $\operatorname{det}\left(E_{i, j}(\alpha)\right)=1$

Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication208
Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

$$
\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)
$$

Let A be a square matrix. Then A is singular if and only if $\operatorname{det}(A)=0$.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L} \mathcal{S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.

Suppose that A and B are square matrices of the same size. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

[^3][^4]Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials 215
Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_{A}(\lambda)=0$.

[^5]
Theorem EMS Eigenspace for a Matrix is a Subspace

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace $\mathcal{E}_{A}(\lambda)$ is a subspace of the vector space \mathbb{C}^{n}.

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

$$
\mathcal{E}_{A}(\lambda)=\mathcal{N}\left(A-\lambda I_{n}\right)
$$

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity of $\lambda, \alpha_{A}(\lambda)$, is the highest power of $(x-\lambda)$ that divides the characteristic polynomial, $p_{A}(x)$.

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multiplicity of $\lambda, \gamma_{A}(\lambda)$, is the dimension of the eigenspace $\mathcal{E}_{A}(\lambda)$.

Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent

 221Suppose that A is an $n \times n$ square matrix and $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{p}\right\}$ is a set of eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{p}$ such that $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$. Then S is a linearly independent set.

Suppose A is a square matrix. Then A is singular if and only if $\lambda=0$ is an eigenvalue of A.

Theorem NME8 Nonsingular Matrix Equivalences, Round 8

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.
12. $\lambda=0$ is not an eigenvalue of A.

Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix

Suppose A is a square matrix and λ is an eigenvalue of A. Then $\alpha \lambda$ is an eigenvalue of αA.

Theorem EOMP Eigenvalues Of Matrix Powers

Suppose A is a square matrix, λ is an eigenvalue of A, and $s \geq 0$ is an integer. Then λ^{s} is an eigenvalue of A^{s}. variable x. Then $q(\lambda)$ is an eigenvalue of the matrix $q(A)$.

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then λ^{-1} is an eigenvalue of the matrix A^{-1}. A^{t}.

Suppose A is a square matrix with real entries and \mathbf{x} is an eigenvector of A for the eigenvalue λ. Then $\overline{\mathbf{x}}$ is an eigenvector of A for the eigenvalue $\bar{\lambda}$.

Suppose that $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}$ are the distinct eigenvalues of a square matrix A of size n. Then

$$
\sum_{i=1}^{k} \alpha_{A}\left(\lambda_{i}\right)=n
$$

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

$$
1 \leq \gamma_{A}(\lambda) \leq \alpha_{A}(\lambda) \leq n
$$

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then $\lambda \in \mathbb{R}$.

Suppose that A is a Hermitian matrix and \mathbf{x} and \mathbf{y} are two eigenvectors of A for different eigenvalues. Then \mathbf{x} and \mathbf{y} are orthogonal vectors.

[^6]Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)
2. If A is similar to B, then B is similar to A. (Symmetric)
3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

Theorem SMEE Similar Matrices have Equal Eigenvalues

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is, $p_{A}(x)=p_{B}(x)$.

Definition DIM Diagonal Matrix

Suppose that A is a square matrix. Then A is a diagonal matrix if $[A]_{i j}=0$ whenever $i \neq j$.

[^7]
Theorem DC Diagonalization Characterization

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly independent set S that contains n eigenvectors of A.

Theorem DMFE Diagonalizable Matrices have Full Eigenspaces

Suppose A is a square matrix. Then A is diagonalizable if and only if $\gamma_{A}(\lambda)=\alpha_{A}(\lambda)$ for every eigenvalue λ of A.

Theorem DED Distinct Eigenvalues implies Diagonalizable

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.

Definition LT Linear Transformation

A linear transformation, $T: U \rightarrow V$, is a function that carries elements of the vector space U (called the domain) to the vector space V (called the codomain), and which has two additional properties

1. $T\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)=T\left(\mathbf{u}_{1}\right)+T\left(\mathbf{u}_{2}\right)$ for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$
2. $T(\alpha \mathbf{u})=\alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$

Suppose that $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$.

Theorem LTLC Linear Transformations and Linear Combinations

Suppose that $T: U \rightarrow V$ is a linear transformation, $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$ are vectors from U and $a_{1}, a_{2}, a_{3}, \ldots, a_{t}$ are scalars from \mathbb{C}. Then

$$
T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}\right)=a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{t} T\left(\mathbf{u}_{t}\right)
$$

Theorem LTDB Linear Transformation Defined on a Basis

Suppose U is a vector space with basis $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ and the vector space V contains the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}$ (which may not be distinct). Then there is a unique linear transformation, $T: U \rightarrow V$, such that $T\left(\mathbf{u}_{i}\right)=\mathbf{v}_{i}, 1 \leq i \leq n$.

Definition PI Pre-Image

Suppose that $T: U \rightarrow V$ is a linear transformation. For each \mathbf{v}, define the pre-image of \mathbf{v} to be the subset of U given by

$$
T^{-1}(\mathbf{v})=\{\mathbf{u} \in U \mid T(\mathbf{u})=\mathbf{v}\}
$$

Definition LTA Linear Transformation Addition
Suppose that $T: U \rightarrow V$ and $S: U \rightarrow V$ are two linear transformations with the same domain and codomain. Then their sum is the function $T+S: U \rightarrow V$ whose outputs are defined by

$$
(T+S)(\mathbf{u})=T(\mathbf{u})+S(\mathbf{u})
$$

Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 252 Suppose that $T: U \rightarrow V$ and $S: U \rightarrow V$ are two linear transformations with the same domain and codomain. Then $T+S: U \rightarrow V$ is a linear transformation.

Definition LTSM Linear Transformation Scalar Multiplication
Suppose that $T: U \rightarrow V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the scalar multiple is the function $\alpha T: U \rightarrow V$ whose outputs are defined by

$$
(\alpha T)(\mathbf{u})=\alpha T(\mathbf{u})
$$

Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 254
 Suppose that $T: U \rightarrow V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then $(\alpha T): U \rightarrow V$ is a linear transformation.

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V, $\mathcal{L} T(U, V)$ is a vector space when the operations are those given in Definition LTA and Definition LTSM.

$$
(S \circ T)(\mathbf{u})=S(T(\mathbf{u}))
$$

Theorem CLTLT Composition of Linear Transformations is a Linear Transformation 257
Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear transformations. Then $(S \circ T): U \rightarrow W$ is a linear transformation.

[^8]Suppose $T: U \rightarrow V$ is a linear transformation. Then the kernel of T is the set

$$
\mathcal{K}(T)=\{\mathbf{u} \in U \mid T(\mathbf{u})=\mathbf{0}\}
$$ U.

Suppose $T: U \rightarrow V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is non-empty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

$$
T^{-1}(\mathbf{v})=\{\mathbf{u}+\mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T)\}=\mathbf{u}+\mathcal{K}(T)
$$

Theorem KILT Kernel of an Injective Linear Transformation

Suppose that $T: U \rightarrow V$ is a linear transformation. Then T is injective if and only if the kernel of T is trivial, $\mathcal{K}(T)=\{\mathbf{0}\}$.

Theorem ILTLI Injective Linear Transformations and Linear Independence
Suppose that $T: U \rightarrow V$ is an injective linear transformation and

$$
S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}
$$

is a linearly independent subset of U. Then

$$
R=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{t}\right)\right\}
$$

is a linearly independent subset of V.

Suppose that $T: U \rightarrow V$ is a linear transformation and

$$
B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}
$$

is a basis of U. Then T is injective if and only if

$$
C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}
$$

is a linearly independent subset of V.

Suppose that $T: U \rightarrow V$ is an injective linear transformation. Then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.

Theorem CILTI Composition of Injective Linear Transformations is Injective 266 Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are injective linear transformations. Then $(S \circ T): U \rightarrow$ W is an injective linear transformation.

Suppose $T: U \rightarrow V$ is a linear transformation. Then T is surjective if for every $\mathbf{v} \in V$ there exists a $\mathbf{u} \in U$ so that $T(\mathbf{u})=\mathbf{v}$.

[^9]
Theorem RLTS Range of a Linear Transformation is a Subspace

Suppose that $T: U \rightarrow V$ is a linear transformation. Then the range of $T, \mathcal{R}(T)$, is a subspace of V.

[^10]Suppose that $T: U \rightarrow V$ is a linear transformation and

$$
S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}
$$

spans U. Then

$$
R=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{t}\right)\right\}
$$

spans $\mathcal{R}(T)$.

Theorem RPI Range and Pre-Image

Suppose that $T: U \rightarrow V$ is a linear transformation. Then

$$
\mathbf{v} \in \mathcal{R}(T) \text { if and only if } T^{-1}(\mathbf{v}) \neq \emptyset
$$

Theorem SLTB Surjective Linear Transformations and Bases

Suppose that $T: U \rightarrow V$ is a linear transformation and

$$
B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}
$$

is a basis of U. Then T is surjective if and only if

$$
C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}
$$

is a spanning set for V.

Suppose that $T: U \rightarrow V$ is a surjective linear transformation. Then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$.

Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 275
Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are surjective linear transformations. Then $(S \circ T): U \rightarrow$ W is a surjective linear transformation.

The identity linear transformation on the vector space W is defined as

$$
I_{W}: W \rightarrow W, \quad I_{W}(\mathbf{w})=\mathbf{w}
$$

Definition IVLT Invertible Linear Transformations
Suppose that $T: U \rightarrow V$ is a linear transformation. If there is a function $S: V \rightarrow U$ such that

$$
S \circ T=I_{U} \quad T \circ S=I_{V}
$$

then T is invertible. In this case, we call S the inverse of T and write $S=T^{-1}$.

Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation278 Suppose that $T: U \rightarrow V$ is an invertible linear transformation. Then the function $T^{-1}: V \rightarrow U$ is a linear transformation. transformation and $\left(T^{-1}\right)^{-1}=T$.

Theorem ILTIS Invertible Linear Transformations are Injective and Surjective280 Suppose $T: U \rightarrow V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.

Theorem CIVLT Composition of Invertible Linear Transformations
Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are invertible linear transformations. Then the composition, $(S \circ T): U \rightarrow W$ is an invertible linear transformation.

Theorem ICLT Inverse of a Composition of Linear Transformations

Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are invertible linear transformations. Then $S \circ T$ is invertible and $(S \circ T)^{-1}=T^{-1} \circ S^{-1}$.

Two vector spaces U and V are isomorphic if there exists an invertible linear transformation T with domain U and codomain $V, T: U \rightarrow V$. In this case, we write $U \cong V$, and the linear transformation T is known as an isomorphism between U and V.

Suppose that $T: U \rightarrow V$ is a linear transformation. Then the rank of $T, r(T)$, is the dimension of the range of T,

$$
r(T)=\operatorname{dim}(\mathcal{R}(T))
$$

[^11]Suppose that $T: U \rightarrow V$ is a linear transformation. Then the rank of T is the dimension of V, $r(T)=\operatorname{dim}(V)$, if and only if T is surjective. and only if T is injective.

Theorem RPNDD Rank Plus Nullity is Domain Dimension
Suppose that $T: U \rightarrow V$ is a linear transformation. Then

$$
r(T)+n(T)=\operatorname{dim}(U)
$$

[^12]Theorem VRILT Vector Representation is an Invertible Linear Transformation294
The function ρ_{B} (Definition VR) is an invertible linear transformation.

Suppose that V is a vector space with dimension n. Then V is isomorphic to \mathbb{C}^{n}.

Theorem CLI Coordinatization and Linear Independence
Suppose that U is a vector space with a basis B of size n. Then

$$
S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}
$$

is a linearly independent subset of U if and only if

$$
R=\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}
$$

is a linearly independent subset of \mathbb{C}^{n}.

Theorem CSS Coordinatization and Spanning Sets
Suppose that U is a vector space with a basis B of size n. Then

$$
\mathbf{u} \in\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}\right\rangle
$$

if and only if

$$
\rho_{B}(\mathbf{u}) \in\left\langle\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}\right\rangle
$$

Suppose that $T: U \rightarrow V$ is a linear transformation, $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a basis for U of size n, and C is a basis for V of size m. Then the matrix representation of T relative to B and C is the $m \times n$ matrix,

$$
M_{B, C}^{T}=\left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)\left|\rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)\right| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right)|\ldots| \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]
$$ $M_{B, C}^{T}$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$
\rho_{C}(T(\mathbf{u}))=M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)
$$

or equivalently

$$
T(\mathbf{u})=\rho_{C}^{-1}\left(M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)\right)
$$

Theorem MRSLT Matrix Representation of a Sum of Linear Transformations 301 Suppose that $T: U \rightarrow V$ and $S: U \rightarrow V$ are linear transformations, B is a basis of U and C is a basis of V. Then

$$
M_{B, C}^{T+S}=M_{B, C}^{T}+M_{B, C}^{S}
$$

Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation 302
Suppose that $T: U \rightarrow V$ is a linear transformation, $\alpha \in \mathbb{C}, B$ is a basis of U and C is a basis of V. Then

$$
M_{B, C}^{\alpha T}=\alpha M_{B, C}^{T}
$$

Theorem MRCLT Matrix Representation of a Composition of Linear Transformations
Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

$$
M_{B, D}^{S \circ T}=M_{C, D}^{S} M_{B, C}^{T}
$$

Theorem KNSI Kernel and Null Space Isomorphism

Suppose that $T: U \rightarrow V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the kernel of T is isomorphic to the null space of $M_{B, C}^{T}$,

$$
\mathcal{K}(T) \cong \mathcal{N}\left(M_{B, C}^{T}\right)
$$

Suppose that $T: U \rightarrow V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the column space of $M_{B, C}^{T}$,

$$
\mathcal{R}(T) \cong \mathcal{C}\left(M_{B, C}^{T}\right)
$$

Theorem IMR Invertible Matrix Representations

306
Suppose that $T: U \rightarrow V$ is a linear transformation, B is a basis for U and C is a basis for V. Then T is an invertible linear transformation if and only if the matrix representation of T relative to B and $C, M_{B, C}^{T}$ is an invertible matrix. When T is invertible,

$$
M_{C, B}^{T^{-1}}=\left(M_{B, C}^{T}\right)^{-1}
$$ by $T(\mathbf{x})=A \mathbf{x}$. Then A is invertible matrix if and only if T is an invertible linear transformation.

Theorem NME9 Nonsingular Matrix Equivalences, Round 9

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.
12. $\lambda=0$ is not an eigenvalue of A.
13. The linear transformation $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$ is invertible.

Suppose that $T: V \rightarrow V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if $T(\mathbf{v})=\lambda \mathbf{v}$.

Definition CBM Change-of-Basis Matrix

310
Suppose that V is a vector space, and $I_{V}: V \rightarrow V$ is the identity linear transformation on V. Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ and C be two bases of V. Then the change-of-basis matrix from B to C is the matrix representation of I_{V} relative to B and C,

$$
\begin{aligned}
C_{B, C} & =M_{B, C}^{I_{V}} \\
& =\left[\rho_{C}\left(I_{V}\left(\mathbf{v}_{1}\right)\right)\left|\rho_{C}\left(I_{V}\left(\mathbf{v}_{2}\right)\right)\right| \rho_{C}\left(I_{V}\left(\mathbf{v}_{3}\right)\right)|\ldots| \rho_{C}\left(I_{V}\left(\mathbf{v}_{n}\right)\right)\right] \\
& =\left[\rho_{C}\left(\mathbf{v}_{1}\right)\left|\rho_{C}\left(\mathbf{v}_{2}\right)\right| \rho_{C}\left(\mathbf{v}_{3}\right)|\ldots| \rho_{C}\left(\mathbf{v}_{n}\right)\right]
\end{aligned}
$$

Theorem CB Change-of-Basis
Suppose that \mathbf{v} is a vector in the vector space V and B and C are bases of V. Then

$$
\rho_{C}(\mathbf{v})=C_{B, C} \rho_{B}(\mathbf{v})
$$ $C_{B, C}$ is nonsingular and

$$
C_{B, C}^{-1}=C_{C, B}
$$

Theorem MRCB Matrix Representation and Change of Basis
313
Suppose that $T: U \rightarrow V$ is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

$$
M_{B, D}^{T}=C_{E, D} M_{C, E}^{T} C_{B, C}
$$

Theorem SCB Similarity and Change of Basis
Suppose that $T: V \rightarrow V$ is a linear transformation and B and C are bases of V. Then

$$
M_{B, B}^{T}=C_{B, C}^{-1} M_{C, C}^{T} C_{B, C}
$$

Theorem EER Eigenvalues, Eigenvectors, Representations

Suppose that $T: V \rightarrow V$ is a linear transformation and B is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_{B}(\mathbf{v})$ is an eigenvector of $M_{B, B}^{T}$ for the eigenvalue λ.

Definition LTM Lower Triangular Matrix
The $n \times n$ square matrix A is lower triangular if $[A]_{i j}=0$ whenever $i<j$. $A B$ is also triangular of that type. is triangular of the same type. Furthermore, the diagonal entries of A^{-1} are the reciprocals of the corresponding diagonal entries of A. More precisely, $\left[A^{-1}\right]_{i i}=[A]_{i i}^{-1}$. matrix representation of T relative to $B, M_{B, B}^{T}$, is an upper triangular matrix. Each diagonal entry is an eigenvalue of T, and if λ is an eigenvalue of T, then λ occurs $\alpha_{T}(\lambda)$ times on the diagonal.

Theorem OBUTR Orthonormal Basis for Upper Triangular Representation 321
Suppose that A is a square matrix. Then there is a unitary matrix U, and an upper triangular matrix T, such that

$$
U^{*} A U=T
$$

and T has the eigenvalues of A as the entries of the diagonal.

Definition NRML Normal Matrix
The square matrix A is normal if $A^{*} A=A A^{*}$.

Suppose that A is a square matrix. Then there is a unitary matrix U and a diagonal matrix D, with diagonal entries equal to the eigenvalues of A, such that $U^{*} A U=D$ if and only if A is a normal matrix.

Theorem OBNM Orthonormal Bases and Normal Matrices

Suppose that A is a normal matrix of size n. Then there is an orthonormal basis of \mathbb{C}^{n} composed of eigenvectors of A.

The complex numbers $\alpha=a+b i$ and $\beta=c+d i$ are equal, denoted $\alpha=\beta$, if $a=c$ and $b=d$.

The sum of the complex numbers $\alpha=a+b i$ and $\beta=c+d i$, denoted $\alpha+\beta$, is $(a+c)+(b+d) i$.

Theorem PCNA Properties of Complex Number Arithmetic

The operations of addition and multiplication of complex numbers have the following properties.

- ACCN Additive Closure, Complex Numbers: If $\alpha, \beta \in \mathbb{C}$, then $\alpha+\beta \in \mathbb{C}$.
- MCCN Multiplicative Closure, Complex Numbers: If $\alpha, \beta \in \mathbb{C}$, then $\alpha \beta \in \mathbb{C}$.
- CACN Commutativity of Addition, Complex Numbers: For any $\alpha, \beta \in \mathbb{C}, \alpha+\beta=\beta+\alpha$.
- CMCN Commutativity of Multiplication, Complex Numbers: For any $\alpha, \beta \in \mathbb{C}, \alpha \beta=\beta \alpha$.
- AACN Additive Associativity, Complex Numbers: For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha+(\beta+\gamma)=$ $(\alpha+\beta)+\gamma$.
- MACN Multiplicative Associativity, Complex Numbers: For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha(\beta \gamma)=$ $(\alpha \beta) \gamma$.
- DCN Distributivity, Complex Numbers: For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.
- ZCN Zero, Complex Numbers: There is a complex number $0=0+0 i$ so that for any $\alpha \in \mathbb{C}$, $0+\alpha=\alpha$.
- OCN One, Complex Numbers: There is a complex number $1=1+0 i$ so that for any $\alpha \in \mathbb{C}$, $1 \alpha=\alpha$.
- AICN Additive Inverse, Complex Numbers: For every $\alpha \in \mathbb{C}$ there exists $-\alpha \in \mathbb{C}$ so that $\alpha+(-\alpha)=0$.
- MICN Multiplicative Inverse, Complex Numbers: For every $\alpha \in \mathbb{C}, \alpha \neq 0$ there exists $\frac{1}{\alpha} \in \mathbb{C}$ so that $\alpha\left(\frac{1}{\alpha}\right)=1$.

The conjugate of the complex number $\alpha=a+b i \in \mathbb{C}$ is the complex number $\bar{\alpha}=a-b i$.

Suppose that α is a complex number. Then $\overline{\bar{\alpha}}=\alpha$.

The modulus of the complex number $\alpha=a+b i \in \mathbb{C}$, is the nonnegative real number

$$
|\alpha|=\sqrt{\bar{\alpha} \alpha}=\sqrt{a^{2}+b^{2}}
$$

Definition SET Set

A set is an unordered collection of objects. If S is a set and x is an object that is in the set S, we write $x \in S$. If x is not in S, then we write $x \notin S$. We refer to the objects in a set as its elements.

If S and T are two sets, then S is a subset of T, written $S \subseteq T$ if whenever $x \in S$ then $x \in T$.

The empty set is the set with no elements. It is denoted by \emptyset.

Two sets, S and T, are equal, if $S \subseteq T$ and $T \subseteq S$. In this case, we write $S=T$.

[^13]Definition SU Set Union
Suppose S and T are sets. Then the union of S and T, denoted $S \cup T$, is the set whose elements are those that are elements of S or of T, or both. More formally,
$x \in S \cup T$ if and only if $x \in S$ or $x \in T$

Definition SI Set Intersection

340
Suppose S and T are sets. Then the intersection of S and T, denoted $S \cap T$, is the set whose elements are only those that are elements of S and of T. More formally,
$x \in S \cap T$ if and only if $x \in S$ and $x \in T$

Definition SC Set Complement
Suppose S is a set that is a subset of a universal set U. Then the complement of S, denoted \bar{S}, is the set whose elements are those that are elements of U and not elements of S. More formally,

$$
x \in \bar{S} \text { if and only if } x \in U \text { and } x \notin S
$$

[^0]: Definition CCM Complex Conjugate of a Matrix
 90
 Suppose A is an $m \times n$ matrix. Then the conjugate of A, written \bar{A} is an $m \times n$ matrix defined by

 $$
 [\bar{A}]_{i j}=\overline{[A]_{i j}}
 $$

[^1]: Definition MI Matrix Inverse
 116
 Suppose A and B are square matrices of size n such that $A B=I_{n}$ and $B A=I_{n}$. Then A is invertible and B is the inverse of A. In this situation, we write $B=A^{-1}$.

[^2]: Definition ROM Rank Of a Matrix
 180
 Suppose that A is an $m \times n$ matrix. Then the rank of A is the dimension of the column space of $A, r(A)=\operatorname{dim}(\mathcal{C}(A))$.

[^3]: Definition EEM Eigenvalues and Eigenvectors of a Matrix
 Suppose that A is a square matrix of size $n, \mathbf{x} \neq \mathbf{0}$ is a vector in \mathbb{C}^{n}, and λ is a scalar in \mathbb{C}. Then we say \mathbf{x} is an eigenvector of A with eigenvalue λ if

 $$
 A \mathrm{x}=\lambda \mathrm{x}
 $$

[^4]: Definition CP Characteristic Polynomial
 Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the polynomial $p_{A}(x)$ defined by

 $$
 p_{A}(x)=\operatorname{det}\left(A-x I_{n}\right)
 $$

[^5]: Definition EM Eigenspace of a Matrix
 216
 Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for λ, $\mathcal{E}_{A}(\lambda)$, is the set of all the eigenvectors of A for λ, together with the inclusion of the zero vector.

[^6]: Definition SIM Similar Matrices 236
 Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix of size n, S, such that $A=S^{-1} B S$.

[^7]: Definition DZM Diagonalizable Matrix
 Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.

[^8]: Definition ILT Injective Linear Transformation
 Suppose $T: U \rightarrow V$ is a linear transformation. Then T is injective if whenever $T(\mathbf{x})=T(\mathbf{y})$, then $\mathbf{x}=\mathbf{y}$.

[^9]: Definition RLT Range of a Linear Transformation
 Suppose $T: U \rightarrow V$ is a linear transformation. Then the range of T is the set

 $$
 \mathcal{R}(T)=\{T(\mathbf{u}) \mid \mathbf{u} \in U\}
 $$

[^10]: Theorem RSLT Range of a Surjective Linear Transformation 270
 Suppose that $T: U \rightarrow V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T)=V$.

[^11]: Definition NOLT Nullity Of a Linear Transformation
 Suppose that $T: U \rightarrow V$ is a linear transformation. Then the nullity of $T, n(T)$, is the dimension of the kernel of T,

 $$
 n(T)=\operatorname{dim}(\mathcal{K}(T))
 $$

[^12]: Definition VR Vector Representation
 Suppose that V is a vector space with a basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$. Define a function $\rho_{B}: V \rightarrow \mathbb{C}^{n}$ as follows. For $\mathbf{w} \in V$ define the column vector $\rho_{B}(\mathbf{w}) \in \mathbb{C}^{n}$ by

 $$
 \mathbf{w}=\left[\rho_{B}(\mathbf{w})\right]_{1} \mathbf{v}_{1}+\left[\rho_{B}(\mathbf{w})\right]_{2} \mathbf{v}_{2}+\left[\rho_{B}(\mathbf{w})\right]_{3} \mathbf{v}_{3}+\cdots+\left[\rho_{B}(\mathbf{w})\right]_{n} \mathbf{v}_{n}
 $$

[^13]: Definition C Cardinality
 338
 Suppose S is a finite set. Then the number of elements in S is called the cardinality or size of S, and is denoted $|S|$.

